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ABSTRACT 
 

This thesis presents and evaluates how to select the data to be logged in an embedded real-

time system so as to be able to give confidence that it is possible to perform an accurate 

identification of the fault(s) that caused any runtime errors. Several log-selection strategies 

were evaluated by injecting random faults into a simulated real-time system. An instrument 

was created to perform accurate detection and identification of these faults by evaluating log 

data. The instrument’s output was compared to ground truth to determine the accuracy of the 

instrument. Three strategies for selecting the log entries to keep in limited permanent memory 

were created. The strategies were evaluated using log data from the simulated real-time 

system. One of the log-selection strategies performed much better than the other two: it 

minimized processing time and stored the maximum amount of useful log data in the available 

storage space. 

Keywords: Log-selection strategy, embedded real-time system, worst case execution time 

overrun, bit error, deadline miss, Fault injection. 

 

SAMMANFATTNING 
 

Denna uppsats illustrerar hur det blev fastställt vad som ska loggas i ett inbäddat 

realtidssystem för att kunna ge förtroende för att det är möjligt att utföra en korrekt 

identifiering av fel(en) som orsakat körningsfel. Ett antal strategier utvärderades för loggval 

genom att injicera slumpmässiga fel i ett simulerat realtidssystem. Ett instrument 

konstruerades för att utföra en korrekt upptäckt och identifiering av dessa fel genom att 

utvärdera loggdata. Instrumentets utdata jämfördes med ett kontrollvärde för att bestämma 

riktigheten av instrumentet. Tre strategier skapades för att avgöra vilka loggposter som skulle 

behållas i det begränsade permanenta lagringsutrymmet. Strategierna utvärderades med 

hjälp av loggdata från det simulerade realtidssystemet. En av strategierna för val av loggdata 

presterade klart bättre än de andra två: den minimerade tiden för bearbetning och lagrade 

maximal mängd användbar loggdata i det permanenta lagringsutrymmet. 
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TABLE OF DEFINITIONS 

The table of definitions describes the meaning of words and abbreviations used throughout 

the thesis. The page on which a definition is first used is also given. 

 

Definition Description Page 

Fault The cause to an error in a system. For example, code that 

results in an error. 

5 

Error The manifestation of a fault that causes an unwanted behavior 

of the system e.g. a worst case execution time overrun. 

5 

Failure The system is not performing according to the expected 

behavior. 

5 

Failure chain A chain of failures caused by faults in a system, which can 

lead to a failure and then to more failures. 

5 

NFF No Faults Found, i.e. could not identify the cause to a failure. 6 

FPPS Fixed-Priority Preemptive Scheduling. 7 

WCET Worst Case Execution Time, the maximum length of time a 

task or set of tasks requires to execute. 

9 

WCET overrun A task exceeds its maximum pre-defined execution time. 9 

BEPB A Bit Error on Period Began. 9 

BENR A Bit Error on Next Release. 9 

WD Watchdog, an electronic timer to detect and recover from 

timing malfunctions. 

22 

Log-event A collection of variables in a fixed order. 23 

log-file A static file with a finite number of log-events. 23 

RAM Random access memory. 33 

CPU Central processing unit. 44 
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1 INTRODUCTION 

1.1 Motivation 

Software for embedded real-time systems is frequently engineered in accordance to an 

appropriate standard. Even if it is certified to conform to that standard, software might fail. 

Achieving adequate quality requires investigating these failures and improving the software 

where needed. In the system monitoring area, there is little research on planning logs to 

support the identification of the main cause of a failure/error, i.e. the initial fault. This is an 

important part of embedded real-time systems that needs more research, and important factors 

to minimize the defects that software can cause in a system. A time-consuming activity for 

developers of embedded real-time systems is manually finding the causes of failures that are 

reported by their users; thus it is important to have valid scientific results that can help in 

deciding which logging strategies are more optimal. Since it is hard to perform a scientific 

experiment necessary for evaluating the different logging strategies in a real system due to its 

high complexity, a simulator based approach was used. 

In order to determine the most optimal log-selection strategy, both failures and their 

causes need to be found, which comprises a series of events (Algirdas, Laprie, & Randell, 

2001). Fault is the cause of an error in a system. Error is the manifestation of the fault 

that causes an undesirable behavior of the system. Failure is when a system is not 

performing according to the expected behavior. A failure chain is a chain of failures, 

which are faults in a system that lead to a failure, which in turn leads to more failures. There 

are a number of combinations of faults that can result in failures. The types of faults in the 

timing domain for tasks are the following: a task finishes too early, a task finish too late, and 

task omission. 

Tracing an error to its initial fault before it results in a failure requires identifying errors 

and investigating their causes. Identifying faults from log data requires that sufficient 

information has been logged (Laprie, 1995). The amount of log data that can be kept is 

limited due to an embedded system’s limited storage space. Filtering logs is constrained by a 

system’s processing power. These limits necessitate optimizing what log data is kept. With 

minimal resources in an embedded real-time system, it is not feasible to detect faults during 
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run-time by the real-time system scheduler, which comes at the cost of increased processing 

power and time. 

To identify the root-cause of an error, three steps need to be performed: detect the 

unwanted behavior, categorize that behavior, and finally identify what caused the detected 

behavior. Detecting unwanted behavior is easier than identificaton of what caused the 

behavior. 

The difference between detection and identification of the root-cause of an error can 

easily be misunderstood. The difference can be explained through the following example: A 

failure is detected in task t2 through the observation of a deadline miss, which means we know 

something happened. Then a software related failure that caused a deadline miss is noticed, 

which means we now know what happened. On further examination of log data, a worst case 

execution time overrun is observed in task t1, which did run before task t2 that missed its 

deadline. One can then identify that task t1 caused the deadline miss in task t2 by the worst 

case execution time overrun. 

An error needs to be detected in order to be identified, and one technique is described 

in (Mok & Liu, 1997), which was to use a constraint violation technique for error detection. 

In their work, they set a number of constraints and implemented a JRTM (Java Run-time 

Timing Constraint Monitor) with low overhead, which they claim can catch any violations of 

the specified timing constraints. 

Accurately identifying the cause of a failure is difficult. Today, investigation often 

reports No Faults Found (NFF). NFF implies that a failure did occur during the 

execution of a program, and that a failure or fault could not be found when analyzing the 

cause of the failure. NFF is by far the most common outcome of investigation, and airlines 

voted this “the most important issue” (Burchell, 2007). According to recent studies (Hockley 

& Phillips, 2012), NFF is still the most common outcome of investigations. Investigating how 

to choose what to log in an offline system could provide insights on how to detect more 

dangerous faults, reducing the incidence of NFF. 

A study that would take all possible failures and faults into consideration would have 

infeasible complexity. The faults and failures investigated in this study are worst case 

execution time overruns, bit errors in release time calculations, and deadline misses. We leave 

extending this work to other faults and failures to future work. 
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Furthermore, it would not be feasible to monitor all types of faults and log these, due 

to the limited resources available in an embedded real-time system (Avizienis, Laprie, 

Randell, & Landwehr, 2004). This would require constant monitoring and logging even when 

no failures are present in the embedded real-time system. There is also a possibility that a 

worst case execution time overrun does not result in a deadline miss. Logging all activity to 

find these would require more log-file space and processing power than is available in real 

systems. A more feasible strategy is to log only a set of Real-Time Operating System (RTOS) 

events and system calls selected to maximize the chance of capturing details that identify the 

fault. 

A commonly used scheduling algorithm in embedded real-time systems is Fixed-

Priority Preemptive Scheduling (FPPS), which means that research based on 

it will provide insight into other systems that use FPPS. In the FPPS algorithm, the scheduler 

guarantees that the processor executes the task that has the highest priority of all tasks that are 

available for execution at any given time. 

1.2 Purpose 

The purpose of this study is to determine what data should be logged in an embedded 

real-time system while still being able to accurately identify the cause of an error from the 

saved log data. An optimum strategy for achieving this is devised. 

1.3 Thesis statement 

The problem that needs to be solved is selecting a highly effective way to determine 

what data should be logged so as to maximize the chance of accurately identifying the cause 

of the error from the log data. Embedded targets usually have limited resources available for 

storing log files or processing log entries. At first we assume there are minor resource 

limitations in order to be able to create a general method that works, and then look to optimize 

the resource usage. We are also simultaneously trying to optimize the resource usage to store 

the largest amount of useful data using the least amount of space. 

1.4 Thesis outline 

The rest of the thesis is organized as follows. Chapter 2 presents the theory needed for 

understanding the basics of the thesis. Chapter 3 describes the method used to conduct the 

study in a structured and reliable way. Chapter 4 describes how the instrument was created 

and its accuracy validated. Chapter 5 presents the results and reflections on the results in 

relation to the presented problem. Chapter 6 presents a summary of the research, conclusions 

made and explanations of hypotheses. Chapter 7 discusses directions for future work. 
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2 BACKGROUND THEORY 
The purpose of the background is to provide sufficient information for the reader to 

understand key concepts dealt with in the rest of the thesis. Big O complexity describes the 

limiting behavior of functions used in this paper which have trends that move towards infinity. 

Real-time system aims to explain the fundamentals of a real-time system. Statistical 

hypothesis testing explains the basics of the hypothesis testing used in the thesis. 

2.1 Real-time systems 

Real-time systems are systems that must respond within a finite and specified period of 

time. It is not the speed that characterizes a real-time system, but the predictability. In order to 

have a predictable real-time system, each task has to provide a correct response within its 

timing constraints.  

 

FIGURE 2.1.1 Dependability Taxonomy (ALGIRDAS, LAPRIE, & RANDELL, 2001) 

Figure 2.1.1 shows the area this study is focusing on, i.e. threats in the dependability 

taxonomy (Algirdas, Laprie, & Randell, 2001). Faults, Errors, and Failures relate to the other 

aspects of dependability in a number of different ways. However, this study’s focus is threats 

and how to identify and store them using minimal resources. 

The scheduler controls the queue of tasks to be executed in a real-time system. In FPPS, 

every task has a fixed priority. The execution order for tasks is determined by their priority, 

which is usually assigned before run-time. A task with higher-priority preempts a lower-

priority task. When a task gives up the processor or is preempted, a context switch occurs. 

These context switches are an execution time overhead (Zmaranda, 2011). 

Preemption is when a higher-priority process takes control of the processor from a lower-

priority task (Hang, 2010). A job is considered preemptible if its execution can be suspended 



 

 

9 

  

to switch the execution to other jobs and later resume from where it was interrupted. With 

priority-based scheduling, a high-priority task can be released when a task with lower priority 

is executing. When a preemptive scheme is used, the system can quickly switch to the higher-

priority task, making high priority tasks more responsive. 

Context switching overhead means that it takes a finite amount of time for the operating 

system to switch between two jobs. This is an overhead for the scheduler. If jobs are switched 

often, the context switching overhead becomes a significant factor as it decreases the 

predictability of a real-time system (Zmaranda, 2011). 

A task is a schedulable unit of processing consisting of one or more actions. A task is 

usually implemented as a process or a thread (Ramaprasad, & Mueller, 2011). A task has a 

number of attributes. The Worst Case Execution Time (WCET) is the longest 

allowed undisturbed execution time for one iteration of the task. Period is the interarrival 

interval for a sequence of periodic events. Offset is the earliest time instant at which the task 

becomes executable. 

 

FIGURE 2.1.2 Simulated task pseudocode 

Figure 2.1.2 shows the pseudocode for a simulated task. A task contains a number of lines 

of code or a set of functions that executes in a predefined order. A task could have any of a 

number of kinds of faults. When faults occur they can cause a task to miss its deadline. In 

order for a real-time system to work as expected, the deadline of all tasks must be met. 

The faults we inject are WCET overruns, Bit Error on Period Began 

(BEPB), and Bit Error on Next Release (BENR). WCET overrun occurs 

when a task executed longer than expected. Deadline miss occurs when a periodic task 
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executes beyond next_deadline.  The injected fault BEPB represents a fault in the 

calculation of period_began in the pseudocode, which the scheduler uses initially in the 

task function and in the end of each iteration of the infinite loop. 

The injected fault BENR represents a fault in the calculation of next_release in the 

pseudocode, which the scheduler uses initially and at the end of each iteration of the infinite 

loop. This means that the scheduler will release the affected task at the wrong simulated time. 

2.2 Big O complexity 

Big O notation is used to estimate the worst time or space complexity for an 

algorithm. Complexity is the efficiency of an algorithm, how the algorithm scales when input 

size n increases (Garey & Johnson, 1979). In our context, input size n is the total number of 

log entries processed by a strategy. Variables with constant values do not depend on input size 

n and are thus omitted. As only the worst case is considered, magnitudes less than the worst 

case magnitude are omitted. Space complexity is storage space required on a flash memory or 

other storage related medium to store the values. In this thesis, this is equal to a fixed-size 

buffer on flash memory storing m values from the input size n. Output size m is the total 

number of log entries written to the fixed-size buffer on flash memory by a strategy. Space 

complexity is also the working space in RAM that the algorithm requires to store the values 

for input size n, where n is the size of the in RAM buffer used for logging by a strategy. Time 

complexity is how much time the algorithm requires to run as a function of the size of the 

input (Tarek, 2007). In this thesis, it means the required execution time for a strategy to fill a 

fixed-size buffer on a flash memory.  

 

FIGURE 2.2.1 An example algorithm with the order of n time complexity 

Figure 2.2.1 demonstrates 𝑇 𝑛 ∈ 𝑂 𝑛  the algorithm has the order of n time 

complexity, which is the same as the algorithm taking linear time to run relative to its input 

size n. Input size n is the total number of log entries processed by a strategy. Among other 

used complexities in this thesis is  𝑆 ∈ 𝑂 1 , the algorithm has order of 1 space complexity, 



 

 

11 

 

which is the same as the algorithm using constant space to store values relative to its input 

size n. 

𝑇   ∈   𝑂 𝑛  time complexity means minimal resource usage in terms of processing 

power, where n is the number of processed log-events. However, one could claim that the 

practical time complexity is 𝑇   ∈   𝑂 𝑐 , where c is the constant execution time required to 

process a log-event. This claim is true when log-events are delivered incrementally by a 

scheduler instead of being delivered all at once to a strategy as in this experiment. 𝑇   ∈   𝑂 𝑐  

is true because the instrument is processing a task’s log-events in a loop, when applied as a 

filter it executes in constant time since the loop is then in the scheduler. 

Choosing what to log in limited space is related to Big O complexity since the 

working space complexity is 𝑂(𝑛) using minimal resources in terms of the in-RAM buffer, 

where n is the number of processed log-events. However, this is not related to the number of 

log-events stored simultaneously. A strategy needs to process all log-events in order to be 

helpful in identifying dangerous faults; otherwise a vital log-event can be missed. The 

minimal complexity for the number of simultaneously stored log-events in a strategy 

is  𝑆 ∈ 𝑂 𝑐 , where c is a constant storage space of log-events and used variables in the in-

RAM buffer. 

2.3 Statistical hypothesis testing 

An experiment has both Independent Variables (IV) and Dependent 

Variables (DV). The IV is manipulated by the researcher, and the DV gets influenced 

by changes in the IV. The IV is the cause and the DV is the effect. 

A hypothesis is a claim or statement about a property of a population (Javanmard & 

Montanari, 2013) made from observing a sample. One or more significance tests can be 

conducted for one hypothesis, to provide additional evidence against the null hypothesis. In 

order to use a hypothesis to support a claim, the claim can be formulated using negation in the 

null hypothesis, so its inverse becomes the alternate hypothesis. In this study, hypothesis 

testing is used to support the alternative hypothesis. The rejection of a null hypothesis does 

not mean it is false; it shows either the probability of a type I error or the probability that it 

occurred by chance alone. 
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The significance level when a test is considered to be statistically significant can be 

expressed as the probability that the rejection of a null hypothesis is a mistake (Cox, 2008). 

The probability that an event occurred by chance is called p-value where the p-value must be 

less than or equal to the hypothesis test value to reject the null hypothesis. The p-value in this 

study is 0.01 which is a commonly used value. The value 0.01 is equal to 99% confidence that 

this result did not simply happen by chance. In decision theory, it is the opposite, so it is 

interpreted as the probability of the rejection that the null hypothesis is a mistake. The 

probability of a Type I error is equal to the significance level alpha (α). 

A test of significance starts by first defining a null hypothesis H0 and then an alternative 

hypothesis Ha. The null hypothesis H0 represents a theory that has been put forward to be used 

as a basis for an argument that has not yet been proven. The formulation of the null 

hypothesis H0 is the most important and usually implies zero or no change when the subject of 

the study is an intervention. The null hypothesis H0 always includes the equal sign, which is ≤, 

=, or ≥. The decision to reject or accept is based on the null hypothesis H0. The alternative 

hypothesis Ha statement is most likely to be true if the null hypothesis H0 is false. There exist 

multiple null hypotheses in this problem:    𝐻!,𝐻!,… ,𝐻! and the alternative hypothesis Ha. The 

type of tail-test is two-tailed when the null hypothesis is written with only an equal sign and is 

one-tailed when the null hypothesis includes ≤ or ≥. 

Wilcoxon Signed Rank Test is a nonparametric alternative for paired sample t-test 

(Wilcoxon, 1945). It is used for comparing data from paired sample. It does not require the 

data to be normally distributed. Paired data is data that has a one-to-one relationship between 

values in the two data sets. Each data set needs to have an equal amount of observations and 

each data point can only be related to exactly one observation in the other data set. The mean 

rank indicates the direction of change, an example of this is when a negative mean rank from 

an initial measure is less than a positive mean rank of an additional measure. This suggests 

that the measured values from the last observation is most likely higher than the measured 

values from the first observation (Motulsky, 2013). 

A Wilcoxon Signed Rank Test evaluates the difference between observations using a 

before and after approach. Positive ranks indicate that values after are most likely higher than 

before, and the opposite for negative ranks. The test results should be fairly accurate when the 

sample size is 16 pairs or greater (Wilcoxon, 1945). A sample size of 23 pairs is used in this 

study. 
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2.4 Related work 

There seems to be little research on planning logs to support the identification of the 

main cause of a failure. However, there are a few similar studies in the area of detecting and 

identifying timing related errors. In one of the studies, a software monitor is created by 

following the requirement documentation, which according to the author (Peters, 2000) is for 

a realistic system. It was discovered that the generated software monitor was able to detect 

undetected errors in prior tests. A technique called transformation modes to specify anomalies 

that are allowed from the normal actions is used. Although their used approach is not directly 

applicable to this thesis because we focus on offline evaluation and they focused on online 

evaluation, the study still gives good insight on how to design a monitor that can be used 

when detecting failures in a log file. 

The study gives a good insight on how to design a monitor that can be used when 

detecting failures in a log file, although their used approach is not directly applicable to this 

study because we focus on offline evaluation and they focused on online evaluation. 

Another paper with an interesting approach that might be of use when designing the 

tools in this study is the research performed by (Mok & Liu, 1997), where a language for 

specifying timing constraints was created. Using specification in that language in combination 

with an algorithm for monitoring, they were able to capture anomalies in the development 

phase. They achieved this by first compiling the specifications of the constraints into run-time 

system monitoring software. In (Pettersson & Nilsson, 2012), the monitoring is done in a 

different way, but contains an interesting approach for using buffers. The concept of capturing 

violations at run-time (Mok & Liu, 1997) is an approach that could be used if sufficient 

resources are avaliable. A big difference from this study is that their work assumes the 

availability of many timers. 

To understand different aspects of how a deadline miss can occur in a task set, the 

insight from (Regehr, 2002) is of interest, especially the comparison between preemptive and 

non-preemptive task sets. Their research revealed that WCET overruns are more likely to 

cause a deadline miss when using preemptive scheduling compared to non-preemptive 

scheduling. That increased the confidence to use FPPS as the intention is to investigate FPPS 

and inject WCET overruns in this study. The illustrations in their paper show the 

importance of checking that the scheduling parameters have been properly configured when 

setting up task sets in order to increase the validity of the experiment results. Their work 
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differs in a number of ways from this study: their aim is to make non-preemptive task clusters 

and they inject 50% release jitter. However, the algorithms created in their work were taken 

into account when creating the validation algorithm to make the instrument in this study more 

robust. 

There are several studies in mutation testing that are relevant to this study. Several 

empirical studies (Anand, et al., 2013) show that failure-causing inputs and nonfailure-

causing inputs tend to form continuous blocks. This is particularly valuable knowledge when 

designing the log-selection strategies: it can result in strategies with more relevant data in its 

buffers. However, the most interesting part of their research is the Adaptive Random Testing 

(ART) which takes into account the vast number of manifestations a fault can have examined. 

Jia & Harman present a comprehensive survey of mutation testing research that covers 

a wide range of theories including equivalent mutant detection and techniques for 

optimization (Jia & Harman, 2011). Regression testing in particular is a good approach to 

reduce the size of a test set. Some empirical studies showed that a 33% decrease in number of 

test sets was possible without any loss of effectivity. This was taken into account during the 

selection of what should be logged when optimizing the strategies. 

The paper by (McMinn, 2004) contains many interesting parts related to this study in 

several ways by using a number of techniques. Execution Time Testing will be used during 

the development of the instrument for measurement. There exist a number of other interesting 

techniques; the fundamentals of Search-based Execution Time Testing and the Chaining 

Approach could be used offline when finding causes to deadline misses. This is taken into 

account when creating the validation algorithm. 

Assertion Testing (McMinn, 2004) and Exception Condition Testing (McMinn, 2004) 

techniques can be used to make the instrument for measurement more robust when 

developing, and it results in higher quality of the code of the instrument by using a kind of 

exception handling. For testing timing behavior, Execution Time Testing and Search-based 

Execution Time Testing (McMinn, 2004) will be considered in this study. 
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3 SCIENTIFIC METHOD 
An initial perception of the problem was divided into three hypotheses to be accepted or 

rejected. This chapter explains the method used for conducting the experiment. 

3.1 Hypotheses 

The problem statement is divided into three claims comprising multiple null hypotheses 

and an alternative hypothesis for each claim. The hypotheses are related to choosing what to 

log so as to retain log records in a limited space that will be most helpful in identifying faults 

by validating collected data for determining the existence of an optimal log-selection strategy. 

Each hypothesis will provide support for the optimal strategy in relation to what is tested. The 

proposed hypotheses will focus on: execution time per simulation (H1), ability to detect 

deadline misses (H2), and ability to correctly identify the causes (H3). Strategy 1 stores 

everything, strategy 2 stores fewer types of log events than strategy 1, and strategy 3 stores 

the least types of log events. Section 4.5 - 4.7 provides a more detailed description of the 

strategies. 

Hypothesis H1 is that strategy 3 requires the least execution time at each log store size.  

H10: Strategy 1 mean rank ≥  Strategy 2 mean rank. 

H11: Strategy 3 mean rank ≥  Strategy 1 mean rank. 

H1a: Strategy 3 mean rank < Strategy 1 mean rank < Strategy 2 mean rank. 

A rejection of the null hypotheses H10 and H11 indicates that the mean rank for strategy 

1 and 2 is higher than the mean rank for strategy 3. This means the rejections provide support 

that strategy 3 is executing simulations in significantly less time than strategy 2 and strategy 

1. If H10 is rejected it means that strategy 2 is executing simulations in significantly more 

time than strategy 1. If both H10 and H11 are rejected it means that strategy 1 is executing 

simulations in significantly more time than strategy 3. Thus, strategy 2 also executes in more 

time than strategy 3. Hypothesis H1 is related to the goal of using the least practical amount 

of processor resource on the embedded target. 

Finding more deadline misses with one or more identified causes relates to how well a 

strategy stores the most relevant log data in the permanent storage. Thus, hypothesis H2 is 
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related to the goal of not requiring more permanent storage resource on the embedded target 

by being more efficient in the selection of log data to commit. 

H20: Strategy 2 mean rank ≤  Strategy 1 mean rank. 

H21: Strategy 3 mean rank ≤  Strategy 2 mean rank. 

H2a: Strategy 3 mean rank > Strategy 2 mean rank > Strategy 1 mean rank. 

A rejection of the null hypotheses H20 and H21 indicates that the mean rank for 

strategy 1 and 2 is higher than the mean rank for strategy 3. This means that strategy 3 stores 

significantly more log data relevant to deadline misses than strategy 1 and strategy 2. If H20 is 

rejected it means that strategy 1 stores significantly more log data relevant to deadline misses 

than strategy 2. If both H20 and H21 are rejected it means that strategy 2 stores significantly 

more log data relevant to deadline misses compared to strategy 3. Thus, strategy 3 also stores 

significantly more log data than strategy 1. 

Hypothesis H3 is that strategy 3 identifies the most injections in all simulations. A 

rejection of the null hypotheses H30 and H31, means that the mean ranks for strategy 1 and 2 

are higher than the mean rank for strategy 3. This means that strategy 3 identifies significantly 

more injections than either strategy 1 or strategy 2. 

H30: Strategy 2 mean rank ≤  Strategy 1 mean rank. 

H31: Strategy 3 mean rank ≤  Strategy 2 mean rank. 

H3a: Strategy 3 mean rank > Strategy 2 mean rank > Strategy 1 mean rank. 

If H30 is rejected it means that strategy 1 identifies significantly more injections than 

strategy 2. If both H30 and H31 are rejected it means that strategy 2 is identifying significantly 

more injections than strategy 3. Thus, strategy 3 also identifies significantly more injections 

than strategy 1. Hypothesis H3 is related to the goal of selecting the log entries that contain 

the most useful information in terms of finding faults which enables optimizing of the 

resource usage in order to store an optimal set of log data. 

3.2 Instrument for measurement 

The instrument for measurement is the tool created for collecting and assessing the 

experiment data. The log-selection strategies were validated by creating a tool for analyzing a 

log to find faults revealed by its entries. Firstly, the instrument for measurement were 
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validated to confirm reliable identification of the injected faults, secondly after the accuracy 

of the instrument was determined, existing anomalies and their measured effects were 

explained in detail to increase confidence in the instrument. 

3.3 Collection of empirical data 

The simulator generates two files per test, where the first file contains the task 

parameters, and the second one contains the log data from the simulated real-time system run. 

To validate the reliability of the instrument, for each of the ten tests the two files were read in 

by the instrument. Later, twenty-three additional sets of test data were generated to evaluate 

the log-selection strategies using the instrument. We used the log files from a single test run 

to test each of the three strategies, with the intent to provide a fair comparison between the 

log-selection strategies. 

The data collected to test hypothesis H1 is the execution time needed to run each log-

selection strategy over an entire log-file and then analyze the selected log entries using the 

instrument. We measured this at different log sizes. Thus, execution time is the dependent 

variable and the independent variable is the size of the log store. Hypothesis H1 and the 

collected data are related to the goal of using the least practical amount of processor resource 

on the embedded target rather than an on-line fault detection strategy such as WCET 

monitoring. 

The data collected to test hypothesis H2 is the number of deadline misses found to have 

one or more identified causes. We measured this at different log sizes. Thus, the number of 

found deadline misses with one or more identified causes is the dependent variable, and the 

fixed-size number of log-events is the independent variable. Hypothesis H2 and the collected 

data are related to the goal of not requiring more permanent storage resource on the embedded 

target by being more efficient in the selection of log data to commit. 

The data collected to test hypothesis H3 is the number of injections the instrument 

correctly identified in the log data selected by each strategy. We measured this at different log 

sizes. Thus, the number of injections found is the dependent variable, and the fixed-size 

number of log-events is the independent variable. Hypothesis H3 and the collected data are 

related to the goal of selecting the log entries that contain the information that reveals the 

most faults. Testing hypothesis H3 facilitates storing an optimized subset of log data. 
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3.4 Manipulation of variables 

The independent variable in all three cases were expressed by the number of log-events 

of a fixed-size buffer on flash memory. The independent variable was manipulated by 

increasing its size logarithmically. The dependent variable of the first test was the execution 

time, in the second test the dependent variable was the number of deadlines misses with 

identified cause(s), and in the third test the dependent variable was the number of correctly 

identified injections. 

 

FIGURE 3.4.1 Manipulation functions 

Figure 3.4.1 shows the functions used to reduce the noise. A sample manipulation was 

performed on the collected data. The sample manipulation procedure taken to reduce the noise 

was for smoothing all measured DV values per log store size. The noise was caused by the 

limited accuracy of the execution timing mechanism, and the simulator’s use of a random 

number generator. We limited each sample to the range the arithmetic population 

mean (A) ± Standard population Deviation (SD). We then computed the A of 

the adjusted data for each log store size and strategy. The effect on the outlier values was that 

each outlier value was replaced with an adjusted value, which resulted in minor differences to 

the A. The pre-processing of the measure values was necessary in order to minimize 

outliers/noise. The returned values of the A were rounded to two digits of precision in the 

execution time tests and in the number of found deadline misses with identified cause(s) tests, 

the mean was rounded to the closest integer. 
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3.5 Validation and analysis of data 

The collected data were validated in a number of steps. The first step was to validate all 

simulator generated files by comparing the task parameter information in the console window 

of the simulated system with the task parameters in the generated files. 

The second step was to validate that the log data had the correct format by reading the 

binary data into the instrument. The accuracy of this method is robust because the execution 

of the instrument would be interrupted if a single parameter were in the wrong format. The 

data were pre-loaded into the instrument, and once data was loaded the measurements were 

manually started. Hence, the startup time of the instrument did not affect the results. 

The third validation step was to compare the data to the ground truth. The injected faults 

were divided into groups related to their ground truth. The results of each group were divided 

into signal detection metrics excluding true negatives that were the normal execution path.  

IBM SPSS Statistics Professional Edition v.22 was used to conduct Wilcoxon Signed 

Ranks Tests. The purpose of using the Wilcoxon Signed Ranks Tests was to get before and 

after comparisons. This relates to the strategies since strategy 2 was based on strategy 1 and 

later optimized, and strategy 3 was based on strategy 2 and later optimized. Since the purpose 

was to compare a limited number of significance tests, a planned comparison 

(Motulsky, 2013) was conducted, which means that there were no correction for multiple 

comparisons. 

To validate the analysis of all hypotheses, one-tailed significance level alpha (α) = 

0.01 was used in Wilcoxon Signed Ranks Tests. The type of test was for paired data, which is 

when a one-to-one relationship exists between values in the two data sets. Each data set needs 

to have an equal amount of observations and each data point can only be related to exactly 

one observation in the other data set. 

This is an experiment because of the study method, and the subject is partially related 

to algorithms and complexity, whose complexity class is NP-easy (Garey & Johnson, 1979). 

Standard procedures (Swales & Feak, 2004) were used to organize the experiment. The 

reason for the focus on complexity was the creation of algorithms that needed to be tested. 
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Asymptotic algorithm analysis was used to determine the processing time of the log-

selection strategies in big O notation. First, the worst case number of executed primitive 

operations that executed as a function of the input size was found. 

Next, the constant factors and lower-order terms were disregarded when counting 

primitive operations, simple operations that can be performed in constant time. Finally, the 

exact number of array accesses made in the algorithm in asymptotic notation of the function 

was expressed with big O notation. Asymptotic algorithm analysis was used to determine the 

working space requirements of the log-selection strategies in big O notation. The working 

space requirements comprised the in-RAM buffer and flash storage space. 

  

FIGURE 3.5.1 Experimental setup 

Figure 3.5.1 demonstrates the setup that was used in the experiment. The system 

simulator used in the experiment was already existing. The instrument for measurement, the 

binary files, and the log-selection strategies were created by the author. It would be optimal to 

perform the experiment in a real embedded real-time system because it would be more 

complex and might perform differently than the simulated system used. However, the use of a 

simulator has a number of benefits compared to a real system. The use of a simulated system 

enabled direct and detailed observations for evaluating log-selection strategies. A simulated 

system with fewer required restrictive assumptions reduced complexity. Immediate changes 

in the structure and configuration of the simulated system were possible. Small changes to the 

simulator were made in order to save log data to a binary file.  
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4 DEVELOPMENT OF INSTRUMENT 
The experimental instrument was created based on the requirements of the study. We 

then validated that it worked as expected. The experiment on the log-selection strategies were 

conducted after the instrument had been validated. In the following sections, we explain 

further details on the instrument development validation and log selection strategies. 

4.1 System model 

 

FIGURE 4.1.1 Simulation of failure behaviours in an embedded real-time system 

Figure 4.1.1 illustrates the simulation of failure behaviors in an embedded real-time 

system. Three faults were injected: WCET overrun, which occurs when a task executed 

longer than expected; BEPB which occurs when a randomly-selected bit in the calculated 

period_began is flipped as illustrated in Figure 2.1.2; and BENR, which occurs when a 

randomly-selected bit in the calculated next_release is flipped. 

Simulation attributes: 

• Error 

o Deadline miss 

• Faults 

o WCET overrun 

o BEPB 

o BENR 
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• Scheduler 

o FPPS algorithm 
o Non-blocking for higher priority tasks 
o Small amount of slack time 
o Watchdog (WD) 
o Context switch overhead 
o Periodic tasks 

We used the simulator system to create a static log-file containing all possible entries that 

we examined using the instrument. The log-file with log entries was first pre-loaded into the 

instrument; when completed the file with task details was also read by the instrument. Once 

the instrument loaded both files, the measurements were manually started by the engineer. 

The filtering is performed by the instrument. 

TABLE 4.1.1 Task details 

TID BCET WCET PERIOD OFFSET DEADLINE PRIORITY 

0 45 50 500 10 550 0 

1 95 100 825 0 1000 2 

2 530 550 825 0 1000 3 

3 95 100 1000 825 1000 1 

Table 4.1.1 shows the task details that were used in all tests. The time units represent 

the simulated system's clock in ticks of unspecified duration. Task ID (TID) uniquely 

identifies each task. Best Case Execution Time (BCET) gives the lower bound of 

the execution time. WCET gives the upper bound of the execution time. Actual execution time 

of each job was a random number selected from the uniform distribution (BCET, WCET). 

The remaining columns show each task’s period, offset, deadline, and priority. The simulated 

system recorded these details to a details file for use during the experiment and later analysis. 

 

FIGURE 4.1.2 Task details format 
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 Figure 4.1.2 demonstrates the structure of the format used in the static task details file. 

The details from task id 1 were used in this illustration, and a translation from decimal to 

hexadecimal was performed. 

TABLE 4.1.2 Log-event variables 

VARIABLE DATATYPE DESCRIPTION 

Time UINT64 The simulated system's clock in ticks of the duration 
specified in a task set. 

Data1 UINT64 Keep different values of time or 0. 

Data2 UINT16 Task ID. 

Event UINT16 The type of log entry. 

Table 4.1.2 shows the format of a log-event. The meaning of data1 and data2 

depend on the type of log event as shown in  

Table 4.1.3. The simulated system generated two binary files: the details file and a file 

containing log data. The log-file represents the unfiltered log output of a simulation run 

as a sequence of log events. Each log-event comprises four variables: the time at which 

the entry was generated, data1 which stored a number of different timing entries, data2 

shows to which task id the event is for, and event which shows the type of log entry. Each 

log-event record has a size of 20 bytes. 

 

FIGURE 4.1.3 Log-event format 

 Figure 4.1.3 illustrates the structure of the format used in the static log-file. In the 

original data, there were eight pairs of hex characters in time and data1 respectively, which 

were equal to 8 bytes each. Data2 was two pairs of hex characters and the event was also 

represented by two pairs of hex characters. The data were originally in binary format that was 

translated in order to be illustrated in a humanly readable format. 
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Table 4.1.3 Types of log entries 

TYPE DESCRIPTION 

Task create The task with ID data2 has been created and will begin its first period at 
data1. 

Task wait The task with ID data2 has called the simulated wait_until_offset 
function as shown in Figure 2.1.2 to wait until the time data1. 

Task sleep The system has no runnable tasks and will be going to sleep until waking up 
at data1 to run task with ID data2. 

Task release The task with ID data2 has been released. If it was waiting on a simulated 
wait_until_offset call, data1 gives the time it was waiting until. If 
not, data1 is 0. 

Task switch The scheduler is switching to the task with ID data2. Data1 is 0. 

Task return The task with ID data2 has returned from the simulated 
wait_until_offset call it used to wait until the offset for the period 
beginning at time data1. 

Task dlmiss The periodic task with ID data2 self-reported that it has missed its deadline 
for the period beginning at time data1. 

WD 
running 

The watchdog was running. Data1 and data2 are 0. 

WD restart The watchdog timer restarted the task with ID data2; it will run at or after 
time data1. 

 

Table 4.1.3 illustrates the types of events logged by the simulated system. Within one time span 

there were the following types of log entries: task create, task release, task 

sleep, task switch, task return, task dlmiss, task wait, WD running, 

and WD restart. All log entry types other than task create occured at some occasion 

within the time span between two releases of a task regardless of its task id. Task create 

only appeared once per task and test. 

𝑈 =   
𝐶!
𝑇!

!

!!!

 

FIGURE 4.1.4 Processor utilization factor 

Figure 4.1.4 shows the formula for processor utilization factor where Ci was the worst 

case execution time and Ti the period of its task. In the simulated system, four tasks were 

running in a simulated real-time operating system with details as in Table 4.1.1. No deadline 

misses were caused by the processor utilization factor since it was less than one 
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(0.1+0.12+0.67+0.1=0.99). The simulated system was sensitive and had only a small amount 

of slack time. This made it more vulnerable to injections; that is, injections were likely to 

produce deadline misses, including misses in other tasks and in subsequent jobs. 

4.2 Instrument development 

We tested the instrument by simulating execution for 40,000,000,000 cycles while 

randomly injecting faults. An initial validation algorithm was created to identify as many 

injections as possible. We tested using a range of fixed-size buffers between approximately 4 

KiB and 16 GiB. We made 10 simulations for each buffer size to increase the number of 

measurements. The generated truncated logs were examined and validated against the ground 

truth. We smoothed all measured values by limiting their upper and lower values to the A ± 

SD. 

Two test sets were created to ensure that the results were not isolated incidents. The first 

test set was for assessing how accurately the instrument for measurement could identify the 

injected faults. The second test set was for testing how optimal a strategy performed to save 

sufficient data while still being able to identify faults that inflicted a deadline miss. 

2013-‐12-‐05
2014-‐06-‐05

2014-‐01-‐01 2014-‐02-‐01 2014-‐03-‐01 2014-‐04-‐01 2014-‐05-‐01 2014-‐06-‐01

WCET	  overrun

Task	  Cycle

T2
Task	  Release

Time

Task	  Deadline

Execution	  Time

T1

 

FIGURE 4.2.1 Worst Case Execution Time overrun 

Figure 4.2.1 demonstrates a WCET overrun, which occurred when a task executed 

longer than its WCET (e.g. T1). The instrument evaluated whether the log messages showed 

the task executing for longer than its specified WCET at time T1 or not. If a task executed 

longer than T1 and finished execution at the time T2, the instrument reported a WCET 

overrun fault. 
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2013-‐12-‐05
2014-‐06-‐05

2014-‐01-‐01 2014-‐02-‐01 2014-‐03-‐01 2014-‐04-‐01 2014-‐05-‐01 2014-‐06-‐01

Bit	  Error

Task	  Cycle

Task	  Deadline
T1

Task	  Release
Time

Execution	  Time

T2

Period	  Began

 

FIGURE 4.2.2 Bit Error on period began 

Figure 4.2.2 shows the concept of a BEPB. The scheduler got a bit error at T2 in the 

period began calculation referring to T1. The error could occur at two locations, either in 

the beginning of the task function which takes the initial period as period began, or 

during the calculation of next release. 

In the simulated system, bit errors had a big impact on when a task asked to be woken up. 

A bit error occurs when a bit is flipped, switching a bit from 1 to 0 or 0 to 1. The effect on 

execution time depends on which bit was flipped. If a task effectively stopped executing due 

to a bit error, the simulated system’s watchdog would eventually notice and restart the task. 

2013-‐12-‐05
2014-‐06-‐05

2014-‐01-‐01 2014-‐02-‐01 2014-‐03-‐01 2014-‐04-‐01 2014-‐05-‐01 2014-‐06-‐01

Next	  Release

Task	  Cycle

Task	  Deadline T2
Task	  Release

Time

Execution	  Time

T1

Task	  Cycle

Execution	  TimeBit	  Error

T2

Figure 4.2.3 Bit Error on next release 

 Figure 4.2.3 illustrates the concept of a BENR. The scheduler got a bit error at T1 in the 

next release calculation referring to T2. The error could occur in the reoccurring 

calculation that were period began + offset of the task to produce its next 

release value. When a bit error occurred at this point, the count for BENR injections were 

increased. 
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Test set specifications: 

• Instrument test set – 1 % injections of WCET overruns, BEPB and BENR to 

evaluate if the instrument could identify the injected faults correctly in a log containing all 

possible entries. A simulated execution ran for 40,000,000,000 cycles. The task 

parameters used were the same in all of the ten tests. 

• Log test set – 1 % injections of WCET overruns, BEPB and BENR to evaluate 

the log-selection strategies. Each simulated execution ran for 40,000,000,000 cycles. The 

task parameters used were the same in all of the twenty-three tests. Twenty-three tests 

were chosen since it reflected the logarithmically increasing log store size, and where the 

23rd test was closest to the physical limits of the hardware used. 

The differences between fault, error and failure were important: engineers examine logs to 

find the true cause of field failures. In some cases, failures related to a chain of faults and 

errors that resulted in a failure. The relationship between fault, error and failure is the 

following: faults can result in errors and errors can lead to failure. In general, failures can only 

exist after an error occurred, and an error can only exist after a fault occurred. 

The assumed page size was 4 KiB. The sizes of all fixed-size buffers on flash memory for 

logging were a multiple of the page size. We measured the dependent variable for each 

hypothesis at a range of buffer sizes from approximately 4 KiB to 16 GiB, distributed 

logarithmically. 

Since the flash memory writes an entire page at a time, the simulated logging software 

accumulated log records in a 1 page in-RAM buffer then wrote that buffer to flash using 4080 

of the 4096 byte in-RAM buffer stored page. 

The permanent storge on flash memory stored a predetermined number of log-events, as 

an example 204 log-events. The problem size was the number n (e.g all log events generated 

by the simulated system) of log-events that needed to be written to the fixed-size buffer. A 

variable initialized to 0 was required, where the current number of inserted log-events was 

stored. The variable was increased by the number of inserted log-events until it reached 203 

which was the last insertion. Hence, it was possible to conclude that it could not exceed 203 

log-events; thus the space complexity between the total number of log events that might be 

written if infinite storage were available and the space consumed were a constant. However, 

when the fixed-size buffer was increased it still stored a constant number of log-events. The 



 

 

28 

 

only difference was that the temporary storage for the page in RAM and the variable was 

resetting to its initial values. That process was repeated after the page was written to flash 

until the current storage size was reached. Therefore, the worst case statement for the flash 

memory storage were  𝑆 ∈ 𝑂 1 , which represented the big O notation  𝑂 1 . 

The purpose of the instrument is to study which log-selection strategy is optimal on a real-

time system with limited resources by detecting deadline misses and try to determine their 

cause. In this study, it is assumed that when the instrument reads the details-file and the log-

file that those files were from the same simulation. 

First the instrument read the details-file and the log-file into an array located in the in-

RAM buffer. The pointer to the array and the size limit of the memory were then passed as 

parameters to the initial function of the validation algorithm named proof_test. 

Log-events within the time span between two releases of a task were temporarily saved to 

the in-RAM buffer. A function was called at every task release, deciding whether to 

save the log-events to the in-permanent-storage buffer or discard them from the in-RAM 

buffer. The called function evaluated the existing in-RAM buffer data for existing errors. If no 

errors were found inside the in-RAM buffer, the log-events were discarded; otherwise the log-

events were saved into the in-permanent-storage buffer. This was repeated until the 

permanent storage was exhausted. 

The validation, that was a comparison between fault injections and the faults the 

instrument found were conducted after the log store space had been exhausted. Detected 

errors were temporarily saved into a separate array containing the detected error and an 

identifier uniquely connected to each injected fault. All detected errors were accurately 

validated against the made injections. 

4.3 Validation of the instrument 

To assess the effectiveness of a log-selection strategy, the instrument must detect 

injections accurately. To be confident that it does, we validated the fault injections it detected 

against a ground truth represented by the simulator’s log of the faults it injected. 

To generate the instrument test set, we executed the simulated system ten times with the 

same task parameters. The parameters that were used are illustrated in Table 4.1.1. The results 

of the manual analysis were characterized using the following signal detection metrics: 
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• True positive – The instrument found evidence of a fault in the log data and the 

simulator’s log shows that it really injected that fault. 

• False positive – The instrument reported a fault not reported as an injection in the 

instrument’s log. 

• True negative – The instrument found no evidence of a fault in the log data and the 

simulator’s log confirms no injection was not found when compared with the ground 

truth. These are not reported as they represent normal system behavior.  

• False negative – The instrument found no evidence of a fault in the log data, but the 

simulator’s log shows that one was injected. 

 
FIGURE 4.3.1 Fault injection results 

Figure 4.3.1 shows the results of the manual validation of the instrument. The instrument 

detected BEPB as expected while detecting WCET overrun we found 72 anomalies in its 

output. We found 12740 anomalies in the simulator’s detection of BENR injections. 

The found WCET overrun anomalies can be explained as the result of the halting of the 

task containing the injection. Thus, the simulated system was unable to proceed with the task 

execution. The watchdog restarted the task after a finite amount of time, after which the 

simulator reported no anomalies. The found BENR anomalies can be explained as occurring 

when an existing BEPB injection in a task hid the symptoms of a separate BENR injection in 
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the same task. The anomalies in the results were manually investigated to provide an 

illustration that there were no defects in the algorithm. 

 

FIGURE 4.3.2 WCET absorbtion 

Figure 4.3.2 demonstrates the absorption of a WCET overrun injection. Inspection 

revealed unexpected behavior that related to the algorithm and the simulated system that was 

not the result of a defect in the instrument. In every occurrence of WCET overrun 

injections where the task halted at time T1, the WD started at time T2 while the task was still 

halted. At time T3, the WD restarted the task and the WCET overrun injection was 

absorbed in time T4. 

The inspection of BENR anomalies showed that if a BEPB injection occurred in the same 

task before BENR, the latter was absorbed. With this reasoning, we concluded that the 

algorithm had no significant defects. 

The instrument was tested to confirm no faults except the intentionally injected existed. 

To validate this as an addition to the 10 test cases, the instrument was running over a log file 

from a simulation with no injected defects, and it was confirmed that it found no faults. 

The instrument test set contained ten separate tests to detect uncommon anomalies that 

could have been missed using a single test. The fixed-size buffer on flash memory was 

logarithmically increased to ensure that the results were not changed by chance alone. The test 

results generated by the instrument were summarized. 

The tests of the instrument test set were manually compared against the 

ground truth to confirm that the tool is accurate. We verified that the injections were actually 

made, which refers to symptoms of appearing in the simulated system’s log. After verifying 
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that the instrument is able to process log data without significant defects, we proceeded with 

the development of the log-selection strategies. 

4.4 Log-selection strategies 

The log-selection strategies were evaluated by measuring how well a strategy was able 

to select log data to be saved, allowing identification of faults that caused deadline misses. 

Smoothing of all measured values was conducted after each fixed size and test by limiting 

each data point to upper and lower values defined by the arithmetic population mean ± 

Standard population Deviation. We used the arithmetic population mean of the smoothed data 

to set the average value for each strategy at all log store sizes. 

Parameters of interest: 

• Size of log store, the examined sizes of log store. 

• Log organization, we store n periods of time. 

• Log content, the log-events that were stored and presented in Table 4.1.3. 

• Selection strategy, how we selected which log entries to save to the log store. 

We examined the performance of each log-selection strategy at log store sizes from 

approximately 4 KiB to 16 GiB. Log data were stored in n task cycles with log-events, 

namely the fixed-size buffer in bytes divided by log-event size of 20 bytes. 

 

FIGURE 4.4.1 Strategy template 
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 Figure 4.4.1 demonstrates the main functionality for all strategies. The difference 

between the strategies is the executions that occur under the numbers 1 to 9, which represents 

the types of log entries as Table 4.1.2 describes. The log entries are the same as the task 

structure in the simulated system and thus must be the main functionality in all strategies. 

The thesis statement indicates that we first will create a general method that works, 

which section 4.3 demonstrates. Strategy 1 is a simple algorithm that we use as a baseline. 

Strategy 2 is based upon strategy 1 and is improved by using a different method for selecting 

fewer log-events but is still able to identify faults that caused a deadline miss. Strategy 3 is 

further optimized by reducing its complexity regarding both time and space complexity, and 

using an adjusted method for choosing what to log. All log-events in a task’s buffer were 

discarded when a knock-on was discovered in all strategies. 

4.5 Strategy 1 

 

FIGURE 4.5.1 Strategy 1 pseudocode 

Figure 4.5.1 demonstrates the functionality of log-selection strategy 1. The strategy 

processes the static log-file from entries representing the earliest simulated time to entries 

representing the latest simulated time. 
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Deadline misses were detected at either Task dlmiss or WD restart in Figure 

4.5.1. At Task dlmiss, two things were performed, adding the log-event to the task buffer 

and adding the failure to the failures array. 

A knock-on was detected and identified at Task return and Task dlmiss in 

Figure 4.5.1. The number of knock-ons that was identified represented on average 80 % of the 

total number of deadline misses. Since our simulated system had 0.99 utilization it was not 

possible to determine if a deadline miss was a knock-on without performing most of the 

checks, which resulted in the conclusion that approximately the same amount of processing 

power was required. 

A cause could be identified at multiple places in strategy 1, all task cycles that 

contained one or more causes were saved in a dynamic array for later evaluation. The final 

check for causes was conducted at number 6, task return, to limit the number of checks 

against the arrays for failures and causes. 

When the check for causes showed the occurrence of one or more errors, the log-

events of that task cycle were moved to the page-file in random access memory 

(RAM). After the log-events had been written to the fixed-size buffer on flash memory and 

when it was full, the strategy stopped the logging and returned the values for all comparisons. 
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4.6 Strategy 2 

 

FIGURE 4.6.1 Strategy 2 pseudocode 

Figure 4.6.1 shows the functionality of log-selection strategy 2. Strategy 2 is optimized 

regarding the selection of log-events compared to strategy 1. We observed that not all types of 

log-events saved in strategy 1 were needed to be able to identify what caused a deadline miss. 

Not all log-events of type task switch were saved after a closer inspection 

revealed that it was only needed for a preempted task. When the log-event for a preempted 

task was saved, the worst case execution time overruns could be correctly detected by the 

instrument. When it was not, the instrument missed the fault. We concluded that the log-event 

was needed to reproduce the execution time calculations in such cases. 

The log-event task wait was only saved after a task had started its execution. 

Finally, the log-event task sleep did not facilitate finding faults. Checks later in 

simulated time revealed the same information. While developing this strategy, a substantial 

amount of tests were conducted to validate that the removal of these log-events did not 

negatively impact the instrument’s ability to find faults. The conclusion is that the results 

were equally accurate and provided additional space for more log-events. 
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4.7 Strategy 3 

 

FIGURE 4.7.1 Strategy 3 pseudocode 

Figure 4.7.1 shows the functionality of log-selection strategy 3. Strategy 3 is optimized 

regarding the selection of log-events compared to strategy 1 and strategy 2. The lessons 

learned during early evaluation of those strategies prompted the improvements that resulted in 

strategy 3. 

Because strategy 3 is an optimization of strategy 2, we describe it in in terms of its 

difference from strategy 2. Only certain log-events of type WD running were saved, namely 

when the simulated time was higher than its next release time, and when the execution of a 

task started. Additionally, log-events of type WD running after a WD restart were 

omitted. As an example, the BENR always resulted in a WD restart log-event. Only certain 

log-events of type task dlmiss were saved, namely those that did not follow a WD 

restart, since the same deadline cannot be missed twice. 
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Strategy 3 commits the described log-events above to the in-RAM storage until in-

RAM storage is exhausted and then commits the log-events to permanent storage on flash 

memory. It commits a page of log-events at a time to permanent storage until permanent 

storage is exhausted and then starts overwriting the first page of permanent storage and is 

increased incrementally. 

Additionally, strategy 3 was optimized in the task return log-event processing. A 

check for two or more task return log-events which were used to determine if a buffer 

should be discarded or not when a constant size instead of a dynamic size were used. All 

dynamic checks were changed to fixed-size checks with 𝑂 𝑐  space complexity, where c is a 

constant storage space of log-events and used variables allocated in the in-RAM buffer.  



 

 

37 

 

5 RESULTS 
The log selection strategies were compared based on three aspects as the scientific 

method of the study. Each section is connected to a hypothesis: H1 to 5.1, H2 to 5.2, and H3 

to 5.3. 

5.1 Execution time per simulation 

 

FIGURE 5.1.1 Execution time of a whole simulation for log store sizes from approximately 4 KiB to 4 MiB. 
Figure 5.1.1 and Figure 5.1.2 demonstrates the execution time measurements at different 

log store sizes for all strategies. The execution time represents the time duration for a whole 

simulation to complete at a specific log store size for each log-selection strategy. The results 

showed that strategy 1 had the least execution times up to log store size 1.99 MiB. At the log 

store sizes 1.99 MiB and 3.98 MiB, strategy 3 had the least execution time. 

 

FIGURE 5.1.2 Execution time of a whole simulation for log store sizes from approximately 8 MiB to 16 GiB. 
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TABLE 5.1.1 Wilcoxon signed ranks test for hypothesis H1 

 

Table 5.1.1 shows that the mean rank from strategy 1 is less than mean rank from strategy 

2. The figure also shows that the mean rank from strategy 3 is less than mean rank from 

strategy 1. This suggest that strategy 3 is using less processing power compared to strategy 2 

and strategy 1. 

TABLE 5.1.2 Test statistics for hypothesis H1 

 

Table 5.1.2 shows that the 1-tailed p-value between strategy 1 and strategy 2 is less than 

α = 0.01. Thus, we reject the null hypothesis H10. The 1-tailed p-value between strategy 3 and 

strategy 1 is less than α = 0.01. Thus, we reject the null hypothesis H11. Both null hypotheses 

for H1 are rejected, and the alternative hypothesis H1a is accepted. 
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5.2 Ability to detect deadline misses 
 

 

FIGURE 5.2.1 Detected deadline misses at log store sizes from approximately 4 KiB to 4 MiB. 

Figure 5.2.1 and Figure 5.2.2 illustrate the number of deadline misses the instrument 

found in the filtered log data. At all log store sizes, strategy 1 resulted in the fewest deadline 

misses found, strategy 2 the next fewest, and strategy 3 the most. 

 

FIGURE 5.2.2 Detected deadline misses at log store sizes from approximately 8 MiB to 16 GiB. 
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TABLE 5.2.1 Wilcoxon signed ranks test for hypothesis H2 

 

Table 5.2.1 shows that the mean rank from strategy 1 is lower than the mean rank from 

strategy 2. The figure also shows that the mean rank from strategy 2 is lower than the mean 

rank from strategy 3. This suggests that strategy 3 resulted in finding more deadline misses 

than strategy 2 or strategy 1. 

TABLE 5.2.2 Test statistics for hypothesis H2 

 

Table 5.2.2 shows that the 1-tailed p-value between strategy 1 and strategy 2 is less than 

α = 0.01. Thus, we reject the null hypothesis H20. The 1-tailed p-value between strategy 3 and 

strategy 2 is lower than α = 0.01. Thus, we reject the null hypothesis H21. In conclusion, this 

means that strategy 2 succeeded in finding more deadline misses than strategy 1, and strategy 

3 resulted in finding more deadline misses than strategy 2. Both the null hypotheses have been 

rejected thus we accept the alternative hypothesis H2a. 
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5.3 Ability to correctly identify the causes 

 

	  

FIGURE 5.3.1 Identified causes at log store sizes from approximately 4 KiB to 4 MiB. 

Figure 5.3.1 and Figure 5.3.2 illustrates the number of faults the instrument found in 

the filtered log data. At all log store sizes, strategy 1 facilitated finding the fewest 

identified causes, strategy 2 the second fewest, and strategy 3 the most. 

 

	  

FIGURE 5.3.2 Identified causes at log store sizes from approximately 8 MiB to 16 GiB. 



 

 

42 

 

TABLE 5.3.1 Wilcoxon signed ranks test for hypothesis H3 

	  

Table 5.3.1 shows that the mean rank from strategy 1 is lower than the mean rank 

from strategy 2. The figure also shows that the mean rank from strategy 2 is lower than 

the mean rank from strategy 3. This suggests that strategy 3 found more identified causes 

than either strategy 2 or strategy 1. 

TABLE 5.3.2 Test statistics for hypothesis H3 

	  

Table 5.3.2 shows that the 1-tailed p-value between strategy 1 and strategy 2 is less 

than α = 0.01. Thus, we reject the null hypothesis H30. The 1-tailed p-value between 

strategy 3 and strategy 2 is less than α = 0.01. Thus, we reject the null hypothesis H31. In 

conclusion, this means that strategy 2 found more identified causes than strategy 1, and 

strategy 3 found more identified causes than strategy 2. Both the null hypotheses have 

been rejected and thus we accept the alternative hypothesis H3a. 
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5.4 Threats to validity 

This section presents a number of threats to the validity of the thesis. Internal validity 

refers to how well a relationship is established between cause and effect, i.e. if the input to the 

log-selection strategies caused the outcome to happen. External validity refers to the 

possibility of generalizing the results of the study to a setting or system in the real world, i.e. 

will the results be similar when the real world is used as a reference. 

There are two main threats to the internal validity of the study. The first threat is that the 

study only evaluates a limited number of faults and task sets. The limitations of only testing a 

couple of fault types, is that one might miss important relationships between different types of 

faults. This study does not concern other types of errors, meaning that we cannot know which 

log strategies are best for other types of errors. Other types of errors might be communication 

errors, hardware errors and similar errors. The selected error type was chosen because it is a 

common error in real-time systems. The selection of tasks may have made them not 

applicable to systems with a different task set since we have not evaluated other task sets or 

systems. In this experiment, only one task set was chosen. The reason for selecting one task 

set was the time limitations for this experiment. 

The effect of not adding more types of faults is that the experiment would be further 

away from reality and results would be less accurate. The impact on the conclusions of not 

adding more types of faults would result in lower reliability of the results. The significance of 

the hypotheses would be less credible if only one kind of fault was injected. The impact of not 

adding more task sets on the conclusions is small, since we have control over all variables and 

know their relationships. However, adding more task sets is desirable, since it would increase 

the reliability of the results. The experiment was planned to begin with only a few types of 

faults, and then add more faults if time allowed. At first, only one kind of fault was injected, 

WCET overruns. To increase the internal validity of the thesis, an additional kind of fault 

was injected, namely bit error. A bit error can manifest itself as either BEPB, or BENR. The 

experiment leading to the results are well controlled and explained in detail in the scientific 

method. 

The second threat to the internal validity is variations in timings of the elapsed time per 

simulation and log-selection strategy. There are two main factors that might affect the 

variations in timing: delays on the system that the simulated system is tested on, and 
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smoothing of measured values. RAM, cache, and other delays in the host system that the 

simulated system is tested on, affect the measured time per simulation and log-selection 

strategy. During time measurements, it is still possible for other processes in the used system 

and other threads in the instrument to use processor time. The simulation software’s execution 

time is affected by these or similar issues.  

The smoothing of all measured values affected the results, as it removed the outlying 

values from the data. Its impact on the conclusions is small, since we have control over all 

variables and know their relationships. The outliers in the sampled data are most likely caused 

by hardware variations in time or system delays during each system runtime observation. The 

reason for removing the outliers was that the first run for all strategies produced anomalies in 

time. Tests were made to see if pre-allocating the buffer removed this behavior, and it did. 

The impact on the conclusion if the log-selection strategies had been applied as a filter on the 

simulated system would be that they would not have been observing the same data. To solve 

that issue, static log-files and dynamically allocated buffers were used. The conclusion was 

that this was most likely the result of the buffers not being pre-allocated, and the chosen 

solution was smoothing the outliers. The effect of removing the outliers was that the mean 

time became more accurate. The time scale of the outliers was very large and hence when 

removing them the mean became lower. 

To minimize variations in timings, the average time of all observations per log store size 

was used. When performing an experiment based on observations in the simulated system, 

observations are made several times to generate multiple data points. First, n observations are 

conducted and then the total time of all observations is divided by n to get more reliable 

results. This procedure was performed on all tests at all log store sizes. All log-selection 

strategies were forced to execute on a single core and their thread priority was set to the 

second highest to reduce the effect on variations in timings. The experiment leading to the 

results are well controlled and explained in detail in the scientific method. The types of 

validation are empirical evaluation through simulation, and benchmarks to measure elapsed 

time per simulation. 

There are two main threats to the external validity of the study. The first threat is 

hardware, i.e. if the results in this experiment can be generalized to a system having different 

central processing unit (CPU).  The main factor that might affect it is different 

machine code.  
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When using a real system with a different CPU than the one used in this experiment, 

different machine-code is generated. Since different CPU’s have different instruction sets, we 

cannot guarantee that the results will be the same on such systems. An example of this can be 

different architecture of the CPU, e.g. x86 and x64. Another difference can be that the endian 

might be different, e.g. big-endian or little-endian. The impact this can have on the results is 

not known at this point since tests have not been conducted. However, it would be valuable to 

perform such tests to investigate potential changes in the results. 

As our experiment is conducted using a simulator, the level of abstraction is higher and 

the level of complexity is lower compared to a real system. If important details of the 

simulated systems’ behavior are missing, the results will be less accurate and less reliable 

compared to results in a real system. The results are only generalizable with respect to the 

explicit assumptions in this experiment. When other variables are considered the external 

validity cannot be guaranteed. 

The second threat to external validity is software, i.e. if the results can be generalized and 

used on other software platforms or programming languages. Similar to using a different 

CPU, using another operating system or programming language will yield in a different 

machine-code.  In this experiment, both C and C# was used to develop the log-selection 

strategies. Since C does not have a runtime, using C# would add significant overhead in 

execution time. For that reason, C# was only used for generating the code, and when the code 

was working as expected the C code was created. A compiler can generate different machine 

code using different programming languages or operating systems. 

Other operating systems or programming languages other than C and C# has not been 

tested; we cannot guarantee that the results will be the same using another system or 

programming language. The results are only generalizable with respect to the explicit 

assumptions in this experiment. When other variables are considered, the external validity 

cannot be guaranteed. All log-selection strategies are most likely affected in the same manner, 

even if other hardware or software are used. Different combinations of software and hardware 

will have a different result if a log-selection strategy is compared to itself using a different 

setting. The internal relationship between all log-selection strategies will most likely be 

identical despite the platform and programming language used. The big O analysis provides 

support for the claim that their internal relationship is most likely identical.  



 

 

46 

 

6 SUMMARY AND CONCLUSIONS 

The purpose of this study is to determine what should be logged in an embedded real-

time system. To investigate this, we created an instrument that could identify selected faults 

from log data and used it to evaluate three logging strategies. To gain confidence that the tool 

worked correctly, we injected faults into a simulated system and compared the tool’s output to 

the ground truth. The injected faults were WCET overrun, BEPB, and BENR as defined in 

section 4.2. The results show that the instrument correctly identified the majority of injected 

faults, but there were anomalies. The anomalies were investigated, and found to be benign. 

After validating the instrument, we used it to assess three log-selection strategies. 

Strategy 1 was to log all types of log entries. This gave the shortest execution time of all the 

strategies below 1.99 MiB, but the strategy yielded log that revealed the fewest deadline 

misses and identified causes. Strategy 2 is optimized to save fewer types of log entries, 

omitting information that did not help to identify deadline misses or their causes. Strategy 3 

saves even fewer types of log entries than strategy 2. Strategy 3 is optimized for shorter 

execution times: it minimizes the number of loops in its algorithm by using allocations with a 

constant size instead of a dynamic size. 

Hypothesis H1 was that strategy 3 used the least processing power. The conclusion that 

Strategy 3 uses the least processing power is supported by a Wilcoxon Signed Rank Test at a 

significance level 0.01. 

Hypothesis H2 was that strategy 3 facilitates detecting the most deadline misses. The 

conclusion that Strategy 3 facilitates detecting the most deadline misses was also supported 

by a Wilcoxon Signed Rank Test at a significance level 0.01. 

Hypothesis H3 was that strategy 3 facilitates detecting most faults that result in deadline 

misses. The conclusion that Strategy 3 facilitates identifying the most causes holds by a 

Wilcoxon Signed Rank Test at a significance level 0.01. 

Our conclusion is that log-selection strategy 3 is the best of the three for choosing the 

data to log for retaining the log records in a limited space and is most helpful in identifying 

faults.  
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7 FUTURE WORK 

The study could be widened by including more types of failures and faults to 

investigate any significant changes in the results. Examples of relevant faults that can be 

added are period inversion, best case execution time underrun, release jitter, and delays of 

different kinds. It is possible that a strategy optimized for only three kinds of faults will not be 

generally optimal. 

An interesting approach to improve algorithms would be changing all functions by 

using mathematical shortcuts to decrease the running time of the algorithms. If applied as a 

filter on a simulator, one could see if there are immediate changes. The algorithms in this 

study are directly applicable to such a scenario. 

To assess the compression ratio between existing log-data in an unchanged format on 

a running system, output data is optimized by applying a compression algorithm. This is a 

possible extension of the study. This could lead to significant differences in needed storage 

space in a real-time system and will have potential effect on runtime. 

In this study testing is performed in a simulator, and it would be valuable to evaluate 

the results using a real system. By collaborating with companies like Volvo, ABB, or Scania, 

we could get the opportunity to test an improved solution in their embedded real-time 

systems. This would enable study of the behavior using a real system, since reality differs 

from simulation. 
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