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ABSTRACT

Fuzz testing, or fuzzing, is a form of software testing where the implementation
under test is exposed to unexpected or semi-valid inputs in the interest of robust-
ness testing. Fuzzing frameworks can be utilized to develop fuzzing test suites.
In this thesis, a comparative analysis was performed on different fuzzing frame-
works including two freely distributed frameworks and one commercial solution.

Three network protocols and a collection of software implementations utiliz-
ing these protocols were chosen as test targets. The protocols were File Transfer
Protocol (FTP), Locator/ID Separation Protocol (LISP), and Session Initiation
Protocol (SIP). A set of test environments was constructed for all the test targets.

Fuzzing test suites for the chosen protocols were developed with the fuzzing
frameworks. The test suites were executed towards the test targets and the results
monitored closely. A set of metrics for the tests was defined, including effective-
ness in terms of found crashes, code coverage, and run-time performance.

The obtained test results show a clear distinction between the tested frame-
works. The commercial solution was proven to offer best coverage, found most
crashes, and it was overall the most flexible in terms of development and deploy-
ment. The others showed promise as well, but lacked in performance or effective-
ness, overall quality, and had some shortcomings in development and deployment.
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TIIVISTELMÄ

Fuzz-testaus, eli fuzzaus, on ohjelmistotestauksen muoto, jossa testattavaa to-
teutusta jykevyystestataan altistamalla se odottamattomille tai osittain valideil-
le syötteille. Fuzz-sovelluskehyksiä voidaan käyttää fuzz-testisarjojen kehittämi-
seen. Tässä työssä toteutettiin vertaileva analyysi erilaisille fuzz-sovelluskehyksille
mukaanlukien kaksi ilmaista testikehystä ja yksi kaupallinen ratkaisu.

Testikohteiksi valittiin kolme verkkoprotokollaa ja kokoelma niitä hyödyntäviä
ohjelmistoja. Valitut protokollat olivat File Transfer Protocol (FTP), Locator/ID
Separation Protocol (LISP) ja Session Initiation Protocol (SIP). Testikohteille ra-
kennettiin omat testiympäristönsä.

Fuzz-testikehyksien avulla kehitettiin fuzz-testisarjat valituille protokollille.
Testisarjoja suoritettiin testikohteita vastaan ja tuloksia valvottiin tarkasti. Tes-
taukselle määriteltiin joukko metriikoita, mukaanlukien tehokkuus löydettyjen
kaatumisien muodossa, koodikattavuus ja ajonaikainen suorituskyky.

Saadut tulokset osoittavat selvän eron testattujen fuzz-sovelluskehysten välillä.
Kaupallinen ratkaisu tarjosi parhaan kattavuuden, löysi eniten kaatumisia ja oli
kaiken kaikkiaan joustavin kehityksen ja käyttöönoton suhteen. Muut vaikuttivat
myös lupaavilta, mutta jäivät jälkeen suorituskyvyssä tai tehokkuudessa, yleises-
sä laadussa ja osoittivat myös puutteita kehityksen ja käyttöönoton suhteen.

Avainsanat: fuzz-testaus, fuzz-sovelluskehys, ohjelmistotestaus
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1. INTRODUCTION

In the world of today, software is involved in almost everything we do, from making
a call using a mobile phone to driving a car with an on-board computer and even con-
trolling power plants or traffic lights. Some software undoubtedly contains security
vulnerabilities, since it is written by humans and humans make mistakes. The vulner-
abilities might expose the software to attacks. This raises the question whether all of
the important software in use today is secure and properly tested.

With that in mind, software testing is becoming more important each day. With the
ever increasing number of connected devices, the number of available attack vectors
and vulnerable targets is also getting higher than it has ever been before. The pur-
pose of modern software testing is not only to validate the features and performance
of the implementation under test (IUT), but also find the bugs and vulnerabilities it
contains.[1 p. 3-4].

Fuzz testing, or fuzzing, is a black-box software testing method used to test the
robustness of the IUT. As a form of black-box testing, fuzzing tests the functional side
of the IUT and does not require any details of the internal implementation of the target
[2 p. 21, 83-84]. Fuzzing is performed by sending semi-valid or unexpected inputs
to the IUT through its external interfaces [2 p. 24-25]. The purpose of this negative
testing is to expose implementation flaws resulting in crashes and other security flaws
[2 p. 24-26]. Due to the nature of fuzzing, it is often the best way of finding previously
unknown vulnerabilities [2 p. 10-12], such as the bug dubbed as Heartbleed [3] that
was recently found in the widely used open source software OpenSSL [4].

There are many tools available for performing fuzz testing, both free and commercial
ones. These tools, known as fuzzers, are often specifically designed for fuzzing a single
network protocol or a file format. In addition to these stand-alone fuzzers, fuzzing
frameworks that can be used to create new custom fuzzers have been developed [2 p.
31]. The frameworks provide a way to define a model or a template for the protocol to
be tested, an engine generating the anomalous inputs, and an injector for delivering the
inputs to the IUT. The functionality differs greatly between frameworks, many even
use completely different fuzzing methods [2 p. 26-29].

Fuzzers, like other testing tools, can be compared in several ways. As a popular
software testing metric, code coverage can be used to determine the portion of the
source code that is executed during a test run [2 p. 89]. The effectiveness of the fuzzers
can be assessed by looking at the found crashes, and performance by measuring the test
generation and execution speed.

This thesis presents a comparative analysis of various fuzzing frameworks. The
frameworks are compared by first using them to develop fuzzing test suites for three
different network protocols, and executing the test suites against a collection of test
targets. The main focus for the comparison is on the effectiveness and deployment
of the frameworks and the developed test suites. The ultimate goal is to have a clear
understanding of the capabilities of each framework, how they compare with each
other, and which one of them is the most effective.
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2. SOFTWARE TESTING

Software testing can be described as a process of making sure that the tested software
product reaches its intended feature coverage, is secure, behaves correctly in all sit-
uations, and does not do anything that it was not designed to do. The main goal of
software testing must be bug prevention. Any variation between the specification and
the implementation is a bug, whether it is a simple flaw in the desired functionality or
serious vulnerability resulting in a Denial of Service (DoS) state or even permitting an
attacker access to the product [2 p. 19]. As complete bug prevention is often impos-
sible due to software complexity and human error, the secondary goal of testing is to
discover bugs. [5, 1 p. 3-4]

2.1. Testing purposes

As there are many purposes for software testing, there must exist different ways of
testing as well. Conformance testing, or feature testing, is done to validate whether
the tested product conforms with the specifications and implements all of the required
features. The main tool for designing the tests is the specification itself, and if it
does not implicitly define all of the features, it leaves room for interpretation for both
the original developer and the tester, which may lead to misunderstanding and false
results[1 p. 34-35].

Conformance testing can be done, for example, by going through the specifications
given for the development process and checking if the final product has all of the
requested features and that it conforms with all of the specifications. Conformance
testing can also include interoperability testing, where the tested product is tested with
other similar, already existing products by executing them against each other to ensure
they can interoperate. [6, 2 p. 17-18, 87]

Performance testing is done to ensure that the product has no performance issues,
and that it can function well enough under load. Performance testing may include load
and stress testing to see how the product behaves under a high load, for example by
using a load generator to simulate multiple concurrent connections or high bandwidth
utilization. [7, 8, 2 p. 18, 87]

In order to validate the behavior of a product more effectively, conformance testing
is not enough, as it tests only valid or positive aspects. The negative inputs must also
be tested, by what is referred to as robustness testing, or negative testing. Robustness
testing is done by feeding the product invalid and semi-valid inputs, and monitoring the
health of the target. This is done to assess the reliability and robustness of the product
under malicious inputs. This is also the most interesting and important part of testing
concerning the overall security of the product. [9, 10, 2 p. 18-19, 89-90]

Unlike in conformance and performance testing scenarios, in robustness testing, as
the tests contain invalid inputs, the immediate responses from the target are not of
primary interest [2 p. 94]. The important question is whether the target can stay
functional under invalid, even hostile, inputs. Fuzzing, as described in more detail in
section 2.6, can be classified as robustness testing.

After these tests have been done and the product is deemed complete, it is released.
However, this does not mean the end of testing. The product will eventually have to
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be updated, either due to new feature requests or to fix a previously unknown bugs
that were not found during pre-release testing. Once the updates are finished, the
product must go through post-release regression testing to make sure the new fixes or
updates did not cause problems in the previous functionality [11]. It should also be
remembered, that if the regression tests are not constantly updated while the product
itself is updated, they will eventually become ineffective against any new bugs. [2 p.
95-96]

2.2. White-box and Black-box

The box approach is a common way of describing the point of view taken in software
testing. White-box refers to testing techniques that are testing the structure and internal
parts of the software, often called structural testing. While doing white-box testing,
the test designer has access to the source code, which also provides understanding of
the internal structures of the tested software. This can help with designing test cases
that target specific parts of the code, and also help make the test coverage as wide
as possible. Various testing methods can make use of the source code, both during
programming and also while executing the code. For example, white-box testing can
be performed by executing the program symbolically, monitoring the executed code
paths, and using this information to dynamically generate more test cases that can
reach new code paths, theoretically leading to full path coverage. During the testing
the program can be monitored using a run-time checker, for example Valgrind [12],
for various properties, such as memory errors or threading bugs [13]. [14, 15, 16, 2 p.
80-81]

Other common white-box testing methods may also involve code auditing where the
source code is statically checked, either manually by a seasoned developer or by means
of automatic source code scanners [2 p. 21-22].

The opposite of white-box testing is black-box testing. Black-box testing methods
are testing the functionality of the target. Black-box testing does not require access to
the source code of the test target, nor any prior knowledge of the internal functionality
of the target. The test target is treated as a “black-box”, inside which the tester can not
see. Testing is done through the exposed external interfaces, for example input devices
and network interfaces. The available interfaces are always included in the possible
attack vectors, more about this in section 2.3. [14, 16, 2 p. 80-81, 87-89]

Fuzzing, as will be discussed later, is a particularly powerful form of black-box test-
ing. Vulnerability scanners, like Nessus [17], are also very popular due to their ease-
of-use. Vulnerability scanners have tests for finding commonly known vulnerabilities,
but nothing besides that, which makes their usefulness limited. [2 p. 36-38].

Testing approach can not always be categorized in such a black and white manner
as the techniques mentioned above would suggest. Many times the actual testing ap-
proach is a combination between white-box and black-box testing, and the result is
often called gray-box testing. This refers to a situation where some prior knowledge
of the internal functionality of the target is applied into designing the tests in order
to achieve the best possible coverage and effect. Gray-box techniques are also often
utilized as instrumentation, for example by using a run-time debugger. The test run
itself is done as in black-box testing, only through the external interfaces. [14, 2 p. 80]
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2.3. Attack vectors and surfaces

Most implementations, whether they are software or hardware, require some form of
input while they are in use. The input may be, for example, in form of user interaction
either via a graphical user interface (GUI) or a command-line interface (CLI), files that
the target processes, remote or local network connections, or exposed physical inter-
faces such as USB or serial ports. In the case of hardware, there is also the possibility
of direct hardware tampering. [18, 2 p. 6-9]

All of the input mechanisms, no matter if they are local or remote, are attack vec-
tors. Inputs, where privilege changes are happening, are the more interesting ones.
As an example, incoming network connections from remote sources may be unpriv-
ileged, but in order to process the incoming data, it must be parsed locally and the
parser must have some privileges on the host [2 p. 7]. If the parser is vulnerable, and
proper counter-measures are not in place, an attacker could achieve privilege escala-
tion [19, 20]. One thing to note on attack vectors concerning network interfaces and
other similar cases, such as data input ports, is that a single network interface may in
reality be a passageway for multiple different network protocols, each one exposing
another service on the target and thus dramatically increasing the number of actual
attack vectors originating from a single physical entry point. [18, 2 p. 6-9]

The sum of all attack vectors is called the attack surface [18, 2 p. 7]. It covers all
parts of the code that a potential attacker can reach, thus making it important from the
security testing perspective to cover the whole attack surface when testing an imple-
mentation.

2.4. Common bug categories

Knowing what types of bugs exist, and which ones are the most common, helps a tester
or a test developer design their tests and anomalies to be more efficient. The same goes
for the original developers as well: if they know what kinds of bugs the attackers are
going to try and exploit, they can take action during development to mitigate these
threats.

Since every implementation is unique, it contains unique bugs that are not seen in
any other implementations. However, found bugs and vulnerabilities very often fall
into one or more known categories of common vulnerabilities and attacks and their
effects, as seen in the list below [2 p. 42-54].

• Memory corruption: Buffer overflows (stack and heap), integer errors, off-by-
one errors.

• Web-specific: Injection attacks, Cross-Site Request Forgery (XSRF), Cross-Site
Scripting (XSS).

• Timing: Race conditions.

• Denial of Service (DoS) attacks: Including standard DoS, Distributed DoS
(DDoS), Reflective DoS (RDoS), and Distributed Reflective DoS (DRDoS).
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• Other: Session hijacking, man in the middle (MITM), and cryptography (au-
thentication bypass) attacks.

From these categories, memory corruption related problems are possibly the easiest
to test for using common testing methods. These are most often found with field level
anomalies, as described in section 2.6.6. Especially off-by-one errors [2 p. 47], for
example where data written to a buffer is one byte too long, and initialization problems
[1 p. 38], where a variable has not been properly initialized, are commonplace since
they can easily be left in the code by programmer error. Memory related errors can
also be serious threats, since they can often give the attacker a chance for rogue code
execution, for example through a buffer overflow problem where they can inject their
own code to memory. [2 p. 42-49]

As web applications have become more popular than ever, they also represent a huge
target for attackers, and they also have some specific attacks and possible vulnerabil-
ities that regular applications do not usually have. Injection attacks, including SQL
injections and cross-site scripting attacks, are in a sense similar to some regular buffer
overflow attacks where the attacker tries to inject and execute their own code. The at-
tack vector in almost half of the web application attacks is a web form [2 p. 8] through
which the attacker can bypass any existing input validation and sanitation and inject
their code. [2 p. 50-52]

Timing-related bugs, such as race conditions, can lead to different types of problems.
For example, if a program running on a high privilege is going to read a file from the
file system and it first checks if it has the permission to do so, an attacker may overwrite
the pointer in the file system to point to another file containing confidential information
and thus read the file if the attack is timed correctly [2 p. 53]. Timing-related race
conditions may also lead to lockups, if, for example, two separate threads try to access
the same resource simultaneously and proper logic for solving race conditions is not in
place.

Denial of Service attacks (DoS) can be made in various ways, and protecting against
some techniques can be difficult if not impossible. The main goal behind such an
attack is to get the target into a DoS state, where it can not continue normal service
and stops responding to valid queries. This can be achieved in several different ways.
The usual approach is to flood the target with valid or invalid requests that allocate so
much resources, either local physical resources or network bandwidth, on the target
that it simply can not respond anymore. The attack can be performed from a single
system, multiple distributed systems (DDoS), or even using a reflective attack where
the attacker uses one or more third-party systems to amplify their attack [21].

The categories discussed above cover common bugs, but even those deal only with
a portion of the possibilities. Other data processing bugs, architectural, interface and
integration problems, operating system errors, and many more still exist, and the first
step in mitigating their effects is to know about them. [1 p. 34-54]

One thing to note about different types of bugs and where they reside in the source
code is that some bugs can not be triggered through the attack surface [22]. These
bugs are not usually exploitable and, because of that fact, not as critical as others.
Furthermore, these bugs can not be found by fuzzing, which can only cover the external
attack surface, but are usually found using other means, such as static code analysis by
either automated code analysis tools or a more traditional manual code review. [22]
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2.5. Mini-simulation

Mini-simulation is a method for functional modeling of protocols and protocol message
exchanges. It was developed during the PROTOS project [23], see section 2.6.1, during
1999-2001 [24 p. 4]. Originally, the method was developed for functional robustness
testing [24 p. 54-55]. The design goal was to devise a method for generating a large
number of protocol messages with only one or few anomalized elements in them at
once, leaving the rest of the message unchanged and legal per specification. [24 p.
54-57]

The main idea behind mini-simulation is to create a single protocol entity with mul-
tiple small models representing different scenarios in the tested protocol, not one com-
plex model covering everything. This makes for easier maintenance and comprehen-
sion, as the smaller models will all be derived from the same protocol specification,
and all changes to the overall protocol specification will propagate to the models as
well. [24 p. 54-55]

2.6. Fuzzing

Fuzzing is a form of negative testing where the test target is fed unexpected or semi-
valid inputs or message sequences in order to find out if it can continue valid operations
in the presence of anomalous inputs [14, 2 p. 1, 24-25]. A simple example using File
Transfer Protocol (FTP) log in sequence can be seen in Figure 1. The first image shows
a valid input, and the second image shows a fuzzed sequence, where an anomaly has
been introduced to the second message.

Figure 1. An example of fuzzer behavior: a) valid input, b) semi-valid input with
anomaly in the second request.

Fuzzing is usually performed as black-box or gray-box testing, described in section
2.2, where the tester generally has no access to the internal functionality of the target.
The testing can be done through any of the exposed interfaces on the target. This
makes it relatively easy to fuzz a target with very little or no knowledge of the internal
functionality of the actual target. This also makes the all the findings, by definition,
vulnerable to remote triggering [22]. [14, 2 p. 1, 22-26, 59]

Fuzzing can be considered proactive, as opposed to reactive, security because the
main goal is to find unknown vulnerabilities, sometimes referred to as zero-day vul-
nerabilities, that are not yet used by a potential attackers. Because of this, newly de-
veloped protocols and technologies are especially interesting to fuzz since there is no



16

prior knowledge of the possible vulnerabilities, and e.g. known-vulnerability scanners
can not be used. [22, 2 p. 10-12]

The usual division of fuzzers is made through fuzzer interfaces, mainly network
protocol fuzzing, file format fuzzing, and other, more specialized forms, such as API
or serial fuzzing [2 p. 162-165]. For this thesis, the main focus will be on network
protocol fuzzing.

2.6.1. History

The early roots of fuzz testing date back to the 1980s. The Monkey [25] was one
example of a rudimentary fuzzing-like tool in 1983. The Monkey provided random
input through keyboard interaction, effectively acting as a random fuzzer [25, 2 p. 22].

However, fuzzing, as well as other software testing methods, did not gain much pop-
ularity until the 1990s when the number of network connected devices and software
started increasing, opening up new and easier attack vectors. Before, testing with a se-
curity focus was not thought to be so important since without interconnected networks,
the attack vectors for possible attackers were scarce. In present days, and especially in
the near future, when the number of connected devices is already high and increasing
every day, fuzz testing will become a more and more important tool to prevent secu-
rity incidents by discovering unknown vulnerabilities before the devices and software
make their way into production. [2 p. 22-24]

Another factor in the gaining popularity of negative testing and fuzzing was the
simplicity of the testing. In 1990, Miller, Fredriksen, and So published a paper on a
program called fuzz [26, 2 p. 22] that they had developed, which generates strings of
random characters that are automatically fed to the target program through command
line input. It was also the first well-known fuzzing software implementation. The fuzz
tool, even though it was a simple random fuzzer, found crashes from a wide variety of
tested Unix utilities [26], proving the effectiveness of fuzzing.

In 1999, Oulu University Secure Programming Group (OUSPG) launched the PRO-
TOS project [23]. PROTOS project researched different approaches for testing pro-
tocol implementations. The testing was done using black-box methods. During the
PROTOS project, many different fuzz testing suites were created for a number of net-
work protocols. The best-known was likely the Simple Network Management Proto-
col (SNMP) test suite [27, 28, 29]. Over 200 vendors were involved with testing their
implementation with the SNMP test suite [2 p. 23-26], which was used to discover
countless bugs within the SNMP implementations, that were later on patched by the
vendors [27, 30, 31, 2 p. 23-26].

Due to the success of PROTOS, the testing community understood the promise in
fuzzing. Many new stand-alone fuzzers and fuzzing frameworks were developed, both
small one-man projects and extensive commercial solutions. Spike [32] was long the
most popular open-source fuzzer, followed by many others such as General Purpose
Fuzzer (GPF) [33], and the fuzzing frameworks Peach [34] and Sulley [35]. Commer-
cial vendors took the cue as well: a few of the OUSPG researchers founded Codenomi-
con [36] and started developing the Defensics [36] fuzzer family, Mu Security (since
then changed name to Mu Dynamics and acquired by Spirent [37]) had the appliance-
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based MU-4000 [2 p. 228], Beyond Security developed beSTORM [38], in addition to
some other smaller companies.

2.6.2. Why fuzz

“Why fuzz” is a question often heard in the security world. Many software developers
see fuzzing simply as a waste of time and rather spend that time, for example, develop-
ing new features. Some developers even to to great lengths to prevent fuzzing on their
products; this will be further discussed in section 2.6.7.

These, and other possible reasons aside, fuzzing is often one of the best ways to
discover unknown vulnerabilities. Fuzzing works so well because it is great way to
cover a wide input space, which would often be impossible to achieve manually. The
wider the coverage, the more potential vulnerabilities can be found. Fuzzing can also
be used against a wide variety of targets and different attack vectors; basically any
target that accepts inputs. [2 p. 24, 63]

One of the biggest advantages of fuzzing, as it is a form of black-box or gray-box
testing, is that the crashes found through fuzzing are all vulnerable to remote trigger-
ing and thus they are always real threats. Also, when using a proper instrumentation
method, see section 3.1.3, there should not be any false positives; a crash is always a
crash. [2 p. 59]

Fuzzing has also proven to be extremely effective compared to manual testing meth-
ods because creating the vast amounts of test cases required to reasonably cover the
attack surface and input space simply is not feasible. Having an automated system
create countless number of test cases to run against a target will eventually find bugs
that manual testing would simply have overlooked. [2 p. 63]

Fuzz testing, somewhat depending on the fuzzer of course, is well structured, de-
terministic, and, most importantly of all, repeatable. If a crash found during testing
can not be properly detected and repeated, it is not worth much. Some crashes or
other bugs, especially those related to high memory consumption, may take more than
one test case to trigger them, and reproducing them can be much more difficult. [2 p.
26-27, 30-31]

It must be remembered, though, that fuzzing alone does not solve any problems
regarding software stability and security, it is only the first step towards that direction.
Fuzzing can be used to discover unknown vulnerabilities, but as such it is only a small
component in a complete vulnerability management process. After the flaws have been
found, they must be properly reported, fixed, and the fixes deployed into use. [18]

2.6.3. When to fuzz

The short answer to this question is: always. The long answer depends on a few differ-
ent factors. When developing the software, it is best to integrate fuzzing as part of the
used software development life cycle (SDLC) in appropriate phases [39, 40]. Usually
fuzzing is done in the verification phase (or similar), but it can also be done earlier, for
example during the implementation phase. Integrating fuzzing as a mandatory step into
the SDLC ensures that fuzzing is done properly in a proper phase of the development
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life cycle. For example, Microsoft [39, 41, 42] and Cisco [43] have both introduced
fuzzing and robustness testing as part of their own SDLCs. [18, 39, 44, 2 p. 11, 25]

One of the main reasons for fuzzing as a part of the SDLC in phases before the
actual release is that the cost of fixing bugs increases in the later phases of the SDLC,
especially after the product is released [45]. The cost of fixing a bug rises exponentially
during the SDLC. The cost can rise by a factor of 100 in the release phase compared
to the design phase [45, 2 p. 14-15]. If the product is released for end-customers and
deployed into production, updating all of the copies will be both difficult and expensive
for both the developer and the end-customer. This is an issue especially for specialized
embedded devices and their software, which can be hard if not impossible to update
after deployment. [18, 44, 45, 46, 2 p. 14-16]

Another reason is the obvious security factor. If the possible vulnerabilities can be
found and fixed already during the development process, the attackers can not utilize
them when the software is in production and many potential security incidents can be
prevented. Also, some bugs that might seem harmless now might be exploitable and
cause a severe security breach in the future, when research made by attackers bears
fruit and a new method for abusing a previously harmless bug is developed. [44, 47]

However, fuzzing is not only for vendors. The end-customer, or buyer, should also
fuzz the products they procure from the supplier or developer [18]. This is done to
make sure that the product in question stands up to the standards set by the end-
customer. The customer may also request that the products they acquire from a vendor
must have been fuzz tested prior to the purchase.

2.6.4. What to fuzz

In short, the answer to this is very similar to the “when to fuzz” question: everything.
Special interest should be given to all the products, software or physical devices with
inputs that are facing external networks, especially the internet. These products often
have the widest and most exposed attack surface, see section 2.3.

It is often difficult to say beforehand which products have flaws or will crash when
fuzz tested. Common sense says that the more complex a target is, the more likely it
is to have one or more flaws. Also, in the field of software security, special attention
should be given to programs written in low-level programming languages, especially
those with manual memory management [48, 2 p. 42]. Programs written in languages
such as C, that require manual memory management are more prone to buffer overflow
and underflow attacks, which are exploiting poor memory management. This does not,
of course, mean other programs written in high-level languages should be forgotten;
almost all software has and will have flaws and they should always be tested. [2 p.
42-54]

2.6.5. Fuzzing methods

There are many different types of fuzzers using alternative methods for fuzzing. Each
method has its upsides and downsides. The main categorization of fuzzing methods
is made between mutation and generation fuzzing [2 p. 137]. The most important
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difference between these is that mutation-based fuzzers have a template of known and
valid data for the fuzzed protocol, which they modify based on different techniques.
Generation-based fuzzers include a definition of the protocol and, based on the defini-
tion, generate the test cases and the test case data by themselves. Both of these main
categories can be further split into more specific methods, the most common of which
are described below. [48, 2 p. 137-138]

Random fuzzing and random template-based fuzzing are the simplest methods of
mutation fuzzing. In random fuzzing, the fuzzing engine generates the test cases using
random generated data. An example of this is a random bit-flipping fuzzer, that goes
through a sample message bit by bit with no regards to keeping the message intact
as per protocol specification. That is also the greatest flaw with random fuzzing: most
targets will try to validate the incoming message and immediately drop it if the message
does not resemble a valid input. Given enough time, random fuzzers will generate
messages close enough to a valid input to be accepted by the target, but this process
can take a very long time and a vast majority of the generated test cases are more or less
pointless. In addition, random fuzzers usually work with a static model or a sample file
and do not utilize any dynamic functionality for, for example, copying or calculating
critical values during run time, such as lengths and checksums [49], nor do they have
any other protocol awareness. [18, 50, 51, 2 p. 26, 138-140]

Template-based fuzzers, also known as block-based or mutational-based, are fuzzers
that implement a template for the protocol message or messages. The template is
basically a sample message or message sequence of the fuzzed protocol, with ele-
ments marking all the different fields and data structures. The generated anomalies
are inserted into different elements in the template, keeping the overall structure of the
message intact, which also gives template-based fuzzers a clear advantage over pure
random fuzzers. Some template-based fuzzers also offer ways to implement some rudi-
mentary dynamic functionality for, for example, calculating checksums [49]. [18, 50, 2
p. 26-27, 138-140]

Template-based fuzzers are limited by the template used to generate anomalies. Only
the messages and data structures present in the template can be used when generating
anomalized messages. In order to achieve complete protocol coverage, the templates
need to cover all possible messages and message sequences. [18, 50, 2 p. 26]

Dynamic generation, or evolution-based, fuzzers use templates similar to template-
based fuzzers, but instead of requiring manual input of the templates, dynamic gen-
eration fuzzers learn them, either automatically or with little help from a user, by an-
alyzing valid traffic from the target system [2 p. 197-198]. Some can even identify
dynamically changing content, for example the mentioned checksums, and calculate
values accordingly [49]. This learning process is sometimes called corpus distillation.
The anomalization itself is done in the same fashion as in template-based fuzzing,
where the anomalies are placed in the template keeping the structure intact. [18, 2 p.
26, 138-140]

Model-based, or generational, fuzzers are implemented using a complex protocol
model or a simulation, see section 2.5, covering the specification of the tested proto-
col, or at least the parts required for testing. Model-based fuzzers cover all messages
and elements in the protocol, and can handle the dynamic calculations of the state-
ful features used in the protocol. They simulate the tested protocol by implementing
a protocol-aware state-machine, which allows a model-based fuzzer to both handle



20

and fuzz unexpected messages and complex multi-message sequences. This enables a
model-based fuzzer to penetrate deeper into the test target and its state-machine, and
inject anomalies to parts of code the simpler fuzzers can never reach, thus having a
higher chance of discovering vulnerabilities. [18, 50, 2 p. 26-28, 137-140, 142-144]

2.6.6. Anomaly types

As there are different types of bugs, finding them requires multiple different types of
anomalies.

The broader look at different anomaly types includes the anomaly complexity. The
test cases can and should test all of the layers in the implementation under test (IUT),
and this means having anomalies that target the different layers in the application logic
[52, 2 p. 26]. A list of the most common anomaly complexity categories, and what
they are used to test, can be seen below [52, 2 p. 26-27].

• Field level: Used to find field decoding bugs the fields with overflows, under-
flows, integer or string anomalies

• Structure level: Finding message syntax parsing and validation flaws by chang-
ing the structure with overflows, underflows, repetition, and unexpected ele-
ments

• Sequence level: Testing the state machine with out-of-sequence and unexpected
messages, repetition, as well as omission of messages

Field level anomalies are targeting the parts of the IUT that decode and use the
values received in the protocol fields. Depending on the protocol, the values can be
in the form of, for example, simple bit values, integers, or complex strings. These
can be anomalized with the help an anomaly library in the fuzzer, which may contain
example anomalies and anomaly types for different field types. For example, integer
field anomalies can include common limit values for different integer sizes, off-by-one
values, overflows and underflows, or purely random values. [2 p. 26-27, 140-141]

Structure level anomalies reorder the valid structure of the messages, thus targeting
the syntax parser and validator of the IUT. The parser tries to crawl through the mes-
sage assuming it is in a known “language” that is defined in the protocol specification,
where all the expected data structures are specified, and tries to interpret the incoming
data based on that specification [1 p. 284-288]. If the parser is not robust enough, it can
fail while encountering unexpected or missing fields. The structure can be broken in
various ways, for example repeating or removing fields, adding unexpected field types,
or, if the protocol has fixed field lengths, changing the lengths with overflows and un-
derflows. Some good examples of bugs found by breaking the syntax with structure
level anomalies are the ASN.1 related flaws found from SNMP [31, 27] found by the
PROTOS project mentioned in section 2.6.1. [2 p. 26-27]

In addition to the field and structure level anomalies that change the message itself,
sequence level anomalies are also necessary. They change the sequence of protocol
messages, similar to how the structure level anomalies change the structure of one
message. Unexpected messages can be added to the message sequence, messages can
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be repeated, or they can be deleted from the sequence. This aims to confuse the state
machine of the IUT, getting it to crash or end up in a deadlock. [2 p. 26-27]

These different types of anomalies can of course be used together with each other
to form new combined anomalies. Combining multiple anomalies into one single test
case can be effective, but at the same time it makes the identification and remediation
of the found problems more problematic. When using a single anomaly it is often
fairly straightforward to trace the anomaly into the part or a function in the code where
the fault happens. With combined anomalies, the task becomes more difficult, since
as there are two or more anomalies, the actual problem in the IUT can lie in multiple
different parts of the code, or, of course, a combination of code.

2.6.7. Anti-fuzzing

Anti-fuzzing is an umbrella term for various methods aimed to make fuzzing less effec-
tive. There have been numerous ways different companies and developers have tried
to either make performing fuzz testing against their products too costly or too difficult
to achieve. [53, 54]

One of the more famous examples of such a technique is the Anti-Tamper program
by the United States Department of Defense (DoD) [53] that is aiming to prevent or
delay the exploitation of technologies in the U.S. weapon systems. It is achieving
this by trying to deter any reverse-engineering or exploitation against the protected
systems. [53]

In the software world, anti-fuzzing has similar goals: to deter the effectiveness of
fuzzing, to detect fuzzing, and to prevent the fuzzer from achieving any reasonable test
results [54]. These goals are pursued via various means. The developer may build fail-
safe systems in their program trying to hide any detectable crashes, or even perform
fake crashes and falsifying the instrumentation results if a possible fuzzing attempt is
detected [54]. After detecting a fuzzing attempt, the anti-fuzzing methods may also
include purposeful performance degradation making the fuzzing process slower and
too costly time-wise [54]. All of the methods are aiming to discomfort the fuzzing
attempt.

This is also a major problem with anti-fuzzing. As stated, fuzzing is often the best
way of finding unknown vulnerabilities and purposefully preventing fuzzing may leave
unknown vulnerabilities in place, and thus trusting that the vulnerabilities will be left
undiscovered rather than finding and fixing them. If anti-fuzzing is widely deployed,
it will result in degradation of quality in software simply because of this.

Anti-fuzzing research is, however, very limited at the moment and there is not
enough data existing to properly dictate whether anti-fuzzing is beneficial in the long
run [54]. At the same time, there is also research in the opposite direction, making
software easier to fuzz. Tavis Ormandy from Google has suggested making software
“dumber” so general purpose fuzzers could be used to fuzz and discover bugs from a
wider range of software [55]. This would allow more bugs to be found and fixed, and
that way increase the overall quality of software [55].
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3. FRAMEWORKS AND PROTOCOLS

In this chapter fuzzing frameworks are described. First, an overview is given to what
a fuzzing framework is and what it can be used for. Three different frameworks are
chosen for closer inspection for this thesis and they are introduced later in this chapter.
In addition to the frameworks, the chosen network protocols are also described.

3.1. Fuzzing frameworks

When developing a fuzzer for a custom protocol, the developer most often wants to
spend the majority of their time perfecting the protocol model or template, leaving
less focus on the actual fuzzing engine itself. This is why fuzzing frameworks are
so popular. A fuzzing framework is a collection of utilities that can be used to create a
specific protocol model or template and, based on that, generate and deliver anomalized
test data to the implementation under test (IUT) [2 p. 31].

There are many fuzzing frameworks available, both free and commercial. The main
focus for this thesis will be on the freely distributed frameworks Peach Community
Edition [34] and Sulley [35] as well as the commercial Defensics Traffic Capture
Fuzzer from Codenomicon [36]. The main differences between the frameworks, apart
from the commercial factor, are the programming and markup languages, as well as
the protocol definition grammar, used for modeling the target protocol or file type and
the fuzzer itself, and of course the used fuzzing method for generating anomalies.

Fuzzing frameworks contain all of the needed components and utilities for making
a working fuzzer. A list of the most essential parts of a typical fuzzing framework can
be seen in the list below [2 p. 29-30]. Of course, a working fuzzer does not per se need
all the parts shown here, and not every framework implements all of them.

• Model: A user-editable protocol model or a template used for defining the mes-
sage structures and message sequences for the tested protocol.

• Anomaly library: A collection of “effective” inputs to use as anomalies. For
example, variable boundary values, known vulnerability triggers, control char-
acters. Anomaly library can also be a simple random generator.

• Test case engine: An engine that creates the actual anomalized test messages
using the protocol model as base and adding anomalies from the anomaly library.

• Injector: A method for delivering the test cases to the target.

• Instrumentation: A way to monitor the health of the IUT during test run.

• Reporting: After a test run has been completed, any found flaws should be doc-
umented and reported. A tool or feature for generating reports is needed.

• Documentation: Especially in the case of fuzzing frameworks, as opposed to
ready-made fuzzers, comprehensive documentation is a must-have feature in or-
der to develop a working fuzzing test suite.
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Fuzzing frameworks, with the exception of pure mutation fuzzers that generate ran-
dom data with no structures, have ways of defining a model or template, using a
framework-specific protocol definition grammar, that represents the data structures that
are used in the protocol in question. The frameworks also contain a test case engine
that creates, possibly with help from a separate anomaly library, the actual test cases
containing anomalies based on the protocol model. The test case engine is the most
important part of the frameworks. As the input space and amount of possible com-
bination anomalies is practically infinite, the engine must be smart enough to create
a reasonable amount of anomalized test cases that still achieve a wide test coverage
[18, 56]. This is explained in more detail in section 3.1.1. [2 p. 29-31]

The frameworks also need an injector that is used to deliver the anomalized, fuzzed
test case data to the target [2 p. 222-223]. Many fuzzing frameworks also provide some
sort of utilities and methods for instrumentation, that means checking the health of the
target during test runs [2 p. 223]. Comprehensive documentation is also an important
feature for anyone using a new fuzzing framework to build a test suite, as well as
reporting the found problems. These will be further explained in the next sections. [2
p. 29-31]

3.1.1. Test case generation

As previously discussed in section 2.6.5, there are several ways fuzzing can be per-
formed. In the end, again with the exception of pure random fuzzers, they all perform
in a similar way: start with a valid message and anomalize a part of it.

The valid message, that is needed as a base, can be either a template or a sample
file (template-based fuzzers), or it can be dynamically generated from pre-determined
specification (model-based fuzzers). That valid message is then passed on to the fuzzer
engine.

The fuzzing engine is the most important part of a fuzzer or a framework. The
engine creates the anomalies that are used for the actual testing. It reads the valid
message, or sequence of messages, and adds the created anomalies, ending up with a
semi-valid message sequence [2 p. 222]. That sequence makes up a test case. The
fuzzing engine may have an anomaly library containing examples of inputs known to
trigger vulnerabilities, common limit values, or random data [2 p. 29]. Experience
in the security and testing fields, and a good understanding of common programming
paradigms, help with designing an effective anomaly library. Different anomaly types
are discussed in section 2.6.6.

It is also important to note that when an anomaly is inserted into a test case, espe-
cially if the test case contains a sequence of multiple messages, the test is obviously
not valid per specification anymore. This also means that whatever should happen in
the test case sequence after the anomaly is not defined in the specification. Due to this,
it is not important what the implementation under test replies after the anomaly is sent
since there is no correct behavior specified. Whether the test case is a pass or a fail is
determined later using instrumentation, as discussed in section 3.1.3.

The quality of anomalies mainly depends on the engine. The used model or template
has an effect in determining how well the anomaly can be placed in the message, that
is if the structure of the message is kept intact [2 p. 222]. As mentioned before in
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section 2.6.5, if the structure is not valid per specification, there is a high chance that
the target simply drops it without ever trying to process it, thus rendering the test case
pointless.

The engine also has to take into account the number of test cases. The input space is
practically infinite, which means there are no limits to the amount of possible anoma-
lies, especially with combination anomalies, thus making the amount of possible test
cases infinite in return [56]. In order to keep the amount of test cases and the resulting
test run time reasonable, the engine must be intelligent enough to choose which anoma-
lies are worth trying and which can be discarded [56]. Here again the importance of a
properly populated anomaly library is emphasized.

3.1.2. Injection

Once the engine has created an anomalized test case, it has to be delivered to the
test target. An injector provides a method for sending the test case data. In the case
of network protocol fuzzing, an injector can be a piece of code that automatically
connects to the target in the beginning of each test case, sends the test case data, and
also receives incoming data if the sequence includes incoming messages. Most fuzzing
frameworks by default have multiple injectors, for example IPv4, IPv6, TCP, or UDP.
[2 p. 222-223]

An injector does not have to be network-based: in case of file fuzzing, the test cases
could be simple files saved into the file system. Any type of attack vector can, at least
in theory, have its own injector.

3.1.3. Instrumentation

Instrumentation is a term used for the method of checking and monitoring the health
of the target during a test run. Instrumentation is a key factor for getting meaningful
test results. As mentioned in section 3.1.1, after an anomaly is sent to the target, the
sequence is not valid or within specification anymore, so the responses from the target
can not be used to determine a pass or a fail verdict without further instrumentation.
Without any kind of instrumentation, it would be impossible to detect failures and
crashes and pinpoint them to a certain test case or series of test cases that trigger them,
rendering the testing close to useless. [18, 2 p. 223]

As there are many kinds of targets running in various environments, there must be
many different ways of doing instrumentation. The most common instrumentation
methods are process-based instrumentation, some form of system instrumentation, and
valid-case instrumentation. In addition to these common methods, especially in the
case of embedded devices or proprietary systems, a custom method of instrumentation
developed specifically for the target in question is often needed for obtaining most
accurate results.
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Process instrumentation

When using process instrumentation, the target process (program) is started within a
controlled environment where it can be monitored for crashes and incoming signals.
The simplest forms of process instrumentation detect if a process crashes or is other-
wise shut down during the test run and report this as a failed test case. More advanced
methods may include attaching a debugger to the target, which is used to catch excep-
tions and monitor the target in more detail. [2 p. 176-180]

Most process-based instrumentation methods are also capable of controlling the state
of the target process: starting it, restarting it after a crash, returning it to its original
known state, and killing it. This can be used when executing long automated test runs.

The major downside with process instrumentation is its platform dependency: if the
monitor process can not be run on the target system, it is not possible to use process
instrumentation. Because of this, process instrumentation is not a possibility when test-
ing, for example, embedded devices or programs running in other closed, proprietary
systems, or when there simply is no access to the target system.

System instrumentation

In system instrumentation, the logs and resources in the system where the target is
running monitored. For example, if the target has proper logging features, checking log
files for both the target program and the system itself for warning and error messages
can reveal crashes or other problems other instrumentation methods can not catch. [2
p. 171-172]

Monitoring the resource consumption can also be used as instrumentation. This can
include checking the elapsed CPU time, monitoring reads and writes to the file system,
and more [2 p. 171-175].

Similar to process instrumentation, the biggest downsides of system instrumentation
are that it is platform dependent, and that its effectiveness depends very highly on the
way the target software has been built.

Valid-case instrumentation

Valid-case instrumentation is one way of countering the problem with process and sys-
tem instrumentation. In valid-case instrumentation, when fuzzing a network protocol,
a simple valid query (test case) is sent to the target using the same protocol that is
under test and the reply is checked and compared to a known valid reply. This will let
the fuzzer know if the IUT is still up and able to respond to a valid query. It should
be noted that valid-case instrumentation is only useful with protocols that implement
at least one request-reply sequence; if the target is never expected to reply anything,
valid-case instrumentation is of no use. [18, 2 p. 170-171]

The advantages of this over some other instrumentation methods is that it implicitly
checks the health of the target protocol and process, and not just the overall health of
the system or the process [18]. The downside, compared to process instrumentation,
valid-case instrumentation can miss some crashes, for example in the case if the IUT
has a watchdog that watches the state of the service being tested and quickly restarts it
after a crash before a valid test case can be sent. [2 p. 170-171]
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Other instrumentation methods

The three methods mentioned above are the most commonly used, but not by far the
only methods. Simple Network Management Protocol (SNMP) [57] is one good ex-
ample. SNMP is meant for monitoring remote systems, which makes it a fitting choice
for an instrumentation method.

There are some more advanced methods including library interception [2 p. 180-
181], binary simulation [2 p. 181-183], source code transformation [2 p. 183], and the
use of development tools, including debuggers and memory analyzers.

Especially in the case of highly customized proprietary targets, it is often necessary
to come up with a custom instrumentation method. A good example is a network-
ing device, a router or a switch, that can not easily be instrumented using the usual
methods. In this case, a custom instrumentation method could be developed which es-
tablishes a separate remote connection to the target and checks the health using internal
methods, similar to system instrumentation.

All in all, the used instrumentation method must always be one that works with the
target in question. As the targets vary, so must the instrumentation methods do as well.

3.1.4. Reporting

Reporting is an important part of any type of testing. Once bugs have been found, they
must be reported to the responsible party. On a smaller scale, if the developer is the
one doing the testing by themselves, the importance of reporting decreases. But in any
situation where the testing is performed either by a separate quality assurance (QA)
team or a third party tester, the importance of proper reporting increases to a whole
another level. In order for the responsible party to identify, reproduce, and eventually
fix the bug, the party must be provided with accurate information about the test case
that triggered the bug, as well as about the testing environment. [2 p. 223]

The report can be in many different forms, including plain log files, automatically
generated reports with graphs and statistics to help the reader better understand the
process, and more. Some testing software, for example the commercial beSTORM
fuzzer [38], can also export test cases to external scripts or binaries that can be used to
reproduce the found bug without the need for the original testing software.

As mentioned in section 2.6.2, fuzzing, as well as other kinds of software testing, is
only the first step in a vulnerability management process. Bugs are found by testing,
but in order to get them fixed, a good reporting system is a tremendous help. A descrip-
tive report with accurate details is the best way of helping the responsible party, be it
an internal developer or a third party vendor, identify and mitigate the found problems.
[18]

3.1.5. Documentation

While building and using a fuzzing test suite, the provided documentation is in a big
role. This covers not only the traditional usage instructions, but also the test case
documentation, which is often neglected at first glance.
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When at first developing the test suite, the documentation of a framework is an indis-
pensable resource. A comprehensive API documentation is needed, as well as instruc-
tions on how to configure the test run, instrumentation, and everything else related to
testing. Having up-to-date documentation should be a given, but with the modern agile
SDLCs, where focus is given to functionality over comprehensive documentation, this
is unfortunately often not the case, as will be seen in later sections of this thesis.

In addition to the traditional documentation, when using fuzzing test suites a descrip-
tive test case documentation is a commendable feature. The fuzzing engine creates
countless anomalous test cases, and, after a bug has been found and the bug is being
reported, information about the anomaly is needed. This information should include
at least the description of the added anomaly in such a detail that it can be reproduced
without the original framework. Some frameworks can, for example, show a packet
decomposition where the anomaly is marked.

Test case documentation may also include additional information for helping the
tester evaluate the seriousness of the found bug or vulnerability. Some frameworks
provide a Common Vulnerability Scoring System (CVSS) score, which is the industry
standard for measuring software vulnerabilities, which gives a fair idea of the possible
threat level [22, 58].

3.2. Peach Community Edition

Peach Community Edition (further referenced as Peach) is a free and quite popular
fuzzing framework developed by Deja vu Security [34]. While not technically an open
source project, the source code of Peach Community Edition is freely available under
MIT license [59]. Peach performs template-based fuzzing, with some elements of
model-based or generation fuzzing included, based on special Peach Pit files that are
used to define the template for generating fuzzed test cases. Peach offers a wide range
of injectors, including IPv4 and IPv6, TCP and UDP, and more. It also comes bundled
with various instrumentation methods, called Monitors. Peach is written in .NET [34,
60] and runs on mono [34, 61], which in turn means that Peach can be run in any
operating system where mono is available, for example Windows, Linux, and OS X.
[34]

There are three different editions of Peach available: Community, Professional, and
Enterprise. Of these three, the Community edition is free and the other two are com-
mercial and require a paid license. The biggest differences come from the subscription
to the Peach Pit Library, which contains ready-made Peach protocol models, access
to enhanced product documentation, and the ability to use Peach Advanced Fuzzing
Engine [62]. This thesis will focus on the Community edition and self-made protocol
templates.

Peach offers a few additional tools besides the basic fuzzer. Among these are a file
fuzzer FuzzBang with a GUI, a dumb network fuzzer NetworkFuzzer also with a GUI,
and a Validator which can be used to validate a Peach Pit file and visualize the data
in the template. The Peach fuzzing framework itself does not have an official GUI for
creating nor running tests using user-created Pit files.
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3.2.1. Templating

In Peach, special Pit files are used to define the template. The Pit files used with Peach
are written in XML format, which makes validating the syntax very easy.

Peach’s protocol model, which in reality acts more like a template (see 2.6.5), is split
into two parts: the data model and the state model. All of the different messages, and
parts of the messages, are presented as data models. Data models contain the structured
data fields of the message, type of the data (string, integer, etc.), and it may also contain
special hints that the anomalizer engine can use to make better-suited anomalies for the
field in question. An example of a simple data model can be seen in Listing 1.

1 <DataModel name="DM_USER">
2 <String name="command" value="USER"/>
3 <String name="space" value=" " token="true"/>
4 <String name="parameter" value="test"/>
5 <String name="endline" value="\r\n" token="true" mutable="false"/>
6 </DataModel>

Listing 1. Peach DataModel example

The sample code in Listing 1 shows how Peach can be used to model a data element,
identified as DataModel, in this case an FTP USER message. The DataModel is
built from various built-in element types, for example the String element. The various
DataModel elements make up the messages for the tested protocol. They can be used
to represent both outgoing messages that will be anomalized, and incoming messages
that can be parsed to match a DataModel.

Peach also offers various helper functions, called Fixups and Transformers, for mul-
tiple dynamic functionalities that can be embedded in the template. These include,
for example, functions for calculating Crc32 checksums, MD5 hashes, compression
algorithms like Gzip, and various type transformations and encoding routines. There
is also ScriptFixup which allows an external Python script to be used to modify the
template on the fly.

The previously created DataModel elements are used when defining the protocol
states, as seen in Listing 2.

1 <State name="Quit">
2 <Action type="output">
3 <DataModel ref="DM_QUIT"/>
4 </Action>
5 <Action type="input">
6 <DataModel ref="DM_FTP_response"/>
7 </Action>
8 <Action type="close"/>
9 </State>

Listing 2. Peach State example

In Listing 2 is an example of a State element, consisting of multiple Action ele-
ments that are used to, for example, send and receive data. State elements are defined
as sets of Action elements, which make up the state transformation. In the above ex-
ample, the State defines a sequence of messages for sending FTP QUIT command and
receiving a reply.
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A StateModel in Peach consists of one or more State elements. It is used to rep-
resent all of the states and essentially it makes up the test case sequence. A simplified
example of a StateModel is shown in listing 3.

1 <StateModel name="SM_LOGIN" initialState="Login">
2 <State name="Login">
3 <Action type="connect"/>
4 <Action type="input">
5 <DataModel ref="DM_FTP_response"/>
6 </Action>
7 ...
8 <Action type="changeState" ref="Quit"/>
9 </State>

10 <State name="Quit">
11 ...
12 </State>
13 </StateModel>

Listing 3. Peach StateModel example including multiple State elements

The StateModel first defines the initial state where the test case execution starts.
Within the State elements, the Action elements are used to move to the next state
when needed.

3.2.2. Test case generation

Peach uses a mix between generational (model-based) and mutational (template-based)
test case generation. Walking through the template defined in the Pit file, Peach uses
special mutators to mutate the data and to create anomalies. The mutators make up the
fuzzing engine of Peach.

Peach has dedicated mutators for different built-in element types, for example
Array, String, and Numerical. There are also mutators for producing structural
anomalies by duplicating, removing, or re-ordering DataElements. A complete list
of mutators is available in the Mutator section in Peach’s online documentation [63].

In addition to the mutators, Peach also allows configuration for the overall mutation
strategy. The strategy effects the ordering of cases, whether it is random or sequential
or something in between, and the creation of combined mutations.

The mutators and the overall mutation strategy can be configured in the Pit file.

3.2.3. Injectors

Peach offers injectors, that are called Publishers in Peach, for the most common data
link, network, and transport layer protocols, as well as file formats and direct console
outputs [34]. A complete list can be seen in Table 1.
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Table 1. Default injectors in Peach

Injector Description Notes
Com Allows calling methods and

properties on COM objects
Windows only

Console Output data to standard out
ConsoleHex Output data to standard out as

prettified hex format
File Read or write an external file
FilePerIteration Creates output file for every

iteration (test case)
Http Sends data over HTTP Supports authentication,

cookies, and SSL
Null Discards all data Used for unit tests
RawEther Sends raw Ethernet packets Linux recommended
RawIPv4 Sends raw IPv4 packets with

IP header
Linux recommended

RawIPv6 Sends raw IPv6 packets with
IP header

Linux recommended

RawV4 Sends raw IPv4 packets with-
out IP header

Linux recommended

RawV6 Sends raw IPv6 packets with-
out IP header

Linux recommended

Remote Sends using remote Peach
Agent

TcpClient Connects to remote TCP ser-
vice

TcpListener Listens for incoming TCP
connections

Udp Sends and receives UDP
packets

WebService Allows calling SOAP and
WCF based web services

The most notable missing publisher is SCTP [64], used, for example, in Diame-
ter [65]. In addition to default publishers, Peach also supports self-made publishers,
written in .NET.

3.2.4. Instrumentation

There are various instrumentation mechanisms, called Monitors, provided with Peach.
Most of them are meant directly for target health monitoring, like process and crash
monitors, but there are also some convenience Monitors, such as the SSH [66] Down-
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loader that can be used to, for example, fetch remote log files related to a crash. All
the available Monitors are listed in Table 2.

Table 2. Default instrumentation methods (Monitors) in Peach

Monitor Description Notes
Windows Debugger Controls debugger instance Windows only
CleanupRegistry Removes a registry key Windows only
PageHeap Enables page heap debugging options for

an executable
Windows only

PopupWatcher Closes windows based on their title Windows only
WindowsService Controls a Windows service Windows only
CrashWrangler Controls Crash Wrangler tool, monitors

for crashes
OS X only

CrashReporter Reports crashes detected by OS X System
Crash Reporter

OS X only

LinuxCrashMonitor Registers with kernel and catches faulting
processes using GDB [67]

Linux only

CanaKitRelay Controls a set of relays for turning AC and
DC lines on/off

CleanupFolder Removes contents from a directory after
each test case

IpPower9258 Controls networked power switch
Memory Monitors the memory usage of a process
Pcap Takes a network capture during test run
Ping Validates if target is up using ping (ICMP

Echo)
Process Launcher Controls a process during test run
ProcessKiller Kills specified processes after each test

case
SaveFile Saves a specified file after a fault
Socket listener Monitors for incoming TCP or UDP con-

nections
SSH Connects to remote host over SSH to run

commands
SSH Downloaded Downloads files over SSH SFTP [66]
Vmware Control Controls VMware [68] virtual machines

The Monitors in Peach are run using an Agent process, that can be used either locally
or remotely. An Agent can run one or more Monitors. A remote Agent allows Peach
to do, for example, process health monitoring in a remote system, and the results from
the Monitor are relayed back to the Peach process doing the actual fuzzing.

Peach also has a feature for automatically trying to reproduce and pin down the exact
test case or sequence of cases that caused instrumentation to fail. Peach does this after
an instrumentation failure by iterating the test cases backwards and checking if the
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detected fault can be reproduced. This is done by first trying the previous test case
by itself, and if it does not work, trying the two previous test cases one after another,
and so on. If this feature is left on, the faults reported at the end of the test run are all
reproducible.

An important thing to note about the Monitors in Peach is that all of the Monitors that
are checking the target health in order to give a test case verdict, save perhaps the Ping
Monitor, are run as processes in the target system. This requirement makes instru-
menting embedded or proprietary systems and devices, for example network routers
and switches, extremely difficult if not impossible.

3.2.5. Reporting

Peach does not by default offer any reporting functions besides simple logging of test
cases into a file. It should be noted that Peach prints the element being fuzzed and the
mutator used for the fuzzing to the command line, but it does not write this information
to the log files, which makes analyzing the results very difficult. It is possible to extend
the logging feature by developing a custom Peach extension used for logging.

3.3. Sulley

Similar to Peach, Sulley is a free open source fuzzing framework performing template-
based fuzzing based on user-written templates. Sulley is developed by Pedram Amini,
Aaron Portnoy, and Ryan Sears. The core of Sulley is written in Python [69], and
the protocol templates used with Sulley are also written in Python, which makes it
extremely easy to take advantage of scripts and even external programs while modeling
as you can use any Python functions in the middle of the model. This is a big advantage
compared to most other fuzzing frameworks especially when modeling protocols that
have multiple similar message structures. [35, 70, 71]

Sulley is also a multi-platform fuzzing framework, supporting platforms where
Python can be run, for example Windows, Linux, and OS X. Sulley shares much of
its syntax and ideology with the older, and quite popular at its time, fuzzer SPIKE
made by Immunity [32]. The aim of Sulley is to offer powerful data generation, yet at
the same time maintain simplified data presentation and transmission [70, 71].

Sulley does not offer any real UI for designing or running the tests other than the
Python scripts created manually by the tester. There is, however, a run-time web UI
that shows the progress of the tests, and list of found crashes.

3.3.1. Templating

Sulley is similar to Peach in a sense that the data elements, referred to as requests in
Sulley, and state/message sequences are defined individually. With Sulley, the template
is created using Python. Sulley provides, similarly to the others, various classes, called
primitives, for templating certain kind of elements, for example s_string for modeling
strings as seen in the example request in Listing 4. [70, 71]
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1 s_initialize("USER")
2 s_string("USER")
3 s_delim(" ")
4 s_string("test")
5 s_static("\r\n")

Listing 4. Sulley request example

One major problem with Sulley’s built-in primitives is that there is no bit-sized prim-
itive at all. The output will always be padded to the next byte. This, with the problem of
missing lower layer injectors discussed later, makes it impossible to create a template
for a protocol with fields smaller than a single byte.

One of the advantages of Sulley, when it comes to creating the template, is that it also
enables the use of regular Python expressions. For example, when creating a template
for a repetitive pattern, or multiple similar data structures or requests, a regular Python
for loop can be used to simplify the design. An example of creating requests for similar
FTP commands using a for loop is shown in Listing 5.

1 noattr = ["CDUP", "QUIT", "REIN", "PASV", "STOU", "ABOR"]
2 for command in noattr:
3 s_initialize(command)
4 s_string(command)
5 s_static("\r\n")

Listing 5. Python loop example for creating Sulley requests

This kind of declaration of the model saves tremendous amounts of time and effort
compared to traditional methods, for example in Peach, where every command has to
be modeled individually.

One of the other advantages of Sulley is the State Graph definition that Sulley uses
for connecting different request and state transformations. With Sulley, the requests
are connected to each other as seen in Listing 6.

1 s.connect(s_get("USER"))
2 s.connect(s_get("USER"), s_get("RealQUIT"))
3 s.connect(s_get("RealUSER"))
4 s.connect(s_get("RealUSER"), s_get("PASS"))
5 s.connect(s_get("PASS"), s_get("RealQUIT"))
6 s.connect(s_get("RealUSER"), s_get("RealPASS"))

Listing 6. Connecting requests to a state model in Sulley

The connected states form a graph of states, or messages, that also defines the mes-
sage sequence for each test case. During test execution, Sulley will walk through the
graph, testing each request at a time. When getting further down in the graph, Sulley
will prefix the tested command with the ones before it in the graph. An illustration
of the graph is shown in Figure 2. For example, when testing PASS request in the
examples, RealUSER always precedes it. [70, 71]
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Figure 2. Graph made of request connections in Sulley.

3.3.2. Test case generation

Compared to Peach, Sulley creates the test case sequences in slightly different way.
As mentioned, when creating the model or template for a protocol, the requests are
interconnected to form a state graph. Sulley iterates through the graph covering and
fuzzing all of the different requests in a sequence, resembling transaction flow graph
testing [1 p. 121].

3.3.3. Injectors

Sulley has a very limited collection of injectors. A list can be seen in Table 3.

Table 3. Default injectors in Sulley

Injector Description
TCP Send or receive TCP packets
UDP Send or receive UDP packets
SSL Send or receive SSL [72] encrypted traffic over TCP

What is notable here is that Sulley does not have any data link layer or network layer
injectors, which means it impossible to fuzz any protocols on those lower layers. There
is at least one third-party modified version of Sulley, called L2Sulley [73] by Enno Rey
and Daniel Mende from ERNW [74], that supports injecting to lower network layers.
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For this thesis, only the original Sulley is used, and the third-party versions are deemed
out of scope.

3.3.4. Instrumentation

For instrumentation, Sulley does not offer many choices by default. Sulley’s default
instrumentation methods, called Agents, are shown in Table 4.

Table 4. Default Agents in Sulley

Agent Description
Netmon Monitors network traffic and saves packet captures (PCAP)
Procmon Process monitor for checking target health
VMControl Network API for VMware instrumentation and control

The only instrumentation method capable of giving a pass or a fail verdict in Sulley
is Procmon. Similar to Peach, this has to be run as a normal process in the same OS as
the target. Again, this poses a problem with instrumenting when testing an embedded
device, or a device with a proprietary OS.

3.3.5. Reporting

Similar to Peach, there is no ready-made report generation in Sulley, other than the
simple log files. There are some convenience tools for examining the test results in
more detail, but no real reporting function is present.

3.4. Netzob

Netzob is a tool meant for reverse engineering, and generating, or simulating, net-
work protocol traffic. Netzob provides the tools for creating a model for a protocol by
learning its message format and state machine by means of active and passive traffic
analysis. The model can be used in simulating traffic, and it can also be used as a
template source in fuzzing. Netzob can export Peach Pit files, which Peach can in turn
use in fuzzing as explained in section 3.2, based on the extracted protocol models. [75]

In terms of fuzzing, Netzob is dependent on Peach, and it can be considered more
of an extension than competitor to Peach. Netzob’s main advantage is the template
creation. With Peach alone, the template must be written completely manually. Netzob
does this automatically, or with some input from the user, after the protocol message
or message sequence has been learned from real traffic. In this sense, Netzob is very
similar to Traffic Capture Fuzzer.
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3.5. Traffic Capture Fuzzer

Traffic Capture Fuzzer [76], or TCF, is a commercial fuzzing suite distributed and
sold by Codenomicon [36]. It uses a combination of model-based, template-based and
dynamic fuzzing. TCF differs from most other fuzzer frameworks in the way that its
protocol model definition is created.

From an user interface point of view, TCF offers a clear-cut graphical user interface
(GUI), a command-line interface (CLI), and a HTTP Application Programming Inter-
face (API), the latter two being helpful for headless systems and automation purposes.

3.5.1. Templating

With TCF, a packet capture (PCAP) is used as a basis for the protocol template. The
fuzzer creates a sequence file based on the capture, similar to how Netzob can create
a Peach Pit file. The capture is analyzed using Wireshark’s dissectors [77]. TCF then
creates the message template and message sequence based on the analyzed data. This
template can be further edited manually if needed. An example of a TCF < send >
block can be seen in Listing 7.

1 <send name="ftp-message2">
2 <content>
3 <label t="response">
4 <label t="request">
5 <protocol p="ftp">
6 <label t="ftp">
7 <label t="ftp_request_command">’USER’
8 </label>’ ’
9 <label t="ftp_request_arg">’test’

10 </label>’\r\n’
11 </label>
12 </protocol>
13 </label>
14 </label></content>
15 </send>

Listing 7. An example of a < send > block in TCF

The block defines the message format and that it is an outgoing message (send). The
full sequence can have multiple < send > blocks as well as < recv > blocks for
defining incoming message.

As the example shows, TCF does not specify any special fields for different types
of inputs. TCF automatically recognizes the field type from the field notation. For
example, in the above example, the text “USER” is in single quotes, which equals to
string input. TCF can detect other types of inputs as well, for example hex (0x1234)
and bits (0b0101).

Using an automatically analyzed packet capture as a starting point allows an ex-
tremely quick test suite development time for that particular message sequence. The
downside with this approach is, as with other template-based methods, that when test-
ing a complex protocol with multiple different messages and message sequences, the
number of needed packet captures for different scenarios increases.
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3.5.2. TCF SDK

Traffic Capture Fuzzer with Software Development Kit (TCF SDK) [76, 78] is an
addition to the normal TCF. The SDK can be used with TCF to further extend the test
suite functionality using Java code. TCF SDK exposes an Application Programming
Interface (API) that provides access to the messages sent and received during testing,
and allows customization of the messages and logic [76].

An example of how the SDK integrates with the normal Traffic Capture Fuzzer can
be seen in Figure 3. Custom Java code can be used to control the outgoing messages
using the SDK after the test case engine has created the case, that is after an anomaly
is inserted, and incoming messages both before and after the engine has parsed and
handled them.

Figure 3. SDK integration with Traffic Capture Fuzzer.

The SDK can be utilized for various purposes. For example, modifying outgoing
messages by changing dynamic values, calculating hashes and checksums, etc. The
SDK also enables dissecting the structure of the incoming messages manually and
extracting field values, as well as performing setup and tear-down for both test runs
and single test cases. [76]

With the features of the SDK, it is possible to extend the basic static template-based
fuzzing of TCF to include more dynamic functionality and even state-awareness, bring-
ing the end-result closer to model-based fuzzers.

3.5.3. Test case generation

Traffic Capture Fuzzer, as a Codenomicon Defensics [36] test suite, follows the usual
model-based generation of other Defensics test suites to a certain degree. As the model,
or template, used in TCF is limited to what the original capture included and no deeper
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protocol knowledge exists, TCF must employ template-based mutational test case gen-
eration as well [52].

The fuzzing engine creates anomalies based on the input fields. The anomaly types
include field level anomalies, for example overflows and underflows, structure level
anomalies, for example element repetition and non-default element inclusion, as well
as message sequence anomalies. TCF’s engine can also create binary anomalies, such
as bit flipping and bit terminations, and textual anomalies, for example format strings,
control characters, and other textual anomalies. The engine can also create combina-
tion anomalies by adding two or more anomalies in the same test case. The created
test cases will be inserted into test groups based on the location of the anomaly within
the message.

In addition to these, TCF’s engine creates mutational test cases. The mutational
cases are created by mutating the imported valid case using a set of mutation fuzzing
engines, which use the created template to create test cases intelligently. The muta-
tional test cases are placed in an “Extended” test case group, separate from the normal
groups. Also, the test case information, and the test case view, is not as comprehensive
for mutational cases as it is for the regular ones.

TCF offers the possibility to control the anomalization, which means that the user
can choose which type of anomalies should be used and the amount which they should
be generated. An example from GUI view is seen in Figure 4.

Figure 4. Anomaly control in Traffic Capture Fuzzer.
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3.5.4. Injectors

When importing a valid network capture into TCF, the user can choose whether to use
raw Frame replay or Application replay mode. If Application replay mode is used, TCF
will create the template using the application layer data and use the built-in injectors
for handling the transport and network layers below. With Frame replay, the whole
frame is templated as it appears in the capture and transmitted raw.

A complete list of injectors is shown in Table 5.

Table 5. Default injectors in Traffic Capture Fuzzer

Injector Description
Ethernet Send or receive raw Ethernet frames
IP Send or receive raw IP packets
TCP Send or receive TCP packets
UDP Send or receive UDP packets
SCTP Send or receive SCTP packets

In addition to the common TCP and UDP, TCF is the only one of the three frame-
works that has support for SCTP as a transport layer injector. With the help of the
Software Development Kit, the list of injectors can be further extended. For example,
handling SSL encryption could be added, similar to what Sulley offers by default.

3.5.5. Instrumentation

TCF offers a few different ways of instrumentation by default. Most notable, it offers
Valid-case instrumentation that is not present in the other frameworks. A list of the
available instrumentation methods can be seen in Table 6.

Table 6. Default instrumentation methods in Traffic Capture Fuzzer

Method Description
Valid-case Confirms correct behavior using a valid-case for the

tested protocol
SNMP Checks SNMP objects and monitor for traps
Connection-based Checks if a (TCP) connection to the target can be

made after a test case
External Allows for any external scripts or programs to be run

as instrumentation

Compared to, for example, Peach, the list is short. TCF is also the only one of
the tested frameworks that does not have a process-based instrumentation method by
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default. During this thesis, a method for remote process-based instrumentation is de-
veloped, that can be used as external instrumentation. TCF’s external instrumentation
can be used to run any scripts or programs as instrumentation or at other parts of the
test run, and the return values from the external instrumentation programs are used to
determine the pass or fail verdict.

TCF also has the valid-case instrumentation, see section 3.1.3. In valid-case instru-
mentation, after an anomalous test case is sent, the test suite sends a valid message or
message sequence using the same protocol that is under test. This is done to ensure
that the target is still capable of normal functionality. For example, when testing FTP,
a simple ping check might still get a valid response from the target even if the FTP
implementation under test has itself crashed, but if a valid-case instrumentation is used
and a valid FTP message is sent, the crash will be noted.

In addition to this, TCF also does connection-based instrumentation, if TCP is used
as a transport protocol, automatically after each test case is sent. The instrumentation
is done at the same time as the next test case is started, meaning if the TCP connection
for the next test case can be established, the connection-based instrumentation for the
previous case is considered as passed.

Process-based instrumentation

Both Peach and Sulley have an instrumentation method meant for remote process mon-
itoring. For this thesis, a similar process monitoring script will be written in Python
[69] to be used with TCF as an external instrumentation method. The script should al-
low remote process monitoring for crashes, kill signals, and similar. The script should
also allow automated run control of the target, which means it can be used to remotely
start or kill the target process. This in combination with the options available in TCF’s
External instrumentation allows for fully automated test runs where the target process
is started automatically at the beginning, and can be restarted after a crash.

3.5.6. Reporting

TCF offers a few different reporting choices. These include simple reports with the
test run information and a list of test cases (test case name and group) with verdict, and
detailed machine-readable statistics in CSV format.

TCF can also export more detailed, and formatted, PDF or DOC format reports,
which include information about the test run, verdict, and detailed information about
the failed test cases, as well as instructions on how to interpret the data.

3.6. Tested protocols

The chosen test protocols for this thesis are File Transfer Protocol (FTP) [79], Ses-
sion Initiation Protocol (SIP) [80], and Locator/ID Separation Protocol (LISP) [81].
These particular protocols were chosen for various reasons. FTP is an older, simple
yet very popular protocol for file transfers with a wide variety of possible test targets
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ranging from the extremely simple and lightweight to more complex and feature-rich
implementations.

SIP, the same as FTP, is a popular protocol with many available implementations.
SIP was chosen alongside FTP since it is a slightly more complex protocol, and it has
some dynamic functionality that will give some challenge to the capabilities of the
used fuzzing frameworks.

LISP, on the other hand, is a new lower layer routing protocol. As a new protocol,
still being under development, LISP does not offer as wide a range of available test
targets as FTP and SIP, but it is still an intriguing protocol to fuzz since it has not
yet gone through thorough testing and thus might also attract attention from possible
attackers. Creating an accurate template for LISP will also be a more difficult challenge
for the frameworks.

3.6.1. File Transfer Protocol

File Transfer Protocol (FTP) is one of the oldest protocols for file transfer still in active
use. The original specification, RFC 114 [82], was published in 1971. Back then, FTP
was transmitted over Network Control Program (NCP), which preceded TCP/IP which
is the norm in today’s internet [82].

The original FTP over NCP was replaced by specification RFC 765 using TCP/IP as
transport in 1980 [83]. RFC 765 was obsoleted in turn again in 1985 by RFC 959 [79],
which is also the version of FTP in use today.

In its current form, FTP is a TCP protocol that is built using a client-server architec-
ture. The control connection and communication in FTP is done in clear text format
and using a set of predefined commands. A list of the available commands can be seen
in the specification [79] section 5.3.1. An example of FTP log in process over the con-
trol connection is shown in Listing 8. In addition to the control connection, FTP uses
a separate data connection for the actual file transfers. [79]

1 220 Welcome to FTP server.
2 USER test
3 331 User test OK. Password required
4 PASS test
5 230-User test has group access to: test
6 230 OK. Current directory is /home/test

Listing 8. FTP Log in sequence example consisting of USER and PASS commands

The file transfers in FTP can be done using either active or passive mode. In active
mode, the client listens for an incoming data connection from a server, whereas in
passive it is the server that listens for the incoming data connection from the client. The
data connection itself can be made as either in stream mode (stream the data through
without processing), block mode (data is broken down into blocks), or compressed
mode (the data is compressed using some algorithm). [79]

As for access control features, FTP supports both user-based authentication and
anonymous access. This poses a potential security problem because, as mentioned
earlier, the login data is sent over the control connection in clear text. There are ex-
tensions to the original FTP protocol that define some added security. For example,
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the proposed standard FTPS [84] defines FTP transfers using Transport Layer Security
(TLS) [85] to secure the connection between the endpoints.

3.6.2. Session Initiation Protocol

Session Initiation Protocol (SIP) is an application-layer control protocol for signal-
ing communications. It is most often used for setting up and configuring multimedia
sessions, for example setting up voice over IP (VoIP) calls. [80]

SIP can be used to create, modify, and terminate sessions. The sessions can have
one or more participants. SIP handles the session creating using invitations (INVITE
message), which provide the necessary information needed for the other party to both
negotiate the used media types and other parameters as well as to join the session. On
a more technical side, SIP can run on top of different transport-layer protocols, namely
UDP, TCP, and SCTP. For the scope of this thesis, UDP will be used as transport. [80]

The information in SIP, similar to FTP, is transmitted in clear text, with the aim of
being human readable. An example of a SIP INVITE message can be seen in Listing
9.

1 INVITE sip:102@172.16.0.101 SIP/2.0
2 Via: SIP/2.0/UDP 172.16.0.101;branch=z9hG4bK1398074206513;rport
3 Content-Length: 338
4 Contact: <sip:1011@172.16.0.101;transport=udp>
5 Call-ID: 21125702673-9-Case-0@172.16.0.101
6 Content-Type: application/sdp
7 CSeq: 9 INVITE
8 From: "user"<sip:1011@172.16.0.101>;tag=1398074206496-Test-0
9 Max-Forwards: 70

10 To: <sip:102@172.16.0.101>
11 User-Agent: SIP Test Suite

Listing 9. Example of a SIP INVITE message

In SIP communications, there are two main user agents present: user agent client
(UAC) and user agent server (UAS), which form a typical user-server architecture.
In most real-world applications, for example softphones, the protocol implementation
handles the functionality for both an UAC and an UAS, which means it is able to both
initiate and receive the first connection.

As SIP is only used for signaling and session setup, it is often used in conjunction
with another protocol which is used for the actual data, such as a video stream. The
media information is usually carried using Session Description Protocol (SDP) [86],
whereas Real-time Transport Protocol (RTP) [87] is often the choice for the video or
audio itself. The SDP part is added to the SIP message as payload. An example of an
SDP payload defining various supported audio modes is shown in Listing 10.
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1 v=0
2 o=- 3367046830 3367046830 IN IP4 172.16.0.101
3 s=SIPSuite
4 c=IN IP4 172.16.0.101
5 t=0 0
6 a=direction:active
7 m=audio 49152 RTP/AVP 3 97 98 8 0 101
8 a=rtpmap:3 GSM/8000
9 a=rtpmap:97 iLBC/8000

10 a=rtpmap:98 iLBC/8000
11 a=fmtp:98 mode=20
12 a=rtpmap:8 PCMA/8000
13 a=rtpmap:0 PCMU/8000
14 a=rtpmap:101 telephone-event/8000
15 a=fmtp:101 0-11,16

Listing 10. Example of an SDP payload for SIP message

Most SIP implementations, especially softphones, require media information to be
present in an incoming SIP INVITE message, or it will be rejected.

3.6.3. Locator/ID Separation Protocol

Locator/ID Separation Protocol (LISP) is a relatively new routing protocol aimed to
help with some of the shortcomings observed in the currently used routing protocols.
At the time of writing this thesis, LISP specifications are still officially considered as
draft or experimental. [81, 88, 89]

The main idea behind LISP’s separation of Locator and ID data is that currently
the internet architecture combines two functions, routing locators, telling where you
are in the network, and identifiers, telling who you are, into one number space that
is the IP address. By separating these two functions, the aim of LISP is to improve
scalability of the routing system. The internet routing system was and is not scaling
well enough when faced with the recent growth rate of new web sites and the ever
increasing number of connected devices. [81, 88, 89, 90]

Decoupling the routing locator (RLOC) and endpoint identifier (EID) specifiers is
a logical choice, as the data stored in them simply can not be used efficiently if it is
combined into a single identifier. In order to maximize the routing efficiency and im-
prove aggregation of the RLOC space, the routing locators should be assigned based
on network topology. On the other hand, in order to keep the nodes effectively man-
ageable and retain persistent identity for end-nodes, the identifier should not be tied to
topology and to changes in topology. This is especially relevant with mobile nodes that
can often travel from one network to another. In this sense, LISP is somewhat similar
to Proxy Mobile IPv6 (PMIP or MPIv6), which is a network-based mobility manage-
ment protocol that allows mobile nodes to have IP address and session continuity when
roaming from network to network [91]. Another example in which the decoupling of
locator and identifier data would be helpful is with the more and more popular multi-
homed sites. The routing and addressing systems currently in use simply do not work
well and scale with multi-homed sites that are not part of any single network topology.
[81, 88, 89, 90]
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LISP achieves this functionality by encapsulating the regular IP packets as LISP
packets at the edge of a network, which are then routed based on LISP’s mapping
databases. The original host first sends a packet as it would normally do. An ingress
tunnel router (ITR) at the edge of the network where the packet originated encapsulates
the packet as a LISP packet, and sends it to the egress tunnel router (ETR) at the edge
of the destination network. The ETR strips the LISP headers and the packet is then
routed as usual inside the destination network to the target host. More details on the
encapsulation will be shown in section 3.6.3. An important thing to note for real-life
situations is that the ITR and ETR can both reside on the same router, which is then
called an xTR. [81, 89]

One of the biggest advantages of LISP is its easy deployment: LISP can be incre-
mentally deployed. LISP does not require a change to core internet structure or all
hosts; the changes can be incrementally deployed one host at a time. As noted above,
LISP is also designed to be deployed only to the edge routers in a network, leaving
other hosts completely unchanged. When sending out network packets, LISP enabled
routers check their assigned mapping databases if the target host matches a known
RLOC. These databases can be updated using map requests to mapping servers. If
a known RLOC includes the target EID (host), the router adds a LISP header to the
packet and delivers it to the target RLOC address. If the original target host can not
be found in the mapping database, the packet is simply routed as any other non-LISP
package. [81, 88, 89]

From here two distinct functionalities can be seen: routing the encapsulated pack-
ets and gathering control information (for example, map requests). LISP splits these
into data plane and control plane, respectively, somewhat similarly to FTP. For the
purposes of this thesis, the focus will be on the LISP encapsulation targeting the data
plane, and encapsulated map requests targeting the control plane.

Thus far, from the major router manufacturers, Cisco has been the one most inter-
ested in deploying LISP [92, 93, 94, 95].

LISP encapsulation

When a router (ITR) encapsulates an outgoing packet to a LISP packet, it adds the
required headers in place and transmits the package. This takes place on the data
plane. On a technical level, the header of a LISP packet is constructed with an outer IP
header (OH), a UDP header, a LISP header, and the inner IP header (IH). An important
thing to note is that LISP supports the EID and RLOC being different IP versions, both
IPv4 and IPv6. At the time of writing this thesis, LISP specification has support for all
four combinations of IPv4 and IPv6 as outer or inner protocol, that is a LISP packet
can have IPv4-in-IPv4, IPv4-in-IPv6, IPv6-in-IPv4, and IPv6-in-IPv6. Figure 5 [89]
shows an example of IPv4-in-IPv4 data plane packet structure. [89]
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Figure 5. IPv4-in-IPv4 encapsulated LISP data plane packet format. IHL represents
inner header length.

When first sending the packet, the ITR encapsulates the packet with the needed head-
ers. The OH will have the RLOC addresses as source and destination, so the packet
will be routed to the correct ETR. That is followed by a standard UDP header, which
is followed by the LISP header. The LISP header includes various LISP-specific flags
(nonce present, locator-status-bits field enabled, echo-nonce-request, map-version, in-
stance id bit, and a 3-bit field for future flag usage), a nonce value, instance id value,
and the locator-status-bits. [89]

After the LISP header comes the inner IP header that uses the original (EID) values
as source and destination. And lastly after the header, the actual encapsulated message
payload is sent. When the packet reaches the ETR at the other end, it is decapsulated
by stripping all of the excess headers, and routed as a normal IP packet inside the target
network. [89]

LISP map request

LISP map requests are encapsulated similarly to data plane packets, as shown in the
previous section. The map request itself is a LISP control plane packet consisting of
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an IP header, UDP header, and the LISP payload. An example of an IPv4 control plane
packet can be seen in Figure 6 [89].

Figure 6. LISP control plane packet structure.

An ITR uses the LISP map request for querying a mapping for an EID, testing if
the RLOC can be reached, or to refresh cached mapping information [89]. LISP map
request is transmitted as a payload in the encapsulated control plane packet as seen in
Figure 6. The structure of a LISP map request can be seen in Figure 7 [89].
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Figure 7. LISP map request packet structure.

A map request, in addition to the mandatory flags and control information, contains
information about the source EID, ITR RLOC which is the ITR that actually sends the
request, as well as the queried EID. A more detailed explanation of the packet structure
is available in the LISP specification [81].

It should be noted that when performing a cache refresh, or checking if an RLOC
can be reached, the source EID can be omitted [89].
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4. TEST SETUP

In this chapter, the test environment is defined. This includes defining the research
problem, solution, used metrics, and detailed information about the test targets.

4.1. Research problem

The main purpose of this thesis is to perform a comparative analysis of various fuzzing
frameworks. This is done with effectiveness and deployment as the main focus points.
The goal is to have a clear understanding of what each framework is capable of, how
do they compare with each other, and which produces the most effective tests.

4.2. Solution

In order to produce reasonable test data for determining the quality of the tested fuzzing
frameworks, a collection of test suites, fuzzers for a certain protocol, are developed
using various frameworks for different network protocols. The chosen protocols are
discussed in detail in section 3.6. The test suites are executed against a set of targets
while the targets are instrumented for crashes. The targets are defined in section 4.5.

The results are measured using a set of metrics, which are described in more detail
in section 4.3. The main focus will be on effectiveness, in terms of amount and quality
of anomalies as well as instrumentation, ease of use and deployment.

4.3. Metrics

For comparable results, a set of metrics is needed. Most often the metrics used within
the realm of software testing are used to measure which testing technique is the most
effective, or if the test suite working hard or smart, meaning if the ratio of test cases to
number of bugs found is smaller or higher [1 p. 215-216]. In addition to these basic
concepts covering effectiveness, this thesis concentrates also on the development and
deployment factors, in terms of complexity and the more subjective metric of ease-of-
use. The items in the list below are considered while assessing the results.

• Development complexity

• Effectiveness: Found flaws (crashes), test case generation

• Normalized Damerau-Levenshtein distance

• Coverage

• Deployment

• Remediation
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The used metrics for measuring the effectiveness of the developed fuzzing test suites
will cover the amount of crashes in the test targets, the effectiveness of the available in-
strumentation methods, meaning if they catch the failures and if they can be utilized in
all of the scenarios, the overall quantity and quality of the test material using Damerau-
Levenshtein distance as a measure, as well as the performance when injecting the test
cases to the target.

For the performance tests, only a single fuzzing thread will be run simultaneously.
Parallel or distributed test execution would provide better performance. The enterprise
version of Peach does have support for distributed runs and Sulley lists parallel runs as
an upcoming feature, but for the current versions there is no support.

4.3.1. Code coverage

Code coverage, including line, branch, and function coverage, is one of the more pop-
ular and used methods of measuring the utilization of the target program in both real
life usage scenarios as well as testing purposes. Code coverage measures how much of
the original source code is actually executed when the compiled program is run. When
put into use in fuzz testing scenarios, code coverage gives fairly good statistics of how
deep into the target program’s inner functionality the fuzzer can penetrate and how
large a portion of the program is actually executed. [14, 96, 97, 98, 2 p. 89, 130-133,
225-226]

Code coverage using lines of code (LoC) can be calculated as a ratio of executed
LoC to total LoC, as can be seen in Equation 1.

C =
Le

Lt

(1)

In the equation, Le represents the amount of executed LoC, Lt the total LoC, and
C is the line coverage. Branch coverage and function coverage are calculated in the
same manner, comparing the number of executed branches or functions to all of the
ones existing in the source code.

There are, however, some cases when code coverage as a metric for black-box or
gray-box testing might give misleading results. Software often has sections of code that
simply can not be reached through the attack interface. In these cases, code coverage
will give accurate results of the actual executable code covered, but this result can be
far off if compared to attack surface coverage, see section 2.3. [2 p. 130-133, 198-199,
244-246]

There are also many different tools for measuring code coverage. The tools are often
language-specific, meaning that a particular tool can be only used to measure coverage
for a program written in a certain programming language. For C, one often used is
the free and open-source gcov [99], from the GNU Compiler Collection (GCC) [99].
In addition to gcov, there are also the commercial C Test Coverage Tool by Semantic
Designs [100] and BullseyeCoverage Code Coverage Analyzer [101].

For this thesis, gcov, and its front-end lcov [102], will be used as the code coverage
measurement tool.
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4.3.2. Normalized Damerau-Levenshtein distance

The Damerau-Levenshtein distance is a metric for measuring the edit distance between
two sequences or strings. It is a combination of Levenshtein distance [103], which
is calculating insertion, substitution and deletion operations, and Damerau distance
[104], which includes the operation of transposing two adjacent characters. That is,
the Damerau-Levenshtein distance between two strings is calculated as the minimum
number of single character insertions, substitutions, deletions, and transposing two
adjacent characters, needed to transform one string to another [103, 104, 105].

For this thesis, a normalized Damerau-Levenshtein distance is used. The normalized
value Dn is calculated as the ratio of the Damerau-Levenshtein distance D to the length
of the longer compared string Sl. A ratio of 0 denotes that the compared strings are
identical, whereas two strings with nothing in common will get the value 1. This is
shown in Equation 2.

Dn =
D

Sl

(2)

As mentioned before in section 2.6.5, the anomalized messages generated by the
fuzzing engines should resemble valid messages, since completely random messages
would more than likely be discarded by any IUT, and they should not be too far of off
that mark. The Damerau-Levenshtein distance is used to measure how different the
anomalized messages are compared to the valid messages.

4.4. Testing environment

The tests will be run in an isolated and virtualized environment. The used virtualization
environment for this thesis is Oracle VM VirtualBox 4.3 [106]. The test targets are run
in Ubuntu 13.04 Linux distributions [107] virtual machines (VM), with the exception
of the Session Initiation Protocol (SIP) target SJphone which is run in 64-bit Windows
7. Mode detailed test target configurations are shown in section 4.5 below. Code
coverage and other process-based instrumentation methods are also run on the same
VM as the targets.

The fuzzers themselves are run natively in Ubuntu 13.10. The virtual network con-
necting the fuzzers to the target VMs is isolated from other network interfaces for the
duration of testing. All the tests are run on a high end personal laptop computer (Intel
i7-3520M CPU, 8GB RAM).

4.5. Test targets

When choosing the test targets, preference was given to open-source software (OSS)
that could be compiled in Linux, especially when choosing FTP and LISP targets. This
was due to the chosen code coverage measurement methods, namely gcov, mentioned
in section 4.3.1.
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4.5.1. File Transfer Protocol servers

File Transfer Protocol, being an old and extremely popular network protocol, has a
wide range of implementations available. For these tests, the chosen targets will be
Pure-FTPd [108] and Pro FTP Daemon [109]. Both are widely used and are considered
to be relatively robust implementations. Due to this, actual crashes are not expected to
occur often if at all during the tests.

In addition to normal instrumentation for crashes, code coverage analysis will be
performed for the FTP servers Pure-FTPd and Pro FTP Daemon during the test runs.

The tests will consist of all the control commands in FTP, as specified in section
5.3.1 of the FTP specification RFC 959 [79].

Pure-FTPd

Pure-FTPd was chosen because of its popularity and because it is promoted as being
designed with security features in mind. [108]

The test setup for Pure-FTPd can be seen in the following list.

• Distribution: Ubuntu 13.04 32-bit, virtualized in Oracle VM VirtualBox 4.3

• Kernel: 3.8.0-31-generic

• Pure-FTPd: version 1.0.20, compiled using “–without-humor, –without-globbing,
–with-paranoidmsg” flags with code coverage measurement enabled

• Pure-FTPd configuration: log in enabled, concurrent connection limit 50000,
timeout 10 seconds

• Network: VirtualBox host-only network connection

Pure-FTPd is run using close to its default configuration, with the concurrent con-
nection limit raised to a higher value. This is done to prevent false positive verdicts
due to not being able to connect to target, if the connections from previous test cases
are left open due to anomalies.

Pro FTP Daemon

Pro FTP Daemon (ProFTPD) is, similar to Pure-FTPd, one of the more popular open
source FTP servers for Linux platform. Compared to Pure-FTPd, ProFTPD offers
more features and more extensive configuration. [109]

Test setup can be seen in the following list.

• Distribution: Ubuntu 13.04 32-bit, virtualized in Oracle VM VirtualBox 4.3

• Kernel: 3.8.0-31-generic

• ProFTPD: version 1.3.0a, compiled using default options with code coverage
measurement enabled

• ProFTPD configuration: login enabled, concurrent connection limit 50000, time-
out 10 seconds
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• Network: VirtualBox host-only network connection

Similarly to Pure-FTPd, ProFTPD is run using default configuration, with the ex-
ception of the connection limit and timeout values changed to allow smoother test run
in the cases where previous test cases leave their connections open.

4.5.2. Locator/ID Separation Protocol targets

As mentioned earlier, Locator/ID Separation Protocol is a relatively new protocol un-
der development, and because of that there are not many targets openly available. For
the purposes of this thesis, the open source implementation of LISP called LISPmob
[110] is used.

LISP tests will consist of data plane tests using encapsulated TFTP messages in
all four IP version combinations, that is IPv4-in-IPv4, IPv4-in-IPv6, IPv6-in-IPv6, and
IPv6-in-IPv4, as well as control plane tests using an encapsulated map request as IPv4-
in-IPv4.

LISPmob

LISPmob is an open source implementation of LISP for Linux, Android, and Open-
WRT [110]. LISPmob provides the full functionality for both LISP router and LISP
mobile node (LISP-MN) on Linux-based systems [111]. For the purposes of this the-
sis, the focus will be on the router mode. The router mode in LISPmob acts as an xTR,
handling the functionality of both an ITR and an ETR [110].

The test setup for LISPmob is presented in the following list.

• Distribution: Ubuntu 12.04 LTS 32-bit, virtualized in Oracle VM VirtualBox 4.3

• Kernel: 3.8.0-29-generic

• LISPmob: v0.4, compiled using default options with code coverage measure-
ment enabled

• LISPmob configuration: router mode

• Network: VirtualBox host-only network connection

LISPmob is configured to run in router mode, as opposed to mobile node, which
means it will parse and forward incoming LISP encapsulated data plane packets, as
well as respond to encapsulated map requests on control plane.

4.5.3. Session Initiation Protocol User Agent Server

For Session Initiation Protocol testing, the test targets will all be acting as SIP UAS,
which means that they will act as servers. Asterisk [112] and SJphone [113] are used
as test targets.
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The tests are targeting the UAS functionality and the INVITE-CANCEL sequence.
The sequence is shown in Figure 8.

Figure 8. SIP INVITE-CANCEL sequence.

In INVITE-CANCEL sequence, the User Agent Client (UAC), represented by the
test suites, starts with an INV ITE message, to which the target User Agent Server
(UAS) replies with Trying and Ringing, confirming that the call is ringing at the
other end. Before the call is answered, the UAC hangs up the call with a CANCEL
message. The UAS replies with a Requestterminated message, which is ultimately
acknowledged by the UAC with an ACK message.

Asterisk

First SIP target is Asterisk [112], configured as a SIP endpoint. Asterisk was chosen
because of its high popularity and because it is open source. Asterisk does offer much
more functionality besides a simple UAS endpoint, but for this thesis, only the UAS
functionality and the INVITE-CANCEL sequence is tested.

• Distribution: Ubuntu 13.04 32-bit, virtualized in Oracle VM VirtualBox 4.3

• Kernel: 3.8.0-29-generic

• Asterisk: 11.4.0

• Asterisk configuration: UAS mode, users with and without authentication, echo
test with 5 second delay in answering

• Network: VirtualBox host-only network connection

Asterisk is configured in SIP UAS mode, which means that it is waiting for incom-
ing SIP calls. The configuration has a user that does not need authentication. Also,
Asterisk is configured to answer the incoming call with a 5 second delay. In practice,
this can be used to test the INVITE-CANCEL sequence, where the test suite cancels
the ringing call before it is answered.
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SJphone

Another SIP target of choice is SJphone [113]. It is a rather popular, simple VoIP
softphone that supports SIP. Being a softphone, it can handle both UAS and UAC
functionality, but as with Asterisk, only the UAS functionality is targeted in the tests.

SJphone offers both Linux and Windows versions, but due to some performance
problems with the Linux version, namely it randomly ignored new requests, the Win-
dows version was used. More detailed information about the test environment is shown
in the list below.

• Operating system: Windows 7 64-bit, native

• SJphone: v.1.65.377a

• SJphone configuration: PC-to-PC SIP mode

• Network: Native Ethernet

The configuration for SJphone is left to defaults, with the use of PC-to-PC SIP call
mode.
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5. FUZZER DEVELOPMENT AND DEPLOYMENT

The chosen fuzzing frameworks are used to develop a collection of fuzzing test suites.
The test suites will be deployed and run against a collection of test targets. The used
test environment is described in chapter 4.

The test runs are automatized using the provided or self-developed methods for con-
trolling the implementation under test (IUT) when possible. Similar instrumentation
methods for different test suites are also chosen when possible, with the main focus on
having accurate enough instrumentation to catch the possible crashes.

The used templates for the different fuzzing frameworks are as close to each other
as possible, to minimize any effect the template itself might have on the results. In the
case of TCF, the valid captures used to create the sequences are recorded from Peach’s
first valid test case, and further manually edited if needed.

5.1. File Transfer Protocol fuzzing test suites

File Transfer Protocol was chosen as a test protocol because of its simplicity, its popu-
larity especially in the earlier days of the internet, and because it is a relatively old pro-
tocol. As stated in section 2.6.1, even though the idea of software testing and fuzzing
dates back to a time before the development for FTP started in 1970s, the fact is that
only more recently have robustness testing and fuzzing become common practices in
addition to the usual conformance testing. This is also why FTP makes an interesting
test protocol, as there are many FTP server implementations, ranging from old to new
and from complex to extremely simple.

As FTP is relatively simple and it uses the ASCII format for its commands, should
also be simple to model using all of the chosen fuzzing frameworks. However, FTP
does pose one problem: the data connection. As explained in section 3.6.1, two dif-
ferent TCP connections are used. The first is for control, e.g. sending all of the FTP
commands, and the second connection is used for the actual data transfers [79]. This
has the potential of making the testing problematic since most frameworks are de-
signed with single connection protocols in mind; suddenly having another TCP socket
open is a challenge. For the scope of this thesis, only the control connection is fuzzed,
and the data connection is ignored.

5.1.1. Peach

A Peach Pit file that defines all of the used FTP commands and command sequences
was written. For the FTP commands that need to be executed after a successful log
in, a valid log in sequence was run before the command itself. That is, valid USER
and PASS commands were sent before the actual anomalized command, and a valid
QUIT was sent at the end.

As instrumentation, Peach’s LinuxCrashMonitor and Process monitors were used.
As the target resided on another machine over the network, remote Peach Agent was
used to run the actual monitors. Process monitor was also used to control the execution
of the IUT, starting and restarting it as needed.



56

5.1.2. Sulley

All of the tested FTP control commands were first defined as Sulley requests. The
commands were connected together to form a state graph which Sulley will then walk
through while testing, as described in section 3.3.1. Similar to Peach, all of the anoma-
lized control commands not related to log in were connected to a valid log in sequence,
USER and PASS commands, in order to first pass the log in phase while testing.

Again similar to Peach, remote process monitoring instrumentation was used for the
test runs. Sulley’s Procmon was run remotely and it was used to both monitor the
health of the target as well as start and stop it.

5.1.3. Traffic Capture Fuzzer

As mentioned in section 3.5, TCF uses a valid network capture as input, parsing the
protocol template from that using Wireshark’s dissectors. To be on the same line with
the other frameworks, the valid capture is taken from Peach’s valid test case. This is
done separately for all of the different FTP control commands. Due to this, all of the
sequences will automatically also include the log in and disconnect commands.

The main instrumentation method used with TCF is the valid-case instrumentation.
In addition to valid-case instrumentation, the developed process monitoring script, de-
fined in section 3.5.5, is used to control the execution of the target.

5.2. Session Initiation Protocol fuzzing test suites

Session Initiation Protocol (SIP) is a more complex protocol than FTP, but it is still
formatted as ASCII text, which should make the templating straightforward. The test-
ing scope was limited to the INVITE-CANCEL sequence. As mentioned in section
3.6.2, many SIP implementations also require the session information to be present in
the payload as Session Description Protocol (SDP) data. For these tests, the SDP data
is also included in the templates and will be anomalized together with the actual SIP
headers.

A thing to note about SIP is that a special Call-ID value is used to distinguish SIP
calls from each other. The Call-ID is a part of the SIP header and it should remain
the same for every message during the same call, and also be unique to that one call,
meaning that the following calls should have a different Call-ID. Otherwise, if the Call-
ID is not changed, the target implementation might end up rejecting the new call. This
means that some dynamic functionality for the developed test suites is needed.

5.2.1. Peach

Originally, the DataModel elements for representing SIP messages in the Peach Pit
file were created in extreme detail, with each segment of the commands and tokens
(spaces, commas, other token-like parts) individually defined as seen in Listing 11.
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1 <DataModel name="DM_SIP_Invite">
2 <String name="command" value="INVITE"/>
3 <String value=" " token="true"/>
4 <String name="protocol" value="sip"/>
5 <String value=":" token="true"/>
6 <String name="username" value="102"/>
7 <String value="@" token="true"/>
8 <String name="IP" value="172.16.0.101"/>
9 <String value=" " token="true"/>

10 <String name="versionSIP" value="SIP"/>
11 <String value="/" token="true"/>
12 <String name="versionNumber" value="2.0"/>
13 <String value="\r\n" token="true"/>
14 ...

Listing 11. Example element from maximally detailed Peach Pit file

It was soon noted that while this sort of definition leads to more accurate anomalies,
it also drastically increases the number of test cases, quickly reaching the point where
running that many test cases is no longer feasible. Due to this, the template was sim-
plified. The change in the template does not affect the actual structure of the outgoing
messages, only anomaly generation. An example of the simplified definition of the
same example as above is shown in Listing 12.

1 <DataModel name="DM_SIP_Invite">
2 <String name="command" value="INVITE "/>
3 <String name="user" value="sip:102@172.16.0.101 SIP/2.0"/>
4 <String value="\r\n" token="true" mutable="false"/>
5 ...

Listing 12. Example element of a simplified element definition in Peach

In the simplified version, many of the different smaller elements had to be combined
into a single element. The rest of the elements were defined in similar fashion.

The test sequence was created based on a valid INVITE-CANCEL sequence, where
the test suite first sends INV ITE, awaits for Trying and Ringing from the IUT, then
replies with CANCEL, receives Requestterminated confirmation, and then finally
replies with ACK.

For dynamically changing the Call-ID, a Python ScriptFixup is used to generate the
changing portion of the Call-ID.

Instrumentation for Peach is the same as with FTP for Asterisk: LinuxCrashMonitor
and Process monitor for checking the target processes for crashes as well as control-
ling their execution. For SJphone, LinuxCrashMonitor could not be used for obvious
reasons.

5.2.2. Sulley

The requests and sequences in the test suite created using Sulley were modeled with
as much detail as possible considering the anomalization. An example of the template
for INV ITE is shown in Listing 13.
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1 s_initialize("INVITE")
2 s_string("INVITE")
3 s_delim(" ")
4 s_string("sip")
5 s_delim(":")
6 s_string("102")
7 s_delim("@")
8 s_string("172.16.0.101")
9 s_delim(" ")

10 s_string("SIP")
11 s_delim("/")
12 s_string("2.0")
13 s_delim("\r\n")

Listing 13. An example of a partial SIP INV ITE message using Sulley

The rest of the message, as well as the other messages, were defined in similar,
extremely detailed manner. Due to the Sulley engine creating less anomalies per field
compared to Peach, the test case amount did not turn out to be a problem with the test
suite developed using Sulley.

For instrumentation, Sulley’s Procmon was run remotely and it was used to both
monitor the health of the target as well as start and stop it.

5.2.3. Traffic Capture Fuzzer

TCF used once again the valid capture from Peach. Some manual tweaking was needed
to properly mark the Call-ID value in the sequence file for outgoing messages. The
Software Development Kit (SDK) addition to TCF was used to dynamically change
the Call-ID value between test cases.

The main instrumentation method used with TCF was the valid-case instrumen-
tation. In addition to valid-case instrumentation, the developed process monitoring
script, defined in section 3.5.5, was used to control the execution of the target.

5.3. Locator/ID Separation Protocol fuzzing test suites

Locator/ID Separation Protocol (LISP) is much more complex protocol than FTP or
SIP, including the use of IP and UDP headers in the inner header of the LISP packets.
As the inner LISP packet is carried within a regular outer UDP packet, and all the inter-
esting LISP data is in the inner LISP header and payload, templating the outer header
can be left out of the model, letting the UDP injectors found in all of the frameworks
handle that part. That is, only the inner header (IH) and the payload will be templated,
see section 3.6.3 for details of the LISP encapsulation.

Peach and Traffic Capture Fuzzer are capable of injecting raw Ethernet frames as
well, which would allow the whole packet to be templated, but anomalizing the outer
header (OH) would be targeting the UDP/IP stack of the underlying operating system
rather than the target process itself. Also, as mentioned before, Sulley does not have
any injectors capable of transmitting raw Ethernet frames.
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The data plane tests included encapsulation using all of the supported IP version
combinations, that is IPv4-in-IPv4, IPv4-in-IPv6, IPv6-in-IPv4, and IPv6-in-IPv6, us-
ing a simple TFTP read request as the actual payload in the inner IP packet. The control
plane tests were done using an encapsulated Map request which is inserted as the inner
payload. In both data and control plane tests, the payload was also anomalized by the
developed test suites.

5.3.1. Peach

In LISP data plane tests, the inner payload is a complete IPv4 or IPv6 packet. Peach
offers a fairly good environment for templating it. For example, the Flag elements in
Peach can be used to represent the one bit flags in the LISP header, as well as using
the Number element to represent numeric values in different formats (decimal, hex,
binary), as seen in Listing 14.

1 <Block name="LISP">
2 <Flags name="LISPFlags" size="8">
3 <Flag name="N" position="0" size="1" value="1"/>
4 <Flag name="L" position="1" size="1" value="0"/>
5 <Flag name="E" position="2" size="1" value="0"/>
6 <Flag name="V" position="3" size="1" value="0"/>
7 <Flag name="I" position="4" size="1" value="0"/>
8 <Flag name="Flags1" position="5" size="1" value="0"/>
9 <Flag name="Flags2" position="6" size="1" value="0"/>

10 <Flag name="Flags3" position="7" size="1" value="0"/>
11 </Flags>
12 <Number name="Nonce" size="24" valueType="hex"
13 value="0xff 0xff 0xff"/>
14 <Number name="Locator-status-bits" size="32" valueType="hex"
15 value="0x00 0x00 0x00 0x00"/>
16 </Block>

Listing 14. LISP header template in Peach

The LISP template for data plane tests includes the LISP header, inner IP header, and
the payload consisting of an UDP header and the simple TFTP read request packet. The
outer IP and UDP headers are handled by Peach’s UDP injector.

The encapsulated Map requests on the control plane are fairly similar. A LISP header
is followed by an IPv4 header, UDP header, and the LISP Map request itself as pay-
load. Again, Peach’s UDP injector will handle packaging the message into a standard
UDP/IP packet.

Instrumentation for LISP tests is done with LinuxCrashMonitor and Process monitor
for checking the target process for crashes and restarting it if needed.

5.3.2. Sulley

LISP, even when templating only the outer headers and payload and using a normal
UDP injector, is a problem for Sulley. Templating LISP requires the use of many very
short fields, for example the one-bit flags, five-bit IRC value in Map request, and more.
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As mentioned in section 3.3.1, Sulley does not support bit-sized primitives as elements
in the template. They are always padded to the nearest byte, which makes it impossible
to write a proper template for LISP with Sulley.

Due to this, Sulley had to be excluded from the LISP tests.

5.3.3. Traffic Capture Fuzzer

For Traffic Capture Fuzzer the used valid captures were once again taken from the valid
test case from the test suite developed with Peach, one for each different packet type. In
TCF, the Application playback replay type was used, meaning that only the application
layer data, onward from the LISP header, is added to the sequence. With Application
playback, TCF will use its own UDP/IP injectors to handle the outer headers, similar
to Peach.

In Listing 15 is an example of an imported IPv4-in-IPv4 LISP data plane packet and
its LISP header part.

1 <label t="lisp_data">
2 <label t="flags">0x01</label>0xff 0xff 0xff
3 0x00 0x00 0x00 0x00
4 </label>

Listing 15. Captured LISP header in TCF sequence

In this example, the LISP Nonce and Locator-status-bits fields have not been iden-
tified correctly by the Wireshark protocol dissector during the import and shown only
as raw data. This can sometimes happen if the dissector is not perfect and makes mis-
takes. The sequence can be manually edited to reflect the correct structure, as seen in
Listing 16.

1 <label t="lisp_data">
2 <label t="flags">0x01</label>
3 <label t="nonce">0xff 0xff 0xff</label>
4 <label t="locator-status-bits">0x00 0x00 0x00 0x00</label>
5 </label>

Listing 16. Edited LISP header in TCF sequence

This will result in better anomalization and anomaly placements.
The developed process-based instrumentation script was used to detect crashes and

control the test target. For the data plane Map request tests, also valid-case instrumen-
tation was used.
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6. RESULTS

The test runs were executed in controlled environments defined in the previous chap-
ters. Default anomalization settings were used for all of the developed test suites in
order to prevent unnecessary variance in the results due to configuration. The results
were recorded and analyzed.

Interpreting the results can be a complex task. For example, when looking at the
statistics for found crashes, a high number of failures represents a definite problem in
the target, but defining whether this is because the fuzzer is exceptionally good or the
target exceptionally bad is a more difficult task. [24 p. 106-113]

As mentioned briefly in section 4.3.1, code coverage has a similar problem. The
code coverage will show how much of the executable code is covered during the test
run, but a low coverage percentage does not necessarily mean that the fuzzer was not
effective; it could simply mean that the reachable functionality from the used attack
vector only covers a small part of the code.

The code coverage measurements were performed for the File Transfer Protocol
targets Pure-FTPd and ProFTPD and Locator/ID Separation Protocol target LISPmob.
The coverage measurements were not performed for Session Initiation Protocol due to
the protocol being so extensive, since the scope of SIP tests would not have revealed
reasonable results. The Damerau-Levenshtein distance measurements were performed
for the SIP protocol INV ITE message due to it being both in clear-text and long
enough to give proper results.

For the purposes of this thesis, all of the test targets will be run in equal condi-
tions, and the attack vectors will also be the same for all fuzzers. This ensures that a
quantitative comparison can be made between them using the gathered results.

6.1. File Transfer Protocol

The developed test suites were tested against a selection of FTP server implemen-
tations. As mentioned in section 5.1, the separate data connection poses difficulties
when fuzzing FTP. In these tests, all of the commands, including those that require a
new data connection, were covered, but no separate data connections were made.

As most FTP commands must be preceded with a valid log in phase (USER and
PASS commands) in order to drive the target’s internal state machine to a proper state,
and optionally followed by a QUIT message for valid disconnection, the templates
included the USER, PASS, and QUIT commands as part of the sequences.

Anomalizing the log in (USER and PASS commands) and disconnect (QUIT
command) phases were excluded from the test cases where possible. With Sulley and
Peach this is straightforward since the anomalization of certain parts of the templates
and sequences can be disabled, but for Traffic Capture Fuzzer a similar feature was
still under development at the time of writing this thesis. However, as all of the fuzzing
engines including TCF anomalize only one message at the time, excluding the com-
bination anomaly cases, this did not manifest into a problem from the point of view
of the target’s state machine, because when anomalizing the control command after
logging in, TCF would add an anomaly only into that message and leave the preceding
USER and PASS commands untouched.
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6.1.1. Performance

The developed test suites were executed against Pure-FTPd and ProFTPD. The results
are shown in Table 7.

Table 7. Instrumentation results from FTP tests

Fuzzer Test cases Crashes in Pure-FTPd Crashes in ProFTPD
Peach 308074 0 0
Sulley 50624 0 0
TCF 3135863 0 0

As suspected before the test runs, both targets proved to be extremely robust and no
crashes were found using any of the test suites.

The amount of test cases generated by the different test suites and their fuzzing
engines varied greatly. While Sulley generated slightly over 50000 cases altogether,
Peach generated over 300000 test cases, which was again increased by roughly a factor
of ten by TCF to reach over 3 million test cases. There are couple of factors contribut-
ing to the difference.

Due to the missing feature mentioned above for disabling anomalization for certain
parts of the sequence, TCF anomalized the whole test sequence, including USER,
PASS, and QUIT commands, for all the individual sequences for all the FTP com-
mands. This means that, in the case of FTP where the log in and disconnect use three
of the usual four messages sent, from the total cases run across the different sequences
with TCF roughly 75 % are duplicates, bringing the estimated amount of unique test
cases close to 700000-800000.

In addition to this, compared to Sulley, the anomalies Peach and TCF create are more
extensive. As discussed earlier in section 2.6.6, there are many different anomaly types.
Within each type, there are different variations of the anomaly. Peach and TCF create
more of these variations for each type of anomaly and for each part of the template.
For example, all of the engines in the frameworks make use of field level overflows
by simply repeating a value inserted there. Peach and TCF have more variation to this
repetition compared to Peach, thus making up more test cases.

The test suites were also tested by running the anomalized log in sequence, USER,
PASS, and QUIT commands, and measuring the test run speed. The results from the
runs against ProFTPD are shown in Table 8. In these tests, no additional instrumen-
tation was used. This was to minimize the overhead instrumentation might add to the
running speed and to ensure comparable test results.
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Table 8. FTP performance results for log in sequence against ProFTPD

Framework
Results

Test cases Elapsed time Test cases per second

Peach 21490 02:22:24 2.51
Sulley 5474 00:03:46 24.22
TCF 76768 00:38:18 38.41

Again, the results indicate that there is a considerable difference in the amount of
generated test cases even though the template is essentially the same for all of the test
suites. Sulley is generating considerably fewer test cases than the other two.

The running speed of the test suite developed using Peach is only 2.51 test cases per
second, considerably slower than the two other suites. Sulley achieved much better re-
sults with just over 24 test cases per second, and that, combined with Sulley aiming to
generate more concise test cases, makes test suites developed using Sulley extremely
quick to run. However, TCF achieved the best running speed by a wide margin, aver-
aging almost 40 cases per second. The fast running speed and a greater number of test
cases assure wider input space coverage in a manageable run time.

6.1.2. Code coverage

Code coverage was measured for the test targets after running all of the test sequences
using default anomalization engine settings, with the exception of excluding duplicate
anomalization as mentioned before. The results can be seen in Tables 9 and 10.

Table 9. Code coverage for Pure-FTPd

Framework
Coverage

Line Function Branch

Peach 9.0 % 18.3 % 4.6 &
Sulley 1.6 % 4.1 % 0.9 %
TCF 9.0 % 18.3 % 4.6 &

Table 10. Code coverage for Pro FTP Daemon

Framework
Coverage

Line Function Branch

Sulley 15.5 % 22.3 % 9.2 %
Peach 15.8 % 22.7 % 9.4 %
TCF 15.7 % 22.6 % 9.3 %
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All of the suites were using templates that were as identical as possible, which should
guarantee that the test cases hit the same attack surface. The reason why the overall
coverage is low is that both test targets implement more features than the basic FTP
commands tested here, for example different daemonization options and sophisticated
user and sharing controls, which were not configured in the targets, and the code might
also have parts not accessible through the external attack surface.

From the results it can be clearly seen that the while Peach and TCF reached similar
code coverage results for both Pure-FTPd and ProFTPD, Sulley was struggling against
Pure-FTPd with its much narrower coverage.

Against ProFTPD, the three test suites reached almost identical coverage results.
Even the suite developed using Sulley reached the same coverage despite generating
only a fraction of the amount of test cases compared with the two other frameworks
(as seen in Table 7). As mentioned before, a majority of the total amount of test cases
generated with TCF are duplicates, which also supports the notion that a smaller set of
test cases would be enough in order to reach similar code coverage results.

6.2. Session Initiation Protocol

Session Initiation Protocol (SIP) tests were performed using the INVITE-CANCEL se-
quence, where the User Agent Client (UAC), represented by the test suites, starts with
an INV ITE message, which the target User Agent Server (UAS) replies with Trying
and Ringing, confirming that the call is ringing at the other end. The UAC then hangs
up the call with a CANCEL message, replied by the UAS with a Requestterminated
message finally acknowledged by the UAC with an ACK message.

With Peach, the problem with fuzzing SIP was the amount of generated test cases
combined with the slow running speed, as discussed in section 5.2.1. With a very
accurate template, which should help generate better anomalies, Peach generated over
1.7 million test cases for the INVITE-CANCEL sequence. This, combined with the
average running speed of 0.8 test cases per second with instrumentation after the first
20000 test cases, caused the estimated run time for the fuzzer to be over 26 days,
which is completely unfeasible. Due to that, the Peach template was simplified and the
number of test cases reduced to a number that Peach could run in a reasonable time.

Sulley and Traffic Capture Fuzzer did not have similar problems so their templates
were kept as accurate as possible. The final results for SIP runs against Asterisk can
be seen in Table 11.

Table 11. Instrumentation results from SIP INVITE-CANCEL tests against Asterisk

Framework
Results

Test cases Crashes (reproducible) Crashing groups

Peach 220659 0 0
Sulley 175636 0 0
TCF 166099 4 (0) 2*
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After simplifying Peach’s template, the generated test case amounts are fairly similar
in all of the test suites.

The test suite developed with TCF was the only one to find crashes in Asterisk. The
crashes were not reproducible using single test cases, nor were there any indications
of a reason in the IUT logs. A full re-run revealed further crashes, but with different
test cases, which leads to an assumption that the crashes are most likely caused by
resource exhaustion, or a race condition that could not be resolved, that only happens
over a longer time frame.

The test suites were also executed using SJphone as a target. Compared to Asterisk,
SJphone is a much simpler implementation, a basic software phone. It was also noted
from the start that the performance of SJphone was much worse than that of Asterisk
and the testing was considerably slower. As an older release, SJphone was expected to
be less robust than the Asterisk implementation tested earlier. The results for the test
runs are shown in Table 12.

Table 12. Instrumentation results from SIP INVITE-CANCEL tests against SJphone

Framework
Results

Test cases Crashes (reproducible) Crashing groups

Peach 220659 0 0
Sulley 175636 0 0
TCF 152545 169(129) 16*

Surprisingly, Peach did not manage to crash SJphone with INVITE-CANCEL se-
quence. One factor in this is the problem mentioned earlier with Peach’s ScriptFixup,
which was used to generate the SIP Call-ID for each call. For an unknown reason,
Peach’s engine did not run the ScriptFixup for each test case, which resulted in using
the same Call-ID for many calls, which SJphone often ended up rejecting and caused
problems for some test cases where the anomaly was inserted into one of the latter
messages, CANCEL or ACK. However, a majority of the test cases was generated
for the INV ITE message, since it has the most data, and, confirmed by analyzing
SJphone’s log files, all of them were parsed and none of them managed to find crashes
either.

Similar to Peach, Sulley did not find any crashes from SJphone.
TCF found 129 reproducible crashes from SJphone. There were 16 different test

groups that were causing crashes. Each test group is designed to test a different ele-
ment in the messages. Many of the crashes were found with anomalies in the Session
Description Protocol (SDP) information sent as payload in the INV ITE message.
Crashes were also found with anomalies in the actual SIP headers in all of the three
messages (INV ITE, CANCEL, and ACK).

In addition to this, when using valid-case instrumentation it was noted that on
many occasions more than one instrumentation rounds were needed before the IUT
responded. This may indicate that although the IUT did not crash completely, it was
not able to respond properly right after an anomaly, possibly pointing towards resource
exhaustion problems.
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Due to the poor performance of SJphone, which was a limiting factor in itself, the
test suite performance results from the runs were executed with Asterisk as a test target.
The results can be seen in Table 13. In the tests, 500ms timeout value was used for
received data messages in the test suites.

Table 13. Performance results from SIP INVITE-CANCEL tests against Asterisk

Framework
Results

Test cases Run time Test cases per second

Peach 220659 31:15:09 1.96
Sulley 1756363 00:17:05 171.35
TCF 166099 00:25:23 109.03

Compared to FTP, which runs on top of TCP, the SIP tests were run on top of UDP.
UDP should be faster on the transport level because there is no three-way handshake
or closing sequence like there is in TCP. The test sequence is also a little shorter in SIP
compared to FTP, which should also make the testing faster.

The results from Sulley and TCF are in line with that assumption. Both scored faster
running speed results with SIP compared to FTP. Sulley’s speed of over 170 test cases
per second is clearly the fastest with SIP. The way Sulley walks through the test graph
helps since it does not always need to wait for a response from the target for the first
test cases in the sequence. TCF also reached a little over 100 test cases per second,
which is still quite fast.

Peach was extremely slow compared to the two others, averaging just under two test
cases per second. As noted above, with instrumentation the 20000 first cases averaged
even less, under one test case per second. When analyzing the logs and captures, it
is clear that this is caused by Peach hitting the timeout value on almost every test
case. This seems to be because the IUT, Asterisk, answers with error messages to
most anomalized messages sent by the test suites. The suite made with Peach does not
react to unexpected messages in any way, it simply waits until the timeout. TCF and
Sulley both handle the incoming unexpected messages properly and move to the next
case if an unexpected message has been received after an anomaly. As mentioned in
section 3.1.1, the behavior of the IUT after an anomaly is not specified and thus it is
not important.

6.2.1. Damerau-Levenshtein distance

While testing SIP, the anomalies made to the INVITE messages were recorded and
compared to the valid INVITE using normalized Damerau-Levenshtein distance. The
average distances are shown in Table 14.
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Table 14. Normalized Damerau-Levenshtein distances for SIP INVITE anomalies

Framework Average
Peach 0.311
Sulley 0.689
TCF 0.380

On the normalized Damerau-Levenshtein scale, 0 means the compared messages
were equal and 1 that there were no similarities.

From the results it can be clearly seen that while Peach and TCF scored similar re-
sults, Sulley’s average distance stands out as almost double to that of Peach and TCF.
This means that the anomalized messages Sulley’s engine created are much further
from the original valid case and thus are less likely to be accepted by the IUT. Possible
reasons for the higher distance could be the use of combination anomalies, long over-
flow anomalies, or in general bad mutation anomalies changing too big of a portion of
the message at once.

Peach and TCF scored a much lower average distance, which points to smaller, more
targeted anomalies, that are more likely to be accepted by the IUT.

This was also observed during the actual test runs against SJphone. The INV ITE
messages from test suite using Sulley only rarely managed to open up new calls due
to the anomalies changing the message too much, whereas the test suites made using
Peach and TCF opened calls on a very high number of test cases.

6.3. Locator/ID Separation Protocol

The two different planes in Locator/ID Separation Protocol, data and control plane,
were both tested using different test case sequences. For data plane tests, normal LISP
encapsulated TFTP packets were used. For control plane, the tests were done using
encapsulated LISP map requests.

Process-based instrumentation was used for checking the health and starting and
restarting the LISPmob process on the target machine. With Traffic Capture Fuzzer,
also valid-case instrumentation was used for the control plane tests.

As mentioned earlier, Sulley does not support low-layer protocols due to a problem
with templates with bit-sized fields, which means LISP and the needed IP and UDP
headers in the inner headers can not be defined. These tests were run only using Peach
and TCF.

The target used in all the LISP tests was LISPmob v0.4 running in router mode.

6.3.1. LISP Data plane

The data plane tests were run using all combinations of supported IP versions, that is
IPv4-in-IPv4, IPv6-in-IPv4, IPv6-in-IPv6, and IPv4-in-IPv6. The results can be seen
in Tables 15, 16, 17, and 18.
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Table 15. Instrumentation results from LISPmob data plane encapsulation tests, IPv4-
in-IPv4

Framework
Results

Test cases Crashes (reproducible) Crashing groups

Peach 83935 0 0
TCF 27159 0 0

Table 16. Instrumentation results from LISPmob data plane encapsulation tests, IPv6-
in-IPv4

Framework
Results

Test cases Crashes (reproducible) Crashing groups

Peach 84737 0 0
TCF 27085 0 0

Table 17. Instrumentation results from LISPmob data plane encapsulation tests, IPv6-
in-IPv6

Framework
Results

Test cases Crashes (reproducible) Crashing groups

Peach 84737 0 0
TCF 27085 0 0

Table 18. Instrumentation results from LISPmob data plane encapsulation tests, IPv4-
in-IPv6

Framework
Results

Test cases Crashes (reproducible) Crashing groups

Peach 83045 0 0
TCF 27141 0 0

Neither of the two test suites found any crashes from LISPmob using the data plane
sequences. There is some difference in the amounts of generated test cases, where the
test suite using Peach generated roughly three times as many test cases as TCF using a
similar template.



69

6.3.2. LISP Control plane

LISP control plane was tested with encapsulated map request packets. As mentioned
earlier, with Sulley it is not possible to create accurate enough templates for lower
layer protocols, so Sulley was not part of the test runs. The results for Peach and TCF
can be seen in Table 19.

Table 19. Instrumentation results from LISPmob control plane tests

Framework
Results

Test cases Crashes Reproducible Crashing groups

Peach 104847 4644 4534 15
TCF 28410 4195 4195 20*

From the results it can be clearly seen that both fuzzers managed to find a high
number of crashes. However the high number of crashes found does not necessarily
mean that the IUT has that many bugs; with high probability the underlying bug count
is much lower and the different anomalies triggered same bugs multiple times. The
amount of different crashing test groups indicates this as well.

While the number of overall crashes is high, the number of different test groups,
essentially tested elements, is much lower. For example, out of the 4534 reproducible
crashes found by Peach’s test suite, 4208 were found by anomalizing the length value
in the inner UDP header. The fact that a single test group with anomalies targeting a
single element found a high number of crashes is a fair indication that there is problem
in the code handling that part of the message in the IUT. This does not, however, mean
that there are necessarily a high number of bugs; it can only be a single bug reproducing
with multiple anomalous inputs.

Checking the amount of different test groups is a bit tricky in test suites using TCF
since the fuzzer engine in TCF creates a so called extended group, which holds the
test cases created by mutation, see sections 2.6.5 and 3.5, which is the vast majority of
the test cases, and inside the extended group there is no detailed test case information
available.

Even though the number of found crashes is similar with both test suites, the one
using Peach needed almost four times the amount of test cases to trigger the crashes.
The test suite using TCF reached a hit ratio of nearly 0.147 crashes per test case,
meaning roughly one crash per seven test cases. For the other test suite, the hit ratio
for reproducible crashes was considerably lower, 0.043, meaning a crash every 23 test
cases on average.

6.3.3. Coverage

In addition to the normal instrumentation for crashes, code coverage was measured for
the LISP runs, including both data and control plane runs. The results are shown in
Table 20.
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Table 20. Code coverage for LISPmob lispd

Framework
Coverage

Line Function Branch

Peach 27.0 % 40.8 % 18.0 %
TCF 37.9 % 54.6 & 25.6 %

The results are in a clear favor of the test suite using TCF. It reached over 10 percent-
age units higher line coverage than the test suite using Peach, and almost 14 percentage
units higher function coverage.

6.4. Remediation and reporting

With Peach, the remediation phase is highly dependent on the instrumentation method
that is used with the test suite during the test run. As Peach does not have any dedicated
remediation nor reporting methods, the only tools and available information for reme-
diation are the logs and result files from the test runs. However, because of the wide
collection of different instrumentation methods offered by Peach, the results can often
offer extended knowledge of the problems. The LinuxCrashMonitor used in most of
the performed tests automatically gathered crashdumps from the IUT using the GDB
debugger. For Windows, there is a similar monitor called Windows Debugger. For a
software developer, this information can be almost as useful as being able to reproduce
the problem in a debugger later on. The reproducing is also possible with Peach by
simply having a copy of the Pit file and running the test case with the same index. One
big problem with Peach is that there is no clear information given about the anomaly
itself. The only way to see the actual anomalized messages is to capture the network
traffic.

Sulley does not have any dedicated remediation or reporting either. The Sulley test
suites gather some log files for each test run, but those do not include any useful infor-
mation about the anomalies or responses from the target. For instrumentation, Sulley’s
Procmon is very similar to the debug monitors used by Peach. It records the data from
the crash to a crashbin file. With a help of a built-in Crashbin explorer script, the in-
formation stored in the file, including the crashdumps, can be further analyzed. Again,
for a seasoned tester or developer this information gives a fair idea where the actual
crash happened in the code and whether it can be exploited by an attacker.

Traffic Capture Fuzzer offers a few ways for remediation and reporting the results.
A special remediation package can be created which includes the test results and log
files, settings, used test sequence, and a brief report of the test run. The package can
be used to replicate the test run with another instance of TCF. The log files can also
be used to look up the detailed information on the used anomalies. The remediation
package does not include any crashdumps or other additional information similar to
Peach and Sulley, because the default instrumentation methods in TCF do not gather
anything like that from the target. If, however, additional external instrumentation is
used, the output of that will be included in the logs. As mentioned in section 3.5.6,
the test run information, including the test case descriptions detailing the anomalies,
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can be also exported into easily understandable reports. All in all, for detailed crash
information, the users of TCF must rely to external methods.

6.5. Development and deployment complexity

Table 21 shows the lines of code per test suite, excluding all comments and empty
lines used for formatting purposes. The value for Peach SIP tests is for the simplified
template. The value for the original template was 450 LoC.

Table 21. Lines of code per test suite

Framework
Protocol

FTP LISP SIP

Peach 1898 394 204
Sulley 143 - 377
TCF 5079 276 673

The difference between the lines of code for each test suite is formidable. Sulley
uses the fewest LoC for the same effect, due to the very efficient way of defining both
the message templates and the test sequence. In Peach, the templates for the messages
are defined only once, but the used StateModel elements defining the test sequences
and Test elements defining the test runs include a great deal of repeated information,
which makes the definition longer, especially for FTP that has such a high number
of command sequences to define. Traffic Capture Fuzzer has a similar problem than
Peach, with the addition that each sequence contains also the template definition for all
of the messages in the sequence. This is mostly due to the fact that while the templates
and sequences for a single protocol in Peach and Sulley are part of the same test suite,
having to import multiple captures in TCF essentially creates a new and complete
test suite each time. However, it should be noted that TCF does most of this work
automatically in the import phase.

Also the configuration of the test run, meaning target definitions, instrumentation
and other settings, are embedded in the templates in the test suites using Peach and
Sulley. In TCF, this configuration is separate, and not part of the measurements here.

Documentation is a big part of a development process. Peach has online documen-
tation listing all of the different building parts of the framework with some simple
examples. Unfortunately, the documentation was found to have many parts that are out
of date or simply missing, bringing the overall quality and usefulness of the documen-
tation down. For example, some features, like the ScriptFixup, were only present in
the few examples shipped with Peach and there was no mention of them in the online
documentation.

Sulley provides very simple documentation which goes through the test suite devel-
opment using simple examples. In addition, an API documentation can be generated
using Epydoc [114] for all the classes and methods available in Sulley. The main
problem with Sulley’s documentation is that having just a plain API documentation
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requires a strong knowledge of both the used programming language, Python, and the
framework itself.

In the case of TCF, most of the available documentation is built into the tool itself.
Some additional information is distributed in the form of a so-called Solution Note,
which is a walkthrough of TCF usage with simple examples. The tool itself has fairly
comprehensive documentation on the overall usage, but the documentation regarding
editing the sequence file, that is used as the template, is extremely limited. While the
import function that takes in a valid capture and creates the sequence based on the
traffic does most of the work creating the template, further manual editing is often
needed and the documentation regarding that is scarce.

The Software Development Kit part has its own Solution Note, accompanied with
an API documentation. Again, similar to the case with Sulley, the API documentation
alone requires fair knowledge of both the Java programming language as well as the
architecture of TCF itself, which can prove overwhelming at first.

Deployment into actual use is fairly similar with all of the frameworks. They are all
built as software components and can be run in Windows and Linux. Sulley and Peach
can also be run in OS X, but TCF does not support that. The main difference arises
when setting up the instrumentation. Since Peach and Sulley only have software-based
instrumentation methods capable of giving test case verdicts, those methods can only
be deployed on target machines with a compatible operating system and where the ac-
tual IUT is a controllable software process. TCF has an advantage here because of its
valid-case instrumentation and the capability to use any custom external instrumenta-
tion method, which makes it independent regarding the target environment.
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7. DISCUSSION

In this chapter the obtained results are assessed in further detail. Also some thoughts
are given for the known limitations in the work, and how the work could be developed
further.

7.1. Assessing the results

Traffic Capture Fuzzer was found to be the most effective in terms of found crashes.
TCF found crashes from Asterisk, SJphone, and LISPmob, as seen in Tables 11, 12,
and 19. Peach found a higher number of crashes from LISPmob, but with a signifi-
cantly higher test case count, bringing the actual crash per test case ratio to a much
lower value. TCF was also the only one to find crashes from Asterisk and SJphone,
even though the crashes from Asterisk were not reliably reproducible.

On a run-time performance level, TCF and Sulley were the clear favorites. The test
suites using Peach were, in most cases, extremely slow compared to the others. This
compared with the fact that Peach’s engine tends to generate more test cases than the
others, especially when making as accurate templates as possible with a high number
of elements, makes utilizing Peach a tough choice when high performance and quick
test run time are important.

The code coverage measurements showed that Peach and TCF can achieve very
similar results in code coverage at least for text-based protocols such as File Transfer
Protocol, as was shown in Tables 9 and 10. With a more complicated protocol, coming
down to bit-level elements, TCF managed a better coverage, as was seen in the Loca-
tor/ID Separation Protocol test results in Table 20. Sulley was at the same level with
the two others on one of the two FTP tests, but fell far behind on the other, not really
putting up any competition there.

One of the reasons for Sulley’s poor code coverage could be the high Damerau-
Levenshtein distance of the test cases, meaning that generated test cases were very
different compared to the valid case, probably leading to them being outright rejected
by the targets in most cases. The test cases generated with Peach and TCF had a lot
lower Damerau-Levenshtein distance, almost half of the value of Sulley’s test cases.

The development complexity was a bit harder to measure quantitatively since the
development process is different for all of the frameworks. The measured lines of code
per test suite shown in Table 21 indicates how complex the templates itself are and how
well designed their processes and features are. Sulley was the clear front runner here,
providing very convenient ways of defining both the message templates and especially
the test case sequences. For protocols with multiple messages and test case sequences,
Peach requires a lot of repetition. The same is true for TCF due to the fact that different
test sequences are essentially different test suites in TCF.

As part of the development process, the framework documentation also played a key
role. In this sense, all of the frameworks could have done better. None of them offered
very comprehensive documentation and parts of the development had to be done by
simple trial and error method.

TCF claims the pole position in overall usability. It is the only one of the three
frameworks that provides a graphical user interface, and the automatic sequence cre-
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ation from a network capture is a superior feature. With the help of Netzob, developing
a template and sequence can be done from an important capture and exported to Sulley,
but the process is not nearly as automated and seamless as it is in TCF.

From a product quality point of view, both Peach and Sulley fell behind Traffic Cap-
ture Fuzzer. TCF, as a commercial software product, is much more polished, robust,
and user-friendly. This is, of course, to be expected from a commercial product. Both
Sulley and Peach were found to have usage hindering bugs, like the randomly work-
ing ScriptFixup in Peach, and missing essential features and functions, like the lack of
network layer injectors in Sulley and the inability to include elements smaller than one
byte into the templates.

Overall, between the tested frameworks, Traffic Capture Fuzzer performed the best.
There were no real problems at any point during the development or test execution.
Peach did not find as many crashes as TCF, but it still proved to be effective. The built-
in injection and instrumentation methods were also the most extensive. The major
problem with Peach was the runtime performance, which was extremely poor com-
pared to the others. Sulley’s runtime performance was better, but it lacked in effec-
tiveness, not finding any reproducible crashes. This was likely due to the narrower test
material.

At the same time, it was also further proved that fuzzing is an effective way of
finding vulnerabilities and flaws in software. The developed fuzzing test suites found
a great deal of crashes in various targets. This goes to show that fuzzing, even when
not using the most effective fuzzer, is always worthwhile.

7.2. Known limitations

Due to the missing injectors in Sulley, the chosen test protocols were mainly appli-
cation layer protocols. This somewhat limits the results as there were no tests for
transport or network layer protocols to see how the fuzzing engines would have per-
formed in that situation. However, the Locator/ID Separation Protocol tests gave some
indication, because they include a complete IP packet in the payload.

Some limitations exist also with the used Damerau-Levenshtein distance. The dis-
tance measurement requires a string of text, which rules out LISP. Also, due to the
shortness of File Transfer Protocol messages, the distance measurement could only be
performed reliably for Session Initiation Protocol.

7.3. Future development

In this thesis, only a few of the most popular fuzzing frameworks and protocols were
covered. To get a more complete understanding of the effectiveness of fuzzing frame-
works, more protocols could be fuzzed and the amount of test targets increased, which
would give more test data to analyze.

Adding more fuzzing frameworks is also an intriguing possibility, for example em-
ploying more commercial frameworks (both template-based and model-based) against
the available free frameworks. In the case of Peach, which also has a commercial ver-
sion with more advanced fuzzing engine available, testing the free and the commercial
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version side by side could give a good estimate whether the commercial version is
actually worth the price.

As the source code for both Peach and Sulley are distributed freely with licenses
allowing editing and even redistribution following certain constraints, their functional-
ity could be extended with further development. As of now, one of the major limiting
factors in Sulley is the missing support for for transport layer injectors, which could be
developed and added into the code. Also, both Peach and Sulley are missing a graphi-
cal user interface which hinders the user experience. A simple GUI for both could be
developed.

Further instrumentation methods are also something all of the tested frameworks
would benefit from. The process-based instrumentation method that was developed
for this thesis to use with Traffic Capture Fuzzer could be extended further to include
support for running the code in a debugger, support for more operating systems, and
more. In contrast, Peach and Sulley, which already have process-based instrumentation
methods, could further benefit from having a valid-case instrumentation method such
as the one used in TCF.

In addition to the metrics used in this thesis, in future a method could be developed
to measure protocol coverage in addition to measuring basic code coverage. Measuring
protocol coverage would require a monitorable test target that itself covers the protocol
fully and is able to monitor the parts which the fuzzers are able to access. This sort
of metric would give a clear understanding of how well the fuzzer manages to cover
all of the different parts of the protocol, including all of the messages and message
sequences.
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8. CONCLUSION

The purpose of this thesis work was to analyze fuzzing frameworks comparatively. The
main focus was placed on effectiveness and deployment in further defined terms.

To achieve this, a collection of fuzzing frameworks were chosen as test subjects. The
chosen frameworks included two free frameworks with their source code available,
Peach and Sulley, and one commercial solution, Traffic Capture Fuzzer (TCF). The
fuzzing frameworks all perform different mixtures between generational and template-
based fuzzing. The frameworks were used to develop test suites for three different
network protocols.

During the test suite development process, the frameworks were observed to be re-
markably different concerning the development complexity. The development with
Sulley was very straightforward and compact in terms of needed lines of code, whereas
Peach required a considerable amount of repetition when defining the template and test
case sequences. The same repetitive development cycle was present in TCF, mainly
because all of the different test case sequences are in practice unique test suites.

In order to evaluate the results, a set of metrics was defined, including code coverage
measurements, test effectiveness in terms of crashes, performance and anomaly quality,
overall framework quality and usability, as well as the more subjective development
and deployment complexity.

A testing environment was defined and the developed test suites were tested against
multiple test targets, and closely instrumented to produce the required results. The
results were assessed based on the previously defined metrics.

The obtained test results showed that the developed test suites were able to find
crashes and vulnerabilities from the chosen test targets. The commercial TCF proved
to be the most reliable on average, being at the top or very near in all the tests. Peach
was proven effective as well, though its runtime performance turned out to be poor
compared to the others. Sulley’s test material was not as effective or extensive and it
did not find any reproducible crashes.
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