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Abstract

Reinsurance is the insurance protection of an insurance company. Retrocession is re-

insurance for a portfolio of reinsurance contracts. Reinsurance portfolios can comprise several

thousand contracts that may be contingent on the same events, which makes retrocession a

complex decision. This thesis develops an optimization model for retrocession, where the aim

is to maximize the expected result and satisfy contraints on risk. A review and development

of risk measures that can be included in the model is performed. The optimization model

is implemented and applied to a large portfolio of reinsurance contracts using mathematical

programming algorithms. Results suggest that a benefit amounting to several percent of the

annual expected result may be obtained by applying optimal retrocession to the reinsurance

portfolio. The results depend on several assumptions that, if not fulfilled, may diminish the

benefit.

Keywords: Reisurance, Retrocession, Portfolio Optimization, Risk Measures,

Tail-Value-at-Risk.
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Retrocession för optimering av återförsäkringsportföljer

Sammanfattning

Återförsäkring är försäkringsskydd för försäkringsbolag. Retrocession är återförsäkring

för en portfölj av återförsäkringskontrakt. Återförsäkringsportföljer kan best̊a av flera tusen

kontrakt som kan vara beroende av samma händelser, vilket gör beslutsfattande om retroces-

sion komplext. Denna rapport utvecklar en optimeringsmodell för retrocession, med m̊alet

att maximera det förväntade resultatet samt uppfylla begränsningar p̊a risk. En överblick

och utveckling av riskm̊att som kan tillämpas i modellen genomförs. Optimeringsmodellen

implementeras och tillämpas p̊a en stor återförsäkringsportfölj genom att använda optime-

ringsalgoritmer. Utfallet av optimeringen indikerar att en förbättring p̊a flera procent av

det årliga förväntade resultatet skulle kunna uppn̊as genom att tillämpa optimal retroces-

sion p̊a återförsäkringsportföljen. Utfallet beror dock p̊a att flera antaganden gäller. Om

antagandena inte gäller s̊a kan förbättringen utebli.
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Nomenclature

Cede In the context of reinsurance: Transferring a share of insurance

business to a reinsurer. Premiums are ceded to the reinsurer, who

then stands to cover a share of losses, the ceded losses.

Cession See under Cede.

Cover Cover refers to the amount of protection against risks that is

provided by an insurance contract.

Direct Insurer Insurance company that has a direct contractual relationship

with a client who is exposed to the original risk requiring in-

surance.

Excess of Loss Reinsurance A form of non-proportional reinsurance.

Gross Portfolio Portfolio of all underwritten reinsurance, taken before the impact

of retrocession contracts.

Gross Exposure Exposure to the gross portfolio, see under Gross Portfolio.

Gross Loss Loss incurred before the impact of retrocession contracts.

Non-Proportional Reinsurance A reinsurance contract that does not qualify as proportional.

Ceded premiums, losses or both can be allocated according to a

non-linear function.

Overriding Commission A percentage commission that the retrocessionaire pays to a ced-

ing reinsurer for retrocession.

Premium Principle Function or principle specifying the relation between ceded ex-

posure to losses and ceded premiums.

Profit Commission A form of reinsurance commission that is paid to the cedent if

the ceded portfolio is profitable

Proportional Reinsurance Reinsurance protection where premiums and losses are allocated

between cedent and reinsurer according to a predefined ratio.

Reinsurance Transfer of insurance risk from an insurer to another party, the

reinsurer.

Reinsurer Company that accepts a share of an insurer’s risk in return for

payment of a premium [15].

Retained Share The share of the exposure to losses that is retained after propor-

tional retrocession

Retrocession Passing on of risk by the reinsurer to other insurance companies

[15].

Retrocessionaire A reinsurer who insures another reinsurer.

Underwriting The process of selling reinsurance protection.
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1 INTRODUCTION

1 Introduction

Insurance is an agreement whereby one party seeks protection against a risk by finding another

party, the insurance company, that is willing to cover part of a loss pertaining to the risk, should

it occur. In return for the cover the insurance company receives proper compensation from the

first party. Reinsurance arises when there are some risks that the insurance company, in its turn,

does not want to be exposed to. If the insurer deems some risks to be too large or is seeking to

reduce overall exposure, then the insurer can seek insurance protection from a reinsurer.

Definition 1 (Cession). The insurer is said to cede business to the reinsurer in the situation

described above. Cession, in the context of insurance, is used to describe when one party

allocates exposure to some losses and some premium revenues to another party.

In modern reinsurance it is also common for the reinsurer to seek cover from another rein-

surer, which is called retrocession. Retrocession can have many different goals, such as improving

profitability, reducing variability, reducing the risk of ruin or complying with regulatory stan-

dards. Reinsurance portfolios may be comprised of several thousand contracts that cover diverse

risks, from earthquakes to liability [9]. Performing appropriate retrocession to protect such a

portfolio can be complex, especially if the retrocession has several goals.

The purpose of this thesis is to find an optimal reinsurance portfolio given certain preferences

regarding result and risk. Retrocession decisions will be modelled as an optimization problem

for which optimal decisions can be determined by mathematical programming algorithms. Ap-

proaches to measuring risk from both the financial mathematics literature and the insurance

literature are thoroughly reviewed and developed to underpin the model.

The thesis is structured as follows. The rest of this section gives an introduction to rein-

surance. Section 2 is devoted to giving a theoretical background on optimization and the mea-

surement of risk. Section 3 further develops risk measures found in the literature. Section 4

deals with the modelling of retrocession as an optimization problem. In Section 5 the results of

optimizing a large reinsurance portfolio are presented. Finally, Section 6 concludes the thesis.

1.1 Reinsurance and Retrocession

Reinsurance is the insurance protection of an insurer. In order to distinguish between different

forms of insurance, the party who has a contractual relationship with the client that is exposed to

the original risk (for example an airplane) is called a direct insurer whereas an insurer who only

has a contractual relationship to another insurer is called a reinsurer. The need for reinsurance

can arise because a direct insurer has too much exposure to one individual risk or because

protection is needed in the case of a catastrophe. In some cases the reinsurer may deem itself to

have too large exposure to individual risks or there might be a reason to change the composition

of the portfolio of reinsurance contracts. In such an instance the reinsurer can elect to retrocede

risk, that is, to buy insurance cover from another reinsurer [15].

Several different types of reinsurance cover are available. This section will give definitions of

different covers and highlight the options that are available in retrocession. Furthermore some

other aspects of reinsurance contracts will be outlined insofar as they are important to take into

account when modelling a reinsurance portfolio.

Reinsurance often takes the form of a contract signed between insurer and reinsurer but there

are other forms as well, such as catastrophe bonds that are sold to investors [9]. The important

factor in optimization of the portfolio is what protection is supplied by the market and the cost
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1 INTRODUCTION

of that protection. Thus, the purpose of this section will be to highlight the available flexibility

in risk transfer and the payment terms for different types of contracts.

The retrocession contracts considered in this report mainly apply to classes of reinsurance

contracts. An example might be for the reinsurer to cede part of the exposure to earthquakes

in Japan.

1.1.1 Proportional Reinsurance

The main principle in proportional reinsurance is that premiums and losses are divided between

the reinsurer and the direct insurer at a predefined ratio. However, as the direct insurer incurs

costs in the acquisition and administration of the individual contracts, a commission is usually

allocated to the direct insurer. The commission is often contractually defined as a percentage

of the original premiums [15].

Let γ be a class of insurance contracts for which the proportional reinsurance is bought and

let Dγ denote the losses in that class of contracts. The losses retained by the direct insurer can

then be expressed as

DRetained
γ = (1− xγ) ·Dγ

where xγ ∈ (0, 1) is the share of the total exposure to losses that is ceded for the class γ.

Furthermore, the premium retained by the direct insurer is given by

PRetained
γ = (1− xγ(1− c)) · Pγ (1.1)

where Pγ is the sum of the original premiums of all contracts in the class γ and where c ∈ [0, 1]

is the reinsurance commission.

When one reinsurer cedes risk to another reinsurer the situation might be different from the

one above. Acquisition and administration costs are likely to be higher for a direct insurer and

thus a higher commission would be motivated in the above case. Reinsurance expertise at Sirius

International have stated that the ceding party in retrocession typically receives a commission

and that the above premium principle is in use. In the case of retrocession, the above commission

is called the overriding commission [9].

Sometimes a profit commission is also included, in addition to the overriding commission.

The profit commission is an amount returned to the ceding reinsurer when the ceded portfolio

is profitable. The profit commission will be introduced by showing how to calculate the ceding

reinsurer’s result on the class of contracts that is subject to cession. Let Rγ denote the result

and let c1, c2, c3 ∈ [0, 1] be constants that are known and pertain to the contract for retrocession.

The result with profit commission is then

Rγ = Pγ(1− xγ)−Dγ(1− xγ) + xγc1Pγ + c2xγ max(Pγ −Dγ − c1Pγ − c3Pγ , 0). (1.2)

The result Rγ in (1.2) includes an overriding commission, which is represented by c1. c3 is a

base profit for the reinsurer selling the cover and c2 is the share of excess profits returned.

Note that although the profit commission is determined by the non-linear maximum function

it is still linear in the retrocession share xγ .

1.1.2 Non-proportional Reinsurance

Reinsurance that is not proportional can allocate losses, premiums or both according to a non-

linear function. For a prospective non-proportional cover sold to a direct insurer, the reinsurer

7



1 INTRODUCTION

demands a share of premiums that it finds suitable [15]. The most common form of non-

proportional reinsurance is excess of loss reinsurance [9]. In excess of loss reinsurance, the

ceding insurer has to bear all losses related to an event if they are smaller than the deductible

but losses above the deductible are fully covered by the reinsurer, up to a certain limit [15].

Definition 2 (Limit and Deductible). The deductible of a reinsurance contract is a number

specifying the smallest loss that can give rise to a transfer of losses to the reinsurer.

The limit of a reinsurance contract specifies the maximum amount of losses that the reinsurer

can be allocated under the contract.

It will be assumed here that the excess of loss contract covers losses pertaining to a class of

contracts, γ, for a certain time period. To express the contract in mathematical terms, let dγ
denote the deductible for an excess of loss cover on the class of contracts γ and let lγ denote

the corresponding cover limit. The losses incurred by the party buying the excess of loss cover,

DRetained
γ , can then be expressed as

DRetained
γ = min(Dγ , dγ) + max(Dγ − lγ − dγ , 0). (1.3)

Excess of loss reinsurance can also be limitless. The rule for allocation of losses to the ceding

party is then

DRetained
γ = min(Dγ , dγ). (1.4)

Note that the excess of loss cover with a limit above basically amounts to buying a limitless

excess of loss cover at dγ and selling a limitless excess of loss cover at lγ + dγ because

DRetained
γ = min(Dγ , dγ) + max(Dγ − lγ − dγ , 0) = min(Dγ , dγ) +Dγ −min(Dγ , lγ + dγ). (1.5)

The above specification of excess of loss ignores some subtleties in how the excess of loss

contract can be specified. For an overview of a few different specifications see [15]. To com-

pletely describe the different types of excess of loss contracts it could be necessary to introduce

many reinsurance contract classes for one single excess of loss retrocession contract. However,

henceforth it will be assumed that each non-proportional contract covers one class γ as above.

There is little literature covering the premium principles for non-proportional retrocession

but it can be of interest to note that for non-proportional reinsurance in general there is extensive

literature, see for example [3], [10] and [11].

1.1.3 Details on the Reinsurance Contract

The previous sections convey how risk is transferred by a reinsurance contract and how the cost

of such a contract is specified. Cost and risk transfer are central to retrocession decision making

but there are also other characteristics of a prospective contract that need to be considered.

Outlined below are such characteristics and how they affect a decision on retrocession.

1. Multiplicative contracts is a term here used to describe reinsurance contracts that are

layered on top of each other. This is illustrated by way of an example. Suppose that a

contract covers 30% of all losses in Germany and another contract covers 10% of losses in

Europe. If the contracts are layered, a loss in Germany will be reduced by 10% by the

Europe-wide contract only after deducting the 30% cover of the German contract. Thus

the total loss allocated to the Europe-wide contract will only be 0.7 · 0.1 = 0.07 = 7% of

the total loss. Practically, this form of contract leads to complicated relationships between

all the parties involved.
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1 INTRODUCTION

2. Additive contracts are here used to describe contracts that act in parallel, which is the

alternative to layered contracts. Drawing on the same example, the total cover for any

loss in Germany will be 10% + 30% = 40%. According to expertise at Sirius International,

the usual form for reinsurance contracts is the additive one.

3. Reinstatement premium. Once a reinsurance contract has been allocated a loss it is usual

to have a reinstatement of the contract. A reinstatement is the payment of a premium, the

reinstatement premium, to continue the cover offered by the contract [9]. To the extent

that reinstatement premiums are obligatory they need to be included when calculating the

simulations based result of a contract.

4. Minimum retention. In reinsurance situations it may not be possible to cede all risk in a

portfolio. In the case of proportional reinsurance this implies that there is a lower bound,

such as 30%, for the share of losses that are retained.

9



2 THEORETICAL BACKGROUND

2 Theoretical Background

2.1 Optimization

Optimization is the pursuit of the “best” solution to a problem. A typical optimization model is

composed of a specific objective that depends on a set of decisions. Several constraints may exist

on what the permissible decisions are. An optimization model is an attempt to express such a

problem in mathematical terms. This section will very briefly present the theory of optimization

models.

An optimization model includes a set of variables that represent decisions to be made, a

mathematical function to be optimized (the objective function) and a set of constraints that

define the allowable decisions. A linear optimization model (also known as a linear program) is

an optimization model where the function to be optimized and the constraints are linear in the

decision variables [8].

Suppose that there are n decision variables, denoted xj , j = 1, . . . , n, and that for each

decision variable there is an associated cost, cj . Suppose further that there are m constraints

that need to be satisfied. Then the model can be written as

minimize z =

n∑
j=1

cjxj

subject to
n∑
j=1

aijxj ≤ bi, i = 1, . . . ,m.

(2.1)

By introducing matrix notation the model can be written more succinctly as

minimize z = cTx

subject to

Ax ≤ b,
(2.2)

where c = (c1, . . . , cn)T , x = (x1, . . . , xn)T and b = (b1, . . . , bm)T . A is an m-by-n matrix with

the coefficients of the linear constraints, aij . A feasible point of (2.2) is a point in the space of

the decision variables that satisfies Ax ≤ b.
By using appropriate adjustments of the problem (2.2) it is possible to include a quite

general linear program. Maximizing z is equivalent to minimizing −z. It is also possible to

include equality constraints in the model.

The problem (2.2) either has a finite optimal solution, is unbounded or has no feasible points.

Several algorithms are available to find a feasible point of (2.2), and if one exists, to determine

whether the problem is bounded, and if it is, to find a feasible optimal solution. The most

widely used algorithm to solve linear programming problems is the simplex algorithm. Extended

versions of the algorithm exist that guarantee encountering an optimal feasible solution or the

categorization of the problem as either unbounded or unfeasible [8].

Generally, optimization problems may be non-linear. The optimization model can then be

10



2 THEORETICAL BACKGROUND

written as

minimize f(x)

subject to

gi(x) ≤ 0, for i = 1, 2, . . . ,m.

(2.3)

In (2.3) f(·) is the objective function, which can be non-linear. The functions {gi(·)}mi=1 are

constraint functions that are possibly non-linear.

When the problem is non-linear it is possible that there are multiple local minima. A local

minimum is some x∗ for which it holds that f(x) ≥ f(x∗) in some neighbourhood of x∗. For the

case of linear programs it is possible to find a global minimizer but when the model is non-linear

with multiple local minima it may not be possible to guarantee that a local minimizer of f(·) is

a global minimizer of f(·) [8].

An important exception is when the problem (2.3) is a convex optimization problem.

Definition 3 (Convex Function). A function f : Rn 7→ R is convex if for every x, y ∈ Rn and

every λ ∈ (0, 1) it holds that

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (2.4)

If strict inequality holds in (2.4) then the function is strictly convex.

The problem (2.3) is a convex optimization problem if the function f(·) is convex and the

functions gi(·) are convex for i = 1, 2 . . . ,m.

Using (2.4) it can be verified that the linear optimization (2.2) is in fact convex. In general,

when a non-linear optimization problem is convex it holds that a local minimizer is also a global

minimizer. Furthermore, the global minimizer is unique when the objective function is strictly

convex .

2.2 Risk Measures

Activities that are undertaken to achieve any type of gain often have an associated uncertainty

regarding the eventual outcome. In finance and insurance the variability of the outcome can

be considerable. In such a circumstance it might be possible, and desirable, to obtain an

approximate probability distribution for the outcomes, based on experience, modelling or other

means. Often, risk measures are defined as a function of a probability distribution with the

aim of distilling the distribution to a single number that represents the risk that arises from the

variability. In this thesis it is assumed that risk is measured based on the portfolio outcome for

one year.

Two broad categories of risk measures are introduced in this thesis. First, risk measures

that depend on the quantile of a given outcome are presented. Second, risk measures that

depend on the size of the outcome are presented and developed, in a separate section below.

The development is carried out to allow comparison and identification of the merits of each

approach.

To introduce risk measures mathematically, let X be a stochastic variable on a probability

space Ω, X : Ω → R, and let P be the associated probability measure. A risk measure will be

denoted by ρ(X) and ρ is a function ρ : X → R ∪ {+∞} from the space of stochastic variables

X to the extended real line.
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2 THEORETICAL BACKGROUND

Remark 1 (Sign Convention). Throughout this report the variable measured with a risk measure,

X, is assumed to represent the negative of a portfolio result, or the portfolio loss function. This

implies that gains are represented by negative values of X and losses by positive values. The

risk measure is then of large absolute value and positive when there is a large risk. Considering

liabilities as positive and assets as negative is referred to as an actuarial view in [12].

Artzner et al. [4] introduce the concept of a coherent risk measure as one that satisfies a

number of properties. The properties are given below, with interpretations, in order to underpin

the discussion of what an appropriate risk measure is. The presentation is similar to the one in

[7].

Definition 4. A risk measure is defined to be convex if ρ is a convex function, that is, if given

any λ ∈ (0, 1) and any X,Y ∈ X , it holds that

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ). (2.5)

Definition 5 (Monetary risk measure). A risk measure ρ is called a monetary risk measure if

ρ(0) is finite and for all X,Y ∈ X , ρ satisfies

• Monotonicity : If X ≤ Y , then ρ(X) ≤ ρ(Y )

• Cash (translation) invariance: If m ∈ R, then ρ(X −m) = ρ(X)−m.

The definition of cash invariance is important because it allows the difference between a

given risk tolerance and the risk measure to be interpreted as the minimum amount of capital

that has to be added as a risk-free amount to put the risk level of the portfolio in accordance

with the risk tolerance.

Definition 6 (Positive homogeneity). A risk measure ρ is defined to be positively homogeneous

if for λ ≥ 0 it holds that ρ(λX) = λρ(X).

Definition 7 (Subadditivity). The risk measure ρ is subadditive if for all X,Y ∈ X

ρ(X + Y ) ≤ ρ(X) + ρ(Y ). (2.6)

Subadditivity implies that the combination of any two portfolios does not have a higher risk

than the two portfolios on a stand-alone basis. Convexity is equivalent to subadditivity for a

positively homogeneous risk measure.

2.2.1 Quantile Risk Measures

One widely used risk measure is Value-at-Risk (VaR), which measures the maximum loss at a

specified confidence level, α > 0 [18] . Value-at-Risk measures the quantile of α. For a formal

definition, let X be a stochastic variable as above and let F (x) be the distribution function of

X, F (x) = P (X ≤ x).

Definition 8 (Value-at-Risk). Value-at-Risk of a stochastic variable is defined as

VaRα(X) = F−1(α) = inf{x ∈ R : F (x) ≥ α}. (2.7)

VaR is positively homogenous but it has some undesirable properties. First, it is not subad-

ditive, which implies that combining two portfolios can increase overall risk. To see how risk is

increased, consider the following example.
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2 THEORETICAL BACKGROUND

Example 1. Consider the sum of two independent and identically distributed stochastic vari-

ables, Xi, i = 1, 2, that have

P (Xi = 1) = 0.04

P (Xi = 0) = 0.96, for i = 1, 2.

Then VaR0.95(Xi) = 0 for i = 1, 2 but VaR0.95(X1 + X2) = 1. VaRα(·) is not convex as it

lacks subadditivity, which implies that an optimization involving minimization of VaR can have

multiple local extrema [18].

Second, VaR does not take the severity of improbable outcomes into account, which is

illustrated by the following example.

Example 2. Suppose that there is an opportunity to sell protection against either earthquakes

or windstorms. Let X1 denote the loss variable if protecting against earthquakes and let X2

denote the loss if protecting against windstorms. Suppose that

P (X1 = 60) = 0.01 and P (X1 = 0) = 0.99

P (X2 = 1) = 0.05 and P (X2 = 0) = 0.95.

Then VaR0.95(X1) = 0 but VaR0.95(X2) = 1. In this case VaR asserts that the risk is higher in

the case of protecting against windstorms because the severity of the 1% outcome is not taken

into account.

A measure of risk that does not share these shortcomings of VaR is Tail-Value-at-Risk

(TVaR). Tail-Value-at-Risk measures the expected loss conditional on the outcome being in

the (1 − α)-tail of the distribution. Loosely stated, Tail-Value-at-Risk measures the expected

loss conditional on the loss being larger than or equal to Value-at-Risk. It is, however, necessary

to make an adjustment for the case where P (X = VaRα(X)) > 0. Two alternative definitions

are given below. The first definition is adapted from the definition of Expected Shortfall in [2].

Definition 9 (Tail-Value-at-Risk). The Tail-Value-at-Risk is defined by

TVaRα(X) =
1

1− αE
[
X1

(α)

{X≥VaRα(X)}

]
. (2.8)

The function 1
(α)
{X≥x} is defined by

1
(α)
{X≥x} =

{
1{X≥x}, if P (X = x) = 0

1{X≥x} + 1−α−P (X≥x)
P (X=x) 1{X=x}, if P (X = x) > 0

(2.9)

where

1{X≥x} =

{
1 if X ≥ x
0 otherwise

(2.10)

and analogously for the equality condition.

The adjusted indicator function 1
(α)
{X≥x} is introduced to account for the case where P (X =

VaRα(X)) > 0. The adjusted indicator function has the following properties

1
(α)

{X≥VaRα(X)} ∈ [0, 1] and (2.11)

13



2 THEORETICAL BACKGROUND

E
[
1

(α)

{X≥VaRα(X)}

]
= 1− α. (2.12)

Proposition 10. TVaR as defined by (2.8) is positively homogenous, monotonic, cash invariant,

subadditive and convex.

Proof. Monotonicity. Suppose X,Y ∈ X are stochastic variables on the probability space Ω and

that X ≤ Y . Then, taking the difference between the Tail-Value-at-Risk of Y and X,

(1− α) (TVaRα(Y )− TVaRα(X)) = E
[
Y 1

(α)
{Y≥VaRα(Y )} −X1

(α)
{X≥VaRα(X)}

]
≥ E

[
Y 1

(α)
{Y≥VaRα(Y )} − Y 1

(α)
{X≥VaRα(X)}

]
≥ VaRα(Y )E

[
1

(α)
{Y≥VaRα(Y )} − 1

(α)
{X≥VaRα(X)}

]
= VaRα(Y )((1− α)− (1− α)) = 0.

(2.13)

The first inequality follows directly from X ≤ Y . The second inequality follows from the fact

that 1
(α)
{Y≥VaRα(Y )} − 1

(α)
{X≥VaRα(X)} ≥ 0 if Y > VaRα(Y )

1
(α)
{Y≥VaRα(Y )} − 1

(α)
{X≥VaRα(X)} ≤ 0 if Y < VaRα(Y )

(2.14)

and that equality holds when Y = VaRα(Y ) due to linearity of the expectation.

Cash invariance can be shown using the linearity of expectation, (2.12) and a manipulation to

demonstrate that the adjusted indicator function will be the same.

Positive homogeneity. VaR is positively homogeneous so linearity of the expectation directly

implies positive homogeneity for TVaRα(·).
Subadditivity. Introduce a new stochastic variable Z = X + Y . Then

(1− α)(TVaRα(X) + TVaRα(Y )− TVaRα(Z))

= E
[
X1

(α)
{X≥VaRα(X)} + Y 1

(α)
{Y≥VaRα(Y )} − Z1

(α)
{Z≥VaRα(Z)}

]
= E

[
X
(
1

(α)
{X≥VaRα(X)} − 1

(α)
{Z≥VaRα(Z)}

)
+ Y

(
1

(α)
{Y≥VaRα(Y )} − 1

(α)
{Z≥VaRα(Z)}

)]
≥ VaRα(X)E

[(
1

(α)
{X≥VaRα(X)} − 1

(α)
{Z≥VaRα(Z)}

)]
+ VaRα(Y )E

[(
1

(α)
{Y≥VaRα(Y )} − 1

(α)
{Z≥VaRα(Z)}

)]
= VaRα(X)((1− α)− (1− α)) + VaRα(Y )((1− α)− (1− α)) = 0.

(2.15)

The inequality above follows from exactly the same argument as the one made when proving

monotonicity above but applied to each of the terms. The expectation of the adjusted indicator

function is obtained from (2.12).

Convexity then follows from TVaR being subadditive and positively homogenous.

An alternative definition of TVaR that lends itself to optimization is given in [16].

Definition 11 (Tail-Value-at-Risk alternative definition).

TVaRα(X) = inf
φ∈R

{
φ+

1

1− αE[X − φ]+
}
. (2.16)

The definitions (2.16) and (2.8) can be shown to be equivalent [18, 2]. When the solution to

the optimization problem in (2.16) is unique, then φinf = VaRα(X) [16].
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2 THEORETICAL BACKGROUND

The risk measures presented above all depend on a single confidence level. A question that

might arise is whether it is possible to define a risk measure that depends on multiple confidence

levels. For example, a user of risk measures might perceive expected losses at one significance

level to be offset if losses are small at another significance level. A suitable risk measure might

then be ρ(X) = TVaRα1(X)+TVaRα2(X) where α1 and α2 are two different significance levels.

Acerbi [1] presents a generalization of the tail-value-at-risk which allows for consideration

of several different confidence levels, or a continuous spectrum of confidence levels.1 The first

definition of a risk measure in [1] is

Mµ(X) =

∫ 1

0
dµ(α)(1− α)TVaRα(X), (2.17)

where dµ(α) is a measure on α ∈ [0, 1]. The risk measure defined by (2.17) indeed makes it

possible to consider different confidence levels when expressing risk preferences. In order for

(2.17) to be cash invariant, monotonic and subadditive it is necessary that∫ 1

0
(1− α)dµ(α) = 1. (2.18)

By using the definition of TVaR and interchanging integrals it is shown that the risk measure

defined by (2.17) has an alternative representation as the integral over a continuous risk spectra

φ(p) =

∫ p

0
dµ(α). (2.19)

Definition 12 (Spectral risk measure). The spectral risk measure presented in [1] is defined as

Mφ(X) =

∫ 1

0
VaRp(X)φ(p)dp (2.20)

where φ ∈ L1([0, 1]).

In [1] it is shown that the conditions that φ be positive, increasing and that ‖φ‖ = 1 imply

that Mφ(X) is convex, monotonic, positively homogeneous and cash invariant. Additionally,

it is shown that the continuous measure (2.20) can be estimated by convex combinations of

simulated outcomes,

M
(N)
φ (X) =

N∑
i=1

Xi:Nφi (2.21)

where Xi:N are ordered realizations of the stochastic variable X and

φi =
φ( i

N )∑N
k=1 φ( kN )

, i ∈ {1, . . . , N}. (2.22)

It is further shown that, under suitable conditions on φ(·) and the stochastic variables being

measured, the sequence of approximations converges to the continuous risk measure (2.20) almost

surely.

The spectral risk measures presented in [1] are especially interesting to consider in relation

to the following section, where weighting with respect to the size of losses is considered. The

conditions that φ be positive and increasing correspond especially well to the cases presented

below.

1The theory presented in [1] has here been adjusted to correspond to the conventions used in this thesis.
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3 DEVELOPMENT OF RISK MEASURES

3 Development of Risk Measures

3.1 Loss Size Risk Measures

When deciding how much a given outcome should contribute to the total riskiness of a portfolio

one alternative is to consider its relative position in the distribution of outcomes, as in the

previous section. Another alternative that is suggested in [12] is to let the riskiness of an

outcome depend on the size of that outcome.

The following definition introduces a risk measure that depends only on the size of outcomes

or losses. The definition is a variation of the one in [12]. The reason for using a different

definition is given in Appendix A.

Definition 13 (Weighted Outcome Risk). If X is a stochastic variable for which the probability

density function f(x) exists. The weighted outcome risk is then defined as

ρ(X) = WRL(X) =

∫ ∞
−∞

L(x)xf(x)dx. (3.1)

The risk measure (3.1) can be considered in the context of the properties presented in section

2.2. To show convexity, it is sufficient to show that the stochastic variable being integrated over

the probability space is convex, which is the content of the following proposition.

Proposition 14. The risk measure defined by

ρ(X) =

∫ ∞
−∞

R(x)f(x)dx (3.2)

is convex in the sense of (2.5) if and only if the function R(x) is convex.

Proof. The convexity of the risk measure ρ(X) is a direct consequence of the linearity of the

integral.

ρ(λX + (1− λ)Y ) =

∫ ∞
−∞

R(λx+ (1− λ)y)fX,Y (x, y)dxdy ≤

≤
∫ ∞
−∞

(λR(x) + (1− λ)R(y))fX,Y (x, y)dxdy =

= λ

∫ ∞
−∞

R(x)fX(x)dx+ (1− λ)

∫ ∞
−∞

R(y)fY (y)dy = λρ(X) + (1− λ)ρ(Y )

(3.3)

The necessity of R(x) being convex is proved similarly.

Corollary 15. The risk measure defined by (3.1) is convex if any of the following are satisfied:

(i) The function L(·) is convex, non-decreasing and the stochastic variables in the set being

measured, X ∈ X , are non-negative. X ∈ X is non-negative if for all ω ∈ Ω it holds that

X(ω) ≥ 0.

(ii) The function L(·) is non-decreasing, convex on (0,∞) and concave on (−∞, 0).

Proof. In order to prove that the risk measure defined by (3.1) is convex when (i) above holds
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3 DEVELOPMENT OF RISK MEASURES

consider the definition of convexity in (2.5).

ρ(λX + (1− λ)Y ) = E [L(λX + (1− λ)Y )(λX + (1− λ)Y )] ≤
≤ E[(λL(X) + (1− λ)L(Y ))(λX + (1− λ)Y )] =

= E[λ2L(X)X + (1− λ)2L(Y )Y ] + E[λL(X)(1− λ)Y + (1− λ)L(Y )λX]

(3.4)

where the inequality follows from the fact that L(·) is convex and that λX + (1 − λ)Y ≥ 0

because X and Y do not take negative values. Now note that as L(·) is non-decreasing it holds

that (X − Y )(L(X)− L(Y )) ≥ 0, which implies that

E[XL(Y ) + Y L(X)] ≤ E[XL(X) + Y L(Y )]. (3.5)

By applying (3.5) to the last member of (3.4) it follows that

ρ(λX + (1− λ)Y ) ≤ E[λ2L(X)X + (1− λ)2L(Y )Y ]

+ E[λL(X)(1− λ)X + (1− λ)L(Y )λY ]

= λE[L(X)X] + (1− λ)E[L(Y )Y ] = λρ(X) + (1− λ)ρ(Y ).

(3.6)

(ii) above can be demonstrated in a similar manner but an alternative proof is available when

the function L(·) is smooth. Then both (i) and (ii) as well as other criteria for convexity can

be glanced by differentiating R(x) = L(x)x twice.

(L(x)x)′′ = L′′(x)x+ 2L′(x), (3.7)

which has to be non-negative for R(x) to be convex. If (ii) above holds then it is indeed

non-negative.

Section 2.2 presents subadditivity, positive homogeneity, monotonicity and cash invariance,

in addition to convexity. The weighted outcome risk defined by (3.1) lacks positive homogeneity,

cash invariance and subadditivity for many choices of the weighting function L(·). The reason is

that the definitions of positive homogeneity, cash invariance and subadditivity all alter the size

of outcomes, and thus the value of L(·). Taking a simple example, such as L(X) = X, makes it

clear that the risk measure (3.1) lacks the above-mentioned properties. The weighted outcome

risk is if the function L(·) is non-decreasing, which can be verified by applying the definition of

monotonicity.

Condition (ii) in Proposition 15 is sufficient to show that some interesting special cases of

(3.1) are convex.

(i) Let Z = X − µX and define L(z) = z in (3.1). Then the measure of risk obtained is the

variance, VAR(X) =
∫∞
−∞(x− µX)2f(x)dx.

(ii) If L(x) = C ∈ R for x ∈ (−∞, 0) and L(x) is convex on (0,∞) then (ii) is satisfied. If

C > 0 then portfolio gains will contribute to reduced risk but only at a constant rate

whereas portfolio losses are weighted depending on the size of the portfolio loss. If C = 0

then the risk measure asserts that portfolio gains have no impact on risk whatsoever.

3.2 General Risk Measures

The goal of this section is to introduce risk measures that allow further flexibility by including

a dependency on both the size and the quantile of outcomes. Some of the previously presented
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risk measures are included as special cases of these more general risk measures.

As a first development towards a more general risk measure, consider a modification of

TVaRα(·) as defined by (9). The modification is introduced as a preliminary but can be inter-

esting in its own right.

Definition 16 (Weighted Tail Risk). Assume that L(X) is a function L : R 7→ R. Then the

weighted tail risk is defined as

ρ(X) =
1

1− αE
[
L(X)X1

(α)
{L(X)X≥VaRα(L(X)X)}

]
= TVaRα(L(X)X). (3.8)

The following result gives conditions on L(·) that guarantee convexity of the risk measure

defined by (3.8).

Proposition 17. If R(x) = L(x)x is convex then the weighted tail risk defined by (3.8) defines

a convex risk measure.

Proof. TVaRα(X) is convex and non-decreasing (monotonic) by Proposition 10. Therefore (3.8)

is the composition of a convex non-decreasing risk measure with a convex function. For some

stochastic variables, X,Y ∈ X it then holds that

TVaRα(R(λX + (1− λ)Y ))

≤ TVaRα(λR(X) + (1− λ)R(Y ))

≤ λTVaRα(R(X)) + (1− λ)TVaRα(R(Y )).

(3.9)

The first inequality in (3.9) follows from TVaRα(·) being non-decreasing and R(·) being convex.

The second inequality follows from TVaRα being convex.

One question that arises when introducing a risk measure that depends on both the quantile

and the absolute size of outcomes as in (3.8) is what difference there is between the two. In a

practical setting, measuring the size of the outcome and the quantile might seem very similar.

Indeed, when the portfolio is a priori known, it is possible to use the portfolio distribution func-

tion to convert between quantiles and outcomes. There are, however, fundamental differences

that become apparent when considering changes that can greatly affect the portfolio distribution

function. A difference that can be easily appreciated is that quantile risk measures do not allow

for different treatment of losses and gains. The following example illustrates an expression of

risk that is only possible with the generalized measure.

Example 3. Tail-Value-at-Risk allows that profitable outcomes in the tail reduce the tail

expectation and thereby the measured risk. Suppose that it is of interest to measure Tail-

Value-at-Risk without allowing profits to reduce risk. To express such a risk preference define

ρ(X) = TVaRα(L(X)X) as in (3.8) and let

L(X) =

{
1 when X ≥ 0

0 when X < 0
(3.10)

and remember that X < 0 for gains. L(·) defines a convex risk measure by (3.8) because

xL(x) =

{
x when X ≥ 0

0 when X < 0.
(3.11)
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The weighted tail risk associated with the weighting function L(·) defined by (3.10) is the Tail-

Value-at-Risk when profits are not allowed to reduce risk.

The weighted tail risk allows risk to be measured by the tail of a stochastic variable other than

the portfolio result. One possibly unattractive feature of (3.8) is, however, that the adjusted

indicator function for the tail, 1
(α)
{L(X)X≥VaRα(L(X)X)}, depends not only on the distribution of

the portfolio loss function, X, but also on the outcome weighting function L(·). The question

would be why 1
(α)
{L(X)X≥VaRα(L(X)X)} is used instead of 1

(α)
{X≥VaRα(X)}. The following example

shows that measuring the tail of L(X)X can indeed be a very desirable feature when L(X)X

is interpreted as a stochastic variable representing the actual riskiness of the stochastic variable

X.

Example 4. It can be of interest to measure the tail of the variance. To define such a risk

measure, let Z be the centered portfolio, Z = X −E[X], and let L(Z) = Z. Then L(Z)Z is the

variance of X and L(·) defines the risk measure

ρ(Z) =
1

1− αE
[
Z21

(α)
{Z2≥VaRα(Z2)}

]
(3.12)

by (3.8). This risk measure could be termed the (1−α)−tail-variance of X and might be related

to the existence of outliers that greatly contribute to variability.

In the above example the riskiness variable Z2 changes the relative severity of outcomes. If

it indeed represents the actual risk of the portfolio there would be little sense in considering the

tail of the original stochastic variable X.

A way to formalize the question of whether it would be possible to consider only the tail of

the original stochastic variable is to ask when the adjusted indicator functions are equivalent.

Sufficient conditions for equivalence of the tails are given in the following proposition.

Proposition 18. If L(·) is a function such that

(i) L(·) is non-decreasing and

(ii) L(x) is positive for all x ∈ R

then

TVaRα(L(X)X) = E
[
L(X)X1

(α)
{L(X)X≥VaRα(L(X)X)}

]
= E

[
L(X)X1

(α)
{X≥VaRα(X)}

]
. (3.13)

Proof. Intuitively, one has to prove that the tail of one variable is the same as the tail of the

other. Below, this will be proved formally.

First note that the stochastic variables X and L(X)X have the same probability atoms. As

L(·) is positive it holds that if P (X = x) = δ > 0 for some x ∈ R then P (XL(X) = xL(x)) = δ.

In order to prove that (3.13) holds it is then sufficient to show that

X ≥ VaRα(X) ⇐⇒ XL(X) ≥ VaRα(XL(X)). (3.14)

As L(·) is positive and non-decreasing it holds that

x ≥ y ⇐⇒ xL(x) ≥ yL(y). (3.15)

19



3 DEVELOPMENT OF RISK MEASURES

As a direct application of (3.15) it is possible to rewrite (3.14) as

XL(X) ≥ VaRα(X)L(V aRα(X)) ⇐⇒ XL(X) ≥ VaRα(XL(X)). (3.16)

It is clear that (3.16) holds if

VaRα(XL(X)) = VaRα(X)L(V aRα(X)). (3.17)

To show that (3.17) is true, consider the definition of Value-at-Risk in (2.7),

VaRα(X) = inf {x ∈ R : P (X ≤ x) ≥ α} = inf A. (3.18)

The distribution function F (x) = P (X ≤ x) is continuous from the right implying that the set

A in (3.18) is closed. Assume that α > 0 as the case when α = 0 is trivial because the adjusted

indicator functions are then identically 1. When α > 0 the set A is bounded from below.

Using once again (3.15) gives that

A = {x ∈ R : P (X ≤ x) ≥ α} = {x ∈ R : P (XL(X) ≤ xL(x)) ≥ α} . (3.19)

Also define the set B as

B = {z ∈ R : P (XL(X) ≤ z) ≥ α} . (3.20)

Then it holds that for all z ∈ B there is an x ∈ A such that z = xL(x). A and B are both closed

and bounded from below, implying that they contain their infima, that is

V aRα(X) ∈ A and VaRα(XL(X)) ∈ B.

Then, in particular, there is a z∗ ∈ B such that z∗ = VaRα(X)L(V aRα(X)). Finally, as

x ≥ VaRα(X) ∀x ∈ A,

(3.15) gives that

xL(x) ≥ VaRα(X)L(V aRα(X)) ∀x ∈ A,

which implies that VaRα(X)L(V aRα(X)) = z∗ = inf B = VaRα(XL(X)). Then (3.17) holds,

completing the proof.

The conditions of Proposition 18 are quite strict so for many choices of L(·) it will not be

possible to change the stochastic variable in the adjusted indicator function. In fact, neither of

the examples 3 and 4 fulfill the criteria of Proposition 18.

A quantile risk measure depending on several confidence levels is available by the spectral

risk measure (2.20). It is then natural to consider whether an extension of the risk measure (3.8)

to several confidence levels is also available.

Definition 19 (Weighted quantile risk measure). Let X be a stochastic variable as above and

let α = {αi}∞i=1 be a set of confidence levels. Furthermore, let L = {Li}∞i=1 be a set of functions,

Li : R 7→ R. The weighted quantile risk measure is then defined as

WQRα,L(X) =
∞∑
i=1

TVaRαi(Li(X)X). (3.21)
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Proposition 20. The risk measure WQRα,L(X) is convex if l(x)x is convex for all functions

l ∈ L.

Proof. WQRα,L(X) is a sum of risk measures of the type (3.8). Each of the terms is a convex

risk measure because the functions Li ∈ L satisfy the conditions of Proposition 17. It is easy

to verify that a sum of convex risk measures is also a convex risk measure. Therefore it results

that the weighted quantile risk measure is convex under the given conditions.

If the sum in (3.21) converges and the functions l ∈ L all satisfy the conditions of Proposition

18, then the terms in (3.21) only depend on the weighting functions Li(·) and the αi-tails of the

original stochastic variable. Stated otherwise,

WQRα,L(X) =
∞∑
i=1

TVaRαi(Li(X)X) = E

[ ∞∑
i=1

XLi(X)1
(αi)
{X≥VaRαi (X)}

]
. (3.22)
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Figure 3.1: The figure shows how different additional
weight functions Li(x) (middle) are assigned depending on
the quantiles of the distribution of the stochastic variable
X (top). The total weight for an outcome is obtained as∑∞
i=1 Li(x)1

(αi)
{x≥VaRαi (X)} (bottom).

WQRα,L(X) makes it possible to ex-

press risk preference as a function of both

the size of the portfolio outcome and the

quantile of the distribution. However, it

is important to note that for a given prob-

ability interval, for example [αi, αi+1],

the weight for an outcome x, is the sum

of all weighting functions Li(x) such that

FLi(X)X(L(x)x) ≥ αi+1. As the func-

tions in L are non-negative, the risk mea-

sure defined by (3.21) is non-decreasing

in both X and in additional probability

levels. An example of a risk measure de-

fined by (3.21) is shown in Figure 3.1, as-

suming that the representation (3.22) is

available. The example set α has just two

members, α1 and α2. Note that although

the weighting functions vary, the sum in

the last graph shows that the total weight

for the outcomes of X is non-decreasing.

It is possible to extend the risk mea-

sure (3.21) to a continuous interval of sig-

nificance levels. The development is sim-

ilar to that in [1] bar the consideration of absolute loss size in addition to the significance level.

Definition 21 (Composite quantile-loss risk measure). Suppose that h(x, α) is a function,

h : R× [0, 1] 7→ R and that X is a stochastic variable, X ∈ X . The composite quantile-loss risk

measure is then defined as

ρ(X) = E [Xh(X,F (X))] . (3.23)

Proposition 22. Suppose that the stochastic variables X ∈ X all have continuous probability

distribution functions, FX(·). The composite quantile-loss risk measure is then a convex risk

measure on X if the function h(x, α) is absolutely continuous in α for all x and satisfies

(i) xh(x, 0) is convex in x,
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(ii) x∂h(x,α)
∂α is convex in x for all α ∈ [0, 1],

(iii) ∂h(x,α)
∂α is non-decreasing in x and

(iv) ∂h(x,α)
∂α is positive for all x ∈ R.

Proof. The risk measure defined by (3.23),

ρ(X) = E [Xh(X,F (X))] , (3.24)

can be rewritten by dividing the weight-function h(X,F (X)) into two parts. Due to absolute

continuity of h(x, ·) it holds that

h(x, α) = h(x, 0) +

∫ α

0

∂h(x, α′)

∂α′
dα′, (3.25)

which makes it possible to write (3.24) as

ρ(X) = E [Xh(X, 0)] + E

[
X

∫ F (X)

0

∂h(X,α)

∂α
dα

]
. (3.26)

Using the indicator function defined by (2.10), the second term in (3.26) can be written as

E
[
X

∫ 1

0

∂h(X,α)

∂α
1{F (X)≥α}dα

]
. (3.27)

With the definition of VaRα(·) in (2.7), it can be shown that

1{X≥VaRα(X)} = 1{F (X)≥α}. (3.28)

By assumption, the stochastic variables X ∈ X have continuous distribution functions, which

implies that the adjusted indicator function defined by (2.11) is equal to the indicator function

defined by (2.10). Applying that and (3.28) to (3.27) gives

E
[
X

∫ 1

0

∂h(X,α)

∂α
1

(α)
{X≥VaRα(X)}dα

]
. (3.29)

Under the condition that

E
[∫ 1

0

∣∣∣∣X∂h(X,α)

∂α
1

(α)
{X≥VaRα(X)}

∣∣∣∣dα] <∞,
the Fubini-Tonelli theorem allows exchanging the order of taking the expectation and the inte-

gral, which gives ∫ 1

0
E
[
X
∂h(X,α)

∂α
1

(α)
{X≥VaRα(X)}

]
dα. (3.30)

Now note that, due to the conditions (iii) and (iv) above, the weighted tail risk obtained by

taking L(X) = X ∂h(X,α)
∂α in (3.8) fulfills the criteria of Proposition 18. Therefore, it is possible

to change the stochastic variable in the adjusted indicator function. Changing the stochastic
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variable of which the tail is measured to X ∂h(X,α)
∂α in (3.30) then gives∫ 1

0
E
[
X
∂h(X,α)

∂α
1

(α)

{X ∂h(X,α)
∂α

≥VaRα(X
∂h(X,α)
∂α

)}

]
dα

=

∫ 1

0
(1− α)TVaRα

(
X
∂h(X,α)

∂α

)
dα.

(3.31)

The equality in (3.31) follows by definition from (2.8).

Bringing (3.31) and (3.26) together yields

ρ(X) = E [Xh(X, 0)] +

∫ 1

0
(1− α)TVaRα

(
X
∂h(X,α)

∂α

)
dα. (3.32)

The first term of (3.32) is a weighted outcome risk measure with L(X) = h(X, 0), as defined

by (3.1) and therefore convex, as (i) corresponds to the condition of Proposition 14.

The second term of (3.32) can be shown to be convex by directly applying the definition of

convexity, (2.5).

Consider the risk measure ρI(·) defined by

ρI(X) = TVaRα

(
(1− α)X

∂h(X,α)

∂α

)
. (3.33)

ρI(·) is the composition of a convex and non-decreasing risk measure, TVaRα(·), with a

function L(x, α) = (1−α)x∂h(x,α)
∂α that is convex due to (ii) above. The composition of a convex

and non-decreasing risk measure with a convex function is a convex risk measure, as is shown

in the proof of Proposition 17, and therefore ρI(·) is a convex risk measure.

To apply the definition of convexity (2.5) to the second term in (3.32), take two stochastic

variables, X,Y ∈ X , and a λ ∈ (0, 1). For the second term in (3.32) it then holds that

∫ 1

0
(1− α)TVaRα

(
(λX + (1− λ)Y )

∂h(λX + (1− λ)Y, α)

∂α

)
dα

=

∫ 1

0
ρI(λX + (1− λ)Y )dα ≤

∫ 1

0
λρI(X) + (1− λ)ρI(Y )dα

= λ

∫ 1

0
(1− α)TVaRα

(
X
∂h(X,α)

∂α

)
+ (1− λ)

∫ 1

0
(1− α)TVaRα

(
Y
∂h(Y, α)

∂α

)
dα.

(3.34)

The inequality in (3.34) follows from the fact that ρI(·) is a convex risk measure. The first

inequality follows from the fact that (1 − α) can be moved inside TVaR as is allowed due to

positive homogeneity. The second equality follows from linearity of the integral and that (1−α)

can be moved outside TVaR.

(3.34) shows that the second term of (3.32) defines a convex risk measure. Finally, the sum

of convex risk measures is a convex risk measure, which implies that (3.32) is a convex risk

measure.

Proposition 22 assumes that the stochastic variables X ∈ X all have continuous distribu-

tion functions. The following proposition holds even if some stochastic variables in X have

discontinuous distribution functions.

Proposition 23. Let L0(x) be a function, L0 : R 7→ R and L(x, α) a function, L : R×[0, 1] 7→ R.
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Suppose that h(X,F (X)) is a function of the form

h(X,F (X)) = L0(X) +

∫ 1

0
L(X,α)1

(α)
{X≥VaRα(X)}dα. (3.35)

The composite quantile-loss risk measure defined using h(X,F (X)) is then a convex risk measure

on X if

(i) L0(x) is convex in x,

(ii) xL(x, α) is convex in x for all α ∈ [0, 1],

(iii) L(x, α) is non-decreasing in x and

(iv) L(x, α) is positive for all x ∈ R.

Proof. The proof of Proposition 23 follows the same idea as the proof of Proposition 22 but

starting from (3.29).

3.3 Comments on the Risk Measures

The sections above present several risk measures that differ in some respects. It is interesting to

consider what implications the differences have if the risk measures are interpreted as a reflection

of risk preferences.

First of all, Value-at-Risk has already been shown to have some undesirable properties that

it does not share with Tail-Value-at-Risk. Another attractive feature of TVaR is that it leads

to a linear optimization problem, which is not generally true for the loss size risk measures

introduced in sections 3.1 and 3.2.

All of the measures bar VaR have been shown to be convex under suitable assumptions.

Convexity appears to be a reasonable feature of a risk measure as it can be interpreted as

diversification not leading to an increase in risk. However, in contrast to TVaR, the loss size

measures are not generally positively homogeneous or subadditive. Positive homogeneity implies

that doubling the size of a portfolio doubles the associated risk. Convexity and the lack of

positive homogeneity for the loss size risk measures implies that the risk can more than double

when the size of the portfolio doubles. The upshot is that if risk is viewed as something that

can be mitigated just as easily regardless of the size of a portfolio then positive homogeneity is

a desirable feature but if it becomes increasingly costly or hard to mitigate risk as the portfolio

grows, then it might not be.

It is also interesting to consider what the difference might be when using the composite

quantile-loss risk measure. The conditions imposed by Proposition 22 are quite strict. Following

is an example that fulfills the criteria when the stochastic variables X ∈ X are non-negative,

that is, X ≥ 0 for all X ∈ X .

Example 5. Consider the function h(x, α) = exα, which defines a risk measure

E
[
XeXα

]
(3.36)

by (3.23). If X ≥ 0 for all X ∈ X then the risk measure is convex as it satisfies the conditions

of Proposition 22. The risk measure asserts that risk increases linearly in the significance level

of an outcome but exponentially in the size of the loss, thus giving very big weight to big losses,

irrespective of them being improbable.
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The risk measure (3.36) is clearly not positively homogeneous as λXeλX 6= λXeX , for general

λ ∈ R+, X ∈ X . For any stochastic variable X ∈ X that has a tail density that falls off slower

than the exponential function, the associated risk as measured by (3.36) is infinite.
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4 Optimization Modelling of Retrocession

A model for optimization of retrocession should contain the basic components of an optimization

problem. That is, it is necessary to define a cost function that is to be minimized (or a utility

function to be maximized) and which constraints are to be applied with regard to the decision

variables. Central decisions made in retrocession are

(i) for which regions and perils should risk be retroceded,

(ii) what type of proportional or non-proportional contract should be used and

(iii) by how much should the current exposure to losses be reduced.

In this section the business considerations of retrocession are related to alternative math-

ematical models that can reflect the considerations in a way that can be used to find optimal

answers to the questions above. The first model considered in this section is a simple linear

model, where the risk ceded is proportional to the total risk and each contract can be subject

to only one single retrocession contract. Subsequently, a more general model is developed which

allows for multiple overlapping retrocession contracts and retrocession contracts with non-linear

features. Approaches to solving the optimization problem are considered for each of the models.

4.1 Linear Model

Suppose that there are nΓ disjoint classes of contracts and that there are nγ contracts in the

class denoted by γ ∈ {1, 2, ..., nΓ}. The contracts in each class γ are assigned an index, i ∈
{1, 2, ..., nγ}. Suppose further that each contract has an associated loss Dγi, which is a stochastic

variable. The loss from a contract is considered to be the losses from that contract during a

certain period of time, such as one year. Then the loss pertaining to a class of contracts is

Dγ =
∑nγ

i=1Dγi.

For the purpose of this model, retrocession is assumed to be available for each class of

contracts and the terms are that a proportional share, xγ ∈ [0, 1], of the risk can be ceded

in return for a share (1 − c)xγ of the premiums of class γ, Pγ . c here reflects the overriding

commission and, as noted in section 1.1, usually c > 0. Suppose that ρ = (ρ1, ρ2, . . . , ρnρ) is a

risk measure that measures nρ dimensions of risk. Each dimension of risk represents some risk

measure that it is deemed necessary to constrain in order to reflect company risk preferences.

One possible objective is to maximize the result contribution of the portfolio, which then gives

the optimization problem

max
(x1,x2,...,xnΓ

)
E[R]

subject to

0 ≤ xγ ≤ 1 for γ = 1, 2, . . . , nΓ

ρi(−R) ≤ fi for i = 1, 2, . . . , nρ

R =

nΓ∑
γ=1

Pγ(1− (1− c)xγ)−
nΓ∑
γ=1

Dγ(1− xγ)

(4.1)

where f = (f1, f2, ..., fnρ) is a vector of constants that define the maximum acceptable risk in

each dimension. Here R is linear in xγ and thus convex so the problem is a convex optimization

problem if ρ is convex. Furhtermore it is possible to impose linear contraints on the decision
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variables, xγ and still maintain a convex model. There can also be a class of contracts that is

not available for retrocession, implying xγ = 0 for that class. The reason for including such a

class is that it affects portfolio outcomes and thereby also the risk measure.

The above model makes the important simplification that the reinsurance contracts are

divided into several disjoint classes for which at most one retrocession contract is available for

each class. Although this is not always the case it gives a model that can be solved using linear

programming if there is such a technique for the risk measures in the set ρ. The model defined

by (4.1) is also linear for premium principles that include a profit commission.

4.2 Model Generalizations

The linear model presented above does not allow for optimization of excess of loss contracts and

makes the implausible assumption that all the prospective retrocession contracts cover disjoint

classes of contracts. The purpose of this section is to consider these shortcomings in turn and

suggest generalizations that overcome them. Each generalization will be investigated to see if

it defines a problem that can be solved by linear programming, and if not, whether there are

other methods available for finding the optimal solution.

4.2.1 Overlapping Contract Covers

To model overlapping contracts assume, as for the linear model above, that contracts in the

portfolio have been divided into several disjoint classes, denoted by γ ∈ {1, 2, ..., nΓ} = Γ,

possibly encompassing only individual contracts. Now suppose, in contrast to the linear model,

that nΨ proportional retrocession contracts are available, denoted by ψ ∈ {1, 2, . . . , nΨ} = Ψ,

and that each retrocession contract offers proportional cover for a subset of the disjoint classes.

Let Γψ ⊂ Γ denote the subset of contracts covered by the retrocession contract, ψ. Under these

assumptions it is allowed that any of the classes γ is covered by two or more of the retrocession

contracts, which immediately raises the question of what should be meant by having ceded a

share of the same risk to several different contracts. Section 1.1.3 presents two different answers

to that question, multiplicative contracts and additive contracts. Only the additive case will be

considered as it is the one used practically.

In the additive case, the total proportional cover for the class γ is given by the sum of

the cover from all retrocession contracts that include γ. Form the set of all such retrocession

contracts, Ψγ = {ψ ∈ Ψ : γ ∈ Γψ} and let xψ denote the proportional share ceded to contract

ψ. Let X = −R denote the loss function of the portfolio. The expression for the loss function

of class γ, omitting for a moment the premium principle, is then identified as

Xγ =

1−
∑
ψ∈Ψγ

xψ

Dγ −

1−
∑
ψ∈Ψγ

xψ

Pγ . (4.2)

The above expression is linear but a problem with it is that optimization based on Xγ would

allow the cover to be more than 100% of the loss, which is not usual in the context of insurance.

Cession of more than 100% of premiums is assumed to be possible. The problem can be solved

by introducing a new variable for the retained share of each class, rγ =
(

1−∑ψ∈Ψγ
xψ

)
and
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requiring that no more than 100% can be ceded. The optimization obtained is then

min
(r1,r2,...,rnΓ

,x1,x2,...,xnΨ
)
E[X]

subject to

0 ≤ xψ ≤ 1 for ψ = 1, 2, . . . , nΨ

ρi(X) ≤ fi for i = 1, 2, . . . , nρ

rγ =

1−
∑
ψ∈Ψγ

xψ

 for γ = 1, 2, . . . , nΓ

X =

nΓ∑
γ=1

max(rγ , 0)Dγ −
nΓ∑
γ=1

rγPγ

(4.3)

The optimization problem (4.3) is non-linear because the function max(·, 0) is non-linear.

If, however, linear programming can be applied to the risk measures ρi(·), for i = 1, 2, . . . nρ, it

is possible to rewrite the optimization problem (4.3) as a linear program. To do so, introduce

auxiliary variables zγ = max(rγ , 0) for each class γ and impose the conditions zγ ≥ 0 and

zγ ≥ rγ . Then the optimization problem becomes

min
(r1,r2,...,rnΓ

,x1,x2,...,xnΨ
,z1,z2,...,znΓ

)
E[X]

subject to

0 ≤ xψ ≤ 1 for ψ = 1, 2, . . . , nΨ

ρi(X) ≤ fi for i = 1, 2, . . . , nρ

zγ ≥ 0 for γ = 1, 2, . . . , nΓ

zγ ≥ rγ for γ = 1, 2, . . . , nΓ

rγ =

1−
∑
ψ∈Ψγ

xψ

 for γ = 1, 2, . . . , nΓ

X =

nΓ∑
γ=1

zγDγ −
nΓ∑
γ=1

rγPγ .

(4.4)

In the above problem the auxiliary variables zγ will always equal max(rγ , 0) if the conditions

ρi(X) ≤ Ri are such that if they are satisfied for some z∗γ then they are also satisfied for any

z < z∗γ . The reason is that as zγ has a positive coefficient in the objective function, at least one

of the only two conditions constraining zγ from below must be active.

The condition on the constraints ρi(X) ≤ fi is satisfied precisely when the coefficient of zγ
in ρi(X) is positive. This gives a condition on the risk measures ρi(·) for (4.4) to define a linear

program. TVaR is one risk measure that satisfies this condition.

Remark 2. In practice it is unnecessary to introduce auxiliary variables when rγ = (1− xψ) for

some ψ because then the maximum is of no concern as 0 ≤ xψ ≤ 1 for all ψ ∈ Ψ.

4.2.2 Non-Proportional Retrocession

One of the shortcomings of the linear model is that it does not enable modelling excess of

loss contracts. Unfortunately, non-proportional retrocession does not lead to an optimization

problem that is nearly as computationally tractable as the models previously discussed. This
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section will give an example showing why that is the case and presents a simplistic model that

may be useful in some cases.

Suppose that there is only a single limitless excess of loss contract available, which covers

a single class of the portfolio. This will serve as an example but the case of limited excess of

loss is similar. Denote the class that the prospective contract covers by γ. The limitless excess

of loss principle of section 1.1.2 gives the retained losses as DRetained
γ = min(Dγ , dγ), where dγ

denotes the deductible of the cover.

An explicit function describing the relation between the cost of an excess of loss cover, the

limit and the deductible may be harder to come by than in the case of proportional reinsurance

contracts. For the model presented here it is thus assumed that the reinsurer cannot influence the

contracts offered by the market and is thus left to decide between a finite number of prospective

contracts.

The deductible d1 of the available contract is assumed to be known, and so is the cost of

buying the protection. Let s be a binary decision variable that takes the value 1 if the contract

is signed. Further assume that c is the cost of the protection if the contract is signed.

The assumptions made gives the optimization problem

min
s

E[X]

subject to

ρi(X) ≤ fi for i = 1, 2, . . . , nρ

s ∈ {0, 1}
X = DΓrγ − PΓrγ +Dγ(1− s)smin(Dγ , dγ)− Pγ + cs,

(4.5)

where DΓrγ denotes the losses of all classes g ∈ Γ except the class γ, and analogously for the

premiums, PΓrγ .

Similarly to the case with overlapping proportional contracts there is a non-linear objective

function. In contrast, however, there is a minimization of the minimum of two numbers, as

opposed to minimization of the maximum in the previous case. The present optimization prob-

lem does not lend itself to the technique of introducing an auxiliary variable to circumvent the

non-linearity. Further complicating the objective function is the fact that the minimum is taken

with respect to a stochastic variable, Dγ . There is another technique available that involves the

introduction of binary variables. That technique will now be introduced but it should be noted

that the binary variable introduced will be a stochastic variable, dependent on Dγ .

To proceed, let DRetained
γ = min(Dγ , dγ) denote the retained loss of class γ. Introduce a

binary variable b,

b =

{
1 if Dγ ≤ dγ
0 if Dγ > dγ

(4.6)

It is then possible to write the retained loss as DRetained
γ = bDγ+(1−b)dγ . The variable b can be

forced to take the desired values, which will be further explored after presenting the optimization

problem. Let ε > 0 be a small positive number and let M ∈ R be a positive number that is very

large compared to the values taken by the other variables in the optimization problem. The
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optimization problem is

min
s,b

E[X] + εb

subject to

s, b ∈ {0, 1}
ρi(X) ≤ fi for i = 1, 2, . . . , nρ

dγ −Dγ −Mb ≤ 0

X = DΓrγ − PΓrγ +Dγ(1− s) + sbDγ + s(1− b)dγ − Pγ + cs.

(4.7)

Note that in (4.7) the variable b has to take the value 1 when d1 > D1 in order to satisfy

the last constraint. On the other hand, D1 ≥ d1 implies that b will take the value 0 because the

last constraint is satisfied irrespective of the value of b and the objective function is minimized

by minimizing b.

The model (4.7) is simplistic and it mainly serves as an example of the issues related to

modelling excess of loss. Indeed, if the expected ceded loss is smaller than the binary cost of the

excess of loss cover, then there is no benefit of signing the contract if the risk constraints are

satisfied. If the risk constraints are not satisfied then the contract has to be signed if that leads

to a feasible solution, as signing the contract is the only way to reduce risk in the above model.

In the following, several ways to extend the model and incorporate it in other optimization

models are considered.

The combination of (4.7) with (4.4) yields a model where both non-proportional and pro-

portional retrocession is available. It is allowable that there is overlap between the contracts

covered by non-proportional cover and the contracts covered by proportional cover. Addition-

ally, it is possible to include several different excess of loss contracts by introducing costs and

binary variables for each one.

The optimization problem resulting from combining the models (4.7) and (4.4) is a discrete

programming problem, which is much harder to solve than the linear program [8]. The optimal

solution can be obtained by exhaustive search over the set of possible solutions (or by a more

sophisticated algorithm).

Remark 3 (On Complexity). Combining proportional with non-proportional retrocession by us-

ing (4.7) and (4.4) yields a model where the optimal solution can be found, at least theoretically.

It should be noted, however, that in case a number of simulations, J , is used to estimate the

distribution of Dγ , then there will be J binary variables that each depends on the simulated

value, Dγj , and the decision variable zγ . For the exhaustive search approach this means that

the complexity increases exponentially in the number of simulations, which is an extremely

unattractive feature of the model.

To conclude, the most feasible model for non-proportional retrocession appears to be (4.5),

assuming that there is no overlap with proportional retrocession contracts. In that case, ex-

haustive search can be performed by simply calculating the optimal value of the proportional

retrocession linear program for every possible combination of excess of loss contracts.

4.3 Optimization With Risk Constraints

This section will give details on how some of the risk measures presented in Section 2.2 can be

incorporated in optimization problems when an approximate distribution of the portfolio has

been obtained. The choice to focus on constraining risk is not necessary as a constraint can be
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converted to an objective function for minimization of risk. The implementation of quantile risk

measures will be presented first, then proceeding to loss size risk measures and the generalized

case.

4.3.1 Implementation of Quantile Risk Measures

Rockafellar and Uryasev [16] present an implementation of TVaR within the framework of lin-

ear programming. The linear programming formulation of TVaR builds on definition (2.16).

Krokhmal et al. [13] extend the implementation to optimization where risk is used either as a

constraint or as an objective.

To formulate TVaR for use in a linear programming constraint, let X denote the loss function

of the portfolio and suppose that X is linear in the decision variables, x = {x1, x2, . . . , xnΓ}.
Assume that an approximate distribution of the portfolio constituents has been obtained and

let J denote the number of observations making up the approximate distribution. As definition

(2.16) is an equivalent definition of TVaR it holds that

TVaRα(X) = inf
φ∈R

{
φ+

1

1− αE[X − φ]+
}

≤ φ+
1

1− αE[X − φ]+ ≈ φ+
1

J(1− α)

J∑
j=1

[Xj − φ]+,

(4.8)

where the approximate equality refers to the use of the approximate distribution to estimate the

expected value. Xj denotes the value of the loss function in the j:th sample observation in the

approximate distribution.

If risk is constrained by TVaRα ≤ f , the approximate constraint can be obtained by using

(4.8) and letting φ be an unconstrained decision variable. The resulting constraint is

φ+
1

J(1− α)

J∑
j=1

[Xj − φ]+ ≤ f. (4.9)

(4.9) contains the non-linear function [·]+ but can be converted to a linear constraint. To do

so, introduce the auxiliary variable zj and impose the following constraints

φ+
1

J(1− α)

J∑
j=1

zj ≤ f

zj ≥ Xj − φ for j = 1, 2, . . . , J

zj ≥ 0 for j = 1, 2, . . . , J.

(4.10)

The auxiliary variables zj always fulfill zj ≥ [Xj − φ]+ due to the last two groups of con-

straints. Thus, when the left-hand-side of the risk constraint takes its maximum value it holds

that zj = [Xj −φ]+. Finally, (4.10) can be incorporated in a linear program if X is linear in the

decision variables x.

It has already been noted that the spectral risk measures presented in the section on quantile
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risk measures can be approximated as a convex combination of simulated outcomes,

M
(N)
φ (X) =

N∑
i=1

Xi:Nφi (4.11)

where Xi:N are ordered realizations of the stochastic variable X and

φi =
φ( i

N )∑N
k=1 φ( kN )

, i = 1, . . . , N. (4.12)

4.3.2 Implementation of Loss Size Risk Measures

The loss size risk measure (3.1) has a particularly straightforward implementation when an

approximate distribution for the portfolio constituents has been obtained. The implementation

results in what is typically a non-linear optimization problem.

According to (3.1) the weighted outcome risk measure is

ρ(X) =

∫ ∞
−∞

L(x)xf(x)dx = E[L(X)X]. (4.13)

The expected value E[L(X)X] can be approximated by the mean of the observed values of

L(X)X in the approximate distribution. If ρ(X) in (4.13) is constrained by ρ(X) ≤ f then the

constraint can be expressed as

1

J

J∑
j=1

L(Xj)Xj ≤ f (4.14)

by using the approximate distribution.

From (4.14) it can be seen that for non-constant forms of L(·), the optimization problem

will be non-linear.

4.3.3 Implementation of General Risk Measures

In this section the implementations of the previous two sections are extended to general risk

measures introduced in section 3.2. Implementation of the generalized risk measures builds on

their expression as the TVaR of a modified stochastic variable, XL(X).

First consider the fundamental case of the weighted tail risk, as defined by (3.1). The

weighted tail risk can be expressed as

ρ(X) = TVaRα(XL(X)), (4.15)

so combining the approaches of the two previous sections yields

φ+
1

J(1− α)

J∑
j=1

zj ≤ R

zj ≥ XjL(Xj)− φ for j = 1, 2, . . . , J

zj ≥ 0 for j = 1, 2, . . . , J.

(4.16)

As in the case of the loss size risk measure, (4.16) is non-linear for non-constant L(·).
The weighted quantile risk measure defined by (3.21) is a sum of risk measures of the type

(4.15). Thus it can be implemented by introducing several variables φ(α) as well as several classes
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of auxiliary variables,
{
z

(α)
j

}J
j=1

. If each of the auxiliary variables fulfill that z
(α)
j ≥ [Xj−φ(α)]+

then the constraint on risk is satisfied with respect to the simulated distribution.

4.4 Assessing the Optimal Decisions

When applying optimization models to practical problems there might be a need to provide rich

information regarding the optimal decisions encountered. This section will focus on two sets of

information that are important in this study. First, the uniqueness of the optimal solutions will

be considered. Second, techniques for assessing the impact of stochastic variables on the optimal

decisions will be studied. The two areas of focus are determined to be the most relevant to this

study but numerous other sensitivity analyses are available in literature [19].

4.4.1 Uniqueness of the Optimal Decisions

There can be many optimal solutions of a linear program [8]. The simplex algorithm can

find an optimal solution but it does not generally answer the question of uniqueness [14, 19].

Mangasarian [14] introduces necessary and sufficient conditions for uniqueness of solutions in

linear programming. The paper defines the linear optimization problem

min pTx

subject to Ax = b

Cx ≥ d
(4.17)

and the corresponding dual problem

max bTu+ dT v

subject to ATu+ CT v = p

v ≥ 0.

(4.18)

Using over-bar to identify optimal solutions the paper then proceeds to define

J = {i : Cix̄ = di},
K = {i : v̄i > 0}
L = {i : Cix̄ = di, v̄i = 0}.

(4.19)

In order to express the conditions for uniqueness, let CJ , CL and CK be the matrix whose rows are

i:th row of C,Ci, where i is in J, L or K respectively. Several necessary and sufficient conditions

for uniqueness are introduced. Condition (v) in the paper states that the optimization problem

(4.17) has a unique solution if and only if the rows of [AT CTK CTL ] are linearly independent and

there is no x such that

Ax = 0, CKx = 0, CLx ≥ 0. (4.20)

As a suggestion for testing (4.20) the author suggests solving the optimization problem

max {(1, . . . , 1) · CLx : Ax = 0, CKx = 0, CLx ≥ 0} , (4.21)

which has a zero maximum if the solution is unique.

The test of uniqueness above requires solving two additional linear programs (if the opti-

mization algorithm does not immediately provide the dual solution). In addition to testing
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4 OPTIMIZATION MODELLING OF RETROCESSION

for uniqueness a more detailed analysis involving the identification of the non-unique decision

variables and the extent to which they can be varied while maintaining optimality may be of

interest. To investigate the details it is possible to use an approach that is more computation-

ally expensive than the uniqueness test above but which has approximately the same computer

memory usage as does solution of the original optimization problem.

Suppose that an optimal solution, denoted x∗, to the problem (2.2) has been obtained. The

question of interest is whether any of the components, say x∗i for some i, of the decision vector

x∗ is non-unique and if so, to what extent the decision x∗i can be varied while maintaining

optimality. In other words, what is the maximum variation of xi given that the optimal value

zTx is maintained. Thus formulated, the question can be answered by solving the optimization

problem

max xi

subject to

Ax ≤ b,
zTx ≤ (1 + sign(zTx∗)ε)zTx∗.

(4.22)

The maximum is taken in (4.22) but a full analysis of the possible variation should also

solve the corresponding minimization problem with respect to xi. The constant ε ∈ [0, 1) is

introduced to allow for analysis of the possible variation in xi when allowing for a small degree

of sub-optimality. That is, instead of requiring strict optimality one can take ε = 0.01 to

analyze the possible variation in xi when allowing an objective function value that is 1% below

the optimum.

4.4.2 Reliability of the Optimal Decisions

Optimization models may include stochastic variables. In that case, implementation of the

models may require obtaining an approximate probability distribution by some means, such

as Monte Carlo simulation. As the approximation is finite the question arises of whether any

inference can be made based on the optimal solution obtained. One way to approach the question

of inference is to consider whether the optimal decisions for one finite sample are optimal or

almost optimal for another finite sample. More generally, the bootstrap technique can be used

to estimate the sampling distribution of estimated parameters, such as the optimal decisions.

Let θ(X) be a parameter that depends on the stochastic variable X. Suppose that a sample

of n realizations of X have been obtained, x = (x1, x2, . . . , xn). The sampling distribution

of θ(X) can then be estimated by taking random samples with replacement of size n from x.

Properties of the sampling distribution of θ(X) can then be estimated by calculating θ(xs) for

s = 1, 2, . . . , S [5]. S here denotes the number of resamplings performed and xs denotes the

random sample.

Ferrier and Hirschberg [6] apply the bootstrap technique to estimating confidence intervals

for linear programming efficiency scores. The topic of the paper is not directly relevant to

this thesis but it provides an example of how bootstrapping can be applied to linear programs.

The efficiency scores are a measure of resource utilization obtained as the optimal value of the

objective function in a linear program. In the setting of a general linear program, it can also

be of interest to consider how constraint satisfaction and the optimal decisions vary between

samples.
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The technique of bootstrapping is applied to the problem of reinsurance portfolio optimiza-

tion in two main ways in this thesis. First, the optimal decisions are bootstrapped by performing

the optimization many times on re-samples of the portfolio distribution. Second, the optimal

portfolio is evaluated by bootstrapping the expected result and the risk measure used in the

optimization.
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5 Results from Optimization of a Reinsurance Portfolio

This section presents the results of applying the linear model developed above to the problem of

retrocession. The section begins with a description of the portfolio being optimized and proceeds

to describe the details and assumptions that constitute the business situation being evaluated.

Finally, the results of the optimization are presented in the form of optimal decisions as well as

several sensitivity analyses.

5.1 Details on the Portfolio

The portfolio being optimized is that of Sirius International. Sirius International is a reinsurance

firm headquartered in Stockholm 2. Sirius International Insurance Group has business in the

property, casualty, accident & health and marine reinsurance.

Public figures show that the group holding company had gross written premiums of 1, 120

million USD in 2013 and pre-tax income of 189 million USD.

5.2 The Retrocession Situation

The optimization is carried out to determine optimal retrocession decisions for the current

gross portfolio, that is, the portfolio before the impact of current retrocession. The result and

properties of the optimal portfolio can then be compared with the current portfolio net of

retrocession.

Optimizing the portfolio requires knowledge of the objective of the retrocession as well as

firm preferences regarding risk. Out of the measures presented it is assumed that TVaR0.995

reflects the risk preferences. This choice is not meant to reflect actual firm risk preferences but

rather to serve as an example of the implementations presented above.

5.2.1 Objective of Retrocession

A hypothetical scenario is used as the starting point for optimization of the portfolio. First,

suppose that it would be possible to start over with protection of the gross reinsurance portfolio.

Second, suppose that it is required that risk as measured by TVaR0.995(X), where X is the

portfolio loss function, be the same as for the current portfolio net of retrocession. Third,

suppose that the objective of retrocession is to fulfill the risk constraint and maximize the

expected result. The optimal retrocession in that situation can then be compared to the current

portfolio net of retrocession.

5.2.2 Supply of Protection

In order to optimize the portfolio it is also necessary to assume that there is supply of retrocession

protection. The specific characteristics of the contracts available dictate which retrocession

decisions are feasible.

It is assumed that it is possible to buy retrocession cover for each business unit individually.

Furthermore, it is assumed that the cover available is of the proportional type and that it is

allowable to retrocede up to 70% of the exposure to the gross reinsurance portfolio.

Two different forms of the reinsurance premium principle are tested. The first premium

principle is to only have an overriding commission as defined in (1.1). It is assumed that

2Sirius International is an operating unit of Sirius International Insurance Group Ltd, which is a wholly owned

subsidiary of White Mountains Insurance Group (WTM-NYSE).
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5 RESULTS FROM OPTIMIZATION OF A REINSURANCE PORTFOLIO

the overriding commission amounts to 5% of ceded premiums. The second premium principle

includes both an overriding commission and a profit commission as defined in (1.2). The profit

commission is evaluated because the stochastic nature of the profit commission might have

an impact on the optimization. The parameters of the profit commission are assumed to be

c1 = 0.05, c2 = 0.15 and c3 = 0.1, as suggested by expertise at Sirius International.

5.2.3 Statement of the Optimization Problem

The above assumptions can be implemented using the linear optimization model defined by (4.1)

and the linear programming formulation of TVaR. The 20 business units each make up one class

of contracts and thus Γ = {1, 2, . . . , 20}. The final model with the first premium principle is

min
(x1,x2,...,x20)

E[X]

subject to

0.3 ≤ xγ ≤ 1 for γ = 1, 2, . . . , 20

TVaR0.995(X) ≤ TVaR0.995(−PCurrent Portfolio +DCurrent Portfolio)

X = −
20∑
γ=1

Pγ(1− (1− c)xγ) +

20∑
γ=1

Dγ(1− xγ).

(5.1)

The final model with the second premium principle is

min
(x1,x2,...,x20)

E[X]

subject to

0.3 ≤ xγ ≤ 1 for γ = 1, 2, . . . , 20

TVaR0.995(X) ≤ TVaR0.995(−PCurrent Portfolio +DCurrent Portfolio)

X = −
20∑
γ=1

Pγ(1− xγ)−Dγ(1− xγ) + xγc1Pγ

+ c2xγ max(Pγ −Dγ − c1Pγ − c3Pγ , 0)

(5.2)

5.3 Details on the Analysis

To perform the optimization, sample sets with 10000 simulated years are drawn, with replace-

ment, from a base sample set that approximates the modelled one-year portfolio distribution.

It is assumed that the modelled one-year portfolio distribution is a correct representation of the

actual one-year portfolio distribution.

Optimal retrocession is calculated once for each sample set drawn. 1000 sample sets are

drawn for the first premium principle and 100 sample sets are drawn for the second premium

principle. Optimization based on the sample sets gives a bootstrapped distribution of the optimal

decisions and the optimal value of the objective function, as described in section 4.4.2. The

optimal portfolio for a premium principle is taken to be the portfolio obtained by averaging the

optimal retained share for all sample sets. The performance of that portfolio is evaluated by

bootstrapping E[X] and TVaR0.995(X) using 10000 sample sets for each statistic.

The optimization is performed by implementing the optimization models in MATLAB and

using the interior-point algorithm of linprog to find the optimal solution.
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5 RESULTS FROM OPTIMIZATION OF A REINSURANCE PORTFOLIO

5.4 Results

Results for the optimal portfolio when there is supply of cover with an overriding commission

are presented first. Then the results on the optimal portfolio when there is supply of cover

with both overriding commission and profit commission are presented and finally, the results of

sensitivity tests are presented.

5.4.1 Premium Principle: Overriding Commission

This section presents the optimal portfolio resulting from applying the model (5.1). First, tables

and figures showing the distribution of the bootstrapped optimal retained share are presented.

Second, the performance of the portfolio obtained by applying the average optimal retained share

is studied by showing the distribution of the bootstrapped mean result and the bootstrapped

TVaR0.995.
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Figure 5.1: Boxplot of the optimal retained share obtained for each business unit in
1000 optimizations. Each optimization is based on resampling with replacement from
the base sample set obtained from the portfolio distribution. The whiskers extend 1.5
times the interquartile range. Outliers are represented by short lines.

Figure 5.1 shows that a majority of the business units have no retrocession at all in almost all

of the 1000 optimizations performed. In contrast, maximum possible retrocession cover (70%)

is bought for business units 3 and 19 in almost all of the optimizations. This indicates that the

business units 3 and 19 are driving most of the Tail-Value-at-Risk of the portfolio. Furthermore,

there appears to be considerable uncertainty regarding what the optimal retrocession is for

business units 6,16 and 17. Uncertainty regarding the optimal decisions can be an issue as

it may indicate that the optimization has adapted to the sample rather than the underlying

distribution.

Table 5.1 allows further investigation of the distribution of the bootstrapped optimal retained
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5 RESULTS FROM OPTIMIZATION OF A REINSURANCE PORTFOLIO

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

BU 2 0.5076 1.0000 1.0000 0.9536 1.0000 1.0000
BU 3 0.3000 0.3000 0.3000 0.3009 0.3000 0.5014
BU 4 0.6188 1.0000 1.0000 0.9992 1.0000 1.0000
BU 6 0.3000 0.3000 0.5257 0.5550 0.6850 1.0000
BU 7 0.3000 1.0000 1.0000 0.9874 1.0000 1.0000
BU 8 0.4641 0.8316 0.9124 0.8946 0.9838 1.0000
BU 10 0.3000 0.6091 0.7022 0.7038 0.8112 1.0000
BU 14 0.3000 1.0000 1.0000 0.9960 1.0000 1.0000
BU 16 0.3000 0.6764 0.9053 0.8059 1.0000 1.0000
BU 17 0.3000 0.5059 0.7757 0.7300 1.0000 1.0000
BU 19 0.3000 0.3000 0.3000 0.3006 0.3000 0.5841

Table 5.1: Descriptive statistics for the optimal retained share for each business unit
that has an optimal retained share below 1 in at least one of 1000 optimizations.

share. Left out of the table are the 9 business units for which no retrocession occurs in any of the

1000 optimizations. The 9 units left out probably contribute very little to the Tail-Value-at-Risk.

The means presented in table 5.1, together with a retained share xγ = 1 for the business

units left out of the table, represent the average optimal retained share of each business unit.
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Figure 5.2: Histograms of the optimal retained share obtained for each Business
Unit (BU) in 1000 optimizations.
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As with figure 5.1 and table 5.1, figure 5.2 expounds the sampling distribution of the optimal

retained shares. The histograms highlight the uncertainty associated with business units 6, 16

and 17 especially well. Business units 13 and 15 are also somewhat uncertain but for business

units 6, 16 and 17, most of the probability is concentrated to the diametrically opposite retained

shares, 1 and 0.3. It appears there is indeed an issue of adaptation to the portfolio distribution

sample for the business units 6, 16 and 17.

The optimal retained share calculated for 1000 sample sets is presented in figure 5.1, figure

5.2 and table 5.1. The average optimal retained share for each business unit across the 1000

optimizations is taken to construct the optimal portfolio. The performance of this optimal

portfolio is shown in figure 5.4 and figure 5.5.

Figure 5.3 presents the mean result (or indeed the value of the objective function) obtained

in each of 1000 optimizations. It is closely related to figure 5.4.
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Figure 5.3: Histogram of the optimal mean result obtained in 1000 optimizations,
expressed as a percentage of the current mean result after retrocession. The red line
shows the current mean result after retrocession.

Both figure 5.4 and figure 5.3 suggest that a considerable benefit might be obtained by

applying optimal retrocession to a reinsurance portfolio. An 8% improvement of annual expected

returns, as figure 5.4 suggests, would probably seem quite attractive. It is paramount to observe

that the results are dependent on several assumptions. The assumptions will be further discussed

below.

The difference between figure 5.4 and figure 5.3 is attributable to the fact that the latter is

the direct result of the optimization and thus satisfies the risk constraint for every sample used

in the optimization. Figure 5.4 presents the bootstrapped mean result of the portfolio obtained

by applying the average optimal retained share, which does not guarantee that the portfolio

satisfies the risk constraint for a sample drawn from the portfolio distribution. This point is

apparent when considering figure 5.5.
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Figure 5.4: The optimal portfolio is obtained using the average optimal retained
share. The histogram shows the mean result of that portfolio, calculated for each of
10000 sample sets. The red line shows the current mean result after retrocession.

0

100

200

300

−20% −10% 0% 10% 20% 30%
Change in TVaR0.995

N
u

m
b

er
of

R
es

am
p

le
d

S
im

u
la

ti
on

S
et

s

Figure 5.5: The optimal portfolio is obtained using the average optimal retained
share. The histogram shows the TVaR0.995 of that portfolio, calculated for each of
10000 sample sets. The red line shows the current TVaR0.995 after retrocession.
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Figure 5.5 shows that there is some uncertainty associated with the actual risk of the optimal

portfolio. A large portion of the sampled TVaR0.995 lie within ±10% of the target TVaR0.995,

which probably can be considered acceptable. The histogram is centered around the red line

because the red line is TVaR0.995(−PCurrent Portfolio + DCurrent Portfolio), which is the constraint

in the optimization problem.

5.4.2 Premium Principle: Overriding Commission and Profit Commission

The results from optimizing the portfolio when retrocession contracts are assumed to include

a profit commission are largely the same as when no profit commission is included. The profit

commission makes retrocession more profitable and thus the mean result of the optimal portfolio

is slightly better.
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Figure 5.6: Boxplot of the optimal retained share obtained for each business unit in
100 optimizations. The premium principle is assumed to include a profit commission.
The whiskers extend 1.5 times the interquartile range. Outliers are represented by
short lines.

The optimal retained shares for the two different premium principles are very similar as

becomes apparent when comparing figure 5.6 with figure 5.1. There is a tendency to retain less

of the exposure to business unit 6 when including a profit commission but that hardly signifies

much because of the uncertainty related to business units 6, 16 and 17.

The optimal portfolio is constructed in the same way as in the previous section. The perfor-

mance of the optimal portfolio is also evaluated in the same way and is presented in figure 5.7

and figure 5.8.
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Figure 5.7: The optimal portfolio is obtained using the average optimal retained
share. The histogram shows the mean result of that portfolio, calculated for each of
10000 sample sets. The red line shows the current mean result after retrocession.

0

100

200

300

−20% −10% 0% 10% 20%
Change in TVaR0.995

N
u

m
b

er
of

R
es

am
p

le
d

S
im

u
la

ti
on

S
et

s

Figure 5.8: The optimal portfolio is obtained using the average optimal retained
share. The histogram shows the TVaR0.995 of that portfolio, calculated for each of
10000 sample sets. The red line shows the current TVaR0.995 after retrocession.
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5.4.3 Uniqueness of the Optimal Retrocession Decisions

Two approaches to testing uniqueness of the optimal retrocession are suggested in section 4.4.1.

Both approaches have been applied to the optimization problem defined by (5.1) and are con-

sistent with a unique optimal solution. The analysis is not conclusive, however, as the analysis

necessitated a scaling down of the number of samples drawn from the portfolio distribution due

to memory constraints on the computational server.

5.4.4 Discussion of the Assumptions

The results obtained may partly be explained by the assumptions made when formulating the

retrocession situation. The assumptions regarding supply of protection are likely to impact the

results and are also uncertain as they pertain to the market conditions for retrocession. The

objective of retrocession could also deviate from the assumptions in both objective function and

the constraints. This section will focus on the supply of protection to analyze the impact of

external market conditions on the optimization results.

Several assumptions are made regarding the supply of protection. First, non-proportional

retrocession might be available. This would mean more flexibility in retrocession, which, if not

harnessed, could lead to sub-optimal results. Second, it is assumed that proportional retrocession

is available for each business unit. If that is not the case, the above retrocession might not be

feasible, implying that the results above are overstated. Third, proportional retrocession up to

70% is assumed feasible. More or less flexibility might be available but, as the optimization

problem is linear, a small change in this constraint is unlikely to result in a large change in the

objective function. This has been tested for a few bootstrapped samples and seems to hold.

Fourth, it is assumed that there is an overriding commission of 5%.

The overriding commission involves a lot of uncertainty as it may vary from contract to

contract. Furthermore, it is likely to have a large impact on the portfolio result. For this reason,

an additional bootstrapped optimization has been performed with a reverse commission, that

is, a commission going from the cedent to the retrocessionaire.
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Figure 5.9: Boxplot of the mean result in bootstrapped optimizations when the
premium principle includes an overriding commission of 5% and −5% respectively.
The red line shows the current mean result after retrocession. The whiskers extend
1.5 times the interquartile range.

Figure 5.9 shows that there is indeed a considerable difference in result when applying a

commission of −5% instead of 5%. The result still appears to be considerably better than that
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of the current mean result, however. This indicates that the result improvement cannot be

explained by the commission assumption, as the −5% commission arguably is quite extreme.

Gustafsson [9] states that the overriding commission usually is in the range 2.5% - 5%.

5.4.5 Limitations of the Analysis

There are some limitations of the analysis that cannot be resolved by obtaining more information

on company risk preferences or the market supply of protection.

For the optimization above, it is assumed that the model of the one-year portfolio distribution

is a correct representation of the actual losses that the portfolio could suffer. This makes the

analysis very dependent on having a correct model of the portfolio. For example, if some inputs

to the model originate in the business units, then it is paramount that the methodology used to

obtain the inputs is uniform across all business units. Otherwise, the optimal decisions might

reflect differences in the methodology for obtaining model inputs rather than an optimal trade-off

between mean result and risk.

Another limitation of the analysis is that it assumes that risk and expected result are the

only two factors that are affected by retrocession. In reality, the impact on the reinsurance

business might be more complex. In that case, some aspects of the impact are lost by applying

the optimization model.

5.4.6 Beyond Retrocession

The models introduced can be used to experiment with a shift in focus from optimal retrocession

to optimal underwriting. The conditions in the optimization problem defined by (5.1) can be

altered to allow “retention” of more than 100% of the current portfolio. A “retained” share of

more than 100% amounts to expanding the portfolio by exactly replicating the contracts held

in the business unit.

Some tests have been performed, allowing up to 200% of the current portfolio for each

business unit. The tests hint (perhaps unsurprisingly) at optimal underwriting being a more

powerful instrument of result improvement than optimal retrocession. However, the assumption

of portfolio expansion through replication is a big leap of faith.
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6 Conclusions

The purpose of this thesis has been to investigate the possibility of modeling retrocession as

an optimization problem. The conclusion is that proportional retrocession is very apt to be

modeled as an optimization problem. Non-proportional retrocession presents some difficulties

but a practically oriented approach, that may be satisfactory if the number of available non-

proportional contracts is relatively small, has been introduced.

The model for proportional retrocession has been applied to optimization of a large portfolio

of reinsurance contracts. The conclusion from that optimization is that the optimal portfolio

appears reasonably well-determined and reliable. The results further indicate that there may be

a substantial benefit to optimizing a reinsurance portfolio using retrocession.

Finally, the quantile-based approach and the outcome-based approach to measuring risk

have been further developed to allow comparison. The theoretical results highlight that there

are fundamental differences between the two approaches and that the characteristics that differ

may be desirable or undesirable depending on the situation.

6.1 Suggestions for Further Research

It would be of interest to further investigate when underwriting, as opposed to retrocession,

can be used to form an optimal portfolio. Such an investigation might include modeling market

conditions in addition to the portfolio.

The model of non-proportional retrocession presented in this thesis is not nearly as apt for

optimization as the model for proportional retrocession. A more thorough study of discrete

optimization modeling techniques and algorithms could yield a more tractable model of non-

proportional retrocession.

A theoretical extension is also possible. Sufficient conditions for convexity are given for the

risk measures developed but the question of necessary conditions for convexity could also be

investigated.
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Appendix A Comments on the Riskiness Leverage

Kreps [12] presents the riskiness leverage risk measure that depends on the loss size.

Definition 24 (Riskiness Leverage). Consider a stochastic variable X that takes positive values

for negative portfolio results and that has mean µ. The riskiness leverage risk measure is then

defined by

ρ(X) =

∫ ∞
−∞

L(x)(x− µ)f(x)dx, (A.1)

where L(x) is the riskiness leverage, which is a function

L : R→ R
x 7→ L(x)

that weights the deviation, X − µ, depending on the outcome for the entire portfolio.

The riskiness leverage measure defined by (A.1) can be convex or non-convex depending on

the choice of riskiness leverage function L(·). This thesis considers an alteration of (A.1) that

measures the absolute outcome X, or the deviation X −µX , but not both in the same measure.

Rockafellar et al. [17] introduce the concept of a deviation measure. Such a measure is defined

as the risk measure of the deviation variable, X−µX . Defining the loss-size risk measure without

mixing X and X−µX enables the measurement of deviation as suggested in [17]. No clear reason

to mix the two has been encountered.
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Appendix B Further Statistics on Optimal Retained Shares
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Figure B.1: Histograms of the optimal retained share obtained for each Business
Unit (BU) in 100 optimizations, when a profit commission is included in the premium
principle.

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

BU 2 0.3000 1.0000 1.0000 0.9389 1.0000 1.0
BU 3 0.3000 0.3000 0.3000 0.3000 0.3000 0.3
BU 4 0.3000 1.0000 1.0000 0.9848 1.0000 1.0
BU 6 0.3000 0.3000 0.3000 0.4305 0.5186 1.0
BU 7 0.3000 1.0000 1.0000 0.9790 1.0000 1.0
BU 8 0.6898 0.8664 0.9448 0.9206 1.0000 1.0
BU 10 0.3561 0.6105 0.7130 0.7076 0.8174 1.0
BU 16 0.3000 0.5750 0.9260 0.7839 1.0000 1.0
BU 17 0.3000 0.4928 0.7113 0.6925 0.9202 1.0
BU 19 0.3000 0.3000 0.3000 0.3000 0.3000 0.3

Table B.1: Descriptive statistics for the optimal retained share for each business
unit that has an optimal retained share below 1 in at least one of 100 optimizations,
when a profit commission is included in the premium principle.
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