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Abstract

Properties of greedy trees

Valisoa Razanajatovo Misanantenaina

Department of Mathematical Sciences,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MSc

December 2014

A greedy tree is constructed from a given degree sequence using a simple
greedy algorithm that assigns the highest degree to the root, the second,
the third, . . . , -highest degree to the root’s neighbours, etc. This particular
tree is the solution to numerous extremal problems among all trees with
given degree sequence. In this thesis, we collect results for some distance-
based graph invariants, the number of subtrees and the spectral radius
in which greedy trees play a major role. We show that greedy trees are
extremal for the aforementioned graph invariants by means of two different
approaches, one using level greedy trees and majorization, while the other
one is somewhat more direct. Finally, we prove some new results on greedy
trees for additive parameters with specific toll functions.
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Uittreksel

Eienskappe van die gulsige bome

Valisoa Razanajatovo Misanantenaina

Departement Wiskundige Wetenskappe,
Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MSc

Desember 2014

’n Gulsige boom word vanuit ’n gegewe graadry deur middel van ’n een-
voudige gulsige algoritme gebou, wat die hoogste graad aan die wortel
toewys, die tweede-, derde-, . . . , -hoogste graad aan die wortel se bure,
ens. Hierdie spesifieke boom is die oplossing van ’n groot aantal ek-
stremale probleme onder al die bome met gegewe graadry. In hierdie tesis
beskou ons ’n versameling van resultate oor afstand-gebaseerde grafiekin-
variante, die aantal subbome en die spektraalstraal waarin gulsige bome
’n belangrike rol speel. Ons bewys dat gulsige bome ekstremaal vir die
bogenoemde grafiekinvariante is deur van twee verskillende tegnieke ge-
bruik te maak: een met behulp van vlak-gulsige bome en majorering, en
’n ander metode wat effens meer direk is. Laastens bewys ons sommige
nuwe resultate oor gulsige bome vir additiewe parameters met spesifieke
tolfunksies.
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Chapter 1

Introduction

Part of extremal graph theory, one of the classical areas of graph theory,
deals with the study of extremal (minimal or maximal) graphs in a given
class of graphs with respect to certain graph invariants. In a nutshell,
it studies how the structure of a graph influences its invariants. In this
project, we particularly focus on the class of trees with given degree se-
quence, where the so-called �greedy trees� appear as the solution to nu-
merous extremal problems.
In the literature, greedy trees first appeared as trees satisfying the breadth
first search ordering [5, 18, 36]. In this thesis, we use a more recent defini-
tion by which greedy trees are constructed from a given degree sequence
using a simple greedy algorithm that assigns the highest degree to the root,
the second, the third, ..., -highest degree to the root’s neighbor, etc [32]. Ac-
tually, this construction is a generalisation of �good trees� [28], also known
as Volkmann trees, which are often extremal among trees of order n with
maximum degree.
The main aim of this work is to collect and unify results involving greedy
trees which have been obtained by several researchers, describe general
proof techniques, and find new extremal properties of greedy trees. In
order to achieve this goal, we will first define some basic notions of graph
theory, and review in particular some properties of trees, which are the
basic objects of our study. Moreover, we mention properties of greedy trees
resulting from their definition. We also introduce the notion of rooted level
greedy and edge-rooted level greedy trees which are in some sense the
equivalent of greedy trees among trees with given level degree sequence.
A core component of Chapter 2 is a direct proof of a theorem found in [24]

1
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CHAPTER 1. INTRODUCTION 2

that links greedy trees to level greedy trees. As we will see, this theorem
will be useful in proving our results presented in subsequent chapters.
In Chapter 3, we prove the extremality of greedy trees by using the ma-
jorization approach on trees with given level degree sequence. We then
use the theorem stated in Chapter 2 to extend the results to greedy trees.
To illustrate this method, we will prove that greedy trees minimize the
Wiener index, the hyper-Wiener index and the generalized Wiener index
[24] and maximize the Harary index [30] and the number of subtrees [2].
For the latter graph invariant, we also compare trees with different degree
sequences to rederive known results on trees of given order n, trees with
given maximum degree and trees with given number of leaves.
In Chapter 4, we use a more direct approach to prove that greedy trees min-
imize the Wiener index [32] and maximize the spectral radius [5]. More
specifically, this approach involves rearranging the edges in a tree and
studying influence of this modification on the aforementioned graph in-
variants. Again, as for the number of subtrees, we can extend the results
by comparing trees with different degree sequences.
Finally, in Chapter 5 we prove some new results on greedy trees. As it
turns out, greedy trees are extremal for additive parameters with specific
toll functions. More precisely, if the additive parameter has a toll function
that depends only on the order of the tree, and which is increasing concave
(resp. decreasing convex), then greedy trees minimize (resp. maximize)
it. To this end, we combine the two methods, i.e., we use majorization
on the order of the rooted subtrees of the trees to prove the extremality
of level greedy trees and then rearrange the edges to see the effect on the
parameters to conclude that the greedy trees are indeed extremal.
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Chapter 2

Basic notions

2.1 Introduction

A graph is defined as a pair of sets (V(G), E(G)), where the elements of
V(G) are called vertices of G, and the elements of E(G), which are two-
element subsets of V(G), are called edges of G. |V(G)| is the order of G
and |E(G)| its size. For simplicity an edge {u, v} will be denoted by uv.
In a graphical representation, each vertex is indicated by a point and each
edge by a line joining the points which represent its edges, see Figure 2.1. A
simple undirected graph does not contain loops, i.e., edges that join a vertex
to itself, nor multiple edges between two vertices, and its edges do not
have a direction. All graphs considered throughout the whole thesis will
be simple and undirected graphs.
Two graphs G and G′ are identical (written G = G′), if V(G) = V(G′)
and E(G) = E(G′). However, there are also instances of graphs which are
so similar that they could be represented by the same diagram. In such a
situation, the graphs are said to be isomorphic, formally defined as follows:

Definition 2.1.1. Two graphs G and G′ are isomorphic (G ∼= G′) if there is a
bijection ` : V(G)→ V(G′) such that uv ∈ E(G)⇐⇒ `(u)`(v) ∈ E(G′).

Definition 2.1.2. A graph G′ is a subgraph of G if V(G′) ⊆ V(G) and
E(G′) ⊆ E(G). If in particular V(G) = V(G′), then G′ is called a span-
ning subgraph of G.

Remark 2.1.3. Let {v1, v2, . . . , vk} be a subset of the vertices of a graph G.

3
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CHAPTER 2. BASIC NOTIONS 4

The subgraph of G which results from removing the vertices v1, v2, . . . , vk

and the edges containing them from G will be denoted by G−{v1, v2, . . . , vk}.
The subgraph of G which results from removing the edges v1w1, . . . , vkwk

will be denoted by G− {v1w1, . . . , vkwk}.

Definition 2.1.4. A graph (V, E), where V = {v1, v2, . . . , vn}, E = {v1v2, v2v3,
. . . , vn−1vn}, with n ≥ 1, and where vi 6= vj if i 6= j, is called a path and
denoted by Pn.
Let n ≥ 3 and Pn be a path, with the same notation as before. The graph
(V(Pn), E(Pn) ∪ {v1vn}) is called a cycle and denoted Cn.
The length of a path (cycle) is the number of edges in the path (cycle).

Example 2.1.5. The first two pictures are isomorphic representations of a
cycle of length 4, and the last two show some of its subgraphs.

Figure 2.1: A cycle C4 and its subgraphs.

Now that the notions of paths and cycles have been introduced, we can talk
about connectivity and acyclic graphs.

Definition 2.1.6. A graph G is connected if every pair of its vertices is joined
by a path. Otherwise, G is disconnected.
A forest is an acyclic graph, i.e., it does not contain a cycle. A tree is a
connected forest.

Definition 2.1.7. For any vertex v ∈ G, the set {u ∈ V(G) : uv ∈ E(G)} is
called the neighbourhood of v and denoted by N(v). The cardinality of N(v),
denoted by dG(v) (we write d(v) if there is no ambiguity), is the degree of
v. A vertex of degree 1 is called a leaf.
We denote by (d1, d2, . . . , dn) the degree sequence of a graph G, where di

stands for the degree of the i-th vertex and we may assume that d1 ≥
d2 · · · ≥ dn.

The following proposition links the degree sequence of a graph and its
number of edges.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. BASIC NOTIONS 5

Proposition 2.1.8. For a graph with m edges, we have

∑
v∈V(G)

d(v) = 2m.

Proof. An edge contributes to the degree of two vertices. Thus when we
take the sum of all degrees, each edge is counted exactly twice. Therefore
the statement holds.

Definition 2.1.9. The distance d(u, v) between two vertices u and v is the
length of the shortest path between u and v in G.

Example 2.1.10. This is an example of a star, which is a tree of order n with
n− 1 leaves. Considering Figure 2.2, we can see that this star has 8 leaves
and one vertex r called center such that d(r) = 8. Its degree sequence is
therefore (8, 1, 1, 1, 1, 1, 1, 1, 1). The sum of its degrees is 16 = 2 ∗ 8 which
confirms Proposition 2.1.8. Moreover, the distance between the center r
and one of the leaves is 1, while the distance between two leaves is 2.

r

Figure 2.2: A star

In this thesis, we specifically focus on trees. We first collect some well-
known facts and properties of trees (see for example [4, 6]), which will
be useful later on. It is easy to see that any two vertices of a tree T are
connected by a unique path. This unique path connecting two vertices u, v
is denoted by PT(u, v) (P(u, v) if it is clear what tree is considered). A rooted
tree (T, r) is obtained by specifying one vertex r as the root. The height of
a vertex v of a rooted tree T with root r, denoted hT(v), is the distance
between r and v, while the height of T is just the greatest height of its
vertices. For any two different vertices u, v in a rooted tree (T, r), we say
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CHAPTER 2. BASIC NOTIONS 6

that v is a successor of u (or u is an ancestor of v) if PT(r, u) ⊂ PT(r, v). If
in addition u and v are adjacent to each other, we say that v is a child of
u (or u is a parent of v). Two vertices u, v are siblings of each other if they
share the same parent. We say that a vertex v is at level i if dT(r, v) = i.

Example 2.1.11. This is an example of a rooted tree T of height 3. As we
can see in Figure 2.3, the vertex v has 3 children v1, v2, v3.

r

v

v1 v2 v3

Figure 2.3: A rooted tree T

Theorem 2.1.12. In a tree T, the number of edges m is equal to n− 1, where n is
the order of T.

Proof. Let us prove the statement by induction on n. If n = 1, T is a single
vertex, so m = 0.
Suppose the theorem is true for all trees on n < ` vertices, and let T be
a tree on ` vertices. Let uv ∈ E(T). Then T − uv is disconnected and we
obtain two components T1 and T2, which are trees on fewer vertices than
`. Therefore m = |E(T1)|+ |E(T2)|+ 1 = |V(T1)| − 1 + |V(T2)| − 1 + 1 =

n− 1.

Proposition 2.1.13. A sequence (d1, d2, . . . , dn) of positive integers is a de-
gree sequence of an n-vertex tree if and only if

n

∑
i=1

di = 2(n− 1) (2.1.1)

Proof. If (d1, d2, . . . , dn) is a degree sequence of an n-vertex tree, then by

using Theorem 2.1.12 and Proposition 2.1.8, we have
n
∑

i=1
di = 2(n− 1).

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. BASIC NOTIONS 7

Let us prove by induction that if (d1, d2, . . . , dn) is a degree sequence of
positive integers satisfying (2.1.1), then it is a degree sequence of an n-
vertex tree. For n = 2, the only possible sequence satisfying (2.1.1) is
(1, 1), which is a degree sequence of a tree with two vertices and a single
edge. Suppose that the statement is true for n = `, we have to prove
that it holds for n = ` + 1. Note that if (d1, d2, . . . , d`+1) is a sequence
satisfying (2.1.1), then there exist i, j such that di > 1 and dj = 1 (for
otherwise the sum d1 + d2 + · · · + d`+1 would be at least 2(` + 1) > 2`
or at most `+ 1 < 2`). From this sequence, we can obtain a sequence of
` positive integers (d1, d2, . . . , di − 1, di+1, . . . , dj−1, dj+1, . . . , d`+1) satisfying
(2.1.1). However by the induction hypothesis, this sequence of ` integers
corresponds to the degree sequence of an `-vertex tree, and the operation
to get back to the original degree sequence is to attach a pendant edge to a
vertex u with d(u) = dj − 1. Thus the statement holds.

2.2 Greedy and level-greedy Trees

In this section, we introduce greedy trees, which are the main subject of
the thesis. We also state some properties and theorems which are useful in
the next chapters. The greedy tree has been defined in various equivalent
ways in previous papers [2, 24, 36]. In this thesis, we define the greedy tree
as follows:

Definition 2.2.1. Given a sequence satisfying Proposition 2.1.13, the greedy
tree is constructed by the following �greedy algorithm� :

(i) Label the vertex with the largest degree v (the root);

(ii) Label the neighbours of v as v1, v2, . . . , and assign the largest degrees
available to them such that d(v1) ≥ d(v2) ≥ · · · ;

(iii) Label the neighbours of v1 (except v) as v11, v12, . . . , and then do the
same for v2, v3, . . . ;

(iv) Repeat (ii) and (iii) for all the newly labeled vertices. Always start
with the neighbours of the labeled vertex with the largest degree
whose neighbours are not labeled yet.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. BASIC NOTIONS 8

Example 2.2.2. Let us construct a greedy tree with the following degree
sequence: (4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1). We choose the
vertex v such that d(v) = 4 on level 0. Then v is adjacent to four ver-
tices v1, v2, v3, v4 on level 1 whose degrees are 4, 3, 3, 3 respectively. Then
v1, v2, v3, v4 are adjacent to three, two, two and two vertices respectively
on level 2. These vertices are denoted by v11, v12, v13, v21, . . . , v42, and their
degrees are 3, 3, 3, 2, 2, 2, 1, 1, 1 respectively. Finally v11, v12, v13, v21, v22, v31

are adjacent to two, two, two, one, one and one vertex respectively on level
3. The degrees of these vertices are all 1.

v

v1

v11 v12 v13

v2 v3 v4

Figure 2.4: A greedy tree. (Only the first eight vertices are labelled).

From the definition of the greedy tree, we get:

Lemma 2.2.3 ([31, 32]). A rooted tree T with a given degree sequence is a
greedy tree with the canonical root if:

(i) the root r has the largest degree;

(ii) the heights of any two leaves differ by at most 1;

(iii) for any two vertices u and v, if hT(u) < hT(v), then d(u) ≥ d(v);

(iv) for any two vertices u and v of the same height, d(u) > d(v) implies
that d(u′) ≥ d(v′) for any successors u′ of u and v′ of v of the same
height;

(v) for any two vertices u and v of the same height, d(u) > d(v) implies
that d(u′) ≥ d(v′) for any siblings u′ of u and v′ of v of the same
height.
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CHAPTER 2. BASIC NOTIONS 9

Definition 2.2.4. For i = 0, 1, . . . , H, let multisets {ai,1, ai,2, . . . , ai,`i} of non-
negative numbers be given such that `0 = 1 (resp. `0 = 2) and

`i+1 =
`i

∑
j=1

ai,j.

Assume that the elements of each multiset are sorted, i.e. ai,1 ≥ ai,2 ≥ · · · ≥
ai,`i . The level-greedy tree (with height H) corresponding to this sequence
of multisets is the rooted (resp. edge-rooted) tree whose j-th vertex at level
i has outdegree ai,j.

Example 2.2.5. Figure 2.5 shows a rooted level-greedy tree with the fol-
lowing outdegree sequences on each level : {(3), (3, 2, 2), (3, 2, 2, 1, 1, 1)}.

Figure 2.5: A rooted level-greedy tree.

Example 2.2.6. Figure 2.6 shows an edge-rooted tree with the following
outdegree sequences: {(2, 1), (3, 2, 2), (3, 2, 2, 1, 1, 1)}.

Figure 2.6: An edge-rooted level-greedy tree.

The following theorem found in [24] relates greedy trees and level-greedy
trees. The proof is based on the �semi-regular� property defined in [28].
Here, we present an alternative proof using a direct approach.
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Theorem 2.2.7. If a tree is level-greedy with respect to any possible choice of root
or edge-root, then it is greedy.

Proof. Let T be a level-greedy tree with respect to any root and edge-root.
Let us choose the root r in the following way:

• Take r as the vertex with maximum degree.

• If there are several vertices of highest degree, we sum all the degrees
of their neighbours and take the one which maximizes this sum.

• If there is still more than one vertex satisfying this condition, we con-
tinue summing the degrees of all the vertices at distance 2, 3, . . . , k.
At a certain point, we end up with one unique vertex which satisfies
all the conditions and take it as our root. Otherwise, we can take any
of the vertices that are left.

By our hypothesis, we know that T is level-greedy with respect to r. For T
to be greedy, it is left to show that the degree of a vertex on a higher level is
always greater or equal to the degree of a vertex on a lower level. Without
loss of generality, we can consider two vertices u, v on consecutive levels,
such that u has the minimum degree on level k and v has the maximum
degree on level k + 1.

Now let us suppose that d(u) < d(v). We consider the middle edge e of
the path between u and v as our new root. The endpoints of e are r and r1,
which are respectively the ancestors of u and v. Moreover u and v are now
on the same level k. The following cases can occur:

Case 1 : d(r) 6= d(r1)

From the choice of r, we have d(r) > d(r1). Since by hypothesis T is
level-greedy with respect to e, the vertices are ordered in such a way that
successors of r have greater (or at least equal) degree than successors of
r1 at the same level. But u is a successor of r, v a successor of r1, and
d(u) < d(v), i.e., the inequality goes in the opposite direction, which is a
contradiction to T being level-greedy.
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CHAPTER 2. BASIC NOTIONS 11

Case 2 : d(r) = d(r1)

Let us consider the successors of r and r1.

• If at some level ` < k the sum of the degrees of the successors of r
does not equal the sum of the degrees of the successors of r1, then by
the choice of r, we know that the sum of the degrees of the successors
of r is greater. This means that the successors of r have higher degrees.
With a similar reasoning as in Case 1, this yields a contradiction.

• If at all levels ` < k, we have equality of the sum of the degrees of
the successors of r and r1, then at level k, we have the same num-
ber of successors of r and r1, denoted respectively by vr

1, . . . , vr
j and

vr1
1 , . . . , vr1

j . However, by the choice of r, the sum of the degrees of the
successors of r is greater or equal to the analogous sum for r1. If it is
greater, we can apply a similar reasoning as before. Otherwise, since
we have d(u) < d(v), there exists h such that d(vr1

h ) < d(vr
h). This

implies that the vertices at level k will not be ordered according to
their degrees, which is a contradiction to T being level-greedy.

Therefore, we have d(u) ≥ d(v), which shows that T is a greedy tree.

For the rest of this chapter, we are going to generalize the notion of greedy
trees to greedy forests, according to [2]. These definitions and concepts
will be required in subsequent chapters.

Definition 2.2.8. Let F be a rooted forest where the maximum height of
any component is k. The level degree sequence of F is the sequence

D = (V0, . . . , Vk), (2.2.1)

where, for any 0 ≤ i ≤ k, Vi is the non-increasing sequence formed by the
degrees of the vertices of F on the i-th level.

Definition 2.2.9. Let D = ((a0,1, . . . , a0,k0), (a1,1, . . . , a1,k1), . . . , (an,1, . . . , an,kn))

be the level degree sequence of a forest. In a similar way as for the level
greedy tree, if we assume that the elements of each multiset are sorted, i.e.
ai,1 ≥ ai,2 ≥ · · · ≥ ai,ki for i = 0, . . . , n, the level greedy forest is the rooted
forest whose j-th vertex at level i has outdegree ai,j.
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Example 2.2.10. Figure 2.7 shows a level-greedy forest whose outdegree
sequences on each level are: {(2, 2, 2), (3, 2, 2, 1, 1, 1), (2, 2, 2, 1, 1, 1, 1, 1, 1)}.

Figure 2.7: A level-greedy forest.

Remark 2.2.11. A connected level greedy forest is a level greedy tree. This
definition coincides with Definition 2.2.4.

Let T1 and T2 be two rooted trees. For j ∈ {1, 2} and ` ≥ 0 let V`,j =

{v`j,1, . . . , v`j,k`,j
} be the set of vertices at level ` of Tj. We write T1 . T2 if the

height of T1 is at least that of T2 and for any ` ≥ 0, we have

min{d(v`1,1), . . . , d(v`1,k`,1
)} ≥ max{d(v`2,1), . . . , d(v`2,k`,2

)}

if V`,2 is not empty. The relation . is easily seen to be transitive.

Remark 2.2.12. Let F be a rooted forest. F is a level greedy forest if and
only if its components can be labeled as F1, . . . , Ft such that each of F1, . . . , Ft

is a level greedy tree and F1 . · · · . Ft. A tree T rooted at v is a level greedy
tree if and only if T − v is a level greedy forest.
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Chapter 3

The majorization approach

For many graph invariants, such as the Wiener index, number of subtrees,
and spectral moments, the path and the star attain the extremal values
(minimum or maximum) among all trees with the same order. A lot of
research [2, 18, 24, 32, 36] has been conducted to find such extremal trees
with various restrictions such as fixed maximum degree, fixed number
of leaves and fixed degree sequence. For the last restriction, it turns out
that the greedy tree either minimizes or maximizes the aforementioned
graph invariants. In this chapter, we prove this fact in several instances
by applying the theory of majorization on rooted and edge-rooted level
greedy trees, and consequently extending the result to greedy trees. We
will focus on distance-based graph invariants and the number of subtrees.
The majorization approach can be used as well with spectral moments (see
[1]).

3.1 Preliminaries

We denote by Sn the set of all permutations of {1, . . . , n}. Let A = (a1, . . . , an)

and B = (b1, . . . , bn) be sequences of nonnegative numbers. We say that B
majorizes A if for all 1 ≤ k ≤ n we have

k

∑
i=1

ai ≤
k

∑
i=1

bi.

If for any σ ∈ Sn the sequence B majorizes (aσ(1), . . . , aσ(n)), then we write

A � B.

13

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. THE MAJORIZATION APPROACH 14

Remark 3.1.1. Note that majorization is transitive, i.e.,

A � B, B � C =⇒ A � C.

Remark 3.1.2. Let σ ∈ Sn be such that aσ(1) ≥ · · · ≥ aσ(n). It is easy to see
that (aσ′(1), . . . , aσ′(n)) � (aσ(1), . . . , aσ(n)) for any σ′ ∈ Sn. Thus, A � B is
equivalent to (aσ(1), . . . , aσ(n)) � B.

Remark 3.1.3. In some papers (see [20]), in the definition of majorization
we have equality

n

∑
i=1

ai =
n

∑
i=1

bi,

for the last n.

Lemma 3.1.4 (Rearrangement inequality [11, Theorem 368]). For any two
sequences of real numbers a1 ≥ a1 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn and
for any σ ∈ Sn, we have

a1b1 + a2b2 + · · ·+ anbn ≥ aσ(1)b1 + aσ(2)b2 + · · ·+ aσ(n)bn.

Proof. Let us first consider the case when n = 2. Suppose a1 ≥ a2 and
b1 ≥ b2, then

(a1 − a2)(b1 − b2) ≥ 0,

which implies
a1b1 + a2b2 ≥ a2b1 + a1b2.

For the general case, let us prove the statement by contradiction. Let a1 ≥
a1 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn. Suppose that there exists a
permutation σ different from the identity such that the sum

aσ(1)b1 + aσ(2)b2 + · · ·+ aσ(n)bn

is maximal (since there are only finitely many permutations, the maximum
must exist). Then there exists j ∈ {1, ..., n− 1} such that σ(j) 6= j and σ(i) =
i for all i ∈ {1, ..., j− 1}. Hence σ(j) > j and there exists k ∈ {j + 1, ..., n}
with σ(k) = j. However, from the case n = 2, we have ajbj + aσ(j)bk ≥
aσ(j)bj + ajbk. It implies that the sum of products can only increase if we
instead pair aj with bj and aσ(j) with bk (unless aj = aσ(j) or bj = bk, in
which case either we can interchange j and σ(j) or j and k without affecting
the sum). In any case, we obtain a new permutation σ′ with σ′(i) = i for
i ∈ {1, 2, . . . , j}, and the sum does not decrease. After a finite number of
iterations, we always reach the identity permutation.
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The following lemma, found in [24], is one of the keys to proving our
theorems later on.

Lemma 3.1.5. Suppose that we have nonnegative sequences such that
(a′1, . . . a′n) � (a1, . . . , an) and (b′1, . . . , b′n) � (b1, . . . , bn). Then we have

a′1b′1 + · · ·+ a′nb′n ≤ a1b1 + · · ·+ anbn.

Proof. Suppose that the sequences (a′1, . . . a′n) and (b′1, . . . , b′n) satisfy the
conditions in Lemma 3.1.5, and that the sum

a′1b′1 + · · ·+ a′nb′n

is a maximum, which exists since the inequalities define a compact set. By
Lemma 3.1.4, we may assume that a′1 ≥ · · · ≥ a′n and b′1 ≥ · · · ≥ b′n. If
(a1, . . . , an) 6= (a′1, . . . , a′n), let h be the smallest index such that a1 + · · ·+
ah > a′1 + · · ·+ a′h; h exists by the definition of majorization. Let ε > 0 be the
difference between the two sides of the inequality. Replacing a′h by a′h + ε

and a′h+1 by a′h+1 − ε, we obtain a new (2n)-tuple of numbers satisfying
the majorization, while the sum a′1b′1 + · · ·+ a′nb′n will not decrease, since
it changes by ε(b′h − b′h+1) ≥ 0. Note that during this process, the index h
will increase. We can repeat the same argument until h reaches n and we
end up with a1 = a′1, . . . , an = a′n, b1 = b′1, . . . , bn = b′n.

Example 3.1.6. Let us consider the following sequences (4, 3, 3), (5, 3, 2),
(3, 2, 1), (2, 2, 2). We have

(4, 3, 3) � (5, 2, 3) � (5, 3, 2),

(2, 2, 2) � (3, 1, 2) � (3, 2, 1),

and

4 · 2 + 3 · 2 + 3 · 2 = 20,

5 · 3 + 2 · 2 + 3 · 1 = 22,

5 · 3 + 3 · 1 + 2 · 2 = 22,

5 · 3 + 3 · 2 + 2 · 1 = 23.

This confirms Lemma 3.1.5.
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3.2 Distance-based invariants

Mathematical chemists often use a class of graph invariants, known as
topological indices in the chemical literature, to establish a connection be-
tween a compound’s molecular graph and its characteristics. Among those
topological indices, a number of distance-based invariants received great
attention. One of the most classical and most thoroughly studied distance-
based invariants is the Wiener index of a graph G, introduced by Wiener
[33], which is the sum of the distances between all pairs of vertices, de-
noted by

W(G) = ∑
{v,w}⊆V(G)

d(v, w), (3.2.1)

where d(v, w) is the distance between two vertices v, w ∈ V(G).
Let us mention also some invariants generalizing the Wiener index. The
generalised Wiener index (see [8]) is defined as follows:

Wα(G) = ∑
{v,w}⊆V(G)

d(v, w)α, (3.2.2)

where α is some real number.
Let v and w be vertices of a tree, and denote by n(v, w) the number of
vertices u (including v itself) for which the path from u to w passes through
v. Then the hyper Wiener index [16] is defined as

WW(G) = ∑
{v,w}⊆V(G)

v 6=w

n(v, w)n(w, v). (3.2.3)

The hyper-Wiener index can also be expressed as follows:

WW(G) = ∑
{v,w}⊆V(G)

(
d(v, w) + 1

2

)
. (3.2.4)

In fact, n(v, w)n(w, v) counts the number of paths P(u, u′) such that P(u, u′)
contains P(v, w). On the other hand, the number of paths contained in
P(u, u′) is (d(u,u′)+1

2 ).
In order to characterize the tree which minimizes the aforementioned graph
invariants, we study a graph invariant pk(T) introduced in [24].

Definition 3.2.1. We denote by pk(T) the number of pairs of vertices {u, v}
in T, with u 6= v, such that d(u, v) ≤ k.
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Example 3.2.2. Let us consider the cases k = 1 and k = 2:

• p1(T) = n− 1, where T is a tree of order n. In fact, we observe that
d(u, v) ≤ 1 ⇐⇒ d(u, v) = 1, and the number of pairs satisfying this
property is the same as the number of edges in T.

• p2(T) = 1
2 ∑v∈V(T) d(v)2. A pair {u, v} satisfies d(u, v) ≤ 2 if and only

if it satisfies d(u, v) = 2 or d(u, v) = 1. Thus

p2(T) =
1
2

 ∑
w∈V(T)

∑
(u,v)

u 6=v,uw,wv∈E(T)

1 + ∑
(u,v)

uv∈E(T)

1


=

1
2

 ∑
w∈V(T)

d(w)(d(w)− 1) + ∑
u

d(u)


=

1
2 ∑

w∈V(T)
d(w)2.

Theorem 3.2.3 ([24]). Let d1 ≥ d2 ≥ . . . dn be positive integers satisfying Propo-
sition 2.1.13, and let k be another arbitrary positive integer. Among all trees with
degree sequence (d1, d2, . . . , dn), the greedy tree has the largest number pk(T).

In order to prove Theorem 3.2.3, we will mention two lemmas which char-
acterize the tree maximizing pk(T) among rooted and edge rooted trees.
Let D be a level degree sequence of a rooted tree. We denote by Tr(D) the
set of all trees that have D as a level degree sequence. In particular, G(D)

is the level greedy tree with level sequence D.

Lemma 3.2.4 ([24]). If T ∈ Tr(D), then pk(T) ≤ pk(G(D)).

Proof. Let us compare the number of pairs {u, v} satisfying d(u, v) ≤ k for
a tree T ∈ Tr(D). Suppose u is at level i and v is at level j. Two cases can
be considered.
Case 1: If i + j ≤ k, then automatically d(u, v) ≤ k. The number of pairs, at
those levels, satisfying the condition is the same for any T.
Case 2: Otherwise, the condition is satisfied if and only if u and v have
the same ancestor at level r = d(i + j − k)/2e. Let us count those pairs.
We denote by w1, w2, . . . , wm the vertices at level r, and by x1, . . . , xm and
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y1, . . . , ym the number of their respective successors at level i and level j.
The number of pairs that we have to count is

x1y1 + · · ·+ xmym

for i 6= j. If we count the number of pairs which will satisfy d(u, v) ≤ k
for i = j, it is (x1

2 ) + · · ·+ (xm
2 ), and since we consider trees with the same

outdegrees at each level, the sum x1 + · · ·+ xm is constant, so only the sum
of the squared terms x2

1 + · · ·+ x2
m really matters.

Now, let (x1, . . . , xm), (y1, . . . , ym) be the number of successors at level i and
j for G(D). By the definition of G(D), (x1, . . . , xm), (y1, . . . , ym) are non-
decreasing sequences. Let (x′1, . . . , x′m), (y′1, . . . , y′m) be the corresponding
sequences for any tree T ∈ Tr(D). Since T and G(D) have the same level
degree sequences, by Remark 3.1.2, we have (x′1, . . . x′m) � (x1, . . . , xm) and
(y′1, . . . , y′m) � (y1, . . . , ym). Therefore, Lemma 3.1.5 gives us that

x1y1 + · · ·+ xmym ≥ x′1y′1 + · · ·+ x′my′m. (3.2.5)

Thus G(D) indeed maximizes the number of pairs of vertices at levels i
and j that have a common ancestor at level r, for every i and j. Hence
pk(T) ≤ pk(G(D)).

Let De be a level degree sequence of an edge rooted tree. We denote by
Te(D) the set of all trees that have De as a level degree sequence, and
G(De) is the edge rooted level greedy tree with level sequence De. By an
analogous proof as in Lemma 3.2.4, we have

Lemma 3.2.5 ([24]). If T ∈ Te(D), then pk(T) ≤ pk(G(De)).

Proof of Theorem 3.2.3. Let T be any tree that maximizes pk(T). Let r ∈ V(T)
be a root of T. Lemma 3.2.4 ensures that T can be chosen to be a level-
greedy tree with the same outdegree sequence, such that pk(T) will not
decrease. In a similar way, if we take e ∈ E(T) as an edge-root of our tree,
by Lemma 3.2.5, replacing T by a level-greedy tree with the same outdegree
sequence will improve pk(T). We iterate the process for different vertex
and edge roots in T. Note that each step of this process strictly increases
p4(T): to see why, consider the first level ` where the outdegrees change
when we replace our rooted (or edge-rooted) tree by a level-greedy tree.
Then if x1, x2, . . . , xm and x′1, x′2, . . . , x′m are the number of successors at level
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`+ 1 of the vertices at level `− 1 in the greedy tree and the original tree
respectively, we have (x1, x2, . . . , xm) 6= (x′1, x′2, . . . , x′m) and the inequality
(3.2.5) becomes strict. Since p4(T) has to remain bounded, this means that
the process will stop. Hence we end up with a tree T that is level-greedy
with respect to any root and any edge-root. Therefore by Theorem 2.2.7 in
Chapter 2, T is greedy.

Theorem 3.2.3 is a strong tool to characterize extremal trees for distance-
based graph invariants. The following corollary illustrates this statement,
especially for the three graph invariants we mentioned earlier.

Corollary 3.2.6 ([24]). Let f (x) be any nonnegative, nondecreasing func-
tion, defined for positive integers x. Then the graph invariant

W f (T) = ∑
{v,w}⊆V(G)

f (d(v, w))

is minimized by the greedy tree among all trees with given degree se-
quence.

Proof. Let qk(T) be the number of pairs (u, v) such that d(u, v) > k. Then
pk(T) + qk(T) = (n

2). Theorem 3.2.3 implies that the greedy tree minimizes
qk(T). Note that

W f (T) = ∑
k≥0

( f (k + 1)− f (k))|{{v, w} ⊆ V(T) : d(v, w) > k}|

= ∑
k≥0

( f (k + 1)− f (k))qk(T),

and by the definition of f , f (k + 1)− f (k) is nonnegative for all k (we set
f (0) = 0). This implies the desired statement.

Remark 3.2.7. Note that W f (T) can only decrease when pk(T) increases.

By suitably choosing f in Corollary 3.2.6, we obtain the results for the
classical Wiener index by taking f (x) = x, the hyper-Wiener index with
f (x) = x(x+1)

2 and the generalized Wiener index with f (x) = xα.
The Harary index H(G) of a graph G, introduced more recently [23], is
defined as the �reciprocal analogue� of the Wiener index, namely

H(G) = ∑
{v,w}⊆V(G)

1
d(v, w)

.
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Wagner et al. [30] found that the trees that minimize the Harary index are
not necessary equal to those that maximize the Wiener index. However, the
tree that minimizes the Wiener index corresponds to the one which maxi-
mizes the Harary index. This result is obtained by the following corollary,
using an analogous proof to Corollary 3.2.6, stated as follows:

Corollary 3.2.8 ([30]). Let f (x) be any nonnegative, nonincreasing function
of x. Then the graph invariant

W f (T) = ∑
{v,w}⊆V(G)

f (d(v, w))

is maximized by the greedy tree among all trees with given degree se-
quence.

3.3 Number of subtrees

The number of subtrees of a tree plays an important role in phylogenetic
reconstruction [17]. A lot of research has been conducted on the number
of subtrees of a tree, and in particular on trees that maximize or minimize
it. This includes the article [28], as well as [2, 37], which deal with the
number of subtrees in trees with given degree sequence. In this section, we
present the result obtained in [2] which states that the greedy tree not only
maximizes the total number of subtrees, but the number of subtrees of any
given order.

Theorem 3.3.1. Among all trees T with degree sequence D, the number nk(T) of
subtrees of order k attains its maximum when T is the greedy tree G(D).

As in Section 3.2, to prove Theorem 3.3.1 we characterize the tree maxi-
mizing the number of subtrees of any size, among rooted and edge rooted
trees with the same level degree sequence.
To prove the statement for trees, let us first consider two-component forests
with a given level degree sequence.
Let FD (resp. TD) be the set of all rooted two-components forests (resp.
trees) with level degree sequence D. We denote by G1(D) and G2(D) the
two connected components of the level greedy forest G(D), where we as-
sume that |V(G1(D))| ≥ |V(G2(D))|. Similarly, we write F1 and F2 for the
components of a rooted forest F ∈ FD.
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Definition 3.3.2. Let F be a rooted forest which has n levels of vertices. The
level sequence of a subforest F′ of F is the sequence (s0, . . . , sn−1), where si

is the number of vertices of F′ at level i in F. We write S− = (s1, . . . , sn−1)

for the sequence obtained from S by removing the first term.

We denote by nS(F) the number of subtrees in F with level sequence S.
For any integer k ≥ 1, the number nk(F) of subtrees of order k in F can be
written as the sum of nS(F) over all possible sequences S that sum to k.
Let us formulate a lemma which describes the behaviour of nS(F) for two-
component forests.

Lemma 3.3.3 ([2]). Let D be a given level degree sequence of a two-component
forest. For any level sequence S = (s0, s1, . . . , sL(D)) and for any F ∈ FD we
have

(nS(F1), nS(F2)) � (nS(G1(D)), nS(G2(D))). (3.3.1)

Now, let us relate nS to rooted trees.

Lemma 3.3.4 ([2]). Let D be a level degree sequence of a rooted tree. For
any T ∈ TD and for any level sequence S = (s0, s1, . . . , sL(D)) we have

nS(T) ≤ nS(G(D)). (3.3.2)

Proof. Let T be a rooted tree with degree sequence D. To prove Lemma
3.3.4, we may consider two cases depending on whether the root is present
or not:
Case 1: s0 = 0. In this case, the set of subtrees consists of the subtrees of all
connected components obtained by removing the root. Let C(T) be the set
of the connected components of T− r(T). Suppose that there are elements
H1 and H2 of C(T) such that H1 ∪ H2 is not a level greedy forest, and let B
be the level degree sequence of H1 ∪ H2. By Lemma 3.3.3, we have

nS−(H1) + nS−(H2) ≤ nS−(G1(B)) + nS−(G2(B)).

By replacing H1 and H2 with G1(B) and G2(B) respectively, we obtain a
new rooted tree T1, with the same level degree sequence as T, satisfying

nS(T) ≤ nS(T1).

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. THE MAJORIZATION APPROACH 22

Note that during this process the number of two-component forests with
components in C(T1) which are level greedy is increasing in comparison
to C(T). Thus, we may iterate the process K times to end up with a tree TK

such that
nS(T) ≤ nS(TK),

where any two elements in TK − r(TK) form a level greedy forest. By
Remark 2.2.12, such a situation is reached only when TK is a level greedy
tree.
Case 2: s0 = 1. Let us prove this second case by an induction on the height
of the tree L(D).
The case where L(D) is 0 or 1 is obvious, since the corresponding sets
TD contain only one element. Assume that the lemma is true whenever
L(D) ≤ k for some k ≥ 2. Now, we have to prove the statement for the case
L(D) = k + 1.
Let us prove this statement by an induction on the degree of the root r.
If d(r) = 0, then TD consists of one single vertex, thus the statement holds.
If d(r) = 1, then there are two subcases:

• If s1 = 0, the only possible subtrees with such a level sequence consist
of a root only, and these subtrees are present in every tree T ∈ TD.
Similarly, if s1 ≥ 2, in view of the fact that r = 1, there are no subtrees
satisfying this case.

• If s1 = 1. In this case, the root does not play any role, and the num-
ber of subtrees satisfying the sequence is the same as the number
of subtrees obtained by removing the root. Thus, we can apply the
induction hypothesis on the height of the tree to get the result.

If d(r) = 2, then we have the following subcases:

• If s1 ≥ 3, then nS(T) = nS(G(D)) = 0 for any T ∈ TD.

• If s1 = 2, let T′ and U be the trees obtained from T and G(D) respec-
tively by merging the root and its neighbours. Let S′ = (s1, s3, . . . , sn).
Then we can use the induction hypothesis on the height to get

nS(T) = nS′(T′) ≤ nS′(U) = nS(G(D)).
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• If s1 = 1, then using Lemma 3.3.3, we obtain

nS(T) = n−S (H1) + n−S (H2) ≤ nS−(H′1) + nS−(H′2) = nS(G(D)),

where H1, H2 (resp. H′1, H′2) are the two components of C(T) (resp.
C(G(D))).

• The case s1 = 0 corresponds to subtrees that consist only of a root.

Now, we assume that (3.3.2) holds for r ≤ ` for some ` ≥ 2. We set
r = `+ 1. Let A, A′ be subtrees of T as in Figure (3.1).

v1

A

A′

Figure 3.1: Decomposition of T.

Let S be the set of all possible level sequences whose first term is 1. Then
we have

nS(T) = ∑
S1,S2∈S

S−1 +S−2 =S−

nS1(A′)nS2(T − A)

= ∑
S1,S2∈S

S−1 +S−2 =S−

nS−1
(A)nS2(T − A),

where S−1 + S−2 is obtained by summing S−1 and S−2 term by term. Let D1

be the level degree sequence of A, and let D2 be the level degree sequence
of (T− A). Since L(D1) ≤ k, and since the degree of the root of (T− A) is
equal to `, we use the induction hypothesis to get

nS−1
(A) ≤ nS−1

(G(D1)), (3.3.3)

nS2(T − A) ≤ nS2(G(D2)). (3.3.4)

From equations (3.3.3) and (3.3.4), we obtain

nS−1
(G(D1))nS2(G(D2)) ≥ nS−1

(A)nS2(T − A). (3.3.5)
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Let T1 be the rooted tree obtained by adding an edge joining the two roots
of G(D2) and G(D1) and taking the root of G(D2) as root of T1. Then

nS(T1) = ∑
S1,S2∈S

S−1 +S−2 =S−

nS−1
(G(D1))nS2(G(D2)).

Since (3.3.5) is valid for any S1 and S2 satisfying the relation S− = S−1 + S−2 ,
it implies that

nS(T1) ≥ nS(T).

We iterate the process to obtain a sequence

nS(T) ≤ nS(T1) ≤ · · · ≤ nS(TK).

This operation has to stop when there is no more branch A to replace.
From the construction of TK and Remark 2.2.12, we know that any d(r)− 1
elements of C(TK) form a level greedy forest.
Thus, since d(r) ≥ 3, any two elements of C(TK) = TK− r(TK) form a level
greedy forest, and using again Remark 2.2.12, TK coincides with G(D).
Therefore, nS(TK) ≤ nS(G(D)) is true for any possible degree of the root
r. Hence, the result follows.

An analogous lemma holds also for edge-rooted trees:

Lemma 3.3.5 ([2]). Let D be the level degree sequence of an edge-rooted
tree. For any T ∈ TD, we have nS(T) ≤ nS(G(D)) for any level sequence
S = (s1, s2, . . . , sL(D)).

Proof. If s1 ≤ 1, then the lemma follows clearly from Lemma 3.3.4 since the
edge between the roots does not play any role. The case s1 = 2 is obtained
again from Lemma 3.3.4, by merging the two endpoints of the edge root to
get a vertex rooted tree. For s1 ≥ 3, there are no subtrees with such a level
sequence.

Proof of Theorem 3.3.1. As in the proof of Theorem 3.2.3, if a rooted or edge
rooted tree is transformed to a level-greedy tree with the same level degree
sequence, then for some k, pk(T) from Section 3.2 strictly increases while
all other pk(T) either stay the same or increase as well, which means that
this process has to stop and we end up with a greedy tree (Theorem 2.2.7).
Thus, Theorem 3.3.1 follows immediately as a consequence of Lemma 3.3.4
and 3.3.5.
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It is also interesting to compare the greedy trees associated to different
degree sequences. It will allow us to characterize the extremal trees with
respect to the number of subtrees in a variety of different classes of trees.
The following proposition relates two different degree sequences of trees
in terms of majorization.

Proposition 3.3.6 ([37]). Let B = (b0, . . . , bn−1) and B′ = (b′0, . . . , b′n−1) be
two nonincreasing degree sequences of trees. If B � B′, then there exists
a series of degree sequences B1, . . . , Bk such that B � B1 � · · · � Bk � B′,
where Bi and Bi+1 differ at exactly two entries, say bj(b′j) and bk(b′k) of
Bi(Bi+1), with b′j = bj + 1, b′k = bk − 1 and j < k.

Proof. Let B and B′ be two nonincreasing degree sequences of trees such
that B � B′ and B 6= B′. Let ` be the smallest index for which b` > b′`, and
let k be the largest index smaller than ` for which bk < b′k (they exist by the
definition of majorization). Then, we have bi = b′i for k < i < `.
We set

B1 = (b1
0, . . . , b1

n−1)

= (b′0, . . . , b′k−1, b′k − 1, b′k+1, . . . , b′`−1, b′` + 1, b′`+1, . . . , b′n−1).

We may observe that b′k − 1 ≥ bk and b′` + 1 ≤ b`, hence:

B � B1 � B′.

Besides, by Proposition 2.1.13, B1 is a degree sequence of a tree.
In a similar fashion, we can determine B2 such that B � B2 � B1. We
iterate the process to obtain the sequence

B � Bk � · · · � B1 � B′.

We denote by nk(T, v) the number of subtrees of order k that contain the
vertex v. The following lemma compares the value of nk for the vertices on
the same level of a level-greedy tree.

Lemma 3.3.7 ([2]). Let D = ((a0,1), (a1,1, . . . , a1,k1), . . . , (an−1,1, . . . , an−1,kn−1))

(resp. D = ((a0,1, a0,2), (a1,1, . . . , a1,k1), . . . , (an−1,1, . . . , an−1,kn−1)) ) be a level
degree sequence in a nonincreasing order of a rooted (edge-rooted) tree.
Then for all 0 ≤ ` ≤ L(D) and k ≥ 1, we have

nk(G(D), g`1) ≥ nk(G(D), g`2) ≥ · · · ≥ nk(G(D), g`k`),
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where g`j is the j-th vertex on level `, such that d(g`j ) = a`,j.

Proof. Let u = g`i and v = g`j with i < j be two vertices on the same level
`, and let w be their closest common ancestor. Let u′ and v′ be the children
of w such that u ∈ Tu′ and v ∈ Tv′ . By the definition of a rooted (resp.
edge-rooted) level greedy tree, the degrees of the vertices on some level in
Tu′ are greater or equal to those of all the vertices on the same level in Tv′ .
Therefore there is an isomorphic embedding Φ of Tv′ into Tu′ that maps v
to u as depicted in Figure 3.2. Now, let us construct an injection that maps
a subtree R of G(D) that contains v to a subtree R′ of G(D) that contains
u. We distinguish three different cases:

(i) If R contains both u and v, then we simply set R′ = R.

(ii) If R neither contains u, nor w, then we set R′ = Φ(R).

(iii) If R does not contain u, but contains w, then let x be the first vertex
(closest to w) on the path from w to u that is not contained in R, and
let y be the vertex on the path from w to v which is on the same level
as x. Replace R ∩ Ty by Φ(R ∩ Ty) to obtain R′.

It is clear that this is an injection that preserves the size of subtrees, so it
follows that nk(T, u) ≥ nk(T, v).

w

u′

u

v′

v

Figure 3.2: Example of the embedding from Tv to Tu for a rooted greedy tree.

Now, we are able to prove the following theorem:

Theorem 3.3.8 ([2]). Let B and B′ be the degree sequences of trees of the same
order such that B � B′. Then for any positive integer k, we have

nk(G(B)) ≤ nk(G(B′)).
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Proof. By Proposition 3.3.6, there exists a degree sequence B1 with B �
B1 � B′ such that B and B1 only differ in two places, i.e. B = (b0, b1, . . . , bi,
. . . , bj, . . . , bn−1) and B1 = (b0, b1, . . . , bi + 1, . . . , bj − 1 , . . . , bn−1) with i <
j. Consider two vertices u and v in G(B) such that dG(B)(u) = bi and
dG(B)(v) = bj. If the length of the path in G(B) joining u and v is even, let
w be the middle vertex of this path; otherwise, let e be the middle edge.
We know that G(B) is level-greedy with respect to w (resp. e), and u and
v are on the same level h. We have u = gh

k and v = gh
` for some k < `.

Without loss of generality, we may assume that ` is the largest index such
that dG(B)(gh

` ) = bj. Let x be a child of v, and let H be the branch rooted at
x. Then G(B)− H is still a level greedy tree.
Consider the tree T = G(B) − vx + ux, which has degree sequence B1.
Subtrees of G(B) are still subtrees in T except for those that contain both v
and x, but not u. On the other hand, we gain subtrees that contain u and x
but not v.
Therefore, we have

nk(T)−nk(G(B)) = ∑
k1+k2=k

nk1(H, x)(nk2(G(B)−H, u)−nk2(G(B)−H, v)),

(3.3.6)
but by Lemma 3.3.7, nk2(G(B)− H, u) ≥ nk2(G(B)− H, v), which implies
that (3.3.6) is nonnegative. Thus,

nk(G(B1)) ≥ nk(T) ≥ nk(G(B)).

We apply the process repeatedly to the sequence in Proposition 3.3.6 to
obtain the result:

nk(G(B)) ≤ nk(G(B1)) ≤ · · · ≤ nk(G(Br)) ≤ nk(G(B′)).

Let ν(T) be the total number of subtrees of T.

Example 3.3.9. Let us compute ν(Pn) and ν(Sn):

• ν(Pn) = (n+1
2 ). In fact the number of subtrees of Pn corresponds to

the number of ways to choose 2 out of n vertices as the end-vertices
for the subpath, allowing the 2 vertices to be identical.
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• ν(Sn) = 2n−1 + n − 1. There are two ways to choose a subtree in a
star. Either it does not contain the center, so that the only possibilities
are isolated vertices, and there are n − 1 choices. Or it contains the
center and we may choose any subset of the remaining vertices, for
which there are 2n−1 choices.

Theorem 3.3.8 implies a number of corollaries, such as general bounds for
the number of subtrees of a tree of order n (see [27]), the extremal tree
among trees of order n with maximum degree ∆ (see [15]), and a few more
(see [2]).

Corollary 3.3.10. Let T be any tree of order n. Then

ν(T) ≤ 2n−1 + n− 1,

with equality if and only if T is the star Sn.

Proof. Let T be a tree of order n with degree sequence D. Let B′ = (n−
1, 1, . . . , 1) be a sequence with n terms. It is clear that B′ is the degree
sequence of Sn. Moreover D � B′. Considering that ν(T) is the sum of all
nk(T) over all 1 ≤ k ≤ n and that the star is greedy for B′ (in fact, it is the
only tree with degree sequence B′), the statement follows from Theorems
3.3.1 and 3.3.8.

Let Tn,∆ be the set of all trees of order n with maximum degree ∆.

Definition 3.3.11 ([10]). The Volkmann tree Vn,∆ ∈ Tn,∆ is constructed as
follows:
If n ∈ {1, . . . , ∆ + 1}, then Vn,∆ is the star.
Let n > ∆ + 1. Define ni as

ni = 1 +
i

∑
j=1

∆(∆− 1)j−1, for i = 1, 2, . . .

and choose k such that
nk−1 < n ≤ nk.

Then, calculate the parameters m and h from

m =

⌊
n− nk−1

∆− 1

⌋

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. THE MAJORIZATION APPROACH 29

and
h = n− nk−1 − (∆− 1)m.

The vertices of Vn,∆ are arranged into k + 1 levels. At level 0, there is one
vertex labeled v0,1. At level i (i = 1, 2, . . . , k − 1), there are ∆(∆ − 1)i−1

vertices, labeled vi,1, vi,2, . . . , vi,∆(∆−1)i−1 . They are connected in that or-
der to the vertices at level i − 1. At level k, there are n − nk−1 vertices,
labeled by vk,1, vk,2, . . . , vk,n−nk−1

. These are connected to the vertices at
level k − 1, so that ∆ − 1 vertices from level k are adjacent to vertices
vk−1,1, vk−1,2, . . . , vk−1,m. The remaining h vertices at level k (if any) are
connected to the vertex vk−1,m+1 at level k− 1.

Example 3.3.12. Figure 4.3 shows a Volkmann tree V17,3. We observe that
n2 = 10 < 17 < 22 = n3, which means we have a tree on 4 levels, with
parameters m = 3 and h = 1.

Figure 3.3: A Volkmann tree V17,3.

Corollary 3.3.13. If T ∈ Tn,∆, then ν(T) ≤ ν(Vn,∆).

Proof. We can consider the Volkmann tree as a greedy tree with level se-
quence B∆ = (∆, . . . , ∆, r, 1, . . . , 1), where 0 ≤ r < ∆. For any other se-
quence B of a tree in Tn,∆, it is clear that B � B∆. Hence we get the result
by applying again Theorems 3.3.1 and 3.3.8.

Corollary 3.3.14 ([2]). Among trees of order n with s leaves, the greedy tree
G(D) corresponding to the sequence D = (s, 2, . . . , 2, 1, 1, . . . , 1) maximizes
the total number of subtrees.

Proof. Let T be a tree of order n with s leaves and degree sequence D =

(d0, d1, . . . , dn−1). We know that di > 1 for i = 1, . . . , n− s− 1 and di = 1
for i = n − s, . . . , n − 1. Now it is easy to see that (d0, d1, . . . , dn−1) �
(s, 2, . . . , 2, 1, . . . , 1). Thus, the result follows by using Theorems 3.3.1 and
3.3.8.
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Chapter 4

Direct approach

In this chapter, we review a direct approach to prove the extremality of
greedy trees. For this purpose, we focus particularly on the Wiener index
and the spectral radius of a graph. The proofs for other parameters such as
the number of subtrees ([37]), spectral moments ([18]) or Laplacian spectral
radii ([35]) can follow similar lines to the ones we consider here.

4.1 The Wiener index

As defined in Chapter 3, the Wiener index of a graph is the sum of the
distances between all pairs of vertices in the graph. Recall that TD is the set
of all trees with degree sequence D, G(D) is the greedy tree corresponding
to D, and W(T) denotes the Wiener index of T. The main task of this
section is to prove the following theorem:

Theorem 4.1.1. For T ∈ TD, W(T) ≥W(G(D)).

For convenience, we call a tree T �optimal� if it minimizes the Wiener in-
dex among all trees with the same degree sequence. In order to prove
Theorem 4.1.1, let us describe a decomposition of a tree T, found in [32].
Let x, y be two vertices of T. The path PT(x, y) from x to y can be writ-
ten as xkxk−1 . . . x2x1zy1y2 . . . yk−1yk when the length of PT(x, y) is even, or
xkxk−1 . . . x2x1y1y2 . . . yk−1yk when it is odd, where xk = x, yk = y.
Let G1 be the graph resulting from T by deleting all edges in PT(x, y). We
denote by Xi, Yi and Z the components that contain respectively xi, yi, and z
for i = 1, . . . , k. We also denote by X>k (resp. Y>k) the trees induced by the
vertices in V(Xk+1)∪V(Xk+2)∪ . . . (resp. V(Yk+1)∪V(Yk+2)∪ . . . ). Figure

30
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4.1 shows such a labeling with respect to a path of odd length (without z).
Without loss of generality, assume that |V(X1)| ≥ |V(Y1)|.

X>k Y>k

Xk Xk−1 Yk−1 YkX2 X1 Y1 Y2

xk+1 x2 x1 y1 y2xk xk−1 yk yk+1yk−1

Figure 4.1: Labeling of a path and the components.

Lemma 4.1.2 ([31, 32]). In an optimal tree, if |V(Xi)| ≥ |V(Yi)| for i =

1, 2 . . . , k − 1 and |V(X>k−1)| ≥ |V(Y>k−1)|, then we can assume d(xk) ≥
d(yk).

Proof. Suppose d(xk) < d(yk). Set s = d(yk)− d(xk), and let v1, v2, . . . , vs be
neighbours of yk other than yk−1 and yk+1: delete the s edges ykvi and add
edges xkvi (i = 1, . . . , s) instead. After this operation we will have d(xk) ≥
d(yk), and the degree sequence of the tree is preserved. We show that this
operation will not increase the Wiener index. Let S be the set of vertices in
the components of T\{ykv1, ykv2, . . . , ykvs} that contain v1, v2, . . . , vs.
Note that in our operation, the lengths of the paths between vertices only
change if exactly one of the end vertices is in S. We have four cases to
consider.
Case 1: If the other end of the path is in Xi, for i = 1, . . . , k− 1, the distance
decreases by 2i− 1 (resp. 2i) if the length of the path is odd (resp. even).
Thus the total contribution to the Wiener index decreases by: ∑k−1

i=1 (2i −
1)|V(Xi)||S| (resp. ∑k−1

i=1 (2i)|V(Xi)||S|).
Case 2: If the other end of the path is in Yi, for i = 1, . . . , k− 1, the distance
increases by 2i − 1 (resp. 2i) if the length of the path is odd (resp. even).
Thus the total contribution to the Wiener index increases by: ∑k−1

i=1 (2i −
1)|V(Yi)||S| (resp. ∑k−1

i=1 (2i)|V(Yi)||S|).
Case 3: If the other end of the path is in X>k−1, the distance decreases
by 2k− 1 (resp. 2k) if the length of the path is odd (resp. even).Thus the
total contribution to the Wiener index decreases by: (2k− 1)|V(X>k−1)||S|
(resp. (2k)|V(X>k−1)||S|).
Case 4: If the other end of the path is in Y>k−1\S, the distance increases by
2k− 1 (resp. 2k) if the length of the path is odd (resp. even). Thus the total
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contribution to the Wiener index increases by: (2k− 1)(|V(Y>k−1)| − |S|)|S|
(resp. (2k)(|V(Y>k−1)| − |S|)|S|).
Therefore, the total amount of change that occurs is

k−1

∑
i=1

(2i− 1)(|V(Yi)| − |V(Xi)|)|S|

+ (2k− 1)(|V(Y>k−1)| − |S| − |V(X>k−1)|)|S|

for a path without z, and

k−1

∑
i=1

(2i)(|V(Yi)| − |V(Xi)|)|S|)

+ (2k)(|V(X>k)| − (|V(Y>k−1)| − |S| − |V(X>k−1)|)|S|

for a path with z, which is nonpositive in view of our hypothesis.

Remark 4.1.3. In Lemma 4.1.2, if at least one strict inequality holds in the
conditions, then we can replace �can assume� by �must have” in the state-
ment.

Lemma 4.1.4 ([31, 32]). Let P be a path of an optimal T ∈ TD whose end
vertices are leaves.
If the length of P is odd (2m − 1), then the vertices of P can be labeled
as umum−1 . . . u1w1w2 . . . wm, where Ui, Wi are the components that contain
respectively ui, wi such that

|V(U1)| ≥ |V(W1)| ≥ |V(U2)| ≥ |V(W2)| ≥ · · · ≥ |V(Um)| = |V(Wm)| = 1.

If the length of P is even (2m), then the vertices of P can be labeled as
um+1umum−1 . . . u1w1w2 . . . wm such that

|V(U1)| ≥ |V(W1)| ≥ |V(U2)| ≥ |V(W2)| ≥ · · · ≥ |V(Wm)| = |V(Um+1)| = 1,

To prove Lemma 4.1.4, we need to consider an equivalent expression for
the Wiener index stated in the following proposition.

Proposition 4.1.5 ([8]). The Wiener index can also be written as follows:

W(T) = ∑
uv∈E(T)

n(u)n(v),

where n(u) (resp.n(v)) is the number of vertices in the component that
contains u (resp. v) after removing uv.
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Proof. The expression on the right hand side of the equation counts the
number of pairs {u′, v′} such that P(u′, v′) contains uv. On the other hand,
if we have a path P(u′, v′), then the number of edges that it contains is
d(u′, v′), which coincides with the previous definition of the Wiener index.

Now, we need a theorem from Hardy, Littlewood and Pólya [11] that
connects sequences and bilinear forms. For a sequence a of the form
a−n, . . . a−n+1, . . . , a−1, a0, a1, . . . an−1, an, let a+ be the sequence obtained
by rearranging the elements so that

a+0 ≥ a+1 ≥ a+−1 ≥ a+2 ≥ a+−2 ≥ · · · ≥ a+n ≥ a+−n.

Theorem 4.1.6 (Cf. [11, Theorem 371]). Suppose that c, x, and y are nonnega-
tive sequences, and c is symmetrically increasing, so that

c0 ≤ c1 = c−1 ≤ c2 = c−2 ≤ · · · ≤ c2k = c−2k,

while the x and y are given except for their order. Then the bilinear form

k

∑
r=−k

k

∑
s=−k

cr−sxrys

attains its minimum when x is x+ and y is y+.

Proof of Lemma 4.1.4. We provide the proof for a path of odd length, the
other case can be shown in a similar manner. Let P = umum−1 . . . u1w1w2

. . . wm be as described in Lemma 4.1.4. Let A be a sequence whose indices
are from −m to m− 1 such that

A−m = |V(Um)|, A−m+1 = |V(Um−1)|, . . . , A−1 = |V(U1)|,
A0 = |V(W1)|, A1 = |V(W2)|, . . . Am−1 = |V(Wm)|.

Now, let us consider the contribution C of the edges of the path P to the
expression for the Wiener index in Proposition 4.1.5, since the contribution
of all other edges remains the same. We have:

C = A−m(A−m+1 + · · ·+ Am−1)

+ (A−m + A−m+1)(A−m+2+··· + Am−1)

...

+ (A−m + A−m+1 + · · ·+ Am−2)Am−1.
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We observe that it can be written as a sum of terms of the form Ar As, so
let us count how many there are of each. A product Ar As occurs if Ar and
As are in different parentheses, which happens k = r − s times. Now, as
Ar As = As Ar, we set cr−s = k/2 and cs−r = k/2. Then, C can be written as

C =
m−1

∑
r=−m

m−1

∑
s=−m

cr−s Ar As,

where c is symmetrically increasing:

c0 = 0 ≤ c1 = c−1 = 1/2 ≤ · · · ≤ c2m−1 = c−2m+1 = m.

Hence, by using Theorem 4.1.6, S attains its minimum if A is A+. There-
fore,

|V(U1)| ≥ |V(W1)| ≥ |V(U2)| ≥ · · · ≥ |V(Um)| = |V(Wm)|

for an optimal tree.

Lemma 4.1.7 ([31, 32]). In an optimal tree, for a path with labelling as in
Lemma 4.1.4, we have

d(u1) ≥ d(w1) ≥ d(u2) ≥ d(w2) ≥ · · · ≥ d(um) = d(wm) = 1

if the path is of odd length (2m− 1); and

d(u1) ≥ d(w1) ≥ d(u2) ≥ d(w2) ≥ · · · ≥ d(um) ≥ d(wm) = d(wm+1) = 1

if the path is of even length (2m).

Proof. We show the proof for a path of odd length, the other case is similar.
First, we have

|V(U1)| ≥ |V(W1)| ≥ |V(U2)| ≥ |V(W2)| ≥ · · · ≥ |V(Um)| = |V(Wm)| = 1.

By suitably choosing yi and xi in Lemma 4.1.2, we get the following results:
Case 1: Let y1 = ui+1, y2 = ui+2 . . . ; x1 = ui, x2 = ui−1, . . . , xi+1 = w1, . . . .
Since

|V(Y>1)| =
m

∑
k=i+2

|V(Uk)| <
m

∑
k=1
|V(Wk)|+

i−1

∑
k=1
|V(Uk)| = |V(X>1)|,
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then d(ui+1) = d(y1) ≤ d(x1) = d(ui). This applies to ui, ui+1 for i =

1, . . . , m− 1, hence

d(u1) ≥ d(u2) ≥ · · · ≥ d(um).

Case 2: Let y1 = wi, y2 = wi−1 . . . , yi+1 = u1, . . . ; x1 = wi+1, x2 =

wi+2, . . . . In a similar way as in Case 1, V(Y>1) > V(X>1), so d(wi) =

d(y1) ≥ d(x1) = d(wi+1). Again, this applies for i = 1, . . . , m− 1, hence

d(w1) ≥ d(w2) ≥ · · · ≥ d(wm).

Case 3: Let xi = ui and yi = wi for i = 1, 2 . . . , m, then we obtain d(ui) ≥
d(wi) for i = 1, 2 . . . , m.
Case 4: Let z = u1, yi = ui+1, xi = wi, to get d(wi) ≥ d(ui+1) for i =

1, 2, . . . , m− 1.
The result follows by combining all the cases.

Let us write gT(u) = ∑v∈V(T) d(u, v). Note that W(T) = 1
2 ∑v∈V(T) gT(v).

Lemma 4.1.8 ([13]). For any tree T, gT(u) is minimized at one or two adja-
cent vertices in the whole tree. We call such a vertex �centroid� .

Proof of Theorem 4.1.1. On any path of an optimal tree labeled as in Lemmas
4.1.4 and 4.1.7, we have

gT(v) ≥ gT(u1), (4.1.1)

for any other vertex v in the path, where the degree d(u1) and the size
|V(U1)| of the associated branch U1 are maximal among vertices of the
path. In fact, we observe that for smaller k, the number of vertices w
satisfying d(u1, w) ≤ k is greater than the number of vertices satisfying
d(ur, w) ≤ k for r 6= 1.
In view of Lemma 4.1.8, two cases can be considered:

• If there is only one vertex in the centroid, we label it as v.

• Otherwise, we simply choose either one as v and the other as v1.

We only show the theorem for the first case, the second one is analogous.
In an optimal tree T considered as a tree rooted at v, we know from (4.1.1)
that v has the largest degree, so (i) in Lemma 2.2.3 is satisfied.
Now, consider any path starting at a leaf u, passing through v, and ending
at a leaf w, so that the only common ancestor of u and w is v. By Lemma
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4.1.7, we have |d(u, v)− d(w, v)| = 0 if the length of the path is even and
|d(u, v) − d(w, v)| = 1 otherwise. Hence, the heights of any two leaves
differ by at most 1, which shows that (ii) holds in Lemma 2.2.3.
Furthermore, for a vertex x of height i and a vertex y of height j(i < j), if y
is a successor of x, consider the same path from a leaf u to a leaf w passing
through y; then by Lemma 4.1.7 d(x) ≥ d(y). Otherwise, consider the path
that passes through y′, y, u, x, x′, where y′, x′ are leaf successors of (or equal
to) y, x respectively, and u their first common ancestor. We have u1 = u by
(4.1.1) and Lemma 4.1.4, and x = uk+1, y = w` or x = wk, y = u`+1, where
k = i − hT(u), ` = j − hT(u), so we can see k + 1 ≤ `. Again by Lemma
4.1.7, d(x) ≥ d(y), so (iii) in Lemma 2.2.3 holds.
Now, for two non-leaves x and y on the same level i such that d(x) >

d(y), let x′, y′ on the same level j be the successors of x, y respectively.
Consider the longest path that passes through y′, y, u, x, x′, where u is the
first common ancestor of x and y. We have u1 = u by (4.1.1) and Lemma
4.1.4, so x = wk, x′ = w`, y = uk+1, y′ = u`+1, since d(x) > d(y), where
k = i− hT(u), l = j− hT(u). Using Lemma 4.1.7, d(x′) ≥ d(y′), hence (iv)
in Lemma 2.2.3 is satisfied.
Finally, let x0 (x′) and y0 (y′) be the parents (siblings) of x and y described
above respectively, and let x′′ and y′′ on level j be successors of x′ and y′

respectively. The conclusion of (iv) implies that

|V(Tx0\Tx′)| > |V(Ty0\Ty′)|. (4.1.2)

Now, consider the longest path passing through y′′, y′, u, x′, x′′, where u is
the common ancestor of x and y that is on the path P(x′, y′). By (4.1.1) and
Lemma 4.1.4, we have u1 = u, so x′ = wk, x′′ = w`, y′ = uk+1, y′′ = u`+1

by (4.1.2), where k = i− hT(u), ` = j− hT(u). Thus from Lemma 4.1.7 we
have d(x′) ≥ d(y′) and d(x′′) ≥ d(y′′), which satisfies (v) in Lemma 2.2.3.
In summary, by Lemma 2.2.3, the optimal tree is the greedy tree.

As for the number of subtrees in Section 3.3, let us compare trees with
different degree sequences.

Lemma 4.1.9 ([36]). Let G(D) be the greedy tree corresponding to the
degree sequence D. Let x and y be two vertices in V(G(D)) such that
dG(D)(x) ≥ dG(D)(y) ≥ 2. Let x′ be a child of y and let T′ be the tree
obtained from G(D) by deleting the edge yx′ and adding the edge xx′.
Then

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. DIRECT APPROACH 37

(i) T′ ∈ TD′ , with D � D′.

(ii) W(G(D)) > W(T′).

Proof. For (i), it is clear that dT′(x) = dG(D)(x) + 1, dT′(y) = dG(D)(y)− 1
and the other vertex degrees stay the same. Since dG(D)(x) ≥ dG(D)(y), we
have D � D′.
Now, for (ii), consider the longest path that passes through x, w, y where
w is the common ancestor of x and y. We may assume that the length of
the path is odd, the case when it is even is similar. Using the labelling
of Lemma 4.1.4, we have u1 = w, x = uk, y = w`, where k ≤ ` since
d(x) ≥ d(y). Let X′ be the branch formed by x′ and its successors. Note
that the distance between two vertices changes only if one of them is in X′.
If one of the end vertices is in Ui, the amount of the change is given by

k

∑
i=1

(2i− 1 + `− k)|V(Ui)||X′|+
m

∑
i=k+1

(`+ k− 1)|V(Ui)||X′|.

On the other hand, if one of the end vertices is in Wi but not in X′, the
amount of the change is

`−1

∑
i=1

(−2i + 1 + `− k)|V(Wi)||X′|

− (`+ k− 1)(|V(W`)| − |X′|)|X′| −
m

∑
i=`+1

(`+ k− 1)|V(Wi)||X′|.

Thus,

W(G(D))−W(T′)

=
k

∑
i=1

(2i− 1)(|V(Ui)| − |V(Wi)|)|X′|+
k

∑
i=1

(`− k)(|V(Wi)|+ |V(Ui)|)|X′|

+
`−1

∑
i=k+1

(`+ k− 1)(|V(Ui)| − |V(Wi)|)|X′|+
`−1

∑
i=k

(2`− 2i)|V(Wi)||X′|

+(`+ k− 1)(|V(U`)| − |V(W`)|+ |X′|)|X′|

+
m

∑
i=`+1

(`+ k− 1)(|V(Ui)| − |V(Wi)|)|X′|.

By Lemma 4.1.4, |V(Ui)| ≥ |V(Wi)|, so each term in the summation is
nonnegative. Moreover, since |X′| > 0, the change is strictly positive due
to the term (`+ k− 1)|X′||X′|. Thus W(G(D)) > W(T′).
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Theorem 4.1.10 ([36]). Let B and B′ be the degree sequences of trees of the same
order such that B � B′. Then we have

W(G(B)) ≥W(G(B′)).

Proof. By Proposition 3.3.6, there exists a degree sequence B1 with B �
B1 � B′ such that B and B1 only differ in two places, i.e. B = (b0, b1, . . . , bi,
. . . , bj, . . . , bn−1) and B1 = (b0, b1, . . . , bi + 1, . . . , bj − 1 , . . . , bn−1) with i <
j. Let us consider two vertices u, v in the greedy tree G(B), such that
dG(B)(u) = bi and dG(B)(v) = bj. By the definition of majorization, we may
assume bi ≥ bj ≥ 2. Now, let x be a child of v, and T′ be the tree obtained
by removing vx and adding ux. Lemma 4.1.9 provides that T′ ∈ TB1 , and
W(T′) < W(G(B)). Furthermore, by Theorem 4.1.1, we have W(T′) ≥
W(G(B1)). Thus

W(G(B1)) ≤W(T′) ≤W(G(B)).

By repeating the same process, the theorem follows.

Now, it is not surprising that the trees maximizing the number of subtrees
correspond to those which minimize the Wiener index. Let us mention
some corollaries similar to those for the total number of subtrees.

Corollary 4.1.11 ([8]). Let T be any tree of order n. Then,

(n− 1)2 ≤W(T),

with equality if and only if T is the star Sn.

Proof. The proof is similar to the proof of Corollary 3.3.10 but using Theo-
rems 4.1.1 and 4.1.10. Now let us compute the the Wiener index of the star
Sn. We know that the distance between the center and any other vertex is
one, while the distance between two non-center vertices is two, so we have

W(Sn) = (n− 1) + 2
(

n− 1
2

)
= (n− 1)2.

Corollary 4.1.12 ([10]). Among trees of order n with maximum degree ∆,
the Volkmann tree Vn,∆ minimizes the Wiener index.
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Corollary 4.1.13 ([36]). Among trees of order n with s leaves, the greedy
tree G(D) corresponding to the sequence D = (s, 2, . . . , 2, 1, 1, . . . , 1) mini-
mizes the Wiener index.

4.2 Spectral radius

Definition 4.2.1. Let G be a graph of order n. Let us label the vertices of
G by v1, v2, . . . , vn. The adjacency matrix of G is the square matrix A(G) =

(ai,j)1≤i,j≤n where:

ai,j =

1 if vivj ∈ E(G),

0 otherwise.

In particular, for all i and j in {1, . . . , n}, we have ai,i = 0 and ai,j = aj,i,
meaning that A(G) is a nonnegative symmetric matrix.
The characteristic polynomial of an n-vertex graph G is defined by det(xIn −
A(G)), where In is the identity matrix of order n, and will be denoted
φG(x).
The eigenvalues of the graph G are the zeros of φG(x).

Remark 4.2.2. Since A(G) is symmetric, all the roots of φG(x) are real.

Definition 4.2.3. The spectral radius of a graph G is the largest eigenvalue
of A(G).

Definition 4.2.4 ([7]). An n × n matrix A is reducible if we can partition
1, . . . , n into two non-empty subsets E, F such that aij = 0 if i ∈ E and
j ∈ F.
A matrix that is not reducible, is irreducible.

Proposition 4.2.5 ([7]). The adjacency matrix of graph A(G) is irreducible
if and only if G is connected.

Since we are dealing with trees, which are connected graphs, the following
result applies.

Theorem 4.2.6 (Perron-Frobenius Theorem, [12]). If A(G) is irreducible, then
its spectral radius λ(G) is simple (an eigenvalue of multiplicity one) and positive.
It corresponds to the unique positive unit eigenvector f , that we refer to as Perron
vector of G.
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Example 4.2.7. Consider the star S5 pictured in Figure 4.2.

v1

v2

v4

v3

v5

Figure 4.2: A star S5

Its adjacency matrix is given by

A(S5) =


0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

 .

Then, its characteristic polynomial is

φS5(x) =

∣∣∣∣∣∣∣∣∣∣∣∣

x −1 −1 −1 −1
−1 x 0 0 0
−1 0 x 0 0
−1 0 0 x 0
−1 0 0 0 x

∣∣∣∣∣∣∣∣∣∣∣∣
= x5 − 4x3 = x3(x− 2)(x + 2).

It is easy to see that the eigenvalues of S5 are 2,−2, 0. Hence the spectral
radius of S5 is 2, which corresponds to the Perron vector

f =


f (v1)

f (v2)

f (v3)

f (v4)

f (v5)

 =


1
1
2
1
2
1
2
1
2

 .

Let us mention a property of the characteristic polynomial that we will
need later on.

Lemma 4.2.8 ([7]). Let T be a tree, let u be a leaf and v the vertex which is
adjacent to u. Then ΦT(x) = xΦT−u(x)−ΦT−u−v(x).
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A lot of research has been done on the spectral radius of graphs, especially
upper and lower bounds ([19, 25]). In this section, we characterize the trees
that maximize the spectral radius among all trees with the same degree
sequence. The main result can be stated as follows:

Theorem 4.2.9 ([5]). If T ∈ TD, then λ(T) ≤ λ(G(D)), where G(D) is the
greedy tree with degree sequence D.

Let T be a tree of order n. For a vertex v in T, and a unit vector f , set
N f (v) = ∑uv∈E f (u). By the definition of the adjacency matrix A = A(T)
we observe that (A f )(v) = N f (v). The Rayleigh quotient of A on vectors f
is defined by

RT( f ) =
〈A f , f 〉
〈 f , f 〉 =

(∑v∈V f (v)) (∑uv∈E f (u))
∑v∈V f (v)2 =

2 ∑uv∈E f (u) f (v)
∑v∈V f (v)2 ,

(4.2.1)
where 〈, 〉 is the scalar product.

Proposition 4.2.10 ([12]). Let S be the set of unit vectors on V. Then

λ(T) = max
f∈S
RT( f ) = 2 max

f∈S ∑
uv∈E

f (u) f (v).

Moreover, if RT( f ) = λ(T) for a positive function f ∈ S , then f is an
eigenvector corresponding to the largest eigenvalue λ(T) of A(T), i.e., it is
a Perron vector.

The technique used to prove Theorem 4.2.9 is by rearranging the edges,
and considering the behaviour of the spectral radius λ. For convenience,
let us again call a tree which maximizes the spectral radius an �optimal
tree� .

Lemma 4.2.11 ([5]). Let T be an optimal tree and f be the Perron vector of
T. For vertices u, v ∈ T, if d(u) > d(v), then f (u) > f (v).

Proof. Let s = d(u) − d(v) > 0 and suppose f (u) ≤ f (v). Let T′ be a
tree obtained from T by removing s edges of the form uwk, and adding
the s edges vwk for k = 1, . . . , s, where wk are neighbours of u such that
P(wk, v) ⊃ P(u, v). It is clear that T and T′ have the same degree sequence.
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Moreover, if E and E′ denote the edge sets of T and T′ respectively, we have

RT′( f )−RT( f ) = 〈A(T′) f , f 〉 − 〈A(T) f , f 〉

= 2

 ∑
xy∈E′\E

f (x) f (y)− ∑
x′y′∈E\E′

f (x′) f (y′)


= 2

(
s

∑
k=1

( f (v)− f (u)) f (wk)

)
≥ 0.

Hence by Proposition 4.2.10, λ(T′) ≥ RT′( f ) ≥ RT( f ) = λ(T). However,
λ(T′) = λ(T) if and only if f is also an eigenvector corresponding to λ(T′)
on T′ so that

λ(T′) f (v) =
s

∑
i=1

f (wk) + ∑
xv∈E

f (x) > ∑
xv∈E

f (x) = λ(T) f (v), (4.2.2)

which is a contradiction. Therefore, λ(T′) > λ(T), which is a contradiction
of T being optimal.

Remark 4.2.12. From equation (4.2.2), we can see that in an optimal tree,
f (u) = f (v) can only occur if d(u) = d(v).

Lemma 4.2.13 ([5]). Let T be an optimal tree and f be the Perron vector
of T. Suppose there are two vertices u, v such that f (u) ≥ f (v). If u′, v′

are neighbours of u, v respectively with P(u′, v′) ⊂ P(u, v) or P(u′, v′) ⊃
P(u, v) such that f (u) ≥ f (u′) and f (v) ≥ f (v′), then f (u′) ≥ f (v′).

Proof. Suppose that f (u′) < f (v′). Let T′ be a tree obtained from T by
deleting the edges uu′ and vv′ and replacing them by edges uv′ and vu′.
Clearly, T and T′ have the same degree sequence. Moreover, if E, E′ denote
the edge sets of T and T′ we have

RT′( f )−RT( f ) = 〈A(T′) f , f 〉 − 〈A(T) f , f 〉

= 2

 ∑
xy∈E′\E

f (x) f (y)− ∑
x′y′∈E\E′

f (x′) f (y′)


= 2[ f (u) f (v′) + f (v) f (u′)]− 2[ f (u) f (u′) + f (v) f (v′)]

= 2( f (u)− f (v))( f (v′)− f (u′)) ≥ 0.

Again, by Proposition 4.2.10, λ(T′) ≥ RT′( f ) ≥ RT( f ) = λ(G). However,
λ(T′) = λ(T) if and only if f is also an eigenvector corresponding to λ(T′)
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on T′ so that

λ(T) f (u) = (A(T) f )(u) = f (u′) + ∑
wu∈E∩E′

f (w)

=λ(T′) f (u) = (A(T′) f )(u) = f (v′) + ∑
wu∈E∩E′

f (w),

which would imply that f (u′) = f (v′). Since we have a strict inequality
λ(T′) > λ(T), this contradicts the assumption that T is optimal.

Proof of Theorem 4.2.9. Let T be an optimal tree among all trees with the
same degree sequence. Let f be a Perron vector of T associated to λ(T). At
level 0, let us choose the vertex v0 as the root for which f (v0) is a maximum.
By Lemma 4.2.11, d(v0) ≥ d(v) for any v ∈ T. Now at level 1, we denote
the neighbours of v0 by v1, . . . , vk0 . From Lemma 4.2.13, by taking u = v0

and v another vertex of T, we know that the neighbours vk of v0 have
greater Perron vector entries f (vk) than other vertices. We may assume
without loss of generality that f (v1) ≥ f (v2) ≥ · · · ≥ f (vk0). From Lemma
4.2.11, we know that d(v1) ≥ d(v2) ≥ · · · ≥ d(vk0). Let us now consider
the vertices at level 2. If v′i is a child of vi and v′j a child of vj, with i < j,
by Lemma 4.2.13 f (v′i) ≥ f (v′j). If f (v′i) > f (v′j), we apply Lemma 4.2.11
to obtain d(v′i) > d(v′j), otherwise by Remark 4.2.12 d(v′i) = d(v′j). Hence
the vertices at level 2 are ordered. Moreover, by applying again Lemma
4.2.13 f (v′k0

) ≥ f (v) for any v at level greater than 2. We continue to apply
Lemma 4.2.13 and Lemma 4.2.11 for higher levels, and we obtain that at
each level `, d(v`1) ≥ d(v`2) ≥ · · · ≥ d(v`k`) and d(v`k`) ≥ d(v`+1

1 ). This
construction corresponds to the greedy algorithm, thus T is the greedy
tree.

As it is for the other graph invariants mentioned earlier, it is interesting to
compare the spectral radius for trees having different degree sequences.

Theorem 4.2.14 ([5]). Let B and B′ be the degree sequences of trees of the same
order such that B � B′. Then we have

λ(G(B)) ≤ λ(G(B′)),

Equality holds if and only if B = B′.

Proof. By Proposition 3.3.6, if B 6= B′, there exists a degree sequence B1

with B � B1 � B′ such that B and B1 only differ in two places, i.e.,
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B = (b0, b1, . . . , bi, . . . , bj, . . . , bn−1) and B1 = (b0, b1, . . . , bi + 1, . . . , bj − 1
, . . . , bn−1) with i < j. Let us consider two vertices u, v in the greedy tree
G(B) such that dG(B)(u) = bi and dG(B)(v) = bj. By the definition of ma-
jorization, we may assume bi ≥ bj ≥ 2. Now, let x be a child of v, and T′ be
the tree obtained by removing vx and adding ux. Then clearly T′ ∈ T(B1).
Using Lemma 4.2.11, we have f (u) ≥ f (v), where f is the Perron vector of
G(B). If A and A′ are the adjacency matrices of G(B) and T′ respectively,
and E and E′ their edge sets, then we get

RT′( f )−RG(B)( f ) = 〈A′ f , f 〉 − 〈A f , f 〉

= 2

 ∑
xy∈E′\E

f (x) f (y)− ∑
uv∈E\E′

f (u) f (v)


= 2( f (u) f (x)− f (v) f (x))

= 2( f (u)− f (v)) f (x) ≥ 0.

Thus, λ(T′) ≥ λ(G(B)). Moreover, by Theorem 4.2.9, λ(T′) ≤ λ(G(B1)).
Therefore

λ(G(B)) ≤ λ(G(B1)).

We iterate this process to obtain the result.
Furthermore, equality holds if and only if f is also an eigenvector corre-
sponding to λ(T′) on T′ so that

λ(T′) f (u) = f (x) + ∑
wu∈E

f (w) > ∑
wu∈E∩E′

f (w) = λ(G(B)) f (u),

which is impossible.

Theorems 4.2.9 and 4.2.14 allow us to find bounds for the spectral radius
of different classes of trees.

Corollary 4.2.15 ([34]). Among trees of order n with s leaves, the greedy
tree G(D(s)) corresponding to the sequence D(s) = (s, 2, . . . , 2, 1, 1, . . . , 1)
maximizes the spectral radius.
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Figure 4.3: A greedy tree of order 12 with 4 leaves.

Proof. The proof is similar to the proof of Corollary 3.3.14, but using Theo-
rems 4.2.9 and 4.2.14.

Remark 4.2.16. Wu et al. ([34]) established that the characteristic polyno-
mial of G(D(s)) can be expressed in terms of Chebyshev polynomials, and
they could compute for some s the corresponding spectral radius. More
precisely, they found that for bn

2 c ≤ s ≤ n− 1, one has

λ(G(D(s))) =

√
s + 1 +

√
(s + 1)2 − 4(2s− n + 1)

2
.

Let Tn,∆ be the set of all trees of order n with maximum degree ∆, ∆ ≥ 3.

Corollary 4.2.17 ([26]). If T ∈ Tn,∆, then

(i) if n = ∆ + 1, then T is the star Sn and λ(T) =
√

n− 1.

(ii) if ∆ + 1 ≤ n ≤ 2∆, then λ(T) ≤
√

n−1+
√

(n−2∆)2+2n−3
2 , with equality

if and only if T is the Volkmann tree Vn,∆.

(iii) if 2∆ < n ≤ ∆2 + 1, then λ(T) ≤
√

2∆− 1, with equality if and only
if T is a complete ∆-ary tree with 3 levels.

(iv) if n > ∆2 + 1, then λ(T) < 2
√

∆− 1 cos π
2k+1 , where k is the height of

Vn,∆.

Proof. Let T ∈ Tn,∆ with degree sequence D. It is clear that D � (∆, ∆, . . . , r
, 1, . . . , 1), where 0 ≤ r < ∆, which is the degree sequence of the Volkmann
tree. Hence, by Theorems 4.2.9 and 4.2.14, λ(T) ≤ λ(Vn,∆). Now, let us
consider all the cases.
For the first case (i), the only possible tree is the n-vertex star, so the result
holds.
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For (ii), we have ∆ + 1 ≤ n ≤ 2∆. For this case the Volkmann tree V1 has
3 levels, moreover all vertices are leaves except for the root and another
vertex a such that a is attached to s = n− ∆− 1 leaves. Let b1, . . . , bs be the
leaves attached to a. By using Lemma 4.2.8 repeatedly, we obtain

ΦV1(x) = xΦV1−b1(x)−ΦV1−a−b1(x) = xΦV1−b1(x)− xs−1ΦS∆(x)

= xΦV1−b1(x)− xs−1(x∆ − (∆− 1)x∆−2)

= x(xΦV1−b1−b2(x)− xs−2(x∆ − (∆− 1)x))− xs−1(x∆ − (∆− 1)x∆−2)

= x2ΦV1−b1−b2(x)− 2xs−1(x∆ − (∆− 1)x∆−2)

...

= xsΦV1−b1−b2−···−bs(x)− sxs−1(x∆ − (∆− 1)x∆−2)

= xsΦS∆+1(x)− sxs−1(x∆ − (∆− 1)x∆−2)

= xs(x∆+1 − ∆x∆−1)− sxs−1(x∆ − (∆− 1)x∆−2)

= xs+∆−1(x2 − ∆)− sxs+∆−3(x2 − (∆− 1))

= xs+∆−3(x4 − (∆ + s)x2 + s(∆− 1)).

We know that λ(V1) 6= 0, which implies it is the largest solution of the

equation x4 − (∆ + s)x2 + s(∆− 1) = 0. Then, x2 =
∆+s+

√
(∆+s)2−4s(∆−1)

2 .

Replacing s by n − ∆ − 1 we get x2 =
n−1+
√

(n−2∆)2+2n−3
2 and therefore

λ(V1) =

√
n−1+
√

(n−2∆)2+2n−3
2 .

Now, consider case (iii) where 2∆ < n ≤ ∆2 + 1. We let V2 be the Volkmann
tree corresponding to the degree sequence of T, so that V2 has 3 levels. We
have already proved that λ(T) ≤ λ(V2). V2 is a subgraph (possibly equal
to) of the complete ∆-ary tree V∗ with 3 levels, so λ(T) ≤ λ(V2) ≤ λ(V∗).
Moreover, λ(V∗) =

√
2∆− 1 (see [22]). Hence, the result holds.

Finally, consider case (iv) where n > ∆2 + 1. Denote by V3 the Volkmann
tree corresponding to the degree sequence of T. Now the height of V3 is
greater than three. Once again, we have λ(T) ≤ λ(V3). With a similar
reasoning as in (ii), V3 is a subgraph of a complete ∆-ary tree V∗ with the
same height as V3. By some matrix manipulations, Song et al ([26]) proved
that λ(V∗) < 2

√
∆− 1 cos π

2k+1 . Thus the result holds.

To end this chapter, let us give an example of a partial ordering of trees
and see the behaviour of the Wiener index and the spectral radius.
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Example 4.2.18. Figure 4.4 shows all the trees of order 6, with their Wiener
index and spectral radius.

W(T) : 25
λ(T) ≈ 2.236

W(T) : 28
λ(T) ≈ 2.074

W(T) : 28

λ(T) ≈ 2

W(T) : 31
λ(T) ≈ 1.931

W(T) : 32
λ(T) ≈ 1.902

W(T) : 35
λ(T) ≈ 1.801

Figure 4.4: Trees of order 6.
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Chapter 5

Additive parameters

Additive parameters occur frequently, especially in computer science in
the analysis of divide-and-conquer algorithms. A lot of research has been
done to compute the distribution of such parameters (see [9, 21, 29]). In
this chapter, we present a slightly different point of view in characterizing
extremal trees for graph invariants which are �additive� . This includes
several natural examples, as can be seen in the following.

5.1 Preliminaries

Let T be a rooted tree with root r. Let us denote the set of branches attached
to r by {T1, . . . , Tk}.

Definition 5.1.1. A parameter A(T) is called additive if

A(T) = A(T1) + A(T2) + · · ·+ A(Tk) + f (T),

where f is called a toll function. We assume that for the single-vertex tree,
we have f (•) = A(•).

Example 5.1.2. (i) The number of leaves is an additive parameter, in fact:

`(T) = `(T1) + · · ·+ `(Tk) + f (T),

where

f (T) =

1 if |T| = 1,

0 otherwise.
.

We assume the root is never considered as a leaf unless |T| = 1.

48
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(ii) The total path length, which is the sum of distances from the root is
also additive:

p(T) = p(T1) + · · ·+ p(Tk) + |T| − 1.

Definition 5.1.3. For each vertex u ∈ V(T), recall that Tu is the subtree of
the rooted tree T induced by u and its all successors. In particular if u is
the root, then Tu = T.
Let us write αT(u) = |V(Tu)| and α(T) = (αT(u), u ∈ V(T)), where we
may assume that αT(u) are ordered in a non-increasing way in the sequence
α(T).

Proposition 5.1.4. Let A be an additive parameter such that

A(T) = A(T1) + · · ·+ A(Tk) + f (|T|).

Then we have
A(T) = ∑

u∈V(T)
f (αT(u)).

Proof. Let us prove the statement by induction on the height of the tree.
(Recall that the height h is the maximum distance between the root and a
vertex in T)
Since f (•) = A(•), the statement is true for height 0. Suppose it is true
for any trees of height less or equal to h. Let us compute A for a tree T
of height h + 1. If T1, T2, . . . , Tk are the branches attached to the root, we
obtain

A(T) = A(T1) + · · ·+ A(Tk) + f (|T|),

but T1, . . . , Tk are of height less or equal to h, so by the induction hypothesis
we get

A(T) = ∑
u∈V(T1)

f (αT(u))+ · · ·+ ∑
u∈V(Tk)

f (αT(u))+ f (|T|) = ∑
u∈V(T)

f (αT(u)).

Let us present some further simple properties [36] of majorization which
will be used later.
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Proposition 5.1.5. Let A = (a1, . . . , ak, b1, . . . , bk) and B = (a1 + b, . . . , ak +

b, b1 − b, . . . , bk − b) be two nonnegative integer sequences with b > 0. If
ai ≥ bi for i = 1, . . . , k, then A � B.

Proposition 5.1.6. Let A = (a1, . . . , an) and A′ = (a′1, . . . , a′m) be two se-
quences. We denote by (A, A′) the sequence obtained by combining the
two, i.e., (A, A′) = (a1, . . . , an, a′1, . . . , a′m). If A � B and A′ � B′, then
(A, A′) � (B, B′).

Definition 5.1.7. Let A = (a1, . . . , an) and B = (b1, . . . , bn) be two se-
quences. We write A ≤ B if ai ≤ bi for i = 1, . . . , n. If at least one of
the inequalities is strict, then we write A < B.

5.2 Additive parameters and level-greedy trees

Let us characterize first the extremal trees among trees with given level
degree sequence. Then, we will extend this result to trees with fixed de-
gree sequence. Let Tr(D) be the set of all rooted trees with level degree
sequence D. The two following lemmas that can be found in [36] show the
behaviour of α(T) under modifications of the tree T.

Lemma 5.2.1. Let T ∈ Tr(D). Suppose that u and v are at the same level,
that they are successors of w and that there are two internally disjoint
paths P(u, w) = (u, u1, . . . , uk, w) and P(v, w) = (v, v1, . . . , vk, w) such that
αT(u) < αT(v), and αT(ui) ≥ αT(vi) for i = 1, . . . , k. Let T′ be the tree
obtained from T by deleting the edges u1u and v1v and adding the edges
u1v and v1u. Then T′ ∈ Tr(D) and α(T) � α(T′).

Proof. Note that all the degrees are preserved by this operation, hence T
and T′ have the same outdegrees at each level, in other words T′ ∈ Tr(D).
Set b = αT(v) − αT(u) > 0. Clearly, αT′(vi) = αT(vi) − b and αT′(ui) =

αT(ui) + b for i = 1, . . . , k, so by Proposition 5.1.5,

(αT(u1), . . . , αT(uk), αT(v1), . . . , αT(vk))

� (αT(u1) + b, . . . , αT(uk) + b, αT(v1)− b, . . . , αT(vk)− b)

= (αT′(u1), . . . , αT′(uk), αT′(v1), . . . , αT′(vk)).

Note also that for any vertex y ∈ V(T)\{u1, . . . , uk, v1, . . . , vk}, we have
αT′(y) = αT(y). Therefore by Proposition 5.1.6, α(T) � α(T′).
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Lemma 5.2.2. Let T ∈ Tr(D). Suppose that u and v are at the same level,
that they are successors of w and that there are two internally disjoint
paths P(u, w) = (u, u1, . . . , uk, w) and P(v, w) = (v, v1, . . . , vk, w) such that
αT(u) ≥ αT(v), and αT(ui) ≥ αT(vi) for i = 1, . . . , k. If dT(u) < dT(v)
(recall that dT(u) is the degree of u in T), set s = dT(v)− dT(u) > 0, and
let T′ be the tree obtained from T by deleting the s edges vxi and adding s
edges uxi, i = 1, . . . , s, where x1, . . . , xs are children of v. Then T′ ∈ Tr(D)

and α(T) � α(T′).

Proof. We can see that dT′(u) = dT(v) and dT′(v) = dT(u), while the degree
of the other vertices is preserved, so T′ ∈ Tr(D). Set b = ∑s

i=1 αT(xi) > 0.
We can see that αT′(v) = αT(v) − b, αT′(vi) = αT(vi) − b and αT′(u) =

αT(u) + b, αT′(ui) = αT(ui) + b for i = 1, . . . , k. Hence by Proposition 5.1.5,
we have

(αT(u), αT(u1), . . . , αT(uk), αT(v), αT(v1), . . . , αT(vk))

� (αT′(u), αT′(u1), . . . , αT′(uk), αT′(v), αT′(v1), . . . , αT′(vk)).

Moreover, for any vertex y ∈ V(T)\{u1, . . . , uk, v1, . . . , vk}, we have αT′(y) =
αT(y). Therefore by Proposition 5.1.6, α(T) � α(T′).

Lemma 5.2.3. For any T ∈ Tr(D), we have

α(T) � α(G(T)),

where G(T) is the rooted level greedy tree corresponding to D.

Proof. Let T ∈ Tr(D). Let us denote by u1,1, u1,2, . . . , u1,`1 the vertices of T
at level 1, where without loss of generality we may assume that dT(u1,1) ≥
dT(u1,2) ≥ · · · ≥ dT(u1,`1). Suppose there exist i, j with i < j such that
αT(u1,i) < αT(u1,j), but dT(u1,i) > dT(u1,j). We apply Lemma 5.2.2 to
obtain a new tree T′ such that dT′(u1,j) > dT′(u1,i) and αT′(u1,j) ≥ αT′(u1,i).
Moreover, α(T) � α(T′). We iterate this process to any possible i, j to end
up with a tree T1, such that if u1

1,1, u1
1,2, . . . , u1

1,`1
are the vertices of T1 at level

1, then dT1(u1
1,1) ≥ dT1(u1

1,2) ≥ · · · ≥ dT1(u1
1,`1

) and αT1(u1
1,1) ≥ αT1(u1

1,2) ≥
· · · ≥ αT1(u1

1,`1
). Furthermore α(T) � α(T1).

Now let us consider level 2. Suppose u is a child of u1
1,i and v is a child

of u1
1,j, with i < j such that αT1(u) < αT1(v). We apply Lemma 5.2.1 to

obtain a new tree T′1 such that αT′1
(u) > αT′1

(v) and α(T1) � α(T′1). Now
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if dT′1
(u) < dT′1

(v), we apply again Lemma 5.2.2 to obtain a tree T′′1 such
that dT′′1

(u) ≥ dT′′1
(v) and αT′′1

(u) ≥ αT′′1
(v). Moreover, α(T′1) � α(T′′1 ). By

repeating this operation for all vertices at level 2, we end up with a new
tree T2 such that the vertices at level 2 are ordered in a nonincreasing order
according to their degrees and α(T1) � α(T2).
We continue to apply Lemma 5.2.1 and 5.2.2 for the next levels, and we
end up with a tree TH such that the vertices at all levels are ordered, which
means TH

∼= G(T). Furthermore, α(T) � α(T1) � α(T2) . . . � α(TH). Since
majorization is transitive, the statement follows.

The main part of this section is to prove that for specific toll functions, the
level greedy tree either minimizes or maximizes the additive parameter.

Theorem 5.2.4. If a parameter is additive and the toll function is of the form
t(T) = f (|T|), where f is a convex (concave) function then it is maximised
(minimised) by the rooted level-greedy tree among all trees with the same outdegree
level sequence.

In order to prove Theorem 5.2.4, we need the following inequality, which
is known as Karamata’s inequality.

Lemma 5.2.5 ([14]). Let A = (a1, . . . , an) and B = (b1, . . . , bn) be two se-
quences of real numbers such that a1 + · · · + an = b1 + · · · + bn. If the
sequence B majorizes A, and f is a convex funtion, then the inequality

n

∑
i=1

f (ai) ≤
n

∑
i=1

f (bi)

holds.

Proof. Let A = (a1, . . . , an) and B = (b1, . . . , bn) be two sequences such
that A � B, and let f be a convex function. Without loss of generality,
assume that A and B are in a non-increasing order and f is continuously
differentiable. f is convex on an interval I if and only if f lies above all its
tangents, i.e.:

f (x)− f (y) ≥ (x− y) f ′(y),
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for all x, y in I. Thus f (ai)− f (bi) ≥ (ai− bi) f ′(bi) holds for all i = 1, . . . , n.
Let us compute the difference between ∑n

i=1 f (ai) and ∑n
i=1 f (bi).

n

∑
i=1

f (ai)−
n

∑
i=1

f (bi) =
n

∑
i=1

f (ai)− f (bi) ≥
n

∑
i=1

(ai − bi) f ′(bi)

= (a1 − b1)( f ′(b1)− f ′(b2)) + (a1 + a2 − b1 − b2)( f ′(b2)− f ′(b3))

+ (a1 + a2 + a3 − b1 − b2 − b3)( f ′(b3)− f ′(b4)) + · · ·

+ (
n−1

∑
i=1

ai −
n−1

∑
i=1

bi)( f ′(bn−1)− f ′(bn)) + (
n

∑
i=1

ai −
n

∑
i=1

bi) f ′(bn).

Note that for all k = 1, . . . , n− 1, ∑k
i+1 ai −∑k

i=1 bi ≤ 0 by the definition of
the majorization, and f ′(bk)− f ′(bk+1) ≤ 0 by the convexity of f . Moreover,
the last term is 0 by our assumptions. Thus this difference is nonnegative.

Proof of Theorem 5.2.4. Let A be an additive parameter with a convex toll
function f . Then Proposition 5.1.4 provides that

A(T) = ∑
u∈V(T)

f (αT(u)),

and Lemma 5.2.3 tells us that for any tree T ∈ Tr(D),

α(T) � α(G(T)).

Using Lemma 5.2.5, we obtain that

A(T) = ∑
u∈V(T)

f (αT(u)) ≤ A(G(T)) = ∑
u∈V(G(T))

f (αG(T)(u)).

If f is concave, we use the fact that − f is convex to obtain the result.

Let us study the behaviour of α(T) when we consider it as an edge rooted
tree. Let T be a rooted tree with a root u and v one of its neighbours. Now,
we consider the tree T as an edge rooted tree with root e = uv whose level
degree sequence is given by D.
Let Te(D) be the set of all edge rooted trees with level degree sequence D.

Lemma 5.2.6. If Te ∈ Te(D), then:

(αT(w)|w 6= v) � (αG(Te)(w)|w 6= v),

where G(Te) is the edge-rooted level greedy tree corresponding to D.
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Proof. Let T′ be the tree obtained by merging u and v to obtain a vertex
rooted tree with root r (as seen in Figure 5.1). We can easily see that

(αT(w)|w ∈ (V(T)\{u, v})) = (αT′(w)|w ∈ V(T′)\r)

and

(αG(Te)w|w ∈ V(G(Te))\{u, v}) = (αG(T′)(w)|w ∈ V(G(T′))\r).

Using Lemma 5.2.3, we know that α(T′) � α(G(T′) and of course αT′(r) =
αG(T′)(r), so (αT′(w)|w ∈ V(T′)\r)) � (αG(T′)(w)|w ∈ V(G(T′))\r). Thus

(αT(w)|w ∈ (V(T)\{u, v})) � (αG(Te)(w)|w ∈ V(G(Te))\{u, v}).

Moreover αT(u) = αG(Te)(u), so using Proposition 5.1.6, we have (αT(w)|w 6=
v) � (αG(Te)(w)|w 6= v).

u ve r

Figure 5.1: T and T′ in the proof of Lemma 5.2.6.

Remark 5.2.7. Let us discuss the value of αT(v). Two cases can be consid-
ered:
Case 1: if dT(u) ≥ dT(v), then after reshuffling the vertices at each level
to get a level greedy tree, the vertices are ordered in such a way that suc-
cessors of u have greater or equal degree than successors of v. It implies
that the degree of the successors of v in the edge-rooted level greedy tree
is smaller than for any other trees with the same degree sequence. Thus
αT(v) ≥ αG(Te)(v).
Case 2: if dT(u) < dT(v), then after reshuffling the vertices, they are now
ordered in such a way that the successors of v have greater or equal degree
than successors of u. Hence αT(v) ≤ αG(Te)(v).
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5.3 Additive parameters and greedy trees

For our purposes, let us consider the following definition of a greedy tree
as given in [2].

Definition 5.3.1. If a tree is level greedy with k levels and its level degree
sequence satisfies

min(ai,1, . . . , ai,`i) ≥ max(ai+1,1, . . . , ai+1,`i+1
),

for any level i, 0 ≤ i ≤ k− 1, then it is a greedy tree.

Let T(D) be the set of all rooted trees (with root r) with given degree
sequence D = (d0, d1, . . . , dn). We denote by G(D) the greedy tree corre-
sponding to D. We have already seen in the previous section how α(T)
behaves when we rearrange vertices on the same level. Now, we would
like to know the effect on α(T) caused by rearranging vertices at different
levels. In the spirit of Lemma 3.5 in [36], we have

Lemma 5.3.2. Let T ∈ T(D). Suppose that u is a successor of v, that
there is a path P(u, v) = (u, u1, . . . , uk, v) and that dT(u) > dT(v). Set
s = dT(u) − dT(v) > 0, and let T′ be a tree obtained from T by deleting
the s edges uxi, and adding s edges vxi, i = 1, . . . , s, where {x1, . . . , xs} are
children of u. Then T′ ∈ T(D) and α(T′) < α(T).

Proof. We can see that dT(u) = dT′(v), dT(v) = dT′(u), and the degrees of
the other vertices stay the same, hence T′ ∈ Tr(D). Set b = ∑s

i=1 αT(xi) > 0.
Then αT′(u) = αT(u)− b < αT(u) and αT′(ui) = αT(ui)− b < αT(ui) for
j = 1, . . . , k. Moreover for any y ∈ V\{u, u1, . . . , uk}, we have αT′(y) =

αT(y). Hence the statement holds.

Now, we are ready to prove our main theorem, stated as follows:

Theorem 5.3.3. If a parameter is additive and the toll function is of the form
t(T) = f (|T|), where f is a decreasing and convex (increasing and concave)
function then it is maximised (minimised) by the greedy tree among all rooted
trees with the same degree sequence.

We prove Theorem 5.3.3 following the same construction as given in [2,
Theorem 3].
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Proof. Let A be an additive parameter with a strictly decreasing and convex
toll function f . Then Proposition 5.1.4 shows that

A(T) = ∑
u∈V(T)

f (αT(u)).

Let TH be a tree in T(D) that satisfies A(TH) ≥ A(T) for any rooted tree T
with the same degree sequence D.
We observe from Lemma 5.3.2 that we can choose TH in such a way that
the root has maximum degree and the degrees of the vertices decrease as
we move away from the root following a path. This decreases α, and since
f is decreasing, A will increase as a result. Therefore TH can be considered
as a rooted tree satisfying this property. Hence, if D = (d0, d1, . . . , dn) is a
degree sequence in non-increasing order, then d(r) = d0 (we write d(u) for
dTH(u)) and there exists a neighbour v of r with d(v) = d1.
By Theorem 5.2.4, TH can be chosen to be a level-greedy tree.
Let e be the edge rv and T′H the component of TH − e that contains the root
r, as shown in Figure 5.2.

r

T′H

ve

Figure 5.2: The tree TH.

Let us consider TH as an edge rooted tree with e as the root. By Lemma
5.2.6 we have

(αTH(w)|w 6= v) � (αG(TH)(w)|w 6= v). (5.3.1)

Moreover by our construction, d(v) ≤ d(r), so following the first case in
Remark 5.2.6, we have

αTH(v) ≥ αG(TH)(v). (5.3.2)

We notice that the equality in equation (5.3.2) holds if and only if TH is
already level greedy with respect to e. Thus if we reshuffle the branches in
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TH to become a level greedy tree with edge root e, and apply Karamata’s
inequality to equation (5.3.1), we obtain

∑
w 6=v

f (αTH(w)) ≤ ∑
w 6=v

f (αG(TH)(w)).

Now using the fact that f is decreasing together with equation (5.3.2), we
obtain

f (αTH(v)) ≤ f (αG(TH)(v)).

Therefore the reshuffling process will increase A. Since all processes we
described will strictly increase some additive parameter A′, at some point
it has to stop and we end up with a tree TH that is level greedy with respect
to r and also level greedy with respect to the edge e.
For contradiction, assume TH (vertex rooted) is not isomorphic to the rooted
greedy tree G(D). Then for some i ≥ 2, there exist vertices ui and ui+1 at
levels i and i + 1 respectively such that d(ui) < d(ui+1). Now we distin-
guish four different cases. In each of them, we make use of the fact that
TH is a rooted level greedy tree, and wi and wi+1 always denote vertices at
level i and i + 1 respectively.
Case 1: If ui, ui+1 ∈ V(T′H), then there exists a vertex wi+1 ∈ V(TH − T′H)
such that d(ui) < d(ui+1) ≤ d(wi+1).
Case 2: If ui, ui+1 ∈ V(TH − T′H), then there exists a vertex wi ∈ V(T′H)
such that d(wi) ≤ d(ui) < d(ui+1). If level i of T′H is already empty, we set
d(wi) = 0, and the argument that follows is still valid.
Case 3: If ui ∈ V(TH − T′H) and ui+1 ∈ V(T′H), then there exist vertices
wi ∈ V(T′H) and wi+1 ∈ V(TH − T′H) such that

d(wi) ≤ d(ui) < d(ui+1) ≤ d(wi+1).

The case that level i of T′H is empty is treated in the same way as before.
Hence all three cases above can be reduced to the following fourth case:
Case 4: ui ∈ V(T′H) and ui+1 ∈ V(TH − T′H), but this contradicts the fact
that TH is level greedy as edge rooted tree with root e.
We obtain the case when f is strictly increasing and concave in a similar
way.

It is also interesting to find trees �opposite� to greedy trees in maximizing
or minimizing additive parameters.
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Definition 5.3.4 ([24]). A caterpillar is a tree with the property that a path
remains if all leaves are deleted. In our case, we will call a caterpillar any
rooted tree where removing all leaves produces a rooted tree with precisely
one leaf.

Definition 5.3.5. A reverse greedy caterpillar is a rooted caterpillar for which
the degrees of its internal vertices increase from the root to a leaf.

Example 5.3.6. A reverse greedy caterpillar with the following degree se-
quence: (4, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1).

Lemma 5.3.7. Let T ∈ T(D). Suppose u and v are successors of w and there
are two internally disjoint paths P(u, w) = (u, u1, . . . , uk, w) and P(v, w) =

vw such that uk 6= v, k ≥ 1 and dT(v) > dT(u) = 1. Set s = dT(v)− 1 > 0,
and let T′ be a tree obtained from T by deleting the s edges vxi and adding
s edges uxi, i = 1, . . . , s, where x1, . . . , xs are children of v. Then T′ is a
rooted tree with the same degree sequence and α(T) < α(T′).

Proof. Since dT′(u) = dT(v) and dT′(v) = dT(u), T′ and T have the same
degree sequence. Set b = ∑s

i=1 αT(xi) > 0. We see that v becomes a leaf
and αT′(u) = αT(v), αT′(v) = αT(u) , αT′(ui) = αT(ui) + b > αT(ui) for
i = 1, . . . , k. Moreover, for any vertex y ∈ V(T)\{u, u1, . . . , uk, v}, we have
αT′(y) = αT(y). Therefore α(T) < α(T′).

Theorem 5.3.8. If a parameter is additive and the toll function is of the form
t(T) = f (|T|), where f is a strictly increasing (decreasing) function then it is
maximised (minimised) by the reverse greedy caterpillar among all rooted trees
with the same degree sequence.
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Proof. As in Theorem 5.3.3, let A be an additive parameter with a strictly
increasing toll function f . Then Proposition 5.1.4 shows that

A(T) = ∑
u∈V(T)

f (αT(u)).

Let TH be a tree in Tr(D) that satisfies A(TH) ≥ A(T) for any rooted tree
T with the same degree sequence D. Suppose that there is more than one
non-leaf vertex in TH. Assume there are two non-leaf vertices ui, vi at level
i. At level 1, we apply Lemma 5.3.7 to v1 and a leaf successor of u1 to obtain
a new tree T′H such that α(TH) < α(T′H). Since f is increasing, this process
makes A increase. Repeating this process, we end up with a tree that has
only one non-leaf vertex at level 1. A increases with each application of
Lemma 5.3.7. We iterate this idea for the next levels to obtain a tree that
has only one non-leaf vertex at each level.
By Lemma 5.3.2, we can choose TH such that the root has minimum degree
and the degrees of the vertices increase as we move away from the root
following a path (except for a leaf). The associated sequence α increases,
and since f is increasing, A will increase.
In view of Definition 5.3.5, we see that TH is the reverse greedy caterpillar.

Remark 5.3.9. Note that in Theorem 5.3.8, the toll function does not have
to be convex or concave.

Now let us illustrate Theorems 5.3.3 and 5.3.8 by some examples.

Corollary 5.3.10. The total path length P(T) described in Example 5.1.2 (ii)
is maximized by the reverse greedy caterpillar, and the greedy tree is one
of the trees that minimize it.

Proof. The total path length is additive with toll function t(T) = |T| − 1,
which is increasing. Hence by Theorem 5.3.8, it is maximized by the reverse
greedy caterpillar. The toll function t is also convex, but not strictly, so the
greedy tree G(D) minimizes P(T), but it is not the only such tree: any tree
with the same level degree sequence as G(D) also minimizes it.

Example 5.3.11. Let us consider the rooted trees with degree sequence D =

(3, 3, 3, 2, 2, 1, 1, 1, 1, 1) depicted in Figure 5.3.
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T1 T2

T3 T4

T5 T6

Figure 5.3: Rooted trees with degree sequence (3, 3, 3, 2, 2, 1, 1, 1, 1, 1).

We compute their total path length to obtain:

P(T1) = P(T2) = 1× 3 + 2× 5 + 3× 1 = 16

P(T3) = P(T4) = 1× 2 + 2× 3 + 3× 4 = 20

P(T5) = 1× 1 + 2× 1 + 3× 1 + 4× 2 + 5× 4 = 34

P(T6) = 1× 1 + 2× 1 + 3× 1 + 4× 2 + 5× 2 + 6× 2 = 36.

The results confirm Corollary 5.3.10. Note that T1 has the same level degree
sequence as T2, the same for T3 and T4. However since the toll function
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is not strictly convex, nor concave, we cannot distinguish their total path
lengths from one another.

Definition 5.3.12 ([3]). The factorial of a tree is a graph invariant defined
recursively as follows:

T! = n
k

∏
i=1

Ti!, (5.3.3)

where T is a rooted tree of order n, and {T1, . . . , Tk} is the set of branches
attached to the root r. We set •! = 1.

For a combinatorial aspect, we remark that the factorial of a tree counts the
number of functions V → V such that each vertex is mapped to a successor
(or itself).

Example 5.3.13. Let us compute the factorial of the path Pn rooted at one
of its end vertices and the star Sn rooted at its center.

Pn! = nPn−1! = n(n− 1)Pn−2! = · · · = n!•! = n!,

which gives us the ordinary factorial. For the star, we get

Sn! = n
n−1

∏
i=1
•! = n.

Corollary 5.3.14. The tree factorial is minimized by the greedy tree and
maximized by the reverse greedy caterpillar among all trees with the same
degree sequence.

Proof. Note that

T! = |T|
k

∏
i=1

Ti!

= exp

(
log(|T|

k

∏
i=1

Ti!)

)

= exp

(
k

∑
i=1

log(Ti!) + log(|T|)
)

= exp(`(T)).

As we can see, `(T) is an additive parameter, whose toll function is t(T) =
log(|T|). Since log is an increasing concave function, by Theorem 5.3.3 and
5.3.8, `(T) is minimized by the greedy tree and maximized by the reverse
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greedy caterpillar among all rooted trees with the same degree sequence.
Moreover exp is increasing, so `(T) and T! have the same extremal trees.
Thus, the statement follows.

Example 5.3.15. Let us consider again the trees with degree sequence D =

(3, 3, 3, 2, 2, 1, 1, 1, 1, 1) depicted in Figure 5.3, and compute their factorials.

T1! = 10(4(2)× 3× 2) = 480

T2! = 10(3× 3× 3(2)) = 540

T3! = 10(7(3)(3)× 2) = 1260

T4! = 10(5(3)× 4(3)) = 1800

T5! = 10(9)(8)(7(3× 3)) = 45360

T6! = 10(9)(8)(7(5(3))) = 75600.

The results obtained confirm Corollary 5.3.14. Moreover, note that T1 and
T2 (as well as T3 and T4) have the same level sequence but T1 and T3 are
level greedy. The fact that T1! < T2! and T3! < T4! follows from Theorem
5.2.4. These examples show that the convexity of the function is important.

It is worth mentioning that an additive parameter L(T) with toll function
log(|T|) corresponds also to the so-called �shape parameter� ([21]), it has
been shown that exp(L(T)) provides a measure of the shape of T. This
parameter has the same extrema as the tree factorial.
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[3] S. T. Belinschi, M. Bożejko, F. Lehner, and R. Speicher. The normal distribu-
tion is infinitely divisible. Adv. Math., 226(4):3677–3698, 2011.

[4] N. Biggs. Algebraic Graph Theory. Cambridge Mathematical Library. Cam-
bridge University Press, 1993.

[5] T. Bıyıkoglu and J. Leydold. Graphs with given degree sequence and maximal
spectral radius. Electron. J. Combin., 15:R119, 2008.

[6] J. A. Bondy and U. S. R. Murty. Graph theory with applications. Macmillan
Press, New York, 1976.
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