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Abstract
Due to scientific advances in mobility and connectivity, digital media can
be distributed to multiple platforms by streams and video on demand
services. The abundance of video productions poses a problem in terms
of storage, organization and cataloging. How the movies or TV-series
should be sorted and retrieved is much dictated by user preferences,
motivating proper indexing and annotation of video content. While
movies tend to be described by keywords or genre, this thesis constitutes
an attempt to automatically index videos, based on their semantics.
Representing a video by the sentiment it invokes, would not only be more
descriptive, but could also be used to compare movies directly based on
the actual content. Since filmmaking is biased by human perception,
this project looks to utilize these characteristics for machine learning.
The video is modeled as a sequence of shots, attempting to capture the
temporal nature of the information. Sentiment analysis of videos has
been used as labels in a supervised learning algorithm, namely a SVM
using a string kernel. Besides the specifics of learning, the work of this
thesis involve other relevant fields such a feature extraction and video
segmentation. The results show that there are patterns in video fit for
learning; however the performance of the method is inconclusive due to
lack of data. It would therefore be interesting to evaluate the approach
further, using more data along with minor modifications.



Referat
Automatisk indexering av videomaterial baserat på

värderingsanalys

Tack vare tekniska framsteg inom mobilitet och tillgänglighet, kan me-
dia såsom film distribueras till flertalet olika plattformar, i form av
strömning eller liknande tjänster. Det enorma utbudet av TV-serier och
film utgör svårigheter för hur materialet ska lagras, sorteras och katalo-
giseras. Ofta är det dessutom användarna som ställer krav på vad som
är relevant i en sökning. Det påvisar vikten av lämplig notation och in-
dexering. I dag används oftast text som beskrivning av videoinnehållet,
i form av antingen genre eller nyckelord. Det här arbetet är ett försök
till att automatiskt kunna indexera film och serier, beroende på det se-
mantiska innehållet. Att istället beskriva videomaterialet beroende på
hur det uppfattas, samt de känslor som väcks, innebär en mer karak-
täristisk skildring. Ett sådant signalement skulle beskriva det faktiska
innehållet på ett annat sätt, som är mer lämpligt för jämförelser mel-
lan två videoproduktioner. Eftersom skapandet av film anpassar sig till
hur människor uppfattar videomaterial, kommer denna undersökning
utnyttja de regler och praxis som används, som hjälp för maskininlär-
ningen. Hur en film uppfattas, eller de känslor som framkallas, utgör en
bas för inlärningen, då de används för att beteckna de olika koncept som
ska klassificeras. En video representeras som en sekvens av klipp, med
avsikt att fånga de tidsmässiga egenskaperna. Metoden som används för
denna övervakade inlärning är en SVM som kan hantera data i form av
strängar. Förutom de teknikaliteter som krävs för att förstå inlärningen,
tar rapporten upp relevanta andra områden, t.ex. hur information ska
extraheras och videosegmentering. Resultaten visar att det finns möns-
ter i video, lämpliga för inlärning. På grund av för lite data, är det inte
möjligt att avgöra hur metoden presterar. Det vore därför intressant
med vidare analys, med mer data samt smärre modifikationer.
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1 Introduction

The extent of using video content to mediate and express ourselves has been
rapidly increasing in the modern society. Not only are videos used as entertain-
ment and information, the technical mobility allows us to record video anywhere
for any purpose. By acquiring and process information using our senses, the hu-
man brain manages to interpret and classify the events and scenarios within the
video, based on our previously achieved knowledge. Research in computer sci-
ence tries to model this extraordinary capacity for computers to use, in the field
of machine learning. To teach computers how to mimic human perception can
be useful in many regards. One would be that a well-trained computer slavishly
follows the given instructions, eliminating common human errors. It would also
be possible that the artificial perception notice patterns where humans do not,
helping us to act and become as effective as possible.

Arguably, the resource that humans tend to value the most is time. Re-
gardless of occupation, time is as valuable at work as it is at home. Obvious
applications such as running the machines of an industry at optimal speed, or
design schedules to be as efficient as humanly possible, can be done by the as-
sistance of computers. The fantasy that someone or something simply could
perform all of the tasks that people wish not to, is a part of human behavior. A
more subtle supplement, than a self-aware work robot, is the simple but pow-
erful task of categorization. By automatically store organized and categorized
information, time is saved both by the fact that it is automatized, and that
the information becomes search-able. Storing and searching is not a new con-
cept, however doing it efficiently, in a meaningful manner and automatically is
becoming more desired everywhere.

Today it is, at least for written information, expected that a simple search
containing a few describing words should be enough in order to find the intended
document. This is evolving to be true for text-based content by advanced search
engines. For example, not long ago, librarians were essential for the gathering
of any written information. While still a excellent source of knowledge and
competence, librarians are today aided by technology to store and retrieve in-
formation. Additionally, the Internet allows research to be done remotely from
practically anywhere.

It is increasingly popular to build similar applications for more complex data
than text, for example a picture or video. A picture can be considered to be
more complex in the sense that it is harder to both describe and strictly in-
terpret the content. An image is digitally constructed by millions of individual
pixels, introducing difficulties regarding how to represent and compare pictures.
Additionally, in terms of art, images can be intentionally created to be inter-
preted by the viewer, instead of conveying the message directly. Simply put,
two different images containing the same object can be interpreted entirely dif-
ferent, which complicates any attempt of making images search-able. One way
of avoiding these difficulties is to describe the picture with words, making the
problem once again text-based. Besides being conceptually different, such an
approach still has the need of a human being for interpretation, inhibiting any
automatic organization and categorization. Exploring human perception, with
the goal to teach a computer how such an interpretation is done, has created the
research field of image analysis and recognition. Remarkable progress in both
text and image recognition, e.g. search engines and facial recognition, motivates
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adding a new layer of complexity. How do you organize and categorize multiple
images that are shown rapidly in a sequence?

1.1 Video Content Analysis

A temporally consistent sequence of images forms a video. As said, an image or
frame, has room for interpretation that can vary dependent on the viewer. The
semantic value of a picture is part of what makes painting and photography an
art form; a certain constellation awakens emotions and sentiments differently
for different people. Not surprisingly, video inherits this property since it is,
in fact, a series of images. Aside from the interpretation of each individual
frame, additional information is added to the content by showing images in a
sequence. Consider a video starting with a person jumping high into the air.
Played normally, the viewer might get the impression of an athletic person,
who can jump that high. If the order is reversed, it instead results in a person
falling, luckily landing on his feet. Mixing the frames randomly on the other
hand would most likely be interpreted as nonsense.

It is evident that video- and film-making is an artistic form of conveying
a message, raising an emotional and semantic response. The sentiment is ad-
ditionally, compared to images, dependent on the temporal context, i.e. how
the sequence relate to a time-line. Besides these added complications in terms
of interpretation, time also introduce a new dimension in terms of description.
Where images or frames are structured by pixels, a video consists of a sequence
of pixels, altering frame by frame. A frame of a video, with typical resolution
and color (1920x1080, RGB-space) yields over 6 million pieces of information.
Considering that a two hour video consists of over 10 million frames, one starts
to realize that teaching a computer to interpret correctly is harder than it might
sound. To complicate the learning even more we want to enforce the interpreta-
tion that coincides with human sentiment, otherwise people still have to make
an effort themselves. Simply put, when trying to perform an image- or video
recognition task, the choice of information to extract is of great importance.

The information contained in a single pixel is not descriptive enough to
represent the content in an image, thus even worse at resembling a video. Even
when two images, or videos, showing the exact same object is compared, pixel
values vary depending on the lightning conditions, camera configuration, object
orientation etcetera. This variation between frames may or may not contribute
to the general understanding. Besides extracting the correct information, or
correct features, the sentiment of a video vary with time as well. It is here
the focus lie for this thesis project; to explore whether it is possible to teach
a computer how to interpret video similar to human sentiment. A producer
of a video much often intends to stir up feelings and convey messages to the
audience. Even nonsense is conceived as nonsense. More common is to express
events of a certain feeling or mood, such as a sad moment or a joyful dinner
party. The aim of this project is to study the behavior and characteristics of how
to create such a sentiment in video, with the purpose of teaching a computer
to recognize these patterns automatically. Doing so requires the knowledge of
multiple fields besides information extraction as introduced earlier. The next
chapter will for that reason briefly mention relevant areas, as well as the outline
of the remainder of this report.
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2 Background

As hinted previously, the understanding of video for us humans involves time as a
parameter, thus it can be assumed to affect computer vision as well. Depending
on the number of frames included, the video is interpreted differently. When
examining the temporal characteristic it is therefore useful to segment the video,
to form milestones for the learning task. This motivates that, when analyzing
video, segmenting the video into groups of frames helps in interpreting content
accurately.

2.1 Video Segmentation

Segmenting an image is important for some image recognition tasks. Consider
an image of a boat out on the sea. To analyze the color of said boat, it would
be beneficial to remove the background. The only colors that remain belong to
the properties of the object of attention. The representation of the image has
therefore been reduced, at least a fewer amount of pixels have been selected. It
is thus not surprising that segmentation affects the understanding of video as
well. Even though segmenting each frame can be of use for video analysis, it
is of greater purpose to segment the video with respect to time, namely group
frames in a structured, meaningful manner. Forming a sentiment of a video is
mostly done with respect to time, thus the less importance of a single frame.
Maintaining the order of frames as well as playing the video forwards is obviously
a requirement for correctly interpret or classify the event in the video. Recall the
example of a video with a jumping person, being played backwards or forwards.
By grouping too few frames, parts of the conveyed message will be lost, since
the event or action in fact consists of more frames. Likewise, grouping too many
frames will bring the event out of it’s context, merging different and (maybe)
unrelated content. Additionally, since the goal is making video content search-
able, such segmentation has to be both automatized and properly structured,
to be able to be organized and categorized in a representative fashion.

The key word of the last sentence is properly. What is a proper segmen-
tation in order to teach a computer to provide a sensible semantic label? As
mentioned, segmenting in terms of the different events and actions are desirable,
but it does not seize the larger semantic value. Consider again a person jump-
ing high into the air. Without knowing why the person is jumping, it is quite
irrelevant. However if seeing beforehand, an object which the person is trying
to reach, the sentiment changes. A useful segmentation would thus reflect what
is searched for, making each video recognition task different depending on the
intention.

2.2 Machine Learning and Classification

Since organizing and cataloging is task-specific, it is important to reflect on
concepts that are characteristically relevant when searching for video. Media
distributors, such as Netflix[1] or Amazon Instant Video[2], are increasingly
popular as a result of faster and more reliable Internet connections, as well as
improved hardware. Currently people watch TV-series and movies on multiple
devices such as mobile phones, computer tablets and the like. Storing and
streaming videos is mostly not a problem, however the cataloging of videos is
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often done manually. A YouTube video is tagged with keywords describing the
content, while streaming services tend to sort the content by genre. Apart from
being a vague and broad concept, genre does not necessarily work as a measure of
similarity between movies. Roughly said, the enormous information contained
in a longer video production is only described by a few words describing the
genre. Useful social network applications such as rating systems and comments
help users to identify the properties of a video. Additionally, user behavior is
utilized as a suggestion system, trying to find connections between users with
similar preferences.

Analyzing videos, with the purpose of classifying the characteristics inside
the video, would not only automatize cataloging and organizing, but also add
a more specified ability to search for videos matching the user preference. By
teaching computers, using machine learning, how to recognize certain properties,
would add a supplement to the existing genre specification as well as create a
way to compare video productions more thorough. An example of such concept
could be to search for how much action a movie contains, or to recognize ”feel-
good” movies. In 2009, the media distributor Netflix announced the winner
of a one million dollar contest[3]. The challenge was to beat their existing
recommendation system by 10%. The prediction engine should estimate whether
a user will enjoy a movie or not, based on how other users have rated other
movies. This shows that there is both interest and practical use of the research
included in this thesis project, besides yielding information about how the video
structure affects human interpretation.

2.3 Report Outline

Towards an automatic video labeling system, multiple fields have to be explored.
Before getting into the details of this machine learning assignment we will first
visit the world of filmmaking. To gain knowledge about video production, chap-
ter 3 reveal common guidelines for movies and TV-series. The secrets of video
production along with this introduction yields enough knowledge to formulate
a problem description in chapter 4. Once the assignment is set, chapter 5 will
start to unravel the task at hand, by presenting relevant research and related
work. Chapter 6, 7 and 8 describes the techniques chosen and used in this thesis,
in terms of feature extraction, machine learning techniques and segmentation.
We will then take a step back, summarize what we have learned, in the form of
a methodology outline in chapter 9. The performance is evaluated along with
results in chapter 10, followed by conclusions and future work in the last section;
chapter 11.

3 Video Editing

The contained information within a movie is both vast and complex. Charac-
teristics such as color, motion and alignment with respect to time, all contribute
to how the video segment is perceived. Knowledge about the content is thus
stored in both the individual frames and the change over time, frame to frame.
In other words, investigation about spatial as well as temporal properties is of
interest when analyzing video. Since video is human made, it is created with
purpose of raising an intended response by the audience, once these properties
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are processed by our brains.
When creating movies and series, it is important to present the visual in-

formation in such a way that the viewer’s focus and attention is maintained.
Psychologists suggests that humans believe that objects continue to exist even
though it has disappeared behind an obstacle, known as existence constancy [4].
The perception of appearance and disappearance is important for apprehending
objects and events, which dictates how video content needs to be presented to
avoid confusion. In general, movies and series have to present discontinuous in-
formation in order to tell a story. The concept of continuity editing, a common
guide for film editing, is to maintain the impression of continuity even though
the content is occasionally discontinuous [5]. The next section will explain some
techniques to achieve this, with the motivation that it holds useful informa-
tion about how movies and series are made which will contribute in terms of
recognition.

3.1 Continuity Editing

In filmmaking, a shot is defined as a series of frames that is recorded unin-
terruptedly, thus a continuous segment of frames. The discontinuities between
shots are called cuts or shot boundaries, which are considered discontinuous in
at least one out of three ways; temporal, object or spatial [5].

• Temporal continuity: Temporal continuity means that the time-line of
the video is followed in real time. An example of a temporal discontinuity
would be a jump in time, e.g. a flashback of memories.

• Object continuity: The properties of the objects shown is maintained
between two shots. Unexpected changes of object properties, such as the
color of a car, are considered to be object discontinuities.

• Spatial continuity: Spatial continuity refers to the same spatial setting,
e.g. location. A typical and obvious discontinuity would be moving from
indoors to outdoors.

Note that these concepts are defined for video editing and filmmaking, not
image- and video analysis. Spatial information may refer to location for video
production, while referring to pixels properties of an image in image analysis.

The shot often describe a single action, for example a person performing a
jump into midair. Recall that such a description is insufficient for describing a
larger event. To fully grasp the intention of a video, a sequence of shots has to
be presented in a meaningful order, thus forming a larger video segment which
is called a scene. Since both shots and scenes begin and end discontinuously
in some manner, it is important to minimize how these disturbances affect the
viewer. The following editing techniques and concepts, which are more elabo-
rately explained in [5], has been selected as an example of how producers and
directors may avoid confusion.

3.1.1 180 ◦ Rule

The foundation of the continuity system is the 180 ◦ rule[6], which is a guideline
for camera placement and editing of a scene. More specifically it is a line, split-
ting the three dimensional space of the current setting. The line is set by filming
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an Establishing Shot perpendicular to this axis, with the purpose of establishing
the context for a scene. Any upcoming content in the same scene should be kept
within the 180 ◦ arc of the established line. Following the 180 ◦ rule ensures that
relative positions are preserved, minimizing the effect of the object discontinuity.

Figure 1: Illustration of the 180 ◦ rule. The recording of the scene is established
on the right side in the figure. By doing so, the spatial relationships have been
set. Crossing the 180 ◦ set by the establishing shot and the characters in the
scene, would reverse the positions in the scene, causing confusion.

Imagine a dialog involving two persons as shown in Figure 1. The establish-
ing shot shows the initial positions of the characters, relative each other and
relative to the surroundings. A line connecting both persons will set the 180 ◦

allowed by this rule. The shots will then, most commonly, alternate between
the persons depending on who is currently speaking. Crossing the line between
two shots would reverse the relationships of the scene, i.e. the person on the
left side of the screen will, in the next shot, appear on the right side and vice
versa.

3.1.2 Matched-Exit/Entrance

Changing the location or setting between shots is as mentioned above a spa-
tial discontinuity. This is however often needed, for example when following a
traveling object from one location to the next. To create the illusion of spatial
continuity, a matched-exit/entrance cut is used. Once an object exit the screen,
it should enter as expected in the following shot.
Imagine a character traveling by car. If the car exit at the right side of the
screen, it is expected to enter from the left side in the next shot. Even if sig-
nificant time has lapsed between the shots (temporal discontinuity), the spatial
discontinuity is perceived as less confusing if the expected entrance is used.
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3.1.3 Fade and Dissolve

Temporal discontinuities are essential to movies and series, you occasionally
want to skip time or present a character’s memories. To minimize the confusion
arising during cuts, certain methods are used to help the viewer apprehend
the content. A common technique for letting the viewer know that time will
pass is to use fade or dissolve effects. This means adding a gradual transition
between either two shots or fade to a black frame, indicating the beginning
of new content. Worth noting is that such effects creates expectations on the
following shot, for example the viewer might expect that the main character’s
clothes change from one day to another.

Editing techniques, such as presented above, show how producers work in
order to minimize the effect of the discontinuities present in video content. In
one definition of shot properties, it is suggested that every shot can be parti-
tioned into one out of eight different categories[5]. While cutting between shots
affect how the video is interpreted, it is equally important is to know how to
draw and maintain attention during the shots.

3.2 Attention

Filmmakers and editors intentionally directs the viewer’s attention to achieve
the desired effect, e.g. suspense or drama. Not surprisingly, some approaches
of action recognition and video indexing include attention based models in an
attempt to capture the essential visual information[7]. Without further expla-
nation, the following list of visual features is considered to capture attention.

• Abrupt appearances and disappearances of visual objects[8]

• Onset and noticeable motion[9, 10]

• Contrast or luminance changes[11]

• Apparent color changes[10]

• Looming stimulus (rapid size change)[9]

Many of these often occur in movies and series, achieved in different ways. The
recorded content itself can contain an event which captures attention, e.g. a
sudden movement. In addition, one can capture attention by editing or using
special effects.

3.3 Summary

Since film making and editing adapt to human perception, these kinds of char-
acteristics can be expected to be true for most videos, at least for movies and
series. Thus, using them for recognition feels natural. Commonly there exist
eight different types of shots, used for building scenes. Each scene has the in-
tention of telling a story and conveys a certain mood, which introduces a bias
for film making. Certain methods (such as continuity editing) are used to prop-
erly convey the intended message, creating properties of movies and TV-series
to be used in image- and video recognition. The remainder of this thesis will
examine to what extent it is possible to recognize these patterns and proper-
ties, with the purpose of classifying the atmosphere or mood of a video sequence.
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4 Problem Formulation

With the purpose of organizing and cataloging video productions, it is important
to determine in what way the videos should be search-able. Classifying the video
segments based on the stories and events, would result in a search yielding only
movies telling basically the same story. While people tend to have a favorite
movie or TV-show, most prefer to watch previously unseen content. A more
practical measure of similarity is the resulting impression after watching the
video. In other words, by classifying the mood or atmosphere of a video segment,
a search is bound to suggest movies which will be interpreted similarly, possibly
with an entirely different story. That being said, a scene can no longer be defined
as a sequence of shots explaining a story.

Refer to Figure 2, which intend to illustrate the difference in segmentation.
A shot is formed by the grouping of continuously recorded frames. An event,
or an atmosphere, is formed as a sequence of shots. As the last row of the
figure shows, the shot sequences for events and atmospheres does not necessarily
align; an atmosphere can be changed in the middle of an event. For the purpose
of this thesis, the scene delimiter is the change of atmosphere, instead of the
event. Consequently we are now able to formulate the classification task at
hand, along with an mathematical description, as well as initial expectations
for such a classifier.
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Figure 2: Description of Frame-to-Scene segmentation. The frames of a movie
can be segmented in to shots. A sequence of shots can describe an event, while
another sequence set the atmosphere. These two different concepts of a ”scene”
do not necessarily coincide; an atmosphere can change in the middle of an event
and vice versa.

4.1 Goal

The purpose of the work in this thesis is to classify the sentiment given by a
Hollywood production, more specifically a movie or TV-series. Such a video is
filmed and edited to evoke the specific emotion or feeling that the creator is
trying to convey. The viewer’s sentiment will from this point on be called the
atmosphere of the video. Editing techniques to achieve a certain atmosphere
is expected to induce patterns and impressions within the video. By trying to
find and learn these properties of a video, the following atmospheres will be
classified:

• Eventful: A scene which includes a lot of motion, camera movement or
rapid cutting. There exists a few different types of eventful scenes. One
example is a fighting scene, often viewed as a video segment with high
motion and frequent editing. Another would be a scene altering between
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shots of many different events with the same temporal placement, i.e.
events meant to be perceived as carried out simultaneously.

• Gloomy: Depressed and funereal moments will be labeled as gloomy.
This covers the emotional state such as sad, as well as more general low-
spirited ingredients. A good example would be either an event of total
hopelessness or a more obvious occasion; a funeral.

• Tense: Scenes with the intention of creating suspense and tension such
as a threatening conversation, gun stand-off and the like.

• Joyful: Festive events such as dancing and partying are considered joyful
moments. Some video segments could also have a general ”feel-good”
feeling. It will mainly be used for longer sequences of joy, not just a single
joke.

• Introductory: Often occurring story-building shots do not necessarily
have any atmosphere at all, except for basic narration. Introducing char-
acters or standard conversations that can be hard to label will be labeled
as introductory, which might be a poor choice of words.

• Emotion: An obvious emotional scene is the romantic scene, however the
label emotional will additionally include moments intended to touch the
viewer emotionally.

• Other: This category will not be part of neither training nor testing.
Parts of a movie or series such as an intro or credits will not be interesting
in this thesis and is labeled for the sole purpose of deletion.

Realizing that labels of concepts like the above cannot be classified by the
information contained in only one or a few frames, motivates that the video
content in fact has to be structured in a more semantically meaningful manner.
Partitioning a video automatically will require the extraction of information,
or a set of descriptive features. It is not necessarily the same information that
will be needed for classification, dividing the task slightly into two subprob-
lems; segmentation and classification. Features will typically be extracted from
each frame, while the classification refers to a collection, or segment of multiple
frames. Thus segmentation introduces the need of transforming the frame based
features into a group-of-frames representation, to properly prepare for teaching
a machine to interpret the video. Do not be fooled, such a machine learning
problem is challenging by itself.

4.2 Expectations

With this knowledge, and a somewhat more specified approach, some expecta-
tions start to develop. As mentioned, the creation procedure of filmmaking is
expected to leave traces to be used for recognition. For example, a dialog be-
tween two persons in a movie is typically viewed as alternating shots of close-up
images of the person speaking. These traits will hopefully be separable in terms
of video content differences so that the atmosphere of a scene can be uniquely
represented as a sequence of specific shots. The spatial and object properties
of a video should be fairly straightforward to capture, since the change of e.g.
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location or color is noticeable by just comparing two subsequent frames. Tem-
poral elements are however harder to extract, for there are no evident way of
how to relate a frame or video segment to the movie time-line.

The atmospheres to be recognized are based on sentiment which can be ex-
pected to affect the results both positively and negatively. A sentiment varies
dependent on the viewer, which introduces a vagueness and ambiguity for learn-
ing. In addition it is expected that the analyzed videos are biased by the creator,
e.g. the video’s producer and editor. By assuming that content from the same
TV-series are created similarly, any changes and correlation in the video data
can be considered to contribute to learning. Consequently, an interesting anal-
ysis will be how well the classification generalize, i.e. the performance when
trying to process dissimilar video content.

While all of the above sounds promising, maybe the biggest challenge will
turn out to be how to represent a series of frames in a way that correlates with
the labels correctly. Not only does this representation require proper informa-
tion extraction along with a merged description (for multiple frames), but it
also needs to be representative for all variations of the same atmosphere. This
will add to the fact that computer vision is regarded to be a complex artificial
intelligence task [12], which most often generalize poorly globally.

4.3 Formal Mathematical Description

Even though required information from each frame is to be determined, it is
possible to structure the problem mathematically, at least as an initial outline.
The information from each frame can be described as a row-vector, or feature
vector x. It is generated by concatenating the result of p different features,
yielding M values as,

x = [v11, . . . , v1q1 , v21, . . . , v2q2 , . . . , vp1, . . . vpqp ], x ∈ RM , (1)

where vpqp represents the q:th value of feature p. Notice that the number of
values qp may vary for each feature, e.g. histograms with various bin size.
The dimension M of the feature vector is basically the resulting amount of
information values extracted from all features. For a video consisting of N
frames, one vector of features xi is extracted from each frame i, creating a set
of features X,

X = [x1, . . . ,xi, . . . ,xN]T, X ∈ RN×M . (2)

Earlier it has been discussed that the problem of video recognition requires some
kind of segmentation of frames in an attempt to capture the temporal context.
Regardless of segmentation or division of frames, it is still true that every frame
will be given a class, or label, representing the atmosphere. Although a single
frame does not contain the information of why it’s labeled a certain way, each
frame will at some point after classification be given a label, as part of a bigger
concept. The set of labels Y , consisting of the corresponding label for each
frame, can be formulated as

Y = [y1, . . . , yi, . . . , yN ]T , Y ∈ RN×1. (3)

The essence of what machine learning is trying to achieve is to learn a function
F , with the purpose of finding correlations between the input X and output Y .
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More specifically, assume that there is a function F that maps the elements of
X into the range of Y ,

F : X → Y, (4)

since Y represents the concept that is being analyzed. Each pair (x, y) ∈ X×Y ,
constitute as an example of the behavior. The task is to find a hypothesis h,
such that

h(x) = F (x), ∀x ∈ X, (5)

in other words learn an approximation of F . After mentioning a couple of pre-
requisites for this thesis, we will start to unravel the details of how to find such
function, with the intent of automatically organize and catalog video produc-
tions.

4.4 Prerequisites

Progress in the development of both digital video technology and new com-
plex media platforms, allows the modern user to access high-definition video
and audio almost everywhere. The trend is to extend the audio and video
quality even further [13]. Consequently, storing and distributing of video ben-
efits from advanced compressing and decompressing techniques and standards.
An uncompressed high-definition video requires a bandwidth of 1.5 Gbps to
be transmitted in real time [13]. Besides creating a field of research regarding
storage and compression, it motivates that a framework is needed in order for
us to analyze video productions. Erik Bodin has during the time of this thesis
been researching into a image and video recognition closely related to this work,
providing a collaboration in terms of video and audio rendering, as well as video
analysis. The framework, developed in Java, allows the user to with simplicity
construct ways of extracting information from a video. Since Erik is performing
a classification analysis himself, the program aids in building classifiers, label
video frames and visualize data. Throughout the rest of the thesis, this frame-
work will be referred to as Fava: Framework for Automatic Video Annotation
[14]. The power of being able to exchange knowledge and ideas, in a mutual
environment, has built a well-equipped foundation for this master’s thesis.

5 Research and Related Work

Instead of blindly jump into the vast high-dimensional pool of information hid-
den inside a video, struggling to find portions of structure and order, one can
linger in uncertainty a bit longer. What if there already is a accepted way of
segmenting video frames? Somebody ought to have at least extracted color in-
formation in an image before. As in all fields of research, it is vital to examine
achievements in related assignments, searching for clues and hints of how to
proceed with a given problem. Not only does such exploration provide the pos-
sibility of utilizing methods proven to work, it is also an aid for what to expect
and suggests the focus of attention. The following section will dive briefly into
previous research and commonly used concepts that can be useful.
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5.1 Image Recognition

Automatic image recognition has become a popular field of research, as well as
attractive for various practical applications, e.g. automatized surveillance sys-
tems. For the 10th year of annual conferences, the International Conference on
Image Analysis and Recognition (ICIAR) received 177 papers from 36 countries
presenting the latest research [15]. The scope of area of applications is large,
covering the field of biometrics[16], medicine[17] and tracking[18], to name a few.
A noticeable integration into our society is the use of advanced face recognition.
Searching for faces in images automatically is one of the hardest recognition
tasks, yet it can be achieved nowadays with an accuracy above 95% [19]. To
account for images with unfavorable conditions, such as poor lightning, low res-
olution, unrepresentative camera angle, the algorithms in image recognition has
become increasingly sophisticated [20]. While good accuracy is preferred, these
complex methods still have to meet the application’s limitations in terms of
speed and computational complexity. Thus, scientists working in image recog-
nition are also researching into ways of improvements regarding compression,
image matching, searching and optimization[21, 15].

From the variety of image recognition tasks, there exist representative image
descriptions to be utilized for the purpose of this thesis. For instance, a good
image representation need to address the fact that images is a 2D-projection
of our 3D-world. An object in an image can therefore vary in terms of scale,
rotation and illumination, giving rise to complications for recognition [22]. It is
in this sense important that any characteristic information, or feature, extracted
from the frames in our video, account for such variations. Another thing to keep
in mind is that some advanced features are too computationally heavy for use
in videos; it is simply not possible for some algorithms to process every frame
in reasonable time[20]. Since the task at hand is in fact video recognition, it is
more interesting to read into more closely related research.

5.2 Action Recognition

Seeing the progress in image recognition, it is of course intriguing to extend
the analysis to work for videos. While it is impressive to recognize, com-
pare, sort, catalog and retrieve images, the use of action recognition in video
is more connected to relevant human queries. Teaching a computer to under-
stand the temporal properties of videos could, aside from analyze media broad-
casts, aid humans in everyday situations. What first come to mind is robot
vision and human-robot interaction[23]. More subtle examples of applications
are sport analysis[24], security[25], medical aids[26] or behavioral understanding
[27]. With focus towards video analysis, how is it that humans can interpret a
simple action almost instantaneously [28]? The author of the latter draws a par-
allel between video frames and human visual perception, suggesting that most
progress in action recognition uses too much information (number of frames).
Additionally it is presented that a common way of analyzing videos are to ex-
tract a relatively local feature set, a few frames, to classify an event or action.
The claimed problem, despite successful results, with such an approach is that
the classification lags behind the observation. This basically means that to de-
termine an action, these methods need to look into both the future and the
past, i.e. delay the decision compared to the observation.
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Regardless of the hint that the amount of collected information can be re-
duced for basic actions to be recognized, the progress in human action classifi-
cation and behavioral recognition [29, 30, 31, 32] motivates that it is beneficial
to segment and partition frames for various action and event recognition assign-
ments. In addition, more closely related work regarding movies and TV-series
[33, 34, 35, 36], all use shot segmentation as part of in larger machine learning
task. The most closely related research is described in [37], where the task is
to classify horror scenes in videos, based upon emotional perception. Not only
does the author use segmented video sequences, it also provides experiments
showing that audio features as well as emotional features increase recognition
performance in this context.

All in all, for both image and action recognition, it is evident that there
is valuable information hidden inside videos and their frames. Knowing what
information to keep and how to represent it is seemingly dependent on what you
are trying to learn. A common denominator for most of the mentioned work
is the need of choosing a machine learning technique fit to process the specific
data. Assuming that it is possible to extract information that correlates with
the behavior of video we are studying, the next step would be to find a suitable
way of learning these characteristics. In order to understand and make a valid
choice of learning algorithms, first we have to go through some basics of machine
learning.

5.3 Machine Learning

Patterns in data have been essential for human life for ages. In order to hunt
animals for food, humans studied behavioral patterns of their prey. Interpreting
environmental factors, such as weather or seasons, aided humans in how to
successfully grow crops. Today it is ridiculously easy to gather and store data
in all shapes and sizes. As the performance of hardware increases it becomes
more important than ever to attempt to interpret the data:

We would all testify to the growing gap between the generation of data
and our understanding of it. As the volume of data increases, inex-
orably, the proportion of it that people understand decreases, alarm-
ingly. Lying hidden in all this data is information, potentially useful
information, that is rarely made explicit or taken advantage of.[38]

Studying data is presently used in many occupations, either by intention or
unintentionally. While a statistician is employed to study data to make business
changing decisions, a doctor base his assessment partly based on the experience
given by treating other patients. In this report so far we have discussed the
possibility of automatically learning from experience. The mood or atmosphere
in a video is a concept that we are trying to enforce computers to learn, by
considering the human perception being the ground truth. Note however, that
machine learning can be used just as often for the purpose of studying pat-
terns that machines notice, when humans do not, presenting the opportunity
for people to make more informed decisions.

Differences similar to the above example, tells us that different tasks require
different types of learning. The behavior to be learned is called the concept [38]
and the output from a learning machine is said to be the concept description[38].
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In our case, the concept is learning the atmosphere of a video by feeding exam-
ples based on video sentiment analysis.

5.3.1 Learning schemes

The existing conceptual differences split machine learning into four branches.
Depending on what is desired to learn, or what the output from the learn-
ing machine should be, it is common to divide machine learning tasks into
either classification learning, association learning, clustering and numeric pre-
diction[38]. One of the main differences in each approach is what is given as
input. Classification and association learning is taught by presenting training
examples. Each training example consists of a set of features along with the
correct class label. Classification learning slavishly searches for relations and
patterns between features amongst the training examples, learning how they
correlate with the given labels. For association learning, the labels are indeed
given, however the learning scheme aims at finding associations not only decided
by the labels, but any association in the feature space.

It is not always possible to provide the correct answer, supervising the learn-
ing. In cases where the structures of the data needs to be found in an unsuper-
vised fashion one commonly use clustering. By studying the correlations and
patterns between features, the input data is divided into clusters or regions,
with examples sharing a similar feature representation. Another unsupervised
technique is called numeric prediction where the output is not a class but a
number. A model built with numeric prediction can be seen to provide the
value of the class rather than the class itself.

5.3.2 Evaluation

Finding and learning the patterns is one thing. We have fed examples to our
classifier, pressed play, taught the machine everything there is to know. But
how do we see what is actually learned? Imagine that we use unsupervised
clustering of all the frames of the video, with respect to their feature vectors.
Would the results of the clusters be the same division as we intended? Often
when using unsupervised learning, the common way to evaluate the result is
to somehow visualize the connections and relations, study how well separated
the data is; poke and prod too see if the patterns resembles anything useful.
For supervised learning schemes at least there exist the possibility of validation,
merely check the labels that have given as ground truth. However, by testing
the learned classifier using the same data as for training, odds are that any
calculation of error rate is misguiding. Say that, in our case, the computer is
taught using a video of a TV-show that is only recorded inside, e.g. a sitcom.
The classifier might predict close to 100% correctly when using the same data
for training as for testing. What happens if feeding the classifier with a new,
previously unseen example, like an outdoor scene? Probably, the classifier has
no idea how to predict the label correctly. The performance of a classifying new
data is usually known as how well a model, or classifier, generalize.

In terms of learning, it is apparently important to choose representative data,
covering most of the possible situations for a concept. In addition we need to
separate the input into a training set and a test set (at least). A learning
technique suitable for the concept has to be found, and we do not yet know
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what the input will consist of. This choice also has to account for other factors
such as computational complexity, linearity of the data and so forth. Things get
complicated quickly, why it is fortunate that there are other scientists working
around us.

5.3.3 Related Work

Starting with the things we do know: the data is a video, a series of frames. It
is expected that the temporal order will have an influence for learning, which
will be supervised. The indication by an extensive summary of temporal video
segmentation attempts, is that segmenting the video into shots is a representa-
tive way of describing temporal components [39]. It is strengthened by the fact
that work regarding movies and TV-shows [37, 34] indeed uses shot segmenta-
tion as the descriptive unit. Regardless of objective, clustering is a possible way
of describing similarity between shots [33, 35]. The temporal understanding
or semantically larger concepts, can be analyzed by studying the ordering and
altering of individual shot types [36, 33]. Sequential data in form of numbers,
letters or types, is closely related to other fields, e.g. text classification tasks or
DNA-sequence recognition. The study of pattern is sequences is thus not new
and progress has been made using Support Vector Machines (SVM) along with
string kernels [40, 41]. Glancing back at the most similar report, horror scene
recognition, they in fact also make use of Support Vector Machines, although
not together with string kernels [37].

5.3.4 Summary

By briefly touch upon recent successes in machine learning, a lot has been
provided in terms of assignment outline and focus of interest. It is evident
that the possible approaches are many and that the field of video recognition
is huge. Since a thesis is a project with limited time, it is of the essence to
make choices accordingly. Not only is the implementation of some algorithms
time consuming and advanced, it simply would not be possible to test and
evaluate every promising method qualitatively. Reading the related research
articles provided valuable insight in the necessary parts of the assignments in
this thesis. This allows us to specify the work flow a bit more detailed than
earlier. From the research it is suggested that we:

• Extract features that characterize the content both spatially and tempo-
rally.

• Segment the videos into group-of-frames structures, e.g. shots.

• Find suitable algorithms for learning, where the Support Vector Machine
(SVM) is a common choice.

From the knowledge about the assignment we can furthermore state that:

• Features will have to be designed and analyzed to match the searched
atmosphere labels.

• Labels will be set based on the sentiment given from watching the video,
i.e. supervised learning will be used.
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As can be expected, many of the items listed involve plenty of various con-
cepts, techniques and analysis that can be utilized. The more technical upcom-
ing sections will present the knowledge needed in order to understand the final
setup, rather than explain all possible principles.

6 Feature Extraction

No matter what the structure the videos are segmented into later on, the in-
formation contained in each frame has to be extracted. The characteristics of
an image, i.e. color information, contrast or luminance, is commonly known
as image features. Given an image there is an abundance of possible features
to extract. Color features, edges, shapes, statistical properties [42] and much
more can be computed for every pixel in the image. Furthermore one could
examine portions of the image separately, either by a fixed window size or as
the result of some kind of segmentation. It is possible to add filters to get rid
of irrelevant information, creating yet new representations. The abundance of
high-dimensional observations is a problem for many applications besides image-
and video analysis, e.g. traffic prediction or advertisement optimization [43].

Assume that each pixel in an image uses three channels of colors, where
the value of every channel range from [0 255]. Considering how an image with
resolution 1920 × 1080 result in over 2 million pixels, all possible images span
a huge feature space. The image data can be said to be drawn from any part
of this high-dimensional space. However, imagine this short analogy. A flat
surface, e.g. a pane of glass, resides in the physical space (3D). Regardless
of how the pane is rotated or positioned, the internal relations of the pane
remain intact. Analogously, assume that two similar pictures, for example two
similar faces, are drawn from the same structure within the feature space. This
would imply that the concept of faces could be expressed in a subspace of
lower dimension, similar to the pane. The assumption that there exists a low-
dimensional subspace containing only the structure that corresponds to a certain
concept, is known as the manifold assumption. Learning the structure of the
manifold would thus entail a significant dimensionality reduction.

Most successful high-level computer vision advances have been achieved by
extensive analysis of features, combined with great domain knowledge, rather
than explicitly learning the properties of a certain manifold. In a sense, these
features could be seen as a lucky mapping to the manifold. Imagine again
the face recognition task, and furthermore suppose that a feature set has been
found, along with a proper learning algorithm. The classifier is trained with
images containing only faces of women, and performs well for female faces.
What happens if feeding the classifier a manly face? The performance of the
classifier will depend heavily on how well the features follow the structure of the
manifold. The training examples given will work as samples of the surface, while
the classification algorithm can be seen as the interpolation method between
samples.

With a large enough set of training examples, along with the proper set of
features, this structure could be learned at least locally. How well a trained
model will generalize, depend on how accurate the interpolation between exam-
ples turn out to be, with respect to the manifold. The authors in [12] suggest
that the use of non-linear mapping, e.g. kernels, is most often only a local gener-
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alization, which assumes that the target function is smooth enough. However in
many tasks, for example computer vision, this assumption of a smooth function
is not enough to handle the complex nature of the data, i.e. the curse of dimen-
sionality. This basically means that the target function to learn is increasingly
complex with the number of task relevant factors, thus increasingly complex for
increasing dimensionality. The way to adjust is to either gather more examples,
or construct features that characterize the concept in a better way.

6.1 Feature Design

We have settled that the features need to be informative for the task at hand.
Equally important for features is that they are also invariant[42]. The extracted
features in any machine learning task can be seen as the different variables
involved in making a prediction[43]. It is possible that there are variables that
should not affect the feature response. In text recognition, a word is still the
same despite different coloring of the letters. Many irrelevant variables can be
sorted out by domain knowledge. A video may vary in terms of resolution and
quality, length or frames per second, to name a few. None of these changes
should affect the output of a feature, assuming the image is the same. In
addition, the content of video can differ by rotation of camera, scale, illumination
etc. For images and videos it is therefore useful to build robust features for
irrelevant changes, e.g. resolution. Commonly one desire invariance to image
translation, rotation and scale [22, 44, 45].

The frame-to-frame differences of image histograms has been proven[46] to be
well characterizing videos, motivating the use of histograms, which are invariant
to translation and rotation [45]. The histogram is an estimate of the probability
density function for a given data set x = [x1, . . . , xn], by counting the number
of observations of an occurrence. More specifically, suppose that k discrete
intervals are formed as

k =
b− a
h

, (6)

splitting the range of the data into k bins, with length h. The histogram is then
a piecewise constant function:

f(x,p) =

k∑
i=1

piΓi(x), a ≤ x ≤ b, (7)

where

Γi(x) = Γ(h)(x− ih), (8)

denotes the rectangular function

Γ(h)(y) =

{ 0, y < 0
1, 0 ≤ y ≤ h
0, y ≥ h

(9)

and pi is the number of occurrences in bin i. Unnormalized, the sum of all
bins in the histogram results in the total number of observations. Using the
normalization condition
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N (p) =

∫ b

a

f(x,p)dx = 1, (10)

infer that pi is the probability for bin i. A normalized histogram can thus be
seen as an estimated probability distribution, which is scale invariant [44].

6.2 Static Features

The histogram of an image, i.e. color distribution, can be separately computed
for in each frame in the video. The purpose of such computations is to charac-
terize each individual frame, which will be called static features. These features
are static in the sense that only one frame is included for the computation of
the feature response. This individual description of a frame can of course be
part of inter-frame calculations at a later point, however each frame is in this
section seen as independent images. We will start by explaining how to extract
one of the most basic characteristic; color information.

6.2.1 HSV Histogram

Color can be represented in various color space systems [47]. As the application
in this thesis revolves around temporal properties of video, the colors of the
frames are less important than the frame-to-frame color differences. The choice
of color space affect the information retrieved from frame-to-frame histogram
differences [48]. Consider the default of many display systems; the RGB color
space, where colors are described as a combination of the colors red, green
and blue. Closely related by a simple conversion is the cylindrical HSV (Hue,
Saturation, Value) color space. Imagine an image filled with a single color, with
a shadow on it. In the RGB space, the area including the shadow will have
a very different description compared to the rest of the image. For HSV, the
image intensity is separated from the color information, thus the shadow will not
affect the color (or hue) much. The point is that the choice of color space affects
both how the frame histogram behave, as well as the inter-frame differences.

Additional color spaces has been invented for other purposes, e.g. model
human perception (Munsell color system)[49]. A report evaluating how the
choice of color space affect a video segmentation algorithm, show that HSV is an
effective color space representation [48]. Creating a HSV histogram estimating
the color distribution of the pixels in the image will thus be the color information
feature in this project.

6.2.2 Full Distribution Histogram

According to [37], the differences and similarities from frame-to-frame compar-
isons are important for any video segmentation attempt. When the video is
recorded continuously, within a shot, the distribution of color or edges changes
slowly. Any abrupt changes, as the peaks of Figure 3, indicate a possible shot
boundary. For a HSV-histogram, these abrupt differences arise also from larger
differences in intensity, falsely suggesting a cut. The hue is otherwise robust
to intensity changes, however once the saturation or value are very low, hue
becomes unstable [39]. This motivates the creation of what we call ”full distri-
bution histogram”. Each bin in the histogram symbolizes one combination of a
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hue, saturation and value together. Suppose a HSV-histogram contains 10 bins
for each of hue, saturation and value. The possible combinations of these bins
combined results in 10× 10× 10 bins.

Figure 3: Example of edge histogram differences, where the peaks is due to more
abrupt changes from frame to frame. The y-axis is the difference magnitude,
while the x-axis represent the frame identification number, i.e. time.

6.2.3 Edge Histogram

Edges in images are both conspicuous and important for human perception [44].
It contains information about the image that can not be described by neither
color information histograms nor texture features. An efficient way of represent-
ing the edge distribution in an image is to compute the edge histogram. The
most standard[50] edge histogram for video content, contains the distribution
of five types of edges, shown in Figure 4. The image is searched for vertical,
horizontal, 45-degree, 135-degree and non-directional edges.

Figure 4: Illustration of the five different edge types searched for in the frame.

The representation of the edges in an image is achieved by dividing the image
into subregions, either local, semi-global or global as can be seen in Figure 5.
The different images (a - e), show different partitioning for edge extraction.
Each subregion contribute with five bins to the total histogram, one for each
type of edge. In (a), edges are computed for the entire image, resulting in 5
bins. In similar fashion, regions of the image is analyzed independently in a
local (b) and semi-local (c - e) manner, contributing to a total edge histogram.
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Figure 5: Different partitioning of an image. Each configuration of pixels
contribute with five histogram bins, one for each edge type.

By counting the occurrence of the differently directed edges, a total edge
distribution histogram is created by concatenating the histogram of each subre-
gion. More details how an edge is found and how the directions are determined
is described in [44]. The setup of the edge histogram used in this project results
in a histogram with 150 bins, as suggested by [44]. Firstly 16 subregions to
represent the local distribution, creating 16× 5 bins, secondly 13 subregions for
a semi-global distribution (13× 5) and finally the global distribution, counting
the edges present in the entire image (5 bins).

Each of the features presented above have been extracted directly from the
raw data, i.e. the pixel information. It is however often valuable to observe
how the data behaves when transformed into other spaces. As a basic example
of such, consider data consisting of Cartesian coordinates (x, y). For certain
geometries, a transformation into polar coordinates (r, θ), noticeably simplify
relations. Another common transformation is the Fourier Transform.

6.2.4 Fourier Transform

The general idea of the Fourier Transform (FT) is to express a complicated
function, or wave, as a combination of more simple waveforms; sine and cosine.
This fact, and most information written is this section can be read in [51].
Since an image or frame can be seen as a value at a coordinate (x, y), i.e. a
function of two parameters x and y, the same mathematical transformation
can be performed on images. Instead of analyzing the properties of an image
directly by its pixel properties, it is thus possible to study the image in another
domain. By performing a 2-D Fourier Transform, the image is translated as a
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summation of sine and cosine waves. In other words, the image is transformed
from the spatial domain to the frequency domain, more thoroughly expressed
as

F (u, v) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−2πi(xu+yv)dxdy, (11)

where the coordinates (u, v) are the spatial frequencies. The inverse transfor-
mation

f(x, y) =

∫ ∞
−∞

∫ ∞
−∞

F (u, v)e2πi(xu+yv)dudv, (12)

show that an image can be constructed by a combination of e2πi(xu+yv), weighted
by the function F (u, v). We know that f(x, y) in the context of images is a
real value, but the FT is in general complex. To process and reason about
the frequency domain more easily, the Fourier transform is represented by it’s
magnitude and phase. The magnitude can be seen as a measure of occurrence
(or strength) of a certain frequency, while the phase symbolize the frequency
direction. An important realization from the last sentence is that the magnitude
holds properties that can be similar for two images showing entirely different
objects. The phase is crucial for proper reconstruction of the original image,
however it is less useful for image comparison. With the motivation that the
phase content contain too much details of just a specific image, the phase content
of the Fourier transform will not play any role for the features in this project.
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Figure 6: Images illustrating important properties of a Fourier transformed im-
age. First column: Image manipulations. Second column: Resulting magnitude
spectrum. Translation does not affect the magnitude of the Fourier transform,
and a rotation of the original image entail a rotation of the spectrum. Image
reference: MUST Creative Engineering Laboratory (http://lab.must.or.kr)

Studying the magnitude yields properties within an image regarding strong
contrasts, sharp edges and shapes. Imagine a sharp edge of a gray-scale image.
Crossing the edge require in a rapid change of gray values, consequently resulting
in a high frequency response. As contrast and edges in an image is, as said
earlier, vital in human perception, the magnitude spectrum holds interesting
image properties. The component F (u = 0, v = 0) is placed at the center
of the magnitude image. Low frequency components are shown close to this
center, while higher frequency components increase the distance to the center.
Furthermore, the Fourier transform introduce other interesting properties for
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image processing, e.g. translational and rotational properties. Figure 6 show
some example of image manipulation with the resulting magnitude spectrum
after performing the Fourier transform. As can be seen, a rotation in the image
induces a rotation in the Fourier space. Other manipulations such as shifting
the center of an image do not affect the frequency response. Erik Bodin[14]
constructed a feature attempting to collect such information contained in the
magnitude spectrum by measuring the spread and rotation of the frequency
response, that has been used for this thesis as well.

6.3 Dynamic Features

The features so far have only extracted information included in each image, with
no respect to the temporal nature of video. Contrary to the static features, there
are some features that require a larger segment of frames to make sense, e.g.
audio features. Even though audio features may be able to be extracted from
a single frame, audio naturally span over larger time in the form of music or
speech. Similar to audio, multiple frames is needed to be able to determine the
motion or activity in the image. Even though each frame is ultimately given a
feature value, the calculation for dynamic features involves multiple frames.

6.3.1 Optical flow

Recall the video production background, where it was stated that one of the key
factors attracting attention in videos is motion. To determine motion, it is not
surprising that more than one frame is needed in the calculations. The measure-
ment of motion will for this work be based on optical flow, more specifically the
optical flow presented in [52]. The idea of the chosen optical flow calculation, is
to use the gradients of image brightness both spatially and temporally, in order
to estimate the velocities of the motion. Let the brightness of a frame at time
t, at position (x, y) in the image, be called B(x, y, t). Assuming that brightness
varies smoothly from frame to frame, the initial constraint is

dB

dt
= 0. (13)

Let the velocities u = dx
dt and v = dy

dt represent the spatial velocities. By
applying the chain rule of differentiation, we end up with a single equation

∂B

∂x
u+

∂B

∂y
v +

∂B

∂t
= Bxu+Byv +Bt = 0, (14)

consisting of three partial derivatives and two unknown velocities u, v. Approx-
imating derivatives numerically is today common knowledge, by utilizing finite
difference calculus[53]. The derivative of a function f(x) in infinitesimal calculus
is defined as

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
(15)

for a infinitesimal step h. For numerical methods, the data are N equally spaced
samples of a function, namely f(x = a), f(x = (a + h)), . . . , f(x = (a + Nh)),
with a finite step size h[53]. Since it is not possible to reach the limit, any
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finite difference equation is an estimate of the actual derivate. While there exist
multiple forms of computing finite differences, the partial derivatives in this
thesis is estimated as

Bx =
1

4
[B(i, j + 1, k)−B(i, j, k) +B(i+ 1, j + 1, k)

−B(i+ 1, j, k) +B(i, j + 1, k + 1)−B(i, j, k + 1)

+B(i+ 1, j + 1, k + 1)−B(i+ 1, j, k + 1)],

By =
1

4
[B(i+ 1, j, k)−B(i, j, k) +B(i+ 1, j + 1, k)

−B(i, j + 1, k) +B(i+ 1, j, k + 1)−B(i, j, k + 1)

+B(i+ 1, j + 1, k + 1)−B(i, j + 1, k + 1)],

Bt =
1

4
[B(i, j, k + 1)−B(i, j, k) +B(i+ 1, j, k + 1)

−B(i+ 1, j, k) +B(i, j + 1, k + 1)−B(i, j + 1, k)

+B(i+ 1, j + 1, k + 1)−B(i+ 1, j + 1, k)],

(16)

where B(i, j, k) = B(x, y, t) for two subsequent frames.
Knowing the partial derivatives in Eq.(14), the remaining problem is to

solve one equation containing two unknown variables. Skipping the details of
assumptions and additional constraints discussed in [52], the final solution is an
iterative scheme

un+1 = ūn −Bx[Bxū
n +By v̄

n +Bt]/(α
2 +B2

x +B2
y),

vn+1 = v̄n −By[Bxū
n +By v̄

n +Bt]/(α
2 +B2

x +B2
y),

(17)

estimating the velocities u and v. The variables ū and v̄ is the local average
of neighboring pixels, and α2 an error magnitude due to approximations and
noise.

25



Figure 7: A visualization of the optical flow feature. The color represent the
direction of the motion, according to the HSV color wheel. The intensity repre-
sent the magnitude of the motion. a) Resulting optical flow. b) Original frame.
c) HSV colorwheel.

From the velocities u, v in the x- and y-direction it is possible to calculate
a magnitude along with an angle for each pixel, symbolizing the strength and
direction of the motion. To visualize the results of the algorithm, Figure 7
show the motion of an image in the HSV color space. The motion angle is
represented by the color angle (hue), and the intensity (value) by the motion
magnitude. In Figure 7, pixels moving left are shown as red, while pixels moving
right are colored with cyan. The motion of the camera is south-west, causing
the background pixels to move towards north-east. The person in the frame is
moving to south-east, but the ball he is carrying is headed north-west.

Regardless of good performance for the optical flow feature, we stated mul-
tiple times earlier that a feature can not realistically be represented by a value
for each pixel because it would result in too much redundant information. Now
two values per pixel have been introduced, magnitude and angle of motion, ex-
tending the amount of information even more. Still, the motion of the video
intuitively feels way too important for any video interpretation to be discarded,
leading us right into the next feature.

6.3.2 Motion Attention

So how can one utilize the measurement of motion representatively? Reading
the beginning of this section would suggest using yet another histogram. How-
ever, a histogram of for example motion orientation will still be a bit too specific
to a certain situation, object or motion. In addition, any camera movement hor-
izontally (which is common for video productions) of a static scene will most
likely result in a very similar orientation histogram. Imagine sweeping the cam-
era from left to right, e.g. showing the setting and furnishing of a room. The

26



optical flow will interpret this as if every object in the room is moving to the
left, as if the furniture is moving. Humans will however not interpret this as
walking furniture, but merely a change of camera angle. In an attempt of tun-
ing the motion calculation to match human interpretation, a motion attention
model has been developed in [7]. Besides using a different motion calculation
than optical flow, the same methods can be utilized with some modifications.
They use larger blocks of pixels instead of representing motion for each pix-
els, thus slightly different calculations, especially when calculating the entropy.
The article discusses the problems of distinguishing camera motion from object
motion, as well as a dimensionality reduction to finally represent visual motion
attention with a single value.

The concept is to let the optical flow or any other motion vector field pass
through three functions constructed to highlight and suppress different occur-
rences such as irrelevant camera movement. Recall that every pixels have been
assigned a magnitude (strength) M(x, y) and a phase (direction) Φ(x, y). The
intensity function I(x, y), basically the magnitude,

I(x, y) = M(x, y), (18)

simply represent the motion energy. The next function utilize the phase his-
togram HΦ, where each bin is an angular interval, describing the distribution
of motion directions. By normalizing this histogram, each bin b can be seen as
the probability p(b) of a phase. The spatial consistency Cs(x, y) is measured as
the (binary) entropy of said probabilities, namely

Cs(x, y) = −p(bx,y) log(p(bx,y))− (1− p(bx,y)) log((1− p(bx,y))),

p(bxy) =
HΦ(bx,y)∑n
i=1HΦ(i)

,
(19)

where n is the total number of bins in the phase histogram. The bin bx,y refers
to the bin that the pixel located at (x, y) has been assigned. For our temporal
consistency function Ct(x, y), the same phase histograms are computed but for
multiple frames. Normalizing the histogram bins in terms of orientation during
L frames, show the probability of an angle or phase over time. The temporal
function can in similar fashion be expressed as

Ct(x, y) = −p(bx,y) log(p(bx,y))− (1− p(bx,y)) log((1− p(bx,y))),

p(bxy) =
HL

Φ(bx,y)∑n
i=1H

L
Φ(i)

,
(20)

where HL
Φ now is a phase histogram computed over L frames.

Now we have three matrices with the same amount of values as pixels in the
image. The motion intensity generally correspond with human attention; a high
motion intensity attracts more attention, while a low value of I(x, y) suggest
frames with static content. As mentioned, not all high motion is of interest to
the viewer, leading us to the two other, entropy based functions. The Shannon
entropy is a measure of uncertainty, defined as [54]

S = −
∑
n

pn log pn, (21)
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where pn in our case is the probability of bin b. A low entropy corresponds to
being certain and ordered. When the spatial entropy is high, the uncertainty
is high indicating that the motion is either incoherent or disordered. Camera
movement, which tend to be either horizontal or vertical, result in consistent
and homogeneous optical flow, which can be utilized to separate object motion
from camera motion. A high temporal entropy would thus suggest that it is in
fact object motion, not camera motion.

The three functions are combined into a motion map Mmotion(x, y) as

Mmotion(x, y) = I(x, y)Ct(x, y)[1− I(x, y)Cs(x, y)], (22)

where it can be seen that disordered temporal motion (object motion) con-
tribute to larger values for the motion map. In the same way, disordered spatial
motion will decrease the motion value. The final value of motion attention A is
calculated as

A =
∑
x

∑
y

Mmotion(x, y)/N, (23)

where N is the number of pixels.

6.3.3 Audio Features

Suggested by the results of related work, audio can be used as part of how to
characterize a video [37]. As for video frames, the temporal alignment and order
is essential to interpret the sound as intended. Assume a movie playing at 24
frames per second (FPS) with background music, sampling sound at a rate of
48000Hz. The resulting samples per frame is

Samples per frame =
Sound sample rate

FPS
=

48000

24
= 2000, (24)

which is the sound for 1/24 ≈ 0.0417s of video. Analyzing 2000 samples repre-
senting 40ms will not be enough to characterize the sound as i.e. music or speech.
In addition, since the audio- and video signals are processed separately, possible
delays at each channel require audio-video synchronization [55]. It is obvious
that the extraction of audio features differ noticeably from image processing.
Luckily, with the intention of eliminating duplication of effort regarding audio
extraction, there exist a framework for calculation of audio features; jAudio
[56]. Since the library meets the requirements of Music Information Retrieval
(MIR) researchers, it is both effective and reliable to use jAudio rather than de-
veloping new algorithms. Not only have they chosen representative algorithms
for machine learning toolkits, it also provide requirements such as how many
frames of sound to process. Without further introduction, the features used for
this assignment are described and referenced properly in [56], leaving us with
19 ways of characterizing the audio content of the video:
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Name Short description

Root Mean Square (RMS) A measure of the signal amplitude

Linear Predictive Coding Calculates linear predictive coefficients

of a signal

Zero Crossings A measure of the pitch and noisiness

Method of Moments Calculates the statistical moments of
the spectrograph

Compactness The beat sum, measuring regular beats

Strength of Strongest Beat How strong the strongest beat is com-
pared to other possible beats

Mel-Frequency Cepstral Coeffi-
cients

The Cepstrum coefficients from the
magnitude spectrum

Spectral Centroid Measures the center of mass of the
power spectrum

Spectral Rolloff Point Indicator of the skew of the frequencies
present in a window

Spectral Deviation The magnitude spectrum variance

Harmonic Spectral Centroid Spectral centroid variation with respect
to peaks

Harmonic Spectral Smoothness A peak based calculation of smoothness

Strongest Frequency Via FFT
Max

Find the strongest frequency compo-
nent

Strongest Frequency Via Spec-
tral Centroid

Strongest frequency component based
on the spectral centroid

Strongest Frequency Via Zero
Crossings

The strongest frequency with respect to
zero crossings

Harmonic Spectral Flux Correlation between adjacent peaks

Relative Difference Function The logarithm of the derivative of the
RMS

Spectral Flux Measures the amount of spectral change
of a signal

Fraction of Low Energy Frames How quiet a signal is, relative to the rest
of the signal

6.4 Similarity Measures

The features explained above provide multiple ways of describing the content in
a video frame, both audio- and visual content. The hope is that the combined
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information from all areas will be representative for the video. However good the
representation is, a recurring fact is that frames have to be merged into larger
segments to analyze the video content any further. This poses two problems,
namely how to merge frames and the measure of similarity. For both problems
it is important to note that each feature behaves differently, motivating the
need of using proper measure of similarity. Recall the feature vector described
by Eq. (1) in section 4.3. The representation concatenates the output of each
individual feature, describing the frame as a single vector. This vector contains
mixed concepts, e.g. probability distributions from one feature next to a single
measurement of another. In order to compare the characteristics of two frames
accurately, it is preferable to continue to handle each feature independently,
instead of comparing the entire feature vector. In this thesis, most features
output either a histogram or a single value. In order to discuss the similarity
measures for histograms, some definitions need to be introduced. Let H1 and
H2 denote two different histograms consisting of b bins, and

C1 =

√
NH2

NH1

, C2 =
1

C1
, NH1

=

b∑
j=1

H1(b), NH2
=

b∑
j=1

H2(b),

(25)
where we can note that C1 = C2 = 1 for normalized histograms. This definition,
as well as much of the following explanations can be found in [45].

6.4.1 L1 distance

The L1 distance measures the difference as a sum of absolute bin-to-bin differ-
ences, mathematically described as

dL1
(H1, H2) =

b∑
j=1

|C1H1(j)− C2H2(j)|, (26)

which can be normalized to be in range [0 1] if divided by 2
√
NH1

·NH2
. Using

the L1 distance for features yielding only a singular value simply result in the
absolute difference. The distance measure is also called a taxicab metric, or the
Manhattan distance, because of the analogy to a taxi driving in the rectangular
blocks of Manhattan.

6.4.2 L2 distance

The ”distance by air” is called the Euclidean distance or the L2 distance. Com-
pared to the L1 distance, it measure the distance as the square-root of the sum
of squared bin differences. The formula for the L2 distance

dL2(H1, H2) =

√√√√ b∑
j=1

[C1H1(j)− C2H2(j)]2, (27)

can be normalized to the range [0 1] in the same way using 2
√
NH1 ·NH2 . Note

that for histograms with only one bin, a single value, both L1 and L2 return
the same difference.
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6.4.3 χ2 distance

Quite different from both measures is the χ2 distance. Remember that a nor-
malized histogram can be seen as a probability distribution. The purpose of
the χ2 distance is to compare the histograms, determining if they belong to the
same distribution function. More specifically the distance is given by

dχ2(H1, H2) =

b∑
j=1

[C1H1(j)− C2H2(j)]2

H1(j) +H2(j)
, (28)

which is normalized by NH1 +NH2 to the range [0 1]. Since the distance measure
is based upon probability distributions functions, it is hard to describe what
the calculation represents for single values. Determining if two values belong to
the same distribution can simply not be achieved by only one value from each
distribution.

6.4.4 Edge Histogram (EH) distance

Edge histograms are developed for use in image- and video analysis. As part
of the analysis of this feature in terms of image retrieval, a specific distance
measure is suggested [44]. Recall that the total edge histogram included three
different distributions; local, semi-global and global. For histogram Hi we define
the local part as HL

i , the semi-global as HS
i and the global as HG

i . The distance
measure is expressed as

dEH(H1, H2) =
∑
L

|HL
1 −HL

2 |+ 5
∑
G

|HG
1 −HG

2 |+
∑
S

|HS
1 −HS

2 |, (29)

giving more weight to global edge differences. Besides pointing out the strength
of choosing the appropriate distance measure for each feature, this definition
proves to be very useful for use in segmentation later on.

7 Classification

With the final representation yet to be decided, it has been suggested by research
of related work that two different machine learning tasks are involved in this
thesis. First and foremost, labels will be set for segments of video depending on
the atmosphere and mood they convey. Using labels as ground truth, forming
a training data set, means that the task of learning the atmosphere of a video
segment will be supervised. Input to such a learning algorithm will be video
segments containing multiple shots. It is expected that the temporal order
and alignment of these shots form a descriptive sequence that correlates with
said labels. A premise to this machine learning problem is that shots can be
formulated as a sequence, which leads to the second task. The constructed
sequence should reflect the audio- and video characteristics; similar shots need
to be represented as similar in the sequence and vice versa. It is the extracted
features that describe the characteristics of a shot, without any notion of the
truth. In other words, learning how to divide and partition shots based on their
similarities and dissimilarities is an unsupervised problem.
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While seemingly separate tasks, it is important that the decisions of machine
learning methods can coexist. For example, imagine that we can learn how to
form sequences consisting of a vector with only ones and zeros. Assume that the
resulting sequences can be vectors of different length, depending on the number
of shots in the segment. Such a representation is of little use if the input to the
next machine learning algorithm is designed to only allow vectors of equal length.
With the purpose of unraveling how to solve these tasks, some technicalities of
machine learning algorithms have to be presented. Besides forming a general
idea how machine learning algorithms and schemes work, the upcoming section
will culminate in the specific choices and assumptions made for the final project
setup.

7.1 Clustering

Collected data does not always provide a label or ground truth to assist in
the learning of patterns. While there of course is the possibility of manually
labeling the data, chances are that the amount of data is simply too large to
label. Additionally, some applications does not require the data to be classified,
but merely to analyze the data to find correlations and differences. Suppose
that a data set can be easily and effectively divided into two partitions that can
be analyzed separately, the task of learning relationships have been divided into
two smaller subproblems. Clustering is an unsupervised learning method with
the purpose of descriptively categorize data with respect to their similarities
and differences [57]. To illustrate the idea of clustering, we present a small toy
example:
A database have records of the coordinates (x, y) for every home of the citizens
in Stockholm. The information about where the municipality borders are drawn
is lost, so they decide to divide Stockholm into eight new areas based upon the
resident data. Clustering can be used to find the best eight clusters of houses,
with respect to a chosen distance measure. The concept is fundamental in Data
Mining tasks, creating the opportunity to separately analyze data instances
that share the same characteristics. While it is an efficient and extensively used
method, it is most often important to choose the correct clustering technique
depending on the data itself. Different techniques use different measures of fit
and similarity. Since the work in this report includes clustering, some of the
most well-known clustering algorithms will be visited.

7.1.1 K-means

One of the easiest and most used clustering technique is called K-means. The
algorithm belongs to the error minimizing algorithms which basically minimizes
the distance between a data instance and a cluster center, for all data instances.
Cluster centers are either chosen randomly or according to some predefined
process, assigning certain instances as centers. K-means clustering is an iter-
ative algorithm that for each iteration assigns each data point to the nearest
cluster center. Then an update of the centers follows, by calculating the mean
of all data points assigned to the same cluster. Once again the instances are
matched to the closest cluster, repeating until a fixed amount of iterations has
been reached, or the designated number of clusters. Common distance measures
for similarities are the Euclidean distance or the Manhattan distance. K-means
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and similar error minimizing algorithms usually perform well if the data forms
isolated and compact clusters [57]. It will be used later as part of the shot detec-
tion algorithm, which is preemptively structured to create two isolated clusters.
Two big problems with K-means are the selection of the initial partitions as
well as noisy data and outliers. For the shot detection algorithm, there is prior
knowledge aiding in selecting proper cluster centers. However, noisy data and
outliers can always increase the cluster errors substantially.

7.1.2 Agglomerative Hierarchical Clustering

While K-means partition instances by measuring the distances between the data
and the clusters, another approach to clustering is Hierarchical Clustering meth-
ods. Common denominator is that the clusters are formed by recursively par-
tition the instances into clusters based on their similarities [57]. Specific for
Agglomerative Hierarchical Clustering is that, each object is initially assigned
to belong to its own cluster. By recursively merging similar clusters, either up to
a set similarity threshold, or until a specified number of clusters [35]. Agglomer-
ative Hierarchical Clustering will, for the purpose of this machine learning task,
be used for merging frames into shots.

7.1.3 Cluster Evaluation

It has been said that initialization and outliers affect cluster errors, without
mentioning what is meant by an error. Since clustering is an unsupervised
machine learning concept, the way to evaluate the learning is to create some
form of criterion to evaluate with respect to. For K-means, which is an error
minimizing algorithm, the measure of cluster performance is the Sum of Squared
Errors (SSE). It is defined as

SSE =

K∑
k=1

∑
∀xi∈Ck

||xi − µk||2, (30)

where Ck represent the set of instances belonging to cluster k. The instance xi
is compared to the vector mean of cluster k (centroid), namely µk. While this
is only one possible criterion, the point is that clustering algorithms are con-
structed by formulating criteria measures suitable for the data itself. Whether
a clustering is ”good” or not, is purely decided by domain knowledge.

As said in the introduction of this section, the task in thesis involves labels
of the concept we are trying to learn. Clustering has been used as a tool in
order to form a valid representation, which can be used as a step in learning the
atmosphere of a video. Since the concept of atmospheres is manually labeled,
it is now time to head into the supervised learning method used in this project.
Motivated mostly by related work described in section 5, the Support Vector
Machine is a valid point of entry.

7.2 Support Vector Machines (SVM)

Support Vector Machines (SVM) are supervised learning models, commonly
used in machine learning for classification and regression[58]. The general idea
of SVM is to find a hyperplane that separates the input data. In addition SVM
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tries to maximize the margin between different classes, gaining robustness for
new, and unseen data. This chapter will present the support vector machines
in more detail, along with possible extensions in order to deal with non-linearly
separable data. Both structure and content of this section is highly inspired by
the detailed description of SVM:s found in [58].

7.2.1 Linear Support Vector Machine

The most basic SVM is the linear SVM, which relies on linearly separable input
data. Recall the mathematical description in 4.3. For this example, xi is the
same, a feature vector xi ∈ RM , while the label is assumed to be either positive
or negative; yi ∈ {−1, 1}. The goal is to learn a separating hyperplane

f(x) = sgn(w · x− b), (31)

where sgn is the sign function, w a weight vector and b the offset parameter.
The role of the latter term is elaborately described in [59] and will be overlooked
in this thesis, to be handled by chosen algorithms. The learning is accomplished
by forcing the weight vector w, as well as b, to conform to three hyperplanes,
namely

H0 : y = w · x− b = 0 (32)

H1 : y = w · x− b = 1 (33)

H2 : y = w · x− b = −1 (34)

These hyperplanes should meet six conditions:

• All hyperplanes H are to be parallel,

• H1 and H2 should be equally distanced from H0,

• The positve data point closest to H0, xsp, coincides with H1,

• The negative data point closest to H0, xsn coincides with H2,

• All other data points should then satisfy yi(w · xi − b) ≥ 1,

• The distance between H1 and H2 are to be maximized.

Data points on respective hyperplane, xsp and xsn, are called support vectors,
which are the only vectors contributing when calculating w. The last condition
can be expressed mathematically as

|(w · xsp − b)− (w · xsn − b)|
‖w‖

=
|1− (−1)|
‖w‖

=
2

‖w‖
. (35)

Thus minimizing ‖w‖ = wTw equals maximizing the margin between the hy-
perplanes, yielding the optimal separation of data points. The idea is further
illustrated in Figure 8. As the figure show, the found hyperplane of the SVM
algorithm, is the line separating the support vectors of each class, with the
maximum distance between classes. Learning can be formulated as

min
w,b

wTw, s.t. yi(w · xi − b) ≥ 1, (36)
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Figure 8: Support Vector Machine learns a hyperplane that separates two
classes, with the largest possible margin between classes. For linear SVM, the
said hyperplane is a line.

which belong to a special type of mathematical optimization problems. The goal
is to minimize a quadratic function with respect to several variables, which are
subject to linear constraints. This is also known as a Quadratic Programming
(QP) problem [60].

7.2.2 Dual Problem

The optimization problem in the previous section is a convex quadratic pro-
gramming problem in a convex set. Introducing the Lagrange multipliers α =
α1, . . . , αi, . . . , αN , i.e. one multiplier for each inequality in Eq. (36). This
expresses the problem in terms of the Lagrangian function [60]

L(w, b,α) = wTw −
N∑
i=1

αiyi(w · xi − b) +

N∑
i=1

αi, (37)

which can be solved by doing the following:

max
α
L(w,b,α),

s.t
∂L
∂w

= 0

∂L
∂b

= 0

α ≥ 0.

(38)
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Substituting Eq. (38) in Eq. (37) yields

max
α
LD = max

α

[
N∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjxi · xj

]
,

s.t.
∑
i

αiyi = 0

(39)

as the new optimization problem. This is known as the Wolfe’s reduced gradient
method [61]. The initial variables w and b is currently not needed for further
solving. However, the weight matrix can be calculated from the Lagrange mul-
tipliers as

w =

N∑
i=1

αiyixi, (40)

which will be used to classify unseen data. Before solving Eq. (39) any further,
please notice that the only operation concerning the feature vectors xi is a dot
product, as well as a multiplication with its corresponding label. By abusing
this property, the SVM can be modified handle non-linearly separable data, also
known as the kernel trick.

7.2.3 Kernels

Assume that the feature vectors xi requires a non-linear surface for separation.
As an example of when this might occur, see the data presented at the left
part of Figure 9. The two classes are represented by their Cartesian coordi-
nates. Separating them would require a circular hyperplane, i.e. a non-linear
hyperplane. Expressing the data in Polar coordinates (right side of the figure),
transform the data to a feature space where linear separation is possible.

Figure 9: The left figure show an example when the data (in Cartesian coor-
dinates) can not be linearly separated. A transformation into Polar coordinates
makes linear separation possible.

By transforming the feature from the input space into a, possibly higher-
dimensional, feature space, we convert the data into a form that is separable.
In fact, N data points will be separable in spaces of N − 1 dimensions or less,
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with very few exceptions [58]. Consider a kernel map Φ(·), transforming the data
point into an arbitrary dimension. The optimization problem then becomes

max
α
LD = max

α

[
N∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjΦ(xi) · Φ(xj)

]
, (41)

assuming the dot product is justified for Φ(·). Suppose that the dot product
in this high dimensional space is equal to the result of a kernel function, i.e.
K(xi,xj) = Φ(xi) · Φ(xj). Ultimately this means that, as long as the kernel
function K(xi,xj) satisfies certain conditions, the dot product is calculated
without knowing either the representation of the higher-dimensional space nor
the explicit transformation. Said conditions is given by Mercer’s condition [58];
There exists a mapping and an expansion

K(x, z) =
∑
i

Φ(x)iΦ(z)i (42)

if and only if , for any g(x) such that,∫
g(x)2dx is finite, then,∫
K(x, z)g(x)g(z)dxdz ≥ 0.

(43)

Even though this sounds promising, the choice of kernel dictates how well the
model generalize, i.e. how the learned model will perform when classifying
unseen data. A higher dimension increases the complexity of the separating
surface, which in many cases result in learning a too specific behavior, i.e. over-
fitting. Presume a data set looking as in Figure 10, where there is one point
which can be considered as an outlier that are unrepresentative for the rest of
the data. In the figure, an alternative non-linear hyperplane has been drawn to
include the added data point. Learning to include this data point by increasing
the dimensionality, can create an over-fitted model, performing poorly once
given new examples. Failing to learn any separating hyperplane is likewise
called an under-fitted model.
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Figure 10: Illustration of a non-linear SVM as well as the use of slack vari-
ables. The black dotted line represent a non-linear decision boundary. Linear
separation is also possible by introducing a slack variable.

7.2.4 Slack variable

There are other methods to handle outliers and noisy data than non-linear
transformations. Consider again the data set in Figure 10. The points are in
fact still separable using a linear SVM, although with a smaller margin. Since
the margin should be maximized for more robustness, it is not always beneficial
to use the hyperplane providing perfect separation. By introducing a slack
variable ξi,

H1 : y = w · x− b = 1− ξi
H2 : y = w · x− b = −1 + ξi

ξi ≤ 0, ∀i,
(44)

we allow data instances to exist between H1 and H2, i.e. imperfect separation.
Allowing misclassification is penalized by a factor C, altering the optimization
problem in Eq. (36) to become

min
w,b,ξi

wTw + C

N∑
i=1

ξi

s.t. yi(w · xi − b) + ξi − 1 ≥ 0, 1 ≤ i ≤ N
,

(45)

where ξi has been as added as a optimization variable. It can be shown that the
introduction of ξi only affect the dual problem, Eq. (39), by adding an upper
constraint for α [61]. The resulting optimization problem including the slack
variable can be expressed as
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max
α
LD = max

α

[
N∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjK(xi,xj)

]
,

s.t.
∑
i

αiyi = 0

0 ≤ αi ≤ C

(46)

Letting the penalizing term C = ∞, equals the original optimization problem,
without the slack variable.

7.2.5 Sequential Minimal Optimization (SMO)

As a result of adding non-linear properties for the SVM, the final expression to be
optimized is formulated in Eq. (46). There are at least three different methods
available for the optimization of the Lagrange multipliers αi; Chunking[62],
Osuna’s[63] and SMO[64]. The latter, Sequential Minimal Optimization (SMO),
is the fastest algorithm of the three. The SMO method searches heuristically
for two multipliers to optimize, iteratively finding the optimal values for all αi.
This method is based on the fact the solving the optimization problem for two
Lagrange multipliers can be done analytically, instead of the implementation of
any numerical routines. In order to avoid tedious calculations in the field of
optimization, details of how SMO work can be read about in [64], including the
presented facts.

So far in the discussion and presentation of Support Vector Machines, it has
been referred to as a binary classification problem. It is binary in the sense that
only two classes are present as possible output, a positive or negative instance.
True for the learning task of atmosphere classification is that we have six dif-
ferent classes, i.e. a multi-class classification problem. The implementation of
SMO used in this thesis has been made by [65], states that multi-class prob-
lems are solved in a 1-vs-1 fashion. This means that the Lagrange multipliers
are optimized by classify two classes at the time, for all combinations. To be
precise, recall the atmosphere labels presented in section 4.1. Possible combi-
nations are for example Eventful-Tense, Eventful-Joyful, Joyful-Tense, and so
forth. Another possible way is to optimize in a 1-vs-rest manner, resulting in a
Eventful-Not Eventful classification where all other classes are considered as neg-
ative examples. Discussing the differences is valuable since the two approaches
are conceptually different. Either we choose to comfortably build one classifier,
predicting all possible classes, or one binary learning machine for each class.

7.2.6 String Kernel

As the introduction to this chapter mentioned, the scenes will be analyzed as
a sequence of shots. A scene can contain different number of shots, thus the
sequence can have varying length. Examples of other areas including dynam-
ically sized inputs are text classification and DNA-sequencing. Most learning
algorithms cannot handle input of different length [41], partly motivating the
extension of kernels. Besides dealing with non-linear data as mentioned earlier,
kernels can be utilized to transform the input into a feature space where the
input appears to have fix length. Successful use of the so called String Kernel,
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along with SVM, has been shown in [66, 41, 67]. In addition, a scene repre-
sented by a sequence of letters are the essential part of the scene segmentation
presented in [33]. So how does one build a string kernel?

Let s = s1, . . . , s|s| denote a string, with the length |s|. The string is a
set of characters or letters belonging to a finite alphabet A. All finite strings
with length n is denoted An, creating a feature space Fn = RAn

. Let u be a
substring of length n, namely u ∈ An. A string is transformed to feature space
Fn by the feature map Φu(s). The feature mapping is calculated as

Φu(s) = occu(s), (47)

where occu(s) represent the number of occurrences of subsequence u in s. The
number of occurrences is weighted according to their contiguity by a decaying
factor λ ≤ 1. In other words, the substring u might occur, only with multiple
other characters in between, creating a gap. The length of the the matching
sequences, including the gap, is given by l(·). The target string u is only a
subsequence of s if there exist indices i = (i1, . . . , in) such that uj = sij for
all j = 1, . . . , n. We call this u = s[i] for simplicity, yielding the mathematical
expression as

occu(s) =
∑
u=s[i]

λl(i), (48)

where the length of the subsequence l(i) = i|u| − i1 + 1. Forming the kernel
Kn(s, t) of two strings is thus a measurement of the amount of shared subse-
quences, with length n:

Kn(s, t) =
∑
u∈An

Φu(s) · Φu(t) =
[
Equation (47) and (48)

]
=

=
∑
u∈An

∑
u=s[i]

λl(i)
∑
u=s[k]

λl(k) =

=
∑
u∈An

∑
u=s[i]

∑
u=s[k]

λl(i)+l(k).

(49)

To illustrate how this works in practice, consider the string ”up” and ”upp”.
Furthermore, let λ = 0.5 and the sequence length n = 2. The resulting matches
are:

String u p u p p Length
Match × × × × l = 4

× × × × l = 5

We have two matches, one with a combined length of 4, the other with length
5. The string kernel results will be λ4 + λ5 = 0.54 + 0.55 = 0.09375. The decay
parameter decides how to penalize a gap between the matching characters, i.e.
a smaller value of λ decreases the similarity if there is a gap. In order to express
the similarity in range [0 1], a normalization is needed, where 1 is a perfect
match. A normalized kernel K̂(s, t) is achieved by computing

K̂(s, t) =
K(s, t)√

K(s, s)K(t, t)
, (50)
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according to calculations found in [41].
The details and mathematical description might come off as complicated but

the important fact to assimilate is that similarity between strings of different
length can be measured. The measurement account for the temporal alignment
and order of the sequences, as well as the length between matching sequences.
There is however a potential problem with using string kernels for the work in
this thesis. There is no notion of what the letter between matchers are, just
that there is a gap between matching sequences. Consider the two words ”up”
and ”usp”. The string kernel will return the same value of similarity as between
the words ”up” and ”ump”. For the purpose of sequences of video shots, it is
not unreasonable to assume that it will matter whether the letter in between is
”m” or ”s”.

The presented technicalities in this chapter provides us with a method for
learning classes or concepts, which are represented as a string. Specifically for
this project, this imply that the video content needs to be transformed into
a string descriptor. Forming these strings is, in our context, an unsupervised
learning task which could be aided by the use of clustering. The strings should
represent the characteristics of the video segments involved, including the tem-
poral order and alignment. Despite frequently mentioning the importance of
video segmentation, it has not yet been presented how to segment a video.

8 Video Segmentation

The last piece of information, to be able to summarize what we have learned, is
the video segmentation. Time and time again it has been stated that we both
need and expect the video frames to be clumped into shots, with the purpose
of maintaining the temporal elements and characteristics of video productions.
To motivate again why this is useful, please consider the following situation.
Two shots taken from entirely different movies, shows a conversation between
two people. Visually, the content may vary substantially; one could be recorded
outside in the sun and the other one in dark quarters of a spaceship. By analyz-
ing and comparing the color information from a single frame taken from each
shot, the shots will be considered dissimilar. For this thesis it is requested that
both situations should be expressed as similar. It is thus important to compare
larger segments of frames, containing a wide range of characteristics, including
the propagation through time. These shots should furthermore be part of a
larger video segment describing the atmosphere or mood. The core of this as-
signment is to investigate whether a sequence of shots can describe the certain
atmosphere we interpret when watching a video. In order to learn anything from
the sequences, they have to be of adequate length, correlating the sequence to
a set label. This chapter will present how to deal with the challenges of video
segmentation.

8.1 Shot Segmentation

Quickly browsing the Internet, a common shot length is about 5-10 seconds
long. It is instantly realized that segmenting a video manually is far too time-
consuming. Thus numerous attempts of automatic shot detection has been
made so far, many presented and evaluated in [39]. By inspecting the differ-
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ences between successive frames, e.g. color information or edge information,
cuts can generally be detected easily. The hard part is to detect all cuts and
furthermore, avoid to falsely detect shot boundaries. In addition, video pro-
ductions occasionally use fade or dissolve effects to alert the viewer of temporal
story changes. Simply put, we need a reliable shot detector that automatically
detects how to segment the video.

8.1.1 Shot boundary detection without thresholds

The shot boundary detection (or cut detection) algorithm chosen in this project
is using k-means clustering, based on the approach described in [68]. It is bene-
ficial that the cut detection algorithm is entirely unsupervised both in terms of
parameter tuning and thresholds, since every analyzed video is different. Ad-
ditionally, for the same reason, it is preferable to choose an algorithm which
excludes a training stage. More details regarding clustering techniques in gen-
eral has been presented in section 7.1. The proposed method works as follows,
reproduced from the original report:

Using the edge histogram mentioned previously along with the chosen distance
measure for the same, the inter-frame differences are calculated for all frames.
The distance array D is formed, containing distances, di, representing the frame
difference between frame i and frame i + 1. From D, the maximum difference
value, dmax, is extracted which will be used to compute a normalized feature
vector for clustering.
A non-overlapping sliding window of size 2m+ 1 is applied with the purpose of
creating a series of frame differences fk as:

fk = [dk−m, ..., dk, ..., dk+m]. (51)

Each frame series fk is assumed to contain one cut candidate. The representa-
tion of this candidate v(fk) is formed by letting

v(fk) =

[
fmax
dmax

,
fsec
fmax

]
, (52)

where fmax and fsec is the largest and second largest value within each series.
This way, the data is normalized with respect to dmax. Have a look at Figure
11, aiming at illustrating how cut candidates are represented. The first series of
frame differences show multiple large differences, however low compared to the
maximum difference dmax. In addition, the peaks are not isolated, suggesting
that the differences are due to rapid movement or similar, not a cut. The sec-
ond sliding window includes an isolated difference measure, close to the largest
possible difference for the entire video, suggesting a cut. Since a cut is expected
to be represented as such isolated large values in the difference array D, an ideal
cut would yield v(fideal) = [1, 0]. The corresponding vector for an ideal non-cut
would be v(fnon) = [0, 1].
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Figure 11: An illustration of how cut candidates are represented in the shot
detection algorithm. The x-axis is the frame ID, while the y-axis corresponds
to the magnitude of frame differences. For the first (left) sliding window, the
inter-frame differences have no isolated peaks. The second (right) sliding window
includes a peak which is unquestionably the largest difference in the series, i.e.
a suspected cut.

This ”ground-truth” is used as the initial clusters for the k-means algorithm.
The clustering will assign each candidate to either of these clusters, segmenting
the video.

The performance of detecting the shot boundaries is dependent on the size
of the sliding window, thus the value of m. To improve performance, the above
procedure is done for different values of m, (1 < m < mmax), followed by a clus-
ter evaluation for each window size. The suggested evaluation technique utilizes
the silhouette coefficient SC(v) of a feature vector v, as a quality measurement.
More specifically, for each candidate classified as a cut, vc, the SC is calculated
as

SC(vc) =
b(vc)− a(vc)

max(b(vc), a(vc))
, (53)

where a(vc) is the average Euclidean distance between vc and the other feature
vectors belonging to the same cluster[68]. Similarly, b(vc) is the average distance
to the members of the other cluster. The cluster quality CQ is then given as

CQ =
1

N

∑
vc

SC(vc), (54)

where N is the number of candidates classified as cuts. The algorithm will thus
find the most suitable value of m ranging from 1 to mmax. In a way m represents
a limit of how often a cut can occur, since only one cut candidate is chosen for
each window. Tests of how to set mmax have been performed in [68]. In general,
the algorithm is able to find a suitable m regardless of the maximum window
size mmax. As long as mmax is reasonably high (m > 12), the evaluation of the
clusters each iteration, will make sure that the m with the best cluster quality
is chosen.
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8.1.2 Shot Feature Representation

Revisiting the mathematical description stated earlier in section 4.3, the feature
representation for each frame needs to be transformed to characterize an entire
shot. The feature vector in Eq. (1) can be rewritten as

x = [v1,v2, . . .vp], x ∈ RM , (55)

where vp is feature p containing qp columns. Let a shot Xn be a set of frames,

Xn = [x1, . . . ,xn]T , Xn ∈ Rn×M . (56)

In order to receive a more manageable shot representation, a transformation
T : Xn → S is needed, which reduces the dimensionality of a shot without
loosing vital information. This reduction is made by agglomerative hierarchical
clustering of frames within a shot, inspired by previous work in the similar field
of video retrieval in [35]. The idea is based upon that frames can be merged if
similar enough and works as follows:
Each cluster in the algorithm is considered to be a video segment. Initially all
frames is set to be its own cluster, i.e. a video segment containing one frame only.
The L1-distance between features is then computed between successive clusters
within the shot. If the minimum distance of all clusters is below a threshold
γ, the two clusters merge to a single cluster. When merging two clusters, the
feature vector needs to be updated in order to compute new distance for next
iteration. Similar to [35], the average histogram will be used to represent a
video segment, averaging each histogram bin for all frames in the segment. The
average value for a histogram bin is given as [45]

AvgHist(bi) =
1

m

ef∑
j=sf

Hj(bi), (57)

where bi is the bin, sf the starting frame, ef the ending frame, Hj the j:th his-
togram and m the total number of frames in the cluster. This way, frames are
clustered into video segments until the minimum distance exceeds the thresh-
old. Once the clustering stops, the remaining clusters represent a summarized
description of the shot.

The above clustering method is used separately for each feature vp in the feature
vector. For each feature the ratio

vs(p) =
number of remaining clusters for feature p

initial number of clusters
, (58)

is formed, yielding a variation parameter for each feature in the range [0 1]. The
final shot representation has been greatly reduced to

S = [vs(1), vs(2), . . . , vs(p)], S ∈ R1×p, (59)

which in a way is a measure of how each feature vary during the shot. If vs(p) is
low, the feature p change less between the frames in the shot. A feature column
close to 0 means that the entire shot could be summarized by only one frame,
according to that feature.
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8.2 Scene Segmentation

Once shot boundaries have been found, the next task would be to segment the
shots into scenes or similar larger segments. The advances and successes in
automatic scene detection lag behind in terms of accuracy and reliability [33].
Using them would introduce further uncertainties to this experiment. Besides,
the definition of a scene in this thesis varies from the general usage, since it is
partitioned according to the atmosphere. This motivates using the scene de-
limiters directly from the training data, which has been labeled manually. Of
course, further use of the classifier created from this work cannot assume the
input to be manually labeled. The idea is that once the classifier has been
trained successfully, it can perform predictions of segments either from a con-
stant partitioning or any attempt of automatic scene detection. It is merely
for the purpose of training the classifier, that the scenes are divided by manual
labels.

8.2.1 Scene Feature Representation

Recall the shot representation in section 8.1.2. The shot feature vector now
contains a measure of the importance of every feature initially extracted from
the frames. Even though [33] is not used for scene detection, it suggest an
approach for how to symbolize a scene. In the report, the similarities between
all shots are computed forming a similarity matrix. After clustering this matrix,
each shot is given a letter corresponding to the assigned cluster. A scene will
ultimately be a string containing a sequence of letters. By doing this the problem
has been reduced to again match the initial structure in section 4.3, suitable for
machine learning. Instead of a description of frames along with their features,
the problem has been transformed to

X = [s1, . . . , si, . . . , sN ]T , (60)

Y = [y1, . . . , yi, . . . , yN ]T , (61)

where si instead contains a string of letters of different length.

9 Methodology

In an attempt to summarize the huge variety of components connected to this
project, this section will try to interweave the different parts into a model.
Additional knowledge for all the relevant steps in the procedure of indexing
videos, allows for a detailed declaration of tasks to complete. Refer to Figure
12, which describe the model outline. With the purpose of declaring the choices
made when trying to implement this model for video indexing and classification.
We will walk through the descriptive picture step by step:
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Figure 12: Overview of the proposed model outline.

• Step 1: All of the features in chapter 6 have been extracted from each
frame in the video. Calculations involving several frames, such as motion,
will still yield one output per frame.

• Step 2: Using only the edge histogram, the shot boundaries are detected
by the cut detector algorithm presented in section 8.1.1.

• Step 3: For each shot, Agglomerative Hierarchical Clustering is per-
formed, reducing the representation from Rn×M to R1×p (as in section
8.1.2). n is the number of frames in each shot, M the total length of the
feature vector for each frame and p the number of features.

• Step 4: Once all videos are processed, the set containing all shots are
clustered into 8 clusters using K-means. Each shot is thus given a letter
”A-H”, representing a class of shots. The number 8 is motivated by [5]
suggesting all shots can be divided into 8 shots, as well as [33] where 8 is
an experimentally good number for scene segmentation.

• Step 5: The strings are paired with their corresponding label, forming a
data set.

• Step 6: A Support Vector Machine, using sequential minimal optimiza-
tion along with the string kernel, is trained.
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• Step 7: For testing, Step 1-5 is repeated for a new set of videos. The
label will now be used for evaluation (Step 5), and the SVM is naturally
tested instead of trained (Step 6).

9.1 Setup

The material used for analysis is the underrated but much appreciated TV-
series Firefly (2002-2003). A total number of 12 episodes were used for training,
while 2 are used for testing. The videos have been analyzed and processed
in Java, using the framework simultaneously developed in collaboration with
Erik Bodin [14]. Any other used and altered source code has been provided by
[69, 70, 56, 71]. For evaluative purposes, both Matlab and Weka [65] have
been used.

10 Results

Due to the fact that the assignment has evolved into two machine learning tasks,
there is need for evaluation of both how the string sequences behave, and the
results of building a classifier upon these sequences. Thus, this section will first
present the results of clustering shots, assigning letters representatively. Under-
standing the characteristic of the created sequences is vital for any interpretation
of the classifier results.

10.1 Shot Clustering

The goodness of fit for the resulting 8 clusters, by performing k-means clus-
tering, can be measured by for example sum of squared errors or silhouette
coefficients. However, such a number tells us nothing about if a shot has been
given the correct letter or character. Better is to examine to what extent fea-
tures are separated in the different clusters. Consider Figure 13a and 13b, where
the first show an example of good separation characteristic. At least three dif-
ferent ranges of feature values are common, divided amongst the 8 clusters. In
comparison with the second figure, where most clusters share the same range
of feature values, there is better separation for the Hue histogram feature than
the LPC feature.
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(a) Example of the cluster assignment for
the feature based on the Hue histogram.

(b) Example of the cluster assignment for
the LPC (Linear Predictive Coding) fea-
ture.

Figure 13: The cluster assignments for two different features. The horizontal
axis corresponds to the assigned cluster number 1-8 (A-H), while the vertical
axis describe the feature values. In a) it can be seen that the range of the feature
values vary for different clusters. For the feature shown in b) almost all cluster
share the same range of values.

Performing these kind of visualization forms an idea of which features are
more important, however ruling any feature as irrelevant is premature, since
clustering in eight dimensions is hard to imagine. All in all, the performed
clustering manages to separate the shots. To show the distribution of letters
in the formed sequences, a histogram of the letters is computed for each atmo-
sphere. The histograms, found in Figure 14, show interesting similarities for
some atmospheres.

Figure 14: The normalized distribution of letters/characters A-H, for each
labeled atmosphere.

The sequences labeled as eventful clearly differ from the rest of the distribu-
tions, with the frequent use of the letter G. Furthermore, gloomy and emotional
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have very similar distributions of letters. Slightly less similar are tense and joy-
ful, although still resembling one another. The introductory distribution share
traits with most labels, with the exception of eventful. Even though this raises
questions about how well such similarities will be separated by the classifier, it
is important to note that the labels are expected to depend on the ordering of
the sequence as well.

In order to examine the order of the letters in the sequences, the 10 most
similar sequences for each label have been visualized in Figure 15 and 16. More
specifically, the sequences are the five pairs of sequences that yield the highest
kernel response.

Figure 15: The 10 most similar sequences for the labels eventful, gloomy and
tense. The letters are represented as a colored block according to: A - red, B -
blue, C - cyan, D - grey, E - magenta, F - yellow, G - green, H - black.

Figure 16: The 10 most similar sequences for the labels joyful, introductory,
gloomy. The letters are represented as a colored block according to: A - red, B
- blue, C - cyan, D - grey, E - magenta, F - yellow, G - green, H - black.

The figures show that eventful is one again the most unique. Besides the
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frequency of the letter G, it also contains sequences involving the letter G and E
(green and magenta). Most other examples containing green blocks, are part of
sequences with other letters, e.g. D (grey) for the joyful sequences. Other char-
acteristics worth mentioning are that gloomy and emotional commonly involve
sequences with large portions of black blocks, and that subsequences containing
blue and red is common for most labels. There is much more to be said about
these sequences, which will be resumed in the discussion chapter, however no
conclusions should be drawn without first examining the classifier results.

10.2 Classification

Before evaluating the performance of the classifier, many characteristics can be
shown by observing the result of using a kernel. The Gram matrix G is defined
as

G =


K̂(s1, s1) K̂(s1, s2) · · · K̂(s1, sN )

K̂(s2, s1) K̂(s2, s2) · · · K̂(s2, sN )
...

...
. . .

...

K̂(sN , s1) K̂(sN , s2) · · · K̂(sN , sN )

 , (62)

where K̂(si, sj) is the normalized inner product between two strings, calculated
as in Eq. (50). The resulting gram matrix when using the string kernel is
presented in Figure 17. The color indicate how similar two strings are, ranging
from blue (dissimilar) to red (similar). The input has been sorted with respect
to the labeled class, allowing us to see the similarity between strings given the
same label.

Figure 17: Visualization of the Gram matrix when using a string kernel, i.e.
the kernel response for all pairs of string sequences. The data is sorted by class
label. Blue corresponds to dissimilar sequences, while red indicate similarity.

Desired would be that the diagonal squares are similar, i.e. red, while the
rest are blue, or dissimilar. This would indicate that only strings labeled as
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equal are similar, which is the behavior we are trying to learn. As seen in the
figure, strings labeled eventful are the best example of this, with high similarity
for the same label and low similarity with other labels. Additionally it can be
seen that most other classes, unfortunately, are similar to many different classes.
It is therefore indicated that learning a multi-class classifier might prove to be
difficult with the current setup.

To motivate that the string kernel is a good choice of method, we do the
same computations for another kernel, namely the chi-square kernel. Input for a
such a kernel is a histogram, with the distance measure as presented in section
6.4.3. The histograms in question are computed by once again counting the
occurrence of letters in each string, as in the previous section.

Figure 18: Visualization of the Gram matrix when using a chi-square kernel,
i.e. the kernel response for all pairs of letter histograms.

The kernel response using the chi-square kernel is shown in Figure 18, where we
can see that simply computing the histogram of letters perform way worse in
terms of similarity. This indicates that the ordering of the letters in the sequence
are important to the similarity measure, as both expected and desired.

An additional matter that can be investigated by examining the kernel re-
sponse is how well the strings represent the content of a video. Consider Figure
19 where the input is instead sorted with respect to the order of the video
episodes. After sorting by movie order, the segments are additionally sorted
by class as previously. Each square in the figure thus represent similarity of
the episodes, based on their string representation.The worst case scenario is if
the diagonal show great similarity, while other square are dissimilar, since that
would imply that one episode is only similar to itself.
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Figure 19: Visualization of the Gram matrix when using a string kernel, i.e.
the kernel response for all pairs of string sequences. The data is first sorted by
the movie order, followed by again sorting with respect to labels.

In this case, the Gram matrix show widely spread similarities, for instance
episode number 5 is similar to episode 6 and 11. Without any further way of
examining this until the classifier is proven reliable, the characteristics of the
Gram matrix look promising for use as a computation of movie similarity.

We arrive at the moment of truth, namely the performance of the classifier.
The classifier was trained using 332 sequences from 12 episodes, followed by
a test set containing 53 sequences (2 episodes). The parameter C, regulating
the allowed slack was set to C = 8. Furthermore, the kernel decay parameter
λ = 0.5 was used, along with the subsequence length n = 6. The relevant
parameters have been chosen as a combination of trial and error and the sug-
gestions from related work. Tuning parameters for improved performance is
generally interesting for a SVM, however in this case it showed unnecessary.
Tests in Weka show that these parameters affect the results scarcely, why such
analysis has been excluded from this report.

10.2.1 Multi-class classification

Starting with the evaluation of the multi-class classifier, where a single classi-
fier is created, taught by performing all combinations of 1-vs-1 classification.
The performance will be measured by the Recall, Precision, Accuracy F1-score,
evaluated for both the training data and the test set. The Recall is given as

Recall =
True positive

True Positive + False Negative
, (63)

where true positive means the correct classification. False negative is equivalent
with a miss (which should have been detected). Precision is in similar fashion
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computed as

Precision =
True positive

True Positive + False Positive
, (64)

where a false positive can be seen as false alarm. The F1-score is expressed as
the calculation of

F1 = 2 · Precision · Recall

Precision + Recall
, (65)

which is a common way of merging Precision and Recall into one performance
factor. Accuracy is simply calculated as the ratio of correctly classified instances.

The performance of the multi-class classification is shown in Table 1, where
it has been evaluated using the same data as for training. The point is to show
that there is in fact possible to train a classifier with the current setup.

Class Precision Recall F1-score Accuracy
Eventful 0.667 1.0 0.8
Gloomy 1.0 0.889 0.941
Tense 1.0 0.968 0.984
Joyful 1.0 0.952 0.976

Introductory 1.0 0.875 0.933
Emotional 0.978 0.978 0.978

All 93.6747%

Table 1: Performance of the multi-class classifier evaluated on the training
data.

The performance might come off as promising; over 90% accuracy should be
considered good performance. However, a classifier is of poor use if not able to
generalize well, i.e. perform satisfactory for previously unseen data instances.
The next result, presented in Table 2, is with the purpose of measuring the
performance for new data examples.

Class Precision Recall F1-score Accuracy
Eventful 0.0 0.0 0.0
Gloomy 0.0 0.0 0.0
Tense 0.4 0.5 0.444
Joyful 0.0 0.0 0.0

Introductory 0.136 0.231 0.171
Emotional 0.0 0.0 0.0

All 24.5283%

Table 2: Performance of the multi-class classifier evaluated on the test set.

As can be seen, the performance is not very good for new, unknown data
points. Not many of the few (53) data instances were correctly classified. As
stated earlier, sequences from 12 episodes were used for training, while 2 for
testing. To address the possibility of over-fitting or under-fitting, we attempt to
shift this partitioning to see the effect in terms of performance. Table 3 shows
the result of a test performed with sequences from 10 episodes for training, and
4 for testing. The performance is slightly increased, but altogether still low.
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Class Precision Recall F1-score Accuracy
Eventful 0.444 0.308 0.364
Gloomy 0.0 0.0 0.0
Tense 0.429 0.474 0.45
Joyful 0.0 0.0 0.0

Introductory 0.239 0.393 0.297
Emotional 0.0 0.0 0.0

All 31.4286%

Table 3: Performance of the multi-class classifier evaluated on the test set.
The number of training and test examples have been adjusted; 10 episodes for
training and 4 episodes for testing.

Further parameter tuning, shifting data sets and other kinds of manipula-
tions seems rather pointless due to the poor performance. Instead, we will try
to train multiple binary classifiers in a 1-vs-rest manner.

10.2.2 Binary classification

We begin in the same way as in the previous chapter, by revisiting the kernel
response. Since the most prominent of the classes is the eventful atmosphere,
this will be used for the example of a binary classification. The Gram matrix
illustrated in Figure 20 is the same as in Figure 17, however sorted only with
respect to the eventful label.

Figure 20: Visualization of the Gram matrix using a string kernel, for binary
classification. The classes are sorted as eventful and not eventful.

The new figure show even more clearly than before that, generally, examples
are the most similar to its own class. The binary classification performance
will once again be evaluated both by using the training data and the test set.
Furthermore, the sizes of the data sets will be adjusted similarly to the previous
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results. Starting with the evaluation using training data, found in Table 4, we
see that the overall accuracy is about the same as before, which is not that
surprising. When using test data for evaluation, the performance is still poor,
as Table 5 show. The overall accuracy is substantially increased, note however
that the eventful class is still not recognized.

Class Precision Recall F1-score Accuracy
Eventful 0.667 1 0.8

Other 1 0.932 0.965
All 93.9759%

Table 4: Performance of the binary classifier evaluated on the training set.

Class Precision Recall F1-score Accuracy
Eventful 0 0 0

Other 1 0.849 0.849
All 84.9057%

Table 5: Performance of the binary classifier evaluated on the test set.

Instead of using 12 episodes for training, we adjust the data sets according
to earlier, resulting in a training data set of 10 episodes, evaluated on 4 episodes.
The classification results are summarized in Table 6. The binary classification
perform better in terms of accuracy, however the eventful class is worse than
for multi-class classification.

Class Precision Recall F1-score Accuracy
Eventful 0.375 0.231 0.286

Other 0.897 0.946 0.921
All 85.7143%

Table 6: Performance of the binary classifier evaluated on the test set. The
number of training and test examples have been adjusted; 10 episodes for training
and 4 episodes for testing.

The presented results, for both classification attempts, indicate that there
is need for improvements, which will be discussed in the next chapter. The
approach behaves as desired, as can be seen in the gram matrices, however the
results are poor. As stated earlier there are methods of tweaking the model
further, such as including a validation set for training, however it is unrealistic
that the model can be improved enough be useful.

11 Conclusions and Future Work

At first glance, the results are a combination of two separate, however connected,
issues. The letter assignment could be tweaked to provide more representative
sequences. More importantly, it seems that training is faulted by the lack of
data, hindering us from discarding the sequences preemptively. Despite the
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problems, the results show that the method account for the temporal alignment
and ordering of sequences, as desired. This section will discuss and analyze these
factors more thorough, along with presenting possible extensions to improve the
setup.

11.1 Shot Representation and Sequence Construction

First and foremost, the sequences representing an atmosphere are for some
classes similar. The histogram of letters in Figure 14 along with the visual-
ization of similar sequences in Figure 15 and 16, show that sequences share
similarities both in distribution of letters and the internal order. The Gram
matrices also confirm that, for example gloomy and emotional, turn out to be
similar. Maybe the most interesting about this is that, when manually labeling
the videos, it was often difficult to separate the two atmospheres. Likewise, it
was also difficult to point out the differences between tense and introductory.
Considering that the human interpretation had difficulties learning these con-
cepts, it is not unreasonable to assume that the sequences could be similar also
in a digital interpretation.

The same figures also show that the eventful class differ significantly from
the rest of the classes, indicating that the features and shot representation
favor the distinction of high activity content such as motion and chaotic camera
movement. The used set of features, and the clustering of frames and shots,
could thus be useful for training an ”action”, ”no-action” classifier. It would
though have to be analyzed and tested more thoroughly with much more data
instances. The Gram matrix sorted by episodes, Figure 19, suggest that such a
setup could be used for measuring movie similarities with respect to the eventful
content.

If not satisfied with only an action-classifier, it is likely that the k-means
clustering of shots is too simple for this cause. The clustering results, for exam-
ple Figure 13b show that there is more to be desired in terms assigning letters to
shots. Besides having features that separate poorly, there is no way of showing
if the assigned clusters represent the kind of video production characteristics
that we are looking to describe. K-means clustering is often a long shot, and
difficult to analyze depending on the domain and application.

11.1.1 Future Work

The easiest addition to determine the validity of the sequences would be to
simply use more data. In the data set containing 332 sequences for training,
not a single sequence was equal. Odds are that there are so many kinds of
examples of a certain atmosphere that we have merely been able to collect a
small fraction. An important note is that collecting more data is both time
consuming (labeling) and computationally heavy. The shot clustering should
preferably involve all shots used for training at once, even for different movies
or episodes. In this project, the 12 episodes were on the verge of what a modern
standard computer could handle. In addition, the project processed episodes
from the same TV-series, hoping to address any bias in filmmaking as much as
possible.

A more interesting approach would be to turn the unsupervised clustering
task to a supervised machine learning assignment. The report presenting video
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production techniques [5] suggest that all shots can be categorized into eight
different types. If instead of clustering, one should try to learn how to recognize
the types of shots, the need for many shots at once would diminish. The videos
could then be processed separately, returning only the shot sequence as a string.
For example, a shot involving a conversation between two people looks fairly
similar for most video productions, with the camera alternatively switching
between two faces. Besides time better spent, the shots would reduce the amount
of data needed simultaneously as well as increase the knowledge about how the
sequences are constructed.

11.2 Classification Performance

Regardless of how the sequences shape out to be, the specifics of the machine
learning process also have to be analyzed. Both the multi-class and the binary
classifier perform rather equally bad with the current setup. Even if Table 5
and Table 6 show high accuracy, the classifiers fail to recognize the classes.
The accuracy in the binary case is thus just the same as a function repeatedly
guessing not eventful or other every time. The successful separation for training
data, Table 1 and 4, show that the model do not generalize well. The main
thing to notice at this point is the lack of data. For 14 episodes, only 385
examples were extracted. The small data set result in badly fitted models,
which is manifested by change in performance by adjusting the training and
testing portions of the data. Even though the sizes of the different portions
could be additionally analyzed, 385 examples do not allow much manipulation.
In some of the classification attempts, over 100 support vectors were used, about
a third of the entire training data set. This is partly because of the small sample
of data, which obviously does not cover enough of the possible instances.

Another related matter is that, although the eventful class seems to be
unique, a binary classifier still fail to separate eventful examples from the rest.
To examine this phenomena more closely, we will look at the confusion matrix. A
confusion matrix is basically a table showing the predicted class label, along with
the correct answer, which in this way give more insight in what the classifier has
learned. In Table 7, the confusion matrix is shown for the multi-class classifier,
trying to predict the entries in the test set. The classes given as rows should be
seen as the truth label, while the columns represent the predicted class. Thus,
the entirely correct prediction would be a filled diagonal, while the rest of the
entries are zeros.

Predicted class
Eventful Gloomy Tense Joyful Intro. Emotional

4 0 2 0 6 1 Eventful T
1 0 3 0 4 1 Gloomy r
1 0 18 0 11 0 Tense u
0 1 2 0 1 0 Joyful t
3 1 12 0 11 1 Intro. h
0 1 5 0 7 0 Emotional

Table 7: The confusion matrix for a classification of the test set, using a
multi-class classifier.
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The matrix indicate that most instances are classified as introductory and
tense. Not only are these two the most represented classes in the data set, but
also the ones that share similarities with many different classes. The conclusion
to be drawn from this is that the SVM has been unable to separate very sim-
ilar concepts. The both classes mentioned constitute 232 out of the 385 data
instances, allowing them to be classified correctly more frequently by pure luck.

One could argue that the binary eventful classifier should perform better,
since the sequences differ quite a lot when looking at Figure 15 as well as the
Gram matrices. Note however that the 10th most similar sequence in the figure
starts to show similarities with sequences from other classes. Odds are that the
40 positive examples of eventful scenes are not nearly enough data to separate
correctly. All in all, it is for both classification attempts difficult to draw any
more conclusions without more data. The string kernel approach does in general
show relevant behavior, although it cannot be properly evaluated at this point.

11.2.1 Future Work

As mentioned frequently by now, the greatest need in order to improve and
properly evaluate this method, is to gather more examples. Doing this would
be interesting both with and without improvements for the construction of data
sequences. Seeing how the sequences are characterized, more data would addi-
tionally allow us to test different setups of classes, for example merge similar
classes such as Emotional and Gloomy to a single class, or remove the Introduc-
tory class entirely. Many occurrences of the latter class was labeled when other
labels did not fit, corrupting the data to some extent.

Considering how the string kernel responds, it would be exciting to see fur-
ther experiments of the performance as a pure similarity measure for video.
The sequences does not necessarily have to be as complex as in this thesis.
Suppose an efficient computer vision algorithm that, e.g. searching for verti-
cal edges. Building sequences based upon the quantity and magnitude of these
edges might prove useful to compare the setting and environment of movies and
TV-series. My guess is that similar research has been set in motion already, in
the strive to properly index, annotate and categorize video content.
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