
Institutionen för systemteknik
Department of Electrical Engineering

Examensarbete

A framework for evaluation of iterative learning control

Examensarbete utfört i reglerteknik
vid Tekniska högskolan vid Linköpings universitet

av

Johan Andersson

LiTH-ISY-EX--14/4751--SE

Linköping 2014

Department of Electrical Engineering Linköpings tekniska högskola
Linköpings universitet Linköpings universitet
SE-581 83 Linköping, Sweden 581 83 Linköping

A framework for evaluation of iterative learning control

Examensarbete utfört i reglerteknik
vid Tekniska högskolan vid Linköpings universitet

av

Johan Andersson

LiTH-ISY-EX--14/4751--SE

Handledare: Lic. Patrik Axelsson
isy, Linköpings universitet

Dr. Henrik Tidefelt
Wolfram Mathcore

Examinator: Dr. Mikael Norrlöf
isy, Linköpings universitet

Linköping, 31 mars 2014

Avdelning, Institution
Division, Department

Avdelningen för reglerteknik
Department of Electrical Engineering
SE-581 83 Linköping

Datum
Date

2014-03-31

Språk
Language

� Svenska/Swedish

� Engelska/English

�

�

Rapporttyp
Report category

� Licentiatavhandling

� Examensarbete

� C-uppsats

� D-uppsats

� Övrig rapport

�

�

URL för elektronisk version

http://www.ep.liu.se

ISBN

—

ISRN

LiTH-ISY-EX--14/4751--SE

Serietitel och serienummer
Title of series, numbering

ISSN

—

Titel
Title

Ett ramverk för utvärdering av iterative learning control

A framework for evaluation of iterative learning control

Författare
Author

Johan Andersson

Sammanfattning
Abstract

I många industriella tillämpningar används robotar för tunga och repetetiva uppgifter. För
dessa tillämpningar är iterative learning control (ILC) ett sätt att fånga upp och utnyttja
repeterbarheten för att förbättra någon form av referenseföljning.

I det här examensarbetet har det tagits fram ett ramverk som ska hjälpa en användare att
kunna untyttja ILC. Det visas handgripliga exempel på hur man enkelt kan avända ramver-
ket. Övergången från den betydligt mer vanliga diskreta ILC algoritmen till det kontin-
uerliga tillvägagångssättet som anänds av ramverket underlättas av teroretiskt underbygga
inställningsregler. Den uppnåeliga prestandan demonstreras med hjälp av ramverkets in-
byggda plotfunktioner.

Nyckelord
Keywords framework, iterative learning control, mathematica, systemmodeler

http://www.ep.liu.se

Sammanfattning

I många industriella tillämpningar används robotar för tunga och repetetiva upp-
gifter. För dessa tillämpningar är iterative learning control (ILC) ett sätt att fånga
upp och utnyttja repeterbarheten för att förbättra någon form av referensefölj-
ning.

I det här examensarbetet har det tagits fram ett ramverk som ska hjälpa en an-
vändare att kunna untyttja ILC. Det visas handgripliga exempel på hur man en-
kelt kan avända ramverket. Övergången från den betydligt mer vanliga diskreta
ILC algoritmen till det kontinuerliga tillvägagångssättet som anänds av ramver-
ket underlättas av teroretiskt underbygga inställningsregler. Den uppnåeliga pre-
standan demonstreras med hjälp av ramverkets inbyggda plotfunktioner.

iii

Abstract

In many industrial applications robots are used for heavy and repetitive tasks.
For these applications iterative learning control (ILC) is a way to capture the
repetitive nature and use it to improve some kind of reference tracking.

In this master thesis a framework has been developed to help a user getting
started with ILC. Some hands-on examples are given on how to easily use the
framework. The transition from the far more common discrete time domain to
the continuous time domain used by the framework is eased by tuning theory.
The achievable performance is demonstrated with the help of the built-in plot
functions of the framework.

v

Acknowledgments

First and foremost I would like to thank everyone directly involved in the work.
Dr. Mikael Norrlöf and Lic. Patrik Axelsson for much appreciated comments and
points of view on the thesis. I would like to give an extra big thanks to Dr. Henrik
Tidefelt for always being available for discussing any question from any part of
the whole spectrum of engineering.

I also would like to thank MathCore for the opportunity to write my master thesis
and everyone who works there for the very nice treatment. Wish you the best of
luck in the future.

Last but not least I would like to thank family and friends for making the world
a funnier, better and more interesting place to live in.

Linköping, Mars 2014
Johan Andersson

vii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 1
1.3 Outline . 2

2 Mathematica and SystemModeler 3
2.1 Mathematica . 3
2.2 SystemModeler . 3
2.3 Wolfram SystemModeler Link . 4

3 Industrial robots 5
3.1 Introduction . 5
3.2 Degrees of freedom . 5
3.3 Kinematic model . 6

3.3.1 Forward kinematics . 6
3.3.2 Inverse kinematics . 6

3.4 Dynamic model . 7
3.5 Path planning . 7

3.5.1 Cubic polynomial trajectory 8

4 Iterative learning control 9
4.1 Concept . 9
4.2 ILC algorithm . 9
4.3 Arimoto postulates . 10
4.4 Advantages . 11
4.5 Limitations . 11
4.6 Serial or parallel ILC structure . 11
4.7 Stability . 12

4.7.1 Convergence criteria . 12
4.7.2 Conventional controller . 13

4.8 Different ILC algorithms . 13
4.8.1 Arimoto . 13
4.8.2 Plant inversion . 13

ix

x Contents

5 Framework design 15
5.1 Design goal . 15
5.2 Interface . 15

5.2.1 Options . 16
5.3 Dimensions . 16
5.4 Work flow . 16

5.4.1 Interfaces between different ILC functions 17

6 Framework implementation 19
6.1 Mathematica function . 19
6.2 ILCRun . 20
6.3 Plot functions . 20
6.4 Creating models . 21
6.5 Linearize . 22
6.6 Frequency analysis . 22

7 Results 25
7.1 Basic example . 25

7.1.1 Choosing parameters with ILCTimeAhead 28
7.2 An approximation of an industrial robot example 29
7.3 Non-iteration varying disturbance 34

8 Concluding remarks and future work 39
8.1 Summary . 39
8.2 Future work . 39

A Appendix 43
A.1 Periodogram . 43
A.2 Welch’s method . 43

B Framework functions 45
B.1 Linearize . 45
B.2 ILCRun . 46
B.3 Make . 47
B.4 Robot specific functions . 48
B.5 Create . 48
B.6 Plot . 49
B.7 Frequency plots . 49

Bibliography 51

1
Introduction

This work is made to present a framework for iterative learning control (ILC). To
put it in a realistic context it will be tested on models of industrial robots.

1.1 Background

Industrial robots are a common tool in the industry and are often assigned with
repetitive tasks that should be carried out with high precision. Since robots is a
competitive business there is always the search for advantages between its com-
petitors. This has increased the demand on cheaper and more flexible robots
which in turn increases the demands on modeling and controlling. One way
to achieve high-performance control for repetitive processes is iterative learning
control. Iterative learning control is a control method which uses the information
gained by past iterations to alter the input signal to gain a smaller error between
the reference and output [Bristow et al., 2006].

This concept goes back industrially to 1967 when the first patent was applied
even though the research field did not mature until 1984. That was namely the
year when three different research teams Arimoto et. al, Casalino and Bartolino,
and Craig presented their independent research [Norrlöf, 2000].

1.2 Motivation

Constructing new robots is a complex and very expensive process. Various con-
figurations must be measured against each other. Nowadays extensive modeling
and simulation is thus required. Therefore integrating a framework for evalua-
tion of ILC schemes in the constructing process can be very useful since it will

1

2 1 Introduction

help to find out which design is compatible with an ILC scheme.

Another area of interest would be an existing robot that already has a conven-
tional feedback controller implemented and wishes to improve the performance
by also applying an ILC scheme to the system.

1.3 Outline

First, Chapter 2 will give an introduction to Mathematica and SystemModeler which
are the softwares used. In Chapter 3 industrial robots will be addressed, includ-
ing trajectory planning. Chapter 4 presents the theoretical background for the
ILC algorithms. In Chapter 5 the interface and work flow of the framework will
be motivated whereas in Chapter 6 the actual implementation of the functions
will be presented. Examples and results will be given in Chapter 7. Finally, con-
cluding remarks and future work will be discussed in Chapter 8.

2
Mathematica and SystemModeler

In this chapter a brief explanation of Mathematica and SystemModeler will be
given. These two programs are the main softwares for the ILC framework, Sys-
temModeler for the models and Mathematica for the functions defining the ILC
framework. The connection between these two is SystemModeler Link.

2.1 Mathematica

Mathematica is a tool for advanced mathematic calculations and it started to be
developed by Stephen Wolfram in 1988. At its core it is a symbolic-numerical
solver. This means that if it is possible it tries to find an analytical answer but
when deemed impossible it resorts to numerical methods. Since it has been con-
tinuously developed over the last 25 years it has a lot of potent functions for
calculating as well as presenting data.

Since Mathematica is the tool for the implementation of the ILC framework the
more predefined functions there exists the easier the implementation becomes.
These predefined functions helps in almost all areas from output responses to
plotting.

2.2 SystemModeler

SystemModeler is a tool for modeling and simulation developed by the MathCore.
SystemModeler is based on the modelica language which uses a component based
approach. A component based approach means that by placing components and
then connecting them it will create a number of underlying equations. This
means that in the end when all components are connected there will be a large

3

4 2 Mathematica and SystemModeler

system of equations which then is solved yielding a simulation data object. The
simulation data object contains every signal, state and other information regard-
ing the simulation. An advantage with this components based approach is that
the user does not need to explicitly write down equations which can speed up the
development.

All signals and states saved in the simulation data object can be accessed by the
ILC framework.

2.3 Wolfram SystemModeler Link

Wolfram SystemModeler Link (WSMlink) is the link that makes it possible to con-
nect Mathematica and SystemModeler. It is a package that is called from the Math-
ematica interface that loads functions that can utilize SystemModeler models from
Mathematica. This is what makes it possible to simulate a SystemModeler model
using Mathematica. The data is then saved in Mathematica which enables the ILC
framework to use all the available tools given by Mathematica for computing in-
puts, data processing and plotting. An illustration of the relationship between
Mathematica and SystemModeler can be seen in Figure 2.1. A more thorough pre-
sentation of the work flow will be given in Chapter 5

SystemModeler Mathematica
input

Simulation results

The next iteration ILC input

output

Figure 2.1: The relation between Mathematica and SystemModeler.

3
Industrial robots

The ILC algorithm is not limited to robots but can be used on any repetitive
system. However, industrial robots are often used for manufacturing and other
repetitive high precision tasks. This makes industrial robots a natural field for
ILC research and applications. Therefore some background on industrial robots
will be presented.

3.1 Introduction

Robots have been used for a long time now and have become an integral part of
the modern industrialized society. As time has moved forward the complexity
and usability of them has increased but the fundamentals still remain the same.

3.2 Degrees of freedom

Degrees of freedom is a way of describing which configurations a robot can have.
The configurations regard position and orientation which mean that if a robot
wishes to have an arbitrary position it needs at least three degrees of freedom.
The robot in Figure 3.1 has three degrees of freedom but it still can not reach
an arbitrary position. This comes naturally from the fact that since the robot is
fixed in the plane it can can only reach every position in the plane. However, an
arbitrary position in a plane only requires two degrees of freedom. The robots
last degree of freedom then makes it possible to assume a specified orientation at
the desired position. While having high degrees of freedom is useful for more ad-
vanced maneuvers it will make the robot more susceptible to singularities [Spong
et al., 2006, Chapter 4].

5

6 3 Industrial robots

3.3 Kinematic model

The kinematic model describes the motion of the robot without regarding forces.
Here we make the division with forward and backward kinematics. The forward
kinematics is about computing a so called tool-pose as a function of the joint-
variables q. A tool-pose is the position and orientation for the tool. Backward
kinematics is the opposite i.e. from a given tool-pose determine the joint posi-
tions q. Thus the backward kinematics is the problem to solve when dealing with
path-planning robots.

3.3.1 Forward kinematics

The function from the joint angles to the final position and orientation is called
the forward kinematics. As an example we have an three linked robot manipula-
tor which can be seen in Figure 3.1. The forward kinematics equations for this
robot can be expressed as

(xtool , ytool , θtool) = f (θ1, θ2, θ3) (3.1)

or

xtool = l1 cos(θ1) + l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3) (3.2a)

ytool = l1 sin(θ1) + l2 sin(θ1 + θ2) + l3 sin(θ1 + θ2 + θ3) (3.2b)

θtool = θ1 + θ2 + θ3. (3.2c)

3.3.2 Inverse kinematics

The inverse kinematics planning is very individual for each type of robot. It de-
pends on both its degrees of freedom and physical configuration. It is even more
troublesome because since the inverse kinematics is non-linear there is no ana-
lytic way to solve every type of robot. Some of these configurations are complex
and need advanced algorithms to detect and avoid singularities and correctly
choose the right solution.

There are however structures that leads to easier calculations and to illustrate
this we take a look at a three-linked, two-dimensional robot. It has three degrees
of freedom i.e x-position, y-position and the angle of the last link in that point.
For a robot described by (3.2) it is possible to determine a solution by solving the
following equation.

(θ1, θ2, θ3) = f −1(xtool , ytool , θtool) (3.3)

which has the following solution [Spong et al., 2006, Chapter 1]

θ2 =
arccos(|(xtool , ytool) − l3(cos(θtool), sin(θtool))|2 − l21 − l

2
2)

(2l1l2)

θ1 = arctan
(
ytool − l3 sin(θtool)
xtool − l3 cos(θtool)

)
− arctan

(
l2 sin(θ2)

l1 + l2 cos(θ2)

)
θ3 = θtool − θ1 − θ2.

(3.4)

3.4 Dynamic model 7

θ1

l1

θ2

l2

θ3
l3

xtool , ytool

(a) Elbow down configuration.

θ1
l1

θ2

l2

θ3
l3

xtool , ytool

(b) Elbow up configuration.

Figure 3.1: A three linked robot with its two different configurations. The
figure is based on an example made by Kjell Magne Fauske [Fauske, 2006].

As can be seen this is not a linear solution and it is depending on if the joint
between link one and two points up or down. The difference between the config-
urations can be seen in Figure 3.1.

3.4 Dynamic model

The dynamic model of a system describes how it responds to forces and torques.
There are two different methods to get the dynamical model; Euler-Lagrange and
Newton-Euler. The formulations differ but the result is always a set of identical
non linear differential equations. The first method is the Euler-Lagrange which
derives the equations by taking the difference between the mechanical systems
potential and kinetic energy. The second method is the Newton-Euler which
calculates the forces and torques for each link. The final model is obtained by
connecting the links i.e. substitute torques and forces for one link with the coun-
terparts for the other links [Spong et al., 2006, Chapter 7].

A quick note here is that when using SystemModeler none of these equation needs
to be explicitly calculated since it will be solved automatically due to the nature
of the component based modeling. That is modeling based on equations as de-
scribed in Chapter 2.

3.5 Path planning

There exists many ways to create a path for an industrial robot. This can be very
complex since collisions must be avoided [Spong et al., 2006, Chapter 5]. How-
ever many collision free trajectories can be made by connecting smaller segments.
Therefore point-to-point planning will be presented.

8 3 Industrial robots

3.5.1 Cubic polynomial trajectory

A cubic polynomial trajectory is a smoothed reference that specifies a start and
end position and velocities. These constraints mean that a satisfying polynomial
trajectory needs to have at least four coefficients, i.e.

q(t) = a0 + a1t + a2t
2 + a3t

3 (3.5)

Taking the derivative of (3.5) and using the initial and final values at the time t0
and tf gives the four equations

q(t0) = a0 + a1t0 + a2t
2
0 + a3t

3
0 (3.6a)

v(t0) = a1 + 2a2t0 + 3a3t
2
0 (3.6b)

q(tf) = a0 + a1tf + a2t
2
f + a3t

3
f (3.6c)

v(tf) = a1 + 2a2tf + 3a3t
2
f (3.6d)

which can be presented as
1 t0 t20 t30
0 1 2t0 3t20
1 tf t2f t3f
0 1 2tf 3t2f

︸ ︷︷ ︸
A

a0
a1
a2
a3

︸︷︷︸
x

=

q0
v1
qf
vf

︸︷︷︸
b

. (3.7)

The coefficient matrix has a non-zero determinant (tf − t0)4 for all choices of
tf > t0 and thus the equation is easily solvable as x = A−1b [Spong et al., 2006,
Chapter 1].

4
Iterative learning control

In this chapter the background for iterative learning control will be discussed.

4.1 Concept

“Repetition is the mother of all learning” is a classic quote regarding how we as
human absorb information and learn new things. For example when seasoning
food you taste the food continuously while cooking and planning for the next
meal how you should improve it. This is essential the human cooking version
of an ILC algorithm. Here the taste deviation from the desired taste form the
error. The feedback controller is the chefs perception of how to make the food
taste as wanted. Every time the chef makes the same dish again can be seen as a
new iteration. It is then very natural to think that the chef has learn the optimal
seasoning after a number of iterations. This concept is then transferred to the
world of systems and controllers and expressed with mathematics.

4.2 ILC algorithm

Here the ILC update algorithm will be expressed in both words and mathemati-
cally. We start with a verbal definition.

4.1 Definition (ILC). For an input-output system that do the same task over
many iterations an ILC is an algorithm which uses information from its previous
iterations to provide an input for the next iteration that minimizes some norm of
the error between the actual output and the desired output.

This definition can be interpreted mathematically in many ways. The following

9

10 4 Iterative learning control

is a system with a widely used linear and discrete ILC update algorithm [Bristow
et al., 2006]

ej [k] = r[k] − yj [k] (4.1a)

yj [k] = Gc[q]uj [k] (4.1b)

uj+1[k] = Q[q](uj [k] + L[q]ej [k]) (4.1c)

where (4.1c) is the actual update algorithm. An explanation for the symbols used
can be found in Table 4.1.

q The shift operator.
r[k] The reference at time k.
uj [k] The input at iteration j and time k.
yj [k] The output at iteration j and time k.
ej [k] The error at iteration j and time k.
Gc[q] The closed loop system.
L[q] The learning filter
Q[q] The stabilizing filter.

Table 4.1: The symbols used in the ILC algorithm.

4.3 Arimoto postulates

Now that the ILC update algorithm has been presented the natural question is
when it can be used. Arimoto was one of the earliest pioneers in the ILC research
field and he formulated six postulates to know where an ILC scheme is applicable
[Spong et al., 1992]:

-P1 Every trial (pass, cycle, batch, iteration, repetition) ends in a fixed time of
duration T > 0.

-P2 A desired output r[k] is given a priori over k ∈ [0, T].

-P3 Repetition of the initial setting is satisfied, that is, the initial state xj [0] of
the objective system can be set the same at the beginning of each iteration:
xj [0] = x0, for j = 1, 2, · · · .

-P4 Invariance of the system dynamics is ensured throughout these repeated
iterations.

-P5 Every output yj [k] can be measured and therefore the tracking error signal,
ej [k] = r[k] − yj [k] , can be utilized in the construction of the next input
uj+1[k].

-P6 The system dynamics are invertible, that is, for a given desired output r[k]
with a piecewise continuous derivative, there exists a unique input u∞[k]
that drives the system to produce the output r[k].

4.4 Advantages 11

These postulates are very natural since they make sure each iteration will be com-
parable and has a solution. There is of course no point in using a learning algo-
rithm if there is great variance between each iteration or if no solution exists.

4.4 Advantages

To validate why the ILC algorithm has some merit let us ask ourselves the ques-
tions. Why would anyone implement an ILC algorithm and not just only use a
well tuned PID? What can be gained? Let us examine one of the most impor-
tant impacts gained by the postulates which is that the time interval is fixed and
the signal thus can be saved for each iteration. This implies that we now are
not limited only to causal filtering which is an advantage for the ILC algorithm
compared to a conventional feedback controller.

4.5 Limitations

It is easy to think that any stable system can be saved by iterating enough times.
While this is mostly true if the conventional controller is too bad the ILC algo-
rithm will try to compensate with very large inputs. This can lead to difficulties
when controlling a system if the input has a limit, which is usually the case for
all physical systems.

The use of an ILC scheme comes with some inherent limitations when it comes to
such things as noisy environments where it is mandatory to use a designed ILC
update law which will limit how close the error can get to zero.

4.6 Serial or parallel ILC structure

There are two versions of ILC structures which are categorized depending on
where the update signal shall be applied. The difference is that the parallel ILC
structure applies the update directly on the input signal to the system whereas
the serial ILC structure applies it to the reference [Bristow et al., 2006]. This is
illustrated in the block schedules in Figures 4.1 and 4.2. In these figures the letter
c denotes the added input given from the ILC algorithm.

Controller

c

Systemur e y
−

Figure 4.1: Parallel ILC structure.

12 4 Iterative learning control

c

Controller Systemur e y
−

Figure 4.2: Serial ILC structure.

4.7 Stability

Stability for the ILC algorithm refers to that the iteration process is stable.

4.7.1 Convergence criteria

We begin with a traditional linear description of an ILC system,

ej = r − yj (4.2a)

yj = Gcuj (4.2b)

uj+1 = Q(uj + Lej). (4.2c)

The most straight-forward way of analyzing is to see that the absolute value of
the error decreases for every iteration which is easily done when Q = 1. The error
can be written as

ej+1 = r − Gcuj+1 = r − Gc(uj + Lej)

= ej − GcLej = (1 − GcL)ej
(4.3)

which is stable if Gc and L satisfy

||1 − GcL|| < 1. (4.4)

If Q , 1 there is no explicit way of expressing ej+1 as a transform of ej so we
use that uj+1 = Q(uj + Lej) is a contraction if ||Q(1 − GcL)|| < 1 The reason to
check if the ILC algorithm is a contraction is that it will then be upper bounded
[Kreyszig, 1989, Chapter 5]. To verify this we express the ILC update with two
signals uj+1 = T (uj) = Q(uj + Lej) and vj+1 = T (vj) = Q(vj + Lfj) and takes the
difference between them. If ||T (uj) − T (vj)|| < µ||u − v|| for ||µ|| < 1, µ ∈ R then the
ILC update T is a contraction. The difference can be written as

||T (uj) − T (vj)|| = ||Q(uj + Lej) − Q(vj + Lfj)||
= ||Q(uj − vj + L(ej − fj))||,

(4.5)

substituting (4.2b) into (4.2a) gives

ej = r − Gcuj , fj = r − Gcvj (4.6)

4.8 Different ILC algorithms 13

which substituted into (4.5) gives

||T [uj] − T [vj]|| = ||Q(uj − vj + L(r − Gcuj − r + Gcvj))||
= ||Q(uj − vj − LGc(uj − vj))||
= ||Q(1 − LGc)(uj − vj)||

(4.7)

which since ||Q(1 − LGc)|| = sup
||uj−vj ||,0

||Q(1−LGc)(uj−vj)||
||uj−vj ||

[Glad and Ljung, 2011, Chap-

ter 1] finally gives

||T [uj] − T [vj]|| ≤ ||Q(1 − LGc)||||uj − vj ||. (4.8)

Equation (4.8) shows that T (u) is a contraction if ||µ|| = ||Q(1 − LGc)|| < 1 which
means the ILC algorithm is upper bounded for Q , 1 and thus stable.

4.7.2 Conventional controller

A pure ILC algorithm is essentially an open-loop system that will converge to an
optimal input. However the system will always be susceptible to noise and model
disturbances. If the model disturbance is non-varying between each iteration
the ILC algorithm will be able to compensate due to the anticipatory nature of
the ILC algorithm. However, for non-repeating disturbances and noise, the lack
of feedback can lead to serious performance issues. Therefore a conventional
controller in conjunction with the ILC algorithm is often desirable for guaranteed
stability [Bristow et al., 2006].

4.8 Different ILC algorithms

Specifying Q and L can be done in many ways with different benefits. Here fol-
lows a few ways that can be accessed by the framework developed in this work.

4.8.1 Arimoto

One of the more straight forward ILC designs corresponds in many ways to a
PID-controller for the iteration domain. The most classical version is

uj+1[k] = uj [k] + Kej [k + 1] (4.9)

but it is easily expandable to include the P and I parts [Moore, 1999, Chapter 4].
One of the most interesting things about this basic update algorithm is the fact
that it uses ej [k + 1]. This is a good example of how non-casual filtering can be
used which is one of the main advantages of ILC algorithms.

4.8.2 Plant inversion

In many ways the ILC update algorithm can be interpreted as some form of feed
forward controller. This make it interesting to look at an update algorithm like
plant inversion since a common filter when making feed forward controller are
based on some kind of inverse of the plant. The plant inversion ILC algorithm is

14 4 Iterative learning control

expressed as followed:

uj+1[k] = uj [k] + G−1
c [q]ej [k]. (4.10)

Assuming that Gc is an exact model of the system the ILC algorithm will converge
in one iteration with an error e∞ = 0 [Bristow et al., 2006]. This can be seen by
substituting L = G−1

c into equation (4.3) which yields

ej+1 = (1 − GcL)ej = (1 − GcG−1
c)ej = 0. (4.11)

As always when working with system inversions a more realistic approach is how-
ever to make a pseudo-inversion. How close the error will tend to zero is hence
depending on how good of an approximation G−1

c is.

5
Framework design

In this chapter the structure of the framework will be discussed. The main parts
will be the interface for functions and the work flow. Implementation will be
addressed in Chapter 6.

5.1 Design goal

The framework is designed to make it easy to start and analyze the ILC algorithm
on a system. This is achieved by using intuitive standard values for startup and
options that the more advanced user can utilize. For example the framework
will accept all custom made filters as long as they have correct dimensions. To
make it easier though, the framework contain functionality to quickly generate
filters that work. Being able to use custom filters, references, plots and connected
systems while having a framework that can create easy startups is the essence of
the framework.

5.2 Interface

Lets begin by looking at a function defined by the framework.

ILCErrNormH2[errVec, {startTime, endTime}].

which will output ||e||2. All functions of the framework begins with an ILC. Ev-
erything between the square brackets are the arguments and the braces indicates
that the arguments should be in a list.

The arguments are always easy to find out by typing “?” followed by the function

15

16 5 Framework design

name e.g. ?ILCErrNormH2 will return ILCErrNormH2[errVec, {startTime, end-
Time}].

5.2.1 Options

Many of the functions have optional arguments that will be useful for different
cases. To show this we look at

ILCMakeGainTimeAheadFilter[Gain, TimeAhead]

which will produce the two filters Q and L. The option for this function is ac-
cessible by calling Option[ILCMakeGainTimeAheadFilter] which will return the
available options in a list

{“Q_CutOffFreq” -> Automatic, “LowPassButterOrder” -> 5}.

In this case the options are used to specify Q as a low-pass Butterworth-filter
with a given cutoff frequency. The options always have a default value which are
defined in the function. In this case the “Q_CutOffFreq” -> Automatic means that
Q = 1 regerdless of the “LowPassButterOrder”.

Lets say we desire a Butterworth filter of the fourth order with a cutoff frequency
of 1000 Hz, then the function call will become

ILCMakeGainTimeAheadFilter[Gain, TimeAhead , “Q_CutOffFreq” -> 1000,
“LowPassButterOrder” -> 4].

5.3 Dimensions

One of the most important aspects of the framework is that the dimension of
the connected systems transfer matrix is n × n, i.e there are as many inputs as
outputs. This is because the ILC algorithm used by the framework is essentially
a SISO-algorithm. The framework does however work with square MIMO-filters
thus interactions between different SISO-system can be addressed.

5.4 Work flow

The work flow for the framework is presented in Figure 5.1. The following list
will address each of the boxes in the diagram and give some explanation and
reasoning behind this particular breakdown.

• System and Controller - The system refers to the plant or model of the
plant which must be created in SystemModeler. Likewise the controller must
also be created with SystemModeler. These two will naturally define the
closed loop-system. They are also the only two entities that the framework
will not create.

5.4 Work flow 17

• Connection ILC - Say one has created a model with a good enough con-
troller, then it is time to redraw the connections to create the ILC scheme.
Here it is possible to either draw the connection in SystemModeler or use
the framework function ILCCreateModel. The reason behind create and
not connect is that SystemModeler does the connecting by creating a new
model and not by altering the original one. All functions belonging in this
category can be found in Appendix B.5.

• Designing filter and references - Before the ILC algorithm can run, the
filters and references needs to be specified. All functions belonging in this
category begin with ILCMake to easily distinguish them and they can be
found in Appendix B.3 and B.4.

• System analysis - System analysis includes the calculation of the singular
values of the system. All functions belonging in this category can be found
in Appendix B.1.

• Run the ILC - ILCRun is the actual ILC function since it is the only func-
tion that actually runs the ILC algorithm. The return value is consisting of
all the signals and settings. All functions belonging in this category can be
found in Appendix B.2.

• Plot signals and frequencies - After the algorithm has been run, different
plotting functions exists to make a quick overview. All functions belonging
in this category can be found in Appendix B.6 and B.7.

5.4.1 Interfaces between different ILC functions

Closely related to the work flow is the interface between different functions. How
the different outputs of some functions interacts with the inputs of others. Since
some functions are very limited in what they do compared to others they require
a different level of flexibility. This leads to that it is hard to make a specific rule
about how the inputs and outputs of a general function will be. For example take
the following two functions:

• ILCPlot - these functions are designed to quickly get some plots of the ILC
iterations and in order to do this as simple as possible it takes all the out-
puts from ILCRun and retrieves the ones that are needed.

• ILCFreqAnalysis - on the other hand the functionality for frequency anal-
ysis in Mathematica is very unsupported so these functions are made more
general in order to be useful elsewhere as well.

18 5 Framework design

System Controller

Connecting the ILC scheme

Designing filters and references

Run the ILC algorithm System analysis

Plot signals and frequencies

Figure 5.1: The work flow when using the framework. A description of the
steps is given in Section 5.4 and all the functions with their respectively
inputs and outputs in the framework can be found in Appendix B.

6
Framework implementation

In this chapter the implementation of the ILC functions will be presented and
motivated. First an example will be given in code to show how Mathematica code
looks like. The following examples will be given in pseudo code to save space
and highlight the important part of the functions.

6.1 Mathematica function

Since all functions are written in Mathematica it means that they will follow a
certain structure. To gain some basic understanding lets begin by showing the
implementation of the function ILCMakeGainAheadFilter in Algorithm 1.

Algorithm 1: ILCMakeGainTimeAheadFilter

1 ILCMakeGainTimeAheadFilter[Gain_, TimeAhead_, OptionsPattern[]] :=
Module[{Q, L, s, cutOffFreq, butterOrder},

2 butterOrder = OptionValue[“LowPassButterOrder”];
3 cutOffFreq = OptionValue[“Q_CutOffFreq”];
4 If[cutOffFreq =!= Automatic,
5 Q = ButterworthFilterModel[{butterOrder, cutOffFreq}],
6 Q = TransferFunctionModel[1,s]
7];
8 L = TransferFunctionModel[Gain*Exp[TimeAhead*s], s];
9 {Q,L}]

The function itself is a solution to bridge between the discrete and continuous
domain and is further explained in Section 7.1.1. What follows now are functions

19

20 6 Framework implementation

described by pseudo code to give a grasp of what makes them interesting from
an implementation point of view.

6.2 ILCRun

The most central functionality of the framework is of course the functions which
performs the update-algorithm which in the frameworks case is the ILCRun func-
tion. The pseudo code is described in Algorithm 2.

Algorithm 2: ILCRun
Input: [model, (startTime, endTime), reference, (Q,L)]
Output: All saved simulation data and the calculated results

1 while Convergence criteria not met do
2 Simulate: simData = WSMSimulate[model, startTime, endTime,

WSMInputFunction -> Join[refInputFunction,iLCCorrInputFunction]] /* The
option WSMInputFunction is required to use the given
reference and the update of the ILC-update */

3 Error: error = e = simData[[referenceName]] - simData[[outputName]]
/* extracts the desired signals which is used to get
e = r − y. */

4 Update: OutputResponse[L,e] and OutputResponse[Q,uk + Le]
/* takes the calculated e and uses the given Q- and

L-filter to update the input signal. */
5 Save data - Store signals in vectors for each iteration.

6 return Save data

The output of ILCRun is given as a list with two element where the first one
contains the trajectories from the simulation and the second contains general info
such as simulation time and the number of iterations. The output is from now
on referred to as {trajs, iLCInfo}. {trajs, iLCInfo} is namely the input for all ILCPLot
functions which will recur in Section 6.3 and Chapter 7.

6.3 Plot functions

All plot functions follow the same pattern. They take the output from ILCRun ex-
tract the desired signals and plots accordingly to the chosen plot function. There
is however a difference in what will be shown depending if the ILC structure is
serial or parallel. If the structure is serial the reference, the output and the refer-
ence corrected by the ILC update will be plotted in the same window, whereas if
it is parallel the ILC correction signal will be printed in a different window. The
choice is made with the "OptionValue" - > mode where mode can be either "Serial"
or "Parallel". The pseudo code can be seen in Algorithm 3.

6.4 Creating models 21

Algorithm 3: ILCPlotAll, ILCPlotCompact, ILCPlotAnimate
Input: [trajs, iLCInfo]
Output: Signal and norm plots

1 if mode == Serial then
2 ILCPlotSerial - /* Plotting the reference, output and the ILC

corrected reference in one plot */

3 else
4 ILCPlotParallel - /* Plotting the reference and output in one

plot and the ILC corrected input in a second plot.

*/
5 Extract all the signals from trajs
6 Extract number of iterations and the simulation time from iLCInfo
7 Compute the norms
8 Compute the plots and place them in a grid
9 return Plot

6.4 Creating models

Creating models in Mathematica is possible in two ways. Either by WSMConnect-
Components or by WSMLink‘Library‘EvaluateModelicaInput. It would be ideal to
use WSMConnectComponents in the framework but since it at the moment do not
support systems with vectors as inputs it is unfortunately not viable. Therefore
ILCCreateModel uses WSMLink‘Library‘EvaluateModelicaInput which evaluates a
string of text. To generate a model this way the first step was to create a base
model in SystemModeler and copy the text input into Mathematica. Then the func-
tion ILCCreateModel replaces all instances of the systems and controllers name
in the text string to create a new model. The pseudo code is given in Algorithm 4.

Algorithm 4: ILCCreateModel
Input: [System, Controller, Dimension]
Output: Connected system

1 if Mode == Serial then
2 ILCCreateSerial

3 else
4 ILCCreateParallel

/* Depending on Mode ILCCreate chooses which of two
different strings of text it should use. */

5 Replace all instances of the base models System, Controller and Dimension with
the inputs.

6 Call WSMLink‘Library‘EvaluateModelicaInput[string] with the replaced
string.

7 return Model

22 6 Framework implementation

6.5 Linearize

Linearize is based on WSMLinearze which is a Mathematica function for lineariz-
ing a SystemModeler model. When linearizing around zero it works fine to use it
in its original execution. However when linearizing around non-zero inputs and
states it will need explicit setting of each input and state. Since this, in many
cases, is not feasible for large systems ILCLinearize attempts to simplify this pro-
cess. ILCLinearize will for a given input simulate the system for a given amount
of time, then it will extract all states and inputs via WSMModelData and use that
as an input for WSMSimulate. An important note here is that it is up to the user
to make sure that the system becomes stationary in the given time frame. The
pseudo code is given in Algorithm 5.

Algorithm 5: ILCLinearize
Input: [model, inputs, outputs, inputvalues, {starttime, endtime}]
Output: Linearized model

1 Simulating with the input values until the system becomes stationary
2 Extract the simData object
3 WSMLinearize with the extracted inputs and states
4 return Linearized model

6.6 Frequency analysis

There are three implemented functions for frequency analysis in the framework.
The most straightforward is the ILCFreqAnalysisFourier shown in Algorithm 6.
ILCFreqAnalysisFourier takes the discrete time fourier transform of a signal and
plots the periodogram as in Appendix A.1.

Algorithm 6: ILCFreqAnalysisFourier
Input: [signal, tSample , timeRange]
Output: A periodogram plot

1 Sampling the continuous function signal
2 Compute the discrete fourier transform with the Mathematica function Fourier
3 Plot the squared absolute value of the transform
4 return Plot

The ILCFreqAnalysisWelch is based on Welch’s method of averaging periodograms
by dividing a signal into smaller segments that may overlap as is shown in Ap-
pendix A.2. Then the periodogram is calculated for each segment and averaged.
This is shown step by step in Algorithm 7.

6.6 Frequency analysis 23

Algorithm 7: ILCFreqAnalysisWelch
Input: [signal, tSample, timeRange, window, tWind, numberOfSegments, overlap]
Output: A periodogram plot

1 Divide the signal into smaller segments
2 Sample the segments of continuous function signal
3 Sample the window function
4 Compute the discrete fourier transform with the Mathematica function Fourier

for each segment
5 Compute the squared absolute value of the transform for each segment
6 Average every periodogram into one and plot it
7 return Plot

7
Results

Here we shall present some results from examples that focus on highlighting the
functionality and performance of the framework.

7.1 Basic example

Lets show how one can use the framework with a basic example. We have already
in SystemModeler created a model of a motor with an arm and a flexible joint
shown in Figure 7.1. A PID controller has been created as well and can be seen
in Figure 7.2.

Figure 7.1: A model of a motor and an arm with a flexible joint.

25

26 7 Results

Figure 7.2: One dimensional PID-controller.

The first step is to create the connections since the ILC scheme needs an extra in-
put for the update signal. To do this we call ILCCreateModel[“OneAxisSer”, “syste-
mOneAxis”, “controllerOneAxis”, 1] which will create the serial model “OneAxisSer”
by using the system “systemOneAxis” and the controller “controllerOneAxis” and
the fact that the dimension of the system is 1. The result is shown in Figure 7.3.

Figure 7.3: The serial connected system.

Now that we have a system we need a trajectory and filter for the ILC update
algorithm. The following code exemplifies how to create a filter and reference
and also how to run the ILC algorithm.

startTime = 0; endTime = 2; iterations = 10;
gain = 1; timeAhead = 0.12;
startPos = 0; endPos = 1; startVel = 0; endVel = 0; startAcc = 0; endAcc = 0; filter =
ILCMakeGainTimeAheadDesign[gain, timeAhead];
quintRef = ILCMakeQuinticRef[{startPos,endPos}, {startVel, endVel}, {startAcc,endAcc},
{startTime, endTime - 0.5}];
{trajs, iLCInfo} = ILCRun[“OneAxisSer”, {startTime, endTime}, quintRef, filter, "Con-
vergenceTest” -> ILCFixedIter[iterations]];

Now we call ILCPlotAll[trajs, iLCInfo] which makes one plot for each iteration and
a list plot for the L∞-norm and L2-norm.

The plot of first iteration is shown in Figure 7.4a and shows the output, reference
and the reference corrected by the ILC update algorithm. However, at the very
first iteration the ILC algorithm has not yet given any impact and thus it is zero.

7.1 Basic example 27

output

reftrajcorr

reftraj

0.5 1.0 1.5 2.0
t@sD

0.2

0.4

0.6

0.8

1.0

rad

(a) The first iteration is without any influence of
the ILC algorithm.

output

reftrajcorr

reftraj

0.5 1.0 1.5 2.0
t@sD

0.2

0.4

0.6

0.8

1.0

rad

(b) The same system after 10 iterations of the
ILC algorithm.

2 4 6 8 10
Iter

0.01

0.02

0.03

0.04

»»e»»2

L2-Norm

(c) The L2-norm of the error for each iter-
ation.

2 4 6 8 10
Iter

0.01

0.02

0.03

0.04

0.05

»»e»»¶

MaxNorm

(d) The L∞-norm of the error for each it-
eration.

Figure 7.4: The figure shows the tracking for the one dimensional rotating
mass.

28 7 Results

However the impact can be clearly seen by the last iteration in Figure 7.4b. The
delay and overshoot seen in the first iteration is completely gone and it is very
hard to distinguish the output from the reference which indicates “perfect track-
ing”. The L2- and L∞-norm are saved for each iteration and shown in separate
list plots. The L2-norm and the L∞-norm are shown in Figures 7.4c and 7.4d.

7.1.1 Choosing parameters with ILCTimeAhead

The results in this chapter is shown when using the ILCTimeAhead function with
some parameters. Therefore some motivation for the choice of its parameters will
be given. For ILCTimeAhead the ILC update is defined as

uk+1(t) = uk(t) + Kek(t + τ) (7.1)

and can be viewed in two different ways. The first is to see it as an approximation
of (4.9) with a very small τ which would correspond to a next sample. The second
is to see it as a rough approximation of the inverse to a system G(s) i.e.

Keτs ≈ G−1(s). (7.2)

This basically approximates the system with a gain and an inverse time delay.
This makes sense intuitive since ILC algorithms can be seen as some kind of a
feed forward filter. ILCTimeAhead:s ability to minimize the norm of the error
is closely connected to the accuracy of the plant inversion as can be related to
Section 4.8.2. In Figure 7.5 a step response of the system in Figure 7.3 is shown.

output

reftrajcorr

reftraj

0.5 1.0 1.5 2.0
t@sD

0.2

0.4

0.6

0.8

1.0

1.2

1.4

rad

Figure 7.5: A step response for the motor and arm example.

From the step response it is possible to see that the rise time is somewhere be-
tween 1.1 and 1.4 seconds. This would indicate that the time ahead filter would
have τ ≈ 1.1 − 1.4. Since the static gain of the system is |G(0)| = 1 the inverse of
the static gain will be K = 1

|G(0)| = 1/1 = 1. For K = 1, different τ :s was tested
by iterating the system 30 times and saving the error norm of the last iteration.
The result is shown in Figure 7.6. Here it is possible to distinguish that the per-
formance with respect to minimizing the error is best when τ = 0.12.

7.2 An approximation of an industrial robot example 29

0.05 0.10 0.15 0.20
t

0.001

0.002

0.003

0.004

0.005

»»e»»2

Figure 7.6: For different τ :s the error norm after 30 iterations.

7.2 An approximation of an industrial robot example

In this section we will focus on a two-dimensional approximation of a three-
dimensional robot similar to the ABB IRB 7600 [Wernholt and Östring, 2003].
The approximation is made by restricting the robots movement to the vertical
plane and has been made due to computational complexity.

The robot has been given a trajectory with ILCMakeRefFromSurface to make the
tool follow in a straight line along the y-axis while being fixed in x-axis. The tool
orientation should be fixed to illustrate that the tool follows a vertical surface.
For illustration, the trajectory from start to end position of the robot is shown in
Figure 7.7.

The robot is controlled with a PID controller without great success. The result
for each axis when following the reference can be seen in Figures 7.8a, 7.9a
and 7.10a. In an attempt to minimize the error between the reference and the
output a SISO-filter was prepared for each of the axis as ILCTimeAhead[1, 0.15]
for axis 1, ILCTimeAhead[1, 0.25] for axis 2 and ILCTimeAhead[1, 0.15] for axis
3. The ILC algorithm was then applied for ten iterations with the result shown in
Figures 7.8b, 7.9b and 7.10b. As can be seen the tracking is more accurate after
ten iterations of the ILC algorithm. This is also reflected in the norm plots in
Figures 7.8c, 7.8d, 7.9c, 7.9d, 7.10c and 7.10d.

Another interesting thing to notice is the simulation time. The time to build
the model is roughly 60 seconds and the simulation takes roughly 11 seconds.
What makes this separation interesting is that the model does not need to rebuild
unless a parameter is changed or another alteration is done to the SystemModeler
model. This makes it possible to make 5 iterations of ILC faster than it takes to
change one parameter in the controller and rebuild it.

30 7 Results

(a) The starting position
for the robot.

(b)

(c) (d) (e) The end position for
the robot.

Figure 7.7: Here is a visualization of the two-dimensional approximation of
the ABB IRB 7600. The robot goes with the tool in a straight line from the
start to the end position. The pictures are taken as snapshots from ILCAni-
mation.

7.2 An approximation of an industrial robot example 31

output

reftrajcorr

reftraj

0.5 1.0 1.5 2.0
t@sD

0.9

1.0

1.1

1.2

rad

(a) Axis 1 without the ILC update.

output

reftrajcorr

reftraj

0.5 1.0 1.5 2.0
t@sD

0.9

1.0

1.1

1.2

rad

(b) Axis 1 after 10 iterations.

2 4 6 8 10
Iter

0.01

0.02

0.03

0.04

0.05

0.06

»»e»»2

L2-Norm

(c) The L2-norm of the error for each iter-
ation.

2 4 6 8 10
Iter

0.02

0.03

0.04

0.05

0.06

»»e»»¶

MaxNorm

(d) The L∞-norm of the error for each it-
eration.

Figure 7.8: The figure shows the tracking for axis 1 without any disturbances
present.

32 7 Results

output

reftrajcorr

reftraj

0.5 1.0 1.5 2.0
t@sD

-2.0

-1.5

-1.0

rad

(a) Axis 2 without the ILC update.

output

reftrajcorr

reftraj

0.5 1.0 1.5 2.0
t@sD

-2.0

-1.5

-1.0

-0.5

rad

(b) Axis 2 after 10 iterations.

2 4 6 8 10
Iter

0.05

0.10

0.15

»»e»»2

L2-Norm

(c) The L2-norm of the error for each iter-
ation.

2 4 6 8 10
Iter

0.04

0.06

0.08

0.10

0.12

0.14

0.16

»»e»»¶

MaxNorm

(d) The L∞-norm of the error for each it-
eration.

Figure 7.9: The figure shows the tracking for axis 2 without any distur-
bances.

7.2 An approximation of an industrial robot example 33

output

reftrajcorr

reftraj

0.5 1.0 1.5 2.0
t@sD

-0.5

0.5

1.0

1.5

rad

(a) Axis 3 without the ILC update.

output

reftrajcorr

reftraj

0.5 1.0 1.5 2.0
t@sD

-2.0

-1.5

-1.0

-0.5

rad

(b) Axis 3 after 10 iterations.

2 4 6 8 10
Iter

0.02

0.03

0.04

0.05

0.06

»»e»»2

L2-Norm

(c) The L2-norm of the error for each iter-
ation.

2 4 6 8 10
Iter

0.04

0.06

0.08

0.10

»»e»»¶

MaxNorm

(d) The L∞-norm of the error for each it-
eration.

Figure 7.10: The figure shows the tracking for axis 3 without any distur-
bances.

34 7 Results

7.3 Non-iteration varying disturbance

In Section 4.7.2 we claimed that the ILC algorithm is very adept at handling non-
iteration varying disturbances. To show this we will once again use the same
approximation of the ABB IRB 7600. The difference is now that we also apply
gravity as a non-iteration varying disturbance. The result can be seen in Fig-
ures 7.11, 7.12 and 7.13. As especially can be seen in Figure 7.11 the difference
between the system before and after the ILC algorithm is substantial. The track-
ing before the ILC algorithm is very poor but since the disturbance has the same
dynamics each iteration the ILC algorithm can handle it well. After ten iterations
the tracking is roughly the same as after ten iterations without any disturbance.
This shows the strength of the ILC algorithm when dealing with non-iteration
varying disturbances.

7.3 Non-iteration varying disturbance 35

output

reftrajcorr

reftraj

0.5 1.0 1.5 2.0
t@sD

0.7

0.8

0.9

1.0

1.1

1.2

rad

(a) Axis 1 without the ILC update.

output

reftrajcorr

reftraj

0.5 1.0 1.5 2.0
t@sD

0.9

1.0

1.1

1.2

1.3

1.4

1.5

rad

(b) Axis 1 after 10 iterations.

2 4 6 8 10
Iter

0.1

0.2

0.3

0.4

0.5

»»e»»2

L2-Norm

(c) The L2-norm of the error for each iter-
ation.

2 4 6 8 10
Iter

0.1

0.2

0.3

0.4

0.5

»»e»»¶

MaxNorm

(d) The L∞-norm of the error for each it-
eration.

Figure 7.11: The figure shows the tracking for axis 1 with disturbances
present.

36 7 Results

output

reftrajcorr

reftraj

0.5 1.0 1.5 2.0
t@sD

-2.0

-1.5

-1.0

rad

(a) Axis 2 without the ILC update.

output

reftrajcorr

reftraj

0.5 1.0 1.5 2.0
t@sD

-2.0

-1.5

-1.0

-0.5

rad

(b) Axis 2 after 10 iterations.

2 4 6 8 10
Iter

0.1

0.2

0.3

0.4

0.5

»»e»»2

L2-Norm

(c) The L2-norm of the error for each iter-
ation.

2 4 6 8 10
Iter

0.1

0.2

0.3

0.4

0.5

»»e»»¶

MaxNorm

(d) The L∞-norm of the error for each it-
eration.

Figure 7.12: The figure shows the tracking for axis 2 with disturbances
present.

7.3 Non-iteration varying disturbance 37

output

reftrajcorr

reftraj

0.5 1.0 1.5 2.0
t@sD

-0.5

0.5

1.0

1.5

rad

(a) Axis 3 without the ILC update.

output

reftrajcorr

reftraj

0.5 1.0 1.5 2.0
t@sD

-0.5

0.5

1.0

1.5

rad

(b) Axis 3 after 10 iterations.

2 4 6 8 10
Iter

0.1

0.2

0.3

0.4

0.5

»»e»»2

L2-Norm

(c) The L2-norm of the error for each iter-
ation.

2 4 6 8 10
Iter

0.1

0.2

0.3

0.4

0.5

»»e»»¶

MaxNorm

(d) The L∞-norm of the error for each it-
eration.

Figure 7.13: The figure shows the tracking for axis 3 with disturbances
present..

8
Concluding remarks and future work

8.1 Summary

First and foremost it is interesting to see that it is plausible to make a framework
using Mathematica and SystemModeler. This is because it was not entirely certain
that it would work. There were mainly two reasons for this. Firstly, because it has
not been made before and that the link between Mathematica and SystemModeler
is still very much under development. Secondly, because that the ILC theory is
in the discrete time domain versus the continuous time domain of Mathematica
and SystemModeler. However, as can be seen in Chapter 7 it worked out well with
respect to the performance.

To truly judge the interface is harder since it requires external testing. Further-
more to complicate things it is also very dependent on the where the framework
would be used and the background of the users.

8.2 Future work

Since it is a framework it can of course always get bigger and better with more
functionality. However there are some limitations built into the framework since
it was a lot of learning by doing during the creation process. To work around
these limitations would probably need some major rework. One of those things
is the full support for MIMO-systems. Adaptive learning filters that updates
between each iteration is also something that would be very interesting to imple-
ment. Another interesting thing would be to further investigate the difference be-
tween the discrete time and continuous time to see if the continuous time nature
of Mathematica can contribute with something new, either theoretical or practical

39

40 8 Concluding remarks and future work

implementation.

Then there are some wishes for the future development of Mathematica and Sys-
temModeler since much of the frameworks capability is based on how those two
can interact. The biggest upgrade would be to incorporate vector valued systems
without resorting to the text mode in SystemModeler. It would be much appre-
ciated since it would make connecting and creating models much more flexible.
Smaller improvements would be a clearer singular value plot function in Mathe-
matica and making sure that the output response function in Mathematica does
not give any small imaginary parts which would disregard the need for chopping
the signal manually.

Appendix

A
Appendix

A.1 Periodogram

The most straightforward method suited for the framework is the use of the dis-
crete Fourier transform as defined in Mathematica [mat]

f̂ (m) =
1
√
N

N∑
k=1

f (k)e2π(k−1)(m−1)/N . (A.1)

Since we are interested in how each frequency affects the energy of the signal
energy we take ||f̂ (m)||2 to plot the power spectrum [Ljung and Glad, 2009].

A.2 Welch’s method

Welch’s method is a way of averaging periodograms to increase visibility. By di-
viding the original signal into smaller overlapping segments, then discretize and
transform them individually. This is made by choosing how many segments and
how big the overlap should be. Then the resulting length and position for the
segments can be calculated as

L = nk − (n − 1)kp⇐⇒ k =
L

n − (n − 1)p
(A.2)

where L is the total length of the signal, n is the number of segments, p ∈ [0, 1] is
the overlap and k is the length of a single segment [Gustafsson et al., 2010].

43

B
Framework functions

This appendix contains the inputs and outputs for all the functions included in
the ILC framework.

B.1 Linearize

This section contains the functions ILCCheckConvergence, ILCHInfinitySys-
temNorm and ILCLinearize.

Algorithm 8: ILCCheckConvergence
Input: [Linear model, {Q,L}]
Output: Singular value plots.

Algorithm 9: ILCHInfinitySystemNorm
Input: [Linear model]
Output: H∞-norm.

Algorithm 10: ILCLinearize
Input: [model, inputs, outputs, inputvalues, {starttime, endtime}]
Output: A linearized model.

45

46 B Framework functions

B.2 ILCRun

This section contains the functions ILCRun, ILCFixedIter, ILCNormConvMax-
Iter, ILCPureOutputResponse, ILCPureFunctionAdd, ILCErrNormH2, ILCEr-
rNormMax and ILCSampledNoise.

Algorithm 11: ILCRun
Input: [model, {starttime, endtime}, refpolynom, {Q, L}]
Output: All the trajectories and information saved about the simulation.

Algorithm 12: ILCFixedIter
Input: [number of iterations]
Output: A function that is an option to ILCRun which make it run a fixed

number of iterations.

Algorithm 13: ILCNormConvMaxIter
Input: [minIter, normcriteria, max]
Output: A function that is an option to ILCRun to make it run until a

convergence criteria is met. minIter gives the number of iterations that
must run until convergence can be met and maxIter is the maximum
allowed iterations.

Algorithm 14: ILCPureOutputResponse
Input: [system, input, {startTime, endTime}]
Output: An output response.

Algorithm 15: ILCPureFunctionAdd
Input: [function1, function2]
Output: A function which is the sum of the function1 and function2.

Algorithm 16: ILCErrNormH2
Input: [errVec, {startTime, endTime}]
Output: The H2-norm of the error.

Algorithm 17: ILCErrNormMax
Input: [errVec]
Output: The H∞-norm of the error.

B.3 Make 47

Algorithm 18: ILCSampledNoise
Input: [Distribution, Ts]
Output: A first order interpolating function representing a continuous

approximation of sampled noise.

B.3 Make

This section contains the functions ILCMakeGainTimeAheadFilter, ILCMakeIn-
versionFilter, ILCMakeQLMatrix, ILCMakeCubicRef, ILCMakeQuinticRef and
ILCMakeCyclicRef.

Algorithm 19: ILCMakeGainTimeAheadFilter
Input: [Gain, TimeAhead]
Output: {Q,L}

Algorithm 20: ILCMakeInversionFilter
Input: [system, lambda-parameter for choosing cutoff frequency]
Output: {Q, L}

Algorithm 21: ILCMakeQLMatrix
Input: [A list of {Q,L} pairs: {{Q,L}...}]
Output: Two n × n transfer functions that has Q-list and L-list respectively in

the diagonal.

Algorithm 22: ILCMakeCubicRef
Input: [{rStart, rEnd}, {vStart, vEnd}, {tStart, tEnd}]
Output: Reference signal as a cubic polynomial.

Algorithm 23: ILCMakeQuinticRef
Input: [{rStart, rEnd}, {vStart, vEnd}, {aStart, aEnd}, {tStart, tEnd}]
Output: Reference signal as a quintic polynomial.

Algorithm 24: ILCMakeCyclicRef
Input: [polyForward, polyBackward, cycles, {startTime, endTime}]
Output: Reference signal which repeats itself for a given number of cycles.

48 B Framework functions

B.4 Robot specific functions

This section contains the functions ILCForKine, ILCInvKine, ILCCreateRefFrom-
Surface and ILCAnimation.

Algorithm 25: ILCForKine
Input: [{Llink1, Llink2, Llink2][{θ1, θ2, θ3}]
Output: {xT ool , yT ool , θT ool}

Algorithm 26: ILCInvKine
Input: [{Llink1, Llink2, Llink2][{xT ool , yT ool , θT ool}]
Output: {θ1, θ2, θ3}

Algorithm 27: ILCMakeRefFromSurface
Input: [{xref(t), yref(t), θref(t)}, {Llink1, Llink2, Llink2}, {startTime, endTime}]
Output: {θ1(t), θ2(t), θ3(t)}

B.5 Create

This section contains the function ILCCreateModel.

Algorithm 28: ILCCreateModel
Input: [modelName, system, controller, dimension]
Output: Model with the ILC signal added as an input.

B.6 Plot 49

B.6 Plot

This section contains the functions ILCPlotAll, ILCPlotCompact and ILCPlotAn-
imate.

Algorithm 29: ILCPlotAll
Input: [trajectories, simulationInfo]
Output: Plots the references, outputs for every iteration and the H2- and

H∞-norm of the error.

Algorithm 30: ILCPlotCompact
Input: [trajectories, simulationInfo]
Output: Plots the reference and output for the last iteration and the H2- and

H∞-norm of the error. Also plots the the error for every iteration in one
plot.

Algorithm 31: ILCPlotAnimate
Input: [trajectories, simulationInfo]
Output: Plots the references and outputs in one animating plot to be able to

view them over the iterations. Also plots the H2- and H∞-norm of the
error.

B.7 Frequency plots

This section contains the functions ILCFreqAnalysisFourier, ILCFreqAnalysisWin-
dow and ILCFreqAnalysisWelch.

Algorithm 32: ILCFreqAnalysisFourier
Input: [signal, tSample, timeRange]
Output: A plot of the signals periodogram.

Algorithm 33: ILCFreqAnalysisWindow
Input: [signal, tSample, timeRange, window, tWind]
Output: A plot of the signals periodogram where the signal first has been

multiplied with a window function.

50 B Framework functions

Algorithm 34: ILCFreqAnalysisWelch
Input: [signal, tSample, timeRange, window, tWind, numberOfSegments, overlap]
Output: A plot of the signals periodogram where the signal first has been

treated with Welch’s method.

Bibliography

Wolfram Mathematica 9 documentation center - Fourier. URL http://
reference.wolfram.com/mathematica/ref/Fourier.html. Cited on
page 43.

Douglas A. Bristow, Marina Tharayil, and Andrew G. Alleyne. A survey of iter-
ative learning control. IEEE Control systems magazine, 26(3):96 – 114, 2006.
Cited on pages 1, 10, 11, 13, and 14.

Kjell Magne Fauske. Example: Annotated manipulator, 2006. URL http://
www.texample.net/tikz/examples/three-link-annotated/. Cited
on page 7.

Torkel Glad and Lennart Ljung. Reglerteori. Studentlitteratur, Lund, Sweden,
second edition, 2011. Cited on page 13.

Fredrik Gustafsson, Lennart Ljung, and Mille Milner. Signal Processing. Stu-
dentlitteratur, first edition, 2010. Cited on page 43.

Erwin Kreyszig. Introductory Functional Analysis with Applications. John Wiley
and Sons Inc., 1989. Cited on page 12.

Lennart Ljung and Torkel Glad. Modellbygge och simulering. Studentlitteratur,
Lund, Sweden, second edition, 2009. Cited on page 43.

Kevin L. Moore. Iterative Learning Control: An Expository Overview. Springer,
first edition, 1999. Cited on page 13.

Mikael Norrlöf. Iterative learning control: Analysis Design and Experiments.
PhD thesis, Linköping Studies in Science and Technology. Dissertations No.
653, Linköping University Sweden, 2000. Cited on page 1.

M. W. Spong, F. L. Lewis, and C. T. Abdallah, editors. Robot Control: Dynamics,
Motion Planning and Analysis. IEEE Control Systems Society, IEEE Press, 1992.
Cited on page 10.

Mark W. Spong, Seth Hutchinson, and Mathukumalli Vidyasagar. Robot Modelin
and Control. John Wiley and Sons Inc., 2006. Cited on pages 5, 6, 7, and 8.

51

http://reference.wolfram.com/mathematica/ref/Fourier.html
http://reference.wolfram.com/mathematica/ref/Fourier.html
http://www.texample.net/tikz/examples/three-link-annotated/
http://www.texample.net/tikz/examples/three-link-annotated/

52 Bibliography

Erik Wernholt and Måns Östring. Modeling and control of a bending backwards
industrial robot. Technical Report LiTH-ISY-R-2522, 2003. Linköping Univer-
sity, Sweden. Cited on page 29.

Upphovsrätt

Detta dokument hålls tillgängligt på Internet — eller dess framtida ersättare —
under 25 år från publiceringsdatum under förutsättning att inga extraordinära
omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för icke-
kommersiell forskning och för undervisning. Överföring av upphovsrätten vid
en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ
art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman
i den omfattning som god sed kräver vid användning av dokumentet på ovan
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan
form eller i sådant sammanhang som är kränkande för upphovsmannens litterära
eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se förla-
gets hemsida http://www.ep.liu.se/

Copyright

The publishers will keep this document online on the Internet — or its possi-
ble replacement — for a period of 25 years from the date of publication barring
exceptional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for his/her own use and
to use it unchanged for any non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional on the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be men-
tioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity, please
refer to its www home page: http://www.ep.liu.se/

© Johan Andersson

http://www.ep.liu.se/
http://www.ep.liu.se/

	Front Page
	Title Page
	Library Page
	Sammanfattning
	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Outline

	2 Mathematica and SystemModeler
	2.1 Mathematica
	2.2 SystemModeler
	2.3 Wolfram SystemModeler Link

	3 Industrial robots
	3.1 Introduction
	3.2 Degrees of freedom
	3.3 Kinematic model
	3.3.1 Forward kinematics
	3.3.2 Inverse kinematics

	3.4 Dynamic model
	3.5 Path planning
	3.5.1 Cubic polynomial trajectory

	4 Iterative learning control
	4.1 Concept
	4.2 ILC algorithm
	4.3 Arimoto postulates
	4.4 Advantages
	4.5 Limitations
	4.6 Serial or parallel ILC structure
	4.7 Stability
	4.7.1 Convergence criteria
	4.7.2 Conventional controller

	4.8 Different ILC algorithms
	4.8.1 Arimoto
	4.8.2 Plant inversion

	5 Framework design
	5.1 Design goal
	5.2 Interface
	5.2.1 Options

	5.3 Dimensions
	5.4 Work flow
	5.4.1 Interfaces between different ILC functions

	6 Framework implementation
	6.1 Mathematica function
	6.2 ILCRun
	6.3 Plot functions
	6.4 Creating models
	6.5 Linearize
	6.6 Frequency analysis

	7 Results
	7.1 Basic example
	7.1.1 Choosing parameters with ILCTimeAhead

	7.2 An approximation of an industrial robot example
	7.3 Non-iteration varying disturbance

	8 Concluding remarks and future work
	8.1 Summary
	8.2 Future work

	A Appendix
	A.1 Periodogram
	A.2 Welch's method

	B Framework functions
	B.1 Linearize
	B.2 ILCRun
	B.3 Make
	B.4 Robot specific functions
	B.5 Create
	B.6 Plot
	B.7 Frequency plots

	Bibliography
	Copyright

