
Crowdsourcing public transport data via live
mobile tracking

Feasibility study of a system capable of collecting mobile data to build a database of
public transit routes, stops and timetables, using machine learning techniques and

graph theory

PAUL LAGRÉE

Master’s Thesis at Amadeus
Academic Supervisor & Examiner: Stefan Carlsson

Industrial Supervisor: Domenico De Fano

TRITA xxx yyyy-nn

Abstract
Millions of people use public transport systems everywhere
in the world, while the number of smartphones connected
to the Internet is dramatically increasing. The aim of this
thesis is to study, design, and prototype a system to collect
data from the mobile devices of regular public transport
users and analyse them in order to provide useful informa-
tion to travellers all over the world. To study the feasi-
bility of this project at a large scale, data will be created
to simulate what will be collected via mobile phone appli-
cations. The main objective of this paper is to study the
effect of data mining techniques on mapping original trans-
port routes with associated timetables.

Referat
Crowdsourcing av kollektivtrafikdata via

direkt mobilspårning
Miljontals personer använder kollektivtrafik överallt i värl-
den och antalet smartphones med internetanslutning stiger
dagligen. Avsikten med den här avhandlingen är att under-
söka, skapa och testa ett system som samlar och analyserar
data från mobiltelefoner av kollektivtrafikanvändare såatt
anväÃ¤ndbar information kan bli tillgänglig till resande
världen över. För att generellt undersöka möjligheten med
ett sådant projekt kommer data att skapas för att simulera
informationen som är tänkt att senare samlas från resandes
mobiletelefoner. Huvudsyftet med den här avhandlingen är
att undersöka data mining effekter i kartläggningen av ur-
sprungliga transportsträckor och dess tidtabeller.

Acknowledgements
My first thanks go to my tutor at Amadeus Domenico de Fano who gave me

advice and support along the time I spent in the company. I also want to thank
Stefan Carlsson for accepting to supervise my thesis as Academic professor.

The project on which relies this thesis was carried out at Amadeus, in Sophia
Antipolis, France. This is a 6-month work which was done between August 2013
and January 2014 and along which I met very nice people both among other interns
and staff employees. Many thanks to all of them.

Finally, I would like to thank my family who has not stopped supporting me all
along my studies.

Contents

1 Introduction 1
1.1 Amadeus . 1
1.2 The public transport problem . 1

1.2.1 Crowdsourcing mobile data to feed transport transit routes . 2
1.2.2 Problem definition . 2

2 Simulation 3
2.1 Web transport data extraction . 3
2.2 Data simulation . 3

2.2.1 Geographic simulation . 3
2.2.2 Timetable simulation . 4

I Spatial mining 5

3 Density-Based Clustering 7
3.1 Introduction . 7

3.1.1 Motivation . 7
3.1.2 Cluster analysis . 7

3.2 DBSCAN . 9
3.2.1 Density measures for clustering 9
3.2.2 Algorithm . 10
3.2.3 DBSCAN limitations . 10

3.3 OPTICS . 12
3.3.1 Idea underlying OPTICS . 12
3.3.2 Algorithm . 12

3.4 Implementation and results . 14
3.4.1 Stop clustering with DBSCAN 14

4 Graph representation 17
4.1 Graph theory . 17
4.2 Graph community detection . 18

4.2.1 Communities and modularity 18
4.2.2 Random walks . 19

4.2.3 Distance on vertices using random walks 20
4.2.4 Algorithm . 21

4.3 Implementation and results . 21
4.3.1 Stop clustering according to direction 21
4.3.2 Public transport route design 22

4.4 Conclusion . 24

II Spatio-temporal mining 27

5 Spatio-Temporal Clustering 29
5.1 Introduction . 29
5.2 Coherent Moving Cluster (CMC) . 30

5.2.1 Definitions . 30
5.2.2 Algorithm . 30

5.3 Convoy discovery using Trajectory Simplification (CuTS) 32
5.4 CMC on GPS tracks . 33

5.4.1 Implementation & first results 33
5.4.2 Convoy fusion . 34

6 Repeated pattern recognition 39
6.1 Motivations & objective . 39
6.2 Distance on days . 39
6.3 Smart scanning . 40

7 Conclusion 43
7.1 Conclusions and limitations . 43
7.2 Further work . 44

Bibliography 45

Chapter 1

Introduction

1.1 Amadeus
Amadeus is a originally a global distribution system (GDS) founded by Air

France, Iberia, Lufthansa and SAS, four major European airlines. A GDS is a
service that automates transactions between service providers (e.g. airlines) and
booking agents. Over the last years, the group has tried to enlarge its services to
cover different different aspects of the travel industry. Today, besides its ticketing,
pricing and booking services, Amadeus provides additional services to airlines, air-
ports and travel agents, such as tools for flight scheduling, delay managements or
departure control.

Figure 1.1: Amadeus logo

Amadeus has also enlarged its offer to other actors of the travel industry such
as railways companies and hotels, in order to be able to serve the largest number
of actors and improve the whole travel experience. With this aim in mind, covering
all the transportation actors from the bus lines to go to the airport to the airlines
themselves has become one of the important challenges for Amadeus.

1.2 The public transport problem
Nowadays, public transport data are really scattered. Many companies provid-

ing transportation in cities do not share their timetables. For a user, it means that

1

CHAPTER 1. INTRODUCTION

he has to use a specific website (or mobile application) for every city. If there are
different operators in the same city, one can even expect to be obliged to use the
different services independently, one application for each operator, without any easy
connections between them. Some actors offer the possibility to operators to upload
their transport network information on services such as Google Maps. However,
these data are not largely accessible and rely mostly on operators’ will to share
their transport data, which brings problems at a world scale.

Thanks to the Open data trend, one can expect that having access to these data
will get easier in the future. However, here comes another problem: how can we
collect public transport data of cities where bus line maps do not even exist? Dhaka
for instance is considered as one of the most blocked city in the world, even though
only a low 1% of people owns a car. The bus network is composed of many bus
lines operated by numerous different companies. Nevertheless, there was not any
map available before a group of MIT students tried to map existing lines with the
help of mobile phones [1]. This project was the original idea of the current project
hosted at Amadeus and developed in this thesis.

1.2.1 Crowdsourcing mobile data to feed transport transit routes
This thesis relies on the proposal of a platform for manual and automated data

collection that would allow service user information aggregation such as GPS tra-
jectories and associated times. Then, these data would be analysed and clustered
in order to gradually build a global database of public transportation systems that
everyone could access to get information about routes, timetables, etc.

Besides the data collection, algorithms would run on the current state of the
database to extract information such as stop locations, stop order in a given di-
rection or transport timetables. The current thesis focuses on this information
extraction and proposes algorithms to merge user journeys into lines with stop se-
quences and associated timetables. The database feeding via mobile phone tracking
is not discussed in the current paper.

1.2.2 Problem definition
The current thesis aims at proposing a solution to extract the ordered sequence

of stops with their geographic locations, and if possible, the timetable associated to
a line. The solution presented in the current thesis relies on a dataset of journey
recordings which could be collected with service user participation. Journeys are
objects which contain data such as the GPS track followed during the recording and
its line number.

2

Chapter 2

Simulation

To the best of our knowledge, there is no large dataset available containing GPS
tracks of journeys on public transports. Vieira et al. [2], use an interesting dataset
of 145 moving scholar buses around Athens, Greece [3] in their article about on-line
discovery of flock patterns. However, to test the robustness of the method developed
in this thesis, we decided to simulate a large dataset using data from the bus line
operator around the area of Nice.

2.1 Web transport data extraction

A public company operates in the region of Nice and provides users stop names
and locations for each line with the associated timetable on the website www.
ceparou06.fr. The dataset used in the following work has been created by scraping
this website and simulating journeys which would be undertaken on these lines.

After running a script to scrap a bus line, we have in a local database its stop
names and locations and the timetable for the whole day (schedule at each stop for
every ride). The process can be looped through several days or months to store
the timetable for different days (week or weekend) and periods (working period or
holidays). We will try to map all these data once we will have simulated mobile
users journeys.

2.2 Data simulation

2.2.1 Geographic simulation

The objective was to be as close as possible to reality when simulating data.
In order to achieve this, noise and errors have been added to the simulated data.
The spatial simulation follows the process explained here. Two stops are randomly
chosen following a uniform distribution. Then, all intermediate stops are used to
create an ordered list from the departure stop to the arrival stop. Using the open
source software OSRM [4] (Open Source Routing Machine) which relies on the

3

CHAPTER 2. SIMULATION

OpenStreetMap data, a physical path is computed for every 2 consecutive stops.
The path is transformed into a sequence of points with noise to simulate a GPS
signal. The noise has two components:

– noise on a point following a Gaussian distribution
– noise on the distance of 2 consecutive points (also following a Gaussian dis-

tribution even if reality would probably not give such a distribution). This
noise is supposed to simulate variations of speed along a GPS track.

2.2.2 Timetable simulation
Mobile devices tag GPS signals with timestamps: a time is associated to every

spatial location. After generating a noisy path between 2 randomly chosen stops
of a given line, we compute a temporal path based on the real timetable scraped
in the first part. Once again, noise is added to the simulated temporal sequence of
timestamps. Indeed, as many people can experiment it all over the world, public
transports sometimes suffer from regular delays due to weather, traffic or even
accidents. Once again, noise has been divided into 2 components:

– accumulated delay corresponds to the delay which piles up from the beginning
of a line until a given point further. It means that the delay at a stop Si

depends only on the delay at the previous stop Si−1 to which we add a random
number corresponding to the delay accumulated between stops Si−1 and Si

(possibly negative if the vehicle caught up
– uniform noise corresponds to the small accelerations and slowing downs along

a journey. It follows a Gaussian distribution and is added to the accumulated
delay.

Obviously, a corrector scans the computed timestamps to check that the gener-
ated sequence is strictly increasing and if not, a local correction is done.

This whole process is run for each simulated journey. The whole simulation
takes two parameters into account: the number of required journeys and the ratio
of wrong journeys (mistakes deliberately shared or not). In our model, mistakes
correspond to journeys between two random points around the region of the chosen
line. Departure and arrival names are chosen among the real ones. A simulation
typically creates 3 000 journeys with 5% of mistakes.

4

Part I

Spatial mining

5

Chapter 3

Density-Based Clustering

3.1 Introduction

3.1.1 Motivation

Physical stops (and logical stops on a wider scale) are basic elements which are
required to solve most further problems such as finding ordered stop sequences and
line timetables. This observation led us to focus on extracting stop locations first.

In order to model our system we assume that for every user journey we would
obtain at least departure and arrival stops, together with the journey GPSi tracks.
On a large scale, the database contains many journeys for every line with the de-
parture and arrival locations tagged by their name. This chapter aims at proposing
a solution to extract an unknown number of physical stops. Indeed, even though
examples given to the learner are labelled (stop names), we cannot rely on this
information because noise has been introduced to data and because two distinct
physical stops may have the same name (on the opposite directions for example).
We will consider the current problem as a problem of unsupervised learning, that
is to say we will not use name labels attached on stop locations.

3.1.2 Cluster analysis

Unsupervised learning is the problem of finding hidden structures in unlabelled
data. In our case, we aim at finding physical stops in a dataset composed of many
geographic dots by grouping them in such a way that GPS signals transmitted near
the same stop will end up in the same group.

The task of grouping objects from a dataset in such a way that similar ones end
up in the same groups is called clustering analysis. Various algorithms exist to
cluster datasets. However they differ significantly in the method employed to create
clusters. The most popular classes of clustering algorithms include:

– Hierarchical clustering: It is a family of clustering algorithms which aims at
building a hierarchy of clusters usually presented in a tree (also called den-
drogram). Two types can be employed to build the tree. The agglomerative

7

CHAPTER 3. DENSITY-BASED CLUSTERING

strategy merges successively small similar clusters to make bigger ones until
all samples end up in a unique cluster. At the beginning, each observation has
its own cluster, and by grouping them in successive steps, one can build the
final dendrogram. Joe H. Ward, Jr. proposed a general procedure to follow
the agglomerative method [5]. An objective function must be maximised to
decide which clusters to merge at each step. In the article, Ward uses the
error sum of squares as the objective function, but any function can be chosen
as long as it "reflects the relative desirability of groupings". The divisive strat-
egy employs the opposite strategy. All observations start in a unique cluster.
Clusters are divided successively to build the tree in a top-to-bottom strategy.
Once a dendrogram has been built, the user can choose the depth of the tree
to use according to a clustering measure. An example of a dendrogram is
available in figure 6.1

– Partitioning clustering: Also called centroid-based clusterings, these algo-
rithms represent each cluster by a central vector. They produce spherical
clusters around k centroids where k is given as an input parameter. The al-
gorithm starts with an initial partition of the dataset D (can be done with
a random initialisation) and iterates on the k centroids trying to minimise
an objective function based on the cumulated distance of every sample to
its centroid. In the famous k-means, the gravity centre is used as centroid
of the cluster. Mathematically, k-means can be summarised as the following
problem. Given a dataset D = (x0, x1, ..., xn) where each xi ∈ E and E is a
metric space of dimension d, k-means aims at minimising the within-cluster
sum of squares (WCSS):

arg min
S

k∑
i=1

∑
xj∈Si

∥∥xj − µi

∥∥2

where each µi is the mean of all observations clustered in set Si and S =
S1, S2, ..., Sk is a partition of the dataset S. In the end, each observation is
assigned to the cluster’s closest centroid. This rule implies that the partition
is equivalent to a Voronoi diagram (c.f. figure 3.1). The standard version of
k-means was first published in 1965 [6] but Lloyd [7] had already proposed a
similar algorithm in 1957 which was not published publicly before 1982.

– Density-based clustering: The two previous classes of algorithms have prob-
lems with our GPS location dataset. Hierarchical algorithms are quite slow
(in general case O(m2 log m) where m is the number of samples in the dataset
as shown in [8]) and therefore limit the size of datasets used as input. In our
case, we aim at clustering relatively big datasets so the hierarchical clustering
does not seem to be a good method to process our data. Moreover, choosing
the right depth where to cut the dendrogram would be really complicated
because data contain noise and because the number of clusters to be found is
unknown. Partitioning clustering finds clusters with a specific shape (spheres)
and every cluster is included in a cell of a Voronoi partition of the dataset

8

3.2. DBSCAN

Figure 3.1: A Voronoi diagram.

space. GPS positions agglomerated through mobile user participation may
create clusters of any shape and therefore centroid-based algorithms are not
a good solution. Moreover, once again, automatically finding k would be a
problem because every line is different. A third major class of algorithms
has therefore been introduced to "Discover clusters in large spatial databases
with noise" in 1996 [9]. This technique relies on a new definition of clusters:
regions where the density of samples is much higher than in the rest of the
dataset and which are separated by low-density regions. Another important
advantage compared to the two previous classes of algorithms is that density-
based clustering handles noise in the dataset. In the two next sections, we
will focus on DBSCAN and OPTICS, the two major methods of density-based
clustering.

3.2 DBSCAN

In this section, we remind the main definitions behind DBSCAN clustering. In
the first part, we introduce definitions to handle densities. We give the DBSCAN
algorithm in the second part. The whole section relies on the original article [9].
The samples from the dataset are elements of a metric space E with a metric d.

3.2.1 Density measures for clustering

Intuitively, we may consider that a group of points forms a dense cluster if, given
a surface, more than a certain number of points are inside. The DBSCAN algorithm
relies on this intuition. However, it uses a local definition of density to find clusters
by expanding small dense areas. We defined the ϵ-neighbourhood of a point P in
E as the closed ball of radius ϵ centred at P .

9

CHAPTER 3. DENSITY-BASED CLUSTERING

Definition 1 (ϵ-neighbourhood).

Nϵ(P) = {Q ∈ E | d(P, Q) ≤ ϵ}

The main idea given by DBSCAN is the definition of a density-reachability,
allowing us to connect points to each others.

Definition 2 (density-reachability). A point P is directly density-reachable from a
point Q with respect to ϵ and minPts if:

1. P ∈ Nϵ(Q)
2. Card(Nϵ(Q)) ≥ minPts

A point P is density-reachable from a point Q with respect to ϵ and minPts if: it
exists n ∈ N, P1, ..., Pn with P1 = Q and Pn = P such that for all (Pi+1, Pi), Pi+1
is directly density-reachable from Pi.

Note that the density-reachability is not a symmetric concept. Indeed, if P is
density-reachable from Q with respect to ϵ and minPts, it means that Card(Nϵ(Q))
is superior to minPts, but it does not necessarily imply that the cardinal of the
ϵ-neighbourhood of P is also greater than minPts. Two points are said density-
connected if there are density-reachable from a same point R ∈ E, with respect to
ϵ and minPts.

A cluster C is then defined as a maximal set of density-connected points: all
its elements are density-connected to each others and any other point in E is not
density connected to any element in C. Points which do not belong to any cluster
are called noise. Other points belong to a cluster and can be divided in both groups
defined below:

Definition 3 (core points and border points). A point P is a core point if P belongs
to a cluster C and if Card(Nϵ(P)) ≥ minPts.
A point P in a cluster C which is not a core point is called a border point.

3.2.2 Algorithm
DBSCAN is given in the algorithm 1. An arbitrary point P is chosen and the

algorithm retrieves all density-reachable points from this point. If P is a core point,
the algorithm extends the point to an entire cluster, looking for every point Q so
that P and Q are density-connected to each other. The whole algorithm ends when
all points have been analysed (by a core point expansion, or by the big loop in the
main procedure). In the end, every point is tagged as a core object, a border object
or noise.

3.2.3 DBSCAN limitations
The main disadvantage of DBSCAN is its lack of flexibility to handle hetero-

geneity inside spatial data. Clusters of different densities may be discovered as a

10

3.2. DBSCAN

Algorithm 1 DBSCAN algorithm

procedure DBSCAN(SetOfPts, ϵ, minPts)
clusterId← nextId(NOISE) ▷ if NOISE = 0, first cluster is 1
for each point P in SetOfPts do

if P.ClId = null then
if ExpandCluster(SetOfPts, P, clusterId, ϵ, minPts) then

clusterId← nextId(clusterId)
end if

end if
end for

end procedure

procedure ExpandCluster(SetOfPts, Point, clId, ϵ, minPts)
NeighbourPts← SetOfPts.regionQuery(Point, ϵ)
if sizeof(NeighbourPts) ≤ minPts then ▷ no core point

Point.clId← NOISE
return false

else ▷ all points in NeighbourPts are density-reachable points
SetOfPts.changeClIds(NeighbourPts, clId)
remove Point from NeighbourPoints
while NeighbourPts ̸= ∅ do

currentP ← NeighbourPts.first()
Result← SetOfPts.regionQuery(currentP, ϵ)
if sizeof(Result) ≥ minPts then

for each point resultP in Result do
if resultP ∈ {null, NOISE} then

if resultP = null then
append resultP to NeighbourPts

end if
resultP.ClId← clId

end if
end for

end if
remove currentP from NeighbourPts

end while
return true

end if
end procedure

11

CHAPTER 3. DENSITY-BASED CLUSTERING

single one if the input parameters are chosen for the least dense cluster. On the
opposite, if we adjust parameters to fit dense clusters, low-density clusters will be
considered as noise by DBSCAN.

OPTICS was proposed in 1999 to fix these drawbacks. The following section
covers this second density-based clustering algorithm.

3.3 OPTICS
OPTICS was introduced by the same group of researchers, including two com-

mon authors [10], and relies mostly on the same definitions as DBSCAN. As said
previously, it gives more flexibility to input parameters and handles clusters of dif-
ferent densities.

3.3.1 Idea underlying OPTICS
The core idea of OPTICS is the construction of a diagram giving a score to

each object (called reachability-distance) by scanning the dataset. The reachability-
distance is defined as follows:

Definition 4 (reachability-distance). Let O be a core point and P a point. The
reachability-distance of P with respect to O, ϵ and minPts is defined as:

reachability − distanceϵ,minP ts(P, O) = max {MinPts− distance(O), d(O, P)}

where the n-distance of a core point is the distance from the point to its n-th farthest
neighbour. The reachability-distance is undefined for non core points.

Intuitively, the reachability-distance corresponds to the distance between two
points, except if P is too close to O, in which case we normalise the distance by the
core distance of O (MinPts− distance(O)).

3.3.2 Algorithm
OPTICS is given in the algorithm 2. Every point in SetOfPts has its reachaDist

attribute value initialised to null. Then all points are scanned, using a similar
process to DBSCAN. The n − distance used in the algorithm corresponds to the
minPts − distance used in the previous definitions. After running the algorithm
on setOfPts, all points have non undefined values to their reachaDist attribute
value.

Using the ordered list created to save the scan order, we can then build a diagram
summarising the effect of the algorithm (c.f. figure 3.2). On the x-axis, we represent
all scanned points in the visit order. On the y-axis is plotted the reachability-
distance. Valleys and peaks stand out from the diagram called reachability plot.
Clusters correspond to valleys and can be extracted easily by choosing a threshold
shown as a blue line in the figure.

12

3.3. OPTICS

Algorithm 2 OPTICS algorithm

procedure OPTICS(SetOfPts, ϵ, minPts)
Create an empty list orderedList
for each point P in SetOfPts do

if P.processed = false then
NeighbourPts← getNeighbours(SetOfPts, P, ϵ)
Point.processed← true
Append P to the orderedList
orderedSeeds← empty queue
if Point is a core point then

P.coreDistance← n− distance(P, setOfPts, minPts)
orderedSeeds.update(NeighbourPts, P)
while orderedSeeds not empty do

P ′ = orderedSeeds.pop() ▷ removes and returns first item
NeighbourPts′ ← getNeighbours(SetOfPoints, P ′, ϵ)
P ′.processed← true
Append P ′ to the orderedList
if P ′ is a core point then

P ′.coreDistance← n− distance(P ′, setOfPts, minPts)
orderedSeeds.update(NeighbourPts′, P ′, ϵ, minPts)

end if
end while

end if
end if

end for
end procedure

procedure OrderedSeeds::update(NeighbourPts, Point)
coreDistance← Point.coreDistance
for each Q in neighbourP ts do

if Q.processed = false then
currReachaDist← max {coreDistance, d(Point, Q)}
if Q.reachaDist = null then ▷ Q not in orderedSeeds

Q.reachaDist← currReachaDist
Insert Q in orderedSeeds given Q.reachaDist

else
if currReachaDist < Q.reachaDist then ▷ Update

Q.reachaDist← currReachaDist
Reorder orderedSeeds given previous update

end if
end if

end if
end for

end procedure

13

CHAPTER 3. DENSITY-BASED CLUSTERING

Figure 3.2: Reachability plot with clusters found by OPTICS

Intuitively, the reachability-distance of a point P corresponds to the distance to
the closest point among the already visited ones, normalised by the distance of its
minPts-th closest neighbours. Note that some points may keep a null reachability-
distance (the first point if it is a core point for example). This is not a problem
since we consider that points with such a value has an infinite reachability-distance
which is then superior to the threshold shown in figure 3.2.

3.4 Implementation and results
In the model presented in the previous chapter, the following information is

available for each journey:
– Departure stop name
– Arrival stop name
– noisy GPS path (sequence of locations/times from departure stop until arrival

stop)

3.4.1 Stop clustering with DBSCAN
The first step is to cluster departure and arrival points, every group of points

representing a physical stop. Indeed, even if every GPS point has a margin error
close to 10 meters, these points still create groups of higher density around the real
stops. To do so, the DBSCAN algorithm is used since it allows noise and unknown
number of clusters. OPTICS was not used in this work because it is not available
on the scikit-learn [11] master branch yet, the python library used in this work.
The results of a run of the algorithm on line 230 simulated data (used as the main
example in this paper) is given in figure 3.3.

The x-axis corresponds to the longitude, the y-axis to the latitude. The small
black dots are noise, approximately filling the region around the bus line. We can
notice an empty area on the bottom-right of the map, it corresponds to the sea.
The medium-size coloured dots correspond to stops which have been discovered by
the algorithm whereas the big-size dots correspond to real stops (coordinates used

14

3.4. IMPLEMENTATION AND RESULTS

at the simulation step). As we can see, the result is quite satisfactory and most
isolated stops are found.

Figure 3.3: DBSCAN on departure and arrival locations

15

Chapter 4

Graph representation

In the previous chapter, we introduced a method to extract the physical stops of
a public transport line. After running the algorithms, almost all regularly crossed
stops are found. The objective in this chapter is to group together stops in the
same direction and to design the line structure in a given direction. Using a graph
representation is quite natural since a single route can be split into two branches,
or at the opposite, two branches can be grouped together at a given stop. Graphs
can easily model such a structure.

4.1 Graph theory

In this section, we remind some graph theory basics. Readers familiar with this
topic may skip this section and go directly to the following section about Graph
Communities.

A graph G is a pair of sets (V, E) where V is the set of vertices (also called
nodes) and E is the set of edges. The number of vertices n = Card(V) is the order
of the graph while the number of edges m = Card(E) is called the size of the graph.
An element of E is a pair of vertices (v, w) with v and w in V and corresponds to a
connection between these two vertices. If the graph is undirected, the two endpoints
of an edge are unordered so we can write {v, w} instead of (v, w). On the opposite,
the pair is ordered in the case of a directed graph. We say a graph is complete if,
for each pair of vertices v and w in V , there is an edge (v, w) in E connecting them.
A weighted graph is a graph on which a function weight w : E −→ R is defined.
We can think about the distance as the weight function of a graph representing
geographic locations as vertices and routes as edges. The adjacency matrix A of a
graph G is a matrix of size n× n where

aij = w(i, j) for all (i, j) ∈ V 2

If the graph is not weighted, w is just the function which outputs 1 if there is an
edge between the two vertices and 0 otherwise.

17

CHAPTER 4. GRAPH REPRESENTATION

A subgraph S of G is a graph whose vertices and edges constitute respectively a
subset VS of V and a subset ES of E, such that for each (v, w) in ES , v and w are
in VS .

The degree of a vertex v is the number of edges which have v as an endpoint. In
case of a directed graph, we define the indegree as the number of edges incident on
a given vertex v (v is then called a target for these edges) and the outdegree as the
number of edges leaving from a given vertex (v is called the source).

A walk is an alternating sequence of vertices and edges starting and finishing
with a vertex. Each edge has as endpoints the previous and following vertices in
the walk sequence. The length of a walk corresponds to the number of vertices.

4.2 Graph community detection
Using departure and arrival locations of every journey, we build a directed graph

whose vertices are stops and whose weights correspond to the number of journeys
recorded between sources and targets. This approach allows us to avoid to connect
stops which are crossed but where the vehicle does not stop on a given direction. If a
user checks in at intermediary stops, the journey is stored as a set of small journeys,
each one connecting two intermediary stops. The created graph contains logically
two dense areas (dense meaning containing many edges), one for each direction.
This section aims at finding these two areas with an algorithm.

4.2.1 Communities and modularity
Dense areas correspond to communities in the graph vocabulary. However, defin-

ing formally the notion of community is difficult as explained in [12] since many
definitions have been proposed. We will use in this paper the definition used in the
algorithm detailed in the following section. A partition P = C1, ..., Ck is considered
as a good partition of V if it has a high modularity. The algorithm aims at finding
the partition P which maximises this measure. Less formally, a good community
structure has many edges inside every Ci and few edges crossing communities. The
modularity, introduced in [13], measures this property.

Definition 5 (modularity). Let us consider a matrix e of size k × k. Every ele-
ment eij corresponds to the number of edges which link the communities i and j
normalised by the total number of edges m. Thus e is a symmetric matrix whose
elements are real values in [0, 1]. The trace of this matrix Tr e =

∑k
i=1 eii gives the

fraction of edges which link vertices inside the same community. Let us define ri as
the sum of the i-th row of e, it corresponds to the fraction of edges pointing to a
vertex in community i. The modularity Q is defined by

Q =
∑

l∈[[1,k]]

∑
(i,j)∈C2

l

[
aij −

ki ∗ kj

(2m)(2m)

]
=

k∑
i=1

(
eii − r2

i

)
= Tr e−

∥∥∥e2
∥∥∥ (4.1)

18

4.2. GRAPH COMMUNITY DETECTION

where ki stands for the degree of vertex i.

We may think that the trace of e would give a satisfactory measure of a com-
munity structure since it corresponds to the fraction of edges which link vertices of
same communities. However, in case of a partition placing all vertices in a single set,
the trace would be maximum whereas, obviously, this is not what we aim at. The
trick used here is to subtract to the trace the fraction of edges connecting vertices
in the same community in a network N generated as follows. N is a graph with the
same node distribution as G. It means that there is a bijection mapping N vertices
and G vertices: each vertex in N corresponds to a vertex in G and share its degree.
However, the edge repartition is different in N . The edge connections are generated
randomly, with no regard to communities. When generating a new edge to N , the
only constraint is to respect the degrees of nodes: as soon as a vertex u has a degree
dG(u) in N , no further new edges are connected to it.

In the case of a unique community, the modularity becomes equal to equal to
zero with this definition. Indeed, the fraction of edges inside communities in N and
G remains the same. With a good community structure however, the first term
should be higher since a random distribution of edges will make the communities
less dense.

Figure 4.1: A graph containing three communities

Schaeffer presents in a survey most graph clustering (community detection)
methods [14]. In this paper, we focus on the method presented in 2005 by P.
Pons and M. Latapy [12] and relying on random walks.

4.2.2 Random walks
Let us consider a directed graph G with positive weights and characterised by an

adjacency matrix A. A random walk of length l is a sequence of l connected edges
(the target of ei is the source of ei+1). A random walk of length l is built as follows:
at each step, a walker at a vertex v chooses randomly among the neighbours of v
(vertices directly linked to v) the next vertex towards which it moves. The walker
repeats this process until l edges have been crossed, creating a markov chain of

19

CHAPTER 4. GRAPH REPRESENTATION

length l+1 whose states are vertices. The next vertex is chosen using the transition
matrix T where an element tij = w(i,j)∑

u∈Neighbourhood(i) w(i,u) . This definition favours
the walker to move towards vertices which are linked to the current vertex by an
edge of high weight. If two vertices are not linked in G, the edge connecting them
has a zero weight.

The general idea of the algorithm is that short walks should end up in the same
community. A good community structure has highly connected vertices within
communities, thus, short random walks should stay inside the community. One can
prove that when the length of a walk tends towards the infinity, the probability of
being at a vertex v does not depend on the starting vertex u. We understand easily
why we use short walks. On the other hand, if they are too short, they do not
reflect the community structure. Typically, a value of 3 or 4 can be used.

4.2.3 Distance on vertices using random walks
Let us introduce a distance dg between vertices. Two vertices from the same

community should have a small distance whereas two vertices in different commu-
nities should have a large distance.

Let us consider a matrix T t of size n × n where n and t are integers. Each
element T t

ij of the matrix T t corresponds to the probability of going from vertex i
to vertex j through a random walk of length t. This matrix can be computed easily
since it is the matrix T (seen in previous section) to the power t.

Definition 6 (Distance dg on vertices). Let us consider i and j two vertices of a
graph G. We define dg by

dg(i, j) =

√√√√ n∑
k=1

(T t
ik − T t

jk)2

d(k)
=

∥∥∥D− 1
2 T t

i• −D− 1
2 T t

j•

∥∥∥ (4.2)

where d(k) =
∑

u∈Neighbourhoodk w(k, u), D is the diagonal matrix whose elements
are dii = d(i) and T t

i• is the i− th row of the matrix T t (transposed into a column
vector).

The main idea behind this definition is that vertices in the same community
should have similar probabilities to reach any other vertex in the graph in a walk
of length t. Mathematically, this property corresponds to similar values of T t

ik and
T t

jk.
Let us now extend this definition to communities. The distance dg(C1, C2)

measures an average value of the previous definition. To do so, we define the
variable T t

Cj which corresponds to the probability of reaching vertex j from any
vertex in the community C in a random walk of length t. This probability can be
computed mathematically by:

T t
Cj = 1

|C|
∑
i∈C

T t
ij (4.3)

20

4.3. IMPLEMENTATION AND RESULTS

Let us define the distance dg(C1, C2) between two communities by:

Definition 7 (Distance dg(C1, C2) on communities). Let us consider two subsets
C1, C2 ⊂ V . We define dg (same notation as before, but distance on communities
this time) by:

dg(C1, C2) =

√√√√ n∑
k=1

(T t
C1k − T t

C2k)2

d(k)
=

∥∥∥D− 1
2 T t

C1• −D− 1
2 T t

C2•

∥∥∥ (4.4)

This definition allows us to define a distance between a vertex u and a community
C by using {u} as a community in the equation 4.4.

4.2.4 Algorithm
We now have a distance between all vertices in the graph. It has become a simple

problem of clustering where samples are vertices and distance dg. The authors of
the article [12] propose a hierarchical method using an agglomerative approach to
cluster vertices.

As we usually proceed in agglomerative methods, we start with a partition
where every vertex has its own community. At every step, we merge the two com-
munities which verify the criterion used in Ward’s method (minimising the squared
distances sum between each vertex and its community). While merging these two
communities, we update the distances between communities. The process is not
so computationally heavy because most of the needed values at step k (like the
squared distances sum of a community Ci) were already computed at the previous
step (in this case, if community Ci has not been merged, we do not need to com-
pute this value again). We then understand easily that only updates on merged
communities have to be computed. And this computation is easy to compute as
a linear combination of the two merged communities. The above algorithm allows
us to create a complete dendrogram of the graph with n leafs grouping in n − 1
steps into a single community containing all vertices. We cut the dendrogram at
the depth which maximises the modularity (see subsection 4.2.1).

4.3 Implementation and results
We saw at the previous chapter how we can cluster GPS signals to extract

physical stop locations. However, all stops found on a given line with a density-
based algorithm are mixed together, whatever their direction. By using connections
between stops, we aim at finding two main communities in case of two directions.

4.3.1 Stop clustering according to direction
At this step, we have a set of stops not yet ordered with any logical representa-

tion. The final objective of this chapter is to create an ordered sequence of stops in
a given direction.

21

CHAPTER 4. GRAPH REPRESENTATION

Let us consider a set of physical stops S of a given line. We build a graph G
whose vertices are the stops in S and for which each edge eij connecting i and j
has a weight corresponding to the number of journeys from i to j. For example, if
n journeys connect stop A to stop B, the weight of the directed edge eAB will be n.

The graph population algorithm can be described as follows:

Algorithm 3 Graph population algorithm

procedure PopulateGraph(S, SetOfJourneys)
G← Graph of |S| vertices
for each journey j in SetOfJourneys do

departure← Label(j.departure) ▷ Label is given by DBSCAN step
arrival← Label(j.arrival)
edge← G.getEdge(departure, arrival)
if edge is null then

Add edge to G between departure and arrival of weight 1
else

Increment edge.weight by 1
end if

end for
return G

end procedure

The created graph is a directed graph. However, we can expect that there are
few opposite edges in the graph since a stop A which reaches a stop B should not
allow the opposite edge (our stops already contain a direction). We then simply
apply the walktrap algorithm on our created graph and extract the community
structure which maximises the modularity. An example of this method applied on
our simulated dataset is given in figure 4.2.

As we can see, some stops have not been well split at the previous step (Les
Belugues in figure 4.2, the stop highly connected to both communities). We can
split stops significantly connected to both communities into two new vertices, one for
each community. When adding a new stop to a community, only edges connecting
the original stop to another vertex in the same subgraph as the new node are added.
After this step, we have two sets of stops in most cases, one set for each direction.
The objective in the next section is to sort them into a well designed graph, as
close as possible to the official transport line. We will work on every community
separately.

4.3.2 Public transport route design

Let us consider a set of n stops which have been clustered together through
the previous step. Let us create a new graph G2 with these stops, using the whole
information contained in the journey GPS track. Indeed, the previous graph used
only the departure and arrival stops data, avoiding heavy computation. For each

22

4.3. IMPLEMENTATION AND RESULTS

Figure 4.2: Two communities found on line 230.

journey, all observations are run through and every time an observation is both close
enough to an existing stop and in the good direction, the previous crossed stop is
connected to this new stop (if the edge already exists, its weight is incremented).
Obviously, a stop cannot be connected to itself.

This new population algorithm is really slow with a dataset of 3 000 journeys
for approximately 300 000 GPS signals. In our Python implementation, more than
1 minute is needed to create the graph, but no time has been spent to optimise
this critical section. A future work may improve this algorithm by using a better
representation of data (like k-d tree for stops to avoid entire loop for each new
observation) or coding this critical segment in C. We are quite sure that many
improvements can be done here, but we did not want to focus on these questions to
go further in our work.

After running the population algorithm, G2 is a highly connected directed graph.
It contains cycles and many unwanted edges with low weights. This behaviour has
not been well explained, but it seems that it comes from simulation issues. An
example of bug encountered was a strange path taken to reach a given stop. We did
not understand the reason of this unexpected behaviour from OSRM, but it turned
out that the stop towards which the GPS signal went was on a junction and OSRM
did not choose the right road. The algorithm to populate the graph was run on
a few real journeys and gave almost perfect sequences of stops (one stop skipped

23

CHAPTER 4. GRAPH REPRESENTATION

maximum for a given sample). To conclude, most issues seem to come from the
simulation step (OSRM or high noise). To continue our work, a real dataset will be
required.

First, we clean our graph G2 from low-weighted edges. Given a fixed thresh-
old, every edge whose weight is inferior to this number is removed from the graph
(connectivity must be preserved however). After this step, G2 is a graph already
really close to what we aim at building. Nodes with null indegree (resp. outdegree)
correspond to sources (resp. targets) of the line. We then run a longest path algo-
rithm between every source to every target to clean our graph from edges connecting
stops i to i + 2 which correspond to GPS signals which have not emitted around
stops i + 1. We chose the Bellman-Ford algorithm since it allows negative weights.
The shortest path found by this algorithm with negative weights corresponds to the
longest path with positive weights. However, this algorithm is not robust to cycles
so we first clean G2 from 2 and 3-cycles. For every p-cycle, we create p graphs: one
for each edge removed. The solution kept in the end is the one giving the longest
paths between sources and targets. Figure 4.3 gives the result of our algorithm on
3 000 journeys (for both directions).

These figures highlight two main points:
– G2 is really dirty before cleaning. This strange behaviour corresponds to the

"simulation curse" as we explained before. We expect reality to give much
cleaner graphs (resulting in better final designs after running algorithms).

– after running the algorithms, we can see an isolated node (null indegree) di-
rectly connected to a big branch. This node should actually remain connected
as a target by an edge. We can expect a too heavy cleaning on low-weighted
edges. Once again, we hope that reality will give better results.

4.4 Conclusion
We now have built a graph for every direction for a given line. This procedure

has been tested on several simulated datasets, and small mistakes remain on most
results. We believe that these mistakes are mostly created by imperfections from
our generator. Even if it is true, we still expect other issues to come up with real
dataset. However, as we explained before, real tracks seemed to give interesting
sequences of crossed stops (what introduced problems with simulated GPS signals).

In the next part, we will focus on spatio-temporal clustering techniques to build
reliable timetables for transport lines.

24

4.4. CONCLUSION

(a) Graph G2 (line 230)

(b) G2 after cleaning and Bellman-Ford

Figure 4.3: Reconstruction of the structure of line 230

25

Part II

Spatio-temporal mining

27

Chapter 5

Spatio-Temporal Clustering

GPS signals give both spatial and temporal information. Every location recorded
by the mobile application is associated to a timestamp such that each journey in
the database is a sequence of geographic observations at given times. In the first
part, we focused on spatial data to build logical designs of transport lines. In this
second part, we will aim at building robust timetables for lines given sets of journeys.
This chapter first describes two well-known techniques for clustering spatio-temporal
tracks. The second section describes how we implemented the CMC technique in
our work and what results we got with our simulated datasets.

5.1 Introduction

Spatio-temporal clustering is the process of grouping objects containing both
spatial and temporal information based on similarities to be defined. As explained
in [15], different definitions have been proposed for the objects and the criteria
used to define similarity between them. This survey on spatio-temporal clustering
techniques published in 2010 references different algorithms for several applications:

– trajectory clustering: extraction of trajectories which can be a generalisation
of different trajectories in the dataset. In our example, it may be a route a
bus follows in a given direction.

– extracting important locations: extraction of important places such as famous
buildings, tourist locations. Given a dataset of trajectories in a city, these
algorithms aim at finding important areas. Naturally, the importance of a
location is something really vague and different definitions can be given, re-
sulting in several algorithms.

– trajectory patterns: extraction of movement patterns frequently observed.
– moving clusters: extraction of groups of trajectories which move together at

the same location and time. This is the problem we want to solve with our
journeys. Three algorithms solving this problem are referenced in [15]. The
next section details the solution given in [16] (2008) which relies on [17] (2005).
The third article about moving cluster detection referenced in the survey is

29

CHAPTER 5. SPATIO-TEMPORAL CLUSTERING

quite different since it gives a solution which allows on-line feeding of inputs
whereas the two previously cited articles requires an entire dataset before
running the algorithm.

5.2 Coherent Moving Cluster (CMC)
The CMC algorithm is similar to the methods for discovering moving clusters in

spatio-temporal data [17]. The main idea of this algorithm is to run DBSCAN on
several consecutive snapshots (trajectories O at a chosen time t). The consecutive
clusters found by DBSCAN should be similar since elements of moving clusters are
likely to stay close in the spatial vector space at consecutive steps.

5.2.1 Definitions

As said before, the definition of a "moving cluster" can be very different from
a paper to another. In [16], a moving cluster is called a convoy and is defined as
follows:

Definition 8 (Convoy). Let us consider a set of trajectories O, a real ϵ and two in-
tegers k and minPoints. An object c is a convoy with respect to ϵ, k and minPoints
if:

1. c has at least k consecutive clusters ct, ct+1, ..., ct+k−1 found by DBSCAN with
respect to ϵ and minPoints.

2. The following inequation is satisfied by the k consecutive clusters

|ct ∩ ct+1 ∩ ... ∩ ct+k−1| ≥ minPoints

The integer k is called the lifetime of the convoy.

In [17], a moving cluster is defined differently. An inequation must be verified
with a chosen threshold θ too. However, the inequation is tested with the intersec-
tion of 2 consecutive clusters, possibly N times with N an integer. In the definition
8, an inequation is tested just once with the intersection of k clusters. It means
that many trajectories have to move together during a lifetime k whereas with the
other definition, the components of the moving cluster can be completely different
at the beginning and at the end. As expected, this method relies on density-based
clustering.

5.2.2 Algorithm

In the original paper, all trajectories have spatial positions at regular timestamps
(t, 2t, ..., nt). The following algorithm 4 is a slightly different version allowing real
temporal domain. Instead of having discrete timestamps, we create a partition of
our real temporal domain. The created sets must be intervals of constant length.

30

5.2. COHERENT MOVING CLUSTER (CMC)

Algorithm 4 CMC algorithm

procedure CMC(O, minPoints, k, ϵ)
V ← ∅ ▷ Convoy candidates
for each time interval T (in ascending order) do

Vnext ← ∅
OT ← EmptyOrderedSet()
for each trajectory o in O do

if o has observation in T then
append average o position within T to OT

end if
end for
if OT .size < minPoints then

Skip iteration
end if
C ← DBSCAN(OT , ϵ, minPoints)
for each convoy candidate v ∈ V do

v.assigned← false
for each cluster c ∈ C do

if |c.objects ∩ v.objects| ≥ minPoints then
v.assigned← true
v.objects← |c.objects ∩ v.objects|
v.endT ime← T.rightBound
increment v.lifetime by 1
append v to Vnext

c.assigned← true
end if

end for
if v.assigned is false and v.lifetime ≥ k then

append v to Vnext

end if
end for
for each cluster c ∈ C do

if c.assigned is false then
c.startT ime← T.leftBound
c.endT ime← T.rightBound
append c to Vnext

end if
end for
V ← Vresult

end for
return Vresult

end procedure

31

CHAPTER 5. SPATIO-TEMPORAL CLUSTERING

We then compute an "average position" of trajectories at every time interval which
can be the mean of all spatial observations in a given interval).

This version of the algorithm needs an extra parameter for creating the partition
of the temporal domain (time interval length). Moreover, this method requires much
computation since DBSCAN is run possibly 24×60×60

l times where l is the length of
time intervals. [16] proposes a family of algorithms to improve CMC. The following
section presents CuTS, a convoy discovery method using trajectory simplification.

5.3 Convoy discovery using Trajectory Simplification
(CuTS)

CuTS is an algorithm which gives the same results as CMC in a faster way and
slightly different method. In CMC, the main reason why the algorithm is so slow
is the call to DBSCAN every new timestamp. CuTS tries to avoid this computa-
tional limitation by modifying the density-based clustering algorithm. Instead of
considering points, it uses trajectories as samples. Trajectories are polylines, that
is to say sequences of consecutive segments. [16] calls the modified version of the
density-based algorithm TRAJ-DBSCAN. Of course, a distance has to be defined
on trajectories.

Definition 9 (Trajectory distance). Let us consider two trajectories t1 and t2. The
distance between these two trajectories D(t1, t2) is defined as the shortest euclidean
distance between any two points belonging to t1 and t2.

CuTS proposes to apply TRAJ-DBSCAN at regular time intervals (as CMC
runs DBSCAN every l seconds, with l the time interval length). The time domain
has to be partitioned once again into time intervals of length l. At every new time
interval τ , we extract all the consecutive segments whose time interval intersects τ
for all trajectories in O. For each trajectory, we obtain a polyline which is sent as
a sample to TRAJ-DBSCAN.

In CuTS algorithm, the new major time-limiting code segment is the algorithm
TRAJ-DBSCAN. The less segments in any polyline there is, the faster the density-
based algorithm will be executed. Before running the whole CuTS algorithm, tra-
jectories are simplified with Douglas-Peucker method, a well-known algorithm in-
troduced in 1972 presented in definition 10.

Definition 10 (Douglas-Peucker). Given a polyline o (sequence of n points p1,
p2,... , pn) and a real δ, the Douglas-Peucker algorithm returns a new polyline
o′ built as follows. Let us consider pi the farthest point from the segment p1pn.
If its distance to the segment p1pn is inferior to δ, this segment is reported as
the simplified trajectory o′, otherwise, we recursively apply this process to the two
polylines p1, ..., pi and pi, ..., pn. In the end, the concatenation of reported segment
is returned as the final simplified trajectory.

32

5.4. CMC ON GPS TRACKS

Credit: uploaded by Leupold, de. wikipedia. org , CC-BY-SA-2.0-DE

Figure 5.1: Steps of Douglas-Peucker algorithm on 8-point polyline

An example of a trajectory simplification is given in figure 5.1. In this example,
3 points are discarded so that from an 8-point polyline the algorithm creates a sim-
plified trajectory containing 5 points. Convoys found by CuTS are then processed
with a classic CMC algorithm, a step called CuTS refinement in [16]. It permits to
give exactly the same results as CMC and is quite fast since just a few candidate
convoys will be given as input to the CMC call.

According to the results presented in the original article, CuTS algorithm is
from 3 or 4 to 10 times faster than original CMC algorithm.

5.4 CMC on GPS tracks

5.4.1 Implementation & first results

Spatio-temporal clustering is a recent search area and few implementations are
available. No implementation in Python has been found, so we implemented our own
version of CMC using scikit-learn [11] implementation of DBSCAN. Low-level opti-
misations with Cython and complex spatial structures are used to make DBSCAN
fast. For that reason, implementing CuTS would have been much more time con-
suming since low-level optimisations on TRAJ-DBSCAN would have been required

33

CHAPTER 5. SPATIO-TEMPORAL CLUSTERING

to make this implementation worth it. This paper relies only on an implementation
of CMC. A further work may improve this part by implementing CuTS.

The dataset sent to CMC has to be homogeneous. Journeys from different
period timetables should not be mixed. We will see in the next chapter how to
recognise period patterns. Results presented in this section are done with a dataset
of journeys simulated with a unique timetable.

Figure 5.2: Evolution of number of convoys found

Many parameters are required when running CMC. To choose them properly,
we draw the evolution of convoys found while varying a single parameter. Figure
5.2 shows the evolution of the number of convoys found on line 230. We finally
chose the following values for our parameters since they mapped reality the best:
minSamples = 4, ϵ = 0.0025, k = 5 and step = 16s. Of course, depending on the
number of journeys considered, the optimal parameters may vary. ϵ is measured in
degrees, which explains this very low value.

5.4.2 Convoy fusion
When analysing results more deeply, we noticed that many convoys were found

several times. Indeed, a convoy can be found at the beginning of a route, then lost
because they are not close enough and later found again as a convoy. This behaviour
explains the really high number of convoys found. With perfect results, we should
find exactly n convoys if a given timetable has n rides per day in a period pattern.

34

5.4. CMC ON GPS TRACKS

Definition 11 (Same convoys). Let us consider c1 and c2, two convoys reported by
CMC and θ an integer. c1 and c2 are two instances of the same convoy with respect
to θ if

|c1.objects ∩ c2.objects| ≥ θ

After running a spatio-temporal clustering algorithm, we compare candidates
as explained in definition 11. Every time two convoys satisfy the inequation, they
are merged into a single one. After this step, we have a set C of convoys, in other
words, groups of trajectories. Figure 5.3 shows the evolution of convoys found while
varying parameters before and after convoy fusion. The line on which we tested had
45 rides per day. As we can see, while varying parameter Step length, the curve
oscillates close to this expected value. By analysing more in details the results
given by figure 5.3, we noticed that the same ride sometimes appeared twice when
two convoys moved really closely in time. In the rest of this section, we present a
distance to measure these "very close" rides to detect repetitions.

Each convoy found after this fusion step is supposed to represent a ride of
the timetable. However, all trajectories have different departure and arrival stops:
trajectories (journeys) are not homogeneous. Thanks to the previous part, a design
of the line is available in both direction. Let us consider the stop sequence. The
objective when filling the timetable is to find the schedule at which the bus (in the
case of a bus line) arrives at each stop. To do so, we average all existing journey
timestamps (in a given convoy) for each stop. If a stop does not have any journey
crossing it, we let its schedule unknown in the created ride. After running this
algorithm, for each convoy ci in C, a ride rci is associated. Once again, two rides
ri and rj can represent the same ride on the timetable. Indeed, two groups of
trajectories can create two convoys at different sections of the route whereas they
represent the same ride. We introduce a distance on rides to detect similar rides
(definition 12.

Definition 12 (Ride distance). Let us consider two rides r1 and r2. Each ride is a
sequence of stops with associated schedules. We note r1 = ⟨(s1, t1), (s2, t2), ..., (sn, tn)⟩
the first ride (and similarly r2 with primes). Time values may be null in case of
unknown schedules. We define the ride distance Dride as

Dride = 1
p

n∑
i=1

ti ̸=null
t′
i ̸=null

(
t′
i − ti

)2

where p is the number of terms in the sum (that is to say, numbers of stops which
have a non-null schedule in both rides). The normalisation is necessary to make
this distance robust to any line, regardless the number of stops in the sequence.

We compute the distance between all rides which have similar times (e.g. around
1pm). Every time this distance is inferior to a chosen threshold, we merge them by

35

CHAPTER 5. SPATIO-TEMPORAL CLUSTERING

averaging times (if one time is null and not the other, the non-null one is chosen in
the merged ride).

After this step, we are supposed to have found unique rides. With a perfect
dataset, we are supposed to have exactly n rides if the targeted timetable has n
rides.

36

5.4. CMC ON GPS TRACKS

(a) ϵ on x-axis

(b) Lifetime k on x-axis

(c) Interval length Step on x-axis

Figure 5.3: CMC algorithm with different moving parameters

37

Chapter 6

Repeated pattern recognition

6.1 Motivations & objective

As explained in the previous chapter, we first applied spatio-temporal algorithms
on homogeneous data. This means that our dataset contained only journeys done
with the same timetable. However, this model is not realistic since transport lines
have different periods: holidays, public holidays, normal days, etc.

In the current chapter, we aim at proposing a solution to extract repeated pat-
terns, that is to say days (or weeks) which have the same timetable. Obviously,
our clustering algorithms rely on an important number of journeys so, we generate
this time at least 20 000 journeys over a year. As we will see later, the results we
obtained in this chapter rely a lot on our model and on the behaviour of service
users.

6.2 Distance on days

Each day d contains a number nd of journeys. The distribution of nd over a
year may be a first indicator to classify days or weeks in periods. However, the
first difficulty brought by journeys is their complete heterogeneity. Indeed, their
parameters can vary a lot:

– time intervals of journeys (both times in the day and lengths)
– departure and arrival stops

Since days are only characterised by the journeys they contain, comparing them
amounts to compare their journeys. However, days cannot be represented in an
easy way with a metric or vector space. Indeed, they contain different numbers of
journeys whose characteristics vary a lot. To tackle this major problem, we decide
to represent days by the rides which can be found by a spatio-temporal clustering.
This means that each day has a large amount of data, which is not very realistic.
In section 6.3, we propose a method to avoid this highly restrictive constraint. In
the rest of this section, we consider that each day d has a number nr,d of rides.

39

CHAPTER 6. REPEATED PATTERN RECOGNITION

In the previous chapter, we defined a distance on rides to measure their similar-
ity. Let us define an extension of the ride distance for days.

Definition 13 (Day distance). Let us consider two days d1 and d2. Each day is a
set of rides, that is to say a set of sequences of stops with associated schedules. For
example, d1 is defined by:

d1 = {r1,i|i ∈ [[1, nr,d1]]}

We define the day distance Dday as follows:

Dday(d1, d2) = max

 1
nr,d1

nr,d1∑
i=1

min
r2∈d2

Dride(r1,i, r2), 1
nr,d2

nr,d2∑
i=1

min
r1∈d1

Dride(r2,i, r1)

The max is necessary because if a day has few rides (either because the spatio-
temporal algorithm found few rides, either because d has indeed few rides), the
distance may be wrongly small. For example, its rides may be strictly included
in the other day ride set. Moreover, to make the distance symmetric, this max
function is required.

To make it simple, Dday computes for each day the sum of every ride to its
closest ride from the other day. The closest ride from the other day is supposed to
be the common ride in the timetable in case of days from same periods.

We now have defined a distance over days. Each day can be compared to any
other day. Let us cluster days in periods. A traditional clustering algorithm such
as k-means cannot be applied since we do not work in a vector space. However,
since the distance between any days can be computed with Dday, a graph with days
as nodes and distances as weights can be built. We apply a community detection
algorithm such as the walktrap algorithm to extract days with similar rides. Figure
6.1 shows the detection of two period patterns: one for the weekend and one for
weekdays.

As shown in the dendrogram, with a modularity m = 2, two patterns are found
by the algorithm.

6.3 Smart scanning
The previous method to detect patterns has one major drawback, it relies on a

high number of journeys for each day. This model may not be satisfied in reality.
We propose here an algorithm to reduce the quantity of journeys required.

To make the dataset bigger (in case of few journeys per day), we group days
which are likely to have the same patterns. The first objective is to detect groups
within a week: weekdays and weekend in most examples. To identify such a pattern,
we select a sufficient number of weeks which are likely to be "normal weeks" and we
remove from them public holidays. If we selected n weeks, we should have maximum
n Mondays, Tuesdays, ... (and less in case of days removed). We then perform a

40

6.3. SMART SCANNING

Figure 6.1: Period clustering – dendrogram

day recognition pattern as presented in the section above. We should then identify
day patterns.

The following step is to cluster together weeks which have the same timetables.
For every week, we group together days with the same pattern (found previously),
and we apply the algorithm over weeks. A distance on weeks can be easily computed
by summing the day distances over each day. The number of samples may be not
sufficient for using each week separately. We create groups of two weeks (holidays
are often superior to one week). Of course, this method has many limitations and
may be not sufficient in many cases. Giving a timetable over a year for any line
seems to be a too ambitious objective.

In the following chapter, we discuss the limitations of the method we presented
in the thesis and give ideas to continue and improve this work.

41

CHAPTER 6. REPEATED PATTERN RECOGNITION

Figure 6.2: Period clustering – graph with communities

42

Chapter 7

Conclusion

Our work has been done with simulated data since no dataset was available. In
this chapter, we first present conclusions about what has been done. In the second
section, we propose guidelines to continue our work since the thesis mainly focused
on giving a proof of concept.

7.1 Conclusions and limitations

In this paper, we presented a solution to extract information on public trans-
ports, using a set of journeys as unique source of data. We designed a system based
on density-based clustering algorithms capable of finding most stop locations for a
given line. The only situation where some stops lack appears if certain stops are
rarely crossed (e.g. isolated stops, with a unique ride per day). Nevertheless, we
can also imagine that since they are rarely crossed, the rides reaching them may
be quite crowded, giving us much information. Anyway, only a collection of real
data may reflect behaviours of service users. Furthermore, our system gives us good
sequences of stops, even if in many cases, a few disconnections are introduced in
the graph representing the structure of the line. However, we noticed that in most
situations, it seemed to come from simulation issues. We expect the results of our
method using a real dataset to remain close to the ones we got, and probably even
improving certain parts such as final graph designs of lines.

In the second part of the thesis, we presented two spatio-temporal clustering
algorithms which detect moving clusters (or convoys). This method allows us to
extract interesting schedules but relies on homogeneous and numerous data. This
situation seems difficult to achieve in the real life. Testing convoy detection al-
gorithms with real data seems necessary to study the robustness of our method.
Moreover, our simulation of time variations (traffic jams, rain) is probably really
far from reality. It seems difficult to imagine how good timetables built with our
method would be with a real dataset.

Obviously, the main limitation of our work comes from our dataset. Indeed,
our simulated data cannot reproduce perfectly real data and even more so, human

43

CHAPTER 7. CONCLUSION

behaviour. Most of further work should consist on testing our method on data
collected with a mobile application in a real situation. In addition, the system in
itself relies on an important collection of journeys and so, by a significant amount
of sample providers. This means that the success of our algorithms highly depends
on the number of users who would use our mobile application to crowdsource the
database which feeds our algorithms and their motivation.

Despite these limitations, the results we got lead us to think that continuing this
project should be worth it and allow the construction of a global database giving
at least line structures and stop locations. Building timetables may be more com-
plicated and human intervention may remain necessary to solve specific situations.

7.2 Further work
Much work still has to be done to complete a system capable of extracting public

transport data using tracking via a mobile application. As said many times before,
the main weakness of the previous work is that it relies on simulated data. Two
main developments have to be performed to continue this work:

– development of a mobile application and setting up of a beta testing on a few
lines with a significant panel of users. This beta testing aims at collecting real
data and at observing service user behaviour.

– testing of the current method on the beta testing dataset and highlighting of
weaknesses. Improvements or modifications of the method described in the
thesis may be performed, according to the results obtained with the dataset
of real journeys.

We think that these two works should be performed at the same time if possible
because limitations and issues brought by algorithms may require modifications in
the information we ask via the mobile application.

In addition to these new developments, we think that many optimisations can
be performed in our algorithms. We mentioned in this paper that we never focused
on making our code as fast as possible and we chose to lead our research as far as
possible.

44

Bibliography

[1] Urban Launchpad. Bringing the first map of Dhaka’s bus network to life
for its millions of daily riders. http://www.kickstarter.com/projects/
urbanlaunchpad/first-bus-map-of-dhaka.

[2] M. Vieira, P. Bakalov, and V. Tsotras. On-line discovery of flock patterns in
spatio-temporal data. GIS ’09: Proceedings of the 17th ACM SIGSPATIAL In-
ternational Conference on Advances in Geographic Information System, pages
286–295, 2009.

[3] Elias Frentzos. 276 trajectories of 50 trucks delivering concrete to several con-
struction places around athens metropolitan area in greece for 33 distinct days.
http://www.chorochronos.org/?q=node/5.

[4] Dennis Luxen & community. C++ implementation of a high-performance rout-
ing engine for shortest paths in road networks. http://project-osrm.org/.

[5] Joe H. Ward Jr. Hierarchical grouping to optimize an objective function. Jour-
nal of the American Statistical Association, 58:236–244, 1963.

[6] E. W. Forgy. Cluster analysis of multivariate data: efficiency versus inter-
pretability of classifications. Biometrics, 21:768–769, 1965.

[7] Stuart P. Lloyd. Least squares quantization in pcm. Bell Telephone Laboritories
Paper, 1957.

[8] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison-
Wesley Longman Publishing Co., 2005.

[9] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. SIGKDD, pages
226–231, 1996.

[10] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and Jörg Sander. Optics: order-
ing points to identify the clustering structure. Proceedings of the 1999 ACM
SIGMOD international conference on Management of data, pages 49–60, 1999.

45

BIBLIOGRAPHY

[11] Scikit learn developers. Simple and efficient tools for data mining and data
analysis built on numpy, scipy, and matplotlib. http://scikit-learn.org/
stable/.

[12] Pascal Pons and Matthieu Latapy. Computing communities in large networks
using random walks. J. of Graph Alg. and App. bf, 10:284–293, 2005.

[13] M. Girvan M. E. J. Newman. Finding and evaluating community structure in
networks. Physical Review E, 69(2), 2003.

[14] Satu Elisa Schaeffer. Graph clustering. Computer Science Review, 1:27–64,
2007.

[15] S. Kisilevich, F. Mansmann, M. Nanni, and S. Rinzivillo. Spatio-temporal
clustering: a survey. Data Mining and Knowledge Discovery Handbook, pages
855–874, 2010.

[16] H. Jeung, M.L. Yiu, C.S. Jensen, and H.T. Shen. Discovery of convoys in
trajectory databases. Proc VLDB Endow, 1(1):1068–1080, 2008.

[17] P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering moving clusters in
spatio-temporal data. Advances in Spatial and Temporal Databases, pages 364–
381, 2005.

46

