
Statistical Analysis of Industrial Processes using fast
Nonparametric Regression Techniques

Master Thesis Submitted to

Prof. Dr. Wolfgang K. Härdle

Prof. Dr. Weining Wang

Ladislaus von Bortkiewicz Chair of Statistics

C.A.S.E.- Centre for Applied Statistics and Economics

Humboldt-Universität zu Berlin

by

Simon Diehl

(541439)

in partial fulfillment of the requirements

for the degree of

Master of Statistics

Berlin, January 30, 2014

Abstract

In this thesis we show how to use nonparametric regression techniques to develop moni-

toring systems for industrial machinery. Since data sets are often very big and monitoring

has to be done online we present two different approaches to speed up computational time

of the nonparametric methods. Both approaches are compared regarding run-time and ap-

proximation error and their properties are illustrated in a simulation study. We apply our

methodology to real data from an industrial supply engineering machine.

Keywords: Nonparametric Regression, Fast Fourier Transform, Fast Gauss Transform,

Binning, Energy Consumption, Industrial Machinery

Contents

1 Introduction . 1

2 Methodology . 3

2.1 Kernel Mean Regression . 3

2.1.1 Local Constant Estimator 3

2.1.2 Local Linear Estimator . 5

2.2 Kernel Quantile Regression . 6

3 Fast Algorithms . 8

3.1 Fast Fourier Transform and Binning Procedures 9

3.1.1 Binning Procedures . 9

3.1.2 Convolution and the Fast Fourier Transform 11

3.1.3 Moving to higher Dimensions 15

3.1.4 Approximation error . 16

3.2 Fast Gauss Transform . 16

3.2.1 Introductory Example . 17

3.2.2 General Case . 18

3.2.3 Using a Gaussian Kernel 18

3.2.4 Data Clustering . 21

3.2.5 Expansion about cluster centers 21

3.2.6 Runtime Analysis . 22

3.2.7 Parameter selection . 23

4 Simulation . 24

4.1 Differences in the binning rules . 24

4.2 Differences in approaches . 26

5 Application . 30

5.1 The Cooling System . 30

6 Conclusion . 36

Appendix 37
1 Multi-index notation . 37

iii

1 Introduction

Energy costs are a major proportion of the total costs in industrial production processes. Due

to the growing scarcity of resources, energy efficient production becomes more and more im-

portant. Against this background, in 2011, the International Organization for Standardization

(ISO) developed a specification (ISO 50001) for companies to implement an energy manage-

ment system to improve energy efficiency in their production process.

Although, in Germany it is not compulsory to establish such an energy management system,

companies having energy intensive production can benefit from complying with the specifica-

tion since they are eligible to claim for a reduction of the EEG reallocation charge. In order

to fulfill the requirements of ISO 50001, companies must provide information on the improve-

ments made in terms of energy efficiency. This raises the question how to measure energy

efficiency in a production process and how to quantify potential- and realized savings. Since

almost every sort of machinery is influenced by its environment, the energy consumption varies

with a change in the environmental conditions. Therefore one need to control for these environ-

mental conditions in order to achieve three objectives.

1. Estimating potential savings in energy demand due to investment in new machinery

2. Check whether the desired efficiency enhancement is realized after an investment

3. Early detection of malfunctioning that causes higher energy demand than “usual”

The first aim boils down to a comparison of expected values of two different machineries given

the same conditions. We would like to make statements of the form “How much energy would

the new machinery have consumed under the same conditions in the same time?”. Summing up

this difference over time allows us to estimate the benefit of an investment in the new machinery.

Whereas the first and the second objective are interesting in the long-run, the third one is more

important in the short-run. Depending on the sort of machinery, it is likely that the energy de-

mand rises as a consequence of a broken component or a blocked filter. Early notice of such an

event is therefore of great importance. To distinguish an unusual raise in energy demand from

usual ups and downs, we need to have a threshold to compare with. The focus of this thesis is

mainly on the statistical tools needed to develop an early detection warning system as described

by objective three.

Industrial production processes and the corresponding supply engineering have been studied ex-

tensively from the beginning of the industrialization by engineers and physicists. Nowadays we

have a broad theoretical knowledge about the underlying functional principles of different types

of processes. In thermodynamics, for instance, Carnot’s cycle describes an optimal process to

convert thermal energy into work and vice versa. In practice, however, heating and cooling

engines do not reach the efficiency of a Carnot’s cycle due to frictional losses, heat losses, leak-

ages and inefficient control system engineering. The deviation of the actual energy demand to

the theoretical optimum is widely used as a benchmark for the efficiency of an engine (Callen,

2006). Similar benchmarks are defined in Electrical Engineering (Sarma, 2001) and Mechanics

(Ugural, 2003). In this work we take a different approach to make statements about the per-

formance of engines. Instead of using an optimal process as a benchmark we compare actual

energy input to the input needed in the past in “similar” situations by the same machine. This

is advantageous since a theoretical optimum might be hard to calculate for complex engines or

even systems of engines. Furthermore, one cannot ensure that a theoretical process model fits to

1

a real process. To put it differently: Our process in consideration might be influenced by factors

that are not covered by theory. We try to circumvent this problem by including explanatory fac-

tors while making as little assumptions about the functional principles as possible. A threshold

for “usual” energy demand is computed using kernel regression techniques. The application of

data-driven techniques is essential in our setting because of the diversity of engines for which

we want to establish a warning system. On the downside, however, we trade model flexibility

for computational complexity. This is a serious issue since we potentially have a large number

of massive data sets to deal with simultaneously. We propose two different approaches that save

computing time by introducing an approximation error.

In section two we introduce the kernel regression techniques to estimate the conditional mean

and conditional quantiles. In section three we present the two classes of algorithms that can

be used to circumvent computational constraints in this framework. We also give theoretical

results on runtime and approximation error and illustrate their properties in a simulation study.

In section five we apply the proposed methods to real data from supply engineer machineries.

Section six concludes.

2

2 Methodology

2 Methodology

As an intuitive benchmark to compare the actual energy demand with, we use the conditional

expectation of energy demand given the external circumstances, E[Y |X]. We suppose that the

actual energy consumption is close to the expected value if the machinery runs regularly. If the

demand is significantly higher than expected this might indicate increased wear on machinery

or some other malfunctioning. To estimate the conditional expectation we apply kernel regres-

sion techniques since they provide the flexibility we need to deal with lots of different types of

machinery without explicitly specifying a statistical model in a parametric form.

The conditional mean gives insights into the “average behavior” of an engine. In our situation,

however, we need a broader picture to distinguish regular from irregular behavior. Namely, we

are interested in the dispersion of energy consumption given the circumstances. Therefore, we

additionally estimate conditional quantiles of the energy consumption nonparametrically to de-

termine upper bounds that can be used in a warning system.

2.1 Kernel Mean Regression

Let y ∈ R denote the energy demand of an engine, x ∈ R
d denote some explanatory variables

and ε ∈R is an unobservable error term. We assume that the input y depends on the explanatory

variables x and the error term ε by the equation:

yi = m(xi)+σ(xi)εi, i = 1, . . . ,n

We further assume that the error terms ε are iid. For thermodynamic processes, however, this

assumption might be questionable because of there inherent inertia. We circumvent the issue

of dealing with time series effects explicitly by taking hourly averages, since the inertia of

thermodynamic processes is usually of short persistence, in particular shorter than ten minutes.

An explicit treatment of time series effects in this setting is beyond the scope of this work.

We refer the reader to Härdle et al. (1997) and Fan (2003) for comprehensive introduction to

nonparametric time series models.

2.1.1 Local Constant Estimator

A well established estimator of the unknown function m(•) goes back to the pioneering work

by Nadaraya (1964) and Watson (1964) and is known as multivariate local constant estimator:

m̂LC
H (x) =

n
∑

i=1
KH (x−Xi)yi

n
∑

i=1
KH (x−Xi)

(1)

Where H ∈ R
d×d is a symmetric and positive definite bandwidth matrix and

KH(•) = |H|−1K{
H−1 × (•)}

3

denotes a multivariate Kernel function, K : Rd → R. Equation (1) can be rewritten as:

m̂LC
H (x) =

1

n

n

∑
i=1

WHi(x)Yi (2)

with

WHi(x) =
KH(x−Xi)

n−1
n
∑
j=1

KH(x−Xj)

This representation leads to a very intuitive interpretation of the local constant estimator as a

weighted average of the dependent variable. A comprehensive overview of the derivation and

the properties of the local constant estimator is given by (Li and Racine, 2007, chapter 3) and

(Härdle et al., 2004, chapter 4).

In order to compute the estimator given in equation (1) and (2) we need to choose a Kernel

function K and a bandwidth matrix H. (Wand and Jones, 1995, Chapter 2.7) show that the

choice of the kernel function is not crucial in terms of efficiency of the estimation and can be

based on other criteria like computational efficiency. Therefore, we choose a Gaussian product

kernel of the form:

KH(u) =
d

∏
j=1

γ exp
(−u2

j/h2
j
)
= γ exp

(
−

d

∑
j=1

u2
j/h2

j

)

This choice is convenient for computationally reasons as will be shown in section (3). The

constant γ is chosen such that KH(u) is in fact a kernel function. That is, it must integrate to

one: ∫
Rd

γ exp

(−‖u‖2

h2

)
du = 1

For sake of readability, we skip the constant γ hereinafter. For the local constant estimator it

cancels out anyway. By using a product kernel we implicitly assume that the bandwidth matrix

H is diagonal:

H =

⎛⎜⎝h1 0
. . .

0 hd

⎞⎟⎠
In contrast to the choice of the kernel function, the choice of the bandwidths is critical in terms

of efficiency of the estimator. We choose the vector of bandwidths h = (h1, . . . ,hd) such that the

leave-one-out cross-validation criterion is minimized:

CV(h) =
1

n

n

∑
i=1

{Yi − m̂h,−i(Xi)}2 w(Xi)

=
1

n

n

∑
i=1

{Yi − m̂h(Xi)}2

{
1− 1

n
Wh,i(Xi)

}−2

w(Xi)

Where m̂h,−i denotes the estimator of the conditional mean leaving out the i−th observation and

w(Xi) is some weight function. A detailed treatment of the cross-validation bandwidth selection

can be found in (Härdle et al., 2004, Chapter 4.3)

4

2 Methodology

Though the local constant estimator is appealing for it’s catchy interpretation, it suffers from

poor performance near the boundaries of the support (Wand and Jones, 1995, Chapter 5.5).

Fitting a polynomial of order p locally around a point x, instead of a constant, yields estimators

with improved performance at the boundaries. A popular choice of such estimators is the so

called local linear estimator which we describe in the following.

2.1.2 Local Linear Estimator

If we assume that the unknown function m(x) is a least one times differentiable in every dimen-

sion, it can be approximated by a multivariate Taylor Series in the neighborhood of some point

x0 by:

m(x)≈ m(x0)+∇m(x0)
�(x− x0)

with ∇m(x0) being the gradient of m evaluated at x0. Stone (1977) and Cleveland (1979)

show that under these conditions the local linear estimator can be derived by the solution of

the weighted least squares minimization problem:

min
β0,β1

n

∑
i=1

{
Yi −β0 −β�

1 (Xi − x)
}2Kh(Xi − x) (3)

Minimizing problem (3) w.r.t to β0 and β1 gives us two quantities of interest. The first term β̂0

is an estimator of the value of function m at the point x. Namely

m̂LL
h (x) = β̂0(x)

Whereas β̂1 is an estimator of all partial derivatives of m w.r.t to x. For sake of compactness we

do not show the statistical properties of the local linear estimator, e.g. the asymptotic behavior,

but direct the reader to the comprehensive works of Wand and Jones (1995) and Fan and Gijbels

(1996). To express a general local polynomial estimator we make use of the following notation:

Sh, j(x) =
n

∑
i=1

Kh (x−Xi)(Xi − x) j (4)

Th, j(x) =
n

∑
i=1

Kh (x−Xi)(Xi − x) j Yi (5)

Where j denotes a d−dimensional multi-index (Masry, 1996). Using this notation, a general

local polynomial estimator of order p can be expressed as:

β̂ (x) =

⎛⎜⎝Sh,0(x) . . . Sh,p(x)
...

. . .
...

Sh,p(x) . . . Sh,2p(x)

⎞⎟⎠
−1⎛⎜⎝Th,0(x)

...

Th,p(x)

⎞⎟⎠
For p = 0 we get the local constant estimator, which can be formulated as:

m̂LC
h (x) =

Th,0(x)
Sh,0(x)

5

The representation given by equation (4) and (5) is particular useful since it reveals that lo-

cal polynomial estimators are in fact based on matrix-vector products. For example, the one-

dimensional local constant estimator at different target points x j, j = 1, . . . ,m, involves the

computation of the following matrix-vector products:⎛⎜⎝Th,0(x1) Sh,0(x1)
...

...

Th,0(xm) Sh,0(xm)

⎞⎟⎠=

⎛⎜⎝Kh(x1 −X1) . . . Kh(x1 −Xn)
...

. . .
...

Kh(xm −X1) . . . Kh(xm −Xn)

⎞⎟⎠
⎛⎜⎝y1 1

...
...

yn 1

⎞⎟⎠
Similar expressions can be formulated for higher order local polynomial estimators. In the

following we use a general short hand notation to indicate such estimators:⎛⎜⎝G(x1)
...

G(xm)

⎞⎟⎠=

⎛⎜⎝Kh(x1 −X1) . . . Kh(x1 −Xn)
...

. . .
...

Kh(xm −X1) . . . Kh(xm −Xn)

⎞⎟⎠
⎛⎜⎝ν1

...

νn

⎞⎟⎠
The choice of ν depends on the estimator we want to calculate. We intentionally let ν be un-

specified to point out the general structure of local polynomial regression problems.

So far, we have introduced Kernel regression techniques to learn from the data how an en-

gine behaves “on average” under regular conditions. A deviation from this behavior is read as

an indicator for some malfunctioning. The question arises how to distinguish normal fluctua-

tions around the expected value from unusual deviations caused by deterioration or defects. The

method of choice to cope with that is conditional quantile regression, which yields a measure of

the regular dispersion.

2.2 Kernel Quantile Regression

Conditional Quantile Regression techniques became more and more popular in the recent years

since the groundbreaking work of Koenker and Bassett Jr (1978). Working with conditional

quantiles is appealing since they provide a broader picture of an unknown distribution of interest.

The conditional quantile at the level of τ of a CDF F is given by:

qτ(x) = inf{y : F(y|x)≥ τ}= F−1(τ|x)

with τ ∈ (0,1). cf. (Li and Racine, 2007, chapter 6.3)

A widely used (global) estimator of conditional quantiles is given by the minimizer of the

weighted sum of absolute distances:

min
μ

n

∑
i=1

ρτ (Yi −μ) (6)

with ρτ(u) = u[τ −�(u ≤ 0)] is called check function and μ is the conditional quantile.

The nonparametric kernel estimator of a conditional quantile is a locally weighted version of

6

2 Methodology

equation (6). The local constant and the local linear quantile estimates are given by:

min
β0

n

∑
i=1

ρτ (Yi −β0)Kh(Xi − x) (7)

min
β0,β1

n

∑
i=1

ρτ

{
Yi −β0 −β�

1 (Xi − x)
}
Kh(Xi − x) (8)

respectively.

As in the conditional mean regression, the degree of smoothing in every dimension has to be

chosen. To do so, we apply the rule-of-thumb bandwidth introduced by Yu and Jones (1998):

hα, j = h j

[
α(1−α)

φ {Φ−1(α)}2

]1/5

Where h j denotes the mean regression bandwidth in dimension j, φ(•) and Φ−1(•) are the PDF

and the inverse of the CDF of a standard normal distribution, respectively.

7

3 Fast Algorithms

In section 2.1 we have shown that various kernel estimation problems boil down to the calcula-

tion of matrix-vector products of the following form:⎛⎜⎝G(x1)
...

G(xm)

⎞⎟⎠=

⎛⎜⎝Kh(x1 −X1) . . . Kh(x1 −Xn)
...

. . .
...

Kh(xm −X1) . . . Kh(xm −Xn)

⎞⎟⎠
︸ ︷︷ ︸

Ψ

⎛⎜⎝ν1

...

νn

⎞⎟⎠ (9)

Where X denote points from a reference period that we use to compare with the actual energy

demand of an engine. We call these points “sources”. The points from the review period, de-

noted by x, are called “targets”. A naïve (and exact) calculation of this product has runtime

O(m×n×d). Hence, even for a moderate number of source points s and target points t kernel

techniques become computationally expensive. For large sample sizes, however, a direct eval-

uation of (9) is impractical for realtime analysis. Considerable speedups in evaluating Matrix-

Vector products of this form are attainable if the matrix Ψ reveals some suitable structure. That

is, there is some connection between the elements of Ψ that can be exploited. If Ψ does not

come with any suitable structure, we can impose it by appropriate preprocessing, at the expense

of loosing precision.

In the following we present two classes of algorithms that achieve subquadratic runtime for cal-

culating Matrix-Vector products of this type. First, we show how the Fast Fourier Transform

(FFT) can be utilized to evaluate equation (9) in O(n logn) time if the source points and the

target points are located on regular grids. Since data is usually not located on regular grids,

we present binning strategies to impose a regular grid structure. Secondly, we present a class

of algorithms, called Fast Multipole Method (FMM). It gains computational speed by element

wise expansion of the matrix Ψ and block wise factorization to “encapsulate information” that

can be reused to save computations. Although there are numerous variations of the FMM avail-

able depending on the shape of the Kernel function K(•) and the method of expansion we focus

on the case of a Gaussian Kernel since it is the most relevant case in our situation. Particular

attention is given to the Fast Gauss Transform introduced by Greengard and Strain (1991) and

a modified version, the Improved Fast Gauss Transform, developed by Raykar et al. (2005).

Both, the (FMM) and the (FFT), were honored to belong to the “top ten algorithms of the 20th

century” (Cipra, 2000). Nevertheless, they also have some shortcomings in particular situations.

We address these shortcomings as well as the advantages of both methods in terms of speed and

accuracy. We especially focus on the performance in higher dimensions.

8

3 Fast Algorithms

3.1 Fast Fourier Transform and Binning Procedures

The application of the Fast Fourier Transform to speed-up nonparametric estimation procedures

goes back to the groundbreaking work by Silverman (1982). He suggested a two-step proce-

dure to accelerate univariate Kernel Density estimation. In the first step, the raw data is mapped

to a regular grid with M number of grid points (M 	 n). This enormously simplifies the data

structure and makes the problem almost independent of the original sample size. In the second

step, the simplified data structure can be exploited be the means of the Fast Fourier Transform.

Härdle (1987) applies this idea to univariate Kernel smoothing. Fan and Marron (1994) give a

refined mapping procedure (so called linear binning) that shows better performance in terms of

bias than the formerly used constant binning. They also present an application using a local lin-

ear estimator. Wand (1994) extends the work of Fan and Marron (1994) to multivariate settings.

In the following we present this strategy in greater detail. Therefore we first briefly describe

the mapping procedure used. Then we show how our Matrix-Vector multiplication problem is

connected to a circular convolution setting and how the FFT can be utilized to speed up calcu-

lations. Particular attention is paid to the runtime in higher dimensions. Finally we emphasize

the approximation error caused by the binning.

3.1.1 Binning Procedures

Let xi,yi ∈ R, i = 1, . . . ,n be a sample of exogenous and endogenous variables in a regression

framework, respectively. Let further g j ∈ R, j = 1, . . . ,M be equally spaced grid points. More-

over, let η(xi,g j) denote a function that assigns weight to each combination of data points xi

and grid points g j. The total weight of a grid point g j is called “bin count” and defined as:

c j =
n

∑
i=1

η(xi,g j)

In the same way we can summarize the endogenous variable at the grid points as a weighted

average of those yi for which the corresponding xi put weight to the grid point g j:

ȳ j = c−1
j

n

∑
i=1

η(xi,g j)yi

A straightforward choice of the weight function η(•) is an indicator function that assigns unit

weight to grid point g j if it is nearest to data point xi and zero weight to all other grid points:

η(xi,g j)
CB =

{
1 if |xi −g j|< |xi −gk| ∀ j �= k
0 else

This approach is called Constant Binning since the weight from all data points x for which g is

the nearest grid point is constant regardless how far these points are away from g . Figure (1)

shows a mapping of 20 data points to a grid with 7 grid points using Constant Binning. A line

indicates that grid point g j receives (unit) weight from data point xi.

In contrast to constant binning the Linear Binning approach takes into account how far a data

point is away from a grid point. The smaller the distance between grid point and data point,

the higher the weight that is assigned to the grid point. Figure (2) illustrates that idea. Again,

9

g1 g2 g3 g4 g5 g6 g7

Figure 1: Mapping data points to grid using constant binning

g1 g2 g3 g4 g5 g6 g7

Figure 2: Mapping data points to grid using linear binning

20 data points are mapped to a regular grid with 7 grid points but using linear binning. The

presence of a line between a data point and a grid point indicates that we assign weight from the

data point to the grid point. The thickness of the line indicates the strength of the assignment.

Fan and Marron (1994) suggested the following weight function for the linear binning case:

η(xi,g j)
LB =

(
1− |xi −g j|

Δ

)
+

Where Δ is the distance between two consecutive grid points, that is Δ = (gM − g1)/(M − 1).
The authors also give an algorithm to calculate the constant and linear weights c j in O(n) time.

For sake of compactness we skip a detailed description of the procedure and direct the reader to

the original paper.

Applying one of the above mentioned binning techniques leads to remarkable computational

savings for the evaluation of (9). The number of computations reduces from O(n2) to O(M2+n)
in the binned version. The binned local constant Estimator, for instance, is given by:

m̂(g j) =
T̄0(g j)

S̄0(g j)
(10)

with ⎛⎜⎝ T̄0(g1) S̄0(g1)
...

...

T̄0(gM) S̄0(gM)

⎞⎟⎠=

⎛⎜⎝Kh (g1 −g1) . . . Kh (g1 −gM)
...

. . .
...

Kh (gM −g1) . . . Kh (gM −gM)

⎞⎟⎠
︸ ︷︷ ︸

Ψ̃

×

⎛⎜⎝ c1ȳ1 c1

...
...

cMȳM cM

⎞⎟⎠

To obtain estimates at points not lying on the grid one can make use of interpolation techniques

as described by (Press, 2007, Chapter 3).

Although binning reduces the computational cost quite substantially, even further improvements

are possible if we consider that in fact the binned matrix-vector product is a discrete convolution.

Conveniently, discrete convolutions can be computed fast using the FFT, which is presented in

the following section.

10

3 Fast Algorithms

3.1.2 Convolution and the Fast Fourier Transform

Let {uk} and {wk} be two univariate sequences with period n, i.e. uk = uk+γn, ∀γ ∈ N. The

discrete convolution of these sequences is then defined by:

fk = u∗ v =
n−1

∑
i=0

wiuk−i

Van Loan (1992) shows that this is in fact equivalent to the matrix-vector product:

f =Cn(u)w (11)

Where Cn(u) denotes a circulant matrix. A circulant matrix is characterized by the fact that

every column is a down-shifted version of its predecessor. To be specific, a circulant matrix has

the following form:

Cn(u) =

⎛⎜⎜⎜⎜⎜⎜⎝
u0 un−1 . . . u2 u1

u1 u0 un−1 u2

... u1 u0
. . .

...

un−2
. . .

. . . un−1

un−1 un−2 . . . u1 u0

⎞⎟⎟⎟⎟⎟⎟⎠
As pointed out by (Golub and Van Loan, 2012, Chapter 4.8), a particularly useful characteristic

of the matrix Cn(u) is that it can be expressed as a polynomial in the downshift-operator Dn :

Cn(u) = u0D0
n +u1D1

n + . . .+un−1Dn−1
n =

n−1

∑
k=0

ukDk
n

We make use of the Matlab index notation to define the downshift-operator Dn as follows:

Dn = In(:, [2 : n,1])

In case that n = 4, for example, it is given as:

D4 =

⎛⎜⎜⎝
0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

⎞⎟⎟⎠
An exploitable property of the downshift-operator Dn is the fact that it can be diagonalized as

follows:

FnDnF−1
n = Λn,

where Fn is the Discrete Fourier Transform (DFT) matrix with elements:

[Fn]pq = ω(p−1)(q−1)
n = exp{−2π(p−1)(q−1)i/n} , i2 =−1

11

Λn is a diagonal matrix of the following form:

Λn =

⎛⎜⎜⎜⎝
1

ωn
. . .

ωn−1
n

⎞⎟⎟⎟⎠
Since the circulant matrix Cn(u) is a polynomial in the downshift-operator Dn and Dn can be

diagonalized by Fn it follows that Fn also diagonalizes the circulant matrix Cn(u):

FnCn(u)F−1
n =

n−1

∑
k=0

ukFnDk
nF−1

n =
n−1

∑
k=0

uk
(FnDnF−1

n︸ ︷︷ ︸
Λn

)k
=

n−1

∑
k=0

ukΛk
n = diag(Fnu)

In conjunction with equation (11) this leads to the particular useful result:

f = u∗w =Cu(u)w = F−1
n {(Fnu)
 (Fnw)} (12)

This is in fact nothing else than the well-known discrete circular convolution theorem. For a

detailed proof we refer the reader to Hunt (1971). A concise introduction is given by (Van Loan,

1992, Chapter 4.2)

At a first glance we have not gained any improvement in terms of numerical performance by

introducing the DFT factorization. Since the matrix Fn is of the same size as C(u)n it is quite the

opposite. However, closer examination of the matrix Fn shows that it reveals a special structure

that can be exploited to speed up the calculation of equation (12). This is exactly what is done

by a huge class of algorithms called Fast Fourier Transforms (FFT).

To illustrate the idea behind the FFT let n = 23 = 8. Further, let x ∈ C be a vector of length n.

The discrete Fourier transform is then given by:

F8x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1

1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω ω4 ω7 ω2 ω5

1 ω4 1 ω4 1 ω4 1 ω4

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω7 ω6 ω5 ω4 ω3 ω2 ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

x6

x7

x8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Since ω = ω8 = exp{−2πi/8} is a primitive n− th root of unity the higher exponents simplify.

If we group the columns with even and odd indices we can see how the DFT of length 8 is

related to a DFT of length 4. Applying this recursively is the core of the Radix-2 Factorization

algorithm invented by Cooley and Tukey (1965). Reordering the columns of F is achieved by

12

3 Fast Algorithms

post-multiplying by the permutation matrix P = In(:, [2 : 2 : n,1 : 2 : n−1]). For n = 8 this is:

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0

︸ ︷︷ ︸
odd-cols

0 0 0 0 ︸ ︷︷ ︸
even-cols

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
This yields:

F8x = F8PP�x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1

1 ω2 ω4 ω6 ω ω3 ω5 ω7

1 ω4 1 ω4 ω2 ω6 ω2 ω6

1 ω6 ω4 ω2 ω3 ω ω7 ω5

1 1 1 1 −1 −1 −1 −1

1 ω2 ω4 ω6 −ω −ω3 −ω5 −ω7

1 ω4 1 ω4 −ω2 −ω6 −ω2 −ω6

1 ω6 ω4 ω2 −ω3 −ω −ω7 −ω5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x3

x5

x7

x2

x4

x6

x8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
By applying this reordering the centerpiece of the FFT becomes clear, since:

F8x =
(F4 Ω4F4

F4 −Ω4F4

)
P�x =

(I4 Ω4I4

I4 −Ω4I4

)(
I2 ⊗F4

)
P�x, Ω4 =

(1
ω

ω2

ω3

)
This result holds in general as:

Fnx =
(Im ΩmIm

Im −ΩmIm

)(
I2 ⊗Fm

)
P�x, ∀n = 2k,k ∈ N,k ≥ 1,m = n/2

Now we can apply the same kind of factorization to Fm and so on until we end at F1. For

the inverse Fourier Transform, F−1
n x, the idea of splitting applies analogously. In this way we

reduce the amount of work for the discrete convolution (12) from O(n2) to O(n logn).

Besides this recursive procedure, there are many more FFT algorithms. A non-recursive ver-

sion of the Radix-2 splitting was invented by Cooley and Tukey (1965). For the special case that

n= 4k or n= 8k,k∈N there also exist optimized Radix-4 and Radix-8 factorization, respectively

(Duhamel and Hollmann, 1984). Rader (1968) and Kolba and Parks (1977) give algorithms for

cases where n is prime. A generalization to n = pk,k ∈ N, p prime was developed by Winograd

(1978). A variant of the FFT that allows for arbitrary n is given by Bluestein (1970). A pro-

found overview of the different modifications of the FFT can be found in Duhamel and Vetterli

(1990) and Van Loan (1992). Recent work on fast DFT for data that is sparse in the frequency

domain has been done by Hassanieh et al. (2012a) and Hassanieh et al. (2012b). In addition to

the computational aspects, there is also a huge strand of literature on the theory of the Fourier

Transform. A comprehensive introduction is given by Brockwell (1986), Stein and Shakarchi

(2003) and Wong (2011), to name only a few.

13

We have seen that a Matrix-Vector product can be calculated in O(n logn) computations us-

ing the FFT if the matrix is circulant. To utilize this result we must show that the matrix of

kernel weights for the binned data Ψ̃ can easily be transformed to a circulant matrix. Therefore,

we use the fact that the matrix Ψ̃ has a Toeplitz structure. A (n×n) matrix T is called Toeplitz

if the entries are constant along each diagonal. For example:

T =

⎛⎝u0 u−1 u−2

u1 u0 u−1

u2 u1 u0

⎞⎠
is Toeplitz. Since the grid points g are equally spaced, the distances between them only depend

on the difference in their indices: gi − g j = Δ(i− j),∀i, j. The distance between the indices

i and j is constant along each diagonal. Hence, the matrix Ψ is indeed Toeplitz. One can

derive a Circulant matrix T∗ from the Toeplitz matrix T by imposing a circularity structure in

the following way:

T∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0 u−1 u−2 0 0 0 u2 u1

u1 u0 u−1 u−2 0 0 0 u2

u2 u1 u0 u−1 u−2 0 0 0

0 u2 u1 u0 u−1 u−2 0 0

0 0 u2 u1 u0 u−1 u−2 0

0 0 0 u2 u1 u0 u−1 u−2

u−2 0 0 0 u2 u1 u0 u−1

u−1 u−2 0 0 0 u2 u1 u0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Keeping in mind that multiplying T∗ with a vector is in fact a circular convolution, the aug-

mentation is needed to avoid wrap-around effects. A general construction procedure is given by

(Van Loan, 1992, chapter 4.2.4). For a comprehensive study of the linkages between Toeplitz

matrices and Circulant matrices we refer the reader to Gray (2006). The vector that is multiplied

by the matrix T∗ is also padded with zeros to match dimensions

Now, we have everything at hand what we need to apply the FFT on the binned version of

equation (9). We use the following shorthand notation:

Kh(gi −g j) =Kh {(i− j)Δ}=K|i− j|

to define:

ψ =
(
K0 . . . KM−1 0 KM−1 . . . K1

)�
c∗ =

(
c� 0

)�
cȳ∗ =

(
cȳ� 0

)�
In this way we can evaluate the local constant estimator in equation (10) as follows:

T̄0 = F−1
{F(ψ)
F (cȳ∗)

}
(1:M)

S̄0 = F−1
{F(ψ)
F (c∗)

}
(1:M)

14

3 Fast Algorithms

The index (1 : M) means, that we take only the first M values.

We see that by exploiting the special structure of the matrix Ψ̃, we further reduce the run-time

complexity of the matrix-vector product in equation (9) from O(n+M2) to O(n+m log(m))
where m, m ≥ 2M−1, is the length of the zero padded vectors c∗ and cȳ∗. To benefit most from

the FFT, m should be chosen such that it is the smallest integer greater or equal 2M−1 that is

a power of 2. Namely: m = 2k with k = �log(2M−1)/ log(2)�.

3.1.3 Moving to higher Dimensions

The extension of this approach to higher dimension is straightforward. A common way to com-

pute the grid counts and the kernel weights in higher dimensions is to take the product of the

univariate estimates as suggested by Wand (1994). This leads to a multivariate array of kernel

weights Ψ̃ that has a Toeplitz structure within every slice. For this we can also impose a circu-

larity structure by extending every slice in the same way as we did in the univariate case. As in

the univariate case, we can utilize the (multivariate) FFT to speed up calculations. We refer the

reader to Chan (1988) and Chan and Olkin (1994) for a detailed overview.

Although extending this approach to higher dimensions is straightforward, the benefit is ques-

tionable when working with d ≥ 3. The problem in higher dimension is that the binning pro-

cedure is a fairly rigid type of data clustering. Thus, we implicitly assume that the data is

roughly uniformly distributed. In higher dimensions, however, this is rather unlikely. If the

data is not uniformly distributed the grid has to be fine enough to keep the approximation er-

ror small. This naturally causes problems in terms of memory consumption. To illustrate that,

we assume that d = 3. If we create a grid with 250 grid points in each dimension, we come

up with 2503 = 15,625,000 grid points in total where most of them receive zero weight. To

avoid wrap-around effects in the convolution step we additionally have to pad the grid arrays

with zeros. Doing this, we generate an array with 5123 = 134,217,728 entries. Working with

double-precision values this array has approximately a size of 1GB. Since we have to store

at least 2 such arrays in memory, this is quite restrictive and exactly the opposite of what we

wanted to achieve by using binning. Storing a four-dimensional array with 5124 entries requires

approximately 550GB in memory and is prohibitively expensive.

Nevertheless, since most of the entries are zeros, one can make use of data structures for sparse

data. Then, only the non-zeros values are stored along with their indices. This reduces the mem-

ory consumption dramatically if the share of non-zero values is relatively small. Unfortunately,

until now standard Software Packages like Matlab or R do not support multidimensional FFT
on sparse data structures.

Moreover, the runtime complexity of the multidimensional FFT grows exponentially with the

dimension d. If we use the same number of grid points M, in every dimension the runtime of a

d−dimensional convolution is:

O(mdd logm) (13)

with m = 2k,k = �log(2M − 1)/ log(2)�. Hence, even for huge sample sizes and a moderate

number of grid points in every dimension, the amount of work to evaluate equation (9) using

the FFT approach exceeds the direct evaluation clearly when dealing with higher dimensional

data. In a nutshell, one can say that this approach suffers from the sparsity of high dimensional

data due to its rigid clustering scheme.

15

3.1.4 Approximation error

Mapping continuous data onto a regular grid introduces an approximation error. Using a rough

grid, we obtain large numerical improvements but we run the risk of a substantial error and vice

versa. This raises the question how to trade accuracy for speed. Namely, how to determine the

binning rule and the number of grid points.

To answer that question, a pioneering study is given by Hall (1982) who investigated the impact

of rounding errors on univariate density and density-derivative estimation. Scott and Sheather

(1985) extend this work and give an explicit formula for the Integrated Mean Squared Error

(IMSE) of a univariate kernel density estimator as a function of the bin width Δ. Along the

same lines, Jones (1989) give Asymptotic results for n,M → ∞. Hall and Wand (1996) examine

the influence of the binning rule and the smoothness of the true density on the approximation

error of a binned kernel density estimator. They show that linear binning is asymptotically

superior to constant binning in terms of the Mean Squared Error (MSE) between a binned and a

direct univariate kernel density estimator. Let f̂ (x) and f̃ (x) be a direct estimator for a univariate

density and a binned estimator, respectively. The MSE is then given as:

E{ f̃ (x)− f̂ (x)}=
{

Δ2α1 E{K′
h(x−X)2}+O

(
Δ2
)

Const. Binning

Δ4
[
α2 E{K′′

h(x−X)2}+α3{EK′′
h(x−X)}2

]
+O

(
Δ4
)

Lin. Binning

(14)

With α1 = (12n)−1, α2 = (120n)−1, α3 = (1−n−1)/144 and Δ→ 0. This result also generalizes

to higher dimensions and other kernel estimators like local constant and local linear regression

estimators (Wand, 1994). Since the runtime complexity for both, constant and linear binning, is

O(n), the latter method is preferable in practice.

Determining the minimum number of grid points that guarantees a given error bound is much

more challenging in practice. If the true function of interest is very smooth, only a few grid

points suffice to get close estimates. For a very wiggly function however, a very fine grid is

needed to keep the approximation error small. Hence, the optimal number of grid points for

which the binned estimator satisfies some upper error bound depends on the shape of the func-

tion we want to estimate. To our knowledge, there is no straightforward way to select the optimal

number of grid points in advance for a certain error bound without any prior information about

the data. Doing some pre-analysis to estimate an optimal M could heavily reduce the overall

computational benefit.

As a rule-of-thumb, Hall and Wand (1996) suggest to set 100 ≤ M ≤ 500 to get good approx-

imations for a wide range of estimation problems. Their results are based on binned density

estimation of 15 different types of densities described by Marron and Wand (1992). In univari-

ate local polynomial regression Fan and Marron (1994) recommend to use 400 ≤ M. In higher

dimensions, however, this choice might be impractical due to memory restrictions.

3.2 Fast Gauss Transform

Applying the FFT on pre-binned data to make use of the convolution theorem (12) may lead to

large computational savings if the distribution of the data is not far from an uniform. For fairly

clustered data, however, this approach performs poorly, since a large number of grid points is

needed to maintain an acceptable approximation error. This is particularly apparent in higher

16

3 Fast Algorithms

dimensions. A better performance might be achieved by binning the data on an irregular grid

and make use of a nonuniform FFT algorithm (cf. Dutt and Rokhlin (1993), Greengard and Lee

(2004) and Wefers and Vorländer (2012)).

The algorithm we present in the following seizes this idea. The so called Fast Multipole Method

is originated in computational physics and was invented to speed up evaluation of all pairwise

interactions of particles in a gravitational or Coulomb field (Greengard and Rokhlin, 1987). In-

stead of simplifying the data structure via binning, it simplifies the kernel function by series

expansion around some cluster centers. A vast variety of implementations exist depending on

the kernel function and the clustering procedure. Greengard et al. (1998) and Gumerov and Du-

raiswami (2005) apply this approach to Helmholtz equations. Greengard and Rokhlin (1997)

deal with the Laplace equations whereas Coifman et al. (1993) show an application using wave

equations. A concise introduction with references to several applications is given by Beatson

and Greengard (1997).

In this application we restrict ourselves to the special case of a Gaussian Kernel function leading

to the so called Fast Gauss Transform (FGT) invented by Greengard and Strain (1991). Particu-

lar attention is paid to a refined modification of the original FGT invented by Yang et al. (2003)

and Raykar et al. (2005) that shows superior performance in higher dimensions. Therefore, they

call it Improved Fast Gauss Transform (IFGT)

3.2.1 Introductory Example

As a starting point we assume that the Kernel function in use is degenerated. That means it can

be written in the following form:

K(x,X) =
p

∑
k=1

Φk(x)Θk(X)

Where the two functions Φ(x) and Θ(X), depending only on the source points X and the target

points x, respectively. The matrix of kernel weights Ψ in equation (9) can then be decomposed

as follows:

⎛⎜⎝K(x1,X1) . . . K(x1,Xn)
...

. . .
...

K(xm,Xn) . . . K(xm,Xn)

⎞⎟⎠=

⎛⎜⎝Φ1(x1) . . . Φp(x1)
...

. . .
...

Φ1(xm) . . . Φp(xm)

⎞⎟⎠
︸ ︷︷ ︸

Φ

×

⎛⎜⎝Θ1(X1) . . . Θ1(Xn)
...

. . .
...

Θp(X1) . . . Θp(Xn)

⎞⎟⎠
︸ ︷︷ ︸

Θ
(15)

Replacing Ψ in equation (9) by the product Φ×Θ gives:

17

⎛⎜⎝G(x1)
...

G(xm)

⎞⎟⎠=

⎛⎜⎝Φ1(x1) . . . Φp(x1)
...

. . .
...

Φ1(xm) . . . Φp(xm)

⎞⎟⎠×

(∗)︷ ︸︸ ︷⎛⎜⎝Θ1(X1) . . . Θ1(Xn)
...

. . .
...

Θp(X1) . . . Θp(Xn)

⎞⎟⎠×

⎛⎜⎝ν1

...

νn

⎞⎟⎠
︸ ︷︷ ︸

(∗∗)

Evaluating the second part of the RHS, denoted by (∗), has runtime complexity of O(np) and

yields a (p × 1) vector. Taking the product of Φ and this vector has a runtime of O(mp).
Altogether, we can evaluate (∗∗) in O(p(n+m)) time without any approximation error. If

p 	 min(n,m) this is advantageous compared to direct evaluation.

3.2.2 General Case

Standard kernel functions are typically non-degenerated. Hence, this approach is not applicable.

Nevertheless, an approximative solution is still feasible. The core of FMM-like algorithms is

using a series expansion of the Kernel function that converges relatively fast and truncate it after

few terms:

Kh(x,X)≈
p

∑
k=1

Φk(x,c)Θk(X ,c)

The point c denotes the expansion center where the information about the source points is to be

“encapsulated”. This yields:

G(x)≈
n

∑
i=1

p

∑
k=1

Φk(x,c)Θk(Xi,c)νi

=
p

∑
k=1

Φk(x,c)
n

∑
i=1

Θk(Xi,c)νi

Figure (3) illustrates this approach. The upper panel shows the interactions between the sources

(black points) and the targets (red points) in a direct calculation. The amount of work to evaluate

the influence of the source points on an additional target point is O(n). The lower panel shows

how the information about the sources points is “summed up” at the expansion center. This

summation can be done in a single pass. Evaluating the influence on an additional target point

scales O(1).

3.2.3 Using a Gaussian Kernel

Assume the following definition of a multivariate Gaussian Kernel function:

K(x,X) = exp
(−‖x−X‖2/h2

)

18

3 Fast Algorithms

Figure 3: Encapsulate information at expansion center.

We skip the normalizing constant 1/
√

2π for notational convenience and shift it to the weight

ν . The same bandwidth h applies in all dimensions by pre-transforming the data as:

Xi, j = h
X∗

i, j√
2h j

,

where h j and X∗
i, j denotes the bandwidth and the raw data in dimension j, respectively. The

(weighted) sum of Gaussians at target point X is then given by:

G(X) =
n

∑
i=1

exp
(
−‖x−Xi‖2 /h2

)
νi

=
n

∑
i=1

exp
{
−‖(x− c)− (Xi − c)‖2 /h2

}
νi

= exp
(
−‖x− c‖2 /h2

)
︸ ︷︷ ︸

∗

n

∑
i=1

exp
(
−‖Xi − c‖2 /h2

)
︸ ︷︷ ︸

∗∗

exp
{

2(x− c)(Xi − c)/h2
}

︸ ︷︷ ︸
∗∗∗

νi

The first term (∗) is just a scalar. The second term (∗∗) depends only on the sources and can

be precomputed in a single step. The last term (∗∗∗), however, is the computational bottleneck

since the target points and the source points are entangled. To break this entanglement, Raykar

et al. (2005) apply Taylor expansion about c:

exp
{

2(x− c)(Xi − c)/h2
}
= ∑

|α|≥0

2α

α!

(
x− c

h

)α (Xi − c
h

)α

Where α denotes a multi-index of length d (see appendix 1). Substituting (∗∗∗) by the truncated

19

Taylor series yields:

G(x) = exp
(
−‖x− c‖2 /h2

) n

∑
i=1

exp
(
−‖Xi − c‖2 /h2

)
∑

|α|≥0

2α

α!

(
x− c

h

)α (Xi − c
h

)α
νi

≈ exp
(
−‖x− c‖2 /h2

)
∑

|α|<p

2α

α!

(
x− c

h

)α n

∑
i=1

exp
(
−‖Xi − c‖2 /h2

)(Xi − c
h

)α
νi︸ ︷︷ ︸

�

By the means of the Cauchy-Schwarz inequality it can be shown that the error η(p,c) caused

by the truncated evaluation at source point Xi is bounded:

ηi(p,c) = exp
(
−‖x−Xi‖2 /h2

)
− (∗)× (∗∗) ∑

|α|<p

2α

α!

(
x− c

h

)α (Xi − c
h

)α

≤ 2p

p!

(‖Xi − c‖
h

)p(‖x− c‖
h

)p

exp{−(‖Xi − c‖−‖x− c‖)2/h2} (16)

This result is particular useful since it allows to set error bound a priori and choose the values

of p and c such that the bound is met.

Now the sum in (�) is independent of the target points an can be evaluated in advance with

O(n) work. Since there exist
(p+d

d

)
distinct multi-indices satisfying |α| < p the total runtime

complexity is O
((p+d

d

)
n
)

. Once the sum (�) is calculated, the evaluation at an additional

target point t ′ needs only O
((p+d

d

))
calculations. Hence, the approximative computation of the

Matrix-Vector product in equation (9) can be done in O
((p+d

d

)
(n+m)

)
. Using matrix notation

gives a parsimonious representation:

G ≈

⎛⎜⎝Φ1,0 . . . Φ1,p−1

...
. . .

...

Φm,0 . . . Φm,p−1

⎞⎟⎠
⎛⎜⎝ Θ0,1 . . . Θ0,n

...
. . .

...

Θp−1,1 . . . Θp−1,n

⎞⎟⎠
⎛⎜⎝ν1

...

νn

⎞⎟⎠
With

Φ j,|α| = exp
(
−∥∥x j − c

∥∥2
/h2

)(x j − c
h

)α

Θ|α|,i =
2α

α!
exp

(
−‖Xi − c‖2 /h2

)(Xi − c
h

)α

The crucial point here is that the series expansion must be sufficiently short to benefit from the

approximation. If some sources are “far away” from the expansion center, a large number of

basis functions is needed to keep the approximation error small. To circumvent this issue the

data space can be split up into clusters and the expansion is done about the cluster centers for

all elements within the cluster.

In their seminal work, Greengard and Strain (1991) used a uniform boxing scheme to subdivide

the space. This approach shares the advantage of the binning procedures described in section

20

3 Fast Algorithms

(3.1) to be easy to implement. On the downside, however, the number of boxes growths ex-

ponentially with the data dimension. An approach using kd-trees for data clustering is given

by Lee et al. (2005) and Lee and Gray (2006). In this work we follow the approach taken

by Gumerov and Duraiswami (2005) and Morariu et al. (2008) to partition source points into

clusters by the means of the so-called “farthest-point clustering”.

3.2.4 Data Clustering

Let K be the number of clusters to find in the data and S ⊂ R
d be the data space. The objective

is to find a partition
⋃

Sk = S such that the maximum of all cluster radii is minimized:

arg min
(c1,...,cK)

max
k

max
X∈Sk

‖X − ck‖

Where ck denotes the center of the cluster Sk. Bern and Eppstein (1996) show that finding the

optimal solution is NP-hard and therefore not feasible if numerical performance is an issue.

Nevertheless, Gonzalez (1985) gives a procedure that yield a solution that is not worse than

twice the optimum but runs in O(nK). The algorithm proceeds as follows:

At the initial step a randomly chosen point s0 ∈ S is set as the first cluster center. In the next step

the distance from every point in S to the first center is calculated. The point that is farthest from

the initial center is added to the set of cluster centers. In every iteration the point is added to the

set of cluster centers that is farthest from the existing set of cluster centers. That is, this point is

further from its closest center point than any other point to its closest center. If the centers are

defined, all points are assigned to its nearest center.

A particular useful characteristic of this procedure is that the number of clusters can be increased

without altering the existing cluster centers. We will show that this is helpful to determine the

runtime-optimal number of clusters. A refined algorithm with runtime O(n logK) is given by

Feder and Greene (1988).

3.2.5 Expansion about cluster centers

Data points within a cluster are close to its center by the very nature of the clustering algo-

rithm. Hence, a Taylor expansion about a cluster center should converges relatively fast within

the cluster. Altogether, the additional amount of work for the clustering procedure is gener-

ally overcompensated by savings due to the faster convergence of the Taylor expansion. From

equation (16) it is apparent that the error bound gets tighter if the distances ‖Xi − c‖ decreases.

This also means that the series can be truncated at lower order to guarantee the error bound.

Applying the Taylor expansion about every cluster center and summing the contribution of all

clusters to target point x yields:

G(x)≈
K

∑
k=1

exp
(
−‖x− ck‖2 /h2

)
∑

|α|<p

2α

α!

(
x− ck

h

)α

∑
Xi∈Sk

exp
(
−‖Xi − ck‖2 /h2

)(Xi − ck

h

)α
νi

21

Using block matrix notation, the clumsy triple summation is avoided:

G ≈ (
Φ1 . . . ΦK

)
(m×K∗p)

⎛⎜⎝Θ1

...

ΘK

⎞⎟⎠
(K∗p×n)

ω(n×1)

with

Φk =

⎛⎜⎝Φ1,0,k . . . Φ1,p−1,k
...

. . .
...

Φm,0,k . . . Φm,p−1,k

⎞⎟⎠
(m×p)

Θk =

⎛⎜⎝ Θ0,1,k . . . Θ0,n,k
...

. . .
...

Θp−1,1,k . . . Θp−1,n,k

⎞⎟⎠
(p×n)

and

Φ j,|α|,k = exp
{
−∥∥x j − ck

∥∥2
/h2

}(x j − ck

h

)α

Θ|α|,i,k =
2α

α!
exp

{
−‖Xi − ck‖2 /h2

}(Xi − ck

h

)α
1(Xi ∈ Sk)

Since the Gaussian function declines relatively fast, the matrices Φk contain many values that

are almost zero. Hence, we introduce only a small additional error if we set these values equal

zero but benefit from the sparsity of Φk since tailored methods for sparse matrix multiplication

are applicable (cf. Yuster and Zwick (2005), Bell and Garland (2008) and Williams et al. (2009)

for furhter readings). Raykar et al. (2005) suggest the following threshold:

Φ j,|α|,k =

⎧⎨⎩exp
(
−∥∥x j − ck

∥∥2
/h2

)(
x j−ck

h

)α
,
∥∥x j − ck

∥∥≤ max
Xi∈Sk

‖Xi − ck‖+h
√

log(1/η)

0, else

(17)

Where η denotes the user-defined overall error tolerance. That is, the deviation from the direct

calculation is bounded by:

max
x j

⎧⎪⎪⎨⎪⎪⎩
∣∣∣G̃(x j)−G(x j)

∣∣∣
n
∑

i=1
|νi|

⎫⎪⎪⎬⎪⎪⎭≤ η (18)

3.2.6 Runtime Analysis

The runtime of the algorithm is influenced at three stages. The clustering procedure can be

done in O(n log(k)) according to Feder and Greene (1988). The amount of work to calculate

the “source dependent” part of the Taylor series is O(n
(p+d−1

d

)
). Evaluation of the “target

dependent” part is influenced by the number of clusters for which the cluster center is closer

22

3 Fast Algorithms

to the target point then the threshold given in equation (17). We denote this number as nC.

Altogether, the proposed algorithm has runtime of:

O
(

n log(K)+n
(

p+d −1

d

)
+m

(
p+d −1

d

)
nC

)
(19)

In contrast to the FFT approach presented in section (3.1), the runtime does not grow exponen-

tially with the dimension d since:

lim
d→∞

(
p+d −1

d

)
= dp

Equation (19) also shows, that the runtime increases with the number of clusters K and the

truncation p. Obviously, a large number of clusters allows an early truncation of the Taylor

series and vice-versa. Finding the runtime-optimal combination of truncation order and the

number of clusters is being addressed in the next section.

3.2.7 Parameter selection

As in all approximative algorithms, we trade speed for precision. For a fixed error bound η we

try to find the combination of parameters K and p such that the expected runtime is minimized.

A natural upper bound for a “fast algorithm” is the runtime of the direct evaluation. If it is

not faster than direct evaluation it makes no sense to apply. Morariu et al. (2008) suggest

a procedure for choosing the parameters optimally. The basic idea is as follows: The total

deviation of the direct calculation and the approximative has two different sources. The first

source is the error caused by the truncation of the Taylor series. The second error contribution

comes from disregarding target points x that are “far away” from a cluster center. Hence, the

deviation can be decomposed as:

|G̃(x)−G(x)| ≤
K

∑
k=1

∑
Xi∈Sk

|νi|1
{∥∥x j − ck

∥∥≤ max
Xi∈Sk

‖Xi − ck‖+h
√

log(1/η)

}
ηi, j

+
K

∑
k=1

∑
Xi∈Sk

|νi|1
{∥∥x j − ck

∥∥> max
Xi∈Sk

‖Xi − ck‖+h
√

log(1/η)

}
η

Given a fixed number of clusters, the truncation order is chosen as the smallest value of p such

that the sum of all cluster-wise errors is not greater then the total error bound. The cluster set is

extended as long as the estimated runtime for the Taylor expansion decreases substantially.

23

4 Simulation

To underpin the theoretical results about runtime complexity and approximation error of the

proposed methods, we conduct a simulation study. For that we draw random samples from a

multivariate standard normal distribution

X ∼N (0,Id)

and estimate the density using “direct” and “fast” approaches. As a benchmark we use the

brute-force calculation of the multivariate kernel density estimator⎛⎜⎝ f̂ (x1)
...

f̂ (xn)

⎞⎟⎠=

⎛⎜⎝exp
(−‖x1 − x1‖2/h2

)
. . . exp

(−‖x1 − xn‖2/h2
)

...
. . .

...

exp
(−‖xn − x1‖2/h2

)
. . . exp

(−‖xn − xn‖2/h2
)
⎞⎟⎠
⎛⎜⎝ν1

...

νn

⎞⎟⎠
with

νi =
1

nh
√

2π
It is noted that we do not compare the estimates obtained by the described “fast algorithms” to

the true density. This is because the techniques are numerical approximations to the brute-force

estimator and not estimators on their own right.

We use the following settings to simulate data:

n = {5000,6000, . . . ,19000,20000}
M = {10,20, . . . ,490,500}
d = {1,2,3}

The same grid size M is applied in all dimensions. That is, for M = 100 and d = 3 we map the

raw data onto a grid of size 100× 100× 100. For the three dimensional case we restricted the

grid size to M ≤ 200. The degree of smoothing in every dimension is chosen using the Rule-of-

Thumb provided by Silverman (1986). All calculations are repeated 100 times to weaken the

influence of outliers. All values presented are estimates of the median over these 100 repetitions.

4.1 Differences in the binning rules

We have seen that the linear binning rule is superior to constant binning in the sense that it causes

a smaller approximation error than constant binning for a given sample size (cf. equation (14)).

As a measure of closeness between the brute-force estimator (f̂) and the binned estimator (f̃)

we use the logarithm of the maximum absolute deviation:

log

[
max

i

{
| f̃ (xi)− f̂ (xi)|

}]
The logarithmic transformation is used just for illustrative purposes.

The left graph in figure (4) shows the approximation error of the constant binning estimator and

the linear binning estimator, respectively, for different sample sizes and different grid sizes in

a one-dimensional setting. It can be seen, that the error caused by constant binning (upper sur-

24

4 Simulation

0 100200300400500

 5000
10000

15000
20000

−11

−10

−9

−8

−7

−6

−5

Grid SizeSample Size

lo
g{

m
ax

(|f
* −

f|)
}

 5000 10000 15000 20000
−10

−9

−8

−7

−6

Sample Size

lo
g{

m
ax

(|f
* −

f|)
}

d=1, M=250

0 100 200 300 400 500
−12

−10

−8

−6

−4

−2
0

d=1, n=15000

Grid Size

lo
g{

m
ax

(|f
* −

f|)
}

Figure 4: Maximum absolute Deviation for Constant and Linear Binning

face) is always higher then the error caused by linear binning (lower surface). The upper-right

panel in figure (4) shows a cutout for a fixed grid size of M = 250 and varying sample size. The

dashed lines represent the 2.5% and the 97.5% quantiles, respectively. It can be seen that the

approximation error is almost independent of the sample size. Furthermore, it shows that linear

binning (blue curve) is significantly better then constant binning (red curve). The lower-right

panel shows the change in the approximation error for a fixed sample size and varying grid size.

The result was to be expected: the error shrinks as the grid size grows.

Regarding the approximation error, the linear binning procedure seems to be preferable com-

pared to constant binning, which confirms our theoretical findings. Since we always trade accu-

racy for speed, it is also necessary to compare the runtime of both algorithms to decide which

one to use. Figure 5 shows the ratio of the runtime for both approaches:

t(LB)

t(CB)

It can be seen that for small grid sizes, constant binning runs about 4 times faster then linear

binning. For larger sample sizes, however, the runtime is almost equal. This result also holds

in higher dimensions. Since linear binning is almost always preferable, we neglect the constant

binning procedure from this point on and use linear binning only.

25

0 100 200 300 400 500

 5000
10000

15000
20000

0.5

1

1.5

2

2.5

3

3.5

4

Grid SizeSample Size

Fa
ct

or

Figure 5: Runtime Constant Binning vs. Linear Binning

4.2 Differences in approaches

In the following we compare the performance of the FFT estimation procedure described in

section (3.1) and the IFGT procedure from section (3.2) in terms of runtime. We especially

focus on the change in runtime with increasing dimensionality. We take the following strategy:

In a first step we compute the brute-force kernel density estimator f̂ (x). Next we compute the

binned estimator f̃ (x) using linear binning and FFT. Having the binned estimator at hand we

can calculate the maximum absolute deviation relative to the sum of weights defined as:

η =
max

i

{
| f̃ (xi)− f̂ (xi)|

}
n
∑

i=1
|ωi|

We set this quantity as an upper error bound that the IFGT algorithm has to guarantee. In this

way we run both algorithms under the same conditions.

Nevertheless, a direct comparison has to be taken with caution since the performance is heavily

driven by the quality of the implementation. For the FFT there exists a large number of highly

optimized software packages like FFTW3 (Frigo and Johnson, 2005), Intels Math Kernel Li-

brary (MKL) and the cuFFT package from NVidia, to name only a few. These packages have

gone through a continual optimization process during the past two decades and are pretty mature

nowadays. In contrast, there exists only a single implementation of the IFGT procedure until

26

4 Simulation

0
100

200
300

400
500

 5000
10000

15000
20000

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Grid SizeSample Size

Fa
ct

or

Figure 6: Ratio of runtime of IFGT to binned estimator in 1D

now of which we know. Therefore, we suppose that there is still scope for large improvements

in the software architecture. The source code written in C++ with bindings to Matlab is pub-

licly accessible at http://www.umiacs.umd.edu/~morariu/figtree/. A documentation

can be found in Morariu et al. (2008). All calculations have been done on a Quadcore CPU with

16GB of RAM using Matlab 2012b 64bit.

Figures (6),(7) and (8) show the ratio of the runtime of both procedures in one, two and three

dimensions, respectively. They show that the binned FFT procedure is notably faster than the

IFGT for a given error bound, however collapses for high dimensions.

In the one-dimensional setting (6) the binned estimator is at least twice as fast as the IFGT
estimator. The lead increases with the sample size. This was to be expected since the binned

estimator is almost independent of the sample size.

From equations (13) and (19) we would expect that the runtime complexity of the binned esti-

mator grows faster with the dimension d than the IFGT does. Figure (7) give first indications

about that point. Even if the binned estimator is still faster in two dimensions, its lead shrinks

considerably with a higher number of grid points. Moving to three dimensions the consequences

of the rigid data clustering by binning become apparent. The upper panel in figure (8) shows

that binning is only faster when using a fairly rough grid of M ≤ 50 to M ≤ 80 depending on

the grid size. The lower panel shows only the sub-area for M ≥ 100. It can be seen that now the

binning procedure collapses for a higher number of grid points.

27

0
100

200
300

400
500

 5000
10000

15000
20000

0

5

10

15

20

25

Grid SizeSample Size

Fa
ct

or

Figure 7: Ratio of runtime of IFGT to binned estimator in 2D

The simulation results support our considerations about the runtime depending on the sample

size, the grid size and the dimensions. From that we draw the conclusion that the binning

procedure is preferable in one and two dimensional cases regardless of the shape of the data.

Although the IFGT has linear runtime, the overhead introduced by the more complex clustering

and the parameter selection procedure cancel out this benefit. In higher dimensions, however,

the opposite holds true.

28

4 Simulation

0
50

100
150

200

 5000
10000

15000
20000

0

5

10

15

20

25

Grid SizeSample Size

Fa
ct

or

100
120

140
160

180
200

 5000
10000

15000
20000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Grid SizeSample Size

Fa
ct

or

Figure 8: Ratio of runtime of IFGT to binned estimator in 3D

29

5 Application

The data set we use comes from a German company in the automotive supply industry. We

investigate the energy consumption of a cooling unit. Among compressed air generation and

heating, cooling is of particular interest since it is needed in many industrial processes. The

sampling rate of the raw data is a five-minute interval, but we use hourly averages instead for two

reasons. First, the outside temperature is only available on an hourly rate. Since this quantity is

crucial in thermodynamical processes we are restricted to the coarse resolution. Second, taking

averages over 12 observations in an hour reduces the effects of the system inertia as already

pointed out in section (2.1). The time period of the measurements along with the number of

observations is listed in Table (1).

Time Period n valid n
Cooling Unit 01-Sep-2012 - 12-Jan-2014 11952 10951

Table 1: Time period of measurements

Due to measurement failure, not all observations are valid. We remove the whole observation

if one of the variable is missing or an obvious outlier (e.g. negative energy consumption or

temperatures of several hundred degrees).

In the following we split the data set into two disjoint groups. The reference period includes all

values before 31-Aug-2013. The statistical model is build based on these values. The observa-

tions from 1-Sep-2013 onwards are used to evaluate the model. That is, we use the explanatory

variables to predict the energy consumption in this period. In order to make predictions, we

estimate the conditional mean with local constant and local linear estimators as well as the

conditional quantiles using local constant quantile regression. The conditional mean can be es-

timated using one of the fast methods described in section (3). We utilize the Improved Fast

Gauss Transform approach for two reasons. On the one hand, it shows better performance in

settings with more then two dimensions. On the other hand, we re-use the clustering structure

to speed-up quantile regression. The clustered version of the local constant quantile estimator

from equation (7) is given by:

min
β0

K

∑
k=1

ρτ (Ȳk −β0)Kh(ck − x)

5.1 The Cooling System

The energy consumption of a cooling unit is essentially influenced by two factors. First, the dif-

ference between the temperature of the inflowing and the outflowing refrigerant Δ(t). Secondly,

the quantity of refrigerant to be cooled down. Additionally, the outside temperature is also of

interest since the refrigerant is usually pre-cooled in a cooling tower at the roof of the factory

building if the outside temperature is low enough. This reduces the energy consumption of the

cooling machine but causes energy consumption of the cooling tower. The quantity of interest

is the overall energy consumption of the whole cooling system. The air humidity might also

be important since it influences the heat exchange in the cooling tower but the effect is usually

negligible. Table (2) shows summary statistics for the variables mentioned.

30

5 Application

Oct Jan Apr Jul Oct Jan
0

20

40

60

80

100

120

140

160

180

200

Month

E
ne

rg
y

co
ns

um
pt

io
n

in
 k

W
h

Energy consumption of a cooling unit

Figure 9: Energy Consumption of the cooling unit from Sep 2012 to Jan 2014

mean sd min max

Energy Consumption in kWh 24.6 37.8 0 186.44

Volume Flow in m3/h 249.5 377.2 0 1638

Outside Temperature in C 9.0 7.9 −10.2 36.0
Outflow Temperature in C 14.4 3.8 0.1 22.9
Relative Humidity in % 79.2 16.2 19.5 100

Table 2: Summary Statistics Cooling Unit

The energy consumption from Sep-2012 to Jan-2014 is shown in figure (9). Not surprisingly,

cooling is mostly needed in warm months. We remove all observations where the cooling unit

is only in standby mode. Figure (10) shows scatterplots between the energy consumption and

the explanatory variables. They suggest that the volume flow rate has notable influence on the

energy consumption. The dependency looks fairly linear with increasing dispersion for higher

flow rates. From the upper right panel it can be seen that the energy consumption tends to

increase with the outside temperature. The opposite holds for the outflow temperature. The

functional form, however, is not obvious from visual inspection. The relative humidity seems

to have no visible influence on the energy consumption. Thus, visual inspection supports our

theoretical considerations about the explanatory variables. We use the following model to draw

31

0 200 400 600 800 1000 1200 1400 1600 1800
0

20

40

60

80

100

120

140

160

180

200

Volume Flow in m3/h

E
ne

rg
y

co
ns

um
pt

io
n

in
 k

W
h

Energy consumption against Volume Flow

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

180

200

Outside Temperature in °C

E
ne

rg
y

co
ns

um
pt

io
n

in
 k

W
h

Energy consumption against Outside Temperature

6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

160

180

200

Outflow Temperature in °C

E
ne

rg
y

co
ns

um
pt

io
n

in
 k

W
h

Energy consumption against Outflow Temperature

20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

200

Relative Humidity in %

E
ne

rg
y

co
ns

um
pt

io
n

in
 k

W
h

Energy consumption against Relative Humidity

Figure 10: Scatterplot between Energy Consumption and the explanatory variables

32

5 Application

conclusions from the data:

yi = m(x1,i,x2,i,x3,i)+ εi

where x1 denotes the volume flow, x2 is the outside temperature and x3 stands for the outflow

temperature. Using matrix-vector product notation from section (2.1), the local constant esti-

mator is given by

m̂LC
h (x) =

Th,0(x)
Sh,0(x)

with ⎛⎜⎝Th,0(x1) Sh,0(x1)
...

...

Th,0(xm) Sh,0(xm)

⎞⎟⎠=

⎛⎜⎝Kh(x1 −X1) . . . Kh(x1 −Xn)
...

. . .
...

Kh(xm −X1) . . . Kh(xm −Xn)

⎞⎟⎠
⎛⎜⎝y1 1

...
...

yn 1

⎞⎟⎠
The overall error bound for the IFGT algorithm is set to η = 0.001. The number of clusters and

the truncation order are chosen as K = 142 and p = 15, respectively, according to the parameter

selection procedure presented by Morariu et al. (2008). We skip the explicit formulation of the

local linear estimator for sake of compactness. The predicted values of the energy consumption

for the evaluation period are obtain by plugging the explanatory variables from the evaluation

period into the estimator:

ŷeval = m̂h(xeval)

Table (3) shows the Root Mean Squared Error (RMSE), the maximum absolute deviation and

the Mean Average Percentage Error (MAPE) as performance measures for the local constant and

the local linear estimator. As to be expected from theory, the local linear estimator outperforms

the local constant estimator in terms of accuracy.

RMSE max |y− ŷ| MAPE

Local Constant 20.4 130.1 20.61

Local Linear 15.6 100.4 15.95

Table 3: Performance Measures for Local Constant and Local Linear estimators

Figure (11) shows the realized energy consumption in the evaluation period along with the esti-

mated 95% quantile. It can be seen that in the period from end of September to the beginning

of October the realized energy consumption is higher than the estimated quantile. As already

mentioned in section (1) we read this as a type of malfunctioning of the machinery. The upper

panel of Figure (12) shows this time period in greater detail. Additionally to the quantiles, the

estimated values from the local linear estimator are plotted. The lower panel shows a period

where the realized values are always below the estimated quantile. This indicates that the ma-

chine runs regularly.

In practice this means that the machine need maintenance. If the malfunctioning does not cause

any visible or audible change in the running machine, “unusual” energy consumption would

not be notified without having a statistical threshold. This can result in a further damage of the

engine and causes unnecessary costs. The plot suggests that the malfunctioning has been fixed

at beginning of October.

33

Sep Oct Nov
0

20

40

60

80

100

120

140

160

180

200

E
ne

rg
y

co
ns

um
pt

io
n

in
 k

W
h

Energy consumption and 95% Conditional Quantile

Realized Energy Consumption
Estimated 95% Quantile

Figure 11: Realized Energy Consumption and Fitted Values in the Evaluation Period

34

5 Application

09/27 09/28 09/29 09/30 10/01 10/02 10/03 10/04 10/05
20

40

60

80

100

120

140

160

180

Date

E
ne

rg
y

co
ns

um
pt

io
n

in
 k

W
h

Energy consumption and 95% Conditional Quantile

Realized Energy Consumption
Local Linear Estimator
Estimated 95% Quantile

09/16 09/17 09/18 09/19 09/20 09/21

20

40

60

80

100

120

140

160

180

Date

E
ne

rg
y

co
ns

um
pt

io
n

in
 k

W
h

Energy consumption and 95% Conditional Quantile

Realized Energy Consumption
Local Linear Estimator
Estimated 95% Quantile

Figure 12: Malfunctioning (upper panel) and regular working (lower panel) periods

35

6 Conclusion

In this thesis the energy consumption of supply engineering machineries is studied. The focus

is on statistical tools to detect potential savings due to replacement of old machineries and to

identify situations where maintenance is needed. Because there exists a vast variety of supply

engineering machineries statistical models must be highly flexible. Kernel regressions tech-

niques provide this flexibility. Kernel mean regression is used to estimate the expected energy

consumption given external influences. To estimate the “usual” dispersion of the energy con-

sumption, Kernel quantile regression methods are employed.

The flexibility in modeling comes at the expense of high computational complexity. In practice,

however, numerical performance is an issue because many engines are monitored simultane-

ously. To reconcile model flexibility and numerical usability we use approximative algorithms

to speed-up calculations and approve losses in precision. Two types of algorithms are proposed.

The “binned estimator” gains speed by mapping continuous data onto a regular grid and ex-

ploiting the regularity by the means of the Fast Fourier Transform. The “Fast Gauss Transform”

approach uses truncated Taylor series expansion about cluster centers obtained by an approxi-

mative k-center clustering algorithm to improve numerical performance.

Our simulation study shows that the binned estimator runs orders of magnitude faster than the

Fast Gauss Transform approach in a one and two-dimensional settings given the same loss in

precision. In higher dimensions, however, the binned estimator suffers from the curse of di-

mensionality due to its rigid data clustering. The more complex clustering approach in the Fast

Gauss Transform pays off in higher dimensions.

Application on data from a cooling unit show that the proposed methods are in fact useful to

detect malfunctioning. Until now, it is common practice to maintain machineries in regular time

intervals, e.g. once a year. If a malfunctioning happens in between it is usually not considered.

This results in higher energy costs. The proposed methods can help to reduce energy costs and

to extend the life of industrial machineries.

36

Appendix

1 Multi-index notation

According to Masry (1996) and Masry (1997) a multi-index α = (α1, . . . ,αd),α ∈N
d is a tuple

of non-negative integers with the following properties:

• |α|=
d
∑
j=1

α j = n

• α! = α1!×α2!× . . .×αd!

• x ∈ R
d : xα = xα1

1 × . . .× xαd
d

• Let x,y ∈ R
d and xy =

d
∑
j=1

x jy j then (xy)n = ∑
|α|=n

n!
α!

xαyα

37

Bibliography

Beatson, R. and Greengard, L. (1997). A short course on fast multipole methods. Wavelets,
multilevel methods and elliptic PDEs, pages 1–37.

Bell, N. and Garland, M. (2008). Efficient sparse matrix-vector multiplication on cuda. Tech-

nical report, NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation.

Bern, M. and Eppstein, D. (1996). Approximation algorithms for geometric problems. Approx-
imation algorithms for NP-hard problems, pages 296–345.

Bluestein, L. (1970). A linear filtering approach to the computation of discrete fourier transform.

Audio and Electroacoustics, IEEE Transactions on, 18(4):451–455.

Brockwell, R. (1986). The fourier transform and its application.

Callen, H. B. (2006). Thermodynamics and an Introduction to Thermostatistics 2nd Ed. Wiley

Online Library.

Chan, T. and Olkin, J. (1994). Circulant preconditioners for toeplitz-block matrices. Numerical
Algorithms, 6(1):89–101.

Chan, T. F. (1988). An optimal circulant preconditioner for toeplitz systems. SIAM journal on
scientific and statistical computing, 9(4):766–771.

Cipra, B. A. (2000). The best of the 20th century: Editors name top 10 algorithms. SIAM news,

33(4):1–2.

Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Jour-
nal of the American statistical association, 74(368):829–836.

Coifman, R., Rokhlin, V., and Wandzura, S. (1993). The fast multipole method for the wave

equation: A pedestrian prescription. Antennas and Propagation Magazine, IEEE, 35(3):7–12.

Cooley, J. W. and Tukey, J. W. (1965). An algorithm for the machine calculation of complex

fourier series. Mathematics of computation, 19(90):297–301.

Duhamel, P. and Hollmann, H. (1984). Split radix’fft algorithm. Electronics Letters, 20(1):14–

16.

Duhamel, P. and Vetterli, M. (1990). Fast fourier transforms: a tutorial review and a state of the

art. Signal processing, 19(4):259–299.

Dutt, A. and Rokhlin, V. (1993). Fast fourier transforms for nonequispaced data. SIAM Journal
on Scientific computing, 14(6):1368–1393.

Fan, J. (2003). Nonlinear time series: nonparametric and parametric methods. Springer.

39

Bibliography

Fan, J. and Gijbels, I. (1996). Local polynomial modelling and its applications. Chapman, Hall,
London.

Fan, J. and Marron, J. S. (1994). Fast implementations of nonparametric curve estimators.

Journal of Computational and Graphical Statistics, 3(1):35–56.

Feder, T. and Greene, D. (1988). Optimal algorithms for approximate clustering. In Proceedings
of the twentieth annual ACM symposium on Theory of computing, pages 434–444. ACM.

Frigo, M. and Johnson, S. G. (2005). The design and implementation of fftw3. Proceedings of
the IEEE, 93(2):216–231.

Golub, G. H. and Van Loan, C. F. (2012). Matrix computations, volume 4. JHU Press.

Gonzalez, T. F. (1985). Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293–306.

Gray, R. M. (2006). Toeplitz and circulant matrices: A review. Foundations and Trends® in
Communications and Information Theory, 2(3):155–239.

Greengard, L., Huang, J., Rokhlin, V., and Wandzura, S. (1998). Accelerating fast multipole

methods for the helmholtz equation at low frequencies. Computational Science & Engineer-
ing, IEEE, 5(3):32–38.

Greengard, L. and Lee, J.-Y. (2004). Accelerating the nonuniform fast fourier transform. SIAM
review, 46(3):443–454.

Greengard, L. and Rokhlin, V. (1987). A fast algorithm for particle simulations. Journal of
computational physics, 73(2):325–348.

Greengard, L. and Rokhlin, V. (1997). A new version of the fast multipole method for the

laplace equation in three dimensions. Acta numerica, 6(1):229–269.

Greengard, L. and Strain, J. (1991). The fast gauss transform. SIAM Journal on Scientific and
Statistical Computing, 12(1):79–94.

Gumerov, N. A. and Duraiswami, R. (2005). Fast multipole methods for the Helmholtz equation
in three dimensions. Access Online via Elsevier.

Hall, P. (1982). The influence of rounding errors on some nonparametric estimators of a density

and its derivatives. SIAM Journal on Applied Mathematics, 42(2):390–399.

Hall, P. and Wand, M. (1996). On the accuracy of binned kernel density estimators. Journal of
Multivariate Analysis, 56(2):165–184.

Härdle, W. (1987). Algorithm as 222: Resistant smoothing using the fast fourier transform.

Journal of the Royal Statistical Society. Series C (Applied Statistics), 36(1):104–111.

Härdle, W., Lütkepohl, H., and Chen, R. (1997). A review of nonparametric time series analysis.

International Statistical Review, 65(1):49–72.

Härdle, W., Mueller, M., and Sperlich, S. (2004). Nonparametric and semiparametric models.

Springer Verlag.

40

Bibliography

Hassanieh, H., Indyk, P., Katabi, D., and Price, E. (2012a). Nearly optimal sparse fourier

transform. In Proceedings of the 44th symposium on Theory of Computing, pages 563–578.

ACM.

Hassanieh, H., Indyk, P., Katabi, D., and Price, E. (2012b). Simple and practical algorithm for

sparse fourier transform. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1183–1194. SIAM.

Hunt, B. (1971). A matrix theory proof of the discrete convolution theorem. Audio and Elec-
troacoustics, IEEE Transactions on, 19(4):285–288.

Jones, M. C. (1989). Discretized and interpolated kernel density estimates. Journal of the
American Statistical Association, 84(407):733–741.

Koenker, R. and Bassett Jr, G. (1978). Regression quantiles. Econometrica: journal of the
Econometric Society, pages 33–50.

Kolba, D. and Parks, T. (1977). A prime factor fft algorithm using high-speed convolution.

Acoustics, Speech and Signal Processing, IEEE Transactions on, 25(4):281–294.

Lee, D. and Gray, A. (2006). Faster gaussian summation: Theory and experiment. In In Pro-
ceedings of the Twenty-second Conference on Uncertainty in Artificial Intelligence. Citeseer.

Lee, D., Moore, A. W., and Gray, A. G. (2005). Dual-tree fast gauss transforms. In Advances
in Neural Information Processing Systems, pages 747–754.

Li, Q. and Racine, J. S. (2007). Nonparametric econometrics: Theory and practice. Princeton

University Press.

Marron, J. S. and Wand, M. P. (1992). Exact mean integrated squared error. The Annals of
Statistics, 20(2):712–736.

Masry, E. (1996). Multivariate local polynomial regression for time series: uniform strong

consistency and rates. Journal of Time Series Analysis, 17(6):571–599.

Masry, E. (1997). Local polynomial estimation of regression functions for mixing processes.

Scandinavian Journal of Statistics, 24(2):165–179.

Morariu, V. I., Srinivasan, B. V., Raykar, V. C., Duraiswami, R., and Davis, L. S. (2008). Au-

tomatic online tuning for fast gaussian summation. In Advances in Neural Information Pro-
cessing Systems, pages 1113–1120.

Nadaraya, E. A. (1964). On estimating regression. Theory of Probability & Its Applications,

9(1):141–142.

Press, W. H. (2007). Numerical recipes 3rd edition: The art of scientific computing. Cambridge

university press.

Rader, C. M. (1968). Discrete fourier transforms when the number of data samples is prime.

Proceedings of the IEEE, 56(6):1107–1108.

41

Bibliography

Raykar, V. C., Yang, C., Duraiswami, R., and Gumerov, N. (2005). Fast computation of sums of

gaussians in high dimensions. Technical report, University of Maryland - Computer Science

Department.

Sarma, M. S. (2001). Introduction to electrical engineering. Oxford University Press.

Scott, D. W. and Sheather, S. J. (1985). Kernel density estimation with binned data. Communi-
cations in Statistics-Theory and Methods, 14(6):1353–1359.

Silverman, B. (1982). Algorithm as 176: Kernel density estimation using the fast fourier trans-

form. Journal of the Royal Statistical Society. Series C (Applied Statistics), 31(1):93–99.

Silverman, B. W. (1986). Density estimation for statistics and data analysis, volume 26. CRC

press.

Stein, E. M. and Shakarchi, R. (2003). Princeton Lectures in Analysis. Princeton University

Press.

Stone, C. J. (1977). Consistent nonparametric regression. The annals of statistics, 5(4):595–620.

Ugural, A. (2003). Mechanical design: an integrated approach. McGraw-Hill Sci-

ence/Engineering/Math.

Van Loan, C. (1992). Computational frameworks for the fast Fourier transform, volume 10.

Siam.

Wand, M. (1994). Fast computation of multivariate kernel estimators. Journal of Computational
and Graphical Statistics, 3(4):433–445.

Wand, M. M. P. and Jones, M. C. (1995). Kernel smoothing, volume 60. Crc Press.

Watson, G. S. (1964). Smooth regression analysis. Sankhyā: The Indian Journal of Statistics,
Series A, pages 359–372.

Wefers, F. and Vorländer, M. (2012). Potential of non-uniformly partitioned convolution with

freely adaptable fft sizes. In Audio Engineering Society Convention 133.

Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., and Demmel, J. (2009). Optimization

of sparse matrix–vector multiplication on emerging multicore platforms. Parallel Computing,

35(3):178–194.

Winograd, S. (1978). On computing the discrete fourier transform. Mathematics of computation,

32(141):175–199.

Wong, M. W. (2011). Discrete fourier analysis, volume 5. Springer.

Yang, C., Duraiswami, R., Gumerov, N. A., and Davis, L. (2003). Improved fast gauss transform

and efficient kernel density estimation. In Computer Vision, 2003. Proceedings. Ninth IEEE
International Conference on, pages 664–671. IEEE.

Yu, K. and Jones, M. (1998). Local linear quantile regression. Journal of the American statisti-
cal Association, 93(441):228–237.

Yuster, R. and Zwick, U. (2005). Fast sparse matrix multiplication. ACM Transactions on
Algorithms (TALG), 1(1):2–13.

42

List of Figures

1 Constant Binning . 10

2 Mapping data points to grid using linear binning 10

3 Encapsulate information at expansion center. 19

4 Maximum absolute Deviation for Constant and Linear Binning 25

5 Runtime Constant vs Linear Binning . 26

6 Ratio of runtime of IFGT to binned estimator in 1D 27

7 Ratio of runtime of IFGT to binned estimator in 2D 28

8 Ratio of runtime of IFGT to binned estimator in 3D 29

9 Energy Consumption of the cooling unit from Sep 2012 to Jan 2014 31

10 Scatterplot between Energy Consumption and the explanatory variables 32

11 Realized Energy Consumption and Fitted Values in the Evaluation Period . . . 34

12 Malfunctioning and regular working periods 35

43

List of Tables

1 Time period of measurements . 30

2 Summary Statistics Cooling Unit . 31

3 Performance Measures for Local Constant and Local Linear estimators 33

45

Declaration of Authorship

I hereby confirm that I have authored this master thesis independently and without use of others

than the indicated sources. Where I have consulted the published work of others, in any form

(e.g. ideas, equations, figures, text, tables), this is always explicitly attributed.

Berlin, January 30, 2014 Simon Diehl

46

	Abstract
	Contents
	1 Introduction
	2 Methodology
	2.1 Kernel Mean Regression
	2.1.1 Local Constant Estimator
	2.1.2 Local Linear Estimator

	2.2 Kernel Quantile Regression

	3 Fast Algorithms
	3.1 Fast Fourier Transform and Binning Procedures
	3.1.1 Binning Procedures
	3.1.2 Convolution and the Fast Fourier Transform
	3.1.3 Moving to higher Dimensions
	3.1.4 Approximation error

	3.2 Fast Gauss Transform
	3.2.1 Introductory Example
	3.2.2 General Case
	3.2.3 Using a Gaussian Kernel
	3.2.4 Data Clustering
	3.2.5 Expansion about cluster centers
	3.2.6 Runtime Analysis
	3.2.7 Parameter selection

	4 Simulation
	4.1 Differences in the binning rules
	4.2 Differences in approaches

	5 Application
	5.1 The Cooling System

	6 Conclusion
	Appendix
	1 Multi-index notation

	Bibliography
	List of Figures
	List of Tables
	Declaration of Authorship

