
Sentiment analysis of Swedish social media

Using random indexing to improve cross-domain sentiment classification

TOMAS LYSEDAL

Master’s Thesis at NADA
Supervisor: Kai-Mikael Jää-Aro

Examiner: Olle Bälter

TRITA xxx yyyy-nn

Abstract
Social media has grown extremely fast in recent years and
in the vast number of posts being made everyday people ex-
press their opinions about all kinds of topics. These opin-
ions are very valuable and there is a need for a way to
automatically identify and extract them. This is what sen-
timent analysis is about but there are a number of issues
related to this task. In particular the large number and
diversity of the texts to analyze causes problems for ordi-
nary methods of natural language processing. In this thesis
a method utilizing a technique called Random Indexing is
proposed which tries to overcome some of the issues. The
conclusion is that the use of Random Indexing does aid in
solving the problem but also that more work is needed in
order to have a fully satisfying solution.

Sammanfattning
Sentimentanalys av svenska sociala medier

Användningen av sociala medier har vuxit snabbt de senaste
åren och i den stora mängd inlägg som skrivs varje dag göm-
mer sig många människors åsikter. Dessa åsikter innehåller
värdefull information och det behövs ett sätt att automa-
tiskt identifiera och ta tillvara på den. Sentimentanalys be-
handlar precis detta men det finns ett antal svårigheter med
att lösa denna uppgift. Svårigheterna rör framförallt att det
finns en så stor mängd texter att analysera och hur väldigt
olika de kan vara. I det här exjobbet föreslås en metod som
använder sig av en teknik kallad Random Indexing för att
överkomma vissa av dessa svårigheter. Slutsatsen är att an-
vändningen av Random Indexing hjälper till att lösa prob-
lemen men att det fortfarande krävs mer arbete för att få
fram en fullt fungerande lösning.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem specification . 3

2 Theory and previous work 5
2.1 Basic machine learning . 5
2.2 Bag of words . 8

2.2.1 Lexicon based methods . 8
2.2.2 Data-driven methods . 9
2.2.3 Cross domain issues . 11
2.2.4 Utilizing the context . 12

2.3 Word space models . 13
2.3.1 Traditional methods . 13
2.3.2 Random indexing . 14
2.3.3 Different contexts . 16
2.3.4 Applications . 18

3 Methodology 21
3.1 Datasets . 22
3.2 Baseline . 23
3.3 Random Indexing . 24

3.3.1 Building the model . 24
3.3.2 Using the model . 27

3.4 Finalizing the classifier . 29
3.5 Evaluation . 29
3.6 Implementation . 30

4 Results 33
4.1 Baseline results . 33
4.2 Random indexing . 35
4.3 Real data . 35

5 Conclusions 39

5.1 Real application . 39
5.2 Revisiting the problem . 40
5.3 Future work . 40

Bibliography 43

Chapter 1

Introduction

The use of social media has grown extremely fast in recent years and it is becom-
ing the preferred channel of communication for a lot of people. On websites like
Facebook and Twitter a huge number of posts is being made every day and with all
Internet forums and private blogs even more data are produced. Hidden in all these
data are the views and opinions of a large group of people making social media an
invaluable source of information. Companies might want to know what potential
buyers think about their products and political parties the voters’ views on certain
issues. This leads to the need to monitor the stream of data for relevant texts
combined with an analysis of the expressed opinions.

By using the API:s provided by the sites themselves or external companies, you
can filter out texts that mention a certain product or keyword. Even when only
considering these texts however, there are usually still too much data for a human
to go through. To be able to make use of all the information some kind of automatic
analysis is needed. This is what sentiment analysis, or opinion mining, is about;
analyzing human sentiment, opinions and emotions expressed in text.

1.1 Background

Sentiment analysis is a relatively new area of research and it was with the growth
of the Internet that it began to get more attention. One of the reasons behind
that is the fact that, until then there was a very limited amount of opinionated
text available for researchers to study [11]. The focus of the field of Natural Lan-
guage Processing (NLP) was instead directed on tasks like information retrieval
and topic based classification and clustering in contrast to opinion-based. While
some aspects of sentiment analysis are closely related to those tasks and the same
techniques can be applied new methods are also needed to better capture opinions
and emotions.

1

CHAPTER 1. INTRODUCTION

Just as the use of the Internet and social media grew extremely fast so did the
amount of research in the area of sentiment analysis. The benefits of automatic
opinion analysis became apparent which resulted in a vast number of reports and
applications from both the academic as well as the commercial world1. In an at-
tempt to unite the different branches Bing Liu tries to define the different problems
involved and summarize what has already been done [11].

The general definition of the problem in sentiment analysis consists in short of the
following parts. An object is any entity about which opinions can be stated, like a
product or an event, further each object has a set of features like the screen of a cell
phone or the length of a concert. An opinion holder, usually the author of the text,
can then express an opinion with an opinion orientation like a positive or negative
view on a certain feature, e.g. that the screen of a phone is good. With these
definitions the general problem is, given a document of text, find all quintuples of
object, feature, opinion orientation, opinion holder and time of opinion. That is, to
extract what each opinion holder says about the different features of every object
mentioned and also when in time this happened. This is clearly not a trivial task
since even identifying just, for instance, the different objects can be difficult on its
own.

Due to the complexity of the task most research has been focused on either some
subproblem or simplification of this general problem such as review summarization
or the analysis of comparative sentences. The area that has been researched most
however is sentiment and subjectivity classification where the problem is reduced to
ordinary text classification. Sentiment classification refers to the problem of classi-
fying a given opinionated text as positive or negative and subjectivity classification
deals with the task of distinguishing between opinionated and non-opinionated texts.
Two reasons why this has attracted so many researchers are that ordinary machine
learning techniques can be applied and that training data are available in the form
of on-line reviews. A popular dataset used in many reports consist of reviews from
the Internet Movie Database (IMDb)2 and was created by labeling each review ac-
cording to its rating [17]. The results presented using this dataset are extremely
good, over 80% accuracy on the sentiment classification task, using relatively sim-
ple approaches. These results were however obtained when only considering reviews
from one domain, movie reviews, and the same techniques applied on multi-domain
datasets performed considerably worse [1].

Another, completely different, approach to sentiment analysis is with the use of vec-
tor space models which also comes from more traditional text processing tasks. In
information retrieval for instance, it is common to build a so called term-document
matrix where the row vectors represent words and the columns documents. The
similarity between two documents, or between a search query and document, can

1In [11] it is stated that at least 20 to 30 companies dealt with sentiment analysis at the time
(2010) in USA alone and well over 100 reports about the topic are mentioned as references.

2http://reviews.imdb.com/Reviews/

2

1.2. PROBLEM SPECIFICATION

then be calculated as the distance between its corresponding column vectors [26].
By instead regarding the row vectors the similarity between words can be calcu-
lated and models used for this is sometimes referred to as word space models [9].
These are the models used in sentiment analysis by, for example, manually creating
two points in the high-dimensional space, one representing positive attitude and
one negative, and calculating which point a given text or word is closest to [25].
The problem with word space models created as above is that they tend to get
very large, the term-document matrix will in fact have as many columns as docu-
ments and rows as the number of unique words. Furthermore the matrix will be
extremely sparse since most words do not co-occur with that many different other
words. To counter these problems some kind of dimension reduction technique is
usually applied, such as Singular Value Decomposition (SVD) [6], but these are
computationally costly and become infeasible to use on the large amounts of data
in social media. Random Indexing is a method that has gained popularity in recent
years because it produces similar results as SVD but is both more efficient and can
be constructed incrementally [18]. Word space models and Random Indexing will
be discussed in more detail in chapter 2.

1.2 Problem specification

This thesis was performed at Lissly, a company that provides their customers with
a tool that searches all the big social media sites for specific keywords and presents
relevant statistics of the result. The current statistics only show how many posts
that are written about a keyword and not what the authors of those posts actually
say. The purpose of this thesis is to investigate the use of sentiment analysis to
capture the writers’ opinions. More precisely given a text, written in Swedish, to
try to classify it as positive, negative or neutral (no opinion). Due to the lack of
labeled data from actual social media, reviews from different domains will be used
to train and test the classifier. The idea being that the issues with cross-domain
reviews should be quite similar to the problems with social media posts. A smaller
set of hand labeled texts from the real data will then be used to evaluate the final
classifier.

To achieve higher domain independence than existing methods the representation
of a word space model built with Random Indexing will be used. A classifier using
standard machine learning techniques will be trained on features extracted through
the model to answer basically the following questions:

• Can Random Indexing be used to aid in the creation of a computationally effi-
cient, domain-independent method of classifying texts based on the expressed
opinions?

• Do the issues with cross-domain review classification transfer to classification
of posts made in social media?

3

Chapter 2

Theory and previous work

This chapter will introduce the theory behind the methods used to perform senti-
ment and subjectivity classification and give a description of the methods them-
selves. In general there are two main directions of the field; data-driven and
knowledge-based approaches. Data-driven means that only the actual data are
taken into account whereas knowledge-based relies on some existing knowledge of
the language. For instance one might argue that adjectives carry more opinions
than nouns and create classifiers based on that. This will be followed by the theory
of word space models and Random Indexing and how they are used in sentiment
analysis. The main point of these models are that according to the distributional
hypothesis [18, 19, 20, 26] the meanings of words can be extracted by the contexts
in which they occur. By sampling a large set of unlabeled documents the mean-
ings of words can be translated into distances in a high dimensional space which is
mathematically well defined and easier for a computer to deal with.

In order to assimilate all the information some understanding of machine learning
terminology and techniques is required, so first follows a quick briefing on that. If
you are already familiar with basic machine learning you can skip the next sec-
tion.

2.1 Basic machine learning

In machine learning you often speak of supervised and unsupervised learning where
in supervised learning you have labeled training data, where the correct label is
given for each training example, and in unsupervised you do not. In this report
mainly supervised learning will be discussed and in most such methods you begin
by defining features derived from the training data. The features can be integer or
real numbers which are combined into a feature vector which is used as input to the
classifier. During training the algorithms are presented with a set of feature vectors

5

CHAPTER 2. THEORY AND PREVIOUS WORK

combined with their corresponding labels to learn a decision rule. Once trained,
given an unlabeled data point, the classifier uses the decision rule to try to assign
the new point to the correct class. For a concrete example see section 2.2. [12]

One supervised learning method commonly used in text classification tasks is the
Naïve Bayes’ Classifier which uses statistics and probabilities to make the decision
rule. Given a feature vector (Fi, . . . , Fn) and a set of classes C we want to calculate
P (Cj |F1, ..Fn) for all Cj ∈ C. That is to calculate the conditional probabilities that
the data point belongs to each class given the feature vector. Using Bayes’ theorem
this becomes P (F1,...Fn|Cj)P (Cj)

P (F1,...,Fn) where P (F1, ..., Fn) is the same for all classes and
can be disregarded leaving only P (F1, ...Fn|Cj)P (Cj). P (Cj) is called the prior
probability and can easily be calculated by simply counting the number of points
belonging to the different classes in the training data. Calculating P (F1, ..., Fn|Cj),
called the class-conditional probability, is harder and becomes infeasible for larger
values of n. This is solved by assuming, naïvely, that the feature values F1, ..., Fn

are conditionally independent of each other giving; P (F1, ..., Fn|Cj |) =
n∏

i=1
P (Fi|Cj),

which is easier to calculate.[12]

The final decision rule is then to choose the class Cj which maximizes the following
expression:

n∏
i=1

P (Fi|Cj)P (Cj)

Another method often used is the Support Vector Machine (SVM) which also works
on feature vectors to solve classification tasks. The idea behind SVMs comes from
the realization that there are possibly an infinite number of decision rules that
discriminate between two classes, and tries to formalize why one is better than an-
other. The solution is the rule that produces the largest margin, that is the rule
that maximizes the minimum distance between any data point and the discrimi-
nating line given by the decision rule. The points that lie on the margin are called
support vectors and, after the training is done, these are the ones used to make
classifications by simply calculating on which side of the line between them the new
data point lies. To achieve this the problem is formed as a quadratic optimization
which can be solved efficiently by existing solvers. Apart from finding the “best”
decision rule SVMs have more properties which make them interesting. To allow for
mislabeled data points during training, possibly due to noise in the training data,
slack variables are introduced. These come with a cost parameter which lets you
make a trade off between larger margin and training error. SVMs also incorporate
something called the kernel trick which in short enables you to efficiently transform
the data to higher dimensions which might be necessary to be able to do the classi-
fication. The interested reader is referred to a textbook on the subject like [12] for
a more in-depth description.

The goal of using supervised learning methods is of course not only to be able to
classify the training data correctly but to perform well on all possible inputs. This

6

2.1. BASIC MACHINE LEARNING

is referred to as generalization and is the reason why a larger margin in the SVM is
preferred since it should reasonably predict the class of new data points better. The
opposite of generalization is called overfitting, where the learning algorithm produces
a too complex decision rule to fit to the training data than to perform well on the
data it is intended for. In the case of a SVM this could be either to use a too high
cost parameter or to, unnecessarily, transform the data to higher dimensions. To
be able to tell when overfitting occurs you need to measure something else than the
error of the training set. One method of doing this is called cross-validation where
you partition your training data into two separate sets, one used for training and one
for testing. By measuring the error on the test set for different choices of parameters
to the classifier you can find the optimal settings. In many cases however, training
data are hard to acquire and there is a risk of undertraining the classifier if a too
small set is used for training. Then K-fold cross-validation is usually used where
the training set is split into K subsets and the classifier is trained on the K − 1
subsets left leaving each one out in turn for testing.[12]

To evaluate the performance of a classifier a number of different metrics are usually
used and the most common ones are accuracy, precision and recall. They can all
be expressed in terms of true positives tp, true negatives tn, false positives fp and
false negatives fn:

accuracy = tp + tn

tp + tn + fp + fn

precision = tp

tp + fp

recall = tp

tp + fn

Positive and negative here does not refer to positive or negative sentiment but
just to two general classes in an arbitrary classification problem. Accuracy simply
measures the fraction of correct classifications and is useful when the classes are
balanced, that is when there are an equal amount of examples in each class. If
the classes are unbalanced however, accuracy provides less information since if one
class consists of for instance 90% of the examples, simply assigning all examples to
that class would give an accuracy of 90%. In that case it is often useful to instead
measure how well the classifier performs on examples in and actually classified as
belonging to the smaller class, which is what precision and recall measures.

7

CHAPTER 2. THEORY AND PREVIOUS WORK

2.2 Bag of words

The first step of any classification task is to decide on how to represent the relevant
objects and in text classification the incomparably most common approach is to
use a bag of words representation. The name bag of words refers to that in such
a representation a text is simply regarded as a set or, in natural language, bag
of independent words. This is sometimes criticized since it ignores any semantic
or conceptual information about the words coming from, for instance, the order
in which the words occur. Even with these shortcomings however, bag of words
representations have been used to yield good results in both ordinary text, as well
as sentiment and subjectivity, classification tasks.

2.2.1 Lexicon based methods

A simple approach to perform sentiment and subjectivity classification relies on the
assumption that certain words, mostly adjectives, are exclusively used to express
strong positive or negative sentiment. It is quite easy for a human to create two
lists which only contain such words, positive in one and negative in the other. By
simply counting the number of positive and negative words the classification can be
made by assigning a given text to the class with the highest count. This was tested
in [17] by letting two human test subjects independently select around ten words of
each class and evaluating the resulting classifiers on the IMDb-dataset mentioned
in the background section. The results achieved were 58% and 64% accuracy for
the two respectively with 75% and 39% ties (same number of positive and negative
words). The relatively poor results and high tie count could be due to the low
number of words used but as another test they also tried the same number of words
but selected by inspecting the training data. With these words they achieved 69%
accuracy with only 16% ties which lead to the conclusion that even if humans select
words that look plausible a data-driven approach could probably do better.

One improvement of the just described method is to use the manually created word
lists as seed words and extend the list by adding other semantically related words.
There are several ways of finding these related words but one of the most used is
through WordNet[14]. WordNet is basically a dictionary of the English language
constructed in a way that makes it easy to access programmatically. One method
utilizing this is described in [8] where the lexicon is used to perform sentence level
subjectivity and sentiment classification as a part of a review summarizer. The
method only considers adjectives and as a first step a complete list of these are
extracted from the review collection. A set of seed adjectives which have been
manually assigned a sentiment orientation is then used together with WordNet
to predict the orientation of the others. The prediction is done by extracting all
synonyms and antonyms of the unassigned adjective and checking if any of those
are in the seed set. If a synonym is found, the prediction becomes the same as the

8

2.2. BAG OF WORDS

seed word and if it is an antonym the opposite is used. This is executed for all
unassigned adjectives and when a prediction is made the adjective is added to the
seed set thus continuously growing the lexicon. The entire process is repeated until
all adjectives are assigned an orientation or the growth stops.

Taking the idea even further it is possible to not only assign an orientation to the
words in the lexicon but also some kind of weight or score. This is motivated by the
fact that different words can express different of levels emotions. The word great
for instance expresses a stronger positive sentiment than the word good. A simple
decision rule to classify a text is then to sum all scores and apply a threshold instead
of counting occurrences. An example of this is presented in [2] which also deals with
review summarization and the proposed method of lexicon construction is heavily
inspired by the one described in the previous paragraph. One difference is that
the produced lexicon contains all words in WordNet and not only a selected set of
adjectives but the main addition is in the procedure to extend the lexicon. At the
start of the algorithm a score vector is constructed such that all positive seed words
have a value of +1, all negative −1 and the rest a value of 0. Then, instead of just
setting the score of found relations to +1 or −1, each value is updated by adding
the score of all synonyms and subtracting the score of antonyms1. This way the
orientations of the seed words are propagated through the synonym and antonym
relationships causing non-seed words with at least one relation to a seed word to
get its value updated. By repeating the process the updates spread to the entire
set of words and finally producing the finished lexicon.

2.2.2 Data-driven methods

In contrast to the lexicon-based methods discussed in the last section where individ-
ual words are ranked or assigned an orientation by prior knowledge of the language,
the data-driven methods only rely on information in labeled training data. The goal
is however basically the same, to assign each word with a weight to be able to create
a decision rule that discriminates between the classes. To find these weights and
the decision rule supervised training techniques such as Support Vector Machines
(SVM) or Naïve Bayes’ Classifiers (NB) are used. Each document d in the training
and test sets can be expressed by the feature vector f = (n1(d), n2(d), ..., nm(d))
where ni(d) is the number of times word i occurs in document d. This technique is
tested on the IMDb-dataset in [17] achieving accuracies of 78.7% with a NB classi-
fier and 72.8% using a SVM, both clearly outperforming the simple approach with
seed words.

Using the frequency ni(d) is however not the only, or the best, way to create the
feature vector from a document. By simply using binary features, a 1 if the word
is in the document and a 0 otherwise, the results are improved to 81.0% using NB

1A scale factor λ < 1 is multiplied with the scores before the addition or subtraction in order
to control the rate of propagation.

9

CHAPTER 2. THEORY AND PREVIOUS WORK

and 82.9% with SVM on the same dataset [17]. In topic based classification and
information retrieval a metric called Term Frequency–Inverse Document Frequency
(TF-IDF) is commonly used. TF-IDF gives a term (word) a higher weight if it
occurs frequently in the given document but is infrequent in the whole document
collection. This is to increase the importance of words that statistically are well
suited to discriminate between the documents but this does not seem to work for
sentiment classification [13]. Instead a slightly modified version called Delta TF-IDF
is proposed where the terms are weighted by the difference in frequency of the term
in the positive and negative training set. With Ct,d being the number of times term
t occurs in document d, Pt and Nt the number of positive and negative documents
with term t and |P | and |N | the number of positive and negative documents, the
feature value Vt,d for term t in document d becomes:

Vt,d = Ct,d · log2

(
|P |
Pt

)
− Ct,d · log2

(
|N |
Nt

)
= Ct,d · log2

(
|P |
Pt

Nt

|N |

)

Using this feature value and a SVM an accuracy of 88.1% is reported[13]2.

Another important part of the data-driven methods, besides using an appropriate
feature value, is feature selection. Using all unique words in the training data as
separate features can lead to an extremely high-dimensional feature space which is
both computationally costly and can lead to overfitting. Since every extra feature
means another free parameter for the supervised learning method to estimate a
more complex decision rule can be made. To deal with this feature selection is used
where the words are ordered according to some statistical metric and only the top
scoring ones are kept for learning and classification. A number of different metrics
are used in text categorization and for a extensive description and comparison the
reader is referred to [7]. One of the methods described there is called Information
Gain (IG) which is extensively used in a wide range of machine learning tasks. IG
measures the decrease in entropy of the dataset when the value of a feature is given
contra not given. Entropy describes the amount of impurity in a dataset S and is,
for a two class problem, defined as [12]:

E(S) = −Ps1 log2 Ps1 − Ps2 log2 Ps2 ,

where Ps1 and Ps2 are the probabilities of at random drawing an example of class 1
or class 2 respectively. With this definition of entropy the Information Gain IG(S, f)
of feature f in the dataset S becomes [12]:

IG(S, f) = E(S)− |Sf=1|
|S|

E(Sf=1)− |Sf=0|
|S|

E(Sf=0),

where in our case Sf=1 is the subset of documents containing word f and Sf=0 the
subset that do not.

2It is not completely clear in [13] if any other techniques were applied to achieve this result.

10

2.2. BAG OF WORDS

2.2.3 Cross domain issues

While the supervised machine learning techniques usually outperform the lexicon-
based ones the increased performance comes at a cost. Classifiers trained on
data from one domain do generally not perform well when applied to data from
another[1]. This is because the learning algorithm only looks at the actual data and
can assign strong positive or negative sentiment to words that in general carry no
sentiment at all. It is even possible that a word that strongly indicates positive sen-
timent in one domain actually means something negative in another. For instance,
it is a good thing for a movie to be unexpected but the same word is probably less
than the desirable when talking about a car’s steering. When only regarding one
of the domains it is clearly beneficial to assign a sentiment to the word whereas in
general it is not. Lexicon based methods, using only words with a known sentiment
orientation, is therefor more domain independent while supervised learning, which
utilizes more information, performs better within domains.

The goal is obviously to achieve both domain independence and high performance
and one solution is to combine the two techniques. This is done in [2] where they
take two different scores obtained through a lexicon and, if present, a rating and
use those as features to a Maximum Entropy classifier3. Another solution is to use
the parameters and possibilities at hand in the supervised learning algorithms and
try to overcome the cross domain issue. This is extensively studied in [1] where
they take reviews from four different domains and perform a number of cross do-
main classification tasks. The first obvious attempt is to simply train a classifier on
a mixture of data from different domains which was done using a Support Vector
Machine (SVM) and a feature selection metric called LLR4. Another possibility is
to use a small amount of labeled data from the target domain combined with the
full sets of the others. This is done by training multiple classifiers on the different
domains and parameters and combine them in an ensemble weighting each classi-
fier’s prediction using the target domain data. Using this approach they managed
to significantly improve the results5.

The best performance reported in [1] however was achieved using a method which
only relied on a small amount of labeled and a larger amount of unlabeled data from
the target domain. The algorithm used was a generative Naïve Bayes’ Classifier
where the parameters were iteratively updated using Expectation Maximization.
The full details will not be discussed here but are available in [1] and [15]. The
interesting conclusion is however that the algorithm which could make use of the
information in unlabeled target domain data outperformed the others6.

3The Maximum Entropy classifier is another supervised machine learning technique which relies
on statistics and probabilities.

4LLR, log likelihood ratio, is equivalent to Information Gain.
5Using 100 examples from the target domains the accuracy was increased by around 6 percent-

age points in three of the domains and 1.5 in the other.
6Increasing the accuracy of the ensemble approach by 1 to 6 percentage points in the different

11

CHAPTER 2. THEORY AND PREVIOUS WORK

2.2.4 Utilizing the context

As mentioned earlier the bag of words approach is sometimes criticized because it
disregards all information about the context contained in written text. One of the
most obvious examples of this in sentiment analysis is with the use of negation. All
the methods discussed this far would treat the word great exactly in the same way
independent of it was preceded by not or very. This is clearly a mistake since in
reality the phrases have opposite sentiment orientations. A simple way of dealing
with negations in the bag of words model is to either prepend each word between
any negation and punctuation terms with a special tag [17] or reverse the sign of
those words values in a lexicon [2]. In the first case however, the classification
performance actually dropped when those tags were added. There are of course
more advanced methods of dealing with negation, in fact there are whole reports
like [5] aimed at just that subject.

Another way of inferring contextual information into the model is to not only look
at each separate word (unigrams) but instead at every word pair or triplet (bigrams
and trigrams) or even tuples of every possible length (ngrams). This of course
increases the number of features drastically which makes feature selection even
more important. These are tested (some or all of them) as features to supervised
machine learning algorithms in [1, 13, 17] with varying results. In [1] they achieve
the highest reported accuracy on the IMDb-dataset, 90.45%, using the top 20000
ranked ngrams according to LLR but also notice that when tested across domains
unigrams still perform better than the others.

There are also methods to capture even more complex parts of written language
such as grammatical information. One example of that is the use of the information
from a position of speech (POS) tagger7 to associate each word in a text with its
corresponding word class. A straightforward way to incorporate this information
in a bag of words model is to prepend every word in a text with its word class.
This was tested in [17] but did not yield any improvements. A more advanced
way of using grammatical information is called appraisal groups where one tries
to extract groups of appraisal containing detailed information about how it was
expressed. Using such groups based around only adjectives combined with bag of
words features the authors of [27] manage to achieve an accuracy of 90.2% on the
IMDb-dataset8.

target domains
7There are several POS taggers freely available but details about such algorithms was out of

scope for this project.
8The method was not tested on any cross domain tasks.

12

2.3. WORD SPACE MODELS

2.3 Word space models

As mentioned earlier the main idea behind word space models is to represent words
by high dimensional vectors where semantically related words will have vectors
closer to each other than words that are not. This idea comes from the distributional
hypothesis which in essence states that words that occur in similar contexts will have
similar meaning[18, 19, 20, 26]. This hypothesis is supported by both numerous
experimental results, see section 2.3.4, as well as more philosophical arguments
[10]. The power of these models is that they make semantics computable in a
mathematically well defined way without relying on any previous knowledge about
the language [18]. By only looking at the actual data they also only capture what
is really there and not anything else.

2.3.1 Traditional methods

The normal way of constructing a word space model is to go through the data and
create a co-occurrence matrix, for instance the term-document matrix mentioned
in the background used for information retrieval. The context used, as discussed in
section 2.3.3, does not have to be a document however so in general it is a term-
context matrix. The matrix M is created such that each row Mw corresponds to
a word and each column Mc to a context [18]. So if word w occurs four times in
context c the value of the cell Mwc would be four. When the entire set of data has
been processed a words row vector, or context vector, will contain exactly which
contexts the word has occurred in. As a final step the values of the context vectors
are usually normalized and weighted to handle high frequency words and possi-
bly contexts of different lengths. By the distributional hypothesis it is then easy
to calculate the semantic similarity between two words by simply measuring the
similarity between their context vectors. There are numerous well known ways of
measuring the similarity between two vectors, A and B, and one of the most com-
monly used is called Cosine similarity, sim(A, B), which calculates the cosine of the
angles between them. Using the Euclidean dot product formula this becomes:

sim(A, B) = A ·B
‖A‖‖B‖

,

where A ·B is the dot product of A and B and ‖V ‖ is the magnitude of the vector.
The similarity between contexts can of course also be calculated in the same way
by regarding the columns of M . Such a column vector is actually exactly what is
used as feature vector in the bag of words methods described in section 2.2.

While word space models built in this manner have interesting properties they also
come with some problems. As mentioned in the background the context vectors
will have as many dimensions as the number of contexts which for real life problems

13

CHAPTER 2. THEORY AND PREVIOUS WORK

could easily be in the millions9. This high dimensionality makes the model com-
putationally difficult to handle. Furthermore according to Ziph’s law [18] most of
the words in any natural language will only occur in a very limited set of contexts
which makes the term-context matrix extremely sparse. In fact, in a typical word
space model matrix more than 99% of the cells will have a value of zero [18].

To handle the problems with high dimensionality and sparseness most methods us-
ing word space models apply some kind of statistical dimension reduction technique.
There are several different ways this can be performed but one well known example
is Singular Value Decomposition (SVD), which is used in Latent Semantic Analysis
(LSA) [6]. Most of these techniques however require that the entire term-context
matrix is created before it can be transformed to something more manageable. This
still leaves the problem with initial high dimensionality and for large datasets it can
be infeasible to actually perform the SVD [18]. Another problem is that once the
dimension reduction is applied it is difficult to add new data to the model which
often means that you actually have to redo the entire process. These problems,
among others, make such word space models impractical for applications dealing
with large amounts of data such as analysis of social media.

2.3.2 Random indexing

Random Indexing is another method of creating word space models which tries to
overcome the issues with the normal approach and still produce similar results.
This is achieved by instead of initially creating the term-context matrix accumulate
context vectors of a predefined dimensionality as the data are processed. By doing
so the large initial matrix step is avoided with an implicit dimension reduction
and allows the model to be updated incrementally when new data are available.
The name Random Indexing comes from the fact that the dimension reduction is
performed by projecting the data into a randomly selected subspace. The motivation
for why this works will be discussed later in this section. [18]

The process of creating a word space model with Random Indexing is relatively
simple, it consists of two steps. First each context is assigned a unique randomly
generated vector, called index vector. The index vectors are sparse and consists
of a small number of ones and minus ones randomly distributed with the rest of
the values set to zero. The dimensions of these vectors are usually around a few
thousand and they can of course be generated on the fly when new contexts are
discovered. In the second step the data are processed and every time a word occurs
in a context the index vector of that context is added to the context vector of the
word. This way the context vectors are still effectively the sum of the contexts in
which the words occur. [18]

9The largest dataset used in this project consists of about two million documents and 140
million words.

14

2.3. WORD SPACE MODELS

As an example, consider the two following documents:

This is document one about apples.
The second document is about oranges.

If we assign the documents index vectors, i1 and i2, as:

i1 = (0, +1,−1, 0)
i2 = (−1, 0, 0, +1)

the context vector for each word w, cw, would be:

cT his = (0, +1,−1, 0)
cis = (−1, +1,−1, +1)

cdocument = (−1, +1,−1, +1)
cone = (0, +1,−1, 0)

cabout = (−1, +1,−1, +1)
capples = (0, +1,−1, 0)

cT he = (−1, 0, 0, +1)
csecond = (−1, 0, 0, +1)

coranges = (−1, 0, 0, +1)

That is, the words that only occur in document one (This, one and apples) get
a context vector equal to i1 and the ones that only occur in document two (The,
second and oranges) a context vector equal to i2. For the words that occur in both
documents (is, document and about) the context vectors would first become i1 as
the first document is being processed and then added by i2 resulting in i1 + i2 as
the second is processed. If a word were to occur two times in a document that
document’s index vector would be added twice to the context vector.

To motivate why Random Indexing does indeed work, first consider using index
vectors with a dimensionality as the number of contexts and consisting only of a
single one at different positions. Then the index vectors will be truly orthogonal
and the process will produce the ordinary term-context matrix normally used. It
has however been demonstrated that there exist many more nearly orthogonal than
truly orthogonal directions in high dimensional spaces so the randomly generated
index vectors of random indexing will approximate orthogonality. Because of this
near orthogonality the process can be viewed as projecting the data into a random
subspace. When this subspace is of “sufficiently high dimensionality” it has been
shown that the projection approximately preserves the distances between the points
in the original vector space. Reducing the dimension while preserving distances is
of course the purpose of any dimension reduction technique including SVD. Note
that sufficiently high dimensionality above refers to order of thousands while the
original vector space is in the order of hundreds of thousands or even millions so
the reduction in dimension is still significant. [18]

15

CHAPTER 2. THEORY AND PREVIOUS WORK

While Random Indexing has been shown to perform well on many of the tasks
ordinary word space models are used for, see section 2.3.4, it has some weaknesses.
One of these is the lack of ability to find implicit connections between words that
do not occur together in any context. This is shown in [4] where they also present
an extension to Random Indexing which can also discover these connections by
indirect inference. They call the method Reflective Random Indexing and the idea
is to update not only the context vectors but also the index vectors. The first step
is identical to normal Random Indexing using documents as contexts but when the
context vectors are generated the randomly generated index vectors are replaced by
the sum of the context vectors of the words in the corresponding document. Using
these new index vectors the process is repeated to produce the final context vectors.
The entire process becomes10:

1. Assign each document with a randomly generated index vector.

2. Accumulate the words’ context vectors by summing the index vectors of the
documents in which the words occur.

3. Replace the documents’ index vectors with the sum of the context vectors of
the words in the document.

4. Repeat 2.

This is actually one of the two variants presented of Reflective Random Indexing,
namely document-based. The other is called term-based and works in a similar way
but instead begins by assigning each word with a randomly generated index vector
and then start the process at step 3. A big drawback of document-based Reflec-
tive Random Indexing is however that the created model is not capable of being
incrementally updated but needs to be redone if new data are to be added.

2.3.3 Different contexts

All examples so far of word space models have used documents as context, as men-
tioned however this is not the only possibility. There are several other options [26]
but the most common one, together with documents, is word windows. With word
windows the context of a word is regarded to be, instead of the entire document,
only the window of directly preceding and succeeding words. The size of the window
may of course vary between applications but a common setting is to take two words
before and two words after the focus word (a 2+2 window) [9, 10, 19, 20, 22, 24].
The original term-context matrix in a model using word windows actually becomes
a term-term matrix. When the data are processed each word (the focus word) is
looked at in turn and the cells of that word’s corresponding row vector get incre-
mented at the cells corresponding to the words in the window. With the same
example documents as in the previous section and a 1+1 window the term-term
matrix would be:

10Where step 1 and 2 alone is normal random indexing with documents as context.

16

2.3. WORD SPACE MODELS

T
hi

s

is do
cu

m
en

t

on
e

ab
ou

t

ap
pl

es

T
he

se
co

nd

or
an

ge
s

This 0 1 0 0 0 0 0 0 0
is 1 0 2 0 1 0 0 0 0

document 0 2 0 1 0 0 0 1 0
one 0 0 1 0 1 0 0 0 0

about 0 1 0 1 0 1 0 0 1
apples 0 0 0 0 1 0 0 0 0

The 0 0 0 0 0 0 0 1 0
second 0 0 1 0 0 0 1 0 0

oranges 0 0 0 0 1 0 0 0 0

The matrix is still sparse and will usually have an even higher dimensionality than
when documents are used as context so the need for a dimension reduction is still
present. Luckily the same techniques can of course be applied. With Random
Indexing it is just a matter of assigning each word with a randomly generated index
vector and accumulate the context vectors in the normal way.

A fact that is sometime overlooked is the impact the choice of context has on the
model and which semantic relations it captures. This is discussed extensively in
[19] and [20] where the terms syntagmatic and paradigmatic are used to distinguish
between the relations models using document and word window contexts capture.
Syntagmatic relations exists between words that co-occur like for instance the words
plot and cast which indicates that they are used to describe the same thing, a movie
in this case. Paradigmatic relations conversely exist not between words that co-
occur together but between words that co-occur with the same other words. A good
example of words with this relation is adjectives that modify the same noun, like
hungry and thirsty. The difference between the two relationships can be visualized
by the following grid where the rows represent words with syntagmatic relations
and the columns paradigmatic11:

Paradigmatic relations

Syntagmatic relations
she adores green paint
he likes blue dye
they love red colour

Using documents as context captures more syntagmatic relations and word windows
paradigmatic and at a first glance paradigmatic may seem more desirable. As we
will see later however this is not necessarily the case when performing sentiment
analysis.

Word space models are sometime criticized, just as the methods discussed earlier,
for not taking the word order in to account. When using word windows as context
it is however possible to add that information to the model as well. The basic
idea is to represent the words in the window differently depending on where in the
window they occur. This means that in a 2+2 window for instance each unique
word would need to have four different representations, one for each position, which
would produce an even larger term-term matrix. When using Random Indexing

11The example sentences are taken from [20].

17

CHAPTER 2. THEORY AND PREVIOUS WORK

this is not a problem since that matrix is never actually produced. A method of
including this information with Random Indexing is presented in [22] which uses
random permutations of the index vectors to encode the position.

2.3.4 Applications

As mentioned earlier one use of vector space models is to perform information
retrieval by measuring the similarity between a search query and all documents in
a collection. Since then word space models have evolved and been used successfully
in a number of different applications. One of the most interesting uses which really
indicates that such models do indeed learn the meaning of words is when applied
on the synonym finding part of TOEFL12. In the test you are given a word and
four alternatives and are supposed to select the synonym among them. Solving this
using a word space model is done by calculating the distance between the given
word and each of the alternatives context vectors and simply choose the alternative
that is closest as the answer. Using this approach LSA13 achieved 64.4% correct
answers and Random Indexing with window contexts14 63.5%–72.0% compared to
the average result of real non-English-speaking humans of 64.5% [10].

Two other related applications for word space models which are closer to the sub-
ject of this project are presented in [24] and [23]. They are called Terminology
mining and Buzzword monitoring and are both implemented using Random Index-
ing and deal with data in social media. Terminology mining refers to the task
of understanding and keeping up with the everchanging vocabulary used in social
media. To do this a word space model is created using Random Indexing with
word windows as context and word order encoding and it is evaluated by looking
at the nearest neighbors of selected words. For instance, the nearest neighbors of
the word recommend includes reccomend, looove and lurve. That is, probably, both
deliberate and unintentional misspellings which would be of great importance when
performing sentiment analysis but extremely hard to detect using, for instance,
a predefined lexicon. There are also however some problems with this approach,
among the closest neighbors of the word bad, for example, are cool and fantastic.
This, on the other hand, would pose a real problem if trying to distinguish between
positive and negative words and comes from the fact that antonyms are a kind of
paradigmatic relation. For buzzword monitoring documents are instead being used
as context to see what is generally said about a certain keyword. Since such a
model would represent words as similar if they co-occur a lot you can see if, for
instance, a product name is talked about in a generally positive or negative manner
by calculating and comparing the distance between the name and the words good

12Test Of English as a Foreign Language, used to test foreign applicants’ language skills when
applying to universities.

13LSA is explained in section 2.3.1.
14Using word stemming and different window sizes.

18

2.3. WORD SPACE MODELS

and bad. This concept is not limited to only positive and negative but can be used
for any comparison task where predefined poles can be defined.

Word space models have also been used to perform and aid in different text classifi-
cation tasks. One such example is presented in [21] where they use a model created
with document context Random Indexing as a feature extractor to a Support Vector
Machine. The feature vector used is simply a weighted sum of the context vectors
of all words in a document. They call the method “Bag of Concepts” since each
dimension of the context vectors can be regarded as an abstract concept. This ap-
proach was tested on a set of news wire documents assigned to 90 categories and
produced similar results as ordinary bag of words methods overall but outperformed
them in a number of the categories. In [25] news headlines are classified as being
loaded by positive or negative emotions in the same manner as with buzzword mon-
itoring. The sum of the context vectors of eight seed words were used for each pole
which was then compared to the sum of the context vectors in the headline. For
this application a normal term-document matrix was used, that is, no dimension
reduction was applied.

19

Chapter 3

Methodology

As stated in the introduction and problem specification the method used in this
project will be based on a word space model built with Random Indexing. A brief
motivation for that choice was also given but now enough background has been pre-
sented to motivate it more thoroughly. The goal of the method and entire project
is to improve cross-domain classification of reviews and transfer that improvement
to classification of general posts made in social media. There are several factors
which make a word space model an attractive base for such a method. First, it
has already been shown, see section 2.2.3, that methods which can utilize the in-
formation in target domain unlabeled data are likely to outperform methods that
do not. Unlabeled data are, compared to labeled, available in great quantities so
acquiring it is not a problem. Word space models have also been shown, in numer-
ous applications, to actually capture the meaning of the words in contrast to the
more mathematically supported method of utilizing unlabeled data used in previous
work. Further, the intended domain, social media, is especially hard to analyze due
to the type of language used. Misspellings, slangs and fashion words are common
and the vocabulary changes over time. This makes knowledge-based method such
as using a predefined lexicon or even grammatical constructs less suitable for the
task. Word space models on the other hand have been shown to deal well with
these issues and one might argue that a word space model actually can be seen as
a dynamic lexicon of the language it is built on. Since the target language of this
project is Swedish which does not have as many resources available, as for instance
WordNet for English, this last property is especially important. In fact, a truly
domain independent method should of course be able to handle different languages
with as small effort as possible anyway. The choice of using Random Indexing to
build the word space model can also be motivated by the fact that the method is
intended for use on social media posts. Due to the extreme amounts of data pro-
duced and the changing vocabulary the computational efficiency and incremental
construction of Random Indexing are very desirable properties. Last, the choice
was made to actually perform classification on each post instead of, for instance,

21

CHAPTER 3. METHODOLOGY

just using the techniques of buzzword monitoring, see section 2.3.4. The problem
with the latter approach is that it is very hard to actually verify or measure its
results. Just stating that a product name is twice as close to the positive pole than
the negative is harder to explain or verify than actually producing the positive and
negative posts about it.

3.1 Datasets

Since the language primarily targeted in this project is Swedish, the datasets used
in previous research, like the IMDb-dataset, cannot be used. However, one of the
motivations for performing document level sentiment and subjectivity classification
in the first place was that labeled data are available in the form of online reviews. So
the first task was to actually acquire all needed datasets which include labeled data,
positive, negative and objective, from five different domains. The chosen domains
are movies, books, cellphones, games and online shops. The samples in the movie
and book domain were taken from the Swedish sites Filmtipset1 and Boktipset2.
Reviews at those sites are rated on a five star scale and reviews with one or two
stars were treated as negative and four or five stars as positive. Reviews with a
rating of three were discarded and the objective samples were instead taken from
plot summaries on the same sites. For the rest of the domains the positive and
negative samples were taken from the review site Prisjakt3. There a ten star rating
is used and by a frequency count of the different ratings it became apparent the
users there were biased towards higher ratings. By inspection4 the choice was made
to treat all reviews with zero to five stars as negative and only reviews with eight to
ten as positive. Finding objective samples in these domain proved difficult however
so instead random articles from the Swedish Wikipedia5 was used.

To have something to evaluate the final method, labeled data from real social media
were needed. Two distinct sets were created by letting six humans, all working with
analysis of social media, hand label posts actually collected by the tool at Lissly. For
the first set each person labeled different posts to make the set as large as possible
while for the other everybody labeled the same predefined smaller set of posts. This
second set was used for comparing the method proposed here to how well actual
humans agree on the classifications and the “correct” label of a sample was set by
majority vote. The number of samples in each domain and class is presented in
table 3.1.

As also seen in table 3.1 the classes are kept balanced for the training sets to make
evaluating intermediate methods easier. Besides the already mentioned datasets

1http://nyheter24.se/filmtipset/
2http://www.boktipset.se/
3http://www.prisjakt.nu/ (An English version is available at http://pricespy.co.uk/.)
4Most of the reviews with six or seven stars actually contained mostly negative expressions.
5http://dumps.wikimedia.org/svwiki/

22

3.2. BASELINE

Set\Class Pos Neg Obj
book 4k 4k 8k
shop 4k 4k 8k
movie 10k 10k 20k
cell 1k 1k 2k
game 800 800 1.6k
real1 157 190 361
real2 23 9 68

Table 3.1. Number of samples in each set and class.

a larger set of unlabeled posts from social media was also created to be used to
build the final word space model and test the scalability of the method. This set
consists of about two million posts, 140 million words in total and about 2 million
unique words. For the initial tests on the five domains the word space model was
instead built on all available data from the domains (without using the labels) which
consists of 79200 documents, 7 million words and about 200000 unique words. All
data were collected during April and May of 2012.

3.2 Baseline

To have something to compare the final method to and make sure the results are
comparable with the results in earlier research a baseline was established. For the
baseline a Support Vector Machine (SVM) was trained on unigram features using
Information Gain as feature selection metric with presence or Delta TF-IDF as
weights. The process of training and testing this classifier is easy to automate so
a large number of tests with different combinations, feature selection limit ranging
from all to 1000 with both weighting schemes, were performed and the best setup
and result recorded. Larger ngrams such as bigrams or trigrams were not used
since it would have added to the complexity and the time required for the tests
and they have already been shown to not yield any improvements for cross-domain
classification. The SVM was chosen over, for instance, the Naïve Bayes classifier
because of its extra features which will be needed for later tests and using the same
method in all tests makes comparisons easier.

Two separate tests were executed as part of the baseline, the first to establish that
there actually exist cross domain issues with this normal approach. To do this
the SVM was trained as described above on each domain in turn and tested in
both its own domain and the remaining others. The second test made the actual
baseline used for comparison by using the naive approach of training on a mixture
of domains. Leaving one domain out in turn for testing the SVM was trained on
the others and the results recorded. In these cases not all the available data were
used but an equal amount from all the remaining domains so that each domain

23

CHAPTER 3. METHODOLOGY

would influence the decision rule equally. All tests were performed on both the sub-
jectivity (subjective – objective) and sentiment (positive – negative) classification
tasks.

3.3 Random Indexing

While the decision to use a word space model built with Random Indexing is taken
there are still a number of choices and questions left. First, as mentioned in section
2.3.3, the choice of context greatly affects which relations the model will actually
capture. This will in turn of course affect the performance of the resulting classifier.
Secondly, parameters like the dimensionality and the number of nonzero entries of
the context vectors must be decided along with any preprocessing of the data such
as for instance stop word removal. Finally, once a model is built that contains the
desired relations the question of how to actually use the information in the model
to create a classifier remains. A couple of the methods of doing this have been
proposed in earlier research, see section 2.3.4, and yet another one is presented
here.

3.3.1 Building the model

So far two different types of contexts for the word space model have been discussed,
documents and word windows plus the two variants of Reflective Random Indexing,
document-based and term-based. In previous research the syntagmatic relations of
using documents as context have been proposed for the tasks most similar to the one
investigated in this project [21, 25]. Word windows and paradigmatic relations have
however been proved to be more suitable in tasks where the actual meaning of words
are dealt with like terminology mining and the TOEFL test [10, 23, 24]. The ability
to capture the actual meaning seems intuitively like a desired property and even with
the problem of also capturing antonyms the choice cannot be discarded. Luckily
it is a small task to change context type in a Random Indexing implementation so
all the different choices could be implemented and evaluated experimentally. As
proposed in previous research a quick way of seeing some properties of a model is
to look at the nearest neighbors of selected words. Since we deal with sentiment
classification and are trying to distinguish between positive and negative attitude
the Swedish words for “good” and “bad” (“bra” and “dålig”) seem like good choices.
Word space models with the different context types were created using the smaller
dataset described in section 3.1 and the nearest neighbors calculated using cosine
similarity. The top ten neighbors when using documents as context are presented
in table 3.2 and with word windows in table 3.3.

24

3.3. RANDOM INDEXING

Bra (Good) Similarity Dålig (Bad) Similarity
är (is) 0.3669 den (it) 0.1979
så (so) 0.3318 är (is) 0.1940

inte (not) 0.3223 på (on) 0.1910
men (but) 0.3204 jag (I) 0.1876
det (it) 0.3145 det (it) 0.1871

med (with) 0.3143 inte (not) 0.1852
att (that) 0.3137 så (so) 0.1850
på (on) 0.3003 telefon (telephone) 0.1803

mycket (very) 0.2957 för (for) 0.1784
Table 3.2. Top 10 related words using cosine similarity of “bra” and “dålig” in a
word space model built using documents as contexts with Random Indexing. English
translations in parentheses.

Bra (Good) Similarity Dålig (Bad) Similarity
dålig (bad) 0.9215 kass (stinks) 0.9255

intressant (interesting) 0.8969 bra (good) 0.9215
underhållande (entertaining) 0.8872 usel (terrible) 0.8940

rolig (funny) 0.8870 grym (awesome) 0.8687
dåligt (bad) 0.8801 dåligt (bad) 0.8611

imponerande (impressive) 0.8501 rolig (funny) 0.8506
ganska (fairly) 0.8469 läskig (scary) 0.8425
kass (stinks) 0.8456 jättebra (very good) 0.8362
usel (terrible) 0.8434 ganska (fairly) 0.8347
uselt (terribly) 0.8419 skön (sweet) 0.8250

Table 3.3. Top 10 related words using cosine similarity of “bra” and “dålig” in
a word space model built using word windows as contexts with Random Indexing.
English translations in parentheses.

The results are as expected, with word window contexts we get words that look
semantically related but positive and negative words are closely related and with
document contexts we get mostly stop words. The stop words will of course be
related to everything since by definition they occur in almost every document. So
by only looking at the nearest neighbors neither of these contexts seem to be ideal
for our purpose. Turning then to the variants of reflective random indexing, using
the document-based approach everything got closely related to everything and since
that also removes the ability to update the model incrementally that option was
not pursued any further. However, using the term-based approach actually yielded
some interesting results. Doing this is effectively the same as using window contexts
but with an infinite window size and can be seen as a sort of mix between document
and word window contexts. The nearest neighbors in this model are presented in
table 3.4.

25

CHAPTER 3. METHODOLOGY

Bra (Good) Similarity Dålig (Bad) Similarity
batteritid (battery life) 0.9215 knapparna (the buttons) 0.9255

skärm (screen) 0.8969 så (so) 0.9215
ljud (sound) 0.8872 skärmen (the screen) 0.8940

kamera (camera) 0.8870 funktionen (the function) 0.8687
överlag (mainly) 0.8801 touch (touch) 0.8611
hyffsat (fairly) 0.8501 inte (not) 0.8506
riktigt (really) 0.8469 kameran (the camera) 0.8424

knappsats (keypad) 0.8456 batteritiden (the battery life) 0.8362
flyter (flows) 0.8434 batteriet (the battery) 0.83478

desgin (design) 0.8419 mobil (cell phone) 0.8250
Table 3.4. Top 10 related words using cosine similarity of “bra” and “dålig” in
a word space model built using term based Reflective Random Indexing. English
translations in parentheses.

The nearest neighbors in the model built with term based reflective random indexing
are indeed very interesting. The model seems to have been greatly influenced by the
cell phone reviews even though there are many more reviews of books and movies
in the dataset. Most of the nearest neighbors are features of a cell phone and even
though the same features are present as neighbors to both “good” and “bad” the
form of the word is different. Apparently when talking about a feature in indefinite
form we are usually more positive and in definite more negative, in Swedish reviews
at least. There are numerous examples of this in table 3.4, “battery life” and “the
battery life”, “screen” and “the screen”, “camera” and “the camera” and so on.
This would clearly not be the case if the model was built with English reviews
since the forms are identical except the preceding “the” which would not affect the
model.

The top ten nearest neighbors do obviously not show all the properties of a word
space model but are good as a pointer. To actually verify that the conclusions
made from that experiment hold when performing classification, experiments using
all techniques described in the next section were performed using all the different
context types as well. Those initial experiments did in fact also show that the
word space model built with term based reflective random indexing seems to be
best suited for the purpose of this project. During these initial experiments the
other parameters, like dimensionality and number of nonzero entries of the context
vectors, were also evaluated and the results were similar to what has been presented
in previous research. A dimensionality of 1500 proved to be sufficient using eight
nonzero entries. Stop word removal was also evaluated since it is common practice
to remove such words before actually building a word space model. A normal way of
selecting stop words is to simply use a frequency count and remove, for instance, the
top 1% most occurring terms. The problem with this approach is that among them
are usually a lot of sentiment bearing words like “good” and “bad”. To counter this

26

3.3. RANDOM INDEXING

an ad-hoc solution was used, and proved to improve the model, which instead used
the top 1% most common words that were not in the top 1000 closest neighbors of
the words “good” or “bad”.

3.3.2 Using the model

To clarify, the final word space model used was created using term based reflective
random indexing, with 1500-dimensional context vectors and eight non-zero entries
and the ad-hoc stop word list described in the last section. With this decided the
best way of actually using the information in the model must be evaluated. The first
tested method of doing this was with the use of a predefined positive and negative
pole consisting of seed words and calculating the distance between a document and
the poles, described in section 2.3.4. This can be seen as similar to the lexicon based
approaches described in section 2.2.1 and should be good at domain independence
since no actual training data are used. This might also have been the case but the
results were still inferior to the baseline results. A number of different variations of
this approach were evaluated, such as different numbers of seed words, seed words
generated manually or from training data and even different ways of calculating the
distance between the documents and the poles. The best separation of the classes
was achieved by taking the average of the distance between each word and its closest
neighbor in both poles. The results and the problem with this approach is visualized
in figure 3.1.

Figure 3.1. Class separation of positive and negative samples (left) with objective
samples included (right) using eight seed words and the average of closest distances.
X-axis represents the similarity with the positive pole and Y-axis similarity with the
negative.

As seen in figure 3.1 some positive and negative samples are separated correctly
but the majority of the samples are right on top of each other together with the
objective samples around the line x = y. While this could be used for a high
precision but low recall task by using appropriate thresholds the results are not
good enough. Looking for improvement we turn to another method described in

27

CHAPTER 3. METHODOLOGY

section 2.3.4, namely the one using “Bag of Concepts”. The idea there is to use the
word space model as a feature extractor and represent each document by the sum
of its context vectors. By doing so we have 1500-dimensional feature vectors which
are used to train a Support Vector Machine (SVM) to be able to make use of the
available training data. This constitutes a major dimension reduction, from 200000
to 1500, and as proposed in the paper presenting the method a polynomial kernel
was used in the SVM, see section 2.1. This approach did indeed yield good results
and beat the baseline in almost all tests.

Even though the previously described method did produce good results it seems
like a crude way of utilizing the information in the word space model. The actual
values of the context vectors, which are summed in that method, do not seem to
carry as much information as the distances between the context vectors. Specially
interesting is the distances between the context vectors of arbitrary words to context
vectors of words with known polarity. To test this idea a new method is proposed
which can be seen as a mixture of the previously described methods. Again an SVM
with a polynomial kernel is used to utilize the information in the training data but
feature vectors of even lower dimensionality n are used. Each dimension in these
vectors represents a seed word swi, either positive or negative, but known by some
measure to be a good indicator of sentiment. For a given document D the value of
the cell fi in the feature vector f is set to be the average distance of all the words
in D to the seed word swi. This can be realized by matrix operations, if we denote
the dimensionality of the context vectors d and the number of words in D m, we
can create the m by d matrix A and the d by n matrix B. The rows of A are set
to the normalized context vectors of all words in D and the columns of B are set
to the normalized context vectors of the seed words. Then the m by n matrix C
defined as C = A×B, will contain the cosine similarity between all words in D and
the seed words. By simply averaging over the columns of C, the feature vector f is
obtained.

Using this method with 200 seed words selected as the top 200 nearest neighbors
of the words “good” and “bad” in the word space model even better results were
achieved. It did not beat the “Bag of Concepts” method by much but performed
slightly better6 on all tests. Given that this method performs marginally better on
the training data while using even fewer and more well defined dimensions compared
to the “Bag of Concepts”, this new method should be preferred. Furthermore, since
the dimensions actually relate to words, in contrast to an abstract concept, any
of the weighing schemes discussed in section 2.2.2 could be applied. This was not
exhaustively tested but initial tests showed no improvements of the results so the
idea was not pursued any further.

6About one percentage point increase in accuracy on average.

28

3.4. FINALIZING THE CLASSIFIER

3.4 Finalizing the classifier

Now we have a method of performing both sentiment and subjectivity classification
but the goal of the project is to have a single classifier capable of assigning an
arbitrary document to one of the three classes positive, negative and objective. There
are, at least, two ways in which this can be achieved using the proposed method
for the individual tasks. One of the alternatives is to regard the problem as a
general three class problem and train two separate classifiers to distinguish between,
for instance, samples in the positive class from samples in both the negative and
objective class. This approach however produced extremely poor results, barely
beating choosing at random. The results could be explained by that this approach
completely disregards the relation between the classes. A better way is to simply
make the classifier work in two steps, given a document, first classify it as subjective
or objective and if the result is subjective feed the document to the second classifier
which decides if it is positive or negative. This way the implicit relation between
the classes is used.

The primarily intended application for the method developed in this project is to
perform the classifications as a part of a social media analysis tool. The results
would be presented both as statistics (how many positive and negative texts have
been made about a certain keyword) as well as actually displaying the positive and
negative posts to the end user. This makes the precision of the classifier more
important than the recall (as long as the recall is the same for both classes). It is
better to incorrectly classify posts as being objective, which would not be visible,
than to put a incorrectly classified post in the list of posts displayed to the user.
Luckily Support Vector Machines have a property which could be used to increase
the precision at the cost of recall. For every new sample classified we can measure
how far away from the decision line the sample is and simply apply a threshold
to this value to make the classification. This is motivated by the fact that the
SVM is more “certain” about the classification when the data point is far from the
decision line. To make it a bit more complicated with the approach of combining
the classifiers, discussed in the previous paragraph, we actually have two thresholds
to set, one for each classifier. This makes it harder to find appropriate thresholds
and was done by trial and error for the final classifier in this project.

3.5 Evaluation

When dealing with this type of problem where labeled data from the real domain
are hard to acquire and only available in small quantities care must be taken to not
overfit the method to the training data. This is the reason why we in this project
start with the issue of cross domain review classification, where getting labeled data
is not a problem, and try to transfer it to the real domain instead of just focusing
on the real problem from the start. Keeping this in mind, all choices about which

29

CHAPTER 3. METHODOLOGY

method and parameters to use were decided based on results obtained using only
the training data. Not until everything was set was the method tested on the real
samples. This is true for everything discussed in this chapter except the last section,
the final classifier combination and thresholding were evaluated on the real data to
produce as good final results as possible. Furthermore all tests which used training
and test data from the same domain were carried out using 10-fold cross validation,
see section 2.1. By using this methodology the method and results presented in this
project should be as general as possible and not only apply to the small amounts
of hand labeled data used for verification.

3.6 Implementation

A complete description of the implementation used in this project will not be pro-
vided but since one of the goals is that the method should be computationally
efficient a couple of things should be noted. All code produced for this project is
written in perl, simply because the rest of the intended application was written in
perl as well. Perl is not the fastest language available but all heavy computing tasks
were carried out by external code. The Support Vector Machine implementation
used was LIBSVM [3], which is very fast and feature rich and provides wrappers
for many languages including perl. While there are implementations of Random
Indexing, for instance The Semantic Vectors Package7, none of the found ones did
precisely what was needed for this project so one own version was implemented.
Luckily the actual implementation of Random Indexing is fairly straightforward
and all computing, both creating and using the model, is performed by vector and
matrix operations. For these operation the Perl Data Language8 (PDL) was used
which is implemented efficiently in C. The only real performance issue encountered
in this project comes from the size of the word space model. As mentioned the
largest dataset used contains about two million unique words which leads to a size
of 2000000 × 1500 × 8 = 24000000000 bytes9 or about 25Gb with some overhead
added. This model did not fit in the main memory of the used computer so some
kind of disk cache was needed. For this the Linux utility mmap10 through perl
wrappers was used which lets the model be treated as if in the main memory and
all caching functionality is handled by the operating system. This made the im-
plementation extremely simple while good performance was achieved. The rest of
the functionality like file reading and word tokenization was implemented in pure
perl.

7http://code.google.com/p/semanticvectors/
8http://pdl.perl.org/
9Using the proposed dimensionality of 1500 for the context vectors and storing each value as 8

byte double
10http://man7.org/linux/man-pages/man3/mmap64.3.html

30

Chapter 4

Results

In this chapter the results of the different tests executed during this project are
presented. Note that only the results of the final methods using the best found
parameters are displayed since there is not enough space to present all intermediate
results. The results are divided into three sections, baseline results, random indexing
and real data. Baseline results refers to the results of the usual way of performing
text classification tasks on the five different domains and under random indexing
the results of the same tests but with the method proposed here are presented.
Finally in the section named real data comes the results of both the usual and our
new method when tested on real data from actual social media.

4.1 Baseline results

As mentioned in the last chapter a number of tests were performed to establish
a baseline for comparison and to verify that the assumed cross domain problems
actually exist. For this second purpose a number of different classifiers using differ-
ent parameters and techniques were trained and tested within and across domain.
Since the datasets used are balanced the results are measured in accuracy (applies
to all results presented here and in the next section) and are presented in tables 4.1
and 4.2.

A few things are worth noting about these results, first that the assumption of cross
domain issues seems to hold since there is obviously a great decrease in accuracy
when testing across domains. The positive vs negative classification results are also
comparable to the results presented in previous research using the same techniques
on English datasets. This indicates that the created datasets of reviews are sound
and that the methods used for the baseline are implemented properly. On the
other hand the results of the subjective vs objective task are extremely high and do

31

CHAPTER 4. RESULTS

Train \Test book shop movie cell game
book 83.08 73.92 76.73 72.10 77.44
shop 63.69 87.55 65.14 77.40 74.88
movie 79.47 73.79 81.88 74.80 80.69
cell 65.54 77.45 65.47 84.15 74.75
game 69.17 74.88 66.98 74.15 81.19

Table 4.1. Best accuracy of positive vs negative classification in and across domains.

Train \Test book shop movie cell game
book 95.49 65.76 79.48 68.62 69.16
shop 77.53 98.78 84.61 98.25 95.69
movie 87.68 87.09 97.84 90.33 91.56
cell 68.59 87.39 79.10 98.88 86.81
game 77.81 90.98 87.32 95.85 98.09

Table 4.2. Best accuracy of sentiment vs objective classification in and across do-
mains.

Target Accuracy
book 74.39
shop 79.84
movie 73.97
cell 79.15
game 81.69

Target Accuracy
book 84.25
shop 93.11
movie 91.10
cell 97.60
game 96.75

Table 4.3. Accuracy when leaving one target domain out for testing in positive vs
negative classification (left) and subjective vs objective (right) using the normal bag
of words plus SVM approach.

not leave room for much improvement. That these sets would be quite easy were
expected since completely different types of texts were used for the different classes,
but perhaps not this easy.

Next the tests used for the actual baseline to which all later methods would be
compared were executed. Here the technique of training on a mixture of domains
is employed and the results when leaving each domain out in turn for testing are
presented in table 4.3. The results are mostly as expected, still quite high accuracies
for the subjective vs objective task but for every test (except positive vs negative in
the games domain) the result is lower than when performed in domain. The reason
for the increase in accuracy of the game domain test could be due to the relatively
small number of samples in that dataset1.

1It is the smallest domain with only 800 positive and negative samples

32

4.2. RANDOM INDEXING

Target Accuracy
book 76.01
shop 84.05
movie 75.36
cell 80.55
game 78.50

Target Accuracy
book 87.16
shop 98.41
movie 97.08
cell 99.02
game 98.94

Table 4.4. Accuracy when leaving one target domain out for testing in positive vs
negative classification (left) and subjective vs objective (right) using Random Index-
ing plus SVM.

4.2 Random indexing

The results produced when using the method described in the last chapter using
Random Indexing and a Support Vector Machine are presented in table 4.4. As
we can see this new approach improves the accuracy of all the tests except one,
even with the already high accuracies of the subjective vs objective task. The
only test in which the accuracy decreased was again in the game domain and the
explanation could of course still be that it is the smallest domain. The word space
model used in these experiments is built using all available training data and since
there are fewer samples from the game domain these will not influence the model
as much as samples from the other domains. These results still show that adding
information from both out of domain and target domain unlabeled data by the use
of a word space model built with Random Indexing does indeed help with the issues
of cross domain classifications. The issues still remain however as can be seen when
comparing these results to the indomain results in tables 4.1 and 4.2.

4.3 Real data

The first of the two labeled datasets from real social media is almost balanced so we
keep evaluating it with accuracy. The results of applying both the normal bag of
words plus SVM method and the new one using Random Indexing is presented in
table 4.5. Note that the results there are achieved when training on the review data
and only testing on the real samples but using a word space model built from the
large unlabeled dataset collected from real social media. Further the entire process
of testing all combinations of parameters for the normal approach was redone for
this example and only the best result is shown here. For the new method the same
parameters as chosen during testing on the training datasets were used. The results
show that the Random Indexing approach still beats the normal one but also that
the real data are generally harder to classify. For the positive vs negative task
the results are at least comparable with the results of the training data but for
subjective vs objective both methods perform extremely poorly. It was expected

33

CHAPTER 4. RESULTS

Method Accuracy
BOW 71.66667
RI 76.33333

Method Accuracy
BOW 60.66667
RI 62

Table 4.5. Accuracy on the first real dataset for positive vs negative classification
(left) and subjective vs objective (right) using both the normal bag of words approach
and the new using Random Indexing.

Method Accuracy
BOW 63.66667
RI 78.3

Method Accuracy
BOW 61.66667
RI 66

Table 4.6. Accuracy on the first real dataset for positive vs negative classification
(left) and subjective vs objective (right) training both methods on the actual real
dataset.

Pos precision Pos recall Neg precision Neg recall
Human 1 0.826 0.826 0.615 0.889
Human 2 0.656 0.913 0.800 0.889
Human 3 0.667 0.957 0.600 1.000
Human 4 0.857 0.522 0.750 0.333
Human 5 0.750 0.652 0.538 0.778
Human 6 0.867 0.565 0.467 0.778
RI 0.900 0.391 0.600 0.667

Table 4.7. The precision and recall of both the positive and negative class by the
different test persons and the final classifier proposed in this project.

that the real data would be harder, especially for the subjectivity classification, but
these results just barely beat choosing at random.

Since we have produced labeled data from the real domain to test with, another
experiment where both methods were trained and tested on the real data was per-
formed. The results of this test are presented in table 4.6 and basically show the
method’s ability to deal with smaller amounts of training data. The Random In-
dexing method does this quite well and actually beats the results of training with
more but out of domain data while the normal approach performs worse on one
task and about the same on the other. The results of subjectivity classification are
even with this improvement still very poor.

To test how this poor performance on the subjectivity classification task would
affect the real intended usage of the method the second real dataset was used. This
set, containing data from real social media was created, as described in section 3.1,
by letting different test persons classify the same samples and using majority vote
to decide the “correct” label. Doing this lead to an unbalanced set so instead of just
accuracy, the precision and recall of samples classified as positive and negative were

34

4.3. REAL DATA

used to be able to compare the different results. For this the method of producing
the final classifier described in section 3.4 was used on the classifiers created using
Random Indexing and trained on the data in the first real dataset. The trade off
between precision and recall was also performed to try to achieve as good results as
possible. These results are presented in table 4.7 and show that this is a hard task
not only for automatic classifiers but also for actual humans.

35

Chapter 5

Conclusions

The goals of this project were twofold, to see if Random Indexing could be used
to help with cross domain classification issues and if the same issues and solutions
transfer to the task of classifying general posts made in social media. For the first
part the answer is definitely “yes”, the results clearly show that the proposed method
using Random Indexing outperforms the normal bag of words approach. In all but a
single test case this new method achieved higher accuracy and in many of the cases
even by a large margin (see tables 4.3 and 4.4). Furthermore the proposed method
relies on more than just experimental results but is also motivated by previous
research in the area as well as by discussions made in this report. For the second
part the answer is still “yes”, only not as definitely as in the first part. The new
method did outperform the ordinary one but the result was still not as good as
desired.

5.1 Real application

As mentioned, the results on actual posts made in social media was improved by
the new method but for the task of classifying them as subjective or objective the
result was not good enough. Even though sufficient performance was reached for
the positive vs negative task the overall result for the final classifier definitely left
room for improvements. This is due to the two step approach of combining the
classifiers which means that with a poor first step classifier the second, better one,
will both miss a lot of subjective texts and be faced with many objective ones. This
is clearly not what it was trained for so the relatively poor overall results are to be
expected. All this said, using the thresholds of the classification and trading recall
for precision the results could be used in a real application as the one intended in
this project. Because of the extreme amounts of data produced in social media it
might be acceptable to only catch a small amount of the subjective texts if it means
that few false positives occur.

37

CHAPTER 5. CONCLUSIONS

5.2 Revisiting the problem

The reason for the poor performance on real data is not necessarily the fault of
the proposed method. It might be that the simplification of regarding sentiment
analysis as a document level classification problem is to simplify it too much. One
single document can of course contain positive, negative and completely objective
expressions all at once and even if for instance only positive expressions are present
the document as a whole might still not be regarded as positive in the sense looked
for. For instance, a common sight among posts in social media is blogs where the
author describes what he or she has done during a day. These are typically about
completely mundane things and do not really contain any real opinions but the
general tone of the posts is still extremely positive. Such a post would of course
be classified as positive because it only contains positive words but would also
be completely uninteresting if trying to capture the public view on some subject
accidentally contained in the post. This possibility is indicated further by the results
of the different test persons on the smaller dataset of real social media posts. While
real humans beat the automatic classifier the difference between it and the person
with the worst results is not that big. Furthermore, if real humans do not agree on
the class of a post how should an automatic method perform better? The response
of a human must be seen as a “correct” answer since the only other way of really
knowing what is correct is to ask the actual author of each post.

One approach to the problem that is similar to the one taken here is to regard
each sentence as a separate sample instead of the entire document. This is actually
the preferred approach of most previous research dealing with only subjectivity
classification. By doing so some of the problems are dealt with and you get more
resolution in the data. The reason why this was not used in this project was
partly because then reviews could not have been used as training data but also
that the initial tests indicated that the subjectivity classification task was extremely
easy.

5.3 Future work

Despite the poor performance on the subjectivity classification task of real data
the method of using Random Indexing does show some potential. The results of
the sentiment classification task were actually quite good so continuing this work
seems like a good idea. Obviously any future work based on the ideas presented in
this project would have to deal with the subjectivity classification part. This could
be as simple as trying exactly the same method on sentences instead but there are
also entire papers aimed at only subjectivity classifications with more advanced and
interesting methods. One example is presented in [16] where subjective sentences
are extracted from a document by posing the problem as a graph problem solved

38

5.3. FUTURE WORK

with minimum cuts. Using that as a preprocessing step would probably increase
the performance significantly.

Besides the obvious issue there are a number of smaller parts of the method which
probably could be improved to increase the performance as well. One example of
this is the process of tokenizing a given document into its individual words which was
naively implemented for this project. Furthermore some choices and parameters,
like the properties of the context vectors or stop word removal, could probably be
more thoroughly evaluated in order improve the results.

Lastly, if this method were to be employed in a real application running over a
longer time, the questions of how much data the word space model should hold
and how it should be updated needs to be answered. To be able to keep up with
new fashion words, for instance, data from too long ago can not be left to influence
the model too much. Because of the incremental nature of Random Indexing a lot
of interesting options are available and given enough data over a stretch of time
interesting properties could probably be found.

39

Bibliography

[1] A. Aue and M. Gamon. Customizing sentiment classifiers to new domains: A
case study. In Proceedings of Recent Advances in Natural Language Processing
(RANLP), volume 1, pages 2–1, 2005.

[2] S. Blair-Goldensohn, K. Hannan, R. McDonald, T. Neylon, G.A. Reis, and
J. Reynar. Building a sentiment summarizer for local service reviews. In
WWW Workshop on NLP in the Information Explosion Era, 2008.

[3] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–
27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[4] Trevor Cohen, Roger Schvaneveldt, and Dominic Widdows. Reflective random
indexing and indirect inference: A scalable method for discovery of implicit
connections. Journal of Biomedical Informatics, 43(2):240–256, 2010.

[5] Isaac G Councill, Ryan McDonald, and Leonid Velikovich. What’s great and
what’s not: learning to classify the scope of negation for improved sentiment
analysis. In Proceedings of the Workshop on Negation and Speculation in Natu-
ral Language Processing, pages 51–59. Association for Computational Linguis-
tics, 2010.

[6] S.T. Dumais. Latent semantic analysis. Annual Review of Information Science
and Technology, 38(1):188–230, 2005.

[7] G. Forman. An extensive empirical study of feature selection metrics for text
classification. The Journal of Machine Learning Research, 3:1289–1305, 2003.

[8] M. Hu and B. Liu. Mining and summarizing customer reviews. In Proceedings
of the tenth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 168–177. ACM, 2004.

[9] J. Karlgren, A. Holst, and M. Sahlgren. Filaments of meaning in word space.
Advances in Information Retrieval, pages 531–538, 2008.

41

BIBLIOGRAPHY

[10] Jussi Karlgren and Magnus Sahlgren. From words to understanding. In Foun-
dations of Real-World Intelligence, pages 294–308, 2001.

[11] B. Liu. Sentiment analysis and subjectivity. Handbook of Natural Language
Processing,, pages 627–666, 2010.

[12] S. Marsland. Machine learning: an algorithmic perspective. Chapman &
Hall/CRC, 2009.

[13] Justin Martineau and Tim Finin. Delta TFIDF: An improved feature space for
sentiment analysis. In International Conference on Webogs and Social Media.
The AAAI Press, 2009.

[14] G.A. Miller et al. Wordnet: a lexical database for English. Communications
of the ACM, 38(11):39–41, 1995.

[15] Kamal Nigam, Andrew Kachites McCallum, Sebastian Thrun, and Tom
Mitchell. Text classification from labeled and unlabeled documents using em.
Machine learning, 39(2):103–134, 2000.

[16] Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using
subjectivity summarization based on minimum cuts. In Proceedings of the
42nd Annual Meeting on Association for Computational Linguistics, page 271.
Association for Computational Linguistics, 2004.

[17] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up? Sentiment
classification using machine learning techniques. In Proceedings of the 2002
Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 79–86, 2002.

[18] Magnus Sahlgren. An introduction to random indexing. In Methods and Ap-
plications of Semantic Indexing Workshop at the 7th International Conference
on Terminology and Knowledge Engineering, 2005.

[19] Magnus Sahlgren. The Word-Space Model: Using distributional analysis
to represent syntagmatic and paradigmatic relations between words in high-
dimensional vector spaces. PhD thesis, Stockholm, 2006.

[20] Magnus Sahlgren. The distributional hypothesis. Italian Journal of Linguistics,
20(1):33–54, 2008.

[21] Magnus Sahlgren and Rickard Cöster. Using bag-of-concepts to improve the
performance of support vector machines in text categorization. In COLING ’04
Proceedings of the 20th international conference on Computational Linguistics,
pages 487–493, 2004.

42

BIBLIOGRAPHY

[22] Magnus Sahlgren, Anders Holst, and Pentti Kanerva. Permutations as a means
to encode order in word space. In Proceedings of the 30th Annual Meeting of
the Cognitive Science Society (CogSci’08), 2008.

[23] Magnus Sahlgren and Jussi Karlgren. Buzz monitoring in word space. In
Proceedings of the 1st European Conference on Intelligence and Security Infor-
matics, pages 73–84, 2008.

[24] Magnus Sahlgren and Jussi Karlgren. Terminology mining in social media.
In The 18th ACM Conference on Information and Knowledge Management
(CIKM 2009), 2009.

[25] Magnus Sahlgren, Jussi Karlgren, and Gunnar Eriksson. SICS: Valence an-
notation based on seeds in word space. In Fourth International Workshop on
Semantic Evaluations (SemEval-2007), 2007.

[26] P.D. Turney, P. Pantel, et al. From frequency to meaning: Vector space models
of semantics. Journal of Artificial Intelligence Research, 37(1):141–188, 2010.

[27] Casey Whitelaw, Navendu Garg, and Shlomo Argamon. Using appraisal groups
for sentiment analysis. In Proceedings of the 14th ACM international conference
on Information and knowledge management, pages 625–631. ACM, 2005.

43

