

MASTER THESIS IN
COMPUTER SCIENCE

30 CREDITS, ADVANCED LEVEL A2E

School of Innovation, Design and Engineering

Log-selection strategies in a
real-time system

Author
Niklas Gillström

June 6, 2014

	
Advisor
Dr Iain Bate
Department of Computer Science,
University of York.
Visiting Professor at
School of Innovation, Design and
Engineering, Mälardalen University.

Advisor
Dr Patrick Graydon
School of Innovation, Design and
Engineering, Mälardalen University.

Examiner
Prof. Sasikumar Punnekkat
School of Innovation, Design and
Engineering, Mälardalen University

1

ABSTRACT

This thesis presents and evaluates how to select the data to be logged in an embedded real-

time system so as to be able to give confidence that it is possible to perform an accurate

identification of the fault(s) that caused any runtime errors. Several log-selection strategies

were evaluated by injecting random faults into a simulated real-time system. An instrument

was created to perform accurate detection and identification of these faults by evaluating log

data. The instrument’s output was compared to ground truth to determine the accuracy of the

instrument. Three strategies for selecting the log entries to keep in limited permanent memory

were created. The strategies were evaluated using log data from the simulated real-time

system. One of the log-selection strategies performed much better than the other two: it

minimized processing time and stored the maximum amount of useful log data in the available

storage space.

Keywords: Log-selection strategy, embedded real-time system, worst case execution time

overrun, bit error, deadline miss, Fault injection.

SAMMANFATTNING

Denna uppsats illustrerar hur det blev fastställt vad som ska loggas i ett inbäddat

realtidssystem för att kunna ge förtroende för att det är möjligt att utföra en korrekt

identifiering av fel(en) som orsakat körningsfel. Ett antal strategier utvärderades för loggval

genom att injicera slumpmässiga fel i ett simulerat realtidssystem. Ett instrument

konstruerades för att utföra en korrekt upptäckt och identifiering av dessa fel genom att

utvärdera loggdata. Instrumentets utdata jämfördes med ett kontrollvärde för att bestämma

riktigheten av instrumentet. Tre strategier skapades för att avgöra vilka loggposter som skulle

behållas i det begränsade permanenta lagringsutrymmet. Strategierna utvärderades med

hjälp av loggdata från det simulerade realtidssystemet. En av strategierna för val av loggdata

presterade klart bättre än de andra två: den minimerade tiden för bearbetning och lagrade

maximal mängd användbar loggdata i det permanenta lagringsutrymmet.

2

INDEX OF FIGURES

Figure 2.1.1 Dependability Taxonomy (Algirdas, Laprie, & Randell, 2001) .. 8
Figure 2.1.2 Simulated task pseudocode ... 9
Figure 2.2.1 An example algorithm with the order of n time complexity .. 10
Figure 3.4.1 Manipulation functions ... 18
Figure 3.5.1 Experimental setup ... 20
Figure 4.1.1 Simulated system ... 21
Figure 4.1.2 Task details format .. 22
Figure 4.1.3 Log-event format ... 23
Figure 4.1.4 Processor utilization factor .. 24
Figure 4.2.1 Worst Case Execution Time overrun .. 25
Figure 4.2.2 Bit Error on Period Began .. 26
Figure 4.2.3 Bit Error on Next Release ... 26
Figure 4.3.1 Fault injection results ... 29
Figure 4.3.2 WCET absorb .. 30
Figure 4.4.1 Strategy template .. 31
Figure 4.5.1 Strategy 1 pseudocode .. 32
Figure 4.6.1 Strategy 2 pseudocode .. 34
Figure 4.7.1 Strategy 3 pseudocode .. 35
Figure 5.1.1 Execution time of a whole simulation for log store sizes from approximately 4 KiB to 4 MiB. 37
Figure 5.1.2 Execution time of a whole simulation for log store sizes from approximately 8 MiB to 16 GiB. 37
Figure 5.1.3 Detected deadline misses at log store sizes from approximately 4 KiB to 4 MiB. 39
Figure 5.1.4 Detected deadline misses at log store sizes from approximately 8 MiB to 16 GiB. 39
Figure 5.1.5 Identified causes at log store sizes from approximately 4 KiB to 4 MiB. ... 41
Figure 5.1.6 Identified causes at log store sizes from approximately 8 MiB to 16 GiB. 41

INDEX OF TABLES

Table 4.1.1 Task details ... 22
Table 4.1.2 Log-event variables .. 23
Table 4.1.3 Types of log entries ... 24
Table 5.1.1 Wilcoxon signed ranks test for hypothesis H1 .. 38
Table 5.1.2 Test statistics for hypothesis H1 ... 38
Table 5.1.3 Wilcoxon signed ranks test for hypothesis H2 .. 40
Table 5.1.4 Test statistics for hypothesis H2 ... 40
Table 5.1.5 Wilcoxon signed ranks test for hypothesis H3 .. 42
Table 5.1.6 Test statistics for hypothesis H3 ... 42

3

TABLE OF DEFINITIONS

The table of definitions describes the meaning of words and abbreviations used throughout

the thesis. The page on which a definition is first used is also given.

Definition Description Page

Fault The cause to an error in a system. For example, code that

results in an error.

5

Error The manifestation of a fault that causes an unwanted behavior

of the system e.g. a worst case execution time overrun.

5

Failure The system is not performing according to the expected

behavior.

5

Failure chain A chain of failures caused by faults in a system, which can

lead to a failure and then to more failures.

5

NFF No Faults Found, i.e. could not identify the cause to a failure. 6

FPPS Fixed-Priority Preemptive Scheduling. 7

WCET Worst Case Execution Time, the maximum length of time a

task or set of tasks requires to execute.

9

WCET overrun A task exceeds its maximum pre-defined execution time. 9

BEPB A Bit Error on Period Began. 9

BENR A Bit Error on Next Release. 9

WD Watchdog, an electronic timer to detect and recover from

timing malfunctions.

22

Log-event A collection of variables in a fixed order. 23

log-file A static file with a finite number of log-events. 23

RAM Random access memory. 33

CPU Central processing unit. 44

4

TABLE OF CONTENTS
 ABSTRACT 1	

 SAMMANFATTNING 1	

 INDEX OF FIGURES 2	

 INDEX OF TABLES 2	

 TABLE OF DEFINITIONS 3	

 1	 INTRODUCTION 5	

1.1	 Motivation ... 5	
1.2	 Purpose ... 7	
1.3	 Thesis statement ... 7	
1.4	 Thesis outline .. 7	

 2	 BACKGROUND THEORY 8	

2.1	 Real-time systems .. 8	
2.2	 Big O complexity ... 10	
2.3	 Statistical hypothesis testing .. 11	
2.4	 Related work ... 13	

 3	 SCIENTIFIC METHOD 15	

3.1	 Hypotheses ... 15	
3.2	 Instrument for measurement ... 16	
3.3	 Collection of empirical data .. 17	
3.4	 Manipulation of variables ... 18	
3.5	 Validation and analysis of data .. 19	

 4	 DEVELOPMENT OF INSTRUMENT 21	

4.1	 System model .. 21	
4.2	 Instrument development ... 25	
4.3	 Validation of the instrument ... 28	
4.4	 Log-selection strategies .. 31	
4.5	 Strategy 1 .. 32	
4.6	 Strategy 2 ... 34	
4.7	 Strategy 3 ... 35	

 5	 RESULTS 37	

5.1	 Execution time per simulation ... 37	
5.2	 Ability to detect deadline misses ... 39	
5.3	 Ability to correctly identify the causes ... 41	
5.4	 Threats to validity .. 43	

 6	 SUMMARY AND CONCLUSIONS 46	

 7	 FUTURE WORK 47	

 8	 REFERENCES 48	

5

1 INTRODUCTION

1.1 Motivation

Software for embedded real-time systems is frequently engineered in accordance to an

appropriate standard. Even if it is certified to conform to that standard, software might fail.

Achieving adequate quality requires investigating these failures and improving the software

where needed. In the system monitoring area, there is little research on planning logs to

support the identification of the main cause of a failure/error, i.e. the initial fault. This is an

important part of embedded real-time systems that needs more research, and important factors

to minimize the defects that software can cause in a system. A time-consuming activity for

developers of embedded real-time systems is manually finding the causes of failures that are

reported by their users; thus it is important to have valid scientific results that can help in

deciding which logging strategies are more optimal. Since it is hard to perform a scientific

experiment necessary for evaluating the different logging strategies in a real system due to its

high complexity, a simulator based approach was used.

In order to determine the most optimal log-selection strategy, both failures and their

causes need to be found, which comprises a series of events (Algirdas, Laprie, & Randell,

2001). Fault is the cause of an error in a system. Error is the manifestation of the fault

that causes an undesirable behavior of the system. Failure is when a system is not

performing according to the expected behavior. A failure chain is a chain of failures,

which are faults in a system that lead to a failure, which in turn leads to more failures. There

are a number of combinations of faults that can result in failures. The types of faults in the

timing domain for tasks are the following: a task finishes too early, a task finish too late, and

task omission.

Tracing an error to its initial fault before it results in a failure requires identifying errors

and investigating their causes. Identifying faults from log data requires that sufficient

information has been logged (Laprie, 1995). The amount of log data that can be kept is

limited due to an embedded system’s limited storage space. Filtering logs is constrained by a

system’s processing power. These limits necessitate optimizing what log data is kept. With

minimal resources in an embedded real-time system, it is not feasible to detect faults during

6

run-time by the real-time system scheduler, which comes at the cost of increased processing

power and time.

To identify the root-cause of an error, three steps need to be performed: detect the

unwanted behavior, categorize that behavior, and finally identify what caused the detected

behavior. Detecting unwanted behavior is easier than identificaton of what caused the

behavior.

The difference between detection and identification of the root-cause of an error can

easily be misunderstood. The difference can be explained through the following example: A

failure is detected in task t2 through the observation of a deadline miss, which means we know

something happened. Then a software related failure that caused a deadline miss is noticed,

which means we now know what happened. On further examination of log data, a worst case

execution time overrun is observed in task t1, which did run before task t2 that missed its

deadline. One can then identify that task t1 caused the deadline miss in task t2 by the worst

case execution time overrun.

An error needs to be detected in order to be identified, and one technique is described

in (Mok & Liu, 1997), which was to use a constraint violation technique for error detection.

In their work, they set a number of constraints and implemented a JRTM (Java Run-time

Timing Constraint Monitor) with low overhead, which they claim can catch any violations of

the specified timing constraints.

Accurately identifying the cause of a failure is difficult. Today, investigation often

reports No Faults Found (NFF). NFF implies that a failure did occur during the

execution of a program, and that a failure or fault could not be found when analyzing the

cause of the failure. NFF is by far the most common outcome of investigation, and airlines

voted this “the most important issue” (Burchell, 2007). According to recent studies (Hockley

& Phillips, 2012), NFF is still the most common outcome of investigations. Investigating how

to choose what to log in an offline system could provide insights on how to detect more

dangerous faults, reducing the incidence of NFF.

A study that would take all possible failures and faults into consideration would have

infeasible complexity. The faults and failures investigated in this study are worst case

execution time overruns, bit errors in release time calculations, and deadline misses. We leave

extending this work to other faults and failures to future work.

7

Furthermore, it would not be feasible to monitor all types of faults and log these, due

to the limited resources available in an embedded real-time system (Avizienis, Laprie,

Randell, & Landwehr, 2004). This would require constant monitoring and logging even when

no failures are present in the embedded real-time system. There is also a possibility that a

worst case execution time overrun does not result in a deadline miss. Logging all activity to

find these would require more log-file space and processing power than is available in real

systems. A more feasible strategy is to log only a set of Real-Time Operating System (RTOS)

events and system calls selected to maximize the chance of capturing details that identify the

fault.

A commonly used scheduling algorithm in embedded real-time systems is Fixed-

Priority Preemptive Scheduling (FPPS), which means that research based on

it will provide insight into other systems that use FPPS. In the FPPS algorithm, the scheduler

guarantees that the processor executes the task that has the highest priority of all tasks that are

available for execution at any given time.

1.2 Purpose

The purpose of this study is to determine what data should be logged in an embedded

real-time system while still being able to accurately identify the cause of an error from the

saved log data. An optimum strategy for achieving this is devised.

1.3 Thesis statement

The problem that needs to be solved is selecting a highly effective way to determine

what data should be logged so as to maximize the chance of accurately identifying the cause

of the error from the log data. Embedded targets usually have limited resources available for

storing log files or processing log entries. At first we assume there are minor resource

limitations in order to be able to create a general method that works, and then look to optimize

the resource usage. We are also simultaneously trying to optimize the resource usage to store

the largest amount of useful data using the least amount of space.

1.4 Thesis outline

The rest of the thesis is organized as follows. Chapter 2 presents the theory needed for

understanding the basics of the thesis. Chapter 3 describes the method used to conduct the

study in a structured and reliable way. Chapter 4 describes how the instrument was created

and its accuracy validated. Chapter 5 presents the results and reflections on the results in

relation to the presented problem. Chapter 6 presents a summary of the research, conclusions

made and explanations of hypotheses. Chapter 7 discusses directions for future work.

8

2 BACKGROUND THEORY
The purpose of the background is to provide sufficient information for the reader to

understand key concepts dealt with in the rest of the thesis. Big O complexity describes the

limiting behavior of functions used in this paper which have trends that move towards infinity.

Real-time system aims to explain the fundamentals of a real-time system. Statistical

hypothesis testing explains the basics of the hypothesis testing used in the thesis.

2.1 Real-time systems

Real-time systems are systems that must respond within a finite and specified period of

time. It is not the speed that characterizes a real-time system, but the predictability. In order to

have a predictable real-time system, each task has to provide a correct response within its

timing constraints.

FIGURE 2.1.1 Dependability Taxonomy (ALGIRDAS, LAPRIE, & RANDELL, 2001)

Figure 2.1.1 shows the area this study is focusing on, i.e. threats in the dependability

taxonomy (Algirdas, Laprie, & Randell, 2001). Faults, Errors, and Failures relate to the other

aspects of dependability in a number of different ways. However, this study’s focus is threats

and how to identify and store them using minimal resources.

The scheduler controls the queue of tasks to be executed in a real-time system. In FPPS,

every task has a fixed priority. The execution order for tasks is determined by their priority,

which is usually assigned before run-time. A task with higher-priority preempts a lower-

priority task. When a task gives up the processor or is preempted, a context switch occurs.

These context switches are an execution time overhead (Zmaranda, 2011).

Preemption is when a higher-priority process takes control of the processor from a lower-

priority task (Hang, 2010). A job is considered preemptible if its execution can be suspended

9

to switch the execution to other jobs and later resume from where it was interrupted. With

priority-based scheduling, a high-priority task can be released when a task with lower priority

is executing. When a preemptive scheme is used, the system can quickly switch to the higher-

priority task, making high priority tasks more responsive.

Context switching overhead means that it takes a finite amount of time for the operating

system to switch between two jobs. This is an overhead for the scheduler. If jobs are switched

often, the context switching overhead becomes a significant factor as it decreases the

predictability of a real-time system (Zmaranda, 2011).

A task is a schedulable unit of processing consisting of one or more actions. A task is

usually implemented as a process or a thread (Ramaprasad, & Mueller, 2011). A task has a

number of attributes. The Worst Case Execution Time (WCET) is the longest

allowed undisturbed execution time for one iteration of the task. Period is the interarrival

interval for a sequence of periodic events. Offset is the earliest time instant at which the task

becomes executable.

FIGURE 2.1.2 Simulated task pseudocode

Figure 2.1.2 shows the pseudocode for a simulated task. A task contains a number of lines

of code or a set of functions that executes in a predefined order. A task could have any of a

number of kinds of faults. When faults occur they can cause a task to miss its deadline. In

order for a real-time system to work as expected, the deadline of all tasks must be met.

The faults we inject are WCET overruns, Bit Error on Period Began

(BEPB), and Bit Error on Next Release (BENR). WCET overrun occurs

when a task executed longer than expected. Deadline miss occurs when a periodic task

10

executes beyond next_deadline. The injected fault BEPB represents a fault in the

calculation of period_began in the pseudocode, which the scheduler uses initially in the

task function and in the end of each iteration of the infinite loop.

The injected fault BENR represents a fault in the calculation of next_release in the

pseudocode, which the scheduler uses initially and at the end of each iteration of the infinite

loop. This means that the scheduler will release the affected task at the wrong simulated time.

2.2 Big O complexity

Big O notation is used to estimate the worst time or space complexity for an

algorithm. Complexity is the efficiency of an algorithm, how the algorithm scales when input

size n increases (Garey & Johnson, 1979). In our context, input size n is the total number of

log entries processed by a strategy. Variables with constant values do not depend on input size

n and are thus omitted. As only the worst case is considered, magnitudes less than the worst

case magnitude are omitted. Space complexity is storage space required on a flash memory or

other storage related medium to store the values. In this thesis, this is equal to a fixed-size

buffer on flash memory storing m values from the input size n. Output size m is the total

number of log entries written to the fixed-size buffer on flash memory by a strategy. Space

complexity is also the working space in RAM that the algorithm requires to store the values

for input size n, where n is the size of the in RAM buffer used for logging by a strategy. Time

complexity is how much time the algorithm requires to run as a function of the size of the

input (Tarek, 2007). In this thesis, it means the required execution time for a strategy to fill a

fixed-size buffer on a flash memory.

FIGURE 2.2.1 An example algorithm with the order of n time complexity

Figure 2.2.1 demonstrates 𝑇 𝑛 ∈ 𝑂 𝑛 the algorithm has the order of n time

complexity, which is the same as the algorithm taking linear time to run relative to its input

size n. Input size n is the total number of log entries processed by a strategy. Among other

used complexities in this thesis is 𝑆 ∈ 𝑂 1 , the algorithm has order of 1 space complexity,

11

which is the same as the algorithm using constant space to store values relative to its input

size n.

𝑇 ∈ 𝑂 𝑛 time complexity means minimal resource usage in terms of processing

power, where n is the number of processed log-events. However, one could claim that the

practical time complexity is 𝑇 ∈ 𝑂 𝑐 , where c is the constant execution time required to

process a log-event. This claim is true when log-events are delivered incrementally by a

scheduler instead of being delivered all at once to a strategy as in this experiment. 𝑇 ∈ 𝑂 𝑐

is true because the instrument is processing a task’s log-events in a loop, when applied as a

filter it executes in constant time since the loop is then in the scheduler.

Choosing what to log in limited space is related to Big O complexity since the

working space complexity is 𝑂(𝑛) using minimal resources in terms of the in-RAM buffer,

where n is the number of processed log-events. However, this is not related to the number of

log-events stored simultaneously. A strategy needs to process all log-events in order to be

helpful in identifying dangerous faults; otherwise a vital log-event can be missed. The

minimal complexity for the number of simultaneously stored log-events in a strategy

is 𝑆 ∈ 𝑂 𝑐 , where c is a constant storage space of log-events and used variables in the in-

RAM buffer.

2.3 Statistical hypothesis testing

An experiment has both Independent Variables (IV) and Dependent

Variables (DV). The IV is manipulated by the researcher, and the DV gets influenced

by changes in the IV. The IV is the cause and the DV is the effect.

A hypothesis is a claim or statement about a property of a population (Javanmard &

Montanari, 2013) made from observing a sample. One or more significance tests can be

conducted for one hypothesis, to provide additional evidence against the null hypothesis. In

order to use a hypothesis to support a claim, the claim can be formulated using negation in the

null hypothesis, so its inverse becomes the alternate hypothesis. In this study, hypothesis

testing is used to support the alternative hypothesis. The rejection of a null hypothesis does

not mean it is false; it shows either the probability of a type I error or the probability that it

occurred by chance alone.

12

The significance level when a test is considered to be statistically significant can be

expressed as the probability that the rejection of a null hypothesis is a mistake (Cox, 2008).

The probability that an event occurred by chance is called p-value where the p-value must be

less than or equal to the hypothesis test value to reject the null hypothesis. The p-value in this

study is 0.01 which is a commonly used value. The value 0.01 is equal to 99% confidence that

this result did not simply happen by chance. In decision theory, it is the opposite, so it is

interpreted as the probability of the rejection that the null hypothesis is a mistake. The

probability of a Type I error is equal to the significance level alpha (α).

A test of significance starts by first defining a null hypothesis H0 and then an alternative

hypothesis Ha. The null hypothesis H0 represents a theory that has been put forward to be used

as a basis for an argument that has not yet been proven. The formulation of the null

hypothesis H0 is the most important and usually implies zero or no change when the subject of

the study is an intervention. The null hypothesis H0 always includes the equal sign, which is ≤,

=, or ≥. The decision to reject or accept is based on the null hypothesis H0. The alternative

hypothesis Ha statement is most likely to be true if the null hypothesis H0 is false. There exist

multiple null hypotheses in this problem: 𝐻!,𝐻!,… ,𝐻! and the alternative hypothesis Ha. The

type of tail-test is two-tailed when the null hypothesis is written with only an equal sign and is

one-tailed when the null hypothesis includes ≤ or ≥.

Wilcoxon Signed Rank Test is a nonparametric alternative for paired sample t-test

(Wilcoxon, 1945). It is used for comparing data from paired sample. It does not require the

data to be normally distributed. Paired data is data that has a one-to-one relationship between

values in the two data sets. Each data set needs to have an equal amount of observations and

each data point can only be related to exactly one observation in the other data set. The mean

rank indicates the direction of change, an example of this is when a negative mean rank from

an initial measure is less than a positive mean rank of an additional measure. This suggests

that the measured values from the last observation is most likely higher than the measured

values from the first observation (Motulsky, 2013).

A Wilcoxon Signed Rank Test evaluates the difference between observations using a

before and after approach. Positive ranks indicate that values after are most likely higher than

before, and the opposite for negative ranks. The test results should be fairly accurate when the

sample size is 16 pairs or greater (Wilcoxon, 1945). A sample size of 23 pairs is used in this

study.

13

2.4 Related work

There seems to be little research on planning logs to support the identification of the

main cause of a failure. However, there are a few similar studies in the area of detecting and

identifying timing related errors. In one of the studies, a software monitor is created by

following the requirement documentation, which according to the author (Peters, 2000) is for

a realistic system. It was discovered that the generated software monitor was able to detect

undetected errors in prior tests. A technique called transformation modes to specify anomalies

that are allowed from the normal actions is used. Although their used approach is not directly

applicable to this thesis because we focus on offline evaluation and they focused on online

evaluation, the study still gives good insight on how to design a monitor that can be used

when detecting failures in a log file.

The study gives a good insight on how to design a monitor that can be used when

detecting failures in a log file, although their used approach is not directly applicable to this

study because we focus on offline evaluation and they focused on online evaluation.

Another paper with an interesting approach that might be of use when designing the

tools in this study is the research performed by (Mok & Liu, 1997), where a language for

specifying timing constraints was created. Using specification in that language in combination

with an algorithm for monitoring, they were able to capture anomalies in the development

phase. They achieved this by first compiling the specifications of the constraints into run-time

system monitoring software. In (Pettersson & Nilsson, 2012), the monitoring is done in a

different way, but contains an interesting approach for using buffers. The concept of capturing

violations at run-time (Mok & Liu, 1997) is an approach that could be used if sufficient

resources are avaliable. A big difference from this study is that their work assumes the

availability of many timers.

To understand different aspects of how a deadline miss can occur in a task set, the

insight from (Regehr, 2002) is of interest, especially the comparison between preemptive and

non-preemptive task sets. Their research revealed that WCET overruns are more likely to

cause a deadline miss when using preemptive scheduling compared to non-preemptive

scheduling. That increased the confidence to use FPPS as the intention is to investigate FPPS

and inject WCET overruns in this study. The illustrations in their paper show the

importance of checking that the scheduling parameters have been properly configured when

setting up task sets in order to increase the validity of the experiment results. Their work

14

differs in a number of ways from this study: their aim is to make non-preemptive task clusters

and they inject 50% release jitter. However, the algorithms created in their work were taken

into account when creating the validation algorithm to make the instrument in this study more

robust.

There are several studies in mutation testing that are relevant to this study. Several

empirical studies (Anand, et al., 2013) show that failure-causing inputs and nonfailure-

causing inputs tend to form continuous blocks. This is particularly valuable knowledge when

designing the log-selection strategies: it can result in strategies with more relevant data in its

buffers. However, the most interesting part of their research is the Adaptive Random Testing

(ART) which takes into account the vast number of manifestations a fault can have examined.

Jia & Harman present a comprehensive survey of mutation testing research that covers

a wide range of theories including equivalent mutant detection and techniques for

optimization (Jia & Harman, 2011). Regression testing in particular is a good approach to

reduce the size of a test set. Some empirical studies showed that a 33% decrease in number of

test sets was possible without any loss of effectivity. This was taken into account during the

selection of what should be logged when optimizing the strategies.

The paper by (McMinn, 2004) contains many interesting parts related to this study in

several ways by using a number of techniques. Execution Time Testing will be used during

the development of the instrument for measurement. There exist a number of other interesting

techniques; the fundamentals of Search-based Execution Time Testing and the Chaining

Approach could be used offline when finding causes to deadline misses. This is taken into

account when creating the validation algorithm.

Assertion Testing (McMinn, 2004) and Exception Condition Testing (McMinn, 2004)

techniques can be used to make the instrument for measurement more robust when

developing, and it results in higher quality of the code of the instrument by using a kind of

exception handling. For testing timing behavior, Execution Time Testing and Search-based

Execution Time Testing (McMinn, 2004) will be considered in this study.

15

3 SCIENTIFIC METHOD
An initial perception of the problem was divided into three hypotheses to be accepted or

rejected. This chapter explains the method used for conducting the experiment.

3.1 Hypotheses

The problem statement is divided into three claims comprising multiple null hypotheses

and an alternative hypothesis for each claim. The hypotheses are related to choosing what to

log so as to retain log records in a limited space that will be most helpful in identifying faults

by validating collected data for determining the existence of an optimal log-selection strategy.

Each hypothesis will provide support for the optimal strategy in relation to what is tested. The

proposed hypotheses will focus on: execution time per simulation (H1), ability to detect

deadline misses (H2), and ability to correctly identify the causes (H3). Strategy 1 stores

everything, strategy 2 stores fewer types of log events than strategy 1, and strategy 3 stores

the least types of log events. Section 4.5 - 4.7 provides a more detailed description of the

strategies.

Hypothesis H1 is that strategy 3 requires the least execution time at each log store size.

H10: Strategy 1 mean rank ≥ Strategy 2 mean rank.

H11: Strategy 3 mean rank ≥ Strategy 1 mean rank.

H1a: Strategy 3 mean rank < Strategy 1 mean rank < Strategy 2 mean rank.

A rejection of the null hypotheses H10 and H11 indicates that the mean rank for strategy

1 and 2 is higher than the mean rank for strategy 3. This means the rejections provide support

that strategy 3 is executing simulations in significantly less time than strategy 2 and strategy

1. If H10 is rejected it means that strategy 2 is executing simulations in significantly more

time than strategy 1. If both H10 and H11 are rejected it means that strategy 1 is executing

simulations in significantly more time than strategy 3. Thus, strategy 2 also executes in more

time than strategy 3. Hypothesis H1 is related to the goal of using the least practical amount

of processor resource on the embedded target.

Finding more deadline misses with one or more identified causes relates to how well a

strategy stores the most relevant log data in the permanent storage. Thus, hypothesis H2 is

16

related to the goal of not requiring more permanent storage resource on the embedded target

by being more efficient in the selection of log data to commit.

H20: Strategy 2 mean rank ≤ Strategy 1 mean rank.

H21: Strategy 3 mean rank ≤ Strategy 2 mean rank.

H2a: Strategy 3 mean rank > Strategy 2 mean rank > Strategy 1 mean rank.

A rejection of the null hypotheses H20 and H21 indicates that the mean rank for

strategy 1 and 2 is higher than the mean rank for strategy 3. This means that strategy 3 stores

significantly more log data relevant to deadline misses than strategy 1 and strategy 2. If H20 is

rejected it means that strategy 1 stores significantly more log data relevant to deadline misses

than strategy 2. If both H20 and H21 are rejected it means that strategy 2 stores significantly

more log data relevant to deadline misses compared to strategy 3. Thus, strategy 3 also stores

significantly more log data than strategy 1.

Hypothesis H3 is that strategy 3 identifies the most injections in all simulations. A

rejection of the null hypotheses H30 and H31, means that the mean ranks for strategy 1 and 2

are higher than the mean rank for strategy 3. This means that strategy 3 identifies significantly

more injections than either strategy 1 or strategy 2.

H30: Strategy 2 mean rank ≤ Strategy 1 mean rank.

H31: Strategy 3 mean rank ≤ Strategy 2 mean rank.

H3a: Strategy 3 mean rank > Strategy 2 mean rank > Strategy 1 mean rank.

If H30 is rejected it means that strategy 1 identifies significantly more injections than

strategy 2. If both H30 and H31 are rejected it means that strategy 2 is identifying significantly

more injections than strategy 3. Thus, strategy 3 also identifies significantly more injections

than strategy 1. Hypothesis H3 is related to the goal of selecting the log entries that contain

the most useful information in terms of finding faults which enables optimizing of the

resource usage in order to store an optimal set of log data.

3.2 Instrument for measurement

The instrument for measurement is the tool created for collecting and assessing the

experiment data. The log-selection strategies were validated by creating a tool for analyzing a

log to find faults revealed by its entries. Firstly, the instrument for measurement were

17

validated to confirm reliable identification of the injected faults, secondly after the accuracy

of the instrument was determined, existing anomalies and their measured effects were

explained in detail to increase confidence in the instrument.

3.3 Collection of empirical data

The simulator generates two files per test, where the first file contains the task

parameters, and the second one contains the log data from the simulated real-time system run.

To validate the reliability of the instrument, for each of the ten tests the two files were read in

by the instrument. Later, twenty-three additional sets of test data were generated to evaluate

the log-selection strategies using the instrument. We used the log files from a single test run

to test each of the three strategies, with the intent to provide a fair comparison between the

log-selection strategies.

The data collected to test hypothesis H1 is the execution time needed to run each log-

selection strategy over an entire log-file and then analyze the selected log entries using the

instrument. We measured this at different log sizes. Thus, execution time is the dependent

variable and the independent variable is the size of the log store. Hypothesis H1 and the

collected data are related to the goal of using the least practical amount of processor resource

on the embedded target rather than an on-line fault detection strategy such as WCET

monitoring.

The data collected to test hypothesis H2 is the number of deadline misses found to have

one or more identified causes. We measured this at different log sizes. Thus, the number of

found deadline misses with one or more identified causes is the dependent variable, and the

fixed-size number of log-events is the independent variable. Hypothesis H2 and the collected

data are related to the goal of not requiring more permanent storage resource on the embedded

target by being more efficient in the selection of log data to commit.

The data collected to test hypothesis H3 is the number of injections the instrument

correctly identified in the log data selected by each strategy. We measured this at different log

sizes. Thus, the number of injections found is the dependent variable, and the fixed-size

number of log-events is the independent variable. Hypothesis H3 and the collected data are

related to the goal of selecting the log entries that contain the information that reveals the

most faults. Testing hypothesis H3 facilitates storing an optimized subset of log data.

18

3.4 Manipulation of variables

The independent variable in all three cases were expressed by the number of log-events

of a fixed-size buffer on flash memory. The independent variable was manipulated by

increasing its size logarithmically. The dependent variable of the first test was the execution

time, in the second test the dependent variable was the number of deadlines misses with

identified cause(s), and in the third test the dependent variable was the number of correctly

identified injections.

FIGURE 3.4.1 Manipulation functions

Figure 3.4.1 shows the functions used to reduce the noise. A sample manipulation was

performed on the collected data. The sample manipulation procedure taken to reduce the noise

was for smoothing all measured DV values per log store size. The noise was caused by the

limited accuracy of the execution timing mechanism, and the simulator’s use of a random

number generator. We limited each sample to the range the arithmetic population

mean (A) ± Standard population Deviation (SD). We then computed the A of

the adjusted data for each log store size and strategy. The effect on the outlier values was that

each outlier value was replaced with an adjusted value, which resulted in minor differences to

the A. The pre-processing of the measure values was necessary in order to minimize

outliers/noise. The returned values of the A were rounded to two digits of precision in the

execution time tests and in the number of found deadline misses with identified cause(s) tests,

the mean was rounded to the closest integer.

19

3.5 Validation and analysis of data

The collected data were validated in a number of steps. The first step was to validate all

simulator generated files by comparing the task parameter information in the console window

of the simulated system with the task parameters in the generated files.

The second step was to validate that the log data had the correct format by reading the

binary data into the instrument. The accuracy of this method is robust because the execution

of the instrument would be interrupted if a single parameter were in the wrong format. The

data were pre-loaded into the instrument, and once data was loaded the measurements were

manually started. Hence, the startup time of the instrument did not affect the results.

The third validation step was to compare the data to the ground truth. The injected faults

were divided into groups related to their ground truth. The results of each group were divided

into signal detection metrics excluding true negatives that were the normal execution path.

IBM SPSS Statistics Professional Edition v.22 was used to conduct Wilcoxon Signed

Ranks Tests. The purpose of using the Wilcoxon Signed Ranks Tests was to get before and

after comparisons. This relates to the strategies since strategy 2 was based on strategy 1 and

later optimized, and strategy 3 was based on strategy 2 and later optimized. Since the purpose

was to compare a limited number of significance tests, a planned comparison

(Motulsky, 2013) was conducted, which means that there were no correction for multiple

comparisons.

To validate the analysis of all hypotheses, one-tailed significance level alpha (α) =

0.01 was used in Wilcoxon Signed Ranks Tests. The type of test was for paired data, which is

when a one-to-one relationship exists between values in the two data sets. Each data set needs

to have an equal amount of observations and each data point can only be related to exactly

one observation in the other data set.

This is an experiment because of the study method, and the subject is partially related

to algorithms and complexity, whose complexity class is NP-easy (Garey & Johnson, 1979).

Standard procedures (Swales & Feak, 2004) were used to organize the experiment. The

reason for the focus on complexity was the creation of algorithms that needed to be tested.

20

Asymptotic algorithm analysis was used to determine the processing time of the log-

selection strategies in big O notation. First, the worst case number of executed primitive

operations that executed as a function of the input size was found.

Next, the constant factors and lower-order terms were disregarded when counting

primitive operations, simple operations that can be performed in constant time. Finally, the

exact number of array accesses made in the algorithm in asymptotic notation of the function

was expressed with big O notation. Asymptotic algorithm analysis was used to determine the

working space requirements of the log-selection strategies in big O notation. The working

space requirements comprised the in-RAM buffer and flash storage space.

FIGURE 3.5.1 Experimental setup

Figure 3.5.1 demonstrates the setup that was used in the experiment. The system

simulator used in the experiment was already existing. The instrument for measurement, the

binary files, and the log-selection strategies were created by the author. It would be optimal to

perform the experiment in a real embedded real-time system because it would be more

complex and might perform differently than the simulated system used. However, the use of a

simulator has a number of benefits compared to a real system. The use of a simulated system

enabled direct and detailed observations for evaluating log-selection strategies. A simulated

system with fewer required restrictive assumptions reduced complexity. Immediate changes

in the structure and configuration of the simulated system were possible. Small changes to the

simulator were made in order to save log data to a binary file.

21

4 DEVELOPMENT OF INSTRUMENT
The experimental instrument was created based on the requirements of the study. We

then validated that it worked as expected. The experiment on the log-selection strategies were

conducted after the instrument had been validated. In the following sections, we explain

further details on the instrument development validation and log selection strategies.

4.1 System model

FIGURE 4.1.1 Simulation of failure behaviours in an embedded real-time system

Figure 4.1.1 illustrates the simulation of failure behaviors in an embedded real-time

system. Three faults were injected: WCET overrun, which occurs when a task executed

longer than expected; BEPB which occurs when a randomly-selected bit in the calculated

period_began is flipped as illustrated in Figure 2.1.2; and BENR, which occurs when a

randomly-selected bit in the calculated next_release is flipped.

Simulation attributes:

• Error

o Deadline miss

• Faults

o WCET overrun

o BEPB

o BENR

22

• Scheduler

o FPPS algorithm
o Non-blocking for higher priority tasks
o Small amount of slack time
o Watchdog (WD)
o Context switch overhead
o Periodic tasks

We used the simulator system to create a static log-file containing all possible entries that

we examined using the instrument. The log-file with log entries was first pre-loaded into the

instrument; when completed the file with task details was also read by the instrument. Once

the instrument loaded both files, the measurements were manually started by the engineer.

The filtering is performed by the instrument.

TABLE 4.1.1 Task details

TID BCET WCET PERIOD OFFSET DEADLINE PRIORITY

0 45 50 500 10 550 0

1 95 100 825 0 1000 2

2 530 550 825 0 1000 3

3 95 100 1000 825 1000 1

Table 4.1.1 shows the task details that were used in all tests. The time units represent

the simulated system's clock in ticks of unspecified duration. Task ID (TID) uniquely

identifies each task. Best Case Execution Time (BCET) gives the lower bound of

the execution time. WCET gives the upper bound of the execution time. Actual execution time

of each job was a random number selected from the uniform distribution (BCET, WCET).

The remaining columns show each task’s period, offset, deadline, and priority. The simulated

system recorded these details to a details file for use during the experiment and later analysis.

FIGURE 4.1.2 Task details format

23

 Figure 4.1.2 demonstrates the structure of the format used in the static task details file.

The details from task id 1 were used in this illustration, and a translation from decimal to

hexadecimal was performed.

TABLE 4.1.2 Log-event variables

VARIABLE DATATYPE DESCRIPTION

Time UINT64 The simulated system's clock in ticks of the duration
specified in a task set.

Data1 UINT64 Keep different values of time or 0.

Data2 UINT16 Task ID.

Event UINT16 The type of log entry.

Table 4.1.2 shows the format of a log-event. The meaning of data1 and data2

depend on the type of log event as shown in

Table 4.1.3. The simulated system generated two binary files: the details file and a file

containing log data. The log-file represents the unfiltered log output of a simulation run

as a sequence of log events. Each log-event comprises four variables: the time at which

the entry was generated, data1 which stored a number of different timing entries, data2

shows to which task id the event is for, and event which shows the type of log entry. Each

log-event record has a size of 20 bytes.

FIGURE 4.1.3 Log-event format

 Figure 4.1.3 illustrates the structure of the format used in the static log-file. In the

original data, there were eight pairs of hex characters in time and data1 respectively, which

were equal to 8 bytes each. Data2 was two pairs of hex characters and the event was also

represented by two pairs of hex characters. The data were originally in binary format that was

translated in order to be illustrated in a humanly readable format.

24

Table 4.1.3 Types of log entries

TYPE DESCRIPTION

Task create The task with ID data2 has been created and will begin its first period at
data1.

Task wait The task with ID data2 has called the simulated wait_until_offset
function as shown in Figure 2.1.2 to wait until the time data1.

Task sleep The system has no runnable tasks and will be going to sleep until waking up
at data1 to run task with ID data2.

Task release The task with ID data2 has been released. If it was waiting on a simulated
wait_until_offset call, data1 gives the time it was waiting until. If
not, data1 is 0.

Task switch The scheduler is switching to the task with ID data2. Data1 is 0.

Task return The task with ID data2 has returned from the simulated
wait_until_offset call it used to wait until the offset for the period
beginning at time data1.

Task dlmiss The periodic task with ID data2 self-reported that it has missed its deadline
for the period beginning at time data1.

WD
running

The watchdog was running. Data1 and data2 are 0.

WD restart The watchdog timer restarted the task with ID data2; it will run at or after
time data1.

Table 4.1.3 illustrates the types of events logged by the simulated system. Within one time span

there were the following types of log entries: task create, task release, task

sleep, task switch, task return, task dlmiss, task wait, WD running,

and WD restart. All log entry types other than task create occured at some occasion

within the time span between two releases of a task regardless of its task id. Task create

only appeared once per task and test.

𝑈 =
𝐶!
𝑇!

!

!!!

FIGURE 4.1.4 Processor utilization factor

Figure 4.1.4 shows the formula for processor utilization factor where Ci was the worst

case execution time and Ti the period of its task. In the simulated system, four tasks were

running in a simulated real-time operating system with details as in Table 4.1.1. No deadline

misses were caused by the processor utilization factor since it was less than one

25

(0.1+0.12+0.67+0.1=0.99). The simulated system was sensitive and had only a small amount

of slack time. This made it more vulnerable to injections; that is, injections were likely to

produce deadline misses, including misses in other tasks and in subsequent jobs.

4.2 Instrument development

We tested the instrument by simulating execution for 40,000,000,000 cycles while

randomly injecting faults. An initial validation algorithm was created to identify as many

injections as possible. We tested using a range of fixed-size buffers between approximately 4

KiB and 16 GiB. We made 10 simulations for each buffer size to increase the number of

measurements. The generated truncated logs were examined and validated against the ground

truth. We smoothed all measured values by limiting their upper and lower values to the A ±

SD.

Two test sets were created to ensure that the results were not isolated incidents. The first

test set was for assessing how accurately the instrument for measurement could identify the

injected faults. The second test set was for testing how optimal a strategy performed to save

sufficient data while still being able to identify faults that inflicted a deadline miss.

2013-‐12-‐05
2014-‐06-‐05

2014-‐01-‐01 2014-‐02-‐01 2014-‐03-‐01 2014-‐04-‐01 2014-‐05-‐01 2014-‐06-‐01

WCET	 overrun

Task	 Cycle

T2
Task	 Release

Time

Task	 Deadline

Execution	 Time

T1

FIGURE 4.2.1 Worst Case Execution Time overrun

Figure 4.2.1 demonstrates a WCET overrun, which occurred when a task executed

longer than its WCET (e.g. T1). The instrument evaluated whether the log messages showed

the task executing for longer than its specified WCET at time T1 or not. If a task executed

longer than T1 and finished execution at the time T2, the instrument reported a WCET

overrun fault.

26

2013-‐12-‐05
2014-‐06-‐05

2014-‐01-‐01 2014-‐02-‐01 2014-‐03-‐01 2014-‐04-‐01 2014-‐05-‐01 2014-‐06-‐01

Bit	 Error

Task	 Cycle

Task	 Deadline
T1

Task	 Release
Time

Execution	 Time

T2

Period	 Began

FIGURE 4.2.2 Bit Error on period began

Figure 4.2.2 shows the concept of a BEPB. The scheduler got a bit error at T2 in the

period began calculation referring to T1. The error could occur at two locations, either in

the beginning of the task function which takes the initial period as period began, or

during the calculation of next release.

In the simulated system, bit errors had a big impact on when a task asked to be woken up.

A bit error occurs when a bit is flipped, switching a bit from 1 to 0 or 0 to 1. The effect on

execution time depends on which bit was flipped. If a task effectively stopped executing due

to a bit error, the simulated system’s watchdog would eventually notice and restart the task.

2013-‐12-‐05
2014-‐06-‐05

2014-‐01-‐01 2014-‐02-‐01 2014-‐03-‐01 2014-‐04-‐01 2014-‐05-‐01 2014-‐06-‐01

Next	 Release

Task	 Cycle

Task	 Deadline T2
Task	 Release

Time

Execution	 Time

T1

Task	 Cycle

Execution	 TimeBit	 Error

T2

Figure 4.2.3 Bit Error on next release

 Figure 4.2.3 illustrates the concept of a BENR. The scheduler got a bit error at T1 in the

next release calculation referring to T2. The error could occur in the reoccurring

calculation that were period began + offset of the task to produce its next

release value. When a bit error occurred at this point, the count for BENR injections were

increased.

27

Test set specifications:

• Instrument test set – 1 % injections of WCET overruns, BEPB and BENR to

evaluate if the instrument could identify the injected faults correctly in a log containing all

possible entries. A simulated execution ran for 40,000,000,000 cycles. The task

parameters used were the same in all of the ten tests.

• Log test set – 1 % injections of WCET overruns, BEPB and BENR to evaluate

the log-selection strategies. Each simulated execution ran for 40,000,000,000 cycles. The

task parameters used were the same in all of the twenty-three tests. Twenty-three tests

were chosen since it reflected the logarithmically increasing log store size, and where the

23rd test was closest to the physical limits of the hardware used.

The differences between fault, error and failure were important: engineers examine logs to

find the true cause of field failures. In some cases, failures related to a chain of faults and

errors that resulted in a failure. The relationship between fault, error and failure is the

following: faults can result in errors and errors can lead to failure. In general, failures can only

exist after an error occurred, and an error can only exist after a fault occurred.

The assumed page size was 4 KiB. The sizes of all fixed-size buffers on flash memory for

logging were a multiple of the page size. We measured the dependent variable for each

hypothesis at a range of buffer sizes from approximately 4 KiB to 16 GiB, distributed

logarithmically.

Since the flash memory writes an entire page at a time, the simulated logging software

accumulated log records in a 1 page in-RAM buffer then wrote that buffer to flash using 4080

of the 4096 byte in-RAM buffer stored page.

The permanent storge on flash memory stored a predetermined number of log-events, as

an example 204 log-events. The problem size was the number n (e.g all log events generated

by the simulated system) of log-events that needed to be written to the fixed-size buffer. A

variable initialized to 0 was required, where the current number of inserted log-events was

stored. The variable was increased by the number of inserted log-events until it reached 203

which was the last insertion. Hence, it was possible to conclude that it could not exceed 203

log-events; thus the space complexity between the total number of log events that might be

written if infinite storage were available and the space consumed were a constant. However,

when the fixed-size buffer was increased it still stored a constant number of log-events. The

28

only difference was that the temporary storage for the page in RAM and the variable was

resetting to its initial values. That process was repeated after the page was written to flash

until the current storage size was reached. Therefore, the worst case statement for the flash

memory storage were 𝑆 ∈ 𝑂 1 , which represented the big O notation 𝑂 1 .

The purpose of the instrument is to study which log-selection strategy is optimal on a real-

time system with limited resources by detecting deadline misses and try to determine their

cause. In this study, it is assumed that when the instrument reads the details-file and the log-

file that those files were from the same simulation.

First the instrument read the details-file and the log-file into an array located in the in-

RAM buffer. The pointer to the array and the size limit of the memory were then passed as

parameters to the initial function of the validation algorithm named proof_test.

Log-events within the time span between two releases of a task were temporarily saved to

the in-RAM buffer. A function was called at every task release, deciding whether to

save the log-events to the in-permanent-storage buffer or discard them from the in-RAM

buffer. The called function evaluated the existing in-RAM buffer data for existing errors. If no

errors were found inside the in-RAM buffer, the log-events were discarded; otherwise the log-

events were saved into the in-permanent-storage buffer. This was repeated until the

permanent storage was exhausted.

The validation, that was a comparison between fault injections and the faults the

instrument found were conducted after the log store space had been exhausted. Detected

errors were temporarily saved into a separate array containing the detected error and an

identifier uniquely connected to each injected fault. All detected errors were accurately

validated against the made injections.

4.3 Validation of the instrument

To assess the effectiveness of a log-selection strategy, the instrument must detect

injections accurately. To be confident that it does, we validated the fault injections it detected

against a ground truth represented by the simulator’s log of the faults it injected.

To generate the instrument test set, we executed the simulated system ten times with the

same task parameters. The parameters that were used are illustrated in Table 4.1.1. The results

of the manual analysis were characterized using the following signal detection metrics:

29

• True positive – The instrument found evidence of a fault in the log data and the

simulator’s log shows that it really injected that fault.

• False positive – The instrument reported a fault not reported as an injection in the

instrument’s log.

• True negative – The instrument found no evidence of a fault in the log data and the

simulator’s log confirms no injection was not found when compared with the ground

truth. These are not reported as they represent normal system behavior.

• False negative – The instrument found no evidence of a fault in the log data, but the

simulator’s log shows that one was injected.

FIGURE 4.3.1 Fault injection results

Figure 4.3.1 shows the results of the manual validation of the instrument. The instrument

detected BEPB as expected while detecting WCET overrun we found 72 anomalies in its

output. We found 12740 anomalies in the simulator’s detection of BENR injections.

The found WCET overrun anomalies can be explained as the result of the halting of the

task containing the injection. Thus, the simulated system was unable to proceed with the task

execution. The watchdog restarted the task after a finite amount of time, after which the

simulator reported no anomalies. The found BENR anomalies can be explained as occurring

when an existing BEPB injection in a task hid the symptoms of a separate BENR injection in

30

the same task. The anomalies in the results were manually investigated to provide an

illustration that there were no defects in the algorithm.

FIGURE 4.3.2 WCET absorbtion

Figure 4.3.2 demonstrates the absorption of a WCET overrun injection. Inspection

revealed unexpected behavior that related to the algorithm and the simulated system that was

not the result of a defect in the instrument. In every occurrence of WCET overrun

injections where the task halted at time T1, the WD started at time T2 while the task was still

halted. At time T3, the WD restarted the task and the WCET overrun injection was

absorbed in time T4.

The inspection of BENR anomalies showed that if a BEPB injection occurred in the same

task before BENR, the latter was absorbed. With this reasoning, we concluded that the

algorithm had no significant defects.

The instrument was tested to confirm no faults except the intentionally injected existed.

To validate this as an addition to the 10 test cases, the instrument was running over a log file

from a simulation with no injected defects, and it was confirmed that it found no faults.

The instrument test set contained ten separate tests to detect uncommon anomalies that

could have been missed using a single test. The fixed-size buffer on flash memory was

logarithmically increased to ensure that the results were not changed by chance alone. The test

results generated by the instrument were summarized.

The tests of the instrument test set were manually compared against the

ground truth to confirm that the tool is accurate. We verified that the injections were actually

made, which refers to symptoms of appearing in the simulated system’s log. After verifying

31

that the instrument is able to process log data without significant defects, we proceeded with

the development of the log-selection strategies.

4.4 Log-selection strategies

The log-selection strategies were evaluated by measuring how well a strategy was able

to select log data to be saved, allowing identification of faults that caused deadline misses.

Smoothing of all measured values was conducted after each fixed size and test by limiting

each data point to upper and lower values defined by the arithmetic population mean ±

Standard population Deviation. We used the arithmetic population mean of the smoothed data

to set the average value for each strategy at all log store sizes.

Parameters of interest:

• Size of log store, the examined sizes of log store.

• Log organization, we store n periods of time.

• Log content, the log-events that were stored and presented in Table 4.1.3.

• Selection strategy, how we selected which log entries to save to the log store.

We examined the performance of each log-selection strategy at log store sizes from

approximately 4 KiB to 16 GiB. Log data were stored in n task cycles with log-events,

namely the fixed-size buffer in bytes divided by log-event size of 20 bytes.

FIGURE 4.4.1 Strategy template

32

 Figure 4.4.1 demonstrates the main functionality for all strategies. The difference

between the strategies is the executions that occur under the numbers 1 to 9, which represents

the types of log entries as Table 4.1.2 describes. The log entries are the same as the task

structure in the simulated system and thus must be the main functionality in all strategies.

The thesis statement indicates that we first will create a general method that works,

which section 4.3 demonstrates. Strategy 1 is a simple algorithm that we use as a baseline.

Strategy 2 is based upon strategy 1 and is improved by using a different method for selecting

fewer log-events but is still able to identify faults that caused a deadline miss. Strategy 3 is

further optimized by reducing its complexity regarding both time and space complexity, and

using an adjusted method for choosing what to log. All log-events in a task’s buffer were

discarded when a knock-on was discovered in all strategies.

4.5 Strategy 1

FIGURE 4.5.1 Strategy 1 pseudocode

Figure 4.5.1 demonstrates the functionality of log-selection strategy 1. The strategy

processes the static log-file from entries representing the earliest simulated time to entries

representing the latest simulated time.

33

Deadline misses were detected at either Task dlmiss or WD restart in Figure

4.5.1. At Task dlmiss, two things were performed, adding the log-event to the task buffer

and adding the failure to the failures array.

A knock-on was detected and identified at Task return and Task dlmiss in

Figure 4.5.1. The number of knock-ons that was identified represented on average 80 % of the

total number of deadline misses. Since our simulated system had 0.99 utilization it was not

possible to determine if a deadline miss was a knock-on without performing most of the

checks, which resulted in the conclusion that approximately the same amount of processing

power was required.

A cause could be identified at multiple places in strategy 1, all task cycles that

contained one or more causes were saved in a dynamic array for later evaluation. The final

check for causes was conducted at number 6, task return, to limit the number of checks

against the arrays for failures and causes.

When the check for causes showed the occurrence of one or more errors, the log-

events of that task cycle were moved to the page-file in random access memory

(RAM). After the log-events had been written to the fixed-size buffer on flash memory and

when it was full, the strategy stopped the logging and returned the values for all comparisons.

34

4.6 Strategy 2

FIGURE 4.6.1 Strategy 2 pseudocode

Figure 4.6.1 shows the functionality of log-selection strategy 2. Strategy 2 is optimized

regarding the selection of log-events compared to strategy 1. We observed that not all types of

log-events saved in strategy 1 were needed to be able to identify what caused a deadline miss.

Not all log-events of type task switch were saved after a closer inspection

revealed that it was only needed for a preempted task. When the log-event for a preempted

task was saved, the worst case execution time overruns could be correctly detected by the

instrument. When it was not, the instrument missed the fault. We concluded that the log-event

was needed to reproduce the execution time calculations in such cases.

The log-event task wait was only saved after a task had started its execution.

Finally, the log-event task sleep did not facilitate finding faults. Checks later in

simulated time revealed the same information. While developing this strategy, a substantial

amount of tests were conducted to validate that the removal of these log-events did not

negatively impact the instrument’s ability to find faults. The conclusion is that the results

were equally accurate and provided additional space for more log-events.

35

4.7 Strategy 3

FIGURE 4.7.1 Strategy 3 pseudocode

Figure 4.7.1 shows the functionality of log-selection strategy 3. Strategy 3 is optimized

regarding the selection of log-events compared to strategy 1 and strategy 2. The lessons

learned during early evaluation of those strategies prompted the improvements that resulted in

strategy 3.

Because strategy 3 is an optimization of strategy 2, we describe it in in terms of its

difference from strategy 2. Only certain log-events of type WD running were saved, namely

when the simulated time was higher than its next release time, and when the execution of a

task started. Additionally, log-events of type WD running after a WD restart were

omitted. As an example, the BENR always resulted in a WD restart log-event. Only certain

log-events of type task dlmiss were saved, namely those that did not follow a WD

restart, since the same deadline cannot be missed twice.

36

Strategy 3 commits the described log-events above to the in-RAM storage until in-

RAM storage is exhausted and then commits the log-events to permanent storage on flash

memory. It commits a page of log-events at a time to permanent storage until permanent

storage is exhausted and then starts overwriting the first page of permanent storage and is

increased incrementally.

Additionally, strategy 3 was optimized in the task return log-event processing. A

check for two or more task return log-events which were used to determine if a buffer

should be discarded or not when a constant size instead of a dynamic size were used. All

dynamic checks were changed to fixed-size checks with 𝑂 𝑐 space complexity, where c is a

constant storage space of log-events and used variables allocated in the in-RAM buffer.

37

5 RESULTS
The log selection strategies were compared based on three aspects as the scientific

method of the study. Each section is connected to a hypothesis: H1 to 5.1, H2 to 5.2, and H3

to 5.3.

5.1 Execution time per simulation

FIGURE 5.1.1 Execution time of a whole simulation for log store sizes from approximately 4 KiB to 4 MiB.
Figure 5.1.1 and Figure 5.1.2 demonstrates the execution time measurements at different

log store sizes for all strategies. The execution time represents the time duration for a whole

simulation to complete at a specific log store size for each log-selection strategy. The results

showed that strategy 1 had the least execution times up to log store size 1.99 MiB. At the log

store sizes 1.99 MiB and 3.98 MiB, strategy 3 had the least execution time.

FIGURE 5.1.2 Execution time of a whole simulation for log store sizes from approximately 8 MiB to 16 GiB.

38

TABLE 5.1.1 Wilcoxon signed ranks test for hypothesis H1

Table 5.1.1 shows that the mean rank from strategy 1 is less than mean rank from strategy

2. The figure also shows that the mean rank from strategy 3 is less than mean rank from

strategy 1. This suggest that strategy 3 is using less processing power compared to strategy 2

and strategy 1.

TABLE 5.1.2 Test statistics for hypothesis H1

Table 5.1.2 shows that the 1-tailed p-value between strategy 1 and strategy 2 is less than

α = 0.01. Thus, we reject the null hypothesis H10. The 1-tailed p-value between strategy 3 and

strategy 1 is less than α = 0.01. Thus, we reject the null hypothesis H11. Both null hypotheses

for H1 are rejected, and the alternative hypothesis H1a is accepted.

39

5.2 Ability to detect deadline misses

FIGURE 5.2.1 Detected deadline misses at log store sizes from approximately 4 KiB to 4 MiB.

Figure 5.2.1 and Figure 5.2.2 illustrate the number of deadline misses the instrument

found in the filtered log data. At all log store sizes, strategy 1 resulted in the fewest deadline

misses found, strategy 2 the next fewest, and strategy 3 the most.

FIGURE 5.2.2 Detected deadline misses at log store sizes from approximately 8 MiB to 16 GiB.

40

TABLE 5.2.1 Wilcoxon signed ranks test for hypothesis H2

Table 5.2.1 shows that the mean rank from strategy 1 is lower than the mean rank from

strategy 2. The figure also shows that the mean rank from strategy 2 is lower than the mean

rank from strategy 3. This suggests that strategy 3 resulted in finding more deadline misses

than strategy 2 or strategy 1.

TABLE 5.2.2 Test statistics for hypothesis H2

Table 5.2.2 shows that the 1-tailed p-value between strategy 1 and strategy 2 is less than

α = 0.01. Thus, we reject the null hypothesis H20. The 1-tailed p-value between strategy 3 and

strategy 2 is lower than α = 0.01. Thus, we reject the null hypothesis H21. In conclusion, this

means that strategy 2 succeeded in finding more deadline misses than strategy 1, and strategy

3 resulted in finding more deadline misses than strategy 2. Both the null hypotheses have been

rejected thus we accept the alternative hypothesis H2a.

41

5.3 Ability to correctly identify the causes

	

FIGURE 5.3.1 Identified causes at log store sizes from approximately 4 KiB to 4 MiB.

Figure 5.3.1 and Figure 5.3.2 illustrates the number of faults the instrument found in

the filtered log data. At all log store sizes, strategy 1 facilitated finding the fewest

identified causes, strategy 2 the second fewest, and strategy 3 the most.

	

FIGURE 5.3.2 Identified causes at log store sizes from approximately 8 MiB to 16 GiB.

42

TABLE 5.3.1 Wilcoxon signed ranks test for hypothesis H3

	

Table 5.3.1 shows that the mean rank from strategy 1 is lower than the mean rank

from strategy 2. The figure also shows that the mean rank from strategy 2 is lower than

the mean rank from strategy 3. This suggests that strategy 3 found more identified causes

than either strategy 2 or strategy 1.

TABLE 5.3.2 Test statistics for hypothesis H3

	

Table 5.3.2 shows that the 1-tailed p-value between strategy 1 and strategy 2 is less

than α = 0.01. Thus, we reject the null hypothesis H30. The 1-tailed p-value between

strategy 3 and strategy 2 is less than α = 0.01. Thus, we reject the null hypothesis H31. In

conclusion, this means that strategy 2 found more identified causes than strategy 1, and

strategy 3 found more identified causes than strategy 2. Both the null hypotheses have

been rejected and thus we accept the alternative hypothesis H3a.

43

5.4 Threats to validity

This section presents a number of threats to the validity of the thesis. Internal validity

refers to how well a relationship is established between cause and effect, i.e. if the input to the

log-selection strategies caused the outcome to happen. External validity refers to the

possibility of generalizing the results of the study to a setting or system in the real world, i.e.

will the results be similar when the real world is used as a reference.

There are two main threats to the internal validity of the study. The first threat is that the

study only evaluates a limited number of faults and task sets. The limitations of only testing a

couple of fault types, is that one might miss important relationships between different types of

faults. This study does not concern other types of errors, meaning that we cannot know which

log strategies are best for other types of errors. Other types of errors might be communication

errors, hardware errors and similar errors. The selected error type was chosen because it is a

common error in real-time systems. The selection of tasks may have made them not

applicable to systems with a different task set since we have not evaluated other task sets or

systems. In this experiment, only one task set was chosen. The reason for selecting one task

set was the time limitations for this experiment.

The effect of not adding more types of faults is that the experiment would be further

away from reality and results would be less accurate. The impact on the conclusions of not

adding more types of faults would result in lower reliability of the results. The significance of

the hypotheses would be less credible if only one kind of fault was injected. The impact of not

adding more task sets on the conclusions is small, since we have control over all variables and

know their relationships. However, adding more task sets is desirable, since it would increase

the reliability of the results. The experiment was planned to begin with only a few types of

faults, and then add more faults if time allowed. At first, only one kind of fault was injected,

WCET overruns. To increase the internal validity of the thesis, an additional kind of fault

was injected, namely bit error. A bit error can manifest itself as either BEPB, or BENR. The

experiment leading to the results are well controlled and explained in detail in the scientific

method.

The second threat to the internal validity is variations in timings of the elapsed time per

simulation and log-selection strategy. There are two main factors that might affect the

variations in timing: delays on the system that the simulated system is tested on, and

44

smoothing of measured values. RAM, cache, and other delays in the host system that the

simulated system is tested on, affect the measured time per simulation and log-selection

strategy. During time measurements, it is still possible for other processes in the used system

and other threads in the instrument to use processor time. The simulation software’s execution

time is affected by these or similar issues.

The smoothing of all measured values affected the results, as it removed the outlying

values from the data. Its impact on the conclusions is small, since we have control over all

variables and know their relationships. The outliers in the sampled data are most likely caused

by hardware variations in time or system delays during each system runtime observation. The

reason for removing the outliers was that the first run for all strategies produced anomalies in

time. Tests were made to see if pre-allocating the buffer removed this behavior, and it did.

The impact on the conclusion if the log-selection strategies had been applied as a filter on the

simulated system would be that they would not have been observing the same data. To solve

that issue, static log-files and dynamically allocated buffers were used. The conclusion was

that this was most likely the result of the buffers not being pre-allocated, and the chosen

solution was smoothing the outliers. The effect of removing the outliers was that the mean

time became more accurate. The time scale of the outliers was very large and hence when

removing them the mean became lower.

To minimize variations in timings, the average time of all observations per log store size

was used. When performing an experiment based on observations in the simulated system,

observations are made several times to generate multiple data points. First, n observations are

conducted and then the total time of all observations is divided by n to get more reliable

results. This procedure was performed on all tests at all log store sizes. All log-selection

strategies were forced to execute on a single core and their thread priority was set to the

second highest to reduce the effect on variations in timings. The experiment leading to the

results are well controlled and explained in detail in the scientific method. The types of

validation are empirical evaluation through simulation, and benchmarks to measure elapsed

time per simulation.

There are two main threats to the external validity of the study. The first threat is

hardware, i.e. if the results in this experiment can be generalized to a system having different

central processing unit (CPU). The main factor that might affect it is different

machine code.

45

When using a real system with a different CPU than the one used in this experiment,

different machine-code is generated. Since different CPU’s have different instruction sets, we

cannot guarantee that the results will be the same on such systems. An example of this can be

different architecture of the CPU, e.g. x86 and x64. Another difference can be that the endian

might be different, e.g. big-endian or little-endian. The impact this can have on the results is

not known at this point since tests have not been conducted. However, it would be valuable to

perform such tests to investigate potential changes in the results.

As our experiment is conducted using a simulator, the level of abstraction is higher and

the level of complexity is lower compared to a real system. If important details of the

simulated systems’ behavior are missing, the results will be less accurate and less reliable

compared to results in a real system. The results are only generalizable with respect to the

explicit assumptions in this experiment. When other variables are considered the external

validity cannot be guaranteed.

The second threat to external validity is software, i.e. if the results can be generalized and

used on other software platforms or programming languages. Similar to using a different

CPU, using another operating system or programming language will yield in a different

machine-code. In this experiment, both C and C# was used to develop the log-selection

strategies. Since C does not have a runtime, using C# would add significant overhead in

execution time. For that reason, C# was only used for generating the code, and when the code

was working as expected the C code was created. A compiler can generate different machine

code using different programming languages or operating systems.

Other operating systems or programming languages other than C and C# has not been

tested; we cannot guarantee that the results will be the same using another system or

programming language. The results are only generalizable with respect to the explicit

assumptions in this experiment. When other variables are considered, the external validity

cannot be guaranteed. All log-selection strategies are most likely affected in the same manner,

even if other hardware or software are used. Different combinations of software and hardware

will have a different result if a log-selection strategy is compared to itself using a different

setting. The internal relationship between all log-selection strategies will most likely be

identical despite the platform and programming language used. The big O analysis provides

support for the claim that their internal relationship is most likely identical.

46

6 SUMMARY AND CONCLUSIONS

The purpose of this study is to determine what should be logged in an embedded real-

time system. To investigate this, we created an instrument that could identify selected faults

from log data and used it to evaluate three logging strategies. To gain confidence that the tool

worked correctly, we injected faults into a simulated system and compared the tool’s output to

the ground truth. The injected faults were WCET overrun, BEPB, and BENR as defined in

section 4.2. The results show that the instrument correctly identified the majority of injected

faults, but there were anomalies. The anomalies were investigated, and found to be benign.

After validating the instrument, we used it to assess three log-selection strategies.

Strategy 1 was to log all types of log entries. This gave the shortest execution time of all the

strategies below 1.99 MiB, but the strategy yielded log that revealed the fewest deadline

misses and identified causes. Strategy 2 is optimized to save fewer types of log entries,

omitting information that did not help to identify deadline misses or their causes. Strategy 3

saves even fewer types of log entries than strategy 2. Strategy 3 is optimized for shorter

execution times: it minimizes the number of loops in its algorithm by using allocations with a

constant size instead of a dynamic size.

Hypothesis H1 was that strategy 3 used the least processing power. The conclusion that

Strategy 3 uses the least processing power is supported by a Wilcoxon Signed Rank Test at a

significance level 0.01.

Hypothesis H2 was that strategy 3 facilitates detecting the most deadline misses. The

conclusion that Strategy 3 facilitates detecting the most deadline misses was also supported

by a Wilcoxon Signed Rank Test at a significance level 0.01.

Hypothesis H3 was that strategy 3 facilitates detecting most faults that result in deadline

misses. The conclusion that Strategy 3 facilitates identifying the most causes holds by a

Wilcoxon Signed Rank Test at a significance level 0.01.

Our conclusion is that log-selection strategy 3 is the best of the three for choosing the

data to log for retaining the log records in a limited space and is most helpful in identifying

faults.

47

7 FUTURE WORK

The study could be widened by including more types of failures and faults to

investigate any significant changes in the results. Examples of relevant faults that can be

added are period inversion, best case execution time underrun, release jitter, and delays of

different kinds. It is possible that a strategy optimized for only three kinds of faults will not be

generally optimal.

An interesting approach to improve algorithms would be changing all functions by

using mathematical shortcuts to decrease the running time of the algorithms. If applied as a

filter on a simulator, one could see if there are immediate changes. The algorithms in this

study are directly applicable to such a scenario.

To assess the compression ratio between existing log-data in an unchanged format on

a running system, output data is optimized by applying a compression algorithm. This is a

possible extension of the study. This could lead to significant differences in needed storage

space in a real-time system and will have potential effect on runtime.

In this study testing is performed in a simulator, and it would be valuable to evaluate

the results using a real system. By collaborating with companies like Volvo, ABB, or Scania,

we could get the opportunity to test an improved solution in their embedded real-time

systems. This would enable study of the behavior using a real system, since reality differs

from simulation.

48

8 REFERENCES

 Algirdas, A., Laprie, J., & Randell, B. (2001). Fundamental concepts of dependability.

Research Report N01145, LAAS-CNRS, April 2001.

Saswat, Anand et al. (2013). An Orchestrated Survey on Automated Software Test Case

Generation. Journal of Systems and Software, 86(8), August 2013, pp. 1978–2001.

Avizienis, A., Laprie, J. C., Randell, B., & Landwehr, C. (2004, January 1). Basic concepts

and taxonomy of dependable and secure computing. IEEE Transactions on

Dependable and Secure Computing, 1(1), 11-33.

Burchell, B. (2007, February 9). Untangling No Fault Found. Aviation Week & Space

Technology.

Cox, N. J. (2008). Speaking Stata: Correlation with confidence, or Fisher's Z revisited. Stata

Journal, 8(3), 413-439.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman ISBN 0-7167-1044-7.

Hang, Y. J. (2010). Accelerating exact schedulability analysis for fixed-priority pre-emptive

scheduling. (pp. 5-8). Brussels, Belgium.: Proceedings of the Work-in-Progress (WiP)

Session of the 22nd Euromicro Conference on Real-Time Systems.

Hockley, C., & Phillips, P. (2012). The impact of No-Fault Found (NFF) on through-life

engineering services. International Journal of Quality in Maintenance Engineering,

18(2), 141–153.

Javanmard, A., & Montanari, A. (2013). Confidence Intervals and Hypothesis Testing for

High-Dimensional Statistical Models. In Advances in Neural Information Processing

Systems (pp. 1187-1195).

Jia, Y., & Harman, M. (2011). An Analysis and Survey of the Development of Mutation

Testing. IEEE Transactions on Software Engineering, 37(5), 649-678.

doi:10.1109/TSE.2010.62

49

Laprie, J.-C. (1995). Dependable computing: Concepts, limits, challenges. FTCS-25, the 25th

IEEE International Symposium on Fault-Tolerant Computing-Special Issue, (pp. 42-

54). Pasadena, California, USA.

McMinn, P. (2004). Search-based software test data generation: a survey. Research Articles.

Software Testing, Verification & Reliability, 14(2) (June 2004), 105-156.

doi:10.1002/stvr.v14:2

Mok, A. K., & Liu, G. (1997). Efficient Run-Time Monitoring of Timing Constraints. In

Proceedings of 3rd IEEE Real-Time Technology and Applications Symposium (RTAS

'97).

Motulsky, H. J. (2013). Intuitive Biostatistics (3:rd ed.). New York: Oxford University Press.

Peters, D. K. (2000). Deriving Real-Time Monitors from System Requirements

documentation. PhD Thesis, McMaster University, Hamilton, Ont., Canada.

Pettersson, A., & Nilsson, F. (2012). SysMon - A framework for monitoring and measuring

real-time properties. Master thesis, IDT Academy, Mälardalen University.

Ramaprasad, H., & Mueller, F. (2011). Tightening the bounds on feasible preemptions. In

ACM Transactions on Embedded Computing Systems (TECS). 10(2), Article 27

(January 2011), 34 pages. DOI=10.1145/1880050.1880063

Regehr, J. (2002). Scheduling tasks with mixed preemption relations for robustness to timing

faults. In Proceedings of Real-Time Systems Symposium, (RTSS 2002), 315-326.

doi:10.1109/REAL.2002.1181585

Swales, J. M., & Feak, C. B. (2004). Academic writing for graduate students: Essential tasks

and skills (Vol 1 ed.). MI: University of Michigan Press: Ann Arbor.

Wilcoxon, F. (1945, December). Individual Comparisons by Ranking Methods. Biometrics

Bulletin, 1(6), 80-83.

Zmaranda, D. G. (2011). Using Fixed Priority Pre-emptive Scheduling in Real-Time Systems.

International journal of Computers, Communications & Control, 6(1), 187-195.

