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Abstract
This thesis explores hand pose estimation, which means mapping a 2D image
to a hand pose. Hand pose estimation has many promising applications such
as hand sign recognition, robotic learning by demonstration, and human-
computer interaction in general. To do the estimation, image features are
extracted from the image and a mapping to the space of hand poses is then
constructed. Ideally the mapping from image features to pose space would
be one-to-one, but in reality it is rather a many-to-many mapping leading
to ambiguities. This is due to the image feature not capturing the actual
pose, but the form of the 2D projection of the hand. Hands may also occlude
parts of itself which also leads to ambiguities. This thesis explores ways
in which to improve the commonly used image feature HOG (Histogram of
Oriented Gradients), by capturing the HOG subspace used by hand images,
to obtain a feature whose mapping to pose space is more well-behaved than
that of the HOG feature. The new feature is computed as projection on and
distances to lines in HOG space. The new feature’s performance is tested
against the HOG feature using nearest neighbour (NN) regression and the
results show that the new feature does not yet perform as well as the HOG
feature. Nevertheless, the conclusion is that the new feature, called MPDD,
for Multiple Projection and Distance Dimensions, does indeed capture the
most relevant information in HOG, but fail to use it as well as the HOG does
with the current construction method. However, constructing the MPDD in
a slightly different way could potentially lead to improvements and so future
research could still be of interest.



Referat
Effektiva visuella formdeskriptorer för handigenkänning

Denna masteruppsats undersöker handposestimering där en 2D bild används
för att rekonstruera en handpos, vilken beskrivs av hur handlederna är vink-
lade. Handposestimering har många potentiella användningsområden varav
några är teckenspråksigenkänning, robotinlärning från demonstrationer, men
även människa-datorinteraktion i allmänhet. För att göra översättningen från
bild till handpos extraheras först bildegenskaper (image-features) varpå en
mappning till posrummet (alla möjliga poser) konstrueras. Den önskade egen-
skapen hos en mappning till posrummet är framförallt att den är one-to-one,
men i verkligheten innehåller den normalt tvetydigheter. Detta beror bland
annat på att bildegenskaperna inte beskriver själva handposen utan enbart
formen av 2D projektionen av en hand. Förutom det så kan händer även
skymma delar av sig själva vilket också leder till tvetydigheter i mappningen
från bildegenskaper till posrummet. Målet med denna uppsats är ändå att un-
dersöka sätt att förbättra den vanligt använd bildegenskap HOG (Histogram
of Oriented Gradients) genom att använda det delrum hos HOG deskripto-
rerna som upptas av handbilder. Den nya bildegenskapen konstrueras genom
projektioner och avståndsberäkningar till linjer i HOG rummet som motsva-
rar handrörelser. Den föreslagna bildegenskapen testas mot HOG med NN
(Nearest neighbour) regression och resultatet visar att HOG presterar bäst
med den nuvarande konstruktionen av den nya bildegenskapen. Slutsatsen
är dock att den nya deskriptorn, kallad MPDD för Multiple Projection and
Distance dimensions, lyckas fånga det relevanta delrummet av HOG, men
misslyckas med att använda informationen i denna. Detta innebär sannolikt
att sättet som MPDD konstrueras på i denna mastersuppsats antagligen bör
förändras även om en liknande idé kan räcka för att uppnå samma eller bättre
resultat än HOG.
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Chapter 1

Introduction

Today, there is a shift taking place in the ways people interact with computers. Key-
boards and mouses have for a long time been the conventional interaction tools, but
today more and more options are available, such as touchscreens, wii, kinect, speech-
recognition etc. The trend is that interactions become more intuitive and making ges-
tures with ones hands can certainly be very intuitive. Therefore, a lot of research have
been done to investigate what methods can be used for hand pose estimation (HPE).
Some of the applications of hand pose estimation include hand sign recognition, robotic
learning by demonstration, and of course human-computer interaction in general.

However, hand pose estimation is difficult and since no generally applicable method
for it exists, many different approaches have been tested. One of the biggest challenges
is that the hand can move in many different ways, i.e., have many degrees of freedom.
Furthermore the hand can move very rapidly and is also able to occlude itself in many
poses. This means that the mapping from hand images to poses are likely to be ambigous
and sometimes even discontinous which makes estimation very difficult. The goal of this
thesis is, nevertheless, to find ways to overcome these problems to some degree, and to
hopefully contribute with a new image feature that is useful for hand pose estimation.

1.1 Background
The basis for this thesis is an earlier master’s thesis done by Akshaya Thippur [28] in
which he investigated which image features are most suitable for HPE. This thesis will
expand that idea and continue from one of the image features that was judged to have
overall good properties, namely Histograms of Oriented Gradients (HOG features). Es-
pecially, the HOG was found to be most robust against image noise. This is particularly
important in real-world applications where it can be expected that irregular lightning
conditions etc. will make it difficult to segment the hand from the image.

However, the HOG was slightly worse than other features when it came to its discrim-
inative ability, meaning its ability to predict the pose from feature values. Unfortunately,
this property is exactly what one would want from an image feature if a discriminative
method is to be used such as regression or classification methods. The motivation for

1



CHAPTER 1. INTRODUCTION

this thesis is therefore to create a new image feature based on the HOG feature that
nevertheless would have better discriminativity and therefore be better suited for re-
gression. Discriminative approaches have already been tried in several studies as will
be seen in Section 2. However, the main focus have mainly been on using different re-
gression methods or in other ways reduce ambiguity in the image feature mapping, such
as using multiple cameras or using temporal constraints on a sequence of hand frames.
Although those approaches generally give some improvement in the estimation accuracy,
they does not tackle the fundamental problem with hand pose estimation which is that
it is difficult to extract a hand shape from an image. For instance, Romero et al. [25]
concluded that using HOG directly in different regression methods does not work due to
the mapping being highly non-linear and non-unique (multi-modal). This thesis there-
fore puts emphasis on image feature selection, which if found, will likely be well-suited
for most regression methods seen as a better discriminative image feature means a more
well-behaved mapping to poses which is preferably for any regression method.

1.2 Goal

The goal of the thesis is to investigate ways in which the HOG image feature could be used
to construct other image features that are better suited for hand pose estimation. Ideally
the result is an image feature with better properties, in terms of the measures introduced
by Thippur [28], than the HOG. That would if successful lead to more accurate results
for discriminative hand pose estimation methods. A less ambitious goal is to at least
conclude what makes an image feature good and to contribute by a discussion of which
aspects of an image feature that is of most importance to improve it.

1.3 Scope

Apart from the quite commonly used HOG feature there are many other image features
used for hand pose estimation, but this thesis focuses only on the HOG feature, since
it gave the best results in Thippur [28]. Furthermore, the focus is on the actual image
features and not the hand pose estimation. This distinction is important to make since
there are numerous regression methods to choose from. Instead, the focus is on the input
to the regression, which is the image features, that is the values that are extracted from
the raw image to better represent the actual shape of the image.

The data that the image features are tested on is also limited to the special case
of hands grasping objects rather than free-moving hands. This is not necessarily a bad
thing as many hand pose estimation applications require robustness against occlusion
from objects, but it should be noted to alert the reader that the results are likely different
from what one could expect from free-moving hands.
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1.4 Abbreviations
HOG Histogram of Oriented Gradients, as first introduced in [7], is a method of extract-

ing image features that the new descriptor proposed in this thesis builds on. HOG
may also refer to the actual feature vector. The HOG feature itself is constructed
by looking at intensity gradients in the image.

HPE Hand Pose Estimation

MPDD Multiple Projection and Distance Dimensions is the new and proposed image
feature.

NN Nearest neighbour is in the context of this thesis used as a regression method where
the estimation is done by finding the nearest neighbours in feature space and using
those to estimate the hand pose.

PCA Principal Component Analysis is a dimensionality reduction technique in which
the whole space is projected down to the directions that have the most variation.

1.5 Organization of the thesis
Following this chapter is Chapter 2 which presents some related work to give the reader
an overview of the methods used in hand pose estimation. It also introduces several
concepts that are important for hand pose estimation. Chapter 3 then describes the
specific method and theory required for this project. This includes what hand model
is used, the dataset used in experiments, the image features used and in particular the
proposed MPDD feature, and finally the regression method used. Chapter 4 shows the
results of the experiments. Finally, Chapter 5 concludes the thesis with conclusions and
suggestions for future work.
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Chapter 2

Related work

This section follows a top-down approach where the overall process of hand estimation
methods is presented in Section 2.1 followed by a more detailed discussion about the
different aspects of hand pose estimation. Apart from introducing different HPE apsects,
Section 2.1 also contains a table that summarizes the different research papers cited in
this thesis. Those are then individually discussed in the following sections.

2.1 Overview
In this section an overview of methods used in hand pose estimation is given as well
as Table 2.1 which summarizes what method each referenced paper uses. The main
objective of hand pose estimation is of course to take an image containing a hand and
returning the corresponding hand pose. However, there is several steps that happens in
between more or less regardless of which hand pose estimation method is used. First
of all, the hand must be detected in the image and this is in fact a separate problem
from hand pose estimation, although hand pose estimation of course depends a lot on
the former (see [18] for a survey of different detection papers). It is also the case that in
many detection methods, similar image features are used as in estimation. In [12] HOG
features are used for instance, which is a common choice for hand pose estimation as
well. After the hand is detected, it is common to assume that the hand is segmented
out, i.e., that the background is removed, although not all methods relies on this [3].

Methods used in hand pose estimation is in fact also commonly applied to other
estimation tasks. Most commonly, hand pose estimation is compared with human pose
estimation. One might also consider situations in which hands interact with objects
which can be considered a more realistic scenario since the hand often interacts with ob-
jects. The Type column in Table 2.1 shows if a reference deals with hand pose estimation
or human pose estimation.

However, considering hand pose estimation and assuming that the hand has already
been found in the image, the actual mapping from image to hand pose must be found.
There are mainly two approaches that could be taken from this point. Firstly, one could
opt towards using a very advanced regression methods which takes the pixels as input
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directly. However, this is problematic since the regression method would then have to
deduce what information in the image to use, which could be difficult due to a number of
reasons, e.g., different lighting conditions, and background noise. The second approach
instead tries to extract interesting image features that in some way describes the object
in the image, meaning that the image feature is robust against changes in background
for instance. If one succeed in extracting good image features, those could then be used
as input into a relatively simple regression method to obtain good results. That is, it
is a trade-off between using simple image features and advanced regression methods or
more complex image features that does not require as advanced regression methods. To
understand this better, consider Figure 2.1 which shows how an image feature might
correspond to poses. In reality both feature and pose space have much higher dimension
than 2, but the figure still illustrates how image features could look like. What can be
seen in the figure is that straight lines in pose space do not correspond to straight lines in
feature space. To reconsider regression methods, a relatively simple regression method
might still give reasonable approximations for the mapping in the figure, whilst a more
complex regression method might be able to handle even worse mappings.

Figure 2.1: Illustration of how image features could correspond to poses. The figure
shows how features corresponding to straight lines in pose space might look like.

Most image features relies in some ways on detecting edges in the image, which is
reasonable since the silhouette of the hand is generally enough to determine what pose it
is in. There are, however, a range of different features and those will be discussed more
in Section 2.4. As can be seen in Table 2.1, the image feature HOG is a quite common
choice.

Except from different image features, there is a different aspect of hand pose esti-
mation that also divides hand pose estimation methods, namely discriminative versus
generative approaches, which in Table 2.1 is abbreviated as Disc and Gen. In a dis-
criminative method, some type of regression method is used that estimates the mapping
based on a set of training data consisting of pairs of feature values and corresponding
poses. In a generative approach there is a model for how the features are generated

6
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from poses. For instance, a hand model can be used to generate a synthetic hand image
from which image features can be computed. This means that in a generative approach
it is always possible to make guesses about poses and use the model to generate image
features that can be compared with the input image’s image features. However, in a
discriminative approach, this is not possible since there is no model to generate features
from and so one can only rely on the estimated mapping. An estimated mapping is often
cheap to evaluate so using a discriminative method is often cheaper than a generative
approach, but generative approaches typically perform better [25]. Discriminative versus
generative approaches are discussed in more detail in Section 2.5.

Another aspect of hand pose estimation is the possibility to capture the hand with
multiple cameras from different viewing angles and thus obtaining a multi-frame rather
than a single frame. Capturing a hand from multiple angles means that parts that
might be occluded from a certain angle might be visible from others and so it can reduce
ambiguity. An alternative to this is to use RGB-D sensors that also captures depth in
images, which although occluded parts are not captured, might still reduce ambiguity.
Yet another aspect that is sometimes used is to rely on temporal constraints on the
pose, which means that it is assumed that poses do not change too fast so that an
estimated pose from a previous frame can be used to determine which poses are likely in
the current frame. Methods as these can remove some of the ambiguity in the mapping
between features and pose space and the multi-view approach can to a large degree
remove self-occlusion problems. This is discussed more in Section 2.6.
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CHAPTER 2. RELATED WORK

Table 2.1: The papers are denoted by the first authors surname and the paper is also
referenced. The Type column is to tell what is estimated, meaning if the paper is con-
cerned with human or hand pose estimation. The third column, Pose space, determines
what kind of model is used for the body/hand. Discrete in this context normally means
that the paper is concerned with classes of gestures/poses of some kind, whilst continu-
ous or an exact number of degrees of freedom (DOF) means that the estimation is done
for a model with that many degrees of freedom. Disc/Gen stands for discriminative and
generative. The view columns describes what kind of setting the method is tested in,
i.e., single camera or multiple cameras. Finally, the Temp column describes if temporal
constraints are used.

First author Type Pose space Feature Disc/Gen View Temp
Jing Hand Discrete HOG Disc Single Yes
[15]

Mihalache Hand Discrete HOG+fingertips Disc RGB-D No
[17]

Murase Hand Discrete HOG Disc Single No
[19]

Thangali Hand Discrete HOG Disc Single Yes
[27]

Romero Hand Discrete Cyberglove Gen Cyberglove Yes
[23]

Campos Hand 26 DOF Shape context Disc Single+multi No
[8]

Athitsos Hand 20 DOF DCD Disc Single No
[3] to representatives

Oikonomidis Hand+ 26 DOF SIFT Gen Multi No
[20] Object

Romero Hand+ 31 DOFs HOG Disc Single Yes
[24] Object

Romero Hand+ Continuous HOG Disc Single Yes
[25] Object

Kaaniche Human Discrete HOG Disc Single Yes
[14]
Dalal Human Discrete HOG Detection Single No
[7]
Lin Human 28 DOFs HOG Disc Single No
[9]

Shakhnarovich Human 13 DOFs Edge direction Disc Single No
[26] histogram
Lin Human 28 DOFs HOG Disc Single No
[9]

Johnson Human 30 DOFs HOG+seg cues Disc Single No
[13]

Poppe Human 34 DOFs HOG Disc Single+multi No
[22]

Onishi Human 24 DOFs HOG Disc Single No
[21]

Andriluka Human 40 DOFs Shape context Gen Single+multi No
[2]

Agarwal Human 55 DOFs Shape context Disc Single Yes
[1]

Lowe Object Discrete SIFT Disc Single No
[16]

Belongie Misc. Discrete Shape context Disc Single No
[4]
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2.2. HUMAN VS HAND ESTIMATION

2.2 Human vs Hand estimation

As Table 2.1 shows some of the related work are human pose estimation and not hand
pose estimation. The reason for this is that human pose estimation has much in common
with hand pose estimation. For one thing, a human pose is often modeled with similar
dimensions as the hand, but more importantly the arms, legs, and head of the body
play a similar role as the fingers of the hand. However, there are some differences. For
human pose estimation the segmentation will be more difficult because the method must
be robust against a wide range of clothing, whilst hand estimation can generally suppose
that the hand is not occluded with the exception of a ring or similar. However, when
dealing with human poses it is often assumed that it is a standing pose as one of the
main applications is pedestrian detection. It is difficult to make similar assumptions
for hands. In fact, one is often interested in free-moving hands, i.e., all possible or at
least plausible hand poses. Furthermore, hand pose estimation suffers from difficulty in
distinguishing between fingers, and hands also have a great degree of self occlusion in
many poses. Also, related to this is the fact that, as in [13], human pose estimation
can be approached by first detecting the individual limbs and then estimating the pose
which is very difficult to do for hand pose estimation since different fingers are not easily
distinguishable.

Another type of scenario that is of interest is when a hand interacts with an object.
In situations like hand signs and gestures, approaches with no object is of course useful,
but it is arguably more realistic with a scenario where a hand interacts with an object.
Applications that directly requires this is for instance when a robot needs to learn a task
by demonstration which can include grasping objects in different ways as in [20].

2.3 Pose space

The pose space could be thought of as all possible poses that a hand can be in. For a
certain model, the pose space is all the poses that this model can be in, which is smaller
than a human hand space in general.

As seen in Table 2.1 there exists both discrete and continuous pose spaces. A discrete
pose space can be used to model hand signs or some other type of discrete set of gestures.
For continuous pose spaces one instead aims at describing the pose with a hand model
that builds on the hand’s anatomy and where the poses can vary continuously. A typical
hand model describes the hand model through joint angles, but which joints are chosen
and what degree of freedom is given to each joint depends on how accurately the hands
real anatomy is modelled. This section therefore begins with a short description of the
hand’s anatomy and then goes on to how a hand model can be formed.

2.3.1 Hand anatomy

It is quite apparent that the hand’s anatomy will be the basis for any hand model, but
more importantly it can tell us specifically which aspects are important to capture and
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which might be discarded in order to get a simpler model. On one hand a too simple
hand model will result in an unnatural model where a lot of possible hand motions are
impossible in the model. However, one does not want a too complex model either since
that will make hand pose estimation harder.

Figure 2.2 shows an X-ray of a human hand which normally has 27 bones [10]. The
bones at the base of the palm is called Carpals from which the base of the fingers
stretch out. Each finger consists of bone parts, starting from the base; metacarpals,
proximal phalanges, intermediate (or middle) phalanges, and distal phalanges, except
for the thumb which does not have the intermediate phalanges. As can be seen in the
figure, the joints are named according to which bones they connect.

Figure 2.2: An X-ray of a hand with labels for joint and bone names.

It is possible to model many different aspects of a hand, but what is of interest to
us is what degrees of freedom exists. It is here necessary to distinguish between two
different kinds of degrees of freedom. There are on one hand the DOFs (degrees of
freedom) that the hand can move in on itself, which is what could be called natural
poses, but a hand can, with the help of outside force, also use some degrees of freedom
that were not previously available. For instance, each finger can be slightly rotated if a
torque is put on it, but there is no muscle that can perform this motion. Apart from
that, all joints are in some way limited in their range which could also be captured by a
hand model. There is for instance a limit to how far back one can pull the fingers. As
Thippur [28] points out it is also possible to include a lot of other things in the model
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such as skin-color, subject-specific joint constraints, and hand size. The conclusion is
that some simplifications must be done to obtain a workable hand model.

2.3.2 Representation

The pose space representation is normally spanned by the joint angles which models the
kinematics of the hand. As the previous section shows the actual anatomy of the hand is
quite complex, although the pose of the hand is exclusively determined by the phalanges
and metacarpals, constituting 19 out of the 27 bones of the hand. A hand model should
probably include as much as 35 or more dimensions to be realistic [29], there are some
simplifications that can be made so that a hand can be represented with fewer degrees
of freedom [11]. However, this depends partly on whatever dynamic constraints are
modeled or not. It is for instance commonly noticed that the angle between the DIP
and PIP joints are related by the equation ΘDIP ≈ 2

3ΘP IP where Θ represents the angle
of the joint [11]. Using such dynamic constraints can however be oversimplifying since
they can be broken if an external force is applied which can easily be the case if the
hand interacts with other objects or even with itself, i.e., fingers pushing against other
fingers.

As noted in [11] most models use one degree of freedom (DOF) for the DIP and PIP
joints, two DOF for the MCP joints, two DOF for the TM joint and 6 DOF for the wrist.
This yields a total of 27 DOF excluding the additional dimensions that are normally
included for the camera position and angle. Although, [3] models a pose without the
wrist, thus reducing the dimensionality. However modeling the palm as a rigid body is
not realistic and has therefore been varied in some models. The MCP joints could be
extended with an additional degree (twisting) and the CMC joints are also modeled as
one DOF joints (flexion/extension) [11].

One problem in hand pose estimation is that regardless of which pose space is used
it is difficult to obtain training data with ground truth values for the pose. A common
solution to this problem is to use programs such as libHand [31] that generates a synthetic
hand image from a pose descriptor. It has been observed in [8] that models trained on
synthetic images can also be used to estimate real hand images.

Lastly, it should be noted that it is not always necessary to use a kinematic model of
the hand. As can be seen in Table 2.1 there are several studies where the goal have not
been to estimate a kinematic model of the hand, but rather to classify different poses
into discrete sets. Applications include classifying grasping actions [23], gestures [14],
sign language [27], and virtual keyboards [19].

2.4 Image features

When doing HPE and image recognition in general one normally does not work directly
with the pixels of the image. Instead, one extract what is called image features from the
image that are meant to capture some feature that is less local than a single pixel. Some
of the features that are regularly used in HPE is Histogram of Oriented Gradients (HOG)
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[7, 24, 21], silhouette-based features [20], Scale-invariant feature transform (SIFT) [16],
Hu-moments, shape context Descriptors [4, 1, 8] and others.

This thesis focuses on HOG features, but other features certainly have merits as
well. For instance, SIFT features, which for instance is used in [16], are invariant to
scaling and rotation which is a good property of an image feature since neither scaling
nor rotation is relevant for the actual pose. Although HOG features does not display
these properties they are at least robust against small changes [24].

2.4.1 HOG features

HOG (histogram of oriented gradients) features was first presented by Dalal and Triggs
[7] 2005 and was in the initial paper used to estimate and detect human poses. The idea
is that images can be described by its intensity gradients. The first step in computing
a HOG feature is dividing the image into a rectangular grid where each square in the
grid is called a cell. The gradients are then computed in each cell and the distribution
in each cell is recorded in a histogram of which angular bins the gradients fall into. It is
common to ignore orientation of the gradient so that opposite pointing gradients are put
into the same bin, but it is possible to use bins from 0° to 360°. The overall HOG de-
scriptor is all those angular histograms together. To make the features more robust from
illumination and shadow differences the feature values are sometimes normalized over
blocks of several cells where the intensity gradients have been normalized [7], although
this is not necessary, [22] for instance does not do this. As can be seen in Figure 2.3 the
histograms can be said to roughly keep information about the edges in the image.

Figure 2.3: The image to the right shows the corresponding gradients of the cells. Each
cells histogram, that is the different intensity gradient bins, are represented as lines
where one line correspond to one angular bin and the length of the line correspond to
the size of that bin. The image to the right also shows a square that have been enlarged
which shows part of the HOG grid containing 7 by 7 cells.
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There are several variations of HOG features and several of thus was already pre-
sented in the original paper [7]. In [21] the cells overlap each other which has the effect
that things happening at the edge of a cell does not affect the features as much as in a
non-overlapping grid where moving from one cell to another causes a greater change in
the feature space. In [24] what is known as pyramid HOG is used where histograms from
grids of different sizes are combined, the idea being that coarse grained cells contains
information that is not accessible to fine grained cells and vice versa.

2.4.2 Smoothness, generativity and discriminativity

When evaluating image features the interesting properties are smoothness, generativity
and discriminativity. The first, smoothness, simply says that a small change in feature
values should correspond to a small change in hand pose. This is as Thippur [28] notices
far from the case for most image features. Thippur tests how linear transitions in pose
space correspond to the corresponding features. Ideally, the features would change close
to linearly which would essentially mean that it would be easier to find the mapping
from feature to pose space using regression methods. The other two aspects that are of
interest is concerned with what sort of mapping the mapping from pose space to feature
space is. Ideally, it would be a one-to-one mapping, but that is generally not possible
and so the requirements must be relaxed to obtain a mapping that is as close as possible
to a one-to-one mapping [28]. Generativity in this case means that the same hand pose
always generates the same image features, or at least that the generated image features
fall within a small region in the feature space. We are also interested in discriminativity
which is concerned with the other direction of the mapping. That is, how unimodal the
inverse mapping is.

2.5 Discriminative vs Generative

Two quite different approaches to hand pose estimation is generative and discrimina-
tive models. In discriminative models the mapping is estimated directly from training
data. This normally means that after the training is done, the estimation is quite fast
since all that is required is to input the extracted feature values into the mapping and
directly obtain the estimated pose. It has, however, also been noted that discriminative
approaches generally has lower accuracy, although they can to some degree compensate
for that by being computationally more efficient [24, 1]. The way the mapping from
feature values to pose space is found is by fitting some regression method to the training
data. One might for instance use linear SVMs as in [21], but might also go beyond
that and use more advanced methods such as non-linear SVMs [17], RVMs [8] or any
other regression method. An even easier approach is to use nearest neighbor (NN) al-
gorithms to simply determine which data points are close in feature space and assume
that they are also close in pose space. In most situations the database is very large, for
instance 90 000 in [24], meaning that exact NN is very expensive and an approximation
is therefore used. The approximative version (k-NN) normally returns k data points
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that lies within a factor of the closest point. Thus can then be interpolated in the pose
space to get the estimated pose as in [24]. In [1] different regression methods are tested
with shape context features and the results shows that the regression method does not
have that much of an impact although linear SVM performs slightly worse than RVM.
However, one quite ingenious method that is somewhat similar to the k-NN approxima-
tion which normally uses locality sensitive hashing (LSH) is to use parameter sensitive
hashing (PSH) as in [26] which allows one to find data points that likely is close in pose
space which is precisely the goal of HPE. The method builds on the idea to use hash
functions which essentially have the property that close points in the pose space will
correlate more than points that are not close in pose space. Even if the correlation is
quite weak, multiple independent hash functions can be combined to form a good guess
of which points are close in pose space.

Generative approaches uses a 3D generated model of a hand that can be used to
produce an image from which feature values could be extracted. The idea being that
when a feature value is observed the problem is to find a pose that gives feature values
as close as possible to the observed features. However, because of the dimensionality of
the problem, MCMC (Markov Chain Monte Carlo) methods are used. For instance [20]
studies hands interacting with objects and so the model contains both a model for the
hand and a model for objects. The estimation is done by minimizing a function using
particle swarm optimization (PSO). The function optimized was in this case formed
by including two terms. One term for the distance between the real features observed
and the guessed poses feature, and one to penalize guesses where the object and hand
intersect and therefore occupies the same physical space. A generative approach is also
used in [23] although the approach is quite different seen as a cyberglove is used to
get input and to determine different grasping types. However, such approaches have the
problem that the users motion becomes unnatural and limited. Furthermore, it normally
requires calibration and will generally be less accessible to the user.

2.6 Multiple views and temporal constraints

One of the problems of hand pose estimation is ambiguity in the mapping from feature
space to pose space. Essentially, the mapping will be many-to-many even with a good
image feature [24]. This depends on what image features are extracted, but the problem
can also be attacked from another angle, namely by either adding additional views or
by adding temporal constraints in the estimation. The idea behind using multiple views
is to remove some of the ambiguity caused by self occlusion that is often dependent on
viewing angle. In [22], [2], and [8] both multiple and monocular views are tested and it is
generally found that multiple views improves accuracy which is not surprising. Campos
notes that there are also different ways of using different views [8]. For instance, in [8]
a guess is made for each individual view whilst in [22] the image features are combined
before the estimation. However, if two views are too close to each other, it is not
necessarily an improvement since the ability to distinguish depth would be limited and
so using single view approach can still have important applications as it is not always
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possible to capture the hand from different angles. As noted in [24] applications in robots
makes monocular approaches important since robots are limited in the sense that they
cannot have cameras mounted too far apart.

The idea with temporal constraints is that a video of a gesture probably has small
pose changes from frame to frame provided that the frames are close enough in time.
This can be difficult to achieve since the hand can move in about 5 m/s and rotate
in 300 degrees/s [11]. However, it is likely that the hand will only move at its fastest
periodically and so even relatively slow frame rates can be useful. The idea in temporal
constraints is generally to weight different poses depending on how similar they are to
the previous frames estimations. However, because of ambiguity, several hypothesis for
the previous frames are used in [11, 25] to avoid getting stuck with a wrong estimation.
A simpler approach used in [24] weights data points obtained from a k-NN according to
how similar they are to the previous estimation. It is a bit more complex to introduce
temporal constraints when using SVM or other none-example based methods. In [1]
SVMs and RVMs are used and apart from managing to introduce the temporal constraint
into the regression methods, they use two of the previous frames which allows for the
rate at which the hand changes to be taken into account. In some applications such as
gesture recognition, speed is even a necessity to capture the relevant information required
to classify a certain gesture as in [15]. Even with time constraints, an initial estimation
is normally required, but it should also be possible to reinitialize the pose estimation
since a wrongly estimated frame can otherwise lead to wrongly estimated subsequent
frames [11].

A recent study from 2013 [17] presents a way to use depth sensors to improve hand
estimations. The method they use is mainly to compute one set of HOG features for the
regular image and one set of HOG features for the depth-map of the image. Additionally
a fingertip detector is used to get fingertip position guesses. Thus are then combined in
a SVM and the results shows that using depth sensors does improve performance.
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Chapter 3

Method and theory

In this chapter the method is presented. Firstly, the pose space used in this thesis
is described and discussed in Section 3.1. Particular focus is put on viewing angle
representation which is considered as part of the pose. Following that, Section 3.2
describes and discusses the dataset used in the experiments.

As the goal of the thesis is to improve the HOG feature, that is also used as a baseline
in the experiments. The HOG feature and its parameters are discussed in Section 3.3.
Section 3.4 then describes the proposed feature called Multiple Projection and Distance
Dimensions (MPDD). This section both includes a discussion of the motivation behind
the feature, but also the exact construction of it and how different parameters can be
varied. Finally, the method to do the actual estimation is described which consists of
Section 3.5 that describes distance measures and Section 3.6 which describes nearest
neighbour regression.

3.1 Pose space
As discussed in Section 2.3 the hand pose can be modelled differently. The model that
is used for the results in Section 4 has 25 dimensions for joint angles and another 4
dimensions for encoding the viewing angle using quaternions. Each of the MCP joints
and the TM joints are described with 3 angles (pitch,yaw,roll) and the DIP and PIP
joints are given one degree of freedom. That is 5 dimensions for DIP joints, 5 dimensions
for PIP joints, 3 × 5 for the TM joint and the MCP joints (see Figure 2.2 for labeled
joints). Apart from the view representation, this is the same model as in [25]. This model
ignores the wrist which is a simplification although encoding viewing angle separately at
least encodes the wrists capacity to twist. Furthermore the palm is modelled as a rigid
body which is however not that much of a simplification considering how restricted the
metacarpals are.

Finally, the joint space consists of angles measured in radians where all zeros cor-
respond to a relaxed hand. Measuring in radians or degrees is of course only a matter
of scaling, but together with the viewing angle representation it is good that the joint
dimensions of the pose have the same magnitude as the dimensions representing the view-

17



CHAPTER 3. METHOD AND THEORY

ing angle. It is important that different pose dimensions does not have widely different
magnitudes as the distances between poses will then be dominated by the differences of
those dimensions.

3.1.1 Viewing angle representation
Apart from joint angles, the viewing angle is often included as part of the pose which
makes sense seen as the viewing angle to a large degree affects how the hand is perceived.
The HOG feature is as already described dependent on the 2D projection of the hand
and so varies greatly with change of viewing angle which also motivates that the viewing
angle is included in the pose representation. For small enough rotations, the HOG might
be well-behaved, but when the rotation means that the hand occupies different HOG
cells in the 2D projection the HOG will change dramatically. Furthermore, rotations
might occlude parts of the hand or reveal previously occluded parts which also further
affects the appearance of the hand. However, it would still be preferable if close viewing
angles are also close to each other in the representation of viewing angles.

There are multiple choices for view angle representation that depends on the use.
Two of the more commonly ones are Euler angle representation, and unit quaternions.
Rotations in space is three dimensional and Euler angles aims to describe those dimen-
sions by the angles that are more commonly known as yaw, pitch and roll as described
in Figure 3.1. One problem with Euler angles is that they do not change continuously.

Figure 3.1: Illustration of Euler angles

Consider for instance that the range (0, 2π) is used for the rotations and a rotation goes
from just a little less than a whole revolution to a small angle. The performed rotation
is small, but the effect on the Euler angles are big. This could perhaps be remedied
by using modulo counting for differences, but there is a perhaps even bigger problem
with Euler angles which is sometimes known as gimbal lock. Mainly, the problem is
that rotating the pitch 90° line up the yaw and roll axises, if the order of rotation is
roll, pitch, yaw. This is a problem since a subsequent rotation can only move in two
dimensions. Furthermore, certain rotations are ambiguous. For instance, a rotation of
180° around the pitch and yaw axis is the same as a 180° rotation around the roll axis.
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The next quite common representation is unit quaternions. It is quite closely related
to axis angle representation which describes the rotation by the direction of the axis
of rotation. Quaternions are actually an extension of complex numbers and is as a
set equal to R4 meaning that they can be represented as a vector with four elements.
However, quaternions also have some special operations defined on them which makes
them useful since it happens to be the case that some of those operations can make some
computations for viewing angles computationally cheaper. Unit quaternions, meaning
quaternions having norm one in the specially defined norm, is what can be used to
represent viewing angles. A viewing angle can be represented in two different ways as unit
quaternions, but it is easy to make the representation unique by simply choosing which
to use. Unit quaternions also avoid any gimbal locks and furthermore have the property
that close viewpoints have quaternion representations that are close to each other. Using
quaternions rather than Euler angles is therefore well motivated since ambiguous viewing
angles will make the mapping from feature space to pose space ambiguous as well.

3.2 Dataset

The data that is used to test against is the same dataset that was used in [25], where
Romero et al. looked at how objects occluding the hand can actually improve the esti-
mation by providing clues as to how the hand is grasping the object. The idea behind
this is that one more or less exclusively grasps objects with the front of the hand, mean-
ing that an occluded hand gives the clue that the hand is facing the camera. However,
the dataset also becomes limited in the sense that grasping actions only constitutes a
fraction of all possible free-moving hands. It is, nevertheless, still reasonable to train a
model on the subset of grasping hands as hands interacting with objects have important
real-world applications where a modelled trained without occlusion from objects would
perhaps fare worse. One such application would be robotic learning by demonstration
where a robot arm is trained to recognize and imitate how different objects are grasped
[20]. It should also be pointed out that the dataset only consists of right hands. This is
not a problem as it is reasonable to think that before the actual hand pose estimation,
it has already been determined if it is a left or right hand. Estimating left hands is also
an equally difficult problem as estimating right hands as it correspond to mirroring each
frame.

The dataset consists of 33 grasping sequences which all start from a relaxed hand
and end in a certain grasp. Each sequence consists of 5 frames and every sequence is
captured from 648 different viewing angle resulting in a little over 100 000 frames.

Figure 3.2 shows the end poses for the 33 different grasps and Figure 3.3 and Fig-
ure 3.4 shows all frames of the grasping types 11 and 14. All grasps starts from a relaxed
hand as shown in the example sequences.

To test the performance of different image features the dataset has to be split into
training and test sets and to do that, two whole grasping types are chosen as test set
and the rest is used as the training set. Firstly, the reason for partitioning the dataset
in this way is that it testes how generalizable the method is to estimate grasps not in
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Figure 3.2: All the different grasps in the dataset. The figure shows the end poses in
each sequence.

Figure 3.3: An example sequence of a grasping action. The figure shows the 5 frames
from a certain viewing angle.

Figure 3.4: The five frames of grasp 14 from a certain viewing angle.
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the training set. So choosing separate grasping actions for the test set is logical, but the
test grasps should still be in some way represented in the other grasping sequences as it
is not expected that grasping actions a lot different from those in the training set could
be estimated. The test set is therefore chosen to be the grasping sequences in Figure 3.3
and Figure 3.3 which include both a whole hand grasp and a more precision grasping
action which both have other similar grasps in the training set.

It should also be mentioned that the images are converted to gray-scale and the
background is colored black before training. The reason for only using gray-scale images
is that the HOG feature although it has been used with color images [17] is most often
used on gray scale images. The background is turned black having the effect that the
only part of the objects that are visible are the part that occludes the hand. This is good
since if for instance a hand grasps a handle, it is irrelevant what tool or otherwise the
handle belongs to as long as it is recognized as a hand grasping a cylindrically formed
object. That is, the overall object could have any form as long as the part occluding the
hand is somewhat similar to an occlusion in the training set.

To get some sort of intuitive feeling about how the dataset is distributed in the pose
space the poses can be reduced with PCA (principal component analysis) which is a
dimensionality reduction method that picks out the most varying dimensions. Figure 3.5
shows the dataset in the reduced PCA space, and what is perhaps most notable is that
there is a clearly visible center from which multiple lines go out from. The center is a
relaxed hand and different directions from there represents different grasping actions and
as can be seen the lines have 5 points that correspond to the 5 frames in each grasping
action.
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Figure 3.5: The dataset visualized in the pose space reduced to two dimensions with
PCA

3.3 HOG as a baseline feature

The image feature space is described by features extracted from the image that in some
way describes the properties of an image. In this thesis, the HOG feature is used as a
baseline to measure against since as Thippur concludes in [28] it is a robust image feature
that has relatively good generative and discriminative properties. However, there might
still be room for improvement which is why a new image feature is proposed in the next
section. The idea is also that the new feature should be constructed in such a way that
it is especially good at capturing hand images, rather than the HOG feature which is
more of a general purpose image feature. The new and proposed descriptor is based on
HOG features and the conversion from HOGs to the new descriptor called MPDD is
done by first calculating the HOG features and then extracting the MPDD feature from
the HOG. In this thesis, all MPDD features are extracted from HOGs with 8 × 8 cells
and 8 unsigned rotational bins (from 0° to 180°) resulting in a HOG with 8×8×8 = 512
dimensions. This was shown in [25] to be a good parameter setting for HOG.

The HOG representation might contain some dimensions that are constant in all
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frames of the dataset. If that is the case it makes sense to remove those dimensions
simply because they does not provide any information. However, for the dataset used
in this thesis and with this HOG settings, only one of the 512 HOG dimensions are
constant in all frames and so the final and reduced HOG has 511 dimensions.

3.4 Multiple projection and distance dimensions

The idea behind the proposed descriptor is to extract relevant directions in HOG space
that corresponds to hand motions. The pose space has much smaller dimensionality than
the HOG space and so it follows that only a subspace of the whole HOG space is used to
represent hand images. It is essentially those dimensions that the new descriptor aims
to capture. This is similar to doing PCA (principal component analysis) which picks
out the dimensions that has the greatest variation. However, in the proposed descriptor
the dimensions are chosen by picking two frames and drawing a line in the HOG space
between those. By creating many such lines a new point can then be projected down
unto those lines and the resulting projection is then hopefully a good representation of
the relevant HOG subspace. Consider now a third point in the HOG space that is up
until now unseen. If that point happens to be close or on one of the lines previously
constructed it might be possible to interpolate to get the pose for that new point. This
is because the HOG feature is locally smooth and so if the third point is close enough to
one of the lines and the projection is between the points that make up the line then it
could be expected that an interpolation is a good guess. The idea for the MPDD feature
arises from a new approach to object classification called classemes first proposed in [30]
and later researched further in [6, 5]. This approach uses a lot of classifiers for a set
of properties in the images. New images are then transformed to a binary descriptor
that represents how it was classified for each of the original classifiers. The idea is
that those new descriptors can be used essentially as image features and so when a new
category that needs a classifier arises the new descriptor is used rather than using the
original image data for the classification which would be much more expensive to use.
Similarly for hand pose images, the lines upon which the projection is done can be said
to correspond to classifiers which can be said to capture the relevant information about
the image.

This is the idea behind the new descriptor, but one problem so far is that only linear
transformations have been used and so the new descriptor is so far not that different from
PCA. The real idea comes when apart from the projections on the lines, the distances
to the lines are also included in the descriptor. The effect of this is first of all that
the feature is constructed through a nonlinear transformation from the HOG, and more
importantly that the descriptor now contains information that could be used to judge
how important a certain dimension is. The expectation would be that if a point is far
from a certain line, then the projection on that line is not as relevant as that of a line
which is closer. Construction of the MPDD feature is illustrated in Figure 3.6 where the
red point is projected onto three lines. The green dashed lines are the shortest distances
to each line which is also included in the MPDD feature. It is perhaps most interesting
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to note that the projection values are calculated in different scales compared to each
other and the distance values.

Figure 3.6: The figure illustrates the MPDD feature. Firstly, some lines have been
constructed from the pairs of blue points. To calculate the MPDD feature from a new
data point (red) it is first projected onto the lines to get the projection values (yellow).
The distances to each line is also calculated (green). Note that the projections and
distances are not measured in the same scale. Each line has its own scaling depending
on how close the points that defines it is (.i.e. the blue points), but all the distances are
calculated in the HOG space and so are calculated with the same basis.

3.4.1 Details on the construction of MPDD

The intuitive description of the MPDD descriptor is simply that a new point is projected
down on some lines in HOG space and that the distances to those lines are also recorded.
However, a more mathematical description of the construction of the MPDD feature can
be given as follows. From n pairs of HOG points (h11, h12), (h21, h22), . . . , (hn1, hn2)
construct n vectors vi = hi2 − hi1 where i varies from 1 to n.
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Let d(p − hi1, kvi) be the distance from the point p − hi1 to the line defined by kvi

and proj(p− hi1, vi) be the projection of p− hi1 on vi. Then the MPDD descriptor for
a point p is

(proj(p− h11, v1), d(p− h11, kv1), proj(p− h21, v2), d(p− h21, kv2), . . . ,
, . . . , proj(p− hn1, vn), d(p− hn1, kvn))

and thus is a vector with 2n elements. One can, however, vary the way in which the
points (h11, h12), (h21, h22), (h31, h32), . . . , (hn1, hn2) are chosen.

Firstly, and perhaps most obvious the size of the feature could be varied by choosing
a different number of lines. There are always an equal number of lines constructed
from each set of frames belonging to a certain grasping action. Since there are 31
grasping action in total in the training set, choosing 5 lines from each grasp results in
31 ∗ 5 = 155 projections and equally many distances to the lines which results in a total
of 310 dimensions.

The lines are always constructed from pairs of points in HOG space, but the way
in which those pairs are chosen can be varied. It would probably make little sense to
choose points from different grasping actions as that might not correspond to a possible
direction in the pose space seen as it could involve different objects. Therefore, as
have already been mentioned the lines are constructed from within each grasping type.
However, similarly one might expect that two points in pose space that are far from
each other would result in lines that does not describe plausible or even possible hand
motions and so what is of most interest is the closeness of the points used to construct
the lines in HOG space. The first variation takes two points from a certain grasping
sequence, that is from the five frames of a grasp from a certain viewing angle. Since the
changes in the grasps are often quite small the lines are in this case constructed from
the first and the last frames’ corresponding poses. This variant will be called sequence
lines as the lines are constructed from individual sequences. Similarly, close points, but
possibly from slightly different viewing angles could be good candidates as well. This
could be achieved by first randomly choosing a frame and then picking another frame
corresponding to one of the closest poses. Since frames from a certain viewing angle will
most often be closest, the second frame is picked from the 10 nearest neighbour in pose
space to make sure that for some pairs of points the viewing angles will be different.
This method of constructing the lines will be called close points lines. Lastly, each line
can be constructed by choosing two frames at random from a certain grasping action
which will be called random points lines.

Considering the projections, the vectors v1, v2, . . . , vn could be normalized or not
before the projections. The result of letting the vectors remain unscaled is that some
projections will be very large if hi1 and hi2 happens to be close from the beginning. Nor-
malizing the v vectors removes this property and additionally also makes the projection
values become roughly the same magnitude as the distance dimensions since everything
is measured in the same scale. However, it could make sense to not normalize the vec-
tors since normalizing them also means that the mapping to pose space is stretched or
contracted in certain directions which might make it less smooth.
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3.5 Distance measures

To understand the experiments in the result it is important to have an understanding of
the distance measures used. There are mainly two different sets which require distance
measures, the pose space and the image feature space. Both a pose and an image feature
is represented as a vector of numbers although of widely different dimensions, the pose
having dimension 29 in this thesis and the image feature anything from a hundred to
several thousand dimensions.

3.5.1 Pose space norms

The pose space can be described in multiple ways, but as described in Chapter 2 it is
common to use a joint representation meaning that the pose is represented as a vector of
the joint angles. One commonly known problem as noted in [25] is that it is difficult for
a distance measure to take into account that different joint angles have different effect
on the intuitive distance measure. Perhaps most notably, changing one of the outermost
joints hardly changes the appearance of the hand whilst moving a joint closer to the
wrist will have a larger effect.

However, in this thesis as in many other works on HPE a naive approach to the
distance measure in pose space is taken. Three norms are tested, namely, the Manhattan
norm (L1), the Euclidean norm (L2), and the max norm (L∞) which is also known as the
infinity and Chebyshev norm. The reasoning for testing the L1 and L2 norm is simply
that they would in some sense measure the sum of differences between joints with the
L2 norm penalizing bigger differences more than the L1 norm. Using the infinity norm
means picking out the dimension which has the greatest difference. This can make sense
for poses that are close to each other since it would pick out the joint or viewing angle
dimension with greatest difference.

3.5.2 Feature space norms

The feature spaces also behave in such a way that a specialized distance norm might
be wanted to best describe closeness in the feature space. The wanted property is that
closeness in feature space corresponds to closeness in pose space, but since the mapping
between those can sometimes be very complex and sometimes even ambiguous it is
unlikely that a distance measures that guarantees this property can be found. Instead
the focus is on finding a feature space in which a naive distance measure such as the
Manhattan or Euclidean distance performs well. However, for the MPDD feature it is
possible to think of some distance measures that could be useful as the MPDD descriptor
includes distances to the basis lines which possibly could be used as weights in a distance
measure. The proposed method is to use a distance measure of the following form

dMP DD(p1, p2) =
n∑

i=1
wi ∗ |pproj(i)

1 − pproj(i)
2 |
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where pproj(i)
1 is the i:th projection dimension of point p1 and correspondingly for p2.

The weights wi are constructed as follows

w′
i = 1

(pd(i)
1 )2 + (pd(i)

2 )2

where d(i) means the i:th distance dimension of p. The weight vector W is constructed
as W ′/|W ′|, that is the normalization of W ′. The idea behind the weights is to weigh
lines that are close to both points more. The exponent 2 also has the effect that it is
preferable that both points are moderately close rather than having one point being very
close and the other quite far away. Apart from this specially designed distance measure,
the L1 and L2 norms are also tested.

3.6 Nearest neighbour
Nearest neighbour (NN) is a regression method that finds close points in feature space
and makes an estimation directly from the corresponding poses. The most naive ap-
proach is to use the closest point’s corresponding pose directly as an estimate. The best
match in feature space may however be far from the closest pose in pose space and so
to make the method more robust it is common to compute what is known as k-NN.
This means that the k closest matches are computed in feature space and one typically
takes the mean or a weighted mean of those points’ corresponding poses. In this thesis
both mean of k-NN and the best match are examined. The reason nearest neighbour
is chosen as regression method is because it is one of the absolute simplest methods.
This is good as the focus is on how good the image features are and not on advanced
regression methods. A too advanced regression method might make it more difficult to
distinguish between good and bad image features as it might to some degree compensate
for a bad image feature.

Finally, it should be mentioned that NN can be a very computationally expensive
operation depending on the size of the training dataset and therefore approximations
are often used. There also exists algorithms such as kd-trees that are exact, but com-
putationally more efficient than the exhaustive approach. The choice of search method
particularly depends on distance measure used in feature space which should ideally be
a metric. A metric is a distance measure which has the following properties:

• d(x, y) ≥ 0, d(x, y) = 0 =⇒ x = y, All distances are non-negative and only equal
points have distance zero.

• d(x, y) = d(y, x), Symmetry.

• d(x, z) ≤ d(x, y) + d(y, z), triangle inequality.
However, one could also use non-metric distance measures as for instance the distance
measure proposed in Section 3.5.2 for the MPDD feature. In that case one could, how-
ever, be forced to use an exhaustive search method. In this thesis, all nearest neighbour
calculations are exact as the aim is not to create a fast estimation method, but rather
to measure how good different image features are.
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3.7 Method summary
To summarize, the main contribution is the new image feature MPDD. However, a
discussion on pose space and in particular viewing angle have also been presented. Apart
from presenting a new image feature, different distance measures are discussed which
both effect the feature and pose space and specifically in the case of nearest neighbour
it affects the mapping from feature to pose space.

Nearest neighbour regression is, as mentioned, chosen because it directly depends on
how distances in feature and pose space correspond to each other and so the performance
of the nearest neighbour approach is likely a good measure of an image features discrim-
inativity. To summarize how the nearest neighbour works, it starts by first finding the
nearest neighbours in feature space, that is in HOG or in MPDD space. This could
be done relative to different distance measures, but the assumptions is that the nearest
neighbours in feature space will correspond to close poses in pose space. What is a close
pose is decided by the distance measure in pose space which should correspond roughly
to the intuitive feeling of distances between poses. Given reasonable distance measures
in both feature and pose space it is possible for the nearest neighbour regression to give
relatively good estimates for the pose which will be shown in the next chapter.
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Chapter 4

Results and discussion

This section contains evaluation of the MPDD feature and its variations. First a baseline
is constructed and then multiple plots are shown that show the performance of the
MPDD features compared to that baseline. The results builds on taking the 10 nearest
neighbours of frames from the test set and comparing how far the guesses are from
the true values, that is the real nearest neighbour in the training set. The chapter is
summarized with some example frames that give a qualitative feeling for how good the
approximations are and what distances in the pose space norms correspond to in hand
appearances.

4.1 Baseline and ground truth
To test the performance of MPDD, a baseline is required and the HOG feature is chosen
for that purpose. This is natural seen as the aim of the MPDD feature is to improve
the HOG feature. It is also of interest to have some sort of measure of how far both the
HOG and the MPDD is from the best possible guess. However, what the best possible
guess or ground truth is must first be decided upon. As have already been mentioned
the difference between two poses is not easy to quantify since one might want to take
multiple things into consideration apart from giving different weights to the joints. In
this thesis, as in other works, such as [25, 28], a naive approach to this problem is
taken and three norms are explored, namely the max norm (L∞), Euclidean norm (L2),
and Manhattan norm (L1). Apart from the distance measure used in the pose space a
distance measure for the HOG space must also be decided upon as a base line. However,
this task is simpler since given the choice for the pose space the different HOG space
distance measures can be evaluated.

Table 4.1 shows images that correspond to the 10 nearest neighbours in the pose
space with respect to the different distance measures. The table also shows plots on
how the different distance measures vary which is useful to get an understanding of how
differences in appearance effect the distance measures. In the plots, the red and solid
lines are the distance measures from individual frames compared to the input frame and
the blue line is the difference from the mean pose of the 10 nearest neighbours. Note
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that the mean here is not the mean of the errors, but the error of the mean pose which
means that the mean can and sometimes have lower error than any of the 10 individual
frames.

To compare the distance measures, the L∞ norm seems to be reasonable although
the viewing angle does not seem to be captured to well. The reason for that is probably
that the quaternion representation can be changed quite a lot by changing all of the four
quaternion dimensions equally, which would only change the max norm a little. If the
Euclidean distance measure is used instead the viewing angle seems to be captured a bit
better and finally, the Manhattan distance measure captures the viewing angle the best.
However, the joint space is perhaps even more important than the viewing angle, but
from visual inspection all the distance measures seems to be quite good at capturing this
property. In the end, the pose space distance measure is a matter of choice and so this
thesis will be using the Manhattan or L1 norm to evaluate distance in pose space. All
pose differences from this point on will therefore be given in this norm unless otherwise
stated.
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4.1. BASELINE AND GROUND TRUTH

Table 4.1: Table showing an example hand frame and the 10 nearest neighbours
in pose space given three different distance measures. The images have had the
white spaced cropped meaning that all hands does not appear to be centered
even though they are in the uncropped images. Orig stands for original and is
a frame from the test set. The following columns are the 10 nearest neighbours
with respect to the specified distance measure where the 1 column is the closest
neighbour. Plots of the distances for the neighbours are also shown to give
a feeling of how differences in hand poses correspond to the different distance
measures. The red and solid plot is the distances and the dotted blue line shows
the mean error of the mean pose. Note that the blue line is not the mean value
of the distances, but the error of the mean pose.

Feature Orig 1 2 3 4 5 6 7 8 9 10

Pose L∞

Pose L2

Pose L1
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Table 4.2: An example hand frame and the 10 nearest neighbours in HOG space given the
distance measures Euclidean and Manhattan distance. Note that the distance measures
for the two HOG rows are measured in the HOG space and not in the pose space which
means that the distance plots are not monotonically increasing as is the case in the
ground truth shown in Table 4.1. In this particular example using the Euclidean norm
results in a worse guess if the closest neighbour is used rather than the mean of the
10 nearest neighbours. Furthermore, the images have had the white spaced cropped
meaning that all hands does not appear to be centered even though they are in the
uncropped images. The Orig column is the original image and the following columns
are the 10 nearest neighbours with respect to the specified space and distance measure
where the 1 column is the closest neighbour.

Feature Orig 1 2 3 4 5 6 7 8 9 10

HOG L2

HOG L1
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To decide upon a suitable baseline, the Euclidean and Manhattan norm are also
evaluated for the HOG space in Table 4.2. As can be seen for at least this particular
example the HOG seems to be quite good at capturing viewing angle, but as expected,
not as good as the ground truth when it comes to the joint space. However, the base-
line does not have to be decided upon visual inspection as the different choices can be
evaluated against the ground truth using the chosen distance measure in the pose space
(the L1 norm). Figure 4.1 shows the performance of the different distance measures in
HOG compared to the nearest neighbours in pose space. The performance is tested on
the test set and for each of the 6480 frames in the test set the nearest neighbours in
the training set is found. In the graph both the nearest neighbour and the mean pose
of the 10 nearest neighbours are plotted. Note especially that the errors are sorted in
ascending order. This particularly means that the indices on the x-axis do not have any
special meaning apart from telling how many frames there are in any particular interval.

As Figure 4.1 shows that the mean pose of the 10 nearest neighbours is better than
simply using the nearest neighbour as a guess in both the case of nearest neighbours in
pose and HOG space. This will therefore be used as the baseline and ground truth values
in the following sections. Furthermore, the Manhattan distance for the HOG features
produces better results than the Euclidean distance and the baseline will therefore be
chosen to be the mean of the 10 nearest neighbours in HOG space with respect to the
Manhattan distance.

Figure 4.1 does not show if using the Manhattan distance is strictly better than using
the Euclidean distance as the error for a specific x-value does not have to correspond
to the same index in the test set for different graphs. Figure 4.2 is instead plotted
as the difference between the Manhattan and Euclidean distance in pose error. Here,
again the errors are sorted so that the errors on the left where the graph is below zero
means that the pose error using the Euclidean norm for HOGs was larger than when
using the Manhattan distance. The main conclusion that can be drawn from this is
that the Manhattan distance is almost strictly better although there is a small amount
at the right where the Euclidean distance produces better results. From around 1000
to 6000 on the x-axis the difference in error is quite small, i.e., for most of the test
set the two distance measures performs roughly equally. The plot also shows how the
nearest neighbour compares to the mean of the 10 nearest neighbours. As can be seen
the difference between using the mean of the nearest neighbours rather than the nearest
neighbour is greater than between using different distance measures.
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Figure 4.1: The graphs shows the performance of different distance measures of the HOG
feature relative to the L1 norm in pose space. Both the best matching nearest neighbour
and the mean of the 10 nearest neighbours are plotted. The indices on the x-axis do not
correspond to any specific frame in the test set since all performances have been sorted
individually to be monotonically increasing.
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Figure 4.2: The graphs shows how the L1 norm and L2 norm compare when used in
HOG space. The graph also shows the difference between using the nearest neighbour
(NN best match) and the mean of the 10 nearest neighbour (NN mean). The y-axis
shows the difference in error between two different methods and the x-axis the indices
in the test set, but since the errors have been sorted in ascending order the indices for
different graphs can correspond to different indices in the test set.
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4.2 MPDD parameters

The aspect of interest is of course the MPDD features which can be varied in multiple
ways. First of all, as was the case when the baseline was decided, the estimation using
MPDD could be done either by the nearest neighbour or the mean of the 10 nearest
neighbours and those two options are compared in Figure 4.3. Not surprisingly the es-
timation gets better by using the mean pose. Not only is the majority of the estimated
poses better, but there are also more frames where the mean pose estimation is consider-
ably better than there are frames where the best match estimation is considerably better
than the mean pose estimation. All the experiments shown in this section is therefore
done by using the mean pose of the 10 nearest neighbours in the MPDD space.

Figure 4.3: The graph shows the differences between using the nearest neighbours and
the mean of the 10 nearest neighbours for a MPDD feature for individual frames in the
test set. As can be seen the mean gives a lower error than the best match for about
4000 frames out of the 6480 frames.
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4.2.1 Dimensionality

First, and perhaps most obvious, the size of the MPDD feature can be controlled by
changing the number of basis lines that is used for each grasping type in the training
set. Also note that the actual size of the MPDD feature will be double the number of
such lines as the descriptor includes both the projection and the distance to the line.
The effect of varying the MPDD dimension is tested in Figure 4.4 and as can be seen
the dimensionality have negligible effect.

Figure 4.4: The plot shows the performance of the MPDD feature and how it is affected
by varying the size of the descriptor. As can be seen the plot shows quite clearly that
the overall performance is not very sensitive against this parameter even though the
dimensionality ranges from 310 to 4960 which corresponds to choosing 5 to 80 lines from
each of the 31 training grasping types.

If the difference for the individual frames are plotted as in Figure 4.5. Perhaps the
most notable thing that can be seen in the figure is that the size of the MPDD feature
hardly even improves the accuracy for some individual frame but has more or less the
same performance regardless of size. There is, however, a very small number for which
the big MPDD descriptor performs slightly better than the smaller one, but the same
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can be said in reverse so there does not really seem to be any advantage to use more
lines. The MPDD feature is also compared to the baseline for individual frames and
although the HOG is clearly better there at least exists a small amount of frames for
which the MPDD feature is better. The differences is nevertheless quite low and so
regardless it can be concluded that the MPDD feature although worse still keeps a lot
of the information encoded in the HOG feature.

Figure 4.5: The plot shows the difference between using MPDD with size 310 and HOG
for individual frames. It also shows the difference between an MPDD feature of size 310
and 4960.

4.2.2 Feature distance measure
Holding everything else constant Figure 4.6 shows the effect of using different distance
measure in the MPDD space. Once again the difference is very small although the
specially defined distance measure dMP DD described in Section 3.5.2 is slightly better
than both the L1 and the L2 norm.

38



4.2. MPDD PARAMETERS

Figure 4.6: The plot shows how different distance measures affect the performance of
the MPDD feature.

4.2.3 Basis lines

Another parameter that can be varied in the construction of the MPDD descriptors is
the method in which the basis lines are chosen. As described in Section 3.4, equally many
basis lines are chosen from all the training grasps, but they can be constructed differently.
As a reminder, the three different methods are to construct lines from randomly chosen
sequences (called sequence lines), that is the same viewing angle, or constructing lines
from poses that are close to each other (called close points lines), or constructing the
lines from randomly chosen frames in each grasp (called random points lines). As can be
seen in Figure 4.7 the methods are very similar although it seems to be best to construct
the lines with the close points lines method meaning that the lines sometime span only a
certain sequence, but also sometimes span frames from different viewing angles. Slightly
surprising, constructing the lines from completely randomly picked pairs of points is not
that much worse which is surprising since one would expect that those lines does not
capture the correct subspace of HOG seen as the HOG is highly dependent on changes
in viewing angle.
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Figure 4.7: The plot shows the performance of the MPDD feature and how it is affected
by varying the method of constructing lines. As can be seen the effect is very small
although the close points lines option seems to work best.

Another aspect, related to varying the method in which lines are chosen, is how the
actual projections are done. As described in Section 3.4 the projections could either
be done on normalized or unnormalized vectors resulting in a different scaling of the
dimensions of the descriptor. However, as seen in Figure 4.8 the difference is negligible
which is again surprising considering that the distance measures does not compensate
for dimensions with small magnitudes.
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Figure 4.8: The plot shows how the MPDD features performance varies depending on if
normalized or unnormalized vectors are used in the construction of the MPDD descriptor.
As can be seen this is yet another property that does not seem to have any noticeable
effect on the MPDD features performance.

4.2.4 Conclusion on parameter settings

As have been seen the MPDD feature can be varied in multiple different and independent
ways, but the results shows that the performance is more or less independent of these
parameters. At the same time, the performance is, although only slightly, still worse
than the HOG feature and so the most likely explanations for this seems to be that
the MPDD encoding loses information about the HOG features or the MPDD features
distance dimensions causes the nearest neighbour approach to be ineffective. That the
MPDD feature would lose relevant information encoded in the HOG is possible, but then
one would expect that the MPDD got better if the size is increased which is not the case.
However, distance measure did not effect the performance much either and specifically
even using the distance dimensions of the MPDD descriptor as weights in the dMP DD

norm did not help much either. Figure 4.9 shows a plot that uses the L1 distance only for
the projection dimensions of an MPDD with 310 projection dimensions and ignores the
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distance dimensions, and as can be seen it is an improvement over the regular L1 distance
measure that also includes the distance dimensions of MPDD. It still is not as good as
the HOG, however, but as it is clearly better than even the MPDD with 2480 projection
dimensions it can be conclude that the distance dimensions does in fact worsen the
performance when used together with the L1 or L2 norm. Interestingly enough as can
be seen in the figure there is actually a difference between regular HOG and transforming
the HOG into PCA space where the number of dimensions are the same, meaning that
the transformation is effectively only a rotation. Since using the L1 norm on only the
projection dimensions of MPDD performs as well as doing PCA on HOG the conclusion
is that MPDD captures the relevant HOG dimensions as intended. However, since it still
performs worse than HOG, the MPDD feature clearly fails to use the captured HOG
subspace as well as using the L1 norm in the HOG space directly without PCA. However,
the difference to the HOG is in this case very small and especially in comparison to the
difference between HOG and the ground truth. The conclusion from this is that the
MPDD feature have potential, but either the distance dimensions must be changed in
some way or the distance measure in MPDD space must change.
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Figure 4.9: Plot illustrating how removing the distance dimensions of MPDD and only
using the projection dimensions is about as good as preprocessing HOG with PCA,
meaning that MPDD does capture the relevant HOG dimensions, but fails to use them.

4.3 Example frames

Although Table 4.1 and Table 4.2 might have given some intuition on how the pose
space differences corresponds to differences in appearance this section presents some
new example frames that also shows the performance of the MPDD visually.

Table 4.3, Table 4.4, and Table 4.5 show different example frames. As can be seen
the viewing angle is almost always estimated correctly which is likely due to the fact
that the object occlusions makes it easy to distinguish between the front and the back
of the hand. This is the case, even though both Table 4.4 and Table 4.5 have been
chosen as cases where the HOG has quite bad performances. Furthermore, in Table 4.4
the HOGs best estimation is extremely bad, but the other nearest neighbours are not
too bad in comparison. Nevertheless, even though the pose distance is large the viewing
angle is captured correctly which is expected from the HOG as it is concerned with the
2D projections form which also roughly describes viewing angle quite well. However,
this is not always the case as Table 4.5 shows where some of the nearest neighbours
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have completely wrong viewing angles. The tables also give some kind of feeling of how
differences in the pose space corresponds to actual changes in pose appearance. Pose
differences below 5 are often very reasonable approximations. However, when the pose
difference gets to around 6-7 it becomes unclear how similar they are in appearances. At
still larger differences it can almost be guaranteed that the pose appearance is completely
wrong, although the viewing angle may still be correct which is not contradictory seen
as the viewing angle only corresponds to 4 out of the 29 pose dimensions.

44



4.3. EXAMPLE FRAMES

Table 4.3: NN example frame.

Feature Orig 1 2 3 4 5 6 7 8 9 10

Pose L1

HOG L1

MPDD L1

45



CHAPTER 4. RESULTS AND DISCUSSION

Table 4.4: NN example frame.

Feature Orig 1 2 3 4 5 6 7 8 9 10

Pose L1

HOG L1

MPDD L1
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Table 4.5: NN example frame.

Feature Orig 1 2 3 4 5 6 7 8 9 10

Pose L1

HOG L1

MPDD L1
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Chapter 5

Conclusion

This master’s thesis has mainly been about constructing a new image feature for repre-
senting hand images, with the goal to get better performance with this specific applica-
tion than the general purpose HOG feature. The background for this was that Romero
et al. [25] concluded that the HOG feature’s performance in discriminative methods is
very poor. Therefore a new feature called MPDD was proposed as a feature that would
capture the HOG subspace used by hand images. The MPDD feature is built by using
projection on lines in HOG space and the corresponding distances to those lines.

An important property for an image feature is that its distances in feature space, at
least to some extent, correspond to distances in pose space, meaning that a small change
in features should only result in a small change in pose and vice versa. The performance
of the features was evaluated using Nearest neighbour regression. Generally, it was noted
that using the mean of the 10 nearest neighbours in pose space performs better than
using the best match. This also tells us that the features do not always have a locally
smooth mapping to pose space.

The features was tested on a dataset containing grasping sequences which is a realistic
scenario for a real-world application. However, since the dataset includes objects the
results might not be entirely comparable with what one might expect from free-moving
hands. To make sure that the tests in some way tested for generalizability, the dataset
was separated so that the test set contained all frames from two grasping sequences.
The rest of the grasps was used as a training set.

In the tests, multiple variations of MPDDs performances was tested against the HOG
which was used as a baseline. Those was also compared with the ground truth, that
is the nearest neighbours measured in pose space. The MPDD feature parameters that
was varied was size, distance measure, and different ways of constructing the lines in
HOG space used in the construction of MPDD. The general finding was that all the
variations of the MPDD feature had very similar performances, but not to far off from
the HOG compared to the difference between HOG and the ground truth values. This
is slightly surprising as the different variations sometimes have quite a large effect on
the descriptor vector of MPDD. Even though the MPDD is generally worse, there does
exists some frames in the test set where the performance is better for the MPDD feature
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than the HOG feature. This at least means that the MPDD feature could be useful and
that it captures some information about the image that the HOG does not.

Since the idea behind the MPDD feature is to capture the HOG subspace used by
hand images better than the HOG it is relevant to see how some other dimensionality
reduction method performs. Specifically, PCA (Principal component analysis) was used
on HOG to transform it into a space where the axises were sorted according to variance in
the data. However, when this PCA reduction was tested it was shown that it performed
worse than the original HOG. At the same time, if only the MPDD features projection
dimensions are used it performs as well as the PCA reduction. What this means is first
of all that how the HOG space is rotated plays an important roll for the performance,
at least when norms such as the L1 norm is used which is not invariant to rotations.
Furthermore, it means that the goal of the MPDD feature to capture the relevant HOG
subspace is indeed fulfilled. It also, unfortunately, means that the distance dimensions of
MPDD does not help, but rather makes the performance worse. It should also be noted
that the distance measure dMP DD specially designed for the MPDD which uses the
distance dimensions as weights in the L1 distance on the projection dimensions did not
improve the performance considerably meaning that ignoring weights as the L1 norm on
projection dimensions is better. The conclusion from this is that the distance dimensions
does not seem to capture the relevance of the lines or otherwise the weighting scheme in
dMP DD was too biased towards putting most weight on only a few lines. What distance
measure is used is therefore an important factor for the performance at least as long as
methods such as nearest neighbour is used which relies on a distance measure. In the
HOG space the L1 distance was an improvement over the L2 distance, but in the MPDD
space this difference was not as great.

Apart from the distance measure, the regression method seems to also have a signif-
icant effect on the performance seen as doing a simple change as going from the nearest
neighbour to the mean of the 10 nearest neighbours was a big improvement.

Overall it can be concluded that HOG is already a reasonable image feature which
was also seen in some examples where the estimations was not too far of visually. What
is perhaps most notably about both the HOG and the MPDD feature is that both are
very good at capturing viewing angle and only very rarely makes significant mistakes in
viewing angle. This might to a large degree be explained with the fact that using objects
in the database to a large degree makes it significantly easier to destinguish between the
back and the front of the hand. However, the most important conclusion is perhaps that
it can be difficult to motivate the use distance dimensions in MPDD as they seem to be
difficult to use and it is unclear if they fill any function. It is possible that they could be
constructed in a different way, but one should keep in mind that the distance measure
used also plays a key role, at least if nearest neighbour regression is used.

5.1 Future work

As have already been concluded the MPDD feature generally performs worse than the
HOG feature. However, seen as the idea behind the MPDD feature is to capture the
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relevant HOG subspace it is likely that the best possible MPDD feature would at least
perform as well as the HOG feature and so further research into this would be of interest
to see if the MPDD feature could in fact get better than the HOG. The following is a
list of things I think would be of interest to research further:

• As have been mentioned the distance measure is very important in both the feature
and pose space and although I have in this thesis tried at least one custom distance
measure this could certainly be extended further. This also includes distance
measures for the HOG feature.

• The distance dimensions in the MPDD could perhaps be constructed or used in
some other way. Overall, the idea with distance dimensions is very similar to using
weighted mean of k-NN in HOG space and so that would be an interesting baseline.

• It is also possible that the projection dimensions of the MPDD feature could be con-
structed differently. It is for instance possible that a non-linear coordinate trans-
formation prior to the MPDD construction could help capture the HOG subspace
of interest better. This could be done with curvilinear coordinate transformations.

• In this study a specific HOG setting was used, but it is possible that using other
HOG versions can allow for some improvement. Apart from using more bins and
a bigger grid, it is also possible to try pyramid HOG or overlapping cells. HOG
can also be used together with RGB values.

• Although, not specific to MPDD, the pose space distance measure is very important
to consider as well. The distance measure in the pose space could probably be
constructed to better correspond to the intuitive feeling of closeness for poses.
This would change the performance of any image feature although it is unclear if
it would improve the MPDD feature over other features.

• The dataset used in this thesis is somewhat limited in the sense that it includes
a very special set of hand poses, namely grasping action. However, even within
grasps one would expect some variation to get closer to reality. To do similar
experiments on different kinds and perhaps more general datasets would be of
interest to see how generalizable the methods are. This also includes testing on
real-world images.
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