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Abstract

In this master’s thesis project the remembered set im-
plementation in Java HotSpot’s implementation of G1 is
evaluated. It is verified by benchmarking that using Bloom
filters can reduce region scanning times when used as an in-
termediate data structure between card-precision bitmaps
and region coarsening. It is shown that iterating the Bloom
filter is made faster by combining binary trees with the
Bloom filters. It is also verified that using a more nar-
row integer type, with an added bitmap to keep track of
null entries, will decrease the memory footprint caused by
remembered sets. Both modifications to the current im-
plementation cause application throughput regressions in
SPECjbb2013.



Referat
Utvärdering och förbättringar av

remembered sets i Javamaskinen HotSpots
skräpsamlare G1

I det här examensarbetet undersöks implementationen av
remembered sets i HotSpots implementation av skräpsam-
lingsalgoritmen G1. Det bekräftas genom prestandamät-
ningar att användandet av Bloomfilter kan minska tidsåt-
gången för regionsavsökning. Detta när Bloomfiltret an-
vänds som en mellanliggande datastruktur mellan bitmap-
par på kortnivå och bitmappar på regionsnivå. Det be-
kräftas också genom prestandamätningar att iterering över
Bloomfilter kan snabbas upp genom att kombinera filtret
med ett binärt sökträd.

Vidare visas det att användandet av en heltalstyp med
mindre räckvidd, tillsammans med införandet av en bit-
mapp för att registrera nullvärden, kan minska minnesan-
vändningen som remembered sets medför. I den standar-
diserade prestandamätningen SPECjbb2013 medför båda
förändringarna dock prestandaförsämringar.
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Chapter 1

Background

1.1 Java

Java is a statically typed object oriented programming language which is executed
by a runtime called the Java Virtual Machine (JVM). Many such JVM implemen-
tations exist, one of which is HotSpot from Oracle [16]. Java code is compiled into
byte code which is executed by the JVM. Because of this, Java code can be compiled
once, and executed everywhere a JVM can run.

Portability and ease of development are two commonly argued advantages of
Java. The portability comes from the fact that the JVM provides a consistent in-
terface to the application programmer, by executing abstract bytecode. The argued
ease of development has many causes, one of which is automatic garbage collection.

1.2 Memory management

Most data processed by an application are stored in memory at some point. When
the size of this data is known at the time of compilation, memory can be allocated
at compile time. This is what is known as static memory allocation, and can take
place in the data area or stack frame depending on the context.

Dynamic memory is the opposite of static memory in the sense that its size is
unknown at compile time. The dynamic memory has to be managed at runtime,
and is typically allocated on the heap. Most applications allocate new data while
running and will need to return dynamically allocated memory. If this was not done,
eventually all the available memory would be allocated, and no new allocations could
be done. This is what is known as a memory leak. When memory is returned, it is
either simply considered available for future allocations, or returned to the operating
system to be used by other applications.
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CHAPTER 1. BACKGROUND

1.2.1 Manual memory management
In some languages returning memory is done through explicit function calls such
as calling delete in C++ or free in C. According to Jones et al. [14] this can
potentially cause at least two problems:

• Memory can be returned too early, while other parts of the application still
has references to it. These references are then known as dangling pointers,
which can cause hard-to-detect and hard-to-fix program defects.

• The last pointer to a memory location can be overwritten. The memory can
then never be returned. This is a resource waste that is hard to recover
from, and eventually the available memory can run low [17]. It may also
cause performance to suffer because the allocation algorithm will have to work
harder to find available locations.

These problems are sometimes solved by making a module own a memory lo-
cation, and be responsible for deallocating it. This means that modules have to
cooperate in terms of transferring ownership, and making sure that nobody will
ever use the memory location after its return. Such an approach leads to complex
interfaces between software modules, and the complexity seems to be inherent in
the problem. The reason that the problem is complicated is that “liveness is a global
property, whereas the decision to call free on a variable is a local one” as stated
by Jones et al. [14].

1.2.2 Memory allocation
Memory is usually allocated in one of two ways; from a list of available memory
regions known as a free list, or from a continuous area. The free list is usually a
linked list of memory regions. Each region simply contains its size and a pointer to
the next available region. Memory allocation then consists of picking a region from
this list, and using it. Returning memory simply inserts a region into the list.

Different schemes can be used when picking the region to use. One common
strategy is to pick the smallest region that is large enough for the allocation (Best
Fit). Another strategy is to pick the first encountered region that is large enough
(First Fit). When inserting a memory region into the free list, the inserter may
be able to decide to coalesce two regions if their memory areas constitute a single
continuous area. Whether to coalesce or not is a policy decision which can depend
on application and allocation strategy.

When allocating from a single continuous free area, the end pointer to this area
is simply increased by the amount of memory that should be allocated. Let the
pointers free and top point to the beginning and end of the available area, respec-
tively. Consider an attempt to allocate n bytes. The only operations needed are
then to check that top− free > n, and then increment free by n bytes. Obviously,
the top could be decremented just as well, thus consuming the free area from the
other end. This kind of allocation is known as bump-the-pointer for obvious reasons.
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1.3. REFERENCE COUNTING

In multi threaded environments, it is very possible to get high contention for
incrementing the free pointer. The simple approach to this is for each thread to
allocate a larger chunk of memory known as a thread local allocation buffer (TLAB).
This approach is used in HotSpot. Object allocations are then made from these local
buffers of available memory, and the thread does not have to contend for the free
pointer as often.

1.3 Reference counting

One simple approach to avoid dangling pointers is reference counting. Reference
counting is done by associating a counter with each memory location that is pointed
to. When a pointer to the location is created, the counter is increased. When a
pointer to the location is deleted or overwritten, the counter is decreased. If the
counter reaches 0, the memory can be reclaimed.

The argued advantage of reference counting is that the decision to collect mem-
ory is local to the thread modifying the pointer, and the low memory overhead.
However, reference counting has some major disadvantages. One is that the counter
must be modified atomically, which means using expensive synchronizing primitives
like compare-and-swap (CAS) on each pointer store. The other, and most important
reason, is that reference counting cannot collect circular structures. Consider for
example an object only containing a single pointer that points to the object itself.
This counter will never reach 0, which means memory leaks can occur.

1.3.1 Reference counting in file systems

Reference counting can be used successfully if a data structure is guaranteed not to
contain cycles. An example is UNIX-style file systems. In a UNIX-style file system
the directory structure is separate from the file data. The directory structure just
contains an index into a table, where the table has information about where on the
disk to find the file. This table entry is known as an inode. Several directories can
keep references to the same inode, meaning that they refer to the same file. These
references are known as hard links. The inode then contains a reference counter,
allowing the disk blocks used by the file to be deleted when there are no references
to the file anymore.

The reason that reference counting works well in this context is that most im-
plementations do not allow the user to create hard links to a directory, but only to
files. This means that there cannot be any cycles of files referring to each other.

1.4 Garbage collection

To circumvent the problems presented in Section 1.2.1, automatic dynamic memory
management can be employed in the form of a garbage collector (GC).

3



CHAPTER 1. BACKGROUND

The most intuitive definition of what is garbage in an application, would be any
dynamically allocated memory that will never be accessed in the future execution of
the program. However, this definition suffers from a problem. Determining whether
a memory location is accessed is equivalent to the halting problem.

Theorem 1. No program H ′(X,L) can tell, for any program X and memory loca-
tion L, whether the label L is referenced on the execution of X.

Proof. From H ′ construct H which solves the halting problem. Insert a dereference
of a special location L at the end of the program, and replace all instances of halt
instructions with dereference instructions to L.

Because of Theorem 1, a conservative approximation is used to get a useful
definition of garbage. The conservative approximation is that a memory location
is considered garbage if it is not live. A memory location l is considered live if it
is reachable through some series of references l0 → ... → l, and l0 is contained in
the root set. The root set consists of the memory locations immediately reachable
through pointers from all currently running threads [14]. Examples of things in the
root set in Java are local variables, method arguments and static variables.

In Figure 1.1 the root set is {A,X}, the live set is {A,X, Y }, and the garbage
is {W,Z}. Note that both the object graph and the garbage can contain cycles of
references.

runtime stack(s)

A X

Y

Z

W

Figure 1.1. Example of a small object graph. The nodes are objects, and the edges
represent references. Note that the graph is directed.
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1.4. GARBAGE COLLECTION

A garbage collector uses some algorithm to determine what objects are garbage
and makes some or all of them available for allocation. Some interesting properties
of garbage collectors are [17]

• promptness — how soon after an object has become garbage it is collected

• completeness — a complete garbage collector ensures that eventually all garbage
will be collected

• memory footprint — the amount of memory needed for bookkeeping, not
usable by the application

• overhead — typically measured in the percentage of CPU time spent doing
garbage collection

• pause time — the length of time periods where the application threads are
stopped due to garbage collection.

Garbage collectors typically need to employ trade-offs between at least these
factors. Applications with different needs may need to specify a suitable GC imple-
mentation. Another problem is that of fragmentation.

One thing worth noting is that algorithms developed to do garbage collection of
memory locations can be used to reclaim other resources as well. One example is
the VACUUM command in some SQL implementations [2, 3] which reclaims unused
disk space from deleted table rows in databases.

1.4.1 Concurrent collectors and stop-the-world
Garbage collection could be done while all the program threads (also known as
mutators) are stopped. This method is known as stop-the-world (STW). STW
greatly simplifies garbage collection, since no unexpected modifications can be made
to objects while the garbage collector is running.

Garbage collectors that execute concurrently with the mutators are known as
concurrent garbage collectors [14]. Concurrent garbage collectors have the advan-
tage of causing shorter (if any) pauses in the running program. This is obviously an
advantage to applications that need low response times. The concurrent collectors
however, need to do some synchronization and deal with the fact that mutators
can modify the object graph during a collection. This means that the concurrent
collector typically uses more CPU time than the STW collectors. The HotSpot con-
current garbage collectors have small stop-the-world phases in the beginning and
end of a garbage collection.

Which type of garbage collector to use will depend on the running application.
For example web servers may require low pause times, while batch processing or
scientific computations would benefit from a good high throughput STW collector.

STW garbage collectors can still use concurrency in the sense that multiple
threads can be used for garbage collection [17]. This kind of concurrency is called
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parallelism in the context of garbage collectors. For example, a STW garbage
collector that uses several threads is usually called a parallel garbage collector.

1.4.2 Finding the live set
The definition of garbage leads to a rather intuitive method for finding the live set;
simply start at the root set and traverse the object graph. This can be done using
a graph traversal algorithm such as Breadth First Search or Depth First Search.
During the traversal, the objects are marked as live, which is why this is known as
the marking phase of a garbage collection.

One thing to note here, is that a naive implementation of either BFS or DFS
using a stack or queue could potentially use as much memory as the entire heap.
This is clearly not acceptable, but can be solved using a technique called pointer
reversal [4].

Tricolor marking

Traversing the live set is obviously easier when the mutators are all stopped and
the graph is static. Collectors tracing the live set while the application threads are
executing (concurrent collectors) need to deal with modifications that the mutator
threads introduce to the object graph. The tools the collectors have at their disposal
are typically read and write barriers. A barrier consists of code inserted into the
runtime that calls the collector whenever a reference is read or updated.

Concurrent collectors usually deal with modifications to the object graph by
designating a color to each object. This abstraction was introduced by Dijkstra et
al., and is considered fundamental to the field of garbage collection [11].

• Black objects are known to be reachable from the root set, and have been
processed

• Grey objects are known to be reachable from the root set, and have yet to be
processed

• White objects have not yet been visited by the marking algorithm.

Initially the root set is colored grey. This is usually done in a STW phase
because the runtime stacks have to be inspected.

Then the concurrent marking thread(s) scan each grey object for references. A
marking thread will for each reference out of an object add the referred object into
the grey set, and then mark the object as black (visited). The marking is stopped
when there are no grey objects left. Then, the objects which are still white can be
concluded to be garbage. To ensure that the mutators do not modify the object
graph in such a way that live objects are lost, concurrent collectors maintain the
weak or strong tricolor invariant. Doing so safely over-approximates the live set.

The weak tricolor invariant states that “all white objects pointed to by black
objects are reachable from some grey object through a chain of white objects.”. The

6



1.4. GARBAGE COLLECTION

strong tricolor invariant states that “there are no pointers from a black object to a
white object” [11].

Maintaining the weak tricolor invariant results in a category of algorithms which
is called snapshot-at-the-beginning (SATB). Maintaining the strong invariant results
in another category of algorithms known as incremental update [20]. These differ
in how the write-barriers need to work. SATB algorithms need a write-barrier that
triggers before a pointer store, while incremental update algorithms use a write
barrier that is triggered after a pointer store.

1.4.3 Reclaiming garbage
When the live set has been found (or over-approximated), everything else is inferred
to be garbage and should be reclaimed. Three major approaches exist to doing this,
each with their own advantages and drawbacks.

Sweeping collection

One way to reclaim garbage is to iterate through the entire heap and find all the
locations not visited in the marking phase. This is known as a sweeping collection.
These locations are then added to a free list. The advantage of this approach is that
to reclaim an area of memory, all that has to be done is to update some pointers.

The biggest disadvantage of sweeping collection (also known as mark-sweep GC)
is that it can cause fragmentation. This happens when there are lots of slots avail-
able for allocation, but none large enough for a big continuous allocation of a large
object like an array. For example in Figure 1.2, no allocation that requires ≥ 2
continuous memory cells can be made.

Free list

Heap:

Figure 1.2. Free list after memory has been collected by mark and sweep. The
gray boxes represent the live (marked) objects. Note that the free list pointers can
be stored in the free memory areas, meaning little bookkeeping overhead.

Compacting collection

Compaction can intuitively be thought of as moving the live set to the beginning
of the heap, and then claiming whatever is left as available for future allocations.
Further allocations are then done by bumping a pointer. Figure 1.3 shows a com-
paction.

7
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Compacting the live set has the advantage that is tackles the problem of frag-
mentation. Since all the available space is collected into one continuous area, frag-
mentation does not occur in the same way as for the sweeping collection. The
obvious drawback is that copying objects can be slow. An object that is long-lived
could be copied several times, adding to this problem.

x y z wHeap before:

x y w zHeap after:

Free start

Figure 1.3. A possible way to compact the heap. Note that the order of the objects
is not necessarily maintained.

Cheney style copying collection

Cheney style copying collectors does the marking and reclamation of objects in one
single phase [7], making it possibly perform better than the compacting collectors.
The available heap space is divided into two equally sized semi-spaces. One of the
semi-spaces is known as the from-space and one is known as the to-space. Cheney
style collectors are sometimes also known as semi-space copying collectors.

Cheney style collectors trace the object graph, and copy all the live-objects in
the from-space into the to-space. When this is done, the roles of the two semi-spaces
are swapped in preparation for the next collection.

One advantage of a Cheney style collector is that it only traverses live objects,
making collection time proportional to the size of the live set and not the heap
size. Another benefit can be good locality properties. This can cause performance
gains due to decreased cache misses [14]. To get good memory locality, the collector
can traverse the live set depth first or breadth first. Which traversing algorithm
to choose depends on the application, and could be configurable. One major dis-
advantage of Cheney style collectors is that the object graph can only occupy half
the size of the heap. Another disadvantage is the fact that long-lived objects are be
copied back and forth between the two semi-spaces.

1.5 Generational garbage collection
Generational GCs rely on the generational hypothesis that object lifetimes are
mostly short [14, 15]. This hypothesis leads to favoring young objects as candi-
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dates for collection. This can be achieved by using different areas called generations
within the dynamic memory.

Let G1, ..., Gn be the generations. Then all objects in Gk are considered senior
to objects in G1, ..., Gk−1. In the common special case where n = 2 this can be
simplified by calling the two generations the young and old generation. From now
on, only generational GCs with two generations are considered, unless otherwise
specified, since this is what is used in HotSpot [17].

When an allocation is attempted and the young generation is used up, it is
collected. The collection traces the live objects from the root set, but does not follow
references that leave the young generation. This is known as a young collection (YC)
and is the most common kind. The root set in a YC includes any pointers into the
young generation from the old generation. A remembered set is used to find these
pointers into the young generation.

During a YC, the HotSpot implementations avoid promoting every single live
object to the old generation [17]. This is because if a YC promoted all the live
objects in the young generation, some objects that were allocated recently would
be promoted without having a chance to become garbage. Avoiding this can be
done by keeping a counter within the object, and incrementing it for each young
collection that the object survives. After an object has survived a certain number
of times, it is promoted to the old generation [17].

A young collection usually makes enough memory available in the young gen-
eration to facilitate the allocation that was attempted, according to the weak gen-
erational hypothesis. If, however, a young collection is not enough to facilitate an
allocation, or the old generation is full, an old collection has to be performed. This
can be done using a number of techniques, for example by compacting or doing a
mark-sweep in the old generation [17].

1.6 Remembered sets

In generational garbage collection, it is assumed that objects in the young generation
are likely to become garbage quickly. It follows that objects in the old generation
are not very likely to refer to objects in the young generation. It is however not
impossible for old objects to refer to newer ones. Consider a linked list’s append
operation for example, the next pointer of the last node is updated to point to the
object that should be appended.

When doing a YC, to ensure no live object is collected, all objects in the old
generation are assumed to be live. The collector would then in theory have to add
the entire old generation to the root set in order to not collect live young objects.
This could be done by scanning the old generation looking for references into the
young generation. Since the old generation could be significantly larger than the
young generation, this would defeat the purpose of only having to look at a small
amount of memory.

A remembered set is used to avoid scanning the entire old generation. This

9
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set consists of areas within the old generation. An area is inserted into the set
if it has objects possibly referring into the young generation. In other words, the
remembered set keeps track of where to find objects in the old generation that may
contain references into the young generation.

During a YC, the remembered set is inspected, and all the young objects referred
to from the old generation are considered roots. When moving young objects, the
remembered set is used to find all places the object is referred to and update those
references. Objects can be moved either within the young generation, or by being
promoted to the old generation.

A problem that can arise from using generational garbage collection is if old
objects become garbage, but there is a long time before the next old collection. If
an old object points into the young generation and the old object is garbage, the
young object will not be collected during a YC. These objects are referred to as
floating garbage. The effect could be compounded if the young floating garbage is
eventually promoted into the old generation.

1.7 Garbage first garbage collection

Garbage first (G1) is a garbage collection algorithm that can be run in a generational
mode [9]. One objective of G1 is to keep down pause times for applications with
large heaps [19]. The key is that G1 should rarely (ideally never) need to do a slow,
expensive collection of the entire old generation. In order to do this, the generations
are made up of independent memory areas called regions. See Figure 1.4 for an
example of this.

When a garbage collection is triggered, the young regions and some subset of
the old generation are collected. Note that the subset can possibly be empty. The
union of the young generation and the selected regions from the old generation is
referred to as the collection set [9]. When the collection set contains some regions
from the old generation, the collection is said to be mixed.

The collection consists of copying the live objects from the collection set into
available regions, making the collection set regions available for future allocations.
This is known as an evacuation [9].

1.7.1 Collection set selection

So, which ones of the old regions should be included in the collection set? The
intuition is that the old regions with the most garbage should be favored (the
garbage first). Selecting the collection set is done by computing for each region an
estimate on the “price” of evacuating the region. The estimate takes into account
among other things the fraction of the region which is live, and the amount of
references into the region. The regions are then selected cheapest first until the
total “budget” is spent [9]. The budget is derived from a number of factors, the
most notable one being the pause time goal.
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O O O

O Y O

O

O Y Y

O

Figure 1.4. Example of a G1 heap. Each table cell represents a region. The regions
marked with O and Y make up the old and young generations, respectively. The
white regions represent empty, available regions.

1.7.2 G1 remembered sets
The G1 implementation in HotSpot is generational and uses remembered sets. Un-
like traditional generational GCs, G1 uses one remembered set per region, instead
of one per generation. This is because any region in the old generation can be col-
lected, which means that references into it from the rest of the old generation need
to be found quickly. This increase in the number of remembered sets means that
the space overhead caused by them becomes more important.

Remember that the remembered set represents locations that point into a given
region. This region is known as the owning region when discussing remembered
sets.

One way to reduce the size of remembered sets is to adjust the granularity. In
the most fine-grained mode, a remembered set could point to each field of each
object that points into the region. The advantage of this approach would be that
the incoming references could be found quickly.

The other extreme would be for a remembered set to simply point to regions
containing objects that points into the region. During evacuation, the entire re-
ferred region would then need to be scanned for references pointing into the region
to be evacuated. The current implementation in HotSpot starts out with a fine-
grained model and switches over to a coarse-grained model when the remembered
set becomes sufficiently saturated.

In this thesis, the usage of remembered sets in G1 is explained, and alterations
to the implementation in HotSpot are evaluated.
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Chapter 2

Previous research

Some early approaches to remembered sets included cooperation from the hardware
or operating system. An example of a hardware supported solution is tagging
memory locations as containing data or pointers and using write barriers to detect
intergenerational memory writes [18, 23]. Using a bit to tag memory locations as
pointers reduces the addressable memory by half. However, this has become feasible
again with the transition to 64-bit architectures [8].

The virtual memory system can be used to keep track of interregional pointers
[13]. After a collection, all pages are marked as protected, and subsequent writes
will trigger a trap handler. The trap handler can record the page into a list of pages
to be looked at later, and release the protection of the page. Any subsequent writes
will then come at no overhead cost. The collector can then scan the marked pages
to find inter-regional pointers.

This approach has the significant drawback of locking the precision level to the
page size of the operating system, which is not very flexible. Another problem is that
value writes will trigger the trap handler, and dirty the page, causing unnecessary
scans of pages. This would mean for example that a write of a floating point
variable would cause all pointers on the same memory page to be inserted into the
remembered set. Hardware assisted approaches are not examined as part of this
project.

2.1 Card tables

Card tables is a software equivalent of page protection [24]. The heap is divided into
equally sized areas known as cards. Pointer stores into a card will mark the card as
dirty. The card markings are kept in a continuous array known as the card table.
Finding a card index is then as simple as getting the first n high bits of the target
address of a pointer write. The insert into the card table is done in software, which
means that only pointer-stores would cause a card to be dirty. This is because the
write-barrier would obviously only be triggered on a pointer store and not a value
store.
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Since the card size is software defined it is more flexible to tune for performance.
Tuning the card size is a difficult problem. A smaller card size means that the
collector will more quickly find the interregional pointers, once looking at a card.
However, small card sizes lead to large card tables, which is a problem because it
uses more memory and takes longer to scan through.

One problem with card tables is that objects can span cards. When scanning a
card, the collector will have to know where to start, and where to look for references.
Where to start is typically stored in a card offset table.

Consider Figure 2.1. Assume each row represents two words. Then the first
object starts 2 words after the card beginning, thus the card offset table for the
given card has the entry 2. The card offset table will have to be maintained when
objects are allocated.

The beginning of an object in HotSpot will have a mark word and a reference
to the class which the object belongs to. The class typically holds the information
about the object size and where to find fields that contain references.

End of previous object

Mark word Class pointer

Field 0 Field 1

Field 2 Field 3

Mark word Class pointer

Field 0 Field 1
...

Beginning of card

Beginning of first 
object in this card

Figure 2.1. Example of how the beginning of a card could look like in memory. The
lines separate objects, not cards.

2.1.1 Hierarchic card tables

With growing address spaces, the card tables can become quite large. When the
table is sparse, a significant amount of time can be spent just looking at clean
entries. Since the card table is scanned during a STW phase, CPU time is very
precious.

It would be desirable to be able to take larger strides when scanning the card
table in the common case of clean cards. Keeping track of when a large stride is
possible can be done in a separate, smaller table [21]. The scanning would then
consist of scanning the smaller table, allowing large parts of the actual card table
to be skipped quickly. When a large stride cannot be made, the regular card table
would then be inspected to find the dirty cards.

14
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An analog to this in terms of the G1 remembered sets would be to dirty a region
whenever one of the cards are dirty. All the cards in the same region could then be
skipped by examining the marking for the region.

2.1.2 Card table hybrids

Card tables can be combined with other implementations of remembered sets as
proposed by Hosking and Hudson [13]. Their approach keeps the highly efficient
write barrier used by the card tables. At collection time, each dirty card is scanned,
and any pointers into the young region are inserted into the actual remembered set.
The remembered set is then considered part of the root set in the usual way. Before
the mutators are restarted, the card table is cleared.

2.2 Log based barriers
Since reference write barriers are triggered often, it is important to make them
cheap. Making it scalable means that the write barrier should avoid using atomic
operations such as CAS or taking a lock. For this reason Detlefs et al. [10] introduce
the concept of a log based write barrier.

Each thread has a local log buffer which it fills with entries, which are “locations
which have been the left hand side of a pointer assignment” [10]. When the log is
full, it is appended to a global list of full log buffers. Then, one or more background
threads can process the global list of logs, and make the appropriate insertions into
the remembered sets.

This decoupling of the remembered sets from the write barriers increases the
freedom on how to implement the remembered sets. In particular, it allows for
slightly slower insertion operations since they are performed in the background and
not on every pointer store. The price is obviously the memory overhead caused
by the log buffers. It should be noted also that before the collection can start,
the remaining buffers have to be processed in a STW phase. This is because the
remembered sets need to contain all the insertions before the garbage collection
can start. The background threads’ job is to minimize the amount of work for
remembered set insertions during the STW phase.

2.3 Hash table implementations
Since the remembered sets are supposed to represent a set of memory locations,
one straight-forward approach is to use a hash set. This was done successfully by
Hosking et al. [12, 14]. Using linear hashing is a good method for letting the hash
set grow in a smooth way without large pauses that copy and rehash all the data
[14].

An obvious advantage of the hash sets is that they are very precise. Each referred
object is inserted and can simply be found by iterating through the hash set. No
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scanning of cards or pages is necessary, though it can happen that the reference
has been updated multiple times, making the lookup unnecessary. This could be
circumvented by deleting from the hash set when a pointer is set to null for example,
but this would possibly cause a too big overhead on the mutator.

A disadvantage of hash table based remembered sets is that they grow un-
bounded in size, possibly causing more memory overhead than is acceptable.

2.4 HotSpot G1 Write barriers
The HotSpot implementation has two write barriers: one that precedes the pointer
store, and one that executes afterwards. The pre-write barrier is not the remem-
bered sets’ concern. It has to do with the marking algorithm, which is a snapshot-
at-the-beginning (SATB) implementation. The part of the write barrier in HotSpot
G1 that is interesting from a remembered set point of view is the post-write barrier.

The post-write barrier is a modified implementation of Detlefs’ log based write
barrier. The log of written cards is sometimes known as the dirty card queue. There
are two major modifications; the use of a card table and a hot card cache.

After a pointer has been updated, the corresponding card is inspected in the
card table. If it is already dirty, nothing needs to be done. This means that the
card has been written to but not yet inspected by a background thread.

If the card is clean, it is dirtied, and inserted into the hot card cache. The hot
card cache is a global data structure that caches the most recently written cards.
When the hot card cache becomes full, it evicts one of the cards. This card is then
appended to the log as described in Section 2.2. The purpose of delaying the log
appending operation is to avoid duplications in the queue, and reduce contention
when appending to the queue.

2.5 HotSpot G1 Refinement
The G1 implementation uses one or more concurrent background threads that do
remembered sets insertions. The background threads look through the dirty card
queue and refine the cards. Before a refinement, the card is marked as clean. A
refinement then proceeds as follows: the background thread iterates over the objects
located within the card, and if an object contains a reference that point into another
region, which is not in the collection set, the card is inserted into the appropriate
remembered set.

If a write is made into the card while it is being refined, the write barrier will
see it as clean. The card will then be inserted into the hot card cache or queue as
described above, and be scanned again later.

Since the refinement threads work concurrently with the mutators, the order of
these operations is important. Consider if a refinement thread were to clean the
card after processing it. Let the card have references r0, r1, ..., rn, and the refinement
thread iterate in ascending order. Say the first k references have been processed.
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Then a mutator stores an interregional pointer at rj where j ≤ k and dirties the
card. The refinement thread then completes the iteration and cleans the card, never
having looked at the new value of rj . By having the cleaning of the card precede
the refining, there is a guarantee that every pointer store will be followed by a
refinement of that card.

2.6 The HotSpot G1 remembered set implementation

The current HotSpot G1 remembered set implementation uses many of the concepts
described in the previous sections. The high level description is that the representa-
tion uses two different precision levels depending on the saturation; card level and
region level precision.

2.6.1 Set representation

The hot card cache, the card table, and the dirty card queue are used when dealing
with the remembered sets, but they are not actually part of the remembered set
representation. These data structures are global, and not associated with a partic-
ular region. This section describes the representation of a single remembered set,
which is associated with an owning region. A simplified C++ class definition is
given in Figure 2.2 for illustrative purposes.

struct g1_rset {
hash_map<region_id , ca rd_l i s t> spar s e ;
hash_map<region_id , bitmap< MAX_CARD > > f ine_gra ined ;
bitmap< MAX_REGION > coar s e ;
// . . . f unc t i on s omit ted

} ;

Figure 2.2. Simplified data structure definition for the G1 remembered sets.

There are two different levels of precision, and three different representations
in the HotSpot G1 remembered sets. The two levels of precision are card level
and region level precision. When enough cards in a given region are inserted into
the remembered set, the entire region will be considered part of the remembered
set. This is known as a coarsening, and is a transition from high to low precision
representation.

The card level entries use two different representations, a sparse table and a
bitmap. The bitmap is known as the fine grained representation. The sparse table
is a hash map that maps a region to a short list of cards in that region. The fine
grained data structure is a hash map that maps a region to a bitmap containing as
many bits as there are cards in a region. Note that for both hash maps, the key is
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the originating region (i.e. where the pointer variable is stored), and not the owning
region. Both hash maps are implemented as arrays of linked lists.

The region level entries (also known as the coarse entries) are kept in another
bitmap. This bitmap has one bit for every region in the heap. The bit is simply set
when the region is coarsened.

2.6.2 Remembered set memory management

The remembered sets themselves obviously need to be stored in memory. The
memory used by the internal data structures has to be managed manually. They
are managed in different ways:

• The coarse bitmap is simply allocated in its entirety when the remembered
set is instantiated.

• The fine grained hash maps use a global free list for allocating the bitmap
entries. This is possible because the bitmaps are all of the same size. If
the free list is empty, a bitmap is allocated on the heap using the C++ new
operator. When a remembered set is cleared, the fine grained entries are
appended to the global free list. Appending to the global free list can be done
from multiple threads. To speed this up, the bitmaps are linked together to
form a doubly linked list. The freeing can thus be done using a single CAS
instruction. This structure is depicted in Figure 2.3.

• A sparse table is a typical hash map consisting of an array of linked lists. The
nodes in the linked lists are allocated in a continuous chunk using new, and
are maintained in a free list that is local to the particular sparse table. When
the chunk is filled, as indicated by an empty free list, the hash set is expanded
to double the size. Note that this means that each node in the sparse table is
a list of exactly the same size, and a single list cannot be expanded.
Each list consists of a card array and a region identifier. The array is the list
of card indexes included in the remembered set. The layout of some entries
in the sparse table is illustrated in Figure 2.4.

2.6.3 Insertion operations

The insertion operations are somewhat complicated due to the complex representa-
tion. It is insertion operations that trigger shifting representations. The insertion
algorithm is briefly summarized as Algorithm 1. The insertion algorithm first checks
the coarse bitmap for the card’s region, to see if the card to be added is already
represented there. If so, nothing needs to be done, and the method returns.

Then, the fine grained hash map is queried to see if there is a card-level bitmap
for the region. If it exists, the card’s bit is set to 1 in the bitmap, and the method
returns.
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Hash Table

0

1

2

3

... collision list next

freelist

...

collision list next

freelist

...

collision list next

freelist

...

collision list next

freelist

...

collision list next

freelist

...

all

last

Figure 2.3. Schematic view of an example of a fine grained hash set. This figure
only show how entries are linked together. The data contained in each entry are
omitted.

Sparse table entry
Sparse table entry

Entries 09 03 -1 25 -1

Region: 4711 next Entries 05 -1 -1 -1 -1

Region: 1337 next ...

Figure 2.4. Illustration of how two entries in the sparse table could look like. The
entries array can be much longer than illustrated here, but it is possible it is as short
as 4 cards.

If there is no entry in the fine grained table, an attempt is made to insert the
card into the sparse table. If the attempt succeeds, everything is well, and the
method returns. However, when this list becomes full, the attempt fails. When this
happens the list is converted to a bitmap and inserted into the fine grained hash
map.

The fine grained hash map has a limit on its number of entries. If a sparse list
is filled and the fine grained hash map is full, an entry from the fine grained hash
map is evicted. The region represented by the evicted entry from the fine grained
hash map is then coarsened. The policy for picking the entry to evict is to look at
some subset of the fine grained bitmaps pick the one with the most bits set. After
an entry is evicted, the filled sparse table list can be converted to a bitmap and
inserted in the fine grained hash set. The conversion is done by clearing and reusing
the evicted bitmap.
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Algorithm 1 Remembered set insertion [1]
function RSInsert(r, c)

if Coarsened(r) then
return

end if
f ← FindFineGrainedMap(r)
if f = NULL then

m←ScopedMutex
f ←FindFineGrainedMap(r)
if f = NULL then

if AddToSparseHashMap(r, c) then
return

end if
if entriesfine = maxfine then

f ← EvictFineGrainedMap
else

f ← AllocateFineGrainedMap
end if
AddToFineGrainedHashMap(f , r)
entriesfine ← entriesfine + 1
s← GetSparseEntry(r)
for i = 0 to i = Length(s)− 1 do

c← GetCard(s, i)
if c 6= −1 then

SetBit(f , c)
end if

end for
DeleteSparseList(r)

end if
end if
SetBit(f , c)

end function
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2.6.4 Insertion concurrency
The remembered set insertions can be made parallel, and to get acceptable through-
put, synchronization operations should be kept to a minimum. Each remembered
set has an associated mutex lock that is used for the operations that must be syn-
chronized. The mutex lock is used when dealing with the sparse table and when
modifying the fine grained hash set.

There are essentially two paths that are lock-free; when a card’s region is already
coarsened and when adding a card to a fine grained entry. When a card’s region
is coarsened, the bit is inspected in the bitmap, found to be set, and the method
returns. This is safe to do, because there is no way to clear a coarsened bit.

Consider now a thread A about to add a card, whose region is represented in
the fine grained set. First the bitmap is found, and then the bit is flipped. Suppose
A is suspended after finding the bitmap, and another thread B evicts A’s entry
and reuses the bitmap. When A is then allowed to continue, the bit that A flips is
for a card in a different region. However, because B evicted A’s entry, the region
containing A’s card is coarsened, and thus A’s insertion is represented.

The parallel insertions thus result in a small over-approximation of the remem-
bered set, but this is an efficiency, and not a safety concern.
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Improvement suggestions

3.1 Problem statement
In what ways can the internal data structure used for HotSpot G1 remembered sets
be modified to improve the garbage collector in terms of footprint and pause time?
How is throughput affected by these modifications?

3.2 Reducing size of sparse lists
The sparse lists currently use 32 bit signed integers to represent the card indices in
the short lists (see Figure 2.4). There is currently a cap on the region size at 32 MB,
which means that the maximum number of cards in a single region is 32MB

512B = 216.
Using an unsigned 16 bit integer would be more appropriate.

However, this poses a problem. The current implementation uses−1 to represent
null, or no value entries. If a 16 bit representation is to be used, each possible value
is valid. This could be solved by using a separate bitmap for each sparse list, which
keeps track of the null entries. This means that the cost of each entry would go
from 32 to 17 bits per entry, a reduction of more than 46%.

When the sparse lists are short, this is not necessarily a save in either memory
or time. The sparse lists are proportional to region size, and vary between 4 and
128 entries. To simplify the implementation, a 128 bit (16 byte) bitmap is added to
each sparse list. This means that in the case where the lists are 4 entries long, the
memory saved by using 16 bit integers is 4 · 2 bytes. The added bitmap is 16 bytes,
which means a net growth of the sparse list of 8 bytes. In general, the footprint
reduction with n entries per sparse list is 2n− 16.

The length of the sparse lists is

n = 4 · R210 (3.1)

where R is the heap region size in bytes. The smallest heap size for which the
sparse lists do not grow would be where 2n = 16. Substituting n = 8 and solving

23



CHAPTER 3. IMPROVEMENT SUGGESTIONS

Equation 3.1 for R gives R = 211, or 2MB. Since G1 tries to have 2048 regions,
2MB heap regions means 2048 · 2MB = 4GB. Since the main design goal is to use
G1 for large heap applications, this trade off may be suitable.

The smallest heap size for which the full footprint reduction can be utilized is
trivially when the maximum region size is reached. This is when R = 32 ·210, which
translates to a heap of size 64GB.

Performance increases could be expected from better cache locality when entries
are more tightly packed. Memory accesses should also be reduced since the null map
can be fetched quickly and inspected in a register. This could be faster compared
to doing memory reads for each entry.

Mutual exclusion is used when manipulating the sparse tables. This means there
should not be a problem where different refinement threads invalidate each others
cache lines by writing to distinct nearby locations (an effect known as false sharing).
On the other hand the added overhead of a bitmap lookup per read is a possible
source of performance degradation.

3.3 Using Bloom filters
A Bloom filter is a data structure that allows a set of elements to be over-approximated
using a compact representation. For this reason it is interesting to consider as an
implementation mechanism for remembered sets. Bloom filters support two opera-
tions, inserting and checking for membership. Insertion is illustrated in Algorithm 2,
and membership checking is given in Algorithm 3.

Algorithm 2 Bloom filter insertion
function BloomFilterInsert(B , ~d, x)

for h ∈ ~d do
bit← h(x) mod length(B)
SetBit(B, bit)

end for
end function

Algorithm 3 Bloom filter member checking
function BloomFilterContains(B, ~d, x)

for h ∈ ~d do
bit← h(x) mod length(B)
if GetBit(B, bit) = False then

return False
end if

end for
return True

end function
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The ~d used as a parameter for the Bloom filter is a set of hash functions. It is
obvious that member checking can return false positives. For example, let ~d only
contain a single hash function. Then any element x 6= y whose hash value equals
the hash value of an inserted element y would falsely be recognized as a member of
the set. The probability of a false positive depends on the size of the bitmap, the
number of hash functions, and the number of inserted elements.

Let φ represent the proportion of not yet set bits in a Bloom filter of size N ,
when d hash functions have been used for n insertions. Then φ can be approximated
by the following formula:

φ ≈ (1− d/N)n (3.2)

[6]. A false positive means that for each of the d hash values computed, the bit is
found to be set. The probability of this is

P = (1− φ)d (3.3)

[6]. These equations can be used when sizing Bloom filters and deciding on number
of hash functions.

3.3.1 Where to use Bloom filters

Realizing that Bloom filters have some desirable properties does not directly lead
to where and how to use them in the context of G1 remembered sets. What is
implemented as a part of this master thesis project is to insert another level of
precision in between the fine grained bitmaps and the coarse representation. At
this level, it is possible to create a data structure that uses Bloom filters which is
significantly smaller than a bitmap, but allows faster scanning than the complete
scanning used for coarsened regions.

It is particularly useful if the application behaviour leads to a situation where
fine grained bitmaps are often evicted with few bits set. This happens when a region
has a medium sized number of pointers from many of the other regions. Medium
sized in this context means enough to overflow the sparse lists, but not enough to
set a high percentage of the bits in the fine grained map.

3.3.2 Only asking the relevant questions

At evacuation time, the remembered set has to be iterated. The naive approach to
iterating over a Bloom filter is to execute Algorithm 3 for each possible input. In
the context of remembered sets that would mean to query the Bloom filter for each
card in a from-region. This may be a possible solution, but it is desirable to limit
the number of queries to the Bloom filter, especially if few hits are expected.

The implemented solution is to keep track of what prefixes of card numbers
have been inserted, and only for the prefixes used, query the Bloom filter for each
postfix. The contained prefixes are organized in a binary tree, making it quick to
iterate over, and especially quick to skip large areas of a given region. The combined
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data structure using a Bloom filter and a binary tree for prefixes has been dubbed
a “compact card set”, to emphasise the primary concern of being very memory
efficient.

The prefix trees can be stored in a very compact way, as illustrated in Figure 3.1.
Note the numbering of the nodes. By numbering the nodes in this way, the left child
of a node n is always 2n + 1, and the right child is 2n + 2. Having this invariant
means that each node can be represented with only two bits. The two bits in a node
would represent whether or not there exists at least one leaf node in the left or right
branch, respectively. The tree in Figure 3.1 would be represented using 2 · 7 = 14
bits. In general, with depth d, the binary tree would use 2d+1 − 2 bits.

0

1 2

3 4 5 6

0 1 2 3 4 5 6 7

Figure 3.1. Conceptual representation of a prefix binary tree of depth 3. The
empty cells are those that are actually stored in memory. The example has the value
2 inserted, and the marked cells correspond to set bits.

3.3.3 Compact card set sizing
The compact card set data structure needs to find a middle ground between the
memory usage of the fine grained bitmaps and the coarse bitmap. It also needs to
reduce the amount of cards scanned significantly. If the Bloom filter is sized too
small, it will be little more than a costly indirection to a coarse region.

One simple aim is to be significantly smaller than the bitmap, and to need to
check around half the cards. The bitmap could be as small as 2048 bits in the
smallest case, since 1MB = 2048 cards · 512 bytes/card. So the combined size of
the Bloom filter and the prefix tree needs to fall below this limit. Some additional
bytes are also needed for pointers related to storing each compact card set in a hash
map.
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The implemented solution, in fact uses 64 bytes, accounted for in Table 3.1. The
prefix tree is 16 bytes, which is 128 bits. Recall the formula for binary tree size of
Section 3.3.2. With a depth of 6, the binary tree needs 126 bits, which leaves two
bits of waste. In other words, each from-region is split into 26 = 64 equally sized
areas identified by the 6 high bits of the card indices.

The Bloom filter uses 32 bytes (256 bits). Picking a power of two has the
advantage of making the modulo operations in Algorithms 2 and 3 a bitwise logical
AND, which is a low cost operation.

Table 3.1. Memory sizes chosen for the compact card set.

Item Bytes used
Prefix tree 16

Bloom filter 32
Pointers 16

3.3.4 Managing false positives
As stated above, Bloom filters have false positives. The simple aim of attempting to
be at least twice as fast as linearly scanning a region would allow for a false positive
rate of up to 50%.

With the sizing developed above, N = 256 and P = 1
2 . The remaining variables

are n, the number of insertions to support and d, the number of hash functions.
Substituting Equation 3.2 into Equation 3.3 gives

P =
(

1−
(

1− d

256

)n)d

(3.4)

.
Figure 3.2 shows the analytical expected false positive rate and measured per-

formance of the compact card set. As can be seen from the graph, a hit rate of
about 50% is at around 150 insertions. This is used as a decision point for when to
use the compact card set, and when to immediately coarsen a region. The region
size used for the measurements is 16 MB.

From Equation 3.4, and more clearly from Figure 3.2 it can be seen that 2 hash
functions initially has more false positives than using 3, but does not grow quite as
quickly. This can be understood intuitively by realising that many insertions using
more hash functions sooner lead to a high percentage of the bits being set, which
leads to more false positives. On the other hand, when few bits are set, having a
higher number of hash functions in Algorithm 3 reduces the risk of collisions.
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Figure 3.2. False positive analytical predictions and measurements using 256 bits
Bloom filter for n insertions. The number of hash functions is denoted by d. CCS is
the implementation using the prefix trees.

28



Chapter 4

Evaluation methodology

Evaluating a garbage collector is a difficult problem. This is partly because the
garbage collector is never executed in isolation from the rest of the runtime. Another
fact that makes it hard to give a conclusive judgement on the quality of a GC is
the fact that GCs involve trade offs such as time versus memory usage. Depending
on the application one or the other could be more important. Since G1 is aimed at
large heaps and low pause time goals, the memory footprint and pause times are
measured. A baseline is established using the current implementation with added
instrumentation.

4.1 Measurement methods

To do memory usage measurements, the Java Flight Recorder infrastructure avail-
able in HotSpot is used. The Flight Recorder infrastructure allows recording of
events. Events can have data associated with them, and timing information recorded.
An event can either be instantaneous or have a duration. The Java Mission Control
application can then be used to analyze a recording. The infrastructure also allows
events to easily be turned on or off or filtered, so as to only record the relevant
events.

The compact card sets in Section 3.3.1 are benchmarked separately. Code for
these benchmarks can be found in Appendix A.

4.2 System setup

All benchmarks are executed on the same system, as specified in Table 4.1. This is
done in order to eliminate all external factors affecting performance such as compiler,
operating system version, system library and memory configuration.
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Table 4.1. Benchmark server specifications.

CPU Model Intel(R) Xeon(R) CPU X5670
Number of Cores 12

Number of HW Threads 24
RAM 94,6 GB

Operating System Oracle Linux Server release 5.8

4.3 Benchmarks used

Two relatively simple benchmarks are used for showing that modifications have the
desired effects. In addition to these two very similar benchmarks, the standard
SPECjbb2013 benchmark is run to detect any throughput regressions.

The DaCapo benchmark suite [5] could also considered as a candidate for mea-
surements, but none of the benchmarks in the suite have working sets large enough.
When trying to measure the performance of interregional pointer updates and es-
pecially mixed collections, large working sets (at least 1500MB) are necessary.

4.3.1 The LRU cache benchmark

This benchmark exercises a sort of worst case performance for G1. A LinkedHashMap
is used to implement a least recently used (LRU) cache. It works by randomly gen-
erating an integer key and checking if the cache has the object. If the cache is found
to not have the object, it is created and inserted, otherwise it is fetched. The space
of possible keys is twice as big as the size of the cache. This means that once the
cache is filled, about half the requests are insert and half are get calls. A modified
version of this benchmark adds a medium sized byte array to each object. This
modification is done to model a simplified version of having each object in the cache
represent a page in a templating system.

A simple templating system could generate some large array (like a String
of HTML code) based on a database object. In order to save on processing and
database access, the generated string could be stored in a LRU cache together with
the object it represents. The modified version does not exercise the worst case
performance for G1 in the same way as the original version, because there are much
fewer pointers in each region. Most of the data in the heap consist of the arrays, but
there are still lots of interregional pointers, making the remembered set footprint,
update times and scan times interesting.

There are several reasons these benchmarks are troublesome for G1. First, the
generational hypothesis does not hold. The objects that are evicted from the cache
are the least recently used, which means that objects becoming garbage typically
have been promoted to the old generation. Second, the linked hash map modifies
the map when an object is accessed. This means lots of pointer updates that
span memory regions in a pseudo-random way. A large set of objects with random
pointers between them is troublesome for G1, since the pointers into a given region
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will be spread out across most of the heap.

4.3.2 SPECjbb2013
SPECjbb2013 is a standardized benchmark used to measure performance of Java
systems. It is used both as a hardware benchmark and JVM implementation bench-
mark.

For this thesis, the benchmark is executed in the composite mode. The com-
posite mode is the simplest way to execute the benchmark, running all parts in a
single JVM instance.

SPECjbb2013 computes two performance metrics known as max-jOPS and critical-
jOPS [22]. The max-jOPS is a measurement of peak throughput and the critical-
jOPS is a “response time constraint metric”. The critical benchmark is of greater
interest to G1 modifications, since one major objective of the G1 garbage collector
is to put a soft limit on pause times. It should be noted that short pause times and
critical throughput are the same thing. For example, a JVM implementation that
pauses for 10 ms 50 times per second will spend 50% of the time in a stop the world
phase, and thus probably have very low throughput but also low pause times. As
discussed previously, this is a typical trade off for GC implementations.
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Chapter 5

Results

This chapter shows the results from the benchmarks presented in Section 4.3. Three
implementations are evaluated, and each has been given a designated code. The
codes are explained in Table 5.1.

Table 5.1. Explanation of algorithm codes used for presentation.

Code Algorithm description
BL Baseline — the current implementation in HotSpot

with added instrumentation
CSL Compact Sparse Lists — the implementation using un-

signed 16 bit card indices as described in Section 3.2
CCS Compact Card Set — the implementation using the

compact card set as described in Section 3.3

5.1 Compact card set iteration speed
Figure 5.1 is a demonstration of the effect of using the binary tree together with
a Bloom filter as described in Section 3.3.2 compared to a plain Bloom filter. The
Bloom filters in the two implementations are of the same size. Note that the x-axis
is a log-scale. The reason that the curve drops into negative values after a certain
amount of inserts is that it becomes likely that most “sub-regions” maintained by
the binary tree has at least one card added. In other words, the binary tree becomes
saturated. Then the added work of iterating over the binary tree costs some time,
but does not save any work.

Note that the time saving is eliminated after approximately 100 insertions. This
is close to the number of insertions where the Bloom filter hit rate starts to approach
50% (as seen in Figure 3.2). This means that performance in both the iteration speed
and hit rate starts to degrade around the same number of inserts. This means that
the Bloom filter and binary tree become saturated at a similar pace.
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Figure 5.1. Time saved by using the compact card set as opposed to a plain Bloom
filter of the same size.
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5.2 The LRU cache benchmarks
The following two sections present and discuss relevant results from executing the
LRU cache benchmark. The results are not presented in an entirely consistent way
between the two benchmarks. This is in the interest of brevity and to not overwhelm
the reader with irrelevant figures and graphs.

5.2.1 Worst case performance
The runtime parameters and benchmark properties are listed in Table 5.2. Fig-
ure 5.2 and Table 5.3 show the characteristics of the implementations in the worst
case benchmark.

Table 5.2. Some important LRU cache benchmark parameters. Additional param-
eters for logging, JFR recording et cetera are omitted.

Total heap size 4GB
Young generation size 256MB

duration 1800
templating false
workingset 5000000

threads 4

As can be seen in Figure 5.2, the pause times are significantly reduced by using
the compact card sets. This is because, as expected, the compact card sets can
intercept coarsening events that would otherwise cause entire regions to be scanned.
The variation in the GC pauses is simply that the longer pauses are mixed GCs,
while the young generation pauses actually do meet the pause time goal. Each
mixed GC frees up a set of regions which is then used for the young generation
allocations. This back-and-forth between the two causes the spikes in pause times
seen in Figure 5.2.
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Figure 5.2. GC pause times. Each point on the lines represents a GC pause. The
timeline has been cut in order to increase legibility in the graph.

Table 5.3 shows the remembered set footprint. As expected, the compact card
set algorithm (CCS) uses some additional memory compared to the baseline imple-
mentation for the Bloom filters and prefix trees. The reason that the switch to use
unsigned 16 bit integers is not reducing the footprint significantly in this bench-
mark is that almost all of the remembered set footprint is used by the fine grained
bitmaps. This is not surprising, since the benchmark causes lots of small objects to
contain references into pseudo-random places in the heap, which means that each
region has a nontrivial amount of references from each other region. This situation
means that the sparse lists quickly overflow, causing the fine grained maps to be
used extensively.

Algorithm Average footprint (bytes)
BL 794.1MB ± 5.38 %

CSL 759.7MB ± 5.46 %
CCS 845.7MB ± 4.58 %

Table 5.3. Memory footprint used for remembered sets.

Figure 5.3 shows that the remembered set scan times are significantly reduced by
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using the compact card sets, compared to both the BL and CSL implementations.
This is precisely the purpose of the CCS implementation. Another thing worth
noting from Figure 5.3 is that the scan times are not affeceted by using shorter
sparse lists. This is expected, because this benchmark makes very little use of the
sparse lists, and mainly uses the fine grained bitmaps.

1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800

0

0,5

1

1,5

2

2,5

3

3,5

4

·104

Elapsed time (s)

C
on

cu
rr
en
t
sc
an

tim
e
(m

s)

BL
CSL
CCS

Figure 5.3. Rememered set scan times in the LRU cache benchmark. Note that the
time is the sum of total time spent by multiple threads working concurrently. This
explains why the scan time can exceed the total pause time.

Table 5.4 shows a crude estimate of the number of request that would time out
in the application. A weakness with this measurement is the fact that the VM
is generating requests itself. This means requests cannot be generated in a STW
phase, which is not a realistic situation.

Table 5.4. LRU cache benchmark timeout statistics.

Algorithm Total timeouts Maximum response time (ms)
BL 2192 2325

CSL 2179 2379
CCS 2786 1210
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The CCS algorithm has more requests that fail to complete on time. However,
the maximum response time is almost reduced by half compared to the BL and
CSL algorithms. Lower response times are expected, given the lowered GC pause
times. However, the reason that the total number of timeouts is increased is not as
evident. It most likely has to do with the fact that the CCS algorithm causes more,
but shorter, garbage collection pauses than in the BL algorithm.

5.2.2 Template approximation performance
These tables show the measurements on the LRU cache benchmarks where each
object also has a reference to their own String generated using a mix of statically
computed text and some dynamically computed text depending on the object key.
The source code for this can be found in Appendix B.3. The runtime configuration,
and benchmark parameters are listed in Table 5.5.

This benchmark exposes the footprint reduction caused by having smaller sparse
table entries. Recall from Section 3.2 that the smallest heap size to get the full
benefit of the smaller integers is 64 GB.

Table 5.5. Some important LRU templates benchmark parameters. Additional
parameters for logging et cetera are omitted.

Total heap size 64GB
Young generation size 256MB

duration 1800
templating true
workingset 5000000

threads 4

Table 5.6. Average mixed pause times for different algorithm implementations.

Algorithm Mixed pause time (ms)
BL 263± 27%

CSL 258± 27%
CCS 287± 27%

In this scenario, the algorithms perform significantly better in terms of meeting
the pause time goal. As can be seen in Table 5.6, the differences are relatively
small, with a small regression for CCS. In this benchmark, the sparse lists are
exercised heavily. Because the CCS algorithm has a more complicated code path
for insertions, reaching the sparse list insertion path takes slightly longer compared
to the other two.

Table 5.7 shows that the remembered set footprint is significantly reduced by
switching to unsigned 16 bit integers (CSL). This is the desired effect, and the heap
size is chosen to be large enough to achieve this effect. The reason that the memory
reduction is not quite 46%, as is claimed in Section 3.2, is that the sparse lists are
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Table 5.7. Memory footprint for remembered sets.

Algorithm Average footprint (bytes)
BL 926.0MB ± 3.59 %

CSL 732.6MB ± 3.87 %
CCS 931.6MB ± 3.35 %

organised in hash sets. The hash sets have some footprint for the bucket arrays,
and the pointers between list nodes.

5.3 SPECjbb2013
Table 5.9 lists the runtime parameters used when running the benchmark. The
SPECjbb2013 results listed in Table 5.8 are established by running the benchmark
6 times and picking the best result for each algorithm. Both implementations exhibit
throughput regressions. The regressions are both in terms of critical and maximal
throughput.

Table 5.8. SPECjbb2013 performance results. The standard throughput measure-
ment as defined by SPEC is known as jOPS [22].

Algorithm max jOPS critical jOPS
BL 19086 9381

CSL 18291 9331
CCS 18887 9158

In the case of the CSL algorithm, the performance regression probably means
that the computational overhead of the bitmaps added to the sparse lists outweigh
the cache locality benefints of compacting the sparse array. The sparse lists are
the maximum length with this heap size, so the cache locality benefits should be
maximal. A reasonable explanation could also be that the benchmark allocation
behaviour does not lead to heavy usage of the sparse lists.

For the CCS algorithm, the throughput regressions are most likely explained
by removing the possibility for a lock-free path to the fine grained bitmaps. Recall
from Section 2.6.4 that only the representation which is last before coarsening works
in a lock free way. When the compact card sets are not needed, they cause a
performance regression for the applications that need only the fine grained or sparse
list representations.
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Table 5.9. SPECjbb2013 runtime parameters. Note that setting the initial and
maximum heap and young gen sizes effectively locks them to the specified value.

Runtime parameter Value Explanation
-Xloggc log.gc Log garbage collection information to a file

-XX:+UseG1GC Use the G1 garbage collector
-Xmx 64G Maximum heap size
-Xms 64G Initial heap size

-XX:NewSize 10G Initial young generation size
-XX:MaxNewSize 10G Maximum young generation size
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Conclusions

Two ways of improving the G1 remembered sets implementation are explored in this
thesis. The compact card set implementation, using Bloom filters as an intermediate
data structure between the fine grained hash tables and the coarse bitmap, is shown
to be able to reduce pause times in situations where the current implementation
fails to meet pause time goals. The other implementation, using 16 bit integers and
a bitmap instead of 32 bit integers, is shown to be able to reduce memory footprint
in applications with large heaps where the sparse lists are heavily used.

It is not part of this project to evaluate whether the two approaches together
could provide some benefit compared to the current implementation. One reduction
in memory footprint and one reduction in pause times, which causes added memory
footprint, could in a sense “cancel out” the memory difference. This would then
provide the lowered pause times and no added memory footprint. However, since
provoking these effects require some special and distinct benchmarks to be made,
it is not clear that there are applications where both effects occur. In fact, it is
not very likely that there would be a large amount of sparse entries and a large
amount of fine grained evictions in the same application. It could be possible to get
the benefits of both these improvements simultaneously if the application exhibits
both behaviours at the same time. This could happen if a JVM is running as an
application host for many different applications sharing a big server.

6.1 Recommendations

It is not recommended to add the current implementation of compact card sets to
the HotSpot code base. The reason for this is that the added footprint and reduced
computational throughput is most likely not acceptable for most applications. It
seems though, as if the approach of having a more smooth precision versus footprint
trade off is promising in terms of lowering pause times.

Since G1 is aimed at applications with large heaps, the switch to using 16 bit
integers in the sparse lists could be worth integrating into the code base. For heaps
larger than 4GB the remembered set footprint can be significantly reduced.
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6.2 Suggestions for further research
The sizes picked for the prefix trees and Bloom filters in the compact card set imple-
mentation are rather arbitrary. An interesting study would be to try dynamically
sizing the data structures to fit the application’s allocation behaviour, or to derive
the sizes during system startup from the heap size.

In this thesis project, modifications to the internal structure of the remembered
sets have been evaluated. It would be interesting to look at reducing the total
number of remembered sets as well. Regions that are bound to be collected at
the same time could in principle share a remembered set. One obvious such set of
regions is the young generation.

Another interesting idea is to try to reduce the number of empty remembered
sets. These include remembered sets for not yet used regions. Another category of
remembered sets that fall into this category is remembered sets which belong to a
continued humongous region. It is possible to allocate very large objects (humon-
gous is the term used in HotSpot) that needs to span several regions. Then the
remembered set for every region except the first and last will necessarily be com-
pletely empty, because in Java there cannot be references to object fields. Eliminat-
ing these empty remembered sets completely, or reducing their memory footprint
could be an optimization worth evaluating.
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Appendix A

Compact card set benchmarks

Note that the compact card set implementation is not included.

1 #include <cstd io>
2 #include <iostream>
3 #include <cs td l i b >
4 #include <thread>
5 #include <vector>
6 #include <sys / time . h>
7 #include <sys / r e sou r c e . h>
8
9 #include " compactCardMap . hpp "
10
11 template<typename Container>
12 void bench_inser t ions ( const unsigned N,
13 const unsigned n_threads ,
14 const unsigned i n s e r t i o n s ,
15 const unsigned n_cards ) {
16 Container map ;
17 Container ∗ mapptr = &map ;
18 CompactCardMap : : set_cards_per_region ( n_cards ) ;
19
20
21 for (unsigned i = 0 ; i < N; ++i ) {
22 std : : vector<std : : thread> threads ;
23 map . c l e a r ( ) ;
24 for (unsigned t = 0 ; t < n_threads ; ++t ) {
25 threads . push_back ( std : : thread ( [= ] ( ) {
26 for (unsigned c = 0 ; c < i n s e r t i o n s ; ++c ) {
27 s i z e_t card = random ( ) % n_cards ;
28 mapptr−>i n s e r t ( card ) ;
29 }
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30 }) ) ;
31 }
32
33 for (auto & t : threads ) {
34 t . j o i n ( ) ;
35 }
36 }
37 } ;
38
39
40 volat i le s i z e_t global_var = 3047 ;
41 template<typename T>
42 void eat (T va l ) {
43 global_var ^= val ;
44 } ;
45
46 s i z e_t time_between ( struct rusage & t0 , struct rusage & t1 )

{
47 long long s e c_d i f f = t1 . ru_utime . tv_sec − t0 . ru_utime .

tv_sec ;
48 long long use c_d i f f = t1 . ru_utime . tv_usec − t0 . ru_utime .

tv_usec ;
49 long long r e s u l t = s e c_d i f f ∗ 1000000 + usec_d i f f ;
50 return ( s i z e_t ) r e s u l t ;
51 } ;
52
53 template <typename Container>
54 double bench_i te ra t i ons ( const unsigned i n s e r t s ,
55 const unsigned i t e r a t i o n s ,
56 const unsigned n_cards ) {
57 CompactCardMap : : set_cards_per_region ( n_cards ) ;
58 srandom (4711) ;
59 s i z e_t tota l_microseconds = 0 ;
60 for (unsigned i = 0 ; i < i t e r a t i o n s ; ++i ) {
61 Container bag ;
62 for (unsigned j = 0 ; j < i n s e r t s ; ++j ) {
63 s i z e_t va l = random ( ) % n_cards ;
64 bag . i n s e r t ( va l ) ;
65 }
66 struct rusage ru_before , ru_after ;
67 ge t rusage (RUSAGE_SELF, &ru_before ) ;
68 for (auto i t = bag . begin ( ) ; ! i t . done ( ) ; ++i t ) {
69 eat (∗ i t ) ;
70 }

48



71 get rusage (RUSAGE_SELF, &ru_after ) ;
72 tota l_microseconds += time_between ( ru_before , ru_after ) ;
73 }
74 double average_time = double ( tota l_microseconds ) /

i t e r a t i o n s ;
75 p r i n t f ( "Used␣%lu ␣microseconds ␣ f o r ␣%u␣ i t e r a t i o n s ␣ ( avg␣%l f ␣

microseconds / i t e r a t i o n ) \n " , tota l_microseconds ,
i t e r a t i o n s ,

76 average_time ) ;
77 return average_time ;
78 }
79
80 int main ( ) {
81 unsigned i n s e r t i o n s ;
82 std : : c in >> i n s e r t i o n s ;
83 p r i n t f ( "===========␣Benchmarks␣ f o r ␣%u␣ i n s e r t i o n s ␣

============\n" ,
84 i n s e r t i o n s ) ;
85 double avg_compact = bench_iterat ions<CompactCardMap>(
86 i n s e r t i o n s , 4096 /∗ i t e r a t i o n s ∗/ , 1 << 16 /∗ cards ∗/ ) ;
87 double avg_bloom = bench_iterat ions<BloomFilter >(
88 i n s e r t i o n s , 4096 /∗ i t e r a t i o n s ∗/ , 1 << 16 /∗ cards ∗/ ) ;
89 double savings_in_percent =
90 100 ∗ ( avg_bloom − avg_compact ) / avg_bloom ;
91 p r i n t f ( "Compact␣ i s ␣~% l f ␣%%␣ f a s t e r \n " , savings_in_percent ) ;
92 p r i n t f ( "%l f \ t%l f \n " , avg_bloom , avg_compact ) ;
93 return 0 ;
94 }
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LRU cache benchmark

B.1 BenchMarkResults.java

1 package ansjob . benchmarks . l rubench . domain ;
2
3 import ansjob . benchmarks . l rubench . domain . U t i l s . Pair ;
4 import java . u t i l . ArrayList ;
5 import java . u t i l . LinkedHashMap ;
6 import java . u t i l . L i s t ;
7 import java . u t i l . LongSummaryStatist ics ;
8
9 class BenchMarkResults {
10
11 long t o t a l I t e r a t i o n s ;
12 long tota lCacheMisses ;
13 LinkedHashMap<Integer , Pair<DomainItem , Str ing>> cache ;
14 Lis t<Long> missedDeadl ines = new ArrayList <>() ;
15 LongSummaryStatist ics deadLineStats ;
16
17 }
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B.2 DomainItem.java

1 package ansjob . benchmarks . l rubench . domain ;
2 import stat ic ansjob . benchmarks . l rubench . domain . U t i l s .

randomString ;
3
4 import java . u t i l .Random ;
5
6 class DomainItem {
7
8 public int id ;
9 public int l i k e s ;
10 public St r ing name ;
11 public St r ing [ ] imageUrls ;
12
13 DomainItem ( int id ) {
14 this . id = id ;
15 Random r = new Random( id ) ;
16 l i k e s = r . next Int (5000000) ;
17 int maxNameLength = 32 ;
18 int maxImages = 8 ;
19 int maxUrlLength = 32 ;
20 name = randomString ( r , r . next Int (maxNameLength) ) ;
21 imageUrls = new St r ing [ r . next Int (maxImages ) ] ;
22 for ( int i = 0 ; i < imageUrls . l ength ; ++i ) {
23 imageUrls [ i ] = randomString ( r ,
24 r . next Int (maxUrlLength ) ) ;
25 }
26 }
27
28 @Override
29 public int hashCode ( ) {
30 return id ;
31 }
32
33 @Override
34 public boolean equa l s ( Object o ) {
35 DomainItem x = (DomainItem ) o ;
36 return x . id == id ;
37 }
38
39 }
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B.3 RequestThread.java

1 package ansjob . benchmarks . l rubench . domain ;
2
3 import java . u t i l . ∗ ;
4 import stat ic ansjob . benchmarks . l rubench . domain . U t i l s . ∗ ;
5
6 class RequestThread extends Thread {
7
8 private f ina l long endMi l l i s ;
9 private long i t e r a t i o n s ;
10 private long cacheMisses ;
11 private f ina l int maxId ;
12 private f ina l Random rand ;
13 private f ina l boolean templatingMode ;
14 private f ina l long goa lMi l l i sPe rReque s t = 300 ;
15 private f ina l ArrayList<Long> missedDeadl ines ;
16 private long t ra shVar i ab l e ;
17
18 private f ina l LinkedHashMap<
19 Integer ,
20 Pair<DomainItem , Str ing>> cache ;
21
22 public RequestThread (Random r ,
23 boolean templatingMode ,
24 int maxId ,
25 LinkedHashMap<Integer ,
26 Pair<DomainItem , Str ing>> cache ,
27 long endMi l l i s ) {
28 this . missedDeadl ines = new ArrayList <>() ;
29 this . cache = cache ;
30 this . templatingMode = templatingMode ;
31 this . e ndMi l l i s = endMi l l i s ;
32 this . maxId = maxId ;
33 this . rand = r ;
34 }
35
36 @Override
37 public void run ( ) {
38 while ( true ) {
39 long startTime = System . cur rentT imeMi l l i s ( ) ;
40 i f ( startTime > endMi l l i s ) {
41 return ;
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42 }
43 i t e r a t i o n s++;
44 Pair<DomainItem , Str ing> entry = null ;
45 int nextId = rand . next Int (maxId ) ;
46 synchronized ( cache ) {
47 i f ( cache . containsKey ( nextId ) ) {
48 entry = cache . get ( nextId ) ;
49 }
50 }
51 i f ( entry == null ) {
52 cacheMisses++;
53 DomainItem item = new DomainItem ( nextId ) ;
54 St r ing textRepre senta t i on ;
55 i f ( templatingMode ) {
56 textRepre senta t i on = getHtml ( item ) ;
57 } else {
58 textRepre senta t i on = null ;
59 }
60
61 entry = new Pair<>(item , t extRepre senta t i on ) ;
62 synchronized ( cache ) {
63 cache . put ( nextId , entry ) ;
64 }
65 }
66 long endTime = System . cur r entT imeMi l l i s ( ) ;
67 long requestTime = endTime − startTime ;
68 i f ( requestTime > goa lMi l l i sPe rReques t ) {
69 missedDeadl ines . add ( requestTime ) ;
70 }
71 consume ( entry ) ;
72 }
73 }
74
75 public long g e t I t e r a t i o n s ( ) {
76 return i t e r a t i o n s ;
77 }
78
79 public long getCacheMisses ( ) {
80 return cacheMisses ;
81 }
82
83 private void consume ( Pair<DomainItem , Str ing> cachedEntry )

{
84 t ra shVar i ab l e += cachedEntry . f i r s t . id ;
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85 }
86
87 private stat ic f ina l St r ing header =
88 randomString (new Random(0) , 1000) ;
89 private stat ic f ina l St r ing f o o t e r =
90 randomString (new Random(−1) , 200) ;
91
92 private stat ic f ina l St r ing [ ] intermediateHtmlChunks = {
93 randomString (new Random(1) , 512) ,
94 randomString (new Random(2) , 512) ,
95 randomString (new Random(3) , 100) ,
96 randomString (new Random(4) , 50)
97 } ;
98
99 private St r ing getHtml (DomainItem item ) {

100 S t r i ngBu i l d e r sb = new St r i ngBu i l d e r (8 ∗ 1024) ;
101 sb . append ( header ) ;
102 sb . append ( item . name) ;
103 sb . append ( intermediateHtmlChunks [ 0 ] ) ;
104 sb . append ( item . l i k e s ) ;
105 sb . append ( intermediateHtmlChunks [ 1 ] ) ;
106 i f ( item . imageUrls != null ) {
107 for ( S t r ing u r l : item . imageUrls ) {
108 sb . append ( intermediateHtmlChunks [ 2 ] ) ;
109 sb . append ( u r l ) ;
110 sb . append ( intermediateHtmlChunks [ 3 ] ) ;
111 }
112 }
113 sb . append ( f o o t e r ) ;
114 return sb . t oS t r i ng ( ) ;
115
116 }
117
118 public List<Long> getMissedDeadl ines ( ) {
119 return missedDeadl ines ;
120 }
121
122 public long getTrashValue ( ) {
123 return t ra shVar i ab l e ;
124 }
125
126 }
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B.4 Runner.java

1 package ansjob . benchmarks . l rubench . domain ;
2
3 import ansjob . benchmarks . l rubench . domain . U t i l s . Pair ;
4 import java . u t i l . ArrayList ;
5 import java . u t i l . Date ;
6 import java . u t i l . LinkedHashMap ;
7 import java . u t i l . L i s t ;
8 import java . u t i l .Map. Entry ;
9 import java . u t i l .Random ;
10 import org . apache . commons . c l i . ∗ ;
11
12 public class Runner {
13
14 public stat ic void main ( St r ing [ ] a rgs ) throws

Inte r ruptedExcept ion {
15 CommandLine c l i = null ;
16 Options opt ions = getOptions ( ) ;
17 try {
18 CommandLineParser c l i P a r s e r = new GnuParser ( ) ;
19 c l i = c l i P a r s e r . parse ( opt ions , args ) ;
20 } catch ( ParseException ex ) {
21 pr intHe lp ( opt ions ) ;
22 System . e x i t (−1) ;
23 }
24
25 i f ( c l i . hasOption ( " he lp " ) ) {
26 pr intHe lp ( opt ions ) ;
27 return ;
28 }
29
30 System . out . p r i n t f (
31 "Running␣ ansjob ␣LRU␣Templating␣Benchmark\n " ) ;
32
33 int requestThreads = In t eg e r . pa r s e In t (
34 c l i . getOptionValue ( " threads " , " 4 " ) ) ;
35 int cacheS i ze = In t eg e r . pa r s e In t (
36 c l i . getOptionValue ( " work ingset " , " 50000000 " ) ) ;
37 int t imeLimit = In t eg e r . pa r s e In t (
38 c l i . getOptionValue ( " durat ion " , " 1800 " ) ) ;
39 boolean useTemplates = Boolean . parseBoolean (
40 c l i . getOptionValue ( " templat ing " , " f a l s e " ) ) ;
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41 Runner runner = new Runner ( requestThreads ,
42 useTemplates , cacheSize , t imeLimit ) ;
43 runner . pr intParameters ( ) ;
44 runner . runBenchmark ( ) ;
45 BenchMarkResults r e s u l t s = runner . g e tResu l t s ( ) ;
46 p r i n tRe su l t s ( r e s u l t s ) ;
47 }
48
49 private stat ic Options getOptions ( ) {
50 Options opt ions = new Options ( ) ;
51
52 opt ions . addOption ( " he lp " , false ,
53 " p r i n t s ␣ he lp ␣message " ) ;
54 opt ions . addOption ( " threads " , true ,
55 " number␣ o f ␣ request−gene ra t ing ␣ threads " ) ;
56 opt ions . addOption ( " work ingset " , true ,
57 " number␣ o f ␣ e lements ␣ in ␣ the ␣LRU␣cache " ) ;
58 opt ions . addOption ( " durat ion " , true ,
59 " the ␣ time␣ to ␣ execute ␣ the ␣ p a r a l l e l ␣ threads "
60 + " ␣ be f o r e ␣ stopping ␣ ( in ␣ seconds ) " ) ;
61 opt ions . addOption ( " templat ing " , true ,
62 " wether ␣ to ␣use ␣ or ␣not␣ to ␣use ␣ the "
63 + " ␣ templat ing ␣mode␣ ( t rue / f a l s e ) . ␣ "
64 + " Defau l t ␣ va lue ␣ i s ␣ f a l s e " ) ;
65
66 return opt ions ;
67 }
68
69 private stat ic void pr intHe lp ( Options opt ions ) {
70 HelpFormatter p r i n t e r = new HelpFormatter ( ) ;
71 p r i n t e r . pr intHe lp ( " l rubench " , opt ions ) ;
72 }
73
74 private LinkedHashMap<Integer , Pair<DomainItem , Str ing>>

cache ;
75 private List<RequestThread> requestThreads = new ArrayList

<>() ;
76 private f ina l long nThreads ;
77 private f ina l long endMi l l i s ;
78 private f ina l int cacheS i ze ;
79 private f ina l boolean useTemplates ;
80
81 private Runner ( int requestThreads ,
82 boolean useTemplates ,
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83 int cacheSize ,
84 int t imeLimit ) {
85 this . useTemplates = useTemplates ;
86 cache = new LinkedHashMap<Integer ,
87 Pair<DomainItem , Str ing>>
88 ( cacheSize , ( f loat ) 0 . 75 , true /∗ acces s order ∗/ ) {
89
90 boolean saturat ionReached = fa l se ;
91
92 @Override
93 protected boolean removeEldestEntry (
94 Entry<Integer , Pair<DomainItem , Str ing>> entry ) {
95 i f ( ! saturat ionReached &&
96 s i z e ( ) >= cacheS i ze ) {
97 System . out . p r i n t f (
98 " [%s ] ␣ Saturat ion ␣ reached ! \ n " ,
99 new Date ( ) ) ;

100 saturat ionReached = true ;
101 }
102 return s i z e ( ) > cacheS i ze ;
103 }
104 } ;
105 this . cacheS i ze = cacheS i ze ;
106 endMi l l i s = System . cur rentT imeMi l l i s ( ) + timeLimit ∗

1000 ;
107 nThreads = requestThreads ;
108 }
109
110 private void runBenchmark ( ) throws Inte r ruptedExcept ion {
111 int maxId = this . cacheS i ze ∗ 2 ;
112 for ( int i = 0 ; i < nThreads ; ++i ) {
113 RequestThread t = new RequestThread (
114 new Random( i ) , useTemplates , maxId ,
115 cache , endMi l l i s ) ;
116 requestThreads . add ( t ) ;
117 t . s t a r t ( ) ;
118 }
119
120 for ( Thread t : requestThreads ) {
121 t . j o i n ( ) ;
122 }
123 }
124
125 private BenchMarkResults g e tResu l t s ( ) {
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126 BenchMarkResults r e s = new BenchMarkResults ( ) ;
127 for ( RequestThread t : requestThreads ) {
128 r e s . tota lCacheMisses += t . getCacheMisses ( ) ;
129 r e s . t o t a l I t e r a t i o n s += t . g e t I t e r a t i o n s ( ) ;
130 r e s . cache = cache ;
131 r e s . missedDeadl ines . addAll ( t . getMissedDeadl ines ( ) ) ;
132 }
133 r e s . deadLineStats = r e s . missedDeadl ines .
134 stream ( ) .mapToLong ( ( x ) −> x) .
135 summaryStat i s t i c s ( ) ;
136 return r e s ;
137 }
138
139 private stat ic void pr i n tRe su l t s ( BenchMarkResults r e s u l t s )

{
140 System . out . p r i n t f (
141 "Benchmark␣completed , ␣ "
142 + " cache ␣ s i z e ␣ at ␣ terminat ion : ␣%d\n"
143 , r e s u l t s . cache . s i z e ( ) ) ;
144 System . out . p r i n t f (
145 " \ tTota l ␣ i t e r a t i o n s : ␣%d\n" ,
146 r e s u l t s . t o t a l I t e r a t i o n s ) ;
147 System . out . p r i n t f (
148 " \ tTota l ␣ cache ␣misses : ␣%d\n" ,
149 r e s u l t s . tota lCacheMisses ) ;
150 System . out . p r i n t f (
151 " \ tDeadl ine ␣missed ␣ s t a t s (ms) : ␣%s \n" ,
152 r e s u l t s . deadLineStats ) ;
153 }
154
155 private void pr intParameters ( ) {
156 System . out . p r i n t l n ( " Parameters : " ) ;
157 System . out . p r i n t l n ( "===========" ) ;
158 System . out . p r i n t l n ( " \ tCache␣ s i z e : ␣ "
159 + this . cacheS i ze ) ;
160 System . out . p r i n t l n ( " \ tUsing ␣ templates : ␣ "
161 + this . useTemplates ) ;
162 System . out . p r i n t l n ( " \ tnThreads : ␣ "
163 + this . nThreads ) ;
164 }
165
166 }
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B.5 Utils.java

1 package ansjob . benchmarks . l rubench . domain ;
2
3 import java . u t i l .Random ;
4
5 public class Ut i l s {
6
7 public stat ic class Pair<T, U> {
8
9 public T f i r s t ;
10 public U second ;
11
12 public Pair (T f i r s t , U second ) {
13 this . f i r s t = f i r s t ;
14 this . second = second ;
15 }
16 }
17
18 public stat ic St r ing randomString (Random r , int l ength ) {
19 S t r i ngBu i l d e r sb = new St r i ngBu i l d e r ( l ength ) ;
20 for ( int i = 0 ; i < length ; ++i ) {
21 sb . append ( ( char ) r . next Int (
22 Character .MAX_CODE_POINT) ) ;
23 }
24 return sb . t oS t r i ng ( ) ;
25 }
26
27 }
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