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Sammanfattning 
Momentgivare är små sensorer som används för att mäta och registrera vridmomentet på en 

roterande axel. Momentgivare baseras vanligtvis på trådtöjningsmätare för att mäta 

vridmomentetet kring axeln de är fixerade på. 

Det skall noteras att en ideal momentgivare endast bör mäta den yttöjning som uppkommer på 

grund av ett vridmoment. Den belastning som uppkommer på grund av axelns böjning 

kompenseras bort med hjälp av en Wheatstonebrygga. Men på grund av geometriska toleranser 

och monteringsfel kan kompensationen bli felaktig och då påverkas det uppmätta momentet även 

av böj och axialbelastningar vilket är oönskat. 

En analytisk modell har utvecklats med hjälp av Matlab och denna rapport undersöker de olika 

lastfallens bidrag till momentfelet. Användaren kan ange området där yttöjningen skall beräknas 

och utifrån de beräkningarna bestämma var trådtöjningsgivarna bör placeras. Inledningsvis är 

beräkningarna baserade på en av Atlas Copcos momentgivare och sedan har generaliserade 

resultat utvecklats. De teoretiska beräkningarna verifieras med hjälp av programmet ProEngineer 

Mechanica. 

Användaren kan ange vilka belastningar som axeln känner samt de geometriska toleransvärdena 

och modellen beräknar då ytspänningen för den valda regionen. Det huvudsakliga syftet med 

denna avhandling är att skapa en bättre förståelse av ytspänningen som uppkommer på grund av 

vridning, böjning och axiella belastningar och även geometriska imperfektioner. Modellen kan 

också användas för att göra beräkningar som visar var töjningsgivare bör placeras på axeln för 

maximal precision. Slutligen har de introducerade felet från de olika möjliga konfigurationerna 

jämförts och en slutsats har dragits baserat på faktorförsök. 

Keywords: faktorförsök, geometriska toleranser, känslighet, töjningsgivare, ytspänning  
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Abstract 
A torque transducer or a torque sensor is a device for measuring and recording the torque on a 

rotating system. Torque transducers usually employ strain gauges to measure the torsional 

moment applied to a rotating shaft.  

It is to be noted that for an ideal torque transducer, it should measure only the strain that is 

caused by a torque. Strain due to bending load should be compensated as per the Wheatstone 

bridge arrangement. However, because of geometrical tolerances and assembly errors, the 

compensation doesn’t occur and the measured strain is a resultant of bending loads and axial 

loads which are undesired to measure the torque associated with the system. 

An analytical formulation has been developed using Matlab and this thesis gives the generalized 

indication of the strain due to all the associated loads. The user shall also entire the region where 

the strain needs to be computed and this knowledge can be useful for placing the strain gauges in 

the shaft accordingly. Initially, the formulation is based on a standard Torque Transducer used at 

Atlas Copco and then, a generalized result has been developed. The theoretical formulation is 

verified using the ProEngineer Mechanica software. 

The end user shall enter the different loads (if any) along with the geometrical tolerance values 

and the output will be an indication of the strain at point, strain at a region and sensitivity. The 

main intention of the thesis is to create a better understanding of the strain associated with the 

twisting, bending and axial loads and also the geometrical imperfections. The user can also make 

a decision on the location of strain gauges on a shaft for maximum accuracy. Finally, the 

differences in error from different possible configurations are compared and a conclusion has 

been made based on factorial design pertaining to design of experiments. 

Keywords: design of experiments, engineering strain, geometrical tolerances, sensitivity, strain 

gauges, 
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NOMENCLATURE 

Notations 

Symbol Description 

A  Area of the object (mm
2
) 

D Diameter of the outer shaft (mm)  

d Diameter of the inner hole (mm) 

d' Perpendicular distance between the two axes (mm) 

dA  An element of small area (mm
2
) 

E Young´s modulus (Pa) 

e  Offset between the inner and the outer diameter (mm) 

F, P Axial load (N)  

Fa  Axial gage factor  

Ft  Transverse gage factor 

Ix  Second moment of the inertia about x axis (mm
4
) 

Ix'  Second moment of the inertia about x' axis (mm
4
) 

Iy  Second moment of the inertia about y axis (mm
4
) 

Ix'  Second moment of the inertia about y' axis (mm
4
) 

Izz Moment of Inertia in z plane (mm
4
) 

J Polar moment of inertia (mm
4
) 

Mz Bending moment (Nmm) 

ne Error in strain due to misalignment (με) 

Q  First moment of small area about the neutral axis of the entire body (mm
3
) 

Sp  Polar section modulus (mm
3
) 

T Torsion (indicated in Nmm) 

t thickness across the interested point (mm) 

Unit - μE Refers to micro-strain or με, μϵ 

V Supply Voltage (V) 

Vbridge Voltage across the bridge (V) 

W, Vy Bending Load (N) 

x  distance between the intended axis and the centroid (mm) 

Xbar Centroid x (mm) 

xoffset Eccentricity in x direction (mm) 

y Vertical distance from the bending load towards the interested point (mm) 

Ybar Centroid y (mm) 
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yoffset Eccentricity in y direction (mm) 

yQ  y distance between the intended axis and the centroid (mm) 

γtorsion, γxy Shear strain due to torsion (με) 

ε Engineering strain (με) 

ε1,2 Maximum and minimum principal strain (με) 

ε1, ε2, ε3, ε4 Strain in different regions (με) 

εa Strain parallel to gage axis, or the gridlines in the gage (με) 

εangle Strain along desired angle (με) 

εt  Strain perpendicular to the gage axis, or the gridlines in the gage (με) 

εtt Strain at phi plane along phi direction (με) 

εzz Strain at z plane along z direction (με) 

θp Principal plane angle (degrees) 

ν Poisson’s ratio 

vo Manufacturer’s gauge factor 

σ1,2 Maximum and minimum principal stress (MPa) 

σaxial, σa Normal stress due to axial load (MPa) 

σbending, σb Normal stress due to bending load (MPa) 

τbending, τb Shear stress due to bending load (MPa) 

τmax,min Maximum and minimum shear stress (MPa) 

τtorsion Shear stress due to torsion (MPa) 

τtorsion, τ Shear stress due to torsional load (MPa) 

ϕ  Twist per unit length of the shaft (degrees) 

  

 
 Change in resistance to resistance in the Wheatstone bridge 

Abbreviations 

AO  Angle Orientation 

AI Angle Inclination 

CAD Computer Aided Design 

DOE Design of Experiments 

FEA Finite Element Analysis 

GF Gauge Factor 

LD Length Displacement 

MOI Moment of Inertia 
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1 INTRODUCTION 

This chapter presents the background, purpose, delimitations and a brief description of the 

method used in this project. 

1.1 Background 

A torque transducer or a torque sensor is a device for measuring and recording the torque on a 

rotating system. Commonly, torque sensors or torque transducers use strain gauges applied to a 

rotating shaft or axle. With this method, a means to power the strain gauge bridge is necessary, 

as well as a means to receive the signal from the rotating shaft (Kumar, 2011). 

 

Figure 1 Torque Transducer 

Many of Atlas Copco’s products use torque transducers to measure the torque. Atlas Copco’s 

products are getting smaller and that gives new problems to the torque measurement quality. To 

increase the knowledge in this area, a sensitivity study was needed that can correlate the relation 

between the measured strain in a strain gauge and the actual torque. The thesis also focuses on 

identifying parameters that can influence the engineering strain measurement and also 

numerically quantifies their effects.  

The orientation of the strain gauge is necessary as this would have a significant impact in the 

measurement of the strain and subsequently the torque. A slight angular deviation might create a 

significant difference in measurement of the strain. Also the selection of optimal number of 

strain sensing elements can result in betting accuracy. But there is no clear understanding of 

these factors and their impact on the strain measurement. 

The most important factor that can negatively influence the strain measurement is the offsets of 

the inner hole because of geometrical tolerances. Though it was physically observed that these 

eccentricities can create a significant output difference, there hasn’t been any mathematical 

relation carried out previously that could state the impact of these unwanted errors.  

Another important parameter that is considered in the thesis is the impact of bending and axial 

loads on the strain measurement. Normally, a bending and axial compensation is evident on the 

torque transducer. However, because of geometrical tolerances, these loads can create a 

significant difference in the strain gauge measurement and the output will be a result of these 

loads as well as torsion as opposed to the ideal case of measurement caused by torsion. An 

analysis of the stress that is caused by these loads was necessary to see their impact on the torque 

measurement.  

In short, if there are no imperfections, then the strain gauge arrangement will give a sensitivity 

value which is worked further to obtain a torque value (which shall be the torque operating on 

the shaft). However, if there are imperfections, then the strain gauge arrangement will give a 

different sensitivity value which will show a different torque value from the actual torque 

applied on the shaft. 
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1.2 Purpose 

An ideal torque transducer should measure only the strain that is caused by a torque. Strain 

caused by bending load or an axial load should be compensated as per the Wheatstone bridge 

arrangement (Schicher, 2002). However, because of geometrical tolerances and assembling 

errors, the compensation is not accurate and the measured strain is a resultant of bending loads 

and axial loads which are undesired to measure the torque associated with the system. Since 

Atlas Copco’s transducers are getting smaller and smaller, there is a need for accuracy in these 

arrangements.  

Conventionally, sensitivity computation was carried out for a perfect concentric shaft subjected 

to torsion alone. In this thesis, sensitivity can be computed for an ideal as well as imperfect shaft.  

The purpose of this thesis is mainly concerned with making an analysis of strain measurement 

and also answering a few questions with reference to the tolerances, orientation accuracy of the 

strain gauges, number of strain sensing elements and the effect of bending and axial loads. A 

faster analytical model with a good accuracy can usurp the FEA because of the fact that a lot of 

time is spent in FEA for analyzing the strain. DOE was performed so that the effects can be 

numerically quantified as well. 

1.3 Scope and Delimitations 

The intended result from this thesis is that finally, a better understanding of strain gauges can be 

made with respect to different errors and unwanted effects. A numerical computation of the 

strain indication because of unwanted cases (like external bending load, axial load, and 

geometrical tolerances) is made using Matlab and simultaneous verification using FEM is made. 

The unwanted effects are also compared and their individual and combined effects are 

numerically categorized using DOE.  

Therefore, the backbone of this thesis lies in solid mechanics and strength of materials. A lot of 

emphasis was made on the neutral axis and the corresponding centroids, neutral axis and the 

moments of inertia. Geometrical tolerance related errors are also analysed and a numerical 

calculator was scripted using Matlab. As a result, a certain offset shall bring in a different neutral 

axis and the entire computation was made assuming the fact that the load is always applied on 

the neutral axis. This shall be discussed in detail in Chapter 3.5.2. 

1.4 Expected results and conclusions 

Using the Matlab code, the end user shall find out the strain that would occur over any point or 

over any region depending upon his/her interest.  

 A Matlab Program 

 Verification with ProE Mechanica (FEA Software) 

 The Matlab program should show the following 

o Sensitivity and Strain output at different regions – with/without imperfections 

o Plots showing the strain over a region where the strain gauges are to be placed 

 Conclusion stating the optimal location of Strain gauges in the transducer 

 Factorial design considering major parameters in assembly errors and their influence 

using DOE 
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1.5 Method 

The basic approach for this thesis was to finally end with a generalized model that can hold good 

for almost all the torque transducers at Atlas Copco.  

The first step involves writing a Matlab Script that can find the stress and corresponding strain at 

any point on the outer diameter’s surface of the torque transducer. It is quite direct to calculate 

the stresses for a shaft subjected to only torsion as the stress will be the same at all points. But 

for the same shaft, when it is subjected to axial and bending load, it requires analytical 

computations to calculate the stresses at different points. The highest complexity arises, when the 

inner diameter is slightly offset from the outer diameter. In this case, many parameters like the 

moment of inertia, centroid and area moment of inertia changes. A Matlab script considering all 

these parameters is written with the output being the stress and strain at the interested point. 

Then, strain over an interested region is calculated and the verification is carried out using 

ProEngineer Mechanica. If the results match, then conclusions are to be made out. Then using 

Matlab, Stresses and Strain over a region is plotted against various parameters such as 

sensitivity, loads, offsets, etc. Factorial design is also carried out in order to numerically quantify 

the effects of various parameters with the output being the sensitivity caused because of those 

unwanted parameters. This shall give a clear understanding of the various parameters and their 

impact against the ideal case.  

Once the above steps are calculated, then a correlation between the strain (obtained from the 

Matlab script) and the output sensitivity that a Wheatstone bridge shall show for different 

configurations is obtained. Finally the results are to be compared with an existing torque 

transducer and the conclusions are made. 

 

 

Figure 2 Flow Chart indicating Method of the Thesis 
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2 FRAME OF REFERENCE 

The reference frame is a summary of the existing knowledge and former performed research on 

the subject. This chapter presents the theoretical reference frame that is necessary for the 

performed research. 

2.1 Strain gauges and measurement using strain gauges 

Engineering strain is defined as the ratio of the change in length to the initial unstressed 

reference length. A strain gage (Figure 3) is the element that senses this change and converts it 

into an electrical signal. When wire is stretched, its cross-sectional area decreases and therefore 

its resistance increases. Figure 3 shows a strain gauge (Hoffman, 1989). 

The metallic strain gauge consists of a very fine wire or a metallic foil arranged in a grid pattern 

(Muftah, 2010). The grid pattern maximizes the amount of metallic wire or foil subject to strain 

in the parallel direction (shown as the effective grid length). The cross sectional area of the grid 

is minimized to reduce the effect of shear strain and Poisson strain.  

 

 

Figure 3 Strain Gauge 

2.2 Wheatstone bridge and sensitivity  

A Wheatstone bridge is an electrical circuit used to measure an unknown electrical resistance by 

balancing two legs of a bridge circuit, one leg of which includes the unknown component. If all 

four resistor values and the supply voltage (VEX) are known, the voltage across the bridge (VO) 

can be found by working out the voltage from each potential divider and subtracting one from 

the other (National Instruments, 1998). 

 

 

Figure 4 Wheatstone bridge 

   (
  

     
 

  

     
)         (1) 

Strain gauge transducers usually employ four strain gauge elements electrically connected to 

form a Wheatstone bridge circuit. The sensor can occupy 1/2/3/4 arms of the bridge, depending 
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on the application. So when R1, R2, R3 & R4 are balanced there in no Vo (National Instruments, 

1998).  If R4 acts as element and is strained, Vo is obtained usually in mV, which is an indirect 

measurement of the Strain.  

Some significant results of Wheatstone bridge are as follows: 

 For constant supply voltage VEX and constant strain gage factor, axial strain at the location of 

the strain gage is a linear function of the output voltage from the Wheatstone bridge circuit. 

 For known values of Strain Gauge Factor and VEX, the actual value of the strain can be 

calculated from the equation (1) after output voltage Vo is known. 

Table 1 Wheatstone bridge configuration (National Instruments, 1998) 

Connection Figure 
  

   
  

Quarter 

Bridge 
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Half  

Bridge 

 

 
    

 
 

Full  

Bridge 

 

      

2.3 Strain gauge Measurement system 

The engineering strains measured with strain gages are normally very small. Consequently the 

changes of resistance are also very small and cannot be measured directly with a device like an 

ohmmeter. The strain gage must therefore be included in a measurement system where precise 

determination of the strain gage's change of resistance is possible (Hoffman, 1989). 

The first component in the system is formed by the strain gage itself. It converts the mechanical 

strain into a change in the electrical resistance.  

The second component in the system is a measuring circuit, shown here as a Wheatstone bridge 

having the strain gage as one arm. Energy must be passed to them to obtain a useful signal. This 

auxiliary energy is taken from a separate source. When the strain gage's resistance changes 

because of a strain, the bridge circuit loses its symmetry and becomes unbalanced. A bridge 

output voltage is obtained which is proportional to the bridge's unbalance.  
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Figure 5 Strain gauge measurement system (Hoffman, 1989) 

An amplifier is included in the measuring system as the third component which amplifies the 

bridge output voltage to a level suitable for indicating instruments. Sometimes amplifiers are 

designed to give an output current proportional to the bridge output voltage, but some models 

can provide either voltage or current outputs. With a linear amplifier the output voltage or output 

current is proportional to the amplifier input voltage which is also the bridge output voltage and 

this is in turn proportional to the measured strain. 

The fourth component in the measuring system is the display mainly for user interface. In the 

simplest case, the measurement is displayed by the indicating scale of a voltmeter or ammeter or 

the figures on a digital measuring device. If the change of strain with time is needed as in a 

dynamic process, recording instruments are better suited than indicating ones. Many amplifiers 

enable the connection of both types of instrument, either as an alternative or in parallel 

connection 

2.4 Solid-Mechanics terms 

The backbone of this thesis lies in solid mechanics. Some of the terms that are used throughout 

the thesis are given below. A detailed explanation is given in Chapter 3. 

 Centroid 

The point at which we assume the area concentrated is called the centroid and the point at which 

the mass is assumed to be concentrated is called the center of gravity. (Timoshenko, 1940). 

 Neutral Axis 

The neutral axis is an axis in the cross section of a beam (a member resisting bending) or shaft 

along which there are no longitudinal stresses or strains. If the section is symmetric, isotropic 

and is not curved before a bend occurs, then the neutral axis is at the geometric centroid. For an 

ideal hollow shaft, the centroid is located at the geometric center of the hollow cylinder.  

 Statistical moment of Area or the First Moment of Inertia  

The static or statical moment of area, usually denoted by the symbol Q, is a property of a shape 

that is used to predict its resistance to shear stress. (Vable, 2009). 

   ∫                         ( ) 

Q - First moment of the small area about the neutral axis of the entire body 

dA - an elemental area of small area; 

y - The perpendicular distance to the element dA from the neutral axis or the Centroid. 

 Second Moment of Inertia 

The second moment of area, also known as moment of inertia of plane area, is a geometrical 

property of an area which reflects how its points are distributed with regard to an arbitrary axis. 

    ∬           ( ) 
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    ∬           ( ) 

Ix - Second moment of the inertia about X axis 

x – Distance between the intended axis and the centroid 

Iy - Second moment of the inertia about Y axis 

y – Distance between the intended axis and the centroid 

 Perpendicular Axis Theorem 

The perpendicular axis theorem (or plane figure theorem) can be used to determine the moment 

of inertia of a rigid object that lies entirely within a plane, about an axis perpendicular to the 

plane, given the moments of inertia of the object about two perpendicular axes lying within the 

plane. The axes must all pass through a single point in the plane. J is the polar moment of inertia, 

which passes through an axis perpendicular to Ix and Iy (Khurmi, 2008). 

Polar Moment of Inertia J = Ix + Iy 

 Parallel Axis Theorem 

Parallel axis theorem or Huygens–Steiner theorem can be used to determine the second moment 

of area or the mass moment of inertia of a rigid body about any axis, given the body's moment of 

inertia about a parallel axis through the object's centroid and the perpendicular distance (r) 

between the axes (Khurmi, 2008). 

                   ( ) 

   - Second moment of the inertia about    axis 

Ix - Second moment of the inertia about x axis (along its centroid) 

d – Perpendicular distance between the two axes 

A – Area of the object 

2.5 Combined loading 

The following figure represents a case where an ideal shaft is subjected to Twisting, Bending and 

Axial Load (Vable, 2009). Figure 6 shows a shaft with four points A,B, C and D. Along the point 

A, the bending load acts which will be result in a tensile stress whereas on the point B, the 

bending load will create compression. The axial load is acting along the centroid (or the neutral 

axis) of the hollow shaft. The twisting moment acts in an anticlockwise rotation. Table 2 shows 

the stresses that are acting on the four points. 

 

 

Figure 6 Combined loading in shafts 
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Table 3 shows the normal and the shear stresses for a combined load. The axial load is acting 

along the x direction while the bending load is applied along the y direction. Figure 6 shows a 

shaft when subjected to axial, bending and twisting load. 

Table 2 Normal and Shear Stresses at different points on the shaft 

Point Normal Stresses Shear Stresses 

A        +                   

B                          

C                          

D                          

Table 3 Normal and Shear stresses formulas in combined loading (Vable, 2009) 

Load  Normal Stress Shear Stress 

Axial      
 

 
                                            

Torsion                              
   

 
          

Bending (about 

Z Axis) 
      

    

   
                          

     

     
         

 

    is the normal stress that is associated with the axial load and is equal to the axial load divided 

to its area. Since in the real case too, there is a possibility of axial load only along the x axis and 

hence             are zero. Also, it is to be noted that because of the axial load acting along the 

neutral axis, there are no shear stresses. 

Due to Torsion, there are no normal stresses. The only shear stress component is    , where T is 

the Twisting Moment and ρ is the outer radius and J is the Polar Moment of Inertia (Young, 

1989). 

Due to Bending along Z axis, the only normal stresses is                   Mz is the 

bending moment while y is the vertical distance from the neutral axis. Izz is the second moment 

of inertia of the entire shaft. The corresponding shear stress caused by bending is    . The 

vertical shear force (in most cases being the bending load) is represented by Vy and first moment 

of inertia being represented by Qz while t represents the thickness which is equal to difference 

between the diameters (Young, 1989). 

2.6 Stresses and strains 

The extreme values of normal stresses on shear-free planes are called the Principal Stresses and 

the planes on which the principal stresses act are called the principal planes. In two-dimensional 
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cases, there are two principal stresses, namely the major principal stress and the minor principal 

stress which are defined as the maximum and minimum values of the normal stresses 

respectively (Khurmi, 2008). 
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In case of a shaft subjected to twisting, bending and axial load, the above equations can be 

alternatively expressed as follows (Young, 1989) 

      
 

 
 

 

 
√           (  ) 

           
 

 
√           (  ) 

In the equations (12) & (13), σ represents the normal stresses due to all the loads combined while 

τ represents the shear stresses due to all the loads combined. 

 

 

Figure 7 Stress plane 

Figure 7 shows the stress directions that act along different directions for a considered region. 

The stress σzz refers to stress acting on the z plane along z direction. σtt refers to stress acting on 

phi plane along phi values. Theses stresses are extended to get strain (using Young’s modulus). 

If the value of εzz, εtt and γtorsion, are calculated, the next step is to calculate the strain at 45 

degrees and also at other angles. Using strain transformation, strain at any angle can be found out 

using the formula,  

       (
       

 
)  (

       

 
)                     (  ) 

Since the principal strain would not be at 45 degrees (because of the presence of bending load), 

there is no use of calculating the maximum and minimum principal strains. Hence using the 

above expression, strain at any angle can be computed. 

By this method, engineering strain along any direction can be calculated provided the three 

values are found out.  
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2.7 Article by T.A. Wilson 

T.A.Wilson in 1954 published an article titled “The Eccentric Circular Tube” in the book 

Aircraft Engineering by 1942. In the article, he described the mathematical method of computing 

the shear stress at its maximum position along an eccentric shaft. This article forms the backbone 

of this thesis. Wilson calculated the shear stress only for the position corresponding to maximum 

shear stress. His expression is further extrapolated in order to find the maximum shear stress at 

all the locations of the shaft. Details regarding this are explained in Chapter 3.4.3. 

2.8 Positioning of strain gauges 

Positioning of Strain Gauges is necessary for optimal measurements of the load associated with 

it. Table 4 summarizes the various configurations of different loads and lists out the best possible 

configuration for each type. As a general rule of thumb, in a Wheatstone bridge, equal changes 

(e.g. temperature) in adjacent arms will cancel out each other (Hoffmann, 1989). 

Table 4 Different configurations of positioning strain gauges (Hoffmann, 1989) 

TYPE CONFIGURATION NOTES 

Axial Strain 

 

Must use dummy gauge in adjacent arm (2 or 4) 

to achieve temperature configuration 

 

Rejects bending strain but no temperature 

compensation. Must add dummy gauges in arms 

2&4 to compensate for temperature 

 

Temperature compensated, but sensitive to 

bending strain 

 

Best configuration for axial loads as it 

compensates for temperature and rejects bending 

strain. 

Bending 

Strain 

 

Also responds equally to axial strains, must use 

dummy gauge in an adjacent arm (2 or 4) to 

achieve temperature compensation 

 

Half bridge configuration. Rejects axial strain and 

is temperature compensated. Dummy resistors in 

arms 3&4 can be in strain indicator 

 

Maximum sensitivity to bending rejects axial 

strains and temperature compensated. Best 

Configuration for bending loads 
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Adequate configuration but not as good as the 

previous configuration. Compensates for bending 

and rejects axial strain. 

Torsional 

Strain 
 

Half bridge configuration. Gages at 45 degrees to 

center line sense principal strains which are equal 

and opposite for pure torsion, bending or axial 

force induces equal strains and is rejected and 

arms are temperature compensated 

 

Full bridge configuration and the best 

configuration for torsional strains. Rejects axial 

and bending strain and temperature compensated. 

2.9 Torque Measurement 

It is to be noted that         in case of pure torsion as there are no normal stresses associated 

with pure torsion. The principal stresses (maximum and minimum normal stresses) occur at an 

angle 45ᵒ to the cylindrical planes (lines running parallel to the longitudinal axis of the shaft).  

As a result, placement of the strain gauges along 45 degrees will be an indication of the principal 

strain corresponding to the principal stresses. Using that shear stress τ can be computed form 

which the torque can be found out. (Hoffmann, 1989) 

 

Figure 8 Torsion shaft with X-rosette gauges mounted in the principal strain directions  

 

Figure 9 Torque measurement and Wheatstone bridge circuit 

   
         

          (  ) 

   
         

          (  ) 

        are the measured strain from the strain gauges and   being the Poisson’s Ratio. E is the 

Young’s modulus of the shaft material. (Hoffmann, 1989) 

When the shaft is twisted,        

For a half bridge connection,  
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      (  ) 

               (  ) 

Similarly, for a full bridge connection,  

      
        

       
      (  ) 

     
  

 
        (  ) 

Once      is calculated, the Torque can be computed using the formula 

               (  ) 

   is the Polar Section Modulus, which can also be termed as the ratio between Polar Moment of 

Inertia and the Outer Diameter. 

2.10 Poisson’s ratio and Gauge Factor 

When a sample object is stretched (or squeezed), to an extension (or contraction) in the direction 

of the applied load, it corresponds to a contraction (or extension) in a direction perpendicular to 

the applied load. The ratio between these two quantities is the Poisson's ratio (Muftah, 2011). 

 ν   
  

  
      (  ) 

Strain gauge is a device used to measure the strain of an object. As the object is deformed, the 

foil is deformed, causing its electrical resistance to change. This resistance change, usually 

measured using a Wheatstone bridge, is related to the strain by the quantity known as the gauge 

factor (Muftah, 2011). 

                
  

 
  

 

        (  ) 

If the Wheatstone bridge connection is present, then 

  

   
      (

   

 
)     (  ) 

2.11 Error due to misalignment 

When a gage is bonded to a test surface at a small angular error with respect to the intended axis 

of strain measurement, the indicated strain will also be in error due to the gage misalignment. 

Magnitude of misalignment error depends upon three factors. (Vishay Precision Group, 2010) 

 The ratio of the algebraic maximum to the algebraic minimum principal strain, εp /εq.    

 The angle φ between the maximum principal strain axis & intended strain measurement axis 

 The angular mounting error, β, between the gage axis & intended axis of strain measurement. 

The error in measurement caused by angular misalignment n is given by,  

                 (  ) 

   
     

 
[               ]    (  ) 
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2.12 Corrections for Wheatstone bridge nonlinearity 

The output voltage obtained from the unbalanced Wheatstone bridge is a function of the amount 

of unbalance, and is therefore directly related to the strain applied to the strain gage. However, 

under certain conditions frequently encountered in actual practice, the bridge output voltage is, 

as noted earlier, a nonlinear function of the resistance change in the bridge arms. When this 

occurs, the strain readings will be somewhat in error (Vishay Precision Group, 2010). Table 5 

shows the corrections associated with different configurations. 

Table 5 Wheatstone bridge nonlinearity corrections (Vishay Precision Group, 2010) 

 

2.13 Transverse sensitivity 

Transverse sensitivity in a strain gage refers to the behavior of the gage in responding to strains 

which are perpendicular to the primary sensing axis of the gage. Ideally, it would be preferable if 

strain gages were completely insensitive to transverse strains. In practice, most gages exhibit 

some degree of transverse sensitivity; but the effect is ordinarily quite small, and of the order of 

several percent of the axial sensitivity. (Vishay Precision Group, 2011) 
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In general, a strain gage actually has two gage factors, Fa and Ft, which refer to the gage factors 

as determined in a uniaxial strain field (not uniaxial stress) with, respectively, the gage axes 

aligned parallel to and perpendicular to the strain field. For any strain field, the output of the 

strain gage can be expressed as follows: (Vishay Precision Group, 2011) 

  

 
                (  ) 

      = strains parallel to and perpendicular to the gage axis, or the gridlines in the gage. 

   = axial gage factor. 

   = transverse gage factor. 

Poisson’s Ratio   =  
  

  
 and Transverse Sensitivity coefficient     

  

  
 

Hence,  

 
  

 
                      (  ) 

where F =            which the manufacturer’s gauge factor (Vishay Precision Group, 2011). 

2.14 DOE 

In statistics, fractional factorial designs are experimental designs which consist of a fraction of 

the full factorial design. The major inference that can be carried out from a factorial design is 

that it will give a clear view of the effects of the parameters on the experiment or the simulation 

(Box, 2005). Either fractional factorial design or full factorial design can be performed, 

depending on the number of runs. Fractional Factorial design also gives the main effects and the 

interaction effects of these parameters. Thereby the effects can be quantified and numerically 

compared. Two levels can be inflicted on these cases with – representing a low level and + 

representing a higher level. Table 66 shows a factorial design with three levels. 

Table 6 Two level Factorial Design 

Cases A B C D  = ABC 

1 - - - - 

2 + - - + 

3 - + - + 

4 + + - - 

5 - - + + 

6 + - + - 

7 - + + - 

8 + + + + 

 
A, B, C and D are the factors, while - and + refers to the lower level and the higher level respectively. 
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3 METHOD 

In this chapter the working process is described.  

3.1 Different imperfections 

As explained earlier, the main aim of this thesis is to calculate the sensitivity caused by different 

imperfections (if any) that occur commonly in the transducers. The following were listed out to 

be the major imperfections contributing to the sensitivity measurement system.  

 

 

Figure 10 Different imperfections 

3.1.1 Eccentricity 

It is highly difficult to achieve zero concentricity between the outer diameter and the inner hole. 

Eccentricity refers to the effective distance between the centers of the two circles (the outer 

diameter and the hole). The X axis offset and the Y axis offset refers to the offsets in the x axis 

and y axis respectively. It gives the position of the inner hole at a particular instant. Figure 11 

shows an exaggerated eccentric hollow shaft. 

 

Figure 11 Eccentricity imperfection 
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3.1.2 Axis inclination 

Axis inclination refers to the angle with which the inner axis is inclined to the outer axis. The 

inner axis corresponds to the hole and the outer axis corresponds to the shaft. This imperfection 

is closely related with run-out tolerance. Figure 12 shows an exaggerated shaft (for illustration 

purpose) with an imperfection occurring because of axis inclination. 

 

Figure 12 Axis inclination imperfection 

 

3.1.3 Effect and combination of loads 

Usually, only the torsion load is desired on the transducer body. For a concentric shaft, if there is 

a bending load, it gets compensated in the Wheatstone bridge arrangement. Thereby, it doesn’t 

have any effect on the sensitivity measurement. However, it is unclear if there will be 

compensation for a geometrically imperfect shaft. Nevertheless, if there are other loads present, 

the indicated strain at any point will be different.  

3.1.4 Strain gauge angle orientation 

This is one of the commonly occurring assembly errors.  Strain gauges are intended to be kept at 

45 degrees to measure strain and subsequently compute torque, since the maximum principal 

strain occurs at these angles. If they are inclined at an angle other than 45, then that case refers to 

this imperfection. Figure 13 shows a typical imperfection.  

 

Figure 13 Strain gauge angle orientation imperfection 
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3.1.5 Strain gauge length displacement 

The strain gauges are intended to be kept at 4 locations usually, symmetrically along the same 

length. If one of them is not properly aligned with respect to the length along the lateral sides of 

the shaft, then that case is considered to be this error. If there is just torque on the shaft, then this 

imperfection doesn’t have any effect on the output sensitivity, since the principal strain will be 

the same at all the points oriented at 45 degrees. However, if there are other loads, then there will 

be a change in sensitivity.  

 

 

Figure 14 Strain gauge length displacement imperfection 

3.1.6 Strain gauge angle inclination 

Normally, 4 strain gauges are employed around the shaft at a common distance from the load end 

of the shaft. They are placed at an angle of 90 degrees to each other. If the angle between two 

successive strain gauges (in a 4 strain gauge system) is not 90 degrees, then that error is called 

strain gauge angle inclination imperfection.  

 

Figure 15 Strain gauge angle inlcination imperfection 

3.2 Input parameters 

There are many input parameters that can influence the measurement of strain and the torque 

measurement in a shaft. The major parameters that define a shaft are as follows: 

 Outer diameter of the shaft 

This corresponds to the outer diameter of the shaft 

 Inner diameter of the shaft 

This corresponds to the inner diameter of the shaft. For a hollow shaft, this value is zero. 

 Length of the shaft 

This corresponds to the total length of the solid shaft. 



34 

 

 Twisting moment acting on the shaft 

Twisting moment corresponds to the turning moment that is acting on the shaft because of a 

Torque. For convenience, if the twisting is along the clockwise direction, a negative sign is 

intended to be specified preceding the input value of torque. 

 Bending moment acting on the shaft 

Bending moment corresponds to the moment that is acting on one end of the shaft because of 

a Vertical load. The vertical load tends to deform the shaft.  

 Axial load acting on the shaft 

Axial load corresponds to either the tensile or the compressive load that acts on the end of the 

shaft. In this thesis, it is assumed that the axial load is acting along the neutral axis and is 

perpendicular to the bending load. 

 Young’s modulus of the shaft 

It is a measure of the stiffness of an elastic material. According to Hooke’s law, it is the ratio 

of the stress along an axis over the strain along that axis in the range of stress. Different 

materials have different Young’s modulus. By changing the Young’s modulus, the user can 

simulate the same for a particular material, provided the Young’s modulus of the material is 

known. 

 Poisson’s ratio of the shaft 

Poisson’s ratio is defined as the negative ratio of the transverse strain to axial strain. When a 

material is compressed in a direction, it usually tends to expand in the other two directions 

which are perpendicular to the direction of compression. Poisson's ratio is a measure of this 

effect, which is called Poisson’s effect. Since the Poisson’s ratio is different for different 

materials, it is viable to include Poisson’s ratio as an input parameter. 

 Offset in x-direction 

It is the offset of the inner diameter axis from the outer diameter axis in x axis when 

measured from the load end. This parameter, along with the offset in y-direction is usually 

the main contributor for the geometrical tolerance errors in manufacturing industry 

corresponding to hollow shafts. 

 Offset in y-direction 

It is the offset of the inner diameter axis from the outer diameter axis in y axis when 

measured from the load end. 

 Axis inclination 

This is inclination of the inner diameter axis from the outer diameter axis. It is closely related 

to run-out tolerance. 

3.3 Matlab script brief 

The Matlab Script is written with compatibility with Microsoft Excel as far as the input 

parameters are concerned. The Matlab script is split into eight sections (Appendix 2). 

 The first section deals with the input parameters. An excel sheet is used in tandem with the 

Matlab code and the various parameters are entered. Apart from that, the coordinates of the 

strain gauge location are entered in different sheets. 

 The next section deals with torsion computation. Once the input value is read by Matlab, the 

torsional shear stress is calculated along different angles. The user has an option to mention 

the grid size of the angles and the length. 

 The third section deals with finding out the stress and strain correspondingly for bending and 

axial loads along different lengths and angles. For that matter, a double for loop is used 

o Section 3.1  

 It finds out the centroid, neutral axis and the interested point of consideration 

(for example, the coordinates of 360 points when the user is interested in 360 

points) 
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o Section 3.2 

 It finds out with respect to neutral axis – the area above the neutral axis, xbar 

and ybar (centroids) of the inner circle 

o Section 3.3  

 It finds out with respect to neutral axis – the area above the neutral axis, xbar 

and ybar (centroids) of the outer circle 

o Section 3.4  

 Now that the outer and inner circles’ geometrical properties are obtained, this 

section calculates the first moment of area with respect to the neutral axis 

o Section 3.5  

 This section calculates the polar moment of inertia with respect to neutral axis 

o Section 3.6  

 This section calculates second moment of inertia with respect to neutral axis 

o Section 3.7  

 The basic idea is that each point has to be considered separately and thereby 

the geometrical properties with respect to that point would vary accordingly. 

If the point considered is in the top half (technically first or second quadrant), 

and if the point position with respect to the inner circle (vertical distance) is 

analyzed and the properties are calculated accordingly. 

o Section 3.8  

 Similarly, if the inner circle is in third or fourth quadrant, then the different 

possible locations of the point on the outer diameter is analyzed and the 

suitable geometrical parameters are calculated on each case 

o Section 3.9  

 Here the effect of the inner circle is negated temporarily and the geometrical 

parameters are calculated accordingly. 

o Section 3.10 

 Here, the difference between the above two section is further extrapolated to 

calculate the First moment of area, polar moment of inertia, second moment 

of inertia and the  vertical distance from the bending load. 

 

 Fourth section 

Here, the bending parameters are listed out and the thickness at the point of interest is 

calculated, which is needed for evaluating the bending stress. 

 Fifth section 

The total bending stresses and the torsional stresses are super positioned to calculate the 

Maximum Shear stresses. 

 Sixth section 

Here the different interesting plots are plotted 

 Seventh section 

So far, strain at individual points is calculated. Now, they are clubbed together to calculate 

the average strain at a region. All the values of the strain at different points are indexed in an 

array. Using the input coordinates of the region and the program identifies and uses the 

necessary values calculated in section 3. Thus, the average strain in a region is calculated 

 Eight section 

This section computes the sensitivity of the strain gauge using the strain values at a region 

obtained from the previous step. 



36 

 

3.4 Different stresses 

The following table shows the normal and shear stresses that are associated with different 

loading cases. By calculating each expression, the corresponding strain that shall be sensed by 

the strain gauge can be obtained. 

Table 7 Normal and Shear stresses for different loads 

Load  Normal Stress Shear Stress 

Axial         
 

 
             

Torsion                  
   

 
 

Bending 

(about Z Axis) 

           
    

   
 

(                                  

      
     

     
 

(                                           

Table 8 Direction of stresses 
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3.5 Calculation of parameters related to torsional moment  

Whenever a shaft is subjected to torsional moment, there are no normal stresses. Only the 

shearing stresses occur due to Torsion. This shear stress will result in strain along 45 degree and 

-45 degree, which shall be sensed by the strain gauge. So, basically, it is adequate to calculate the 

shearing stresses caused by torsion. 

To calculate the strain related to Twisting Moment, the calculation corresponding to a solid shaft 

and a concentric shaft are shown first. Then the complexities of the eccentric offsets are 

computed using St. Venant’s torsion principle is illustrated. 

3.5.1 Ideal solid shaft 

This is the most common type of shaft that is used in many applications. When a shaft is 

subjected to a twisting load, deformation occurs because of shear stress. The twisting moment 

along the ends of the shaft, tends to cause shear along the surfaces of the shaft. For a solid shaft, 

the shear stress that is caused by the twisting moment is same along all the points/surfaces of the 

shaft. Since this thesis is mainly concerned with finding the strain that can be sensed by the 

strain gauge, the only formula that is interesting is that of the shear stress. Shear stress τ can be 

found out provided the Twisting Moment (T) and the diameter (D) are known (Vable, 2009). 

From that, shear strain can be found just by dividing it with Shear modulus G. Shear modulus is 

equal to Young’s modulus, divided by a factor 2(1+ν). 

         
     

          (29) 

3.5.2 Ideal concentric shaft 

Concentric shafts are those that have a circular hole along the center of the shaft. It can be 

typically related using the two parameters – outer and inner diameters. When the centers of the 

two diameters lie on the same point, it can be termed as a concentric shaft. It is to be noted that 

the term ‘hollow shaft’ generically means an ideal concentric shaft unless specified. The typical 

practical problem occurring with the concentric shaft is that it is difficult to precisely 

manufacture a concentric shaft. Although a shaft with concentricity 6 microns can be considered 

as very accurate, the small variation can tend to bring a change in the shear stress distribution 

along the shaft. Almost all of the calculations for shaft are either pervasively based on solid or 

concentric shafts. Shear stress τ can be calculated if the Twisting moment (t), Outer diameter (D) 

and inner diameter (d) are known (Vable, 2009). 
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      (30) 

 

3.5.3 Eccentric hollow shaft 

Eccentric hollow shafts are typically observed in hollow shafts. Almost all of the hollow shafts 

that are manufactured in industries are eccentric shafts pertaining to the fact that it is highly 

unlikely to achieve zero concentricity. The effect of concentricity can be extrapolated from the 

work of T.S.Wilson, 1954.  

The general St. Venant torsion problem may be reduced to the determination of a function φ, 

which satisfies the equation throughout the material section of the tube and which also satisfies 

the boundary condition ψ = 0 on the outer boundary and ψ = K on the inner boundary 

              (31) 
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K is a constant and can be determined from the fundamental principle that the displacement of 

any point of the section must be a single valued function (Wilson, 1954). If the function ψ can be 

determined, then the shear stress at any point of the section can be found. The direction of the 

stress is tangential to that curve of the family ψ = constant which passes through the point and its 

magnitude is    
  

  
, where E is the coefficient of rigidity,   is the twist per unit length of the 

shaft and 
  

  
 represents the differentiation along the normal to that curve of the family ψ = 

constant, which passes through the point. 

 

 

Figure 16 An eccentric circular shaft (Wilson, 1954) 

From above figure, B is the center of the outer diameter and A is the centre of the inner diameter. 

Eccentricity is represented by e which is offset between the inner and the outer diameter. The 

outer diameter is represented by b and the inner diameter is represented by a. 

Using polar coordinates (r, θ) equation 28 can be written as  
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)  

 

  

   

            (32) 

The components of shear stress τ at any point (r, θ) will be as follows 

           
  

 

  

  
      (33) 

                  
  

  
          (34) 

 Any point on the outer boundary is represented by boundary condition being ψ = 0 and the 

equation being ψ = 0 

 Any point on the inner boundary is represented by boundary condition ψ = K (a constant) and 

by equation (32) 

           √  
       

        (35) 

 
 

 
          √                (36) 

Where   
 

 
 and θ is the angle that the point P on the outer surface makes with the point D (Angle PBD). 
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In accordance with this method, a function ψ must be sought out such that it shall satisfy the 

equation (31) and also the two boundary conditions which are given below.  

    
  

 
    ∑ (   

  
  

  )        
       (37) 

Equation 9 is a solution of equation 4 where a’s and β’s are constants (Wilson, 1954) 

Since, the main interest is to calculate the stress along the outer diameter, it can be hypothesized 

that the boundary conditions also satisfy when     for all values of θ. 

Thus, for any point on the outer diameter, the boundary condition will be satisfied if 
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  )       
      (38) 

In order for the above equation to be zero,                       
  

 
 and 

                          
  , for the different values of n. 

 

Wilson demonstrated that by using the expression of a1 to a4 as shown below, the above equation 

can be rewritten for torsion computation  
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Similarly, on the inner boundary,  
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Wilson found that ri
n
 and 

 

  
  could be expanded in Cosine series, leading to the expression 
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Provided                  

Based on this, Wilson yielded a set of equations 
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Using the boundary conditions and the above set of equations, the expression can be further 

reduced in order to determine an expression for a11 to a44 
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The above equations are simplified and can be rewritten using the values of a1, a2, a3 and a4 
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On the periphery (r = b), 
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Substituting the above values in Equation 38, we can get the value of 
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Where θ will be the angle from the reference horizontal axis 

 

Thus, the expression of the Shear stress because of torsion is calculated (Wilson, 1954). 
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Thus, a Matlab program with inputs eccentricity, outer and inner diameter and the torque can 

yield a shear stress distribution along the entire lengths of the shaft. This shear stress value can 

be further extended to get a strain value, which should be compared with the strain value from 

that of the FEA for verification. 

3.6 Calculation of parameters related to bending moment 

As far as bending moment is calculated, two disparate stresses are to be obtained. One is the 

normal stress caused by bending and the other one is the shear stress caused by bending. The 

calculation of these two parameters for the ideal and the offset cases are shown. 

3.6.1 Ideal shaft 

Shear stresses due to bending and normal stresses due to bending are the two parameters that are 

to be calculated. The shear stress at all points will always be opposite in direction to the bending 

load. The normal bending stress will be perpendicular to the bending load. The direction of the 

torsional shear stresses and the normal stresses are shown above.  

 

 

Figure 17 Ideal shaft bending application 

 

Figure 18 Direction of normal bending stresses and shear bending stresses 

Normal bending stress can be found out using the formula     
    

   
  (  ) 

Shear stress caused by bending can be found out using the formula     
    

     
      (  ) 

 

It is to be noted that only the parameters at the outer circumference is intended to be calculated. 

Along each point, the value of the stress will be different. The bending normal stresses always 

act perpendicular to the application of the bending load, whereas the bending shear stress is 

always in direction to that of the bending load application. The direction at each of the locations 

is shown in the figure. The normal strain will be the normal stress divided by the Young’s 

modulus.  
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From the above expression, the values changing along the circumference for a particular circular 

slice (One circular cut at a length l from bending load end) are y and Q. y is the vertical distance 

of each point from the Centroid of the shaft. Thus, we see that the magnitude of the bending 

normal stress is maximum at points B and D, whereas it is zero at all the points in the horizontal 

neutral axis. For the region above the neutral axis, the normal bending stress is always towards 

the bending load, whereas it is away from the bending load if the region is below the horizontal 

neutral axis.  

In case of shear stress owing to bending, the only term which is complex to find is the First 

moment of area Q. Q is the First moment of the small area about the neutral axis of the entire 

body, A is the area. So if the point is between B and C, then A is the area between the point of 

application of the load B and the point considered.  

3.6.2 Eccentric hollow shaft 

 

 

Figure 19 Area moment of inertia for an eccentric shaft at an arbitrary point 

Normal bending stress can be found out using the formula     
    

   
   (  ) 

Shear stress caused by bending can be found out using the formula     
    

     
        (  ) 

 

Here, an eccentric shaft is considered. As a result, the neutral axis is changed and is indicated in 

the above figure. Now if the two stresses are to be computed at point P, then it shall be as 

follows: 

Here y is the distance from centroid, which can be calculated once the centroid of the entire shaft 

is known (which is along the neutral axis). Izz is the Second moment of inertia and the procedure 

for calculating it is already mentioned in the second chapter. First moment of inertia along point 

(0, 0) just considering the outer circle is found. Using parallel axis theorem, Moment of inertia 

for the outer circle along the neutral axis if found. Similarly, MOI for the inner circle along the 

neutral axis is found after knowing the MOI of the inner circle along the central point. Thus, 

effective MOI along the neutral axis Izz is found for the hollow shaft. Once Izz, y and M are 

known, normal bending stress can be calculated.   

For shear bending stress, V is the bending load in N, t is thickness at each point of consideration 

and Q is the first moment of area. For the point P in the above figure, the area to be considered is 

highlighted. Q will be product of the highlighted area and the distance vertical between the 
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centroid of the highlighted portion and the centroid of the entire shaft. Thus, using this way, 

bending stress along each point along the outer circumference can be calculated.  

3.7 Calculation of parameters related to axial load 

There is no Shear stress associated with an axial load. The direction of the normal stresses will 

be in same direction to that of the axial load. 

 

The normal stress owing to axial load is    
 

 
 , where P is the load in N and A is Area of the 

shaft in mm
4
. 

 

Figure 20 Axial load combinations 

3.8 Application of strength of materials in strain gauges 

So far, the following parameters are found 

 Normal stress due to axial load 

 Normal stress due to bending load 

 Shear stress due to bending load 

 Shear due to Torsion. 

 

The strain gauges will be placed along the sides of the transducer. For illustration purposes, an 

eccentric shaft with a strain gauge placed on it is considered. It is to be noted that the eccentricity 

is exaggerated primarily for illustration.  

 

 

Figure 21. Strain gauge location identification 
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The strain gauges are always placed along the Z direction (from the above figure) for measuring 

torque. As a result, all the stresses except the shear stress caused by bending will have an effect 

in the measurement of the strain. The shear stress caused by bending will act along the negative 

y direction (as shown in the figure). This stress doesn’t have any influence in the deformation of 

the strain gauge represented by the area ABCD as they are in different plane (Hoffman). As a 

result, only three of the parameters are to be used in computing the strain that will be sensed by 

the strain gauge which is the normal stress caused by axial load, normal stress caused by bending 

load and the Shear stress caused by torsion. Nevertheless, shear stress because of bending load is 

computed in Matlab in Appendix 2, just for showing their magnitude. 

 

Figure 22. Strain gauge sensing strain due to torsion 

3.9 Calculation of strain at a point 

 
The important step is to analyse the strain at different directions and subsequently to calculate 

the strain that a strain gauge will sense.  

 

Figure 23. Plane stress system 

The above figure shows the stress directions that act along different directions for a considered 

region (say ABCD from figure). The only shear stress that will have an impact on the strain 

gauge is the Torsional shear stress (which gives rise to principal strains along 45 degrees). The 

normal strain acts along the z direction as shown in the figure and their subsequent strain will be 

εzz. However, there will be a strain acting along the tt direction (i.e. along the ϕ direction around 

the surface). This strain is due the transverse sensitivity of the strain measurement and this strain 

is represented by the product of the strain along z direction multiplied by the poison’s ratio. 

So, if the value of εzz, εtt and γtorsion, are calculated, the next step is to calculate the strain at 45 

degrees and also at other angles. Using strain transformation, strain at any angle can be found out 

using the formula,  
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Since the principal strain would not be at 45 degrees (because of the presence of bending load), 

there is no use of calculating the maximum and minimum principal strains. Hence using the 

above expression, strain at any angle can be computed. 

By this method, strain along any direction can be calculated provided the three values are found 

out.  

3.10 Calculation of strain over a region 

Strain at any point along any direction can be found out using the previous section. The next step 

is to calculate the strain over a region. Strain at a region can be calculated using the average 

strain over that region. In Matlab, at a particular angle, the strain acting at all points along the 

specified direction of the entire shaft is found out.  

Each strain point calculated will have two parameters for indexing. The first one is the length 

from the load end, while the second one is the angle from the horizontal x axis in the xy plane. In 

Excel, the coordinates of different points of the interested region is mentioned. For example, the 

following figure shall be considered.  Here, the coordinates of points A, B, C and D shall be 

mentioned in the Excel sheet. The length coordinate is distance of the particular point from the 

load end. The theta coordinate is the angle with respect to the XY plane measuring from the 

horizontal x axis. Thus the length coordinate and theta coordinate of the four points are to be 

mentioned in the input excel sheet. Apart from this, the resolutions of the length and theta 

coordinates are to be mentioned.  

 

Figure 24 Strain gauge location 

The lower the resolution, the more accurate the results will be, but at the expense of time. A 

lowest resolution of 0,2mm for lengths and 0,1 degrees for angle is recommended. A resolution 

of 1degree and 1mm shall fetch the result with a minute, and thereby it is recommended for 

quick checks. 



46 

 

Consider in this case, a shaft of 30mm length with appropriate loads with a resolution of 1 

degree and 1 mm length. The array of the entire strain points will look like this. 

 

Figure 25 interested region in strain array 

Once the four points are located according to the length and theta coordinates, the next step is to 

find the average strain at the interested region. The above figure shows an uncommon strain 

region which the user is interested. Once the four points are marked, then the equations of the 

four lines are expressed in the Matlab code. After that the slope of the four lines are found out.  

All the points below line AB will be marked. Then all the points above line DC will be marked. 

Then, the points to the left of the line BC and to the right of the line AD will be marked. Then, 

the points with the region ABCD will be the intersection of the points of the four lines. Thus, all 

the interested points will be known using the theta and length coordinates.  

Thus the average strain over a particular region can be found out. As far as the strain gauge is 

concerned, average strain over two angles (usually +45 and 315) will have to be found out. The 

same procedure will have to be repeated for the different strain regions which the user is 

interested in. 

3.11 Wheatstone bridge and sensitivity 

Sensitivity of a strain gauge refers to how sensitive a strain gauge will be to different conditions. 

The sensitivity of a strain gauge can be further worked upon to give the torque that the torque 

transducer shall indicate. However, sensitivity can be used as a relative term to measure the 

sensitivity with an ideal case. Usually sensitivity is indicated in mV/V. 

 

 

Figure 26 Wheatstone bridge circuit 
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The resistance values are nothing but the change in resistances because of the change in 

deformation.  

Resistance and Strain are related through the following expression 

              

  
 
 

 

  

 
 

       

 
        

Thus, another way of computing the Sensitivity is using the change in deformation and Gauge 

Factor 

 

                          (
           

 
) 

 

 1 – Absolute value of tensile strain along region 1 (subjected to increase in deformation) 

 2 - Absolute value of compressive Strain along region 2 (subjected to decrease in deformation) 

 3 - Absolute value of tensile strain along region 1 (subjected to increase in deformation) 

 4 - Absolute value of compressive Strain along region 2 (subjected to decrease in deformation) 

 

In this thesis work, the final output is considered the Sensitivity of the strain gauge.  The 

sensitivity can be further worked upon to obtain the torque that shall be indicated by the 

measurement system, but it is not done since the control signals are considered outside the scope 

of the thesis. 

Thus, from now on, sensitivity that an ideal shaft displays is compared with the sensitivity than 

an imperfect shaft (because of geometrical tolerances) shows is compared.  

 



48 

 

  



49 

 

4 VERIFICATION 

In the results chapter the results that are obtained with the methods described in the method 

chapter are compiled, and analyzed and compared with the existing knowledge. 

4.1 Verification of geometrical properties 

Centroid verification was carried out using Autodesk Inventor Professional 2014 (Student 

version).  

4.1.1 Ideal shaft geometrical properties 

For a shaft of 25mm outer diameter and 15 mm inner diameter, the geometrical properties from 

Inventor and from Matlab are as follows: 

Table 9 Geometrical properties of ideal shaft 

 Inventor Matlab 

Area (mm
2
) 314.159 314.159 

Centroid X (mm) 0 0 

Centroid Y (mm) 0 0 

Ixx about Neutral Axis 

(mm
4
) 

16689.711 16689.711 

Iyy about Neutral Axis 

(mm
4
) 

16689.711 16689.711 

Polar Moment of 

Inertia (mm
4
) 

33379.422 33379.422 

4.1.2 Eccentric shaft geometrical properties 

For an eccentric shaft of 25mm outer diameter and 16 mm inner diameter with offsets 1mm and 

1mm in both directions at a particular instant, the geometrical properties from Inventor and from 

Matlab are as follows: 

Table 10 Geometrical properties of eccentric shaft 

 Inventor Matlab 

Area (mm
2
) 289.812 289.812 

Centroid X (mm) -0.6938 -0.6938 

Centroid Y (mm) -0.6938 -0.6938 

Ixx about Neutral Axis 

(mm
4
) 

15276.66 15276.66 

Iyy about Neutral Axis 

(mm
4
) 

15957.77 15957.77 

Polar Moment of 

Inertia (mm
4
) 

31234.43 31234.43 
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Figure 27. Eccentric shaft in inventor for geometrical properties 

4.1.3 Hemispherical shaft geometrical properties (for first moment of area) 

For a hemispherical eccentric shaft of 25mm outer diameter and 15 mm inner diameter with 

offsets 2 mm and 2 mm in both directions at a particular instant, the geometrical properties from 

Inventor and from Matlab are as follows 

 

 

Figure 28 Hemispherical shaft specifications 

The above figure is just to verify the values of the first moment of area, which is an important 

parameters in measuring the shear stress caused by bending. The first moment of area Q is 
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defined as the product of the Area of the section at that considered point multiplied by the 

differences in centroid. Now, let the case for a point on the centroid be considered. Here, the area 

will be the highlighted portion as shown in the figure below and y shall be the distance between 

the centroid of the entire body and the centroid of the highlighted region , while area ‘A’ shall be 

area of semicircle. The value of A and y obtained from Matlab were the same, thus leading to the 

conclusion that geometrical properties are verified. 

 

 

Figure 29 Hemispherical shaft in inventor for geometrical properties  

4.2 Twisting moment verification with FEA 

Verification of the strain values are carried out using Pro Engineer Mechanica (using p-type 

method). The polynomial order of minimum 3 and maximum 9 was used in the FEA Analysis. A 

fairly closer percentage convergence of 1 was used for the Multi-pass adaptive method in 

analysis. The convergence was measured along different geometry when required.  

 

4.2.1 Solid shaft and concentric shaft 

In case of a solid shaft, the shear stress value will be the same through all the points in the outer 

surface of the shaft. A typical example of an Aluminum shaft with 20 mm diameter and 40 mm 

length subjected to 100 Nmm Torque is considered. Figure 30 shows the maximum and 

minimum principal strain for the considered case. It can be seen that along the outer surface, the 

strain values are the same.  
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Figure 30 Maximum and minimum principal strain values for a solid shaft 

 

From the ProE Mechanica FEM Analysis of a solid shaft, the maximum principal strain and the 

minimum principal strain are correspondingly constant throughout the outer surface of the shaft. 

The maximum and minimum principal values obtained are 1.201 με and -1.201 με at the outer 

surface respectively. 

Using the analytical method (Matlab Code), the value of the maximum and minimum principal 

strains are 1.200 με and -1.200 με. It is safe to conclude that this simple model yields the same 

result in analytical and FEA method. 
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Figure 31 Maximum and minimum principal strain values for a concentric hollow shaft 

Similarly, the analytical method yielded a maximum and minimum principal strain as 1.379 με 

and -1.379 με for a hollow shaft with 12 mm hole. These values are close to the maximum and 

minimum principal strain values (1.380 με & -1.380 με respectively) as observed from the FEA. 
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4.2.2 Eccentric shafts 

An eccentric Aluminium shaft of outer diameter 20 mm and inner diameter of 12 mm is 

considered to illustrate the verification with FEA. The eccentricity value (viz, offset value) 

between the center of outer diameter and the center of inner diameter is considered as 0.3 mm. A 

twisting moment of 100 Nmm is applied at one end of the shaft. This twisting moment will cause 

a deformation along the outer surface of the shaft. The expression for calculating the shear stress 

is already mentioned in previous chapter. Maximum and minimum principal strains can be 

computed once the shear stress value is known as explained earlier.  

 

 

Figure 32 Maximum principal strain value for a shaft along the centre- FEM 

 

 

Figure 33 Maximum principal strain value for a shaft - Analytical method 
Figure 32 shows the profile of the maximum principal strain along the center of a shaft using 

ProE Mechanica. It follows a sinusoidal curve and the profile is exactly the same as that of the 
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plot obtained by analytical method. The values are close to each other within 1% range, which is 

a fairly tantamount to the FEA plot.  

To make an accurate comparison between the two plots, the values from Mechanica are imported 

as an excel sheet. Then, the curve arc length is transformed to degrees around the shaft. After, 

that using interpolation, values are obtained and are plotted. 

The following case is for an aluminium shaft with outer diameter 12 mm and inner hole 10 mm. 

The eccentricity is set as 0.1571 mm with a length 30 mm. The profiles of the two plots are 

compared and the error between them at all the angle values between 0 and 359 is obtained.  

 

 

Figure 34 Comparison of strain between Matlab and Mechanica 

It can be seen from the above figure that, the error is between 2 με to -1.8 με for the strain 

values. A maximum of 1 % error is observed between the analytical model and the FEA model 

which is attributable to the least possible boundary condition definition of 1% in Mechanica. 

The maximum strain occurs at 90 degrees, which is understandable owing to the fact that the 

eccentricity is the least at 90 degrees as per the data entered. In a brief conclusion, the strain will 

be maximum along the lengths where the distance between the outer and inner diameter radially 

is the least (thinnest wall). 
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Figure 35 ProE Mechanica Shaft Illustration 

 

Figure 36 Maximum principal strain along a reference line for a 40mm long shaft 

The maximum principal strain variation at one particular angle along the length of the shaft is an 

interesting observation. Figure 36 shows the variation of strain along the length of the shaft 

where the eccentricity is the least. In other words, the plot shows the strain distribution along the 

horizontal line (on the top of the shaft) drawn along the shaft as seen in Figure 35. 

It can be observed the maximum principal strain varies along the length. However, it shouldn’t 

happen owing to the fact that a twisting moment should cause the same deformation along the 
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lengths of the shaft. The possible explanation for this is attributable to the effect of constraints at 

the other end of the shaft when loaded in Mechanica. The length of the shaft was increased from 

40 to 120 with the other parameters remaining the same.  

 

 

Figure 37 Maximum principal strain along a reference line for a 120mm long shaft 
Figure 37 shows the strain distribution of a shaft subjected to torsion for a 120 mm shaft but with 

the same parameters as in the previous case. It is observed that the strain value remains the same 

for almost 80mm of the shaft. Apparently, this value is around 1.686 με which is the same as the 

one computed using Analytical method. 

The values were also checked for many shaft lengths are tabulated below. The corresponding 

Analytical values are also computed.  

The same method was applied for a steel shaft of length 40mm, outer diameter of 25 mm and 

inner diameter of 15 mm with 0.7 mm eccentricity. The analytical solution at a particular point 

yielded a result of 0.763 με. In FEA, the value was within 0.758 με to 0.765 με and the 

normalized value being 0,762 με which suggests an accuracy of 0.1%. However, it is to be noted 

that 0.3mm and 0.7 mm eccentricity were used just for illustration purposes and to magnify the 

effects of tolerances and it is an un-realistic value in manufacturing industry for tolerances.  
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4.3 Verification of εzz and εtt with FEA 

The most important parameters to be verified as far as bending is concerned are εzz and εtt. These 

are the strain caused by bending load. εzz is due to bending and axial effect whereas εtt is because 

of Transverse sensitivity (by Poisson’s ratio).  

 

Figure 38 Stress plane 

Following are the different scenarios and the profiles of the strain along a particular length are 

mentioned. The Ten different cases in bending are as follows: 

i. Solid Shaft subjected to bending 

ii. Concentric hollow shaft subjected to bending 

iii. Eccentric hollow shaft 1 subjected to bending 

iv. Eccentric hollow shaft 2 subjected to bending 

v. Solid Shaft subjected to bending and torsion 

vi. Concentric hollow shaft subjected to bending and torsion 

vii. Eccentric hollow shaft 1 subjected to bending and torsion 

viii. Eccentric hollow shaft 2 subjected to bending and torsion 

ix. Solid Shaft subjected to only Axial load 

x. Solid shaft subjected to bending, torsion and axial load 

For each case, the plot from FEA is compared with the plot from Matlab. While the shear stress 

(and subsequently strain) due to torsion is already verified, the strains εzz and εtt are to be 

verified.  

εzz and εtt calculated from ProE Mechanica have their x axis as the curve arc length. In 

Mechanica, the assignment of theta from 0 to 360 as x coordinate couldn’t have been made. As a 

result, the horizontal coordinate as curve arc length was the default one that could be set as 

horizontal x coordinate. 

In Mechanica, the following specifications are employed during analysis. Polynomial order of 

minimum 3 and maximum 9 is ensured in Mechanica with the percentage convergence being set 

to 1. The average mesh size of 2 mm is employed for the component, with 1 mm average mesh 

size for the interested curves or lines.  
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4.3.1 Solid shaft – only bending 

Table 11 Different input values for a solid shaft subjected to only bending 

Parameters Value 

D (in mm) 25 

d (in mm)  

L (in mm) 40 

ex (in mm)  

ey (in mm)  

Torque (in Nmm)  

Bending Load (in N) 10 

Considered point for verification from load end (in mm) 20 

 

 

Figure 39 theta vs εzz in ProEngineer Mechanica 

 

Figure 40 theta vs εzz theta in Matlab 
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Figure 41 theta vs εtt in ProEngineer Mechanica 

 

Figure 42 theta vs εtt in Matlab 

Figure 39 to 42 represents the plots obtained for either εtt or εzz from Matlab and Mechanica. To 

obtain an accurate comparison between the two, it is necessary to plot them on a common x axis. 

The Mechanica plots are plotted with respect to the curve arc length (or the circumference) 

originating from the conventional horizontal axis.  

The Mechanica plots are exported into an excel sheet and the curvature values are converted into 

corresponding angles. Then, the values are interpolated so that, the x axis ranges between 0 and 

359 degrees. The function ‘interp1()’ is used for this purpose. 

After interpolation, they are plotted in the same figure and the maximum and minimum errors 

are indicated henceforth. Matlab plots are in red, Mechanica in blue and Error in green. Please 

note that the vertical axis of error is towards the right, while the axis of Matlab and Mechanica 

values are towards left. The resolution of error is increased just for visually showcasing their 

magnitude.   
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Figure 43 Theta vs εtt – comparison between Matlab and ProEngineer Mechanica 

 

 

Figure 44 Theta vs εzz – comparison between Matlab and ProEngineer Mechanica 
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4.3.2 Concentric hollow shaft –only bending  

Here, a concentric shaft is subjected to bending load alone and the plots are compared. The 

specifications are as follows: 

Table 12 Different input values for a concentric shaft subjected to only bending 

Parameters Value 

D (in mm) 25 

d (in mm) 15 

L (in mm) 40 

ex (in mm)  

ey (in mm)  

Torque (in Nmm)  

Bending Load (in N) 1 

Considered point for verification from load end (in mm) 20 

 

 

 

Figure 45 Theta vs εzz – comparison between Matlab and ProEngineer Mechanica 
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Figure 46 Theta vs εtt – comparison between Matlab and ProEngineer Mechanica 

 

4.3.3 Eccentric shaft 1– only bending  

Here, an eccentric shaft is subjected to bending load alone and the plots are compared. The 

specifications are as follows: 

Table 13 Different input values for an eccentric shaft 1 subjected to only bending 

Parameters Value 

D (in mm) 20 

d (in mm) 14 

L (in mm) 40 

ex (in mm)  

ey (in mm) 0.3 

Torque (in Nmm)  

Bending Load (in N) 1 

Considered point for verification from load end (in mm) 20 
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Figure 47 Theta vs εtt – comparison between Matlab and ProEngineer Mechanica 

 

Figure 48 Theta vs εzz – comparison between Matlab and ProEngineer Mechanica 
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4.3.4 Eccentric shaft 2– only bending  

Here, an eccentric shaft is subjected to bending load alone and the plots are compared. The value 

of eccentricity is increased from the previous case. The specifications are as follows: 

Table 14 Different input values for an eccentric shaft 2 subjected to only bending 

Parameters Value 

D (in mm) 25 

d (in mm) 15 

L (in mm) 40 

ex (in mm) 0.2 

ey (in mm) 0.2 

Torque (in Nmm)  

Bending Load (in N) 1 

Considered point for verification from load end (in mm) 20 

 

 

Figure 49 Theta vs εzz – comparison between Matlab and ProEngineer Mechanica 
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Figure 50 Theta vs εtt – comparison between Matlab and ProEngineer Mechanica 

4.3.5 Solid shaft – torsion and bending  

Here, a solid shaft is subjected to torsion and bending loads and the plots are compared. The 

specifications are as follows: 

Table 15 Different input values for a solid shaft subjected to torsion and bending 

Parameters Value 

D (in mm) 25 

d (in mm)  

L (in mm) 40 

ex (in mm)  

ey (in mm)  

Torque (in Nmm) 100 

Bending Load (in N) 10 

Considered point for verification from load end (in mm) 20 
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Figure 51 Theta vs εzz – comparison between Matlab and ProEngineer Mechanica 

 

Figure 52 Theta vs εtt – comparison between Matlab and ProEngineer Mechanica 
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4.3.6 Concentric hollow shaft – torsion and bending 

Here, a concentric shaft is subjected to torsion and bending loads and the plots are compared.  

The specifications are as follows: 

Table 16 Different input values for a concentric shaft subjected to torsion and bending 

Parameters Value 

D (in mm) 25 

d (in mm) 15 

L (in mm) 40 

ex (in mm)  

ey (in mm)  

Torque (in Nmm) 100 

Bending Load (in N) 1 

Considered point for verification from load end (in mm) 20 

 

 

Figure 53 Theta vs εzz – comparison between Matlab and ProEngineer Mechanica 
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Figure 54 Theta vs εtt – comparison between Matlab and ProEngineer Mechanica 

 

4.3.7 Eccentric shaft 1– torsion and bending  

An eccentric shaft is subjected to torsion and bending loads and the plots are compared. The 

specifications are as follows: 

Table 17 Different input values for an eccentric shaft 1 subjected to torsion and bending 

Parameters Value 

D (in mm) 20 

d (in mm) 14 

L (in mm) 40 

ex (in mm)  

ey (in mm) 0.3 

Torque (in Nmm) 100 

Bending Load (in N) 1 

Considered point for verification from load end (in mm) 20 
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Figure 55 Theta vs εzz – comparison between Matlab and ProEngineer Mechanica 

 

Figure 56 Theta vs εtt – comparison between Matlab and ProEngineer Mechanica 
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4.3.8 Eccentric shaft 2– torsion & bending 

An eccentric shaft is subjected to torsion and bending loads and the plots are compared. The 

value of eccentricity is increased from the previous case. The specifications are as follows: 

Table 18 Different input values for an eccentric shaft 2 subjected to torsion and bending 

Parameters Value 

D (in mm) 25 

d (in mm) 15 

L (in mm) 40 

ex (in mm) 0.2 

ey (in mm) 0.2 

Torque (in Nmm) 100 

Bending Load (in N) 1 

Considered point for verification from load end (in mm) 20 

 

 

 

Figure 57 Theta vs εzz – comparison between Matlab and ProEngineer Mechanica 
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Figure 58 Theta vs εtt – comparison between Matlab and ProEngineer Mechanica 

4.3.9 Solid shaft – only axial load 

A solid shaft is subjected to axial load alone and the plots are compared. The specifications are 

as follows: 

Table 19 Different input values for an solid shaft subjected to axial load 

Parameters Value 

D (in mm) 20 

d (in mm)  

L (in mm) 40 

ex (in mm)  

ey (in mm)  

Torque (in Nmm)  

Bending Load (in N)  

Axial load (in N) 5 

Considered point for verification from load end (in mm) 20 

 

0 50 100 150 200 250 300 350
-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8
x 10

-8 Theta vs Strain tt - Matlab, ProEngineer Mechanica and Error 

Angle in degrees 

S
tr

a
in

 v
a
lu

e
 t

t 

 

 

0 50 100 150 200 250 300 350
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

-8

X: 89

Y: 1.804e-09

X: 223

Y: -1.689e-09

Matlab value of Strain tt

Mechanica value of Strain tt

Error between them



73 

 

 

Figure 59 Theta vs εzz in ProEngineer Mechanica  

 

Figure 60 Theta vs εzz in Matlab 
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Figure 61 Theta vs εtt in ProEngineer Mechanica  

 

Figure 62 Theta vs εtt in Matlab 

Here, it can be seen that for just an axial load, the strain zz is not constant. However, theory 

suggests that it should be the same (the stress being the load divided by area). These some 

irregularities that occur in Mechanica can be attributed to the effect of constraints (numerical 

elements and element size).   

The irregularities are around 1% of the theoretical optimal value and can be regarded as normal 

errors by the FEA approach mode. The percentage of convergence was set at 1% and that is a 

possible explanation for the difference. 
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4.3.10  Solid shaft – torsion, bending and axial load 

A solid shaft is subjected to bending, axial and torsional loads and the plots are compared. The 

specifications are as follows: 

Table 20 Different input values for a solid shaft subjected to bending, torsion and axial load 

Parameters Value 

D (in mm) 12 

d (in mm)  

L (in mm) 40 

ex (in mm)  

ey (in mm)  

Torque (in Nmm) 2100 

Bending Load (in N) 2.5 

Axial load (in N) 5 

Considered point for verification from load end (in mm) 20 

 

 

Figure 63 Theta vs εtt – comparison between Matlab and ProEngineer Mechanica 
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Figure 64 Theta vs εzz – comparison between Matlab and ProEngineer Mechanica 

4.3.11 Stress plane summary 

So far, the verification of the following parameters are carried out for different cases and the 

values are found to be the same in FEA and Matlab. 

 Torsional Shear stress 

 εtt  

 εzz 

In all the case, the εzz and εtt are similar, with a small difference in the range of 1%.   

After a long discussion and relevant literature study, it was found out the strain gauges will be 

insensitive to shear stress (subsequently strain) caused by bending, since the strain gauges which 

will be placed at 45 degrees (along the curved surfaces of the shaft) are in a different plane to 

that of the plane where the shear stress because of bending acts. However, that is not the case for 

shear stresses caused by torsion. At 45 degrees, the shear stress due to Torsion causes 

compressive and tensile stresses (and subsequently strain) and that is the main reason for keeping 

them aligned at 45 degrees. In short, when a strain gauge is aligned at 45 degrees, it can sense 

the maximum and minimum principal strain attributable to torsion. If a bending load is present, 

then along with the torsional principal strain, it records the normal bending strain. 

The normal bending strains (in z direction as well as the transverse strain) are verified using 

FEM and the values are the ones that have been concluded in the previous section. The torsional 

shear stress is also verified using FEM. Since, there are only these three parameters, it is safe to 

conclude that up and until this point, the verification is carried out and the values are the same. 
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The next step is to compute the strain that will be sensed by the strain gauge. It is to be noted that 

strain at 45 degrees was not able to be graphically interpreted in ProE Mechanica and that is the 

reason for working on the stress transformation. 

 

 

Figure 65 Stress plane system 

 

τtorsion is verified for different cases. γtorsion is the ratio of τtorsion to Shear Modulus. εzz and εtt were 

also verified. So, having verified εzz, εtt and γtorsion, the next step is to calculate the strain at 45 

degrees and also at other angles. Using strain transformation, strain at any angle can be found out 

using the formula,  

       (
       

 
)  (

       

 
)                     (  ) 

Using the above expression, strain at any angle orientation (the strain that a strain gauge will 

indicate when oriented at that particular angle) can be computed.  
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5 RESULTS  

In the results chapter the results that are obtained with the methods described in the method 

chapter are compiled, and analyzed and compared with the existing knowledge and theory 

presented in the frame of reference chapter.   

5.1. Strain plot 

 

Figure 66 Strain plot for common cases 

The above figure shows the resultant strain along 45 degrees for different cases. For an ideal 

shaft subjected to torsion alone, then the strain plot will be a straight line. If the shaft is slightly 

eccentric, then the strain plot will be sinusoidal in nature. However, if the shaft is subjected to 

torsion and bending load, then the strain plots will also be sinusoidal, with the magnitude 

depending upon the difference in the torsion and bending loads. The above figure is just for 

illustration purposes, primarily to show the appearance of the profile. 
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5.2. Strain gauge orientation angle 

 

 

Figure 67 Influence of strain gauge placement 

Strain gauges are intended to be placed at 45 degrees. However, because of some misalignments, 

chances are that they might be placed at some angle other than 45 degrees. Figure 67 shows the 

cases, when the strain gauge is aligned at 43, 45 and 47 degrees. 

5.3. Strain plots for an existing transducer 

The specifications of the Aluminium transducer that is used in Atlas Copco are as follows: 

Table 21 Specifications of aluminium transducer 

Parameters Value 

D (in mm) 12 

d (in mm) 11.2 

L (in mm) 30 

ex (in mm) 0 

ey (in mm) 0.02 

Torque (in Nmm) 2100 

Bending Load (in N) 2.5 

Axial load (in N) 5 

 

Following are the different plots that the Matlab code gives as output 
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5.3.1 Shear stress due to torsion alone 

Here, the shear stress caused by torsion alone is plotted against the different angles. 

 

Figure 68 Shear stress due to torsion alone 

5.3.2 εzz 

Here, the strain at z plane towards z direction is plotted against the different angles for different 

lengths. The entire array is plotted against theta values. Each line corresponds to a particular 

length from the load end. The resolution was set at 1 mm length and 1 degree in angles. 

 

 

Figure 69 theta vs εzz at 45 degrees 
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5.3.3 εtt 

Here, the strain at phi plane towards phi direction is plotted against the different angles for 

different lengths. The entire array is plotted against theta values. 

 

 

Figure 70 theta vs εtt at 45 degrees 

5.3.4 Strain at user angle 1 (45 degrees) 

Here, the strain at the angle which the user specifies is plotted against the different angles for 

different lengths. The entire array is plotted against theta values. It is generally common to 

choose at 45 degrees. 

 

 

Figure 71 theta vs strain at user angle 1 
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5.3.5 Strain at user angle 2 (-45 degrees) 

Here, the strain at the angle which the user specifies is plotted against the different angles for 

different lengths. The entire array is plotted against theta values. It is generally common to 

choose at -45 degrees. 

 

Figure 72 theta vs strain at user angle 2 

5.4. Sensitivity for different cases 

Strain gauge transducers usually employ four strain gauge elements electrically connected to 

form a Wheatstone bridge circuit. The sensor can occupy 1/2/3/4 arms of the bridge, depending 

on the application. The change in resistance is a parameter which is directly a resultant from 

strain. Thus, sensitivity can also be written as the following (Hoffman, 1989),  

            
            

      
                  (  ) 

 

Figure 73 Strain gauge sensitivity 

Here, ε1 corresponds to a strain gauge, the primary objective being to measure the elongation 

along that particular direction (which is 45 degrees from the horizontal axis). ε2 corresponds to 

the compressive strain along the negative 45 degrees sensed by strain gauge 2. Similarly, ε3 and 
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respectively. Since ε2 and ε4 measure strain compressive strain (along the negative direction), a 

negative sign is used in the expression. In general, the above expression gives an idea about the 

sensitivity for a strain gauge, which is a relative term used to show how sensitive a strain gauge 

is to the measurements.  

Now, four regions are considered and their coordinates are mentioned below in table 23. Then 

sensitivity for Case 1-9 are found out in order to see how the eccentricity affect sensitivity. 

Table 22 Coordinates of the four strain regions 

Region Strain Gauge 1 Strain Gauge 2 Strain Gauge 3 Strain Gauge 4 

Length Coordinate of Point A (mm) 26.7 26.7 26.7 26.7 

Theta Coordinate of Point A (degrees) 171.4 81.4 351.4 261.4 

Length Coordinate of Point B (mm) 23.3 23.3 23.3 23.3 

Theta Coordinate of Point B (degrees) 171.4 81.4 351.4 261.4 

Length Coordinate of Point C (mm) 23.3 23.3 23.3 23.3 

Theta Coordinate of Point C (degrees) 188.6 98.6 8.6 278.6 

Length Coordinate of Point D (mm) 26.7 26.7 26.7 26.7 

Theta Coordinate of Point D (degrees) 188.6 98.6 8.6 278.6 

Table 23 Input parameters for  some sample cases 

Parameters and Cases Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 

Outer Diameter of the shaft (mm) 12 12 12 12 12 12 12 12 12 

Inner Diameter of the shaft (mm)  11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 

Total Length of the shaft (mm) 30 30 30 30 30 30 30 30 30 

Offset in x direction (mm)  0 0 0.02 0 0 0 0 0.02 0.02 

Offset in y direction (mm) 0 0.02 0.02 0 0 0.02 0.02 0.02 0.02 

Torque (Nmm) 2100 2100 2100 2100 2100 2100 2100 2100 2100 

Bending Load at the Load End (N) 0 0 0 2.5 5 2.5 5 2.5 5 

Young's Modulus - Aluminium 68947.6 68947.6 68947.6 68947.6 68947.6 68947.6 68947.6 68947.6 68947.6 

Poisson's Ratio 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 

Table 24 Strain in the four regions and the Sensitivity for the sample cases 

Parameters and Cases Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 

ε1 Tensile (in με) 483.899 483.912 463.316 483.899 483.899   483.737 483.562   463.141 462.967 

ε1 Compressive (in με) -483.899 -483.912 -463.316 -483.899 -483.899 -484.086 -484.261 -463.491 -463.665 

ε2 Tensile (in με) 483.899   506.882 506.866 476.172 468.446   498.981 491.079   498.964 491.063 

ε2 Compressive (in με) -483.899 -506.882 -506.866 -491.625 -499.352 -514.783 -522.684 -514.767 -522.668 

ε3 Tensile (in με) 483.899   483.912 506.866 483.899 483.899   483.737 483.562   506.691 506.516 

ε3 Compressive (in με) -483.899 -483.912 -506.866 -483.899 -483.899 -484.086 -484.261 -507.040 -507.215 

ε4 Tensile (in με) 483.899   463.323 463.316 491.6256 499.352   470.875 478.426   470.868 478.420 

ε4 Compressive (in με) -483.899 -463.323 -463.316 -476.172 -468.446 -455.771 -448.219 -455.764 -448.213 

Sensitivity  0.9678 0.9690 0.9702 0.9678 0.9678 0.9690 0.9690 0.9702 0.9702 

It can be seen that as the absolute eccentricity increases, the value of sensitivity increases. It is 

also to be noted that although the values in the third, eighth and ninth case are the same, they 

actually differ in their fourth decimal digit.  
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5.5. Location of strain gauges on an existing transducer  

There are two extreme ways of arranging strain gauges. If we know the eccentricity, then strain 

gauges can be placed in either of the two arrangements 

The table below shows different cases for the considered torque transducer and the measurement 

of strain at different regions. The least distance is located at different zones which are indicated 

in the first row of Table 26. 

5.5.1 The least distance is midway between the two strain gauge 

Here the least distance between the outer and inner circle is located at the mid angle between two 

successive strain gauges. The other strain gauges will be placed accordingly each of them at 90 

degrees apart. 

 

Figure 74 Least distance is midway between the two strain gauges 

Table 25 Strain in four regions and the sensitivity for Case - least distance is midway between the two strain gauges 

Top Bottom Left Right Top Left Bottom Right Top Right Bottom Left 

Region 1 Region 1 Region 1 Region 1 Region 1 Region 1 Region 1 Region 1 

494.2379 463.8338 494.4058 463.6523 499.7517 469.2453 468.9982 499.9988 

-505.5127 -474.4097 -505.3448 -474.5912 -499.9988 -468.9982 -469.2453 -499.7517 

Region 2 Region 2 Region 2 Region 2 Region 2 Region 2 Region 2 Region 2 

494.2379 463.8338 463.6523 494.4058 492.0122 461.5313 492.0412 461.5065 

-505.5127 -474.4097 -474.5912 -505.3448 -507.7107 -476.7357 -507.7397 -476.7108 

Region 3 Region 3 Region 3 Region 3 Region 3 Region 3 Region 3 Region 3 

474.4097 505.5127 474.5912 505.3448 469.0045 499.9840 499.7529 469.2379 

-463.8338 -494.2379 -463.6523 -494.4058 -469.2590 -499.7443 -500.0074 -468.9983 

Region 4 Region 4 Region 4 Region 4 Region 4 Region 4 Region 4 Region 4 

474.4097 505.5127 505.3448 474.5912 476.7236 507.7242 476.7236 507.7242 

-463.8338 -494.2379 -494.4058 -463.6523 -461.5199 -492.0264 -461.5199 -492.0264 

0.9689970 0,9689970 0,9689970 0,9689970 0,9689934 0,9689956 0,9690053 0,9689870 

Approximately 0.9689 
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Table 26 Rotation and bending load correlation – Case A 

If hole is fixed at top (ey = 0.02mm), 

then bending load can be assumed to 

be at an angle 

Sensitivity 
If bending load is always acting at 

top, then least distance will be at 

Bending load at Top 0.968997 Top 

Bending load at Top Right 0.968993 Top Left 

Bending load at Right 0.968997 Left 

Bending load at Bottom Right 0.968987 Bottom Left 

Bending load at Bottom 0.968997 Bottom 

Bending load at Bottom Left 0.968995 Bottom Right 

Bending load at Left 0.968997 Right 

Bending load at Top Left 0.969005 Top Right 

Average Value 0.968996 Average Value 

Ideal Value 0.967790 Ideal Value 

The above Table shows the various sensitivity values when the least distance is at different 

locations. Here each value corresponds to a case, wherein the bending load is rotated by a 

distance. For example, in Matlab, it is always considered that bending load acts form the top to 

the uppermost point of the shaft. If the bending load is at top and if the least distance is at top 

right, it also can be thought as a case with the least distance at top and the bending load acting at 

an angle along top left. This table is just for illustration purpose. 

 

 

Figure 75 Sensitivity comparison for the case where least distance is in midway between the two strain gauges 

5.5.2 One strain gauge is placed at the least distance (thin wall) 

One strain gauge will be placed at  the point where the distance between outer and inner circle is 

the least followed by the other three strain gauges at 90, 180 and 270 degrees apart respectively.  

 

Figure 76 One strain gauge is placed at the least distance 
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Sensitivity The least distance is midway between the two strain gauge 
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Table 27 Strain in four regions and the sensitivity for Case - One strain gauge is placed at the least distance 

Top Bottom Left Right Top Left Bottom Right Top Right Bottom Left 

Region 1 Region 1 Region 1 Region 1 Region 1 Region 1 Region 1 Region 1 

483.7376 484.0870 506.8787 463.3261 501.2925 457.9870 478.3261 478.5732 

-484.0870 -483.7376 -506.8787 -463.3261 -512.4649 -468.6653 -489.4985 -489.2514 

Region 2 Region 2 Region 2 Region 2 Region 2 Region 2 Region 2 Region 2 

498.9794 455.7742 476.1579 476.1958 478.3261 478.5732 501.2925 457.9870 

-514.7802 -470.8762 -491.6286 -491.6665 -489.4985 -489.2514 -512.4649 -468.6653 

Region 3 Region 3 Region 3 Region 3 Region 3 Region 3 Region 3 Region 3 

483.7448 484.0734 463.3264 506.8700 468.6653 512.4649 489.2514 489.4985 

-484.1017 -483.7314 -463.3338 -506.8774 -457.9870 -501.2925 -478.5732 -478.3261 

Region 4 Region 4 Region 4 Region 4 Region 4 Region 4 Region 4 Region 4 

470.8767 514.7788 491.6473 491.6473 489.2514 489.4985 468.6653 512.4649 

-455.7754 -498.9786 -476.1773 -476.1773 -478.5732 -478.3261 -457.9870 -501.2925 

0.9690190 0.9690076 0.9690055 0.9690199 0.9690147 0.9690147 0.9690147 0.9690147 

Approximately 0.9690 

Table 28 Rotation and bending load correlation – Case B 

If hole is fixed at top (ey = 0.02mm), 

then bending load can be assumed to 

be at an angle 

Sensitivity 

If bending load is always 

acting at top, then least 

distance will be at 

Bending load at Top 0.969019 Top 

Bending load at Top Right 0.969014 Top Left 

Bending load at Right 0.969005 Left 

Bending load at Bottom Right 0.969014 Bottom Left 

Bending load at Bottom 0.969007 Bottom 

Bending load at Bottom Left 0.969014 Bottom Right 

Bending load at Left 0.969020 Right 

Bending load at Top Left 0.969014 Top Right 

Average Value 0.969013 Average Value 

Ideal Value 0.967790 Ideal Value 

 

The above Table shows the various sensitivity values when the least distance is at different 

locations. Here each value corresponds to a case, wherein the bending load is rotated by a 

distance. For example, in Matlab, it is always considered that bending load acts form the top to 

the uppermost point of the shaft. If the bending load is at top and if the least distance is at top 

right, it also can be thought as a case with the least distance at top and the bending load acting at 

an angle along top left. This table is just for illustration purposes as to show that bending load 
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acting at an angle at top-right when the least distance is at the top is similar to bending load 

acting at the top when the least distance is at the top left. 

 

Figure 77 Sensitivity comparison for the case where one strain gauge is placed at the thin-wall 

From the two locations, it can be seen that the sensitivity value is closer to the ideal value 

0,967790 in the case when the least distance is midway between the two strain gauges. 

Therefore, it is always desirable to position the strain gauges in such a way that the least distance 

is always between the two strain gauges.  

5.6. Sensitivity due to axis inclination 

Axis inclination is again another geometrical tolerance that can be an influencing parameter as 

far as strain gauge sensitivity is concerned. Axis inclination refers to the alignment between the 

inner circle axis and outer circle axis. For the given transducer, the reasonable value of 

inclination is assumed as 0.3 degrees and the sensitivity value was computed. 0.3 degrees refers 

to the alignment between the outer circle axis and the inner circle axis at the midpoint. From the 

lateral view, the shaft will like the figures below 

 

 

Figure 78 Axis inclination of an exaggerated shaft 

Figure 78 is an exaggerated representation. It is a 10 mm shaft with 8 mm inner hole, which is 

aligned at the centre by 3 degrees. However, since Mechanica gives rises to errors for a short 

shaft, the length of the shaft was increased to 120 mm with the angle of inclination being a 

reasonable value of 0.3 degrees. The diameter of the outer shaft is 12 mm with the inner hole 

being 10 mm. 
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Figure 79 Axis inclination for a long shaft 

5.6.1 Max principal strain along a particular angle throughout the shaft length 

 

Figure 80 Maximum principal strain along 90 degree throughout the shaft length in FEA 

 

 

Figure 81 Maximum principal strain along 90 degree throughout the shaft length in Matlab 

Maximum principal strain along a straight line is to be computed for verification. The plot from 

Mechanica shows a linear relationship along the line. From a hind sight, it can be observed that 

at the load end, the offset in y direction is the maximum and it continues reducing.  
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Figure 82 Maximum principal strain along 90 degree throughout the shaft length – FEA vs Matlab 

It can be from the Mechanica plot that the value of strain continues dripping as with the offset. 

An exactly the same profile is obtained when the offset continues dripping for a shaft using 

Matlab. Thus barring the constraint effects, it can be concluded that the strain along a particular 

angle throughout the shaft is in accordance with the FEA. 

5.6.2 Max principal strain along center (length 60 mm from load end) 

 

Figure 83 Maximum principal strain along the central slice of the shaft in FEA 
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As per the case at the center, the offset is 0 in y direction. Thus it can be considered to be an 

ideal concentric slice at the center. As a result, the value at the center shall be 225.4 uE. 

However, the value in Mechanica is not precisely 225.4 uE as it continues to fluctuate between 

226 and 225 uE. Although the difference is very negligible, the value is not in accordance with 

the FEA. It should have been the same constant value of 225.4 uE in Mechanica, but because of 

the constraint effects, it was not meant to be. 

 

Figure 84 Maximum principal strain along the central slice of the shaft in Matlab 

5.6.3 Max principal strain along length 30 mm (of a 120 mm shaft) 

 

Figure 85 Maximum principal strain along the slice at length 30mm from load end of the shaft in FEA 

This was a case, wherein the principal strain is checked at a length of 30 mm from the center. At 

the center using trigonometry, the value of yoffset was found to be tan(0.3)x30 which is 

0,1571mm. This value is considered as the yoffset value and is entered in Matlab. The following 

profile is obtained.  
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Figure 86 Maximum principal strain along the slice at length 30mm from load end of the shaft in Matlab 

 

Figure 87 Matlab and ProEngineer Mechanica comparison 

It can be seen that the profile of the two curves at length 30mm is similar in Mechanica as well 

as in Matlab with an error of 1%. Thus it can be concluded that axis inclination with respect to 

torsion alone is feasible and is verified.  
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5.7. DOE 

DOE was carried out in the three assembly imperfections to see the magnitude of effects.  

 Strain gauge angle orientation imperfection 

o Two levels of 44 and 46 degrees have been identified. Thus if the inclination is 46 

degree in the upper set of strain gauge, then it will be -44 in the lower set of the 

strain gauge with respect to the horizontal axis 

 Strain gauge angle inclination imperfection 

o The angle between two successive strain gauges (in a 4 strain gauge system) is 

not 90 degrees. Two levels have been identified for this setup with 89 degree and 

91 degree as the angle between two strain gauges 

 Strain gauge length displacement imperfection 

o The strain gauges are intended to be kept at 4 locations usually, symmetrically 

along the same length. Two levels are identified with distance of 0.2 mm and -0.2 

mm length displacement 

Now that the three common errors were identified with their commonly noticeable levels, the 

next step is to visually represent their magnitude which these errors would affect. As a result, full 

factorial design with two levels with three factors was carried out and the corresponding 

sensitivity was found out. All these were performed for a transducer with D=12, d=11.2, l=30, 

ey=0.02, subjected to bending and torsion. Then the sensitivity is compared with an ideal case 

(with no offset and no errors) and an eccentric case with no errors. 

Table 29 Design of Experiments 

When ex = 0, ey = 0,02 

With eccentricity,  
No errors 

Ideal Case 
No Eccentricity, 

No Errors 
Plus Arrangment 

Case 
45+-1 90+-1 dely+-0,2 

Sensitivity Value 
A B C 

1 - - - 0.9684151 0.9690190 0.9677900 

2 + - - 0.9683737 0.9690190 0.9677900 

3 - + - 0.9684156 0.9690190 0.9677900 

4 + + - 0.9683742 0.9690190 0.9677900 

5 - - + 0.9684824 0.9690190 0.9677900 

6 + - + 0.9684328 0.9690190 0.9677900 

7 - + + 0.9684829 0.9690190 0.9677900 

8 + + + 0.9684333 0.9690190 0.9677900 

Table 30 Positive and negative effects in DOE 

Effects EYBar+ EYBar- Eeffects 
Positive & Negative 

Percentages 
Overall 

Contributors 

SG Angle Orientation 
(AO) 

0.9684035 -0.96844900 -0.0000455 91.73387097 40.15887026 

SG Angle Inclination 
(AI) 

0.9684265 -0.96842600 0.0000005 0.784929356 0.441306267 

SG Length 
Displacement (LD) 

0.96845785 -0.96839465 0.0000632 99.21507064 55.78111209 

AO and AI 0.96842625 -0.96842625 0.0000000 0 0 

AO and LD 0.9684242 -0.96842830 -0.0000041 8.266129032 3.618711386 

AO and LD 0.96842625 -0.96842625 0.0000000 0 0 

ΣPositive  0.0000637 ΣNegative  0.0000496 ΣOverall  0.0001133 
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The different values of the sensitivity obtained are shown below. The first column in each case 

shows the sensitivity value obtained for each run using the design of experiments. The second 

column in each case shows the sensitivity value that is obtained for the same case if there were 

no errors. The third column in each case shows the sensitivity value that shall be obtained if the 

shaft has no eccentricity and no errors. Ideally this sensitivity value is the one that the other cases 

should show. The second column differs from the third in the fact that it has an eccentricity value 

associated with it. 

 

Figure 88 Design of experiments 

The figure below shows the magnitude of effects of the different effects and their interactions. 

The magnitudes of the interaction effects are negligible. It can be seen that the biggest positive 

effect is that of the strain gauge length displacement, whereas the biggest negative effect is that 

of the strain gauge angle orientation.  

 

Figure 89 Magnitude of the effects in DOE 

The pie chart (figure 90) shows the split up of different effects. It can be seen that the strain 

gauge length displacement contributes the most effect followed by strain gauge angle orientation. 
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Figure 90 Split-up of the effects 

Now that the magnitudes of the effects have been visualized, the next interesting result was that 

of the profile of these errors. Thus for the case, different values of errors have been identified 

and their values as a result of percentage of the ideal case with offset and without errors are 

computed. 

Table 31 Error and their resultant sensitivity in percentages of ideal 

  Values Sensitivity Value mV/V Percentage of Ideal % 

AO 

43 0.9654393 0.244158281 0.2442 

43.5 0.9664704 0.137210617 0.1372 

44 0.9672071 0.060938345 0.0609 

44.5 0.9676492 0.015222459 0.0152 

45 0.9677965 0 0.0000 

45.5 0.9676490 0.015243131 0.0152 

46 0.9672068 0.060969381 0.0610 

46.5 0.9664700 0.137252062 0.1373 

47 0.9654387 0.244220581 0.2442 

47.5 0.9641134 0.382019377 0.3820 

48 0.9623494 0.566016851 0.5660 

AI 

-2 0.9677940 0.000258319 0.0003 

-1.5 0.9677951 0.000144659 0.0001 

-1 0.9677958 7.23293E-05 0.0001 

-0.5 0.9677963 2.06655E-05 0.0000 

0 0.9677965 0 0.0000 

0.5 0.9677964 1.03328E-05 0.0000 

1 0.9677960 5.16638E-05 0.0001 

1.5 0.9677953 0.000123993 0.0001 

2 0.9677943 0.000227321 0.0002 

2.5 0.9677930 0.000361648 0.0004 

3 0.9677914 0.000526973 0.0005 

LD 

-0.6 0.9677038 0.009579377 0.0096 

-0.4 0.9677347 0.006386048 0.0064 

-0.2 0.9677656 0.003192922 0.0032 

0 0.9677965 0 0.0000 
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0.4 0.9678583 -0.006385232 -0.0064 
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0.8 0.9679201 -0.012769649 -0.0128 

1 0.9679510 -0.015961552 -0.0160 

1.2 0.9679819 -0.019153251 -0.0192 

1.4 0.9680128 -0.022344746 -0.0223 
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Figure 91 Angle inclination indicated as percentage of error of ideal sensitivity 

The above plot shows the Angle inclination for different cases and their value as percentage of 

the value that they should have shown if there were no errors. It followed a symmetrical curve 

 

 

Figure 92 Angle orientation indicated as percentage of error of ideal sensitivity 

Figure 92 shows the angle orientation for different cases and their value as percentage of the 

value that they should have shown if there were no errors. It followed a symmetrical curve as 

well; however the values as percentages were much more than that of the axis inclination error. 

Figure 93 shows the profile of the length displacement error. Unlike the previous two cases, it 

followed a linear relationship. 

 

 

Figure 93 Length displacement indicated as percentage of error of ideal sensitivity   
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 6 DISCUSSION AND CONCLUSIONS 

6.1 Discussion 

The calculation of the sensitivity for a shaft subjected to bending, axial or torsional load with and 

without geometrical imperfections and errors was the ultimate goal of the thesis. For computing 

that, the strain along different regions in user interested directions was to be calculated. 

Accordingly, the strains along different regions were calculated. 

It was found that strain recorded by the strain gauge will be influenced by normal stress caused 

by axial load, normal stress caused by bending load and shear stress caused by torsion. All these 

values were individually found and verified with FEA for proceeding further. It was observed 

that the profile of the curves were sinusoidal except that of the axial stress and the shear stress 

caused by torsion in ideal case. 

During verification, in some cases, the values obtained in ProE Mechanica have not been a 

constant value (with small irregular fluctuations). However theory suggests that it should be 

constant and that has been employed in Matlab. The minor fluctuations have been attributed to 

the effect of constraints in Mechanica.  

Also, literature review from Hoffman and Khurmi suggested that the Shear stress caused by 

torsion should be constant at a particular angle throughout the length of the shaft. Keeping that in 

mind, the calculations were carried out in Matlab. However, in Mechanica, the values were 

varying. One possible reason shall be the effect of the constraints and some numerical 

computation errors. If the length of the shaft were drastically increased, then for much parts of 

length, the value of the shear stress along a particular angle seemed to be constant.  

Based on discussions with people at Atlas Copco, there were three major errors that occur during 

the mounting of strain gauge layers on the shaft. These three errors were the errors occurring 

because of strain gauge angle orientation, angle inclination and strain gauge displacement error. 

These three parameters were considered in a factorial design in order to see the magnitude of 

effects. It was found out that the strain gauge length displacement contributed to the most error 

followed by strain gauge angle orientation error. A logical explanation can be attributed to the 

fact that strain varies greatly across the lengths than the angle orientation, which in turn is much 

more than the strain difference between successive degrees. The profiles of the three errors were 

plotted and it was observed that length displacement was linear whereas the angle orientation 

and angle misalignment were in the form of a symmetric parabola. 

The next interesting thing was the measurement of strain in case of axis inclination between the 

inner and outer circles. It can be considered to be infinitely divided into different slices of shaft 

with varying eccentricity. Thus, at each slice, the value of the strain caused by torsion was 

verified with Matlab and they were the same barring the constraint effects. Thus, the initial 

thought that an inclined axis shaft will be the same as a shaft with infinite number of slices with 

increasing/decreasing offset value turned out to be right. 

For all the comparisons between Matlab and ProEngineer Mechanica, the maximum difference 

in error in the values was not more than 1%, which is the least allowable boundary condition that 

can be stated in Mechanica.  

It is to be noted that axis inclination has been employed only for a shaft subjected to torsion. It 

was not able to be computed for a shaft subjected to bending load, since it shall result in 

unsymmetrical loading and that shall arise to many complexities.  
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Since the scope of the thesis was only limited to the mechanical aspects of the strain gauge 

analysis, a good future work would be to work on the sensitivity to obtain the torque. For this, 

more knowledge on controls and signals would be needed. 

6.2 Advantages and Conclusions 

 It can be concluded that keeping the theory in mind, the values of Matlab are more 

accurate than FEA.  

 The Matlab code is much faster and easier to use. All the inputs shall be entered in Excel 

and the entire time taken shall be less than a minute. In FEA, it takes more time to 

develop the model and then to analyze it. 

 The Matlab code has the unique advantage of plotting the strain at an angle that the user 

is interested in. It is not possible to obtain the same in Mechanica, as the user has to 

manually deploy stress transformation for finding out the strain at an angle. Thereby, 

Matlab code is much more user friendly as long as the user has a basic understanding in 

solid mechanics. 

 For the cases tested, it was found out if the eccentricity value increases, then the 

sensitivity of the strain gauge also increased. 

 The general pattern in the strain readings for majority of the cases is a sinusoidal curve. 

 If there is an offset in the inner circle axis, then it is always desirable to position the strain 

gauges in such a way that the least distance (thin-wall) is always between two strain 

gauges. 

 The various misalignment errors were analysed and their magnitude of effects have been 

found. It is desirable to carefully position the strain gauge along the lateral length as it 

can have a significant impact in strain measurement. Also proper care must be taken to 

ensure that the strain gauge is aligned at 45 degrees. 
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7 RECOMMENDATIONS AND FUTURE WORK 

 In the bending as well as in the axial loading, the load is always assumed to be acting along 

the neutral axis. However, in real life, it will be acting at a fixed point on the shaft. Though 

the difference between the neutral axis and the fixed point is negligibly small, it shall be 

interesting to know the effect if the load is always acting at the fixed point. The major 

disadvantage with that is that it shall lead to unsymmetrical loading which is very complex to 

solve in analytical way. 

 Efforts can be put on FEA in order to ensure that the finite element methods are more similar 

to analytical methods using Matlab. 

 Another good future work would be to extend the Matlab script such that the Matlab script 

can give the allowable tolerance. The current script can give only the sensitivity of a 

tolerance level, whereas the proposed one shall work on a number of tolerances and shall 

display the allowable tolerance level instead of manually checking for each tolerance limit. 

 Axis inclination has been employed only for a shaft subjected to torsion. It was not able to be 

computed for a shaft subjected to bending load, since it shall result in unsymmetrical loading 

and that shall arise to many complexities. Therefore, another potential future work shall be to 

see and understand the irregularities when the axis is inclined and when a number of loads 

act. 

 Combination of multiple bending loads will be an interesting scenario to watch. Though 

there wasn’t any need for it in the thesis requirement, it would be good and interesting to 

know more about the consequences of multiple bending loads acting at different direction. 

 Since the scope of the thesis was only limited to only the mechanical aspects of the strain 

gauge analysis, a good future work would be to work further on the sensitivity to obtain the 

torque. Thereby, the user can compare the torque obtained because of imperfections with the 

actual torque that it should display if it is free of imperfections. For this, more knowledge on 

controls and signals would be needed. 
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APPENDIX 

 

NOTE - The code ‘sensshort.m’ (Appendix 1) is recommended for strain gauge related applications, which is the 

purpose of this thesis, whereas the code ‘senslong.m’ (Appendix 2) is to be used for generic strength of materials 

related applications. All the computations in Matlab in this thesis are obtained using the code – ‘sensshort.m’. An 

excel sheet ‘Datainput’ is used for entering the input parameters and the region coordinates. 

Let the below script be copied in Matlab and executed. The text gets automatically aligned when it is copied in 

Matlab and thereby more readability is obtained in Matlab than reading from this appendix. 

APPENDIX 1- Matlab script - sensshort.m 

 
clc 

close all 

clear all 

format compact 

 

%% Matlab Code sensshort  

%% Section 1 - Parameter Input 

 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E5'; 

subsetA = xlsread(filename,sheet,xlRange); 

D = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E6'; 

subsetA = xlsread(filename,sheet,xlRange); 

d = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E7'; 

subsetA = xlsread(filename,sheet,xlRange); 

L = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E8'; 

subsetA = xlsread(filename,sheet,xlRange); 

xoffset = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E9'; 

subsetA = xlsread(filename,sheet,xlRange); 

yoffset = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E10'; 

subsetA = xlsread(filename,sheet,xlRange); 

inclin = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E12'; 

subsetA = xlsread(filename,sheet,xlRange); 

T = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E13'; 

subsetA = xlsread(filename,sheet,xlRange); 

W = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E14'; 
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subsetA = xlsread(filename,sheet,xlRange); 

P = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E16'; 

subsetA = xlsread(filename,sheet,xlRange); 

E = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E17'; 

subsetA = xlsread(filename,sheet,xlRange); 

v = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E18'; 

subsetA = xlsread(filename,sheet,xlRange); 

ldiff = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E19'; 

subsetA = xlsread(filename,sheet,xlRange); 

thetasplit_t = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E25'; 

subsetA = xlsread(filename,sheet,xlRange); 

userang1 = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E26'; 

subsetA = xlsread(filename,sheet,xlRange); 

userang2 = subsetA; 

 

%% Section 2 - Torsion Computation 

 

R =D/2; 

r = d/2; 

lambda = 1; 

 

thetafirstinp_tor=0; %Starting theta point 

thetalastinp_tor=359; %Ending theta point 

lfirst=0; %Starting length point 

llast = L; %Ending length point 

lvals = lfirst:ldiff:llast;    %Range of length values 

             

if (xoffset == 0 && yoffset == 0) 

    thetaj = thetafirstinp_tor:thetasplit_t:thetalastinp_tor; %Range of theta values 

    for ldx = 1:length(lvals); 

        l = lvals(ldx); 

        for thetadx = 1:length(thetaj) 

            theta = thetaj(thetadx); 

            tautorsion(thetadx,ldx) = (16*T*D)/(pi()*((D*D*D*D)-(d*d*d*d))); %Ideal case, tau torsion using formula 

        end     

    end 

else 

    exab = abs(xoffset);    %absolute value of xoffset 

    eyab = abs(yoffset);    %absolute value of yoffset 

    etor = sqrt(exab^2+eyab^2); 

    ator = d/2;      %refer report             % inner circle radius 

    btor = D/2;      %refer report             % outer circle radius 

    mtor = d/D; 

    ltor = etor/D; 

    ptor = etor/ator; 

    % Below are the conventions used for computing the limits of theta values according to the thetoritical framework 

    if(xoffset>=0 && yoffset>=0) 

        theta_eccentricity = atand(eyab/exab); 

        thetadiff_tor = 180-theta_eccentricity; 

        thetafirst_tor=thetadiff_tor-thetafirstinp_tor; 

        thetalast_tor=thetadiff_tor-thetalastinp_tor; 

    else 
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        if(xoffset<0 && yoffset>=0) 

            theta_eccentricity = 180-(atand(eyab/exab)); 

            thetadiff_tor = 180-theta_eccentricity; 

            thetafirst_tor=thetadiff_tor-thetafirstinp_tor; 

            thetalast_tor=thetadiff_tor-thetalastinp_tor; 

        else 

            if(xoffset<=0 && yoffset<0) 

                theta_eccentricity = 180+(atand(eyab/exab)); 

                thetadiff_tor = 180-theta_eccentricity; 

                thetafirst_tor=thetadiff_tor-thetafirstinp_tor; 

                thetalast_tor=thetadiff_tor-thetalastinp_tor; 

            else 

                if(xoffset>0 && yoffset<0) 

                    theta_eccentricity = 360-(atand(eyab/exab)); 

                    thetadiff_tor = 180-theta_eccentricity; 

                    thetafirst_tor=thetadiff_tor-thetafirstinp_tor; 

                    thetalast_tor=thetadiff_tor-thetalastinp_tor; 

                else 

                    disp('Error ') 

                end 

            end 

        end 

    end 

     

    if(thetafirst_tor<=0) 

        thetafirstnew=thetafirst_tor; 

    else 

        thetafirstnew=thetafirst_tor; 

    end 

     

    if(thetalast_tor<=0) 

        thetalastnew=720+thetalast_tor; 

    else 

        thetalastnew=thetalast_tor; 

    end 

     

    thetaj = thetafirstnew:thetasplit_t:thetalastnew; 

    disp('------------------------------------------------------------------------'); 

     

    for ldx = 1:length(lvals); 

        l = lvals(ldx); 

        for thetadx = 1:length(thetaj); 

            theta = thetaj(thetadx); 

            % Extrapolation of Wilsons work, refer report 

            a11_t = (ator^3)/(btor^2-ator^2); 

            a12_t = 0; 

            a13_t = (2*(ator^7)*(btor^2))/(((btor^2-ator^2)^2)*(btor^4-ator^4)); 

            a14_t = 0; 

            a22_t = -(ator^4*btor^2)/((btor^2-ator^2)*(btor^4-ator^4)); 

            a23_t = 0; 

            a24_t = (ator^8*btor^2)*((3*ator^8)-(ator^6*btor^2)+(3*ator^4*btor^4)-(3*ator^2*btor^6)-(2*btor^8))/(((btor^2-

ator^2)^2)*((btor^4-ator^4)^2)*(btor^6-ator^6)); 

            a33_t = ((ator^5*btor^2)*(ator^4+btor^4))/((btor^2-ator^2)*(btor^4-ator^4)*(btor^6-ator^6)); 

            a34_t = 0; 

            a44_t = -(btor^2*ator^6)*((btor^10)+(2*ator^6*btor^6)+(2*ator^6*btor^4)+(ator^10))/((btor^2-ator^2)*(btor^4-

ator^4)*(btor^6-ator^6)*(btor^8-ator^8)); 

            a1_t = (a11_t*ptor)+(a12_t*ptor*ptor)+(a13_t*ptor*ptor*ptor)+(a14_t*ptor*ptor*ptor*ptor); 

            a2_t = (a22_t*ptor*ptor)+(a23_t*ptor*ptor*ptor)+(a24_t*ptor*ptor*ptor*ptor); 

            a3_t = (a33_t*ptor*ptor*ptor)+(a34_t*ptor*ptor*ptor*ptor); 

            a4_t = (a44_t*ptor*ptor*ptor*ptor); 

            be1_t = -a1_t*(btor^2); 

            be2_t = -a2_t*(btor^4); 

            be3_t = -a3_t*(btor^6); 

            be4_t = -a4_t*(btor^8); 

            Q_t = 1+((ltor^2)*(16*(mtor)^2/((1-mtor^2)*(1-mtor^4))))+((ltor^4)*(384*mtor^4/(((1-mtor^2)^2)*((1-mtor^4)^2)))); 

            phio_t = 32*T/(pi()*E*(D^4-d^4)); 

            phi_t = Q_t*phio_t; 

            f1_t = -btor; 

            f2_t = (a1_t-(be1_t/(btor*btor)))*cosd(theta); 

            f3_t = 2*((a2_t*btor)-(be2_t/(btor*btor*btor)))*cosd(2*theta); 



106 

 

            f4_t = 3*((a3_t*btor*btor)-(be3_t/(btor*btor*btor*btor)))*cosd(3*theta); 

            f5_t = 4*((a4_t*btor*btor*btor)-(be4_t/(btor*btor*btor*btor*btor)))*cosd(4*theta); 

            fsum_t = f1_t+f2_t+f3_t+f4_t+f5_t; 

            tautorsion(thetadx,ldx) = -E*phi_t*fsum_t; 

        end 

    end 

end 

 

thetaindividual_tor = 0:thetasplit_t:359; 

 

Areaentire = pi*(D^2-d^2)/4; %Area of entire shaft 

G = E/(2+(2*v)); %Shear modulus 

 

if (thetasplit_t == 1) 

    tautor = tautorsion(1:360,1:ldx); 

else 

    if (thetasplit_t == 0.5) 

        tautor = tautorsion(1:719,1:ldx); 

    else 

        if (thetasplit_t == 0.1) 

            tautor = tautorsion(1:3591,1:ldx); 

        end 

    end 

end 

gamma_strain = tautor/G*1000000; %shear strain 

 

%% Section 3 - Bending, Axial and Combination Computation 

 

thetafirst = thetafirstinp_tor;                 %Starting theta point 

thetalast = thetalastinp_tor;                   %Ending theta point 

thetadiff = thetasplit_t;                       %Resolution of theta values 

lfirst=0;                                       %Starting length point 

llast = L;                                      %Starting length point 

thetavals = thetafirst:thetadiff:thetalast;     %Range of theta values 

lvals = lfirst:ldiff:llast;                     %Range of length values 

 

for lidx = 1:length(lvals); 

    l = lvals(lidx); 

    for thetaidx = 1:length(thetavals); 

        theta = thetavals(thetaidx); 

        %  Section 3.1 Centroid, Neutral Axis and Intended Point 

        x_outer_circle = 0;                                                                 % xbar of outer circle is zero 

        y_outer_circle = 0;                                                                 % ybar of outer circle is zero 

        x_inner_circle = xoffset;                                                           % xbar of inner circle is equal to offset  in x direction 

        y_inner_circle = yoffset;                                                           % ybar of inner circle is equal to offset in y direction 

        area_outer = pi*D*D/4; 

        area_inner = pi*d*d/4; 

        area_shaft = area_outer-area_inner; 

        Xbar = ((x_outer_circle*area_outer)-(x_inner_circle*area_inner))/area_shaft;        % xbar of hollow circle 

        Ybar = ((y_outer_circle*area_outer)-(y_inner_circle*area_inner))/area_shaft;        % ybar of hollow circle 

        ynaoff = yoffset-Ybar;                                                              % ynaoff is the distance between y centroid and y bar of inner 

circle 

        xnaoff = xoffset-Xbar;                                                              % xnaoff is the distance between x centroid and x bar of inner 

circle 

        e1 = sqrt((xoffset^2)+(yoffset^2));                                                 % eccentricity resultant between centre point and centroid 

of inner 

        e2 = sqrt((xnaoff^2)+(ynaoff^2));                                                   % eccentricity resultant between centroid of hollow and 

centroid of inner 

        if(0<=theta<=90)                                                                    % finding x1 and y1 of the interested point for the given input 

angle 

            x1 = R*cosd(theta); 

            y1 = R*sind(theta); 

            % disp('First Quadrant '); 

        else if(theta<=180) 

                x1 = R*cosd(180-theta); 

                y1 = R*sind(180-theta); 

                % disp('Second Quadrant '); 

            else if (theta<=270) 

                    x1 = R*cosd(180-theta); 

                    y1 = R*sind(180-theta); 
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                    % disp('Third Quadrant '); 

                else if(theta<360) 

                        x1 = R*cosd(180-theta); 

                        y1 = R*sind(180-theta); 

                        % disp('Fourth Quadrant '); 

                    end 

                end 

            end 

        end    

         

        %% Section 3.2 - Polar Moment of Inertia w.r.t. Neutral Axis 

         

        Ona = sqrt((Xbar^2)+(Ybar^2)); 

        Ina = sqrt(((Xbar-x_inner_circle)^2)+((Ybar-y_inner_circle)^2)); 

        Jo = pi*(D^4)/32; 

        Ji = (pi*(d^4)/32)+((pi*(d^2)/4)*e1^2); 

        J = Jo-Ji; 

        Jon = (pi*(D^4)/32)+((pi*(D^2)/4)*Ona^2); 

        Jin = (pi*(d^4)/32)+((pi*(d^2)/4)*Ina^2); 

        Jn = Jon - Jin;                 %Polar moment of inertia by Parallel axis theorem 

         

        %% Section 3.3 - Second Moment of Inertia w.r.t. Neutral Axis 

         

        if (abs(xoffset) <= abs(yoffset)) 

            Ixx_o = (pi*(D^4)/64)+((pi*(D^2)/4)*(Ona)^2); 

            Ixx_i = (pi*(d^4)/64)+((pi*(d^2)/4)*(Ina)^2); 

            Ixx = Ixx_o - Ixx_i; 

            Iyy = Jn - Ixx; 

        else 

            Iyy_o = (pi*(D^4)/64)+((pi*(D^2)/4)*(Ona)^2); 

            Iyy_i = (pi*(d^4)/64)+((pi*(d^2)/4)*(Ina)^2); 

            Iyy = Iyy_o - Iyy_i; 

            Ixx = Jn - Iyy; 

        end 

        b = 2*(D-d); 

                       

        %% Section 3.4 - Bending load parameters 

        Mz = W*l; 

        if (y1>Ybar) 

            yver = (y1-Ybar);               % Bending Load acts on A or above YBar, resulting in Tensile Stress, hence yver>0 

        else 

            if (y1<Ybar) 

                yver = -(Ybar-y1);          % Bending Load acts on B or below YBar, resulting in Compressive Stress, hence yver<0 

            else 

                yver = 0;                   % On the Centroidal Neutral Axis, yver is zero and hence My/I is also zero, hence no normal 

bending stresses 

            end 

        end 

        Izz = Iyy; 

         

        %% Section 3.5 - Stress and Strain Computations, refer report for formulas 

         

        sigma_axial = P/Areaentire; 

         

        indicesref = 1/thetasplit_t; 

        indiv_angles = (indicesref*theta)+1; 

        indiv_angle = fix(indiv_angles); 

        tau_torsion = tautorsion(indiv_angle); 

         

        sigma_bending_z = -Mz*yver/Izz; 

        sigmaYa(thetaidx,lidx) = 0;          

            

        Mz_total(thetaidx,lidx) = Mz; 

        yvertotal(thetaidx,lidx) = yver; 

        Izz_total(thetaidx,lidx)=Izz; 

         

        sigma_phi = -0.3*(sigma_bending_z+sigma_axial); 

        strain_zz(thetaidx,lidx)= (sigma_bending_z+sigma_axial)*1000000/E; 

        strain_tt(thetaidx,lidx) = sigma_phi*1000000/E;         

    end  
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end 

   

strain_45Max = ((strain_zz + strain_tt)/2)+(gamma_strain/2); 

strain_ua1 = ((strain_zz + strain_tt)/2)-(((strain_zz - strain_tt)/2)*cosd(2*userang1))+((gamma_strain/2)*sind(2*userang1)); 

strain_ua2 = ((strain_zz + strain_tt)/2)-(((strain_zz - strain_tt)/2)*cosd(2*userang2))+((gamma_strain/2)*sind(2*userang2)); 

 

%% Section 4 - Plots 

 

figure(1); 

plot(thetaindividual_tor,tautor); 

set(gca,'XTick',0:30:359 ); 

xlim([0 359]); 

xlabel('Angle in degrees ') 

ylabel('Shear Stress due to Torsion in MPa ') 

title('Angle vs Shear Stress due to Torsion alone '); 

grid on; 

 

figure(2); 

plot(thetavals,strain_zz); 

title('Theta vs Strain zz at 45 degrees '); 

xlabel('Angle in degrees '); 

ylabel('Strain zz values in uE '); 

xlim([0 359]); 

set(gca,'XTick',0:30:359 ); 

grid on 

 

figure(3); 

plot(thetavals,strain_tt); 

title('Theta vs Strain tt at 45 degrees '); 

xlabel('Angle in degrees '); 

ylabel('Strain tt values in uE '); 

xlim([0 359]); 

set(gca,'XTick',0:30:359 ); 

grid on 

 

figure(4); 

plot(thetavals,strain_45Max); 

title('Theta vs Strain at 45 degrees '); 

xlabel('Angle in degrees '); 

ylabel('Strain values in uE '); 

xlim([0 359]); 

set(gca,'XTick',0:30:359 ); 

grid on 

 

figure(5); 

plot(thetavals,strain_ua1,thetavals,strain_ua2); 

title('Theta vs Strain at userangle comparisons degrees '); 

xlabel('Angle in degrees '); 

ylabel('Strain values at 45 and userangles 1 and 2 in uE '); 

xlim([0 359]); 

set(gca,'XTick',0:30:359 ); 

grid on 

 

%% Section 5 - Region Strain 

 

option = menu('Choose the Number of Regions for Strain Gauges',... 

    '0 Region ',... 

    '1 Region ',... 

    '2 Regions ',... 

    '3 Regions ',... 

    '4 Regions ',... 

    '8 Regions'); 

 

switch option 

    case 1 

        nooftimes = 0; 

         

    case 2 

        nooftimes = 1:1; 

        sheetx = 1; 
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    case 3 

        nooftimes = 1:2; 

        sheetx = 2; 

         

    case 4 

        nooftimes = 1:3; 

        sheetx = 3; 

         

    case 5 

        nooftimes = 1:4; 

        sheetx = 4; 

         

    case 6 

        nooftimes = 1:8; 

        sheetx = 5; 

end 

 

if nooftimes ~= 0 

    for trialdx = 1:length(nooftimes); 

        trial = nooftimes(trialdx); 

         

        filename = 'Datainput.xlsx'; 

        sheet = trialdx; 

        xlRange = 'E32'; 

        subsetA = xlsread(filename,sheet,xlRange); 

        x1u = -subsetA; 

         

        filename = 'Datainput.xlsx'; 

        sheet = trialdx; 

        xlRange = 'E33'; 

        subsetA = xlsread(filename,sheet,xlRange); 

        sheet = sheetx; 

        y1u = -subsetA; 

         

        filename = 'Datainput.xlsx'; 

        sheet = trialdx; 

        xlRange = 'E34'; 

        subsetA = xlsread(filename,sheet,xlRange); 

        x2u = -subsetA; 

         

        filename = 'Datainput.xlsx'; 

        sheet = trialdx; 

        xlRange = 'E35'; 

        subsetA = xlsread(filename,sheet,xlRange); 

        y2u = -subsetA; 

         

        filename = 'Datainput.xlsx'; 

        sheet = trialdx; 

        xlRange = 'E36'; 

        subsetA = xlsread(filename,sheet,xlRange); 

        x3u = -subsetA; 

         

        filename = 'Datainput.xlsx'; 

        sheet = trialdx; 

        xlRange = 'E37'; 

        subsetA = xlsread(filename,sheet,xlRange); 

        y3u = -subsetA; 

         

        filename = 'Datainput.xlsx'; 

        sheet = trialdx; 

        xlRange = 'E38'; 

        subsetA = xlsread(filename,sheet,xlRange); 

        x4u = -subsetA; 

         

        filename = 'Datainput.xlsx'; 

        sheet = trialdx; 

        xlRange = 'E39'; 

        subsetA = xlsread(filename,sheet,xlRange); 

        y4u = -subsetA; 
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        xvals = 0:-ldiff:-L; 

        yvals = 0:-thetasplit_t:-359; 

         

        if (y1u < y4u || y2u < y3u ) 

            inters = 0; 

        else 

            inters = 1; 

        end 

         

        if (inters==~0) 

            m1_u=(y2u-y1u)/(x2u-x1u); 

            if (abs(m1_u) == Inf) 

                m1u = 0; 

            else 

                m1u = m1_u; 

            end 

            c1u=y1u-(m1u*x1u); 

            m2_u=(x3u-x2u)/(y3u-y2u); 

            if (abs(m2_u) == Inf) 

                m2u = 0; 

            else 

                m2u = m2_u; 

            end 

            c2u=x2u-(m2u*y2u); 

            m3_u=(y4u-y3u)/(x4u-x3u); 

            if (abs(m3_u) == Inf) 

                m3u = 0; 

            else 

                m3u = m3_u; 

            end 

            c3u=y3u-(m3u*x3u); 

            m4_u=(x1u-x4u)/(y1u-y4u); 

            if (abs(m4_u) == Inf) 

                m4u = 0; 

            else 

                m4u = m4_u; 

            end 

            c4u=x4u-(m4u*y4u); 

                        

            for xdx = 1:length(xvals); 

                x = xvals(xdx); 

                for ydx = 1:length(yvals); 

                    y = yvals(ydx); 

                    d1(ydx,xdx) = y-(m1u*x); 

                    d2(ydx,xdx) = x-(m2u*y); 

                    d3(ydx,xdx) = y-(m3u*x); 

                    d4(ydx,xdx) = x-(m4u*y); 

                    if(d1(ydx,xdx)<=c1u && d2(ydx,xdx)<=c2u && d3(ydx,xdx)>=c3u && d4(ydx,xdx)>=c4u); 

                        Apoints(ydx,xdx)=1; 

                    else 

                        Apoints(ydx,xdx)=0; 

                    end 

                end 

            end 

             

            Region1 = strain_ua1.*Apoints; 

            Region2 = strain_ua2.*Apoints; 

            Region1avg(trialdx) = mean(nonzeros(Region1)); 

            Region2avg(trialdx) = mean(nonzeros(Region2)); 

            disp('Region Average in uE is '); 

            disp(Region1avg(trialdx)); 

            disp(Region2avg(trialdx)); 

        else 

            x1_u = x4u; 

            y1_u = y4u; 

            x2_u = x3u; 

            y2_u = y3u; 

            x3_u = x2u; 

            y3_u = y2u; 
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            x4_u = x1u; 

            y4_u = y1u; 

            m1_u=(y2_u-y1_u)/(x2_u-x1_u); 

            if (abs(m1_u) == Inf) 

                m1u = 0; 

            else 

                m1u = m1_u; 

            end 

            c1u=y1_u-(m1u*x1_u); 

            m2_u=(x3_u-x2_u)/(y3_u-y2_u); 

            if (abs(m2_u) == Inf) 

                m2u = 0; 

            else 

                m2u = m2_u; 

            end 

            c2u=x2_u-(m2u*y2_u); 

            m3_u=(y4_u-y3_u)/(x4_u-x3_u); 

            if (abs(m3_u) == Inf) 

                m3u = 0; 

            else 

                m3u = m3_u; 

            end 

            c3u=y3_u-(m3u*x3_u); 

            m4_u=(x1_u-x4_u)/(y1_u-y4_u); 

            if (abs(m4_u) == Inf) 

                m4u = 0; 

            else 

                m4u = m4_u; 

            end 

            c4u=x4_u-(m4u*y4_u); 

                         

            for xdx = 1:length(xvals); 

                x = xvals(xdx); 

                for ydx = 1:length(yvals); 

                    y = yvals(ydx); 

                    d1(ydx,xdx) = y-(m1u*x); 

                    d2(ydx,xdx) = x-(m2u*y); 

                    d3(ydx,xdx) = y-(m3u*x); 

                    d4(ydx,xdx) = x-(m4u*y); 

                    if(d1(ydx,xdx)<c1u && d2(ydx,xdx)<=c2u && d3(ydx,xdx)>c3u && d4(ydx,xdx)>=c4u); 

                        Apoints1(ydx,xdx)=0; 

                    else 

                        Apoints1(ydx,xdx)=1; 

                    end 

                    if(d2(ydx,xdx)<=c2u && d4(ydx,xdx)>=c4u); 

                        Apoints2(ydx,xdx)=1; 

                    else 

                        Apoints2(ydx,xdx)=0; 

                    end 

                    Apoints3 = Apoints1.*Apoints2; 

                end 

            end 

            Region1 = strain_ua1.*Apoints3; 

            Region2 = strain_ua2.*Apoints3; 

            Region1avg(trialdx) = mean(nonzeros(Region1)); 

            Region2avg(trialdx) = mean(nonzeros(Region2)); 

            disp('Region Average in uE is '); 

            disp(Region1avg(trialdx)); 

            disp(Region2avg(trialdx)); 

        end 

    end 

else 

    return 

end 

 

%% Section 6 - Sensitivity 

 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E21'; 
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subsetA = xlsread(filename,sheet,xlRange); 

GF = subsetA; 

 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E22'; 

subsetA = xlsread(filename,sheet,xlRange); 

Rg = subsetA; 

 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E23'; 

subsetA = xlsread(filename,sheet,xlRange); 

V_wb = subsetA; 

 

Del1R = Region1avg*GF*Rg*(10^-6)*1000; 

Del2R = Region2avg*GF*Rg*(10^-6)*1000; 

 

if (sheetx == 4) 

    e1t = Region1avg(1); 

    e1c = Region2avg(1); 

    e2t = Region1avg(2); 

    e2c = Region2avg(2); 

    e3t = Region1avg(3); 

    e3c = Region2avg(3); 

    e4t = Region1avg(4); 

    e4c = Region2avg(4); 

end 

 

Sens = (GF/(4*1000))*(e1t-e2c+e3t-e4c); 

disp('Sensitivity in mV/V is '); 

disp(Sens); 

disp('We have reached the end of the program'); 
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APPENDIX 2- Matlab script - senslong.m 
clc 

close all 

clear all 

format compact 

 

%% Matlab Code senslong 

%% Section 1 - Parameter Input 

 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E5'; 

subsetA = xlsread(filename,sheet,xlRange); 

D = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E6'; 

subsetA = xlsread(filename,sheet,xlRange); 

d = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E7'; 

subsetA = xlsread(filename,sheet,xlRange); 

L = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E8'; 

subsetA = xlsread(filename,sheet,xlRange); 

xoffset = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E9'; 

subsetA = xlsread(filename,sheet,xlRange); 

yoffset = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E10'; 

subsetA = xlsread(filename,sheet,xlRange); 

inclin = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E12'; 

subsetA = xlsread(filename,sheet,xlRange); 

T = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E13'; 

subsetA = xlsread(filename,sheet,xlRange); 

W = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E14'; 

subsetA = xlsread(filename,sheet,xlRange); 

P = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E16'; 

subsetA = xlsread(filename,sheet,xlRange); 

E = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E17'; 

subsetA = xlsread(filename,sheet,xlRange); 

v = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E18'; 

subsetA = xlsread(filename,sheet,xlRange); 

ldiff = subsetA; 
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filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E19'; 

subsetA = xlsread(filename,sheet,xlRange); 

thetasplit_t = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E25'; 

subsetA = xlsread(filename,sheet,xlRange); 

userang1 = subsetA; 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E26'; 

subsetA = xlsread(filename,sheet,xlRange); 

userang2 = subsetA; 

 

% dl = L-l later; 

% ey = yoffset + (dl*tand(m)); 

 

%% Section 2 - Torsion Computation 

 

R =D/2; 

r = d/2; 

lambda = 1; 

 

 

thetafirstinp_tor=0; 

thetalastinp_tor=359; 

lfirst=0; 

llast = L; 

lvals = lfirst:ldiff:llast; 

             

if (xoffset == 0 && yoffset == 0) 

    thetaj = thetafirstinp_tor:thetasplit_t:thetalastinp_tor; 

    for ldx = 1:length(lvals); 

        l = lvals(ldx); 

        for thetadx = 1:length(thetaj) 

            theta = thetaj(thetadx); 

            tautorsion(thetadx,ldx) = (16*T*D)/(pi()*((D*D*D*D)-(d*d*d*d))); 

        end     

    end 

else 

    exab = abs(xoffset); 

    eyab = abs(yoffset); 

    etor = sqrt(exab^2+eyab^2); 

    ator = d/2;                                                                                             % inner circle radius 

    btor = D/2;                                                                                             % outer circle radius 

    mtor = d/D; 

    ltor = etor/D; 

    ptor = etor/ator; 

    if(xoffset>=0 && yoffset>=0) 

        theta_eccentricity = atand(eyab/exab); 

        thetadiff_tor = 180-theta_eccentricity; 

        thetafirst_tor=thetadiff_tor-thetafirstinp_tor; 

        thetalast_tor=thetadiff_tor-thetalastinp_tor; 

    else 

        if(xoffset<0 && yoffset>=0) 

            theta_eccentricity = 180-(atand(eyab/exab)); 

            thetadiff_tor = 180-theta_eccentricity; 

            thetafirst_tor=thetadiff_tor-thetafirstinp_tor; 

            thetalast_tor=thetadiff_tor-thetalastinp_tor; 

        else 

            if(xoffset<=0 && yoffset<0) 

                theta_eccentricity = 180+(atand(eyab/exab)); 

                thetadiff_tor = 180-theta_eccentricity; 

                thetafirst_tor=thetadiff_tor-thetafirstinp_tor; 

                thetalast_tor=thetadiff_tor-thetalastinp_tor; 

            else 

                if(xoffset>0 && yoffset<0) 

                    theta_eccentricity = 360-(atand(eyab/exab)); 
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                    thetadiff_tor = 180-theta_eccentricity; 

                    thetafirst_tor=thetadiff_tor-thetafirstinp_tor; 

                    thetalast_tor=thetadiff_tor-thetalastinp_tor; 

                else 

                    disp('Error ') 

                end 

            end 

        end 

    end 

     

    if(thetafirst_tor<=0) 

        thetafirstnew=thetafirst_tor; 

    else 

        thetafirstnew=thetafirst_tor; 

    end 

     

    if(thetalast_tor<=0) 

        thetalastnew=720+thetalast_tor; 

    else 

        thetalastnew=thetalast_tor; 

    end 

     

    thetaj = thetafirstnew:thetasplit_t:thetalastnew; 

    disp('------------------------------------------------------------------------'); 

     

    for ldx = 1:length(lvals); 

        l = lvals(ldx); 

        for thetadx = 1:length(thetaj); 

            theta = thetaj(thetadx); 

            a11_t = (ator^3)/(btor^2-ator^2); 

            a12_t = 0; 

            a13_t = (2*(ator^7)*(btor^2))/(((btor^2-ator^2)^2)*(btor^4-ator^4)); 

            a14_t = 0; 

            a22_t = -(ator^4*btor^2)/((btor^2-ator^2)*(btor^4-ator^4)); 

            a23_t = 0; 

            a24_t = (ator^8*btor^2)*((3*ator^8)-(ator^6*btor^2)+(3*ator^4*btor^4)-(3*ator^2*btor^6)-(2*btor^8))/(((btor^2-

ator^2)^2)*((btor^4-ator^4)^2)*(btor^6-ator^6)); 

            a33_t = ((ator^5*btor^2)*(ator^4+btor^4))/((btor^2-ator^2)*(btor^4-ator^4)*(btor^6-ator^6)); 

            a34_t = 0; 

            a44_t = -(btor^2*ator^6)*((btor^10)+(2*ator^6*btor^6)+(2*ator^6*btor^4)+(ator^10))/((btor^2-ator^2)*(btor^4-

ator^4)*(btor^6-ator^6)*(btor^8-ator^8)); 

            a1_t = (a11_t*ptor)+(a12_t*ptor*ptor)+(a13_t*ptor*ptor*ptor)+(a14_t*ptor*ptor*ptor*ptor); 

            a2_t = (a22_t*ptor*ptor)+(a23_t*ptor*ptor*ptor)+(a24_t*ptor*ptor*ptor*ptor); 

            a3_t = (a33_t*ptor*ptor*ptor)+(a34_t*ptor*ptor*ptor*ptor); 

            a4_t = (a44_t*ptor*ptor*ptor*ptor); 

            be1_t = -a1_t*(btor^2); 

            be2_t = -a2_t*(btor^4); 

            be3_t = -a3_t*(btor^6); 

            be4_t = -a4_t*(btor^8); 

            Q_t = 1+((ltor^2)*(16*(mtor)^2/((1-mtor^2)*(1-mtor^4))))+((ltor^4)*(384*mtor^4/(((1-mtor^2)^2)*((1-mtor^4)^2)))); 

            phio_t = 32*T/(pi()*E*(D^4-d^4)); 

            phi_t = Q_t*phio_t; 

            f1_t = -btor; 

            f2_t = (a1_t-(be1_t/(btor*btor)))*cosd(theta); 

            f3_t = 2*((a2_t*btor)-(be2_t/(btor*btor*btor)))*cosd(2*theta); 

            f4_t = 3*((a3_t*btor*btor)-(be3_t/(btor*btor*btor*btor)))*cosd(3*theta); 

            f5_t = 4*((a4_t*btor*btor*btor)-(be4_t/(btor*btor*btor*btor*btor)))*cosd(4*theta); 

            fsum_t = f1_t+f2_t+f3_t+f4_t+f5_t; 

            tautorsion(thetadx,ldx) = -E*phi_t*fsum_t; 

        end 

    end 

end 

 

thetaindividual_tor = 0:thetasplit_t:359; 

 

Areaentire = pi*(D^2-d^2)/4; 

G = E/(2+(2*v)); 

 

if (thetasplit_t == 1) 

    tautor = tautorsion(1:360,1:ldx); 
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else 

    if (thetasplit_t == 0.5) 

        tautor = tautorsion(1:719,1:ldx); 

    else 

        if (thetasplit_t == 0.1) 

            tautor = tautorsion(1:3591,1:ldx); 

        end 

    end 

end 

gamma_strain = tautor/G*1000000; 

 

%% Section 3 - Bending, Axial and Combination Computation 

 

thetafirst = thetafirstinp_tor; 

thetalast = thetalastinp_tor; 

thetadiff = thetasplit_t; 

lfirst=0; 

llast = L; 

 

thetavals = thetafirst:thetadiff:thetalast; 

lvals = lfirst:ldiff:llast; 

% disp('------------------------------------------------------------------------'); 

 

for lidx = 1:length(lvals); 

    l = lvals(lidx); 

    % %     disp('From the load end at a distance of '); 

    % %     disp(l); 

    % %     disp('Results associated with different angles are as follows '); 

    % %     disp('---------------------------------'); 

    for thetaidx = 1:length(thetavals); 

        theta = thetavals(thetaidx); 

        % %     disp('At an angle of '); 

        % %     disp(theta); 

        %%  Section 3.1 Centroid, Neutral Axis and Intended Point 

         

        x_outer_circle = 0;                                                                 % xbar of outer circle is zero 

        y_outer_circle = 0;                                                                 % ybar of outer circle is zero 

        x_inner_circle = xoffset;                                                           % xbar of inner circle is equal to offset in x direction 

        y_inner_circle = yoffset;                                                           % ybar of inner circle is equal to offset  in y direction 

        area_outer = pi*D*D/4; 

        area_inner = pi*d*d/4; 

        area_shaft = area_outer-area_inner; 

        Xbar = ((x_outer_circle*area_outer)-(x_inner_circle*area_inner))/area_shaft;        % xbar of hollow circle 

        Ybar = ((y_outer_circle*area_outer)-(y_inner_circle*area_inner))/area_shaft;        % ybar of hollow circle 

        % disp('Centroid X Bar of the Entire Shaft in mm is '); 

        % disp(Xbar); 

        % disp('Centroid Y Bar of the Entire Shaft in mm is '); 

        % disp(Ybar); 

        % disp('Neutral Axis is along the Centroid ') 

        ynaoff = yoffset-Ybar;                                                              % ynaoff is the distance between y centroid and y bar of inner 

circle 

        xnaoff = xoffset-Xbar;                                                              % xnaoff is the distance between x centroid and x bar of inner 

circle 

        e1 = sqrt((xoffset^2)+(yoffset^2));                                                 % eccentricity resultant between centre point and centroid 

of inner 

        e2 = sqrt((xnaoff^2)+(ynaoff^2));                                                   % eccentricity resultant between centroid of hollow and 

centroid of inner 

        if(0<=theta<=90)                                                                    % finding x1 and y1 of the interested point for the given input 

angle 

            x1 = R*cosd(theta); 

            y1 = R*sind(theta); 

            % disp('First Quadrant '); 

        else if(theta<=180) 

                x1 = R*cosd(180-theta); 

                y1 = R*sind(180-theta); 

                % disp('Second Quadrant '); 

            else if (theta<=270) 

                    x1 = R*cosd(180-theta); 

                    y1 = R*sind(180-theta); 

                    % disp('Third Quadrant '); 
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                else if(theta<360) 

                        x1 = R*cosd(180-theta); 

                        y1 = R*sind(180-theta); 

                        % disp('Fourth Quadrant '); 

                    end 

                end 

            end 

        end 

         

        % disp('X Coordinate of the interested point is '); 

        % disp(x1); 

        % disp('Y Coordinate of the interested point is '); 

        % disp(y1); 

         

        %% Section 3.2 - Inner Diameter (w.r.t Neutral Axis) Conditions and Parameters 

         

        if (abs(ynaoff) >= r && ynaoff <0)                                                      % third or fourth quadrant and y is greater than r (No 

Segment formation) 

            % disp('X bar above the Neutral Axis is Not Intended to be used '); 

            % disp('Y bar above the Neutral Axis is Not Intended to be used '); 

            % disp('No Area for the inner circle above the Neutral Axis is to be considered '); 

            x_bar_inner_section = 0; 

            y_bar_inner_section = 0; 

            Area_inner_section = 0; 

        else 

            if(ynaoff >= r && ynaoff >0)                                                        % first or second quadrant and y is greater than r (No 

Segment formation) 

                x_bar_inner_section = xoffset; 

                y_bar_inner_section = yoffset; 

                area_inner = pi*r*r; 

                Area_inner_section = area_inner; 

            else 

                yoff_abs = abs(ynaoff);                                                         % one of the four quadrants and y is less than r (Segment 

formation) 

                a = sqrt(((d)^2)-((2*yoff_abs)^2)); 

                thetaseg = 2*(asind(a/d)); 

                area_inner_segment = (r*r/2)*((pi*thetaseg/180)-sind(thetaseg)); 

                area_inner_remaining = area_inner - area_inner_segment; 

                x_inner_seg = xoffset; 

                Aseg = (2/3)*r*r*r*sind(thetaseg/2)*sind(thetaseg/2)*sind(thetaseg/2); 

                Bseg = area_inner_segment; 

                if(ynaoff <0) 

                    y_inner_seg = (Aseg/Bseg)+yoffset; 

                else 

                    y_inner_seg = -(Aseg/Bseg)+yoffset; 

                end 

                x_inner_rem = xoffset; 

                y_inner_rem = ((y_inner_circle*area_inner)-(y_inner_seg*area_inner_segment))/area_inner_remaining; 

                if(ynaoff>0 && ynaoff <r)                                                       % first and second quadrant and y is less than r 

(Remaining formation) 

                    x_bar_inner_section = x_inner_rem; 

                    y_bar_inner_section = y_inner_rem; 

                    Area_inner_section = area_inner_remaining; 

                else 

                    if(ynaoff<0 && ynaoff<r)                                                    % third and fourth quadrant and y is less than r (Segment 

formation) 

                        x_bar_inner_section = x_inner_seg; 

                        y_bar_inner_section = y_inner_seg; 

                        Area_inner_section = area_inner_segment; 

                    else 

                        x_bar_inner_section = xoffset;                                          % y is zero 

                        y_bar_inner_section = 4*r/(3*pi); 

                        Area_inner_section = area_inner/2; 

                    end 

                end 

            end 

        end 

        % disp ('Area of the Inner Portion above the Neutral Axis in mm is '); 

        % disp (Area_inner_section); 

        % disp ('X bar of the Inner Portion above the Neutral Axis in mm is '); 
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        % disp (x_bar_inner_section ); 

        % disp ('Y bar of the Inner Portion above the Neutral Axis in mm is '); 

        % disp (y_bar_inner_section ); 

         

        %% Section 3.3 - Outer Diameter (w.r.t Neutral Axis) Conditions and Parameters 

         

        A = sqrt(((D)^2)-((2*Ybar)^2)); 

        thetaseg_outer = 2*(asind(A/D)); 

        area_outer_segment = (R*R/2)*((pi*thetaseg_outer/180)-sind(thetaseg_outer)); 

        area_outer_remaining = area_outer - area_outer_segment; 

        x_outer_seg = 0; 

        Aseg_outer = (2/3)*R*R*R*sind(thetaseg_outer/2)*sind(thetaseg_outer/2)*sind(thetaseg_outer/2); 

        Bseg_outer = area_outer_segment; 

        y_outer_seg = (Aseg_outer/Bseg_outer); 

        x_outer_rem = 0; 

        y_outer_rem = ((y_outer_circle*area_outer)-(y_outer_seg*area_outer_segment))/area_outer_remaining; 

        if (Ybar < 0) 

            Area_outer_section = area_outer_remaining; 

            x_bar_outer_section = 0; 

            y_bar_outer_section =  -y_outer_rem; 

        else 

            if (Ybar > 0) 

                Area_outer_section = area_outer_segment; 

                x_bar_outer_section = 0; 

                y_bar_outer_section = y_outer_seg; 

            else 

                Area_outer_section = area_outer/2; 

                x_bar_outer_section = 0; 

                y_bar_outer_section = 4*D/(3*2*pi); 

            end 

        end 

        % disp ('Area of the Outer Portion above the Neutral Axis in mm is '); 

        % disp (Area_outer_section); 

        % disp ('X bar of the Outer Portion above the Neutral Axis in mm is '); 

        % disp (x_bar_outer_section); 

        % disp ('Y bar of the Outer Portion above the Neutral Axis in mm is '); 

        % disp (y_bar_outer_section); 

         

        %% Section 3.4 - First Moment of Inertia w.r.t. Neutral Axis 

         

        Area_Effective_Neutralaxis = Area_outer_section - Area_inner_section; 

        Ybar_nueutralaxis = ((y_bar_outer_section * Area_outer_section)- (y_bar_inner_section * 

Area_inner_section))/Area_Effective_Neutralaxis; 

        % disp('Effective Centroid for the Remaining Portion cut horizontally along the neutral axis is '); 

        % disp(Ybar_nueutralaxis); 

        ydiffna = abs(Ybar_nueutralaxis - Ybar); 

        Q = ydiffna*Area_Effective_Neutralaxis; 

        % disp('Q which is the first Moment of the solid area above the Neutral Axis in mm^3 is '); 

        % disp(Q); 

         

        %% Section 3.5 - Polar Moment of Inertia w.r.t. Neutral Axis 

         

        Ona = sqrt((Xbar^2)+(Ybar^2)); 

        Ina = sqrt(((Xbar-x_inner_circle)^2)+((Ybar-y_inner_circle)^2)); 

        Jo = pi*(D^4)/32; 

        Ji = (pi*(d^4)/32)+((pi*(d^2)/4)*e1^2); 

        J = Jo-Ji; 

        % disp('The polar moment of inertia for an angular hollow shaft (for the corresponding eccentricity) along the Centre of the 

Outer Diameter at the point of interest in mm^4 is'); 

        % disp(J); 

        Jon = (pi*(D^4)/32)+((pi*(D^2)/4)*Ona^2); 

        Jin = (pi*(d^4)/32)+((pi*(d^2)/4)*Ina^2); 

        Jn = Jon - Jin; 

        % disp('The polar moment of inertia for an angular hollow shaft (for the corresponding eccentricity) along the Neutal Axis 

at the point of interest in mm^4 is'); 

        % disp(Jn); 

         

        %% Section 3.6 - Second Moment of Inertia w.r.t. Neutral Axis 

         

        if (abs(xoffset) <= abs(yoffset)) 
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            Ixx_o = (pi*(D^4)/64)+((pi*(D^2)/4)*(Ona)^2); 

            Ixx_i = (pi*(d^4)/64)+((pi*(d^2)/4)*(Ina)^2); 

            Ixx = Ixx_o - Ixx_i; 

            % disp('Moment of Inertia at the Centroid of the entire shaft along XX Axis in mm^4 is ') 

            % disp(Ixx); 

            Iyy = Jn - Ixx; 

            % disp('Moment of Inertia at the Centroid of the entire shaft along YY Axis in mm^4 is ') 

            % disp(Iyy); 

        else 

            Iyy_o = (pi*(D^4)/64)+((pi*(D^2)/4)*(Ona)^2); 

            Iyy_i = (pi*(d^4)/64)+((pi*(d^2)/4)*(Ina)^2); 

            Iyy = Iyy_o - Iyy_i; 

            Ixx = Jn - Iyy; 

            % disp('Moment of Inertia at the Centroid of the entire shaft along XX Axis in mm^4 is ') 

            % disp(Ixx); 

            % disp('Moment of Inertia at the Centroid of the entire shaft along YY Axis in mm^4 is ') 

            % disp(Iyy); 

        end 

        b = 2*(D-d); 

         

        % disp('-----------------------------'); 

        % disp('-----------------------------'); 

        % disp('Neutral Axis Portion Over '); 

        % disp('Now Individual Points along the Outer Diameter'); 

         

        %% Section 3.7 - Points - Inner Diameter First & Second Quadrant 

         

        if (y1>= 0 && y1>yoffset && (y1-yoffset)>=r)                                                            % ID 1Q or 2Q       y1 1Q or 2Q     

Completely Below 

            % disp('Inner X bar above the Point is Not Intended to be used '); 

            % disp('Inner Y bar above the Point is Not Intended to be used '); 

            % disp('No Area for the inner circle above the Point is to be considered '); 

            x_bar_point_inner_section = 0; 

            y_bar_point_inner_section = 0; 

            Area_point_inner_section = 0; 

            ain = 0; 

        else 

            if(yoffset>=0 && y1>=0 && y1>=yoffset && (y1-yoffset)<r)                                            % ID 1Q or 2Q       y1 1Q or 

2Q     Segment Formation 

                a1 = sqrt(((d)^2)-((2*(y1-yoffset))^2)); 

                ain = a1; 

                thetaseg_point_inner = 2*(asind(a1/d)); 

                area_point_inner_segment = (r*r/2)*((pi*thetaseg_point_inner/180)-sind(thetaseg_point_inner)); 

                area_inner_full = pi*r*r; 

                area_point_inner_remaining = area_inner_full - area_point_inner_segment; 

                x_point_inner_seg = xoffset; 

                x_point_inner_rem = xoffset; 

                Aseg_point_inner = 

(2/3)*r*r*r*sind(thetaseg_point_inner/2)*sind(thetaseg_point_inner/2)*sind(thetaseg_point_inner/2); 

                Bseg_point_inner = area_point_inner_segment; 

                y_point_inner_seg = yoffset+(Aseg_point_inner/Bseg_point_inner); 

                y_point_inner_rem = ((y_inner_circle*area_inner_full)-

(y_point_inner_seg*area_point_inner_segment))/area_point_inner_remaining; 

                x_bar_point_inner_section = x_point_inner_seg; 

                y_bar_point_inner_section = y_point_inner_seg; 

                Area_point_inner_section =  area_point_inner_segment; 

            else 

                if(yoffset>=0 && y1>=0 &&  yoffset>=y1 && (yoffset-y1)<r)                                       % ID 1Q or 2Q       y1 1Q or 

2Q     Remaining Formation 

                    a1 = sqrt(((d)^2)-((2*(y1-yoffset))^2)); 

                    ain = a1; 

                    thetaseg_point_inner = 2*(asind(a1/d)); 

                    area_point_inner_segment = (r*r/2)*((pi*thetaseg_point_inner/180)-sind(thetaseg_point_inner)); 

                    area_point_inner_remaining = area_inner - area_point_inner_segment; 

                    x_point_inner_seg = xoffset; 

                    Aseg_point_inner = 

(2/3)*r*r*r*sind(thetaseg_point_inner/2)*sind(thetaseg_point_inner/2)*sind(thetaseg_point_inner/2); 

                    Bseg_point_inner = area_point_inner_segment; 

                    y_point_inner_seg = yoffset-(Aseg_point_inner/Bseg_point_inner); 

                    x_point_inner_rem = xoffset; 
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                    y_point_inner_rem = ((y_inner_circle*area_inner)-

(y_point_inner_seg*area_point_inner_segment))/area_point_inner_remaining; 

                    x_bar_point_inner_section = x_point_inner_rem; 

                    y_bar_point_inner_section = y_point_inner_rem; 

                    Area_point_inner_section =  area_point_inner_remaining; 

                else 

                    if(yoffset>=0 && y1<=0 && yoffset>=y1 && (yoffset-y1)<r)                                    % ID 1Q or 2Q       y1 3Q or 

4Q     Remaining Formation 

                        a1 = sqrt(((d)^2)-((2*(y1-yoffset))^2)); 

                        ain = a1; 

                        thetaseg_point_inner = 2*(asind(a1/d)); 

                        area_point_inner_segment = (r*r/2)*((pi*thetaseg_point_inner/180)-sind(thetaseg_point_inner)); 

                        area_point_inner_remaining = area_inner - area_point_inner_segment; 

                        x_point_inner_seg = xoffset; 

                        Aseg_point_inner = 

(2/3)*r*r*r*sind(thetaseg_point_inner/2)*sind(thetaseg_point_inner/2)*sind(thetaseg_point_inner/2); 

                        Bseg_point_inner = area_point_inner_segment; 

                        y_point_inner_seg = yoffset-(Aseg_point_inner/Bseg_point_inner); 

                        x_point_inner_rem = xoffset; 

                        y_point_inner_rem = ((y_inner_circle*area_inner)-

(y_point_inner_seg*area_point_inner_segment))/area_point_inner_remaining; 

                        x_bar_point_inner_section = x_point_inner_rem; 

                        y_bar_point_inner_section = y_point_inner_rem; 

                        Area_point_inner_section =  area_point_inner_remaining; 

                    else 

                        if(yoffset>=0 && y1<=0 && y1>=yoffset && (y1-yoffset)<r)                                % ID 1Q or 2Q       y1 3Q or 

4Q     Segment Formation 

                            a1 = sqrt(((d)^2)-((2*(y1-yoffset))^2)); 

                            ain = a1; 

                            thetaseg_point_inner = 2*(asind(a1/d)); 

                            area_point_inner_segment = (r*r/2)*((pi*thetaseg_point_inner/180)-sind(thetaseg_point_inner)); 

                            area_inner_full = pi*r*r; 

                            area_point_inner_remaining = area_inner_full - area_point_inner_segment; 

                            x_point_inner_seg = xoffset; 

                            x_point_inner_rem = xoffset; 

                            Aseg_point_inner = 

(2/3)*r*r*r*sind(thetaseg_point_inner/2)*sind(thetaseg_point_inner/2)*sind(thetaseg_point_inner/2); 

                            Bseg_point_inner = area_point_inner_segment; 

                            y_point_inner_seg = yoffset+(Aseg_point_inner/Bseg_point_inner); 

                            y_point_inner_rem = ((y_inner_circle*area_inner_full)-

(y_point_inner_seg*area_point_inner_segment))/area_point_inner_remaining; 

                            x_bar_point_inner_section = x_point_inner_seg; 

                            y_bar_point_inner_section = y_point_inner_seg; 

                            Area_point_inner_section =  area_point_inner_segment; 

                        else 

                            if(y1>0 && yoffset>y1 && (yoffset-y1)>=r)                                           % ID 1Q or 2Q       y1 1Q or 2Q     

Completely Above 

                                x_bar_point_inner_section = xoffset; 

                                y_bar_point_inner_section = yoffset; 

                                area_inner = pi*r*r; 

                                Area_point_inner_section = area_inner; 

                                ain = a1; 

                            else 

                                % disp('The inner diameter point is not in the first and second quadrant ');    % Execute Next 

                            end 

                        end 

                    end 

                end 

            end 

        end 

         

        %% Section 3.8 - Points - Inner Diameter Third & Fourth Quadrant 

         

        if ((y1<= 0 && y1<yoffset && (y1-yoffset)<=-r))                                                         % ID 3Q or 4Q       y1 3Q or 4Q     

Completely Above 

            x_bar_point_inner_section = xoffset; 

            y_bar_point_inner_section = yoffset; 

            area_inner = pi*r*r; 

            Area_point_inner_section = area_inner; 

            ain = 0; 
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        else 

            if(yoffset<=0 && y1<=0 && y1<=yoffset && (y1-yoffset)>-r)                                           % ID 3Q or 4Q       y1 3Q or 

4Q     Remaining Formation 

                a2 = sqrt(((d)^2)-((2*(y1-yoffset))^2)); 

                ain = a2; 

                thetaseg_point_inner = 2*(asind(a2/d)); 

                area_point_inner_segment = (r*r/2)*((pi*thetaseg_point_inner/180)-sind(thetaseg_point_inner)); 

                area_inner_full = pi*r*r; 

                area_point_inner_remaining = area_inner_full - area_point_inner_segment; 

                x_point_inner_seg = xoffset; 

                x_point_inner_rem = xoffset; 

                Aseg_point_inner = 

(2/3)*r*r*r*sind(thetaseg_point_inner/2)*sind(thetaseg_point_inner/2)*sind(thetaseg_point_inner/2); 

                Bseg_point_inner = area_point_inner_segment; 

                y_point_inner_seg = yoffset-(Aseg_point_inner/Bseg_point_inner); 

                y_point_inner_rem = ((y_inner_circle*area_inner_full)-

(y_point_inner_seg*area_point_inner_segment))/area_point_inner_remaining; 

                x_bar_point_inner_section = x_point_inner_rem; 

                y_bar_point_inner_section = y_point_inner_rem; 

                Area_point_inner_section =  area_point_inner_remaining; 

            else 

                if(yoffset<=0 && y1<=0 && yoffset<=y1 && (yoffset-y1)>-r)                                       % ID 3Q or 4Q       y1 3Q or 

4Q     Segment Formation 

                    a2 = sqrt(((d)^2)-((2*(y1-yoffset))^2)); 

                    ain = a2; 

                    thetaseg_point_inner = 2*(asind(a2/d)); 

                    area_point_inner_segment = (r*r/2)*((pi*thetaseg_point_inner/180)-sind(thetaseg_point_inner)); 

                    area_point_inner_remaining = area_inner - area_point_inner_segment; 

                    x_point_inner_seg = xoffset; 

                    Aseg_point_inner = 

(2/3)*r*r*r*sind(thetaseg_point_inner/2)*sind(thetaseg_point_inner/2)*sind(thetaseg_point_inner/2); 

                    Bseg_point_inner = area_point_inner_segment; 

                    y_point_inner_seg = yoffset+(Aseg_point_inner/Bseg_point_inner); 

                    x_point_inner_rem = xoffset; 

                    y_point_inner_rem = ((y_inner_circle*area_inner)-

(y_point_inner_seg*area_point_inner_segment))/area_point_inner_remaining; 

                    x_bar_point_inner_section = x_point_inner_seg; 

                    y_bar_point_inner_section = y_point_inner_seg; 

                    Area_point_inner_section =  area_point_inner_segment; 

                else 

                    if(yoffset<=0 && y1>=0 && yoffset<=y1 && (yoffset-y1)>-r)                                    % ID 3Q or 4Q       y1 1Q or 

2Q     Segment Formation 

                        a2 = sqrt(((d)^2)-((2*(y1-yoffset))^2)); 

                        ain = a2; 

                        thetaseg_point_inner = 2*(asind(a2/d)); 

                        area_point_inner_segment = (r*r/2)*((pi*thetaseg_point_inner/180)-sind(thetaseg_point_inner)); 

                        area_point_inner_remaining = area_inner - area_point_inner_segment; 

                        x_point_inner_seg = xoffset; 

                        Aseg_point_inner = 

(2/3)*r*r*r*sind(thetaseg_point_inner/2)*sind(thetaseg_point_inner/2)*sind(thetaseg_point_inner/2); 

                        Bseg_point_inner = area_point_inner_segment; 

                        y_point_inner_seg = yoffset+(Aseg_point_inner/Bseg_point_inner); 

                        x_point_inner_rem = xoffset; 

                        y_point_inner_rem = ((y_inner_circle*area_inner)-

(y_point_inner_seg*area_point_inner_segment))/area_point_inner_remaining; 

                        x_bar_point_inner_section = x_point_inner_seg; 

                        y_bar_point_inner_section = y_point_inner_seg; 

                        Area_point_inner_section =  area_point_inner_segment; 

                    else 

                        if(yoffset<=0 && y1>=0 && y1<=yoffset && (y1-yoffset)>-r)                                % ID 3Q or 4Q       y1 1Q or 

2Q     Remaining Formation 

                            a2 = sqrt(((d)^2)-((2*(y1-yoffset))^2)); 

                            ain = a2; 

                            thetaseg_point_inner = 2*(asind(a2/d)); 

                            area_point_inner_segment = (r*r/2)*((pi*thetaseg_point_inner/180)-sind(thetaseg_point_inner)); 

                            area_inner_full = pi*r*r; 

                            area_point_inner_remaining = area_inner_full - area_point_inner_segment; 

                            x_point_inner_seg = xoffset; 

                            x_point_inner_rem = xoffset; 
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                            Aseg_point_inner = 

(2/3)*r*r*r*sind(thetaseg_point_inner/2)*sind(thetaseg_point_inner/2)*sind(thetaseg_point_inner/2); 

                            Bseg_point_inner = area_point_inner_segment; 

                            y_point_inner_seg = yoffset-(Aseg_point_inner/Bseg_point_inner); 

                            y_point_inner_rem = ((y_inner_circle*area_inner_full)-

(y_point_inner_seg*area_point_inner_segment))/area_point_inner_remaining; 

                            x_bar_point_inner_section = x_point_inner_rem; 

                            y_bar_point_inner_section = y_point_inner_rem; 

                            Area_point_inner_section =  area_point_inner_remaining; 

                        else 

                            if(y1<=0 && yoffset<y1 && (yoffset-y1)<=-r)                                           % ID 3Q or 4Q       y1 3Q or 4Q     

Completely below 

                                % disp('Inner X bar above the Point is Not Intended to be used '); 

                                % disp('Inner Y bar above the Point is Not Intended to be used '); 

                                % disp('No Area for the inner circle above the Point is to be considered '); 

                                x_bar_point_inner_section = 0; 

                                y_bar_point_inner_section = 0; 

                                Area_point_inner_section = 0; 

                                ain = a2; 

                            else 

                                % disp('The inner diameter point is not in the third and fourth quadrant and its a CATASTROPHE ');        % 

Catastrophe 

                                ain = 0; 

                                x_bar_point_inner_section = 0; 

                                y_bar_point_inner_section = 0; 

                                Area_point_inner_section = 0; 

                            end 

                        end 

                    end 

                end 

            end 

        end 

         

        % disp ('Area of the Inner Portion above the Point in mm is '); 

        % disp (Area_point_inner_section); 

        % disp ('X bar of the Inner Portion above the Point in mm is '); 

        % disp (x_bar_point_inner_section ); 

        % disp ('Y bar of the Innner Portion above the Point in mm is '); 

        % disp (y_bar_point_inner_section ); 

         

        %% Section 3.9 - Points - Outer Diameter 

         

        A1 = sqrt(((D)^2)-((2*y1)^2)); 

        thetaseg_point_outer = 2*(asind(A1/D)); 

        area_point_outer_segment = (R*R/2)*((pi*thetaseg_point_outer/180)-sind(thetaseg_point_outer)); 

        area_point_outer_remaining = area_outer - area_point_outer_segment; 

        x_point_outer_seg = 0; 

        x_point_outer_rem = 0; 

        Aseg_point_outer = (2/3)*R*R*R*sind(thetaseg_point_outer/2)*sind(thetaseg_point_outer/2)*sind(thetaseg_point_outer/2); 

        Bseg_point_outer = area_point_outer_segment; 

        y_point_outer_seg = (Aseg_point_outer/Bseg_point_outer); 

        y_point_outer_rem = ((y_outer_circle*area_outer)-

(y_point_outer_seg*area_point_outer_segment))/area_point_outer_remaining; 

        if (y1>0 && y1>=R)                                                                                                              % y1 lies on the farthest point in 

Positive Y axis 

            Area_point_outer_section = 0; 

            x_bar_point_outer_section = 0; 

            y_bar_point_outer_section = 0; 

        else 

            if (y1<0 && y1<=-R)                                                                                                         % y1 lies on the farthest point in 

Negative Y axis 

                Area_point_outer_section = area_point_outer_segment; 

                x_bar_point_outer_section = 0; 

                y_bar_point_outer_section = y_bar_outer_section; 

            else 

                if (0<y1<R)                                                                                                             % y1 3Q or 4Q     Remaining 

Formation 

                    Area_point_outer_section = area_point_outer_remaining; 

                    x_bar_point_outer_section = 0; 

                    y_bar_point_outer_section =  -y_point_outer_rem; 
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                else 

                    if (y1<0<R) 

                        Area_point_outer_section = area_point_outer_segment;                                                            % y1 1Q or 2Q     

Segment Formation 

                        x_bar_point_outer_section = 0; 

                        y_bar_point_outer_section = y_point_outer_seg; 

                    else       

                        Area_point_outer_section = area_outer/2;                                                                        % y1 lies on the Horizontal 

Axis 

                        x_bar_point_outer_section = 0; 

                        y_bar_point_outer_section = 4*D/(3*2*pi); 

                    end 

                end 

            end 

        end 

         

        % % disp ('Area of the Outer Portion above the Point in mm is '); 

        % disp (Area_point_outer_section); 

        % disp ('X bar of the Outer Portion above the Point in mm is '); 

        % disp (x_bar_point_outer_section ); 

        % disp ('Y bar of the Outer Portion above the Point in mm is '); 

        % disp (y_bar_point_outer_section ); 

         

        %% Section 3.10 - First Moment of Inertia w.r.t. Points 

         

        Area_aboveNA_point_effective = (Area_point_outer_section-Area_point_inner_section); 

        % disp('Effective Area above the Horizontal Axis along the point in mm2 is '); 

        % disp(Area_aboveNA_point_effective); 

        if (Area_aboveNA_point_effective~=0) 

            y_centroid_point = ((y_bar_point_outer_section * Area_point_outer_section)-(y_bar_point_inner_section * 

Area_point_inner_section))/Area_aboveNA_point_effective; 

        else 

            y_centroid_point =0; 

        end 

        % disp('Effective Centroid for the hollow portion above the horizontal axis about the point in mm '); 

        % disp(y_centroid_point); 

        ydiff = abs(Ybar - y_centroid_point); 

        Qp = (ydiff) * Area_aboveNA_point_effective; 

        % disp('Effective First Moment of Area for the hollow portion above the horizontal axis about the point in mm3 '); 

        % disp(Qp); 

        y_bendingload = Ybar-y1; 

        % disp('Vertical Distance (to be used in bending load) of the point from the neutral axis is '); 

        % disp(y_bendingload); 

        % disp('First Moment of the solid area above the Neutral Axis in mm^3 is '); 

        % disp(Q); 

        % disp('First Moment of Area above the horizontal axis about the point in mm3 '); 

        % disp(Qp); 

        % disp('Moment of Inertia at the Centroid of the entire shaft along YY Axis in mm^4 is ') 

        % disp(Iyy); 

        % disp('Polar Moment of Inertia along the Neutal Axis in mm^4 is'); 

        % disp(Jn); 

                       

        %% Section 4 - Parameters 

        Mz = W*l; 

        if (y1>Ybar) 

            yver = (y1-Ybar);                   % Bending Load acts on A or above YBar, resulting in Tensile Stress, hence yver>0 

        else 

            if (y1<Ybar) 

                yver = -(Ybar-y1);           % Bending Load acts on B or below YBar, resulting in Compressive Stress, hence yver<0 

            else 

                yver = 0;                   % On the Centroidal Neutral Axis, yver is zero and hence My/I is also zero, hence no normal 

bending stresses 

            end 

        end 

        Izz = Iyy; 

        Qzz = Qp; 

        aou = abs(2*R*sind((180-(2*theta))/2)); 

        th =(aou - ain); 

        % disp('Thickness at the point of interest in mm is '); 

        % disp(th); 
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        %% Section 5 - Stress and Strain Computations 

         

        sigma_axial = P/Areaentire; 

         

        indicesref = 1/thetasplit_t; 

        indiv_angles = (indicesref*theta)+1; 

        indiv_angle = fix(indiv_angles); 

        tau_torsion = tautorsion(indiv_angle); 

         

        sigma_bending_z = -Mz*yver/Izz; 

         

        if(th~=0) 

            tau_bending = -(W*Qzz)/(th*Izz); 

        else 

            tau_bending = 0; 

        end 

        sigmaYa(thetaidx,lidx) = 0;          

         

        if (x1>Xbar && y1>Ybar) 

            sigmaXa(thetaidx,lidx) = -sigma_bending_z; 

            tauXYa(thetaidx,lidx)  = tau_bending-tau_torsion; 

        else 

            if (x1<Xbar && y1>Ybar) 

                sigmaXa(thetaidx,lidx) = -sigma_bending_z; 

                tauXYa(thetaidx,lidx)  = tau_bending + tau_torsion; 

            else 

                if(x1<Xbar && y1<Ybar) 

                    sigmaXa(thetaidx,lidx) = sigma_bending_z; 

                    tauXYa(thetaidx,lidx)  = -tau_bending-tau_torsion; 

                else 

                    if(x1>Xbar && y1<Ybar) 

                        sigmaXa(thetaidx,lidx) = sigma_bending_z; 

                        tauXYa(thetaidx,lidx)  = -tau_bending+tau_torsion; 

 

                    else 

                        if(x1==Xbar && y1<Ybar) 

                                sigmaXa(thetaidx,lidx) = sigma_bending_z; 

                                tauXYa(thetaidx,lidx)  = -tau_torsion; 

                        else 

                            if(x1==Xbar && y1>Ybar) 

                                sigmaXa(thetaidx,lidx) = -sigma_bending_z; 

                                tauXYa(thetaidx,lidx)  = tau_torsion; 

                            else 

                                if(y1==Ybar && x1<Xbar) 

                                    sigmaXa(thetaidx,lidx) = 0; 

                                    tauXYa(thetaidx,lidx)  = tau_bending + tau_torsion; 

                                else 

                                    if(y1==Ybar && x1>Xbar) 

                                        sigmaXa(thetaidx,lidx) = 0; 

                                        tauXYa(thetaidx,lidx)  = tau_bending-tau_torsion; 

                                    end 

                                end 

                            end 

                        end 

                    end 

                end 

            end 

        end 

         

        Mz_total(thetaidx,lidx) = Mz; 

        yvertotal(thetaidx,lidx) = yver; 

        W_total(thetaidx,lidx)=W; 

        Qzz_total(thetaidx,lidx)=abs(Qzz); 

        th_total(thetaidx,lidx)=th; 

        Izz_total(thetaidx,lidx)=Izz; 

         

        sigma_phi = -0.3*(sigma_bending_z+sigma_axial); 

        strain_zz(thetaidx,lidx)= (sigma_bending_z+sigma_axial)*1000000/E; 

        strain_tt(thetaidx,lidx) = sigma_phi*1000000/E;         
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    end  

end 

   

strain_45Max = ((strain_zz + strain_tt)/2)+(gamma_strain/2); 

strain_ua1 = ((strain_zz + strain_tt)/2)-(((strain_zz - strain_tt)/2)*cosd(2*userang1))+((gamma_strain/2)*sind(2*userang1)); 

strain_ua2 = ((strain_zz + strain_tt)/2)-(((strain_zz - strain_tt)/2)*cosd(2*userang2))+((gamma_strain/2)*sind(2*userang2)); 

 

%% Section 6 - Plots 

 

figure(1); 

plot(thetaindividual_tor,tautor); 

set(gca,'XTick',0:30:359 ); 

xlim([0 359]); 

xlabel('Angle in degrees ') 

ylabel('Shear Stress due to Torsion in MPa ') 

title('Angle vs Shear Stress due to Torsion alone '); 

grid on; 

 

figure(2); 

plot(thetavals,strain_zz); 

title('Theta vs Strain zz at 45 degrees '); 

xlabel('Angle in degrees '); 

ylabel('Strain zz values in uE '); 

xlim([0 359]); 

set(gca,'XTick',0:30:359 ); 

grid on 

 

figure(3); 

plot(thetavals,strain_tt); 

title('Theta vs Strain tt at 45 degrees '); 

xlabel('Angle in degrees '); 

ylabel('Strain tt values in uE '); 

xlim([0 359]); 

set(gca,'XTick',0:30:359 ); 

grid on 

 

figure(4); 

plot(thetavals,strain_45Max); 

title('Theta vs Strain at 45 degrees '); 

xlabel('Angle in degrees '); 

ylabel('Strain values in uE '); 

xlim([0 359]); 

set(gca,'XTick',0:30:359 ); 

grid on 

 

figure(5); 

plot(thetavals,strain_ua1,thetavals,strain_ua2); 

title('Theta vs Strain at userangle comparisons degrees '); 

xlabel('Angle in degrees '); 

ylabel('Strain values at 45 and userangles 1 and 2 in uE '); 

xlim([0 359]); 

set(gca,'XTick',0:30:359 ); 

grid on 

 

%% Section 7 - Region Strain 

 

option = menu('Choose the Number of Regions for Strain Gauges',... 

    '0 Region ',... 

    '1 Region ',... 

    '2 Regions ',... 

    '3 Regions ',... 

    '4 Regions ',... 

    '8 Regions'); 

 

switch option 

    case 1 

        nooftimes = 0; 

         

    case 2 

        nooftimes = 1:1; 
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        sheetx = 1; 

         

    case 3 

        nooftimes = 1:2; 

        sheetx = 2; 

         

    case 4 

        nooftimes = 1:3; 

        sheetx = 3; 

         

    case 5 

        nooftimes = 1:4; 

        sheetx = 4; 

         

    case 6 

        nooftimes = 1:8; 

        sheetx = 5; 

end 

 

if nooftimes ~= 0 

    for trialdx = 1:length(nooftimes); 

        trial = nooftimes(trialdx); 

         

        filename = 'Datainput.xlsx'; 

        sheet = trialdx; 

        xlRange = 'E32'; 

        subsetA = xlsread(filename,sheet,xlRange); 

        x1u = -subsetA; 

         

        filename = 'Datainput.xlsx'; 

        sheet = trialdx; 

        xlRange = 'E33'; 

        subsetA = xlsread(filename,sheet,xlRange); 

        sheet = sheetx; 

        y1u = -subsetA; 

         

        filename = 'Datainput.xlsx'; 

        sheet = trialdx; 

        xlRange = 'E34'; 

        subsetA = xlsread(filename,sheet,xlRange); 

        x2u = -subsetA; 

         

        filename = 'Datainput.xlsx'; 

        sheet = trialdx; 

        xlRange = 'E35'; 

        subsetA = xlsread(filename,sheet,xlRange); 

        y2u = -subsetA; 

         

        filename = 'Datainput.xlsx'; 

        sheet = trialdx; 

        xlRange = 'E36'; 

        subsetA = xlsread(filename,sheet,xlRange); 

        x3u = -subsetA; 

         

        filename = 'Datainput.xlsx'; 

        sheet = trialdx; 

        xlRange = 'E37'; 

        subsetA = xlsread(filename,sheet,xlRange); 

        y3u = -subsetA; 

         

        filename = 'Datainput.xlsx'; 

        sheet = trialdx; 

        xlRange = 'E38'; 

        subsetA = xlsread(filename,sheet,xlRange); 

        x4u = -subsetA; 

         

        filename = 'Datainput.xlsx'; 

        sheet = trialdx; 

        xlRange = 'E39'; 

        subsetA = xlsread(filename,sheet,xlRange); 
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        y4u = -subsetA; 

         

        % inters = input('Enter 0 if the region intersect or pass through 0 degree in the first quadrant (Else enter any positive 

value)'); 

                     

        xvals = 0:-ldiff:-L; 

        yvals = 0:-thetasplit_t:-359; 

         

        if (y1u < y4u || y2u < y3u ) 

            inters = 0; 

        else 

            inters = 1; 

        end 

         

        if (inters==~0) 

            m1_u=(y2u-y1u)/(x2u-x1u); 

            if (abs(m1_u) == Inf) 

                m1u = 0; 

            else 

                m1u = m1_u; 

            end 

            c1u=y1u-(m1u*x1u); 

            m2_u=(x3u-x2u)/(y3u-y2u); 

            if (abs(m2_u) == Inf) 

                m2u = 0; 

            else 

                m2u = m2_u; 

            end 

            c2u=x2u-(m2u*y2u); 

            m3_u=(y4u-y3u)/(x4u-x3u); 

            if (abs(m3_u) == Inf) 

                m3u = 0; 

            else 

                m3u = m3_u; 

            end 

            c3u=y3u-(m3u*x3u); 

            m4_u=(x1u-x4u)/(y1u-y4u); 

            if (abs(m4_u) == Inf) 

                m4u = 0; 

            else 

                m4u = m4_u; 

            end 

            c4u=x4u-(m4u*y4u); 

                        

            for xdx = 1:length(xvals); 

                x = xvals(xdx); 

                for ydx = 1:length(yvals); 

                    y = yvals(ydx); 

                    d1(ydx,xdx) = y-(m1u*x); 

                    d2(ydx,xdx) = x-(m2u*y); 

                    d3(ydx,xdx) = y-(m3u*x); 

                    d4(ydx,xdx) = x-(m4u*y); 

                    if(d1(ydx,xdx)<=c1u && d2(ydx,xdx)<=c2u && d3(ydx,xdx)>=c3u && d4(ydx,xdx)>=c4u); 

                        Apoints(ydx,xdx)=1; 

                    else 

                        Apoints(ydx,xdx)=0; 

                    end 

                end 

            end 

             

            Region1 = strain_ua1.*Apoints; 

            Region2 = strain_ua2.*Apoints; 

            Region1avg(trialdx) = mean(nonzeros(Region1)); 

            Region2avg(trialdx) = mean(nonzeros(Region2)); 

            disp('Region Average in uE is '); 

            disp(Region1avg(trialdx)); 

            disp(Region2avg(trialdx)); 

        else 

            x1_u = x4u; 

            y1_u = y4u; 
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            x2_u = x3u; 

            y2_u = y3u; 

            x3_u = x2u; 

            y3_u = y2u; 

            x4_u = x1u; 

            y4_u = y1u; 

            m1_u=(y2_u-y1_u)/(x2_u-x1_u); 

            if (abs(m1_u) == Inf) 

                m1u = 0; 

            else 

                m1u = m1_u; 

            end 

            c1u=y1_u-(m1u*x1_u); 

            m2_u=(x3_u-x2_u)/(y3_u-y2_u); 

            if (abs(m2_u) == Inf) 

                m2u = 0; 

            else 

                m2u = m2_u; 

            end 

            c2u=x2_u-(m2u*y2_u); 

            m3_u=(y4_u-y3_u)/(x4_u-x3_u); 

            if (abs(m3_u) == Inf) 

                m3u = 0; 

            else 

                m3u = m3_u; 

            end 

            c3u=y3_u-(m3u*x3_u); 

            m4_u=(x1_u-x4_u)/(y1_u-y4_u); 

            if (abs(m4_u) == Inf) 

                m4u = 0; 

            else 

                m4u = m4_u; 

            end 

            c4u=x4_u-(m4u*y4_u); 

                         

            for xdx = 1:length(xvals); 

                x = xvals(xdx); 

                for ydx = 1:length(yvals); 

                    y = yvals(ydx); 

                    d1(ydx,xdx) = y-(m1u*x); 

                    d2(ydx,xdx) = x-(m2u*y); 

                    d3(ydx,xdx) = y-(m3u*x); 

                    d4(ydx,xdx) = x-(m4u*y); 

                    if(d1(ydx,xdx)<c1u && d2(ydx,xdx)<=c2u && d3(ydx,xdx)>c3u && d4(ydx,xdx)>=c4u); 

                        Apoints1(ydx,xdx)=0; 

                    else 

                        Apoints1(ydx,xdx)=1; 

                    end 

                    if(d2(ydx,xdx)<=c2u && d4(ydx,xdx)>=c4u); 

                        Apoints2(ydx,xdx)=1; 

                    else 

                        Apoints2(ydx,xdx)=0; 

                    end 

                    Apoints3 = Apoints1.*Apoints2; 

                end 

            end 

            Region1 = strain_ua1.*Apoints3; 

            Region2 = strain_ua2.*Apoints3; 

            Region1avg(trialdx) = mean(nonzeros(Region1)); 

            Region2avg(trialdx) = mean(nonzeros(Region2)); 

            disp('Region Average in uE is '); 

            disp(Region1avg(trialdx)); 

            disp(Region2avg(trialdx)); 

        end 

    end 

else 

    return 

end 

 

%% Section 8 - Sensitivity 
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filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E21'; 

subsetA = xlsread(filename,sheet,xlRange); 

GF = subsetA; 

 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E22'; 

subsetA = xlsread(filename,sheet,xlRange); 

Rg = subsetA; 

 

filename = 'Datainput.xlsx'; 

sheet = 1; 

xlRange = 'E23'; 

subsetA = xlsread(filename,sheet,xlRange); 

V_wb = subsetA; 

 

Del1R = Region1avg*GF*Rg*(10^-6)*1000; 

Del2R = Region2avg*GF*Rg*(10^-6)*1000; 

 

if (sheetx == 4) 

    e1t = Region1avg(1); 

    e1c = Region2avg(1); 

    e2t = Region1avg(2); 

    e2c = Region2avg(2); 

    e3t = Region1avg(3); 

    e3c = Region2avg(3); 

    e4t = Region1avg(4); 

    e4c = Region2avg(4); 

end 

% e1wb = input('Enter the Strain computed for Strain Gauge 1 (or type e1t for tension / e1c for compression - if 4 SG are 

present) '); 

% e2wb = input('Enter the Strain computed for Strain Gauge 2 (or type e2t for tension / e2c for compression) '); 

% e3wb = input('Enter the Strain computed for Strain Gauge 3 (or type e3t for tension / e3c for compression) '); 

% e4wb = input('Enter the Strain computed for Strain Gauge 4 (or type e4t for tension / e4c for compression) '); 

 

Sens = (GF/(4*1000))*(e1t-e2c+e3t-e4c); 

disp('Sensitivity in mV/V is '); 

disp(Sens); 

disp('We have reached the end of the program'); 



130 

 

APPENDIX 3 - Excel sheet – Datainput.xlsx 

Note: If the user is interested in running the Matlab script, then 

 Let an Excel sheet (with name Datainput) similar to the one below be created. 

 The text values are to be entered accordingly (Text in similar cell identity). 

 The user can change the parameters in column E and column M. 

 The values will be read as an input by the Matlab Script. 

 Let the content between cells 30 and 40 be copied (First Strain Gauge Region 1) and pasted in 

Sheets 2, Sheets 3 and Sheets 4 of the excel sheet in the same cell range (Cells 30 and 40). 

 In sheet 2, the Cell value in C30-31 is to be named as Second Strain Gauge – Region .2  

 In sheet 3, the Cell value in C30-31 is to be named as Third Strain Gauge – Region 2.  

 In sheet 4, the Cell value in C30-31 is to be named as Fourth Strain Gauge – Region 2.  

 Suitable values for the region coordinates in E32 to E39 of Sheets 1, 2, 3 and 4 are to be entered. 

 When watched from load end and when Bending load acts on Top most point of the shaft 

o Sheet 1 corresponds to a strain gauge placed in left or top left location,  

o Sheet 2 corresponds to a strain gauge placed on top or upper right location,  

o Sheet 3 corresponds to a strain gauge placed on right or lower right location and  

o Sheet 4 corresponds to a strain gauge placed on bottom or lower left location.  

 The Excel file should be saved in the same working directory as that of the script before the script 

is run in Matlab! 
 

 


