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Abstract

Scalability of Fixed-Radius Searching in Meshless Methods for

Heterogeneous Architectures

L.V. Pols

Department of Civil Engineering,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MEng (Civ)

December 2014

In this thesis we set out to design an algorithm for solving the all-pairs fixed-radius nearest
neighbours search problem for a massively parallel heterogeneous system. The all-pairs
search problem is stated as follows: Given a set of N points in d-dimensional space, find
all pairs of points within a horizon distance δ of one another. This search is required
by any nonlocal or meshless numerical modelling method to construct the neighbour list
of each mesh point in the problem domain. Therefore, this work is applicable to a wide
variety of fields, ranging from molecular dynamics to pattern recognition and geographical
information systems. Here we focus on nonlocal solid mechanics methods.

The basic method of solving the all-pairs search is to calculate, for each mesh point, the
distance to each other mesh point and compare with the horizon value to determine if the
points are neighbours. This can be a very computationally intensive procedure, especially
if the neighbourhood needs to be updated at every time step to account for changes in
material configuration. The problem also becomes more complex if the analysis is done
in parallel.

Furthermore, GPU computing has become very popular in the last decade. Most of the
fastest supercomputers in the world today employ GPU processors as accelerators to CPU
processors. It is also believed that the next-generation exascale supercomputers will be
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ABSTRACT iii

heterogeneous. Therefore the focus is on how to develop a neighbour searching algorithm
that will take advantage of next-generation hardware.

In this thesis we propose a CPU - multi GPU algorithm, which is an extension of the
fixed-grid method, for the fixed-radius nearest neighbours search on massively parallel
systems.
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Uittreksel

Skaalbaarheid van Vaste-Radius Soektogte in Roosterlose

Metodes vir Heterogene Argitektuur

(“Scalability of Fixed-Radius Searching in Meshless Methods for Heterogeneous Architectures”)

L.V. Pols

Departement Siviele Ingenieurswese,
Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MIng (Siv)

Desember 2014

In hierdie tesis het ons die ontwerp van ’n algoritme vir die oplossing van die alle-pare
vaste-radius naaste bure soektog probleem vir groot skaal parallele heterogene stelsels
aangepak. Die alle-pare soektog probleem is as volg gestel: Gegewe ’n stel van N punte
in d-dimensionele ruimte, vind al die pare van punte wat binne ’n horison afstand δ van
mekaar af is. Die soektog word deur enige nie-lokale of roosterlose numeriese metode
benodig om die bure-lys van alle rooster-punte in die probleem te kry. Daarom is hierdie
werk van toepassing op ’n wye verskeidenheid van velde, wat wissel van molekulêre dina-
mika tot patroon herkenning en geografiese inligtingstelsels. Hier is ons fokus op nie-lokale
soliede meganika metodes.

Die basiese metode vir die oplossing van die alle-pare soektog is om vir elke rooster-punt,
die afstand na elke ander rooster-punt te bereken en te vergelyk met die horison lente,
om dus so te bepaal of die punte bure is. Dit kan ’n baie berekenings intensiewe proses
wees, veral as die probleem by elke stap opgedateer moet word om die veranderinge in
die materiaal konfigurasie daar te stel. Die probleem word ook baie meer kompleks as die
analise in parallel gedoen word.

Verder het GVE’s (Grafiese verwerkings eenhede) baie gewild geword in die afgelope
dekade. Die meeste van die vinnigste superrekenaars in die wêreld vandag gebruik GVE’s

iv
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as versnellers te same met SVE’s (Sentrale verwerkings eenhede). Dit is ook van mening
dat die volgende generasie exa-skaal superrekenaars GVE’s sal implementeer. Daarom is
die fokus op hoe om ’n bure-lys soektog algoritme te ontwikkel wat gebruik sal maak van
die volgende generasie hardeware.

In hierdie tesis stel ons ’n SVE - veelvoudige GVE algoritme voor, wat ’n verlenging
van die vaste-rooster metode is, vir die vaste-radius naaste bure soektog op groot skaal
parallele stelsels.
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Chapter 1

Background and Motivation

1.1 Introduction

To support modern research in the sciences and engineering extensive computational
resources are required. Computational simulations, along with theory and experiments,
have become a major building block towards scientific advancement. Numerical modelling
is more flexible and less costly than experiments. The simulation of natural processes has
increased our understanding of the natural world. Our ability to model more complex and
larger natural processes keeps increasing. The sequential processing speed of a microchip
however, is limited by thermodynamic considerations such as heat dissipation and power
consumption. The frequency at which processors operate has plateaued since silicon chips
have reached the material’s limit in heat dissipation. The only means of reaching growing
computational demands are through employing parallel computing. All the fastest com-
puters in the world today are highly parallel systems. Even on a smaller scale, parallel
clusters are the most economical way of achieving the required computational demand
for small research groups and groups in industry. Therefore, it is prudent that existing
algorithms must be adapted to take advantage of parallel computing. This thesis focuses
on how to do neighbour list construction for solid mechanics methods on heterogeneous
parallel architectures. This is a key step in any meshless or nonlocal mechanics method.

1.2 Heterogeneous Architectures

Parallel computing comes in many forms. A recent development (circa 2001) was that
of using graphics processing units (GPUs) as accelerators coupled to central processing
units (CPUs). The CPU and GPU work in tandem as the CPU controls the offloading of
compute-intensive tasks to the GPU. The CPU also manages the copying and retrieval of
data to and from the GPU memory. CPUs and GPUs together are referred to as a hybrid
or heterogeneous computing architecture.

1
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CPU: Multiple cores GPU: Thousands of cores

Figure 1.1: A GPU is massively parallel with thousands of cores

1.2.1 Development of GPUs

GPUs were originally designed as fixed-function processors that excel at three-dimensional
graphics processing for gaming applications. Since then the GPU has evolved into a
massively parallel programmable processor with vendors focusing on making their GPUs
more accessible to programmers and researchers.

Over the years the capabilities of the GPU as a programmable processor has steadily
increased. At first GPUs generated graphics with a simple non-programmable graphics
pipeline. The input to the pipeline are vertex coordinates (usually representing trian-
gles) in a three dimensional coordinate system. The GPU then transforms these ver-
tices through a series of steps and finally outputs the colour value of every pixel to the
screen. As every pixel’s colour value can be calculated individually, the GPU processor
evolved to be massively parallel. Conventional CPUs today have multiple cores, whereas
GPUs consists of many thousands of smaller cores as shown in Figure 1.1. As computer
graphics improved the operations to calculate the pixel values became more complex and
were replaced by user-specified programs. This allowed programmers to attempt writing
general-purpose code for the GPU. The data however, still had to be specified in terms of
graphics primitives, which made programming very inaccessible. As the technology pro-
gressed, GPU vendors developed platforms that gave programmers and researchers easier
access to utilise the computing power of GPUs. Today the GPU is a fully programmable
stream processor.

1.2.2 Examples of GPU Computing

Following the adoption of the GPU as a general purpose streaming processor, researchers
have adapted many algorithms to the GPU architecture. Krüger and Westermann (2003)
developed a framework for the implementation of linear algebra operators on the GPU.
They focus on solvers for sparse matrices. Fatahalian et al. (2004) evaluated the perfor-
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mance of matrix-matrix multiplication. Govindaraju et al. (2005) developed a visibility
ordering algorithm for non-overlapping geometric objects. Their algorithm rearranges
objects in a front-to-back or back-to-front order given a certain viewpoint. Galoppo et al.
(2005) developed an algorithm for solving dense linear algebra systems on the GPU. They
demonstrate their algorithm by computing fluid flow simulations. Bustos et al. (2006) de-
veloped a nearest neighbour search algorithm on the GPU for database applications,
stating their algorithm performs several times faster than an equivalent CPU implemen-
tation. Zhou et al. (2008) presents an algorithm for constructing k-d trees on a GPU. A
k-d tree is a space-partitioning data structure (described in section 3.4.2) for organizing
points in a d-dimensional space. The above are examples of sorting, linear algebra and
database query algorithms that have been implemented to run on the GPU architecture.
Many more exist and as research and development into heterogeneous systems continue
many more will be developed.

1.2.3 Towards Exascale Computing

The considerable additional computing power that GPUs offer has led to much research in
the last decade to develop algorithms that utilise the GPU. As general purpose computing
on GPUs keeps improving, it will become easier for programmers to harness this com-
puting power. Currently the worlds fastest supercomputers operate in the range of 1015

floating point operations per second (peta FLOPS). The next supercomputing threshold
is to reach exascale speeds (1018 FLOPS). It is believed that exascale systems will only be
obtainable around about the year 2020 and that such speeds will require heterogeneous
systems. Most of the current leading supercomputers in the world are already heteroge-
neous. Even on a much smaller scale, GPUs provide a cost effective way of substantially
increasing the computational power of desktop PCs. It is therefore important to develop
new algorithms to take full advantage of GPUs.

1.3 Overview of Mechanics Methods that Require

Neighbour List Construction

In the field of solid mechanics, various methods have been developed for the numerical
modelling of material behaviour. An important distinction is that methods can either
be local or nonlocal. This distinction specifies whether a method has an internal length
parameter or not.

In local methods, such as classical continuum mechanics, the material is discretised into
finite elements with nodes. The field values are solved at the nodes. The field values in
an element between nodes are then solved using interpolation functions that are derived
for the specific element being used. Elements are only influenced by adjacent elements,
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x

δ
x

δ
x

Local Nonlocal Continuum Nonlocal Particle Based

Figure 1.2: An illustration of a local, continuum nonlocal and particle based nonlocal method

which are found through an elemental connectivity matrix. There is no internal length
parameter that accounts for elements further away.

In nonlocal methods however, the domain is discretised into mesh points or particles.
Weight functions determine the influence that surrounding points have on each other.
Mesh points are considered to influence each other if they are within a certain distance
from each other. This distance is defined by some characteristic length δ that creates a
sphere of influence around each mesh point called the horizon. All the points that are
within the horizon of point x are called the family (Hx) of x. The families of each point
in the domain must be obtained before the relevant mechanics calculations can be done.
Therefore, a neighbour list must be constructed for each mesh point in the problem.

Nonlocal methods can further be categorized into methods that represent the material
body as a continuum or as a particle cloud. For nonlocal continuum methods the material
body is discretised into mesh points. The term mesh points is used because there is still
a background mesh present from where the mesh points are mapped. Nonlocal particle
methods refer to when there is no background mesh present. The material is discretised
purely into a particle cloud. Both continuum and particle based nonlocal methods require
a neighbour list construction. In this thesis therefore, the terms mesh points and particles
are interchangeable. The term meshless refers both to a continuum nonlocal (regardless of
the background mesh) and particle based nonlocal method. Therefore the terms meshless
and nonlocal are also interchangeable. Figure 1.2 illustrates the difference between the
methods explained above.

1.3.1 Examples of Meshless Methods

One of the first meshless methods developed was smooth particle hydrodynamics (SPH)
by Lucy (1977) and Gingold and Monaghan (1977). It was developed for problems in
astrophysics, and later on in fluid dynamics. SPH was first used in solid mechanics by
Allahdadi et al. (1993) to model impact problems. Other meshless methods applicable to
solid mechanics are the Element-free Galerkin (EFG) method, developed by Belytschko
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et al. (1994) for elasticity and heat conduction problems. One year later the Reproducing
Kernel Particle Method (RKPM) was developed by Liu et al. (1995). Another method ap-
plicable to solid mechanics is the hp-cloud method, developed in 1996 by Duarte and Oden
(1996) and Liszka et al. (1996). The partition of unity finite element method (PUFEM),
which is very similar to the hp-cloud method, was developed by Melenk and Babuška
(1996). The Meshless Local Petrov-Galerkin (MLPG) method developed by Atluri and
Zhu (1998) and (Shen, 2002) is another method used in solid and fluid mechanics. A
method mainly used in fluid flow problems, is the Finite Point method developed by
Onate et al. (1996), Oñate and Idelsohn (1998), and Löhner et al. (2002).

Another method, showing great promise in progressive material failure modelling, is peri-
dynamics. It is a relatively new method that arose from the reformulation of the elasticity
theory by Silling (2000). In peridynamics the continuum theory is reformulated in terms
of integral equations, rather than differential equations. Integral equations stay valid as
discontinuities form in the body. Progressive material failure can therefore be modelled
without requiring additional crack growth criteria as is the case in conventional methods.
Peridynamics is a continuum model where the force on a point is calculated from all the
pairwise forces comprising the family of that point. All the above methods are nonlocal
and require a neighbour list construction.

1.3.2 Reasons for Developing Meshless Methods

The finite element method (FEM) has long been used with great success in modelling
stresses, strains, and displacements in the field of solid mechanics. FEM is however, not
without limitations. The underlying theory of classical continuum mechanics assumes the
body to remain a continuum as it deforms. In classical continuum mechanics, spatial
partial derivatives are used to represent relative displacements between points. Partial
derivatives with respect to spatial coordinates become undefined along discontinuities
such as cracks. Therefore, the mathematical formulation used when modelling a material
with FEM breaks down when discontinuities start to appear.

Incorporating material failure within classical continuum mechanics started with the pio-
neering study by Griffith (1921). Griffith showed that stresses at the tip of a crack become
infinite. His study led to the concept of Linear Elastic Fracture Mechanics (LEFM). In
LEFM, a pre-existing crack in the material is necessary and the crack growth is gov-
erned by propagation criteria. Furthermore, Eringen et al. (1977) showed that the crack
size plays an important role in determining fracture resistance, however solutions from
the classical continuum theory or LEFM are independent of crack size. This is because
the classical continuum theory has no internal length parameter. When using FEM to
model LEFM special elements are required to handle the infinite stresses at the crack
tips. Furthermore, to handle the break down of spatial partial derivatives at cracks, the
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body needs to be redefined with the cracks as boundaries. All of these difficulties, the
required pre-existing crack tip, external propagation criteria, lack of an internal length
parameter, infinite stresses at crack tips, and re-meshing or redefining of the body as the
crack grows makes it clear that FEM based on conventional continuum mechanics cannot
model complicated failure problems.

Various techniques have been proposed to improve the capabilities of FEM to model
material failure. However all the techniques require some external information or have
some limiting factors. Dugdale (1960) and Barenblatt (1962) introduced the cohesive zone
concept. This lead to the introduction of Cohesive Zone Elements (CZE) by Hillerborg
et al. (1976) for the Mode-I fracture mode and by Xu and Needleman (1994) for a mixed-
mode fracture. Cohesive zone elements are surface elements that are placed along normal
element boundaries. Crack growth can then only occur between normal elements where
the CZE are. It has been found however, that with decreasing mesh size the amount of
cohesive elements increase, leading to softening of the material properties. Also, the crack
paths are highly sensitive to the mesh alignment (Klein et al., 2001). Another concept
introduced to address these difficulties is the eXtended Finite Element Method (XFEM).
XFEM allows cracks to propagate on any surface within an element rather than just
on the boundaries of the elements. XFEM has had success in modelling some fracture
problems, however it still requires some external crack growth criteria.

It can be seen that failure prediction has some difficulties when using the traditional FEM
or various enhanced finite element techniques. One of the objectives of meshless methods
are to improve on the limitations of mesh based methods such as FEM. Especially pro-
gressive material failure, as meshless methods are better suited to handle discontinuities.
Some advantages and disadvantages that meshless methods have when compared to FEM
(Nguyen et al., 2008) are:

• Advantages

– Meshless methods are inherently better suited to handle discontinuities such
as crack propagation, shear bonds and phase transformation.

– Large deformations can be handled more robustly.

– Meshless methods are not concerned with mesh alignment issues.

• Disadvantages

– Essential boundary conditions are much more complicated to handle in mesh-
less methods than in mesh-based methods.

– The computational costs of meshless methods are generally much higher than
mesh-based methods. The neighbour list construction, if not done properly, is
a major contributor to computational cost.
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1.4 Summary

Today’s supercomputers are striving to reach exascale speeds. It is believed that the only
way of doing this is through employing heterogeneous computing architectures. This and
the cost effectiveness of GPUs will ensure that GPU computing will grow in the future.

Meshless methods are not on par with FEM in calculating stress, strain and displacement.
They are however, inherently better at modelling progressive material failure. Therefore,
meshless methods are still a very important research field. A key step in any meshless
method is that of calculating the neighbour list. If not done properly, the neighbour list
construction is a major contributor to the computational cost of any meshless method.

This thesis will focus on developing a scalable neighbour search algorithm that takes
advantage of heterogeneous architectures. The algorithm must run on CPU and GPU
processors and be scalable to massively parallel systems to enable extreme scale simula-
tions.

1.5 Thesis Structure

This thesis is structured as follows: Chapter two gives an overview of the different types of
parallel architectures and parallel algorithm performance measurements. Chapter three
gives a review of the different types of proximity problems that exist, and the numerous
data indexing structures that have evolved to solve them. The focus is specifically on the
all-pairs fixed-radius nearest neighbours search or self-spatial join search. This search is
needed to compute the neighbour list. In chapter four the first algorithm, designed for a
CPU distributed memory system, is explained and tested. In chapter five we explain and
test the same algorithm altered to run on a heterogeneous system. The thesis concludes
with chapter six were we discuss and compare the results obtained from chapters four and
five.
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Chapter 2

Parallel Computing

2.1 Introduction

In parallel computing there are many different configurations available, depending on the
memory layout and processor types. There are three different types of parallel systems,
namely shared memory, distributed memory and heterogeneous systems. Real world
systems usually consist of a combination of these. In this chapter we will explain the
processor layout and memory organization of these three types of systems.

We start the chapter by stating some definitions and terminology used in parallel com-
puting. We then give an overview of the three types of parallel architectures available.
Furthermore, we also give performance measurements used to measure parallel algorithm
performance. The definitions given here are used in subsequent chapters to explain the
algorithm design and performance measurements.

2.2 Terminology and Definitions

In the traditional von Neumann model of computation, a single instruction stream is
executed on a single data stream. When performing computations in parallel however,
many more possibilities arise. A taxonomy of computer architectures is given by Flynn
(Flynn and Rudd, 1996) as follows:

1. SISD: single instruction stream, single data stream

2. SIMD: single instruction stream, multiple data streams

3. MISD: multiple instruction streams, single data stream

4. MIMD: multiple instruction streams, multiple data streams

8
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Conventional computation described by the von Neumann model is described in Flynn’s
taxonomy by SISD. Most parallel computers have a MIMD architecture however, a more
practical way of programming for MIMD architectures are called SPMD, which refers
to single program stream, multiple data streams. A single program is executed on all
the processors with different sets of data. The program on each processor may then
branch and follow different paths. MISD is not very useful and is rarely if ever used.
SIMD refers to data-parallel programming where the same single-line (no branching of
code) instructions are executed on different data streams. In high performance parallel
computing the following terms are usually used:

Node: A compute node refers to a server rack that can contain multiple processors and
memory locations. Compute nodes are connected to each other through a network.

Processor: A processor refers to a single physical microchip on the compute node. A
processor can consist of one or more cores.

Core: A core refers to the most basic computational unit that can only run a single
instruction stream.

2.3 Parallel Architectures

2.3.1 Shared Memory

Shared memory implies that all processors have access to and share the same memory. In
this case no communication between processors are required because they can all read and
write from the same location. Shared memory systems are not very scalable because it
becomes impractical for to many processors to have access to the same memory. Another
difficulty in shared memory systems is the occurrence of race conditions. A race condition
occurs when the output of a program varies from run to run although the same input data
is supplied. This happens when the order in which two processors access the same memory
location is variable from run to run. Shared memory systems are usually small scale and
are mainly used to parallelize loops. The memory layout is shown in Figure 2.1.

2.3.2 Distributed Memory

Distributed memory implies that each processor has its own local memory. Data from
other processor’s memory can be obtained through network communication, usually through
the Message Passing Interface (MPI) protocol. Distributed memory systems usually fol-
low a SPMD programming model. Distributed memory systems are very scalable, with
all the largest parallel computers in the world being distributed systems. The memory
layout is shown in Figure 2.2.
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Shared Memory
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Figure 2.1: Memory layout of a shared memory system
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Figure 2.2: Memory layout of a distributed memory system

In distributed memory architectures the processors communicate with each other across
the network through MPI. Various MPI message patterns exist to facilitate communica-
tion. The message patterns are as follows:

1. broadcast: one-to-all

2. reduction: all-to-one

3. multi-node broadcast: all-to-all

4. scatter / gather: one-to-all / all-to-one

5. total exchange: personalized all-to-all

6. scan or prefix

7. circular shift

8. barrier

Broadcast implies that the source processor sends the same message to the other p − 1

processors. Reduction implies that all the data from the p processors are combined on the
specified root processor through applying an associative operation to the data to obtain
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a single result. A multi-node broadcast is a broadcast from all p processors. A scatter
is analogous to broadcast, however the source processor sends dissimilar messages to the
other p − 1 processors. Gather is similarly analogous to reduction, however the data re-
ceived by the root processor is concatenated instead of combined through an associative
operation. Total exchange is analogous to a multi-node broadcast, however each proces-
sor exchanges a distinct message with each of the other processors. In the scan or prefix
operation each processor produces a data value (x0, x2, ..., xp−1) and an associative oper-
ation we will designate with ⊕. Each processor then combines all the data values from
processor zero up to its own processor number k, with the given associative operation, as

xk = x0 ⊕ x1 ⊕ ...⊕ xk, (2.3.1)

with 0 ≤ k ≤ p− 1.

A circular shift is when the data on each processor is shifted along a specified amount.
The increment that the data is shifted is specified by a constant k. Each processor i
(0 ≤ i ≤ p−1) then sends it’s data to processor (i+k)mod p. A barrier operation is used
to synchronize all the processors. No processor is allowed to continue with the program
unless all of them have reached the barrier.

2.3.3 Heterogeneous Architecture

A heterogeneous architecture refers to a system with more than one type of processor.
Today the most popular co-processor used as an accelerator attached to the CPU is a
GPU. Usually a single CPU handles the offloading of calculations to a single GPU. A
GPU has it’s own memory and is not aware of the shared or distributed memory set-up
of its controlling CPU.

2.3.3.1 GPU Programming Model

GPUs are massively parallel processors. They evolved into massively parallel processors
because of the demands of real-time three-dimensional graphics computation. A GPU
can be seen as a streaming processor. The computation done on a GPU consists of many
streams, with a stream representing an ordered set of data. The program that is executed
on the GPU is called a kernel. The kernel is the function that is applied to each element
in the data stream. A GPU is therefore data-parallel, following a SPMD programming
model. Branching for the data elements in a stream are allowed, however severely reduce
the performance of the GPU. Therefore kernels must be written with as few branching
as possible. The ideal kernel function is a straight-line program with no branches, thus
following a SIMD programming model. In GPU computing the host refers to the CPU
and the device refers to the GPU. The flow of GPU computing is as follows:
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1. The programmer defines a computation domain (the input data). The data is copied
from the host memory to device memory. This is the input data that will be operated
on by the kernel.

2. The CPU invokes the kernel, the function that the GPU will apply to the data
streams.

3. The GPU divides the data into many parallel streams or threads of data and per-
forms the kernel function on these threads.

4. The results of the calculation are copied back from device memory to host memory.

Each thread or stream can read and write to the GPU global shared memory. Threads
cannot however, communicate directly with each other. The output of threads computed
by the kernel can be stored in GPU global shared memory and be used as input for
subsequent kernels, instead of being copied back to CPU memory.

The data-parallel operations present in distributed parallel computing can also be mapped
to the GPU threads. These operations are:

1. Scatter/Gather: The threads, as mentioned above, can read from and write to
GPU global memory. Therefore scatter and gather operations can be done between
threads.

2. Map: A map operation is when one applies the kernel function to every element in a
collection. This is a parallel for loop where each element is operated on concurrently.
A map represents the outer for loop in a sequential program, as each thread can
further loop in the kernel function.

3. Reduce: Repeatedly apply a binary associative operation to reduce all the threads
to a single thread.

4. Scan: A scan or prefix operation can be done over all the threads as explained in
section 2.3.2.

2.3.3.2 GPU Memory Layout

The memory layout of the GPU programming model is shown in Figure 2.3. This Figure
illustrates a very simplified model of the memory, because in reality GPU memory is
much more complicated. This layout is however sufficient to illustrate the important fact
that any computations on the GPU requires the data to be transferred from CPU to
GPU memory. If this communication of data is very time consuming, it might negate the
additional computing performance provided by the GPU processor.
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CPU

CPU
Memory

GPU
Memory

GPU

Figure 2.3: Memory layout of a heterogeneous system

2.4 Performance Metrics of Parallel Algorithms

In serial computations the performance of an algorithm is typically measured by the time
Ts it takes to complete its computations. When the same problem is run in parallel with p
processors the time it takes will be Tp > Ts

p
. The parallel time Tp will never be equal to Ts

p

because there will always be overhead costs incurred from making an algorithm parallel.
Let Tall be the total time spent by all the processors, then Tall = pTp. The total overhead
time To is then defined by To = pTp − Ts and represents the total time collectively used
for things other than the algorithm calculations.

2.4.1 Sources of Parallel Overhead

Parallel overhead is wasted computational time and energy. Large scale computer systems
are expensive and require a large power input. It is important that algorithms are made
to have as little overhead as possible, thereby maximizing the gains obtained from running
the computational problem concurrently.

The amount of parallelism that can be achieved by an algorithm is inherent to the problem
being solved. A problem can be classified as fine-grained, coarse-grained or embarrass-
ingly parallel. These three classifications represent the amount of communication that is
required among a problem’s subtasks. A problem is fine-grained when its subtasks need
to communicate very frequently. A problem is coarse-grained when its subtasks need to
communicate only occasionally and embarrassingly parallel when its subtasks rarely or
never have to communicate.

There are three sources of parallel overhead, resulting from operations that would not
have normally occurred during serial execution.

Communication: Transferring data between processors is usually the dominant source
and as described above, the amount required is usually inherent to the problem.

Idle Processors: This results from communication where a process may wait to receive
a message or waits at a barrier. Idle processors also result from unequal load bal-
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Figure 2.4: An example of different scalability performances

ancing, where the workload of the problem is unequally divided among the available
processors.

Excess Computation: Additional processor instruction and memory access cycles are
required to determine what data to communicate and when. Sometimes to limit
communication processors may all execute the same computation.

We will investigate the parallel overhead of the designed algorithms in chapters four and
five to determine how well they will perform on massively parallel systems.

2.4.2 Scalability and Speedup

Two, very similar, metrics used to measure the parallel performance of an algorithm are
scalability and speedup. Scalability measures how efficient each processor is by calculating
the percentage of computational resources that is being used effectively and is defined as

E =
Ts
pTp

. (2.4.1)

This leads to upper and lower bounds as 0 < E < 1. A scalability of one indicates
perfect efficiency with no parallel overhead, which is not possible. As E becomes less it
implies worse efficiency and utilization of the available computing power. Scalability is
measured as p increases for a given problem size. Figure 2.4 shows examples of scalability
performance. The objective is to keep the algorithm scalability as close to one as possible.

Speedup is very similar to scalability and is calculated as

S =
Ts
Tp
. (2.4.2)

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. PARALLEL COMPUTING 15

0 4 8 12 16 20 24 28 32
0

4

8

12

16

20

24

28

32

Number of CPU Processors

S
p
ee
d
u
p
[S
]

Perfect
Great
Good
Bad

Figure 2.5: An example of different speedup performances

Speedup is measured as p increases for a given problem size and is bounded by 0 < S < p.
Speedup represents the performance gain that was obtained by going parallel. The upper
bound is p-times the serial time, as one cannot gain more than p-times the performance
with p-times the amount of computational power. Figure 2.5 shows examples of different
speedup performances. The ideal speedup would be as close to the S = p line as possible.

2.4.3 Iso-Efficiency Curves

A useful plot to analyse the performance of an algorithm in parallel is the iso-efficiency
curves, which are contour lines of scalability plotted against the number of processors and
problem size. The number of processors and problem size are on the x-axis and y-axis
respectively, while scalability is on the z-axis. Iso-efficiency curves show what level of
efficiency the algorithm will achieve for a given problem size and number of processors.

2.4.4 Throughput

Throughput is another performance measure, though not necessarily for parallel perfor-
mance. Throughput is the amount of work that can be done per time unit and is defined
as the problem size divided by the time it took for the problem to complete:

Throughput =
N

Tp
, (2.4.3)

where N is the amount of mesh points and Tp is the average runtime of the p processors
in parallel.
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2.5 Summary

In this chapter an overview was given of parallel computing concepts that we will use in
discussions to follow. We started with an overview of the definitions and terminology used
in parallel computing. We also gave an overview of the different types of parallel archi-
tectures available. These are shared memory systems, distributed memory systems, and
heterogeneous systems. For all three we discussed the memory layout and programming
model. In chapter four we will describe a distributed CPU algorithm that we designed
and in chapter five a heterogeneous algorithm. Furthermore, we reviewed parallel perfor-
mance metrics namely: scalability, speedup, iso-efficiency curves, and throughput. These
metrics will be used to measure and compare the designed algorithms.
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Chapter 3

Fixed-Radius Nearest Neighbours
Searching

3.1 Introduction

This chapter starts with a concise overview of the types of spaces and distance functions
that are relevant to this study. A space contains a set of objects and has a distance
function defined that returns a distance between two objects. A distance can be real-
valued or simply a similarity rating between objects. There exist various types of spaces
and distance functions, some of which are described below. There are many more that
are not covered.

Secondly a formal definition is given of the three types of proximity problems that have
arisen over the years. These problems are applicable to a vast amount of fields ranging
from computational geometry to geographic information systems (GIS), to name but
a few. Here we focus on proximity problems applicable to meshless methods in solid
mechanics, specifically the all-pairs nearest neighbours search.

Then a description and classification of different types of indexing structures are given.
The indexing structure is a key focus of this study, as it is used to solve proximity problems
in an optimised way. This is done through organizing the objects in space in some way.
We will look at different strategies that exist to create indexing structures for spaces and
distance functions.

3.2 Basic Types of Spaces and Distance Functions

To understand proximity problems a formal definition of the types of search spaces and
distance metrics that are applicable to this study are given. A good overview of the

17
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different types of spaces and distance functions are given in Chávez and Navarro (2001)
and Castelli (2004).

3.2.1 Metric Space

Metric space is any space which contains a set of objects X and has a distance function
d(x, y) that returns a non-negative distance between two objects x and y of X. The
distance here is not necessarily the actual distance between two objects, but can be how
similar the objects are to each other. Distance functions in metric spaces must have the
following properties:

1. Positiveness: ∀x, y ∈ X, d(x, y) ≥ 0

2. Symmetrical: ∀x, y ∈ X, d(x, y) = d(y, x)

3. Reflexive: ∀x ∈ X, d(x, x) = 0

4. Strict Positiveness: ∀x, y ∈ X, x 6= y,⇒ d(x, y) > 0

5. Triangle Inequality: ∀x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y)

3.2.2 Vector Space and the Minkowski Distance Metric

If the set of objects X has real-valued coordinates, the metric space becomes a vector
space. A d-dimensional vector space has d real-valued coordinates (x1, x2, ..., xd). In
vector spaces there are a number of different distance functions but the most widely used
is the Minkowski (Ls) distance norm, which is defined as

Ls{(x1, x2, ..., xd), (y1, y2, ..., yd)} = (
d∑

i=1

|xi − yi|s)
1
s . (3.2.1)

The L1 metric is called the Manhattan or block distance which measures the sum of the
differences between the coordinates. It is called the Manhattan or block distance because
in two dimensions it corresponds to the distance one has to walk between two points in a
city of rectangular blocks. It is defined as

L1{(x1, x2, ..., xd), (y1, y2, ..., yd)} =
d∑

i=1

|xi − yi|. (3.2.2)

The L2 metric is called Euclidean distance and refers to Euclidean space. Euclidean space
is the most common of vector spaces and Euclidean distance can be seen as the real world
distance where the distance is defined as
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Figure 3.1: Unit spheres defined for Manhattan, Euclidean and Chebychev distances respec-
tively

L2{(x1, x2, ..., xd), (y1, y2, ..., yd)} = (
d∑

i=1

|xi − yi|2)
1
2 . (3.2.3)

Another Minkowski distance is the Chebychev (L∞) metric, taking the limit of Ls as
s goes to infinity. In this case the distance between two points become the maximum
difference along a coordinate as

L∞{(x1, x2, ..., xd), (y1, y2, ..., yd)} = maxdi=1|xi − yi|. (3.2.4)

Figure 3.1 shows unit spheres (or balls) for the Manhattan, Euclidean, and Chebychev
distances respectively. The different balls can be interpreted as follows: A ball centred
at a point x having a radius r is the set of points having distance r from x. A ball in
Euclidean space is the familiar sphere. A ball, according to the Chebychev distance, is a
hyper-square aligned with the coordinate axis that inscribes the Euclidean sphere. A ball
in the Manhattan metric is a square with vertices on the axis coordinates that is inscribed
by the Euclidean sphere.

An interesting remark about Minkowski distances can be derived from the spheres: With
the L1 metric, the contribution of the individual differences along each dimension is equally
summed towards the total distance. As s increases towards∞ however, the total distance
is increasingly determined by the larger of the differences along each dimension. This
continues until for the L∞ metric the total distance is defined as the maximum distance
along a dimension.

All of the Minkowski distances described above are very similar to each other from the
viewpoint of proximity queries. Some of the algorithms described below were developed
for a specific Minkowski metric in mind, but that does not exclude all other Minkowski
metrics to be used with the same algorithm. Cost-wise the Euclidean distance is the most
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expensive to perform and takes O(d) operations. Chebychev distance is less computa-
tionally expensive, however still requires O(d) operations while the Manhattan distance
is as computationally expensive as calculating a squared Euclidean distance. This study
focuses on real world Euclidean vector space, as we are interested in the numerical mod-
elling of real world objects in solid mechanics. The discussion in the rest of this chapter
pertain to vector spaces only.

3.3 Types of Proximity Queries

In the extensive technical literature available on proximity queries many different wordings
of definitions for the types of searches have arisen. Definitions given here might not
correspond word for word to definitions given elsewhere, but the concepts are the same.
Proximity queries can be grouped into three main classes. These problems are not only
limited to points in space, but are applicable to any arbitrary geometric shape:

1. Range Search: Given a set of N points in d-dimensional space, find all points
within the specified range. Ranges can be specified on any or all of the dimensions,
and can be in any shape: square, rectangular, circular or arbitrary. Range queries
initially came from database information retrieval where a database consists of N
records with d attributes. Each record can then be thought of as a point in d-
dimensional space.

2. k-Nearest Neighbour Search: Given a set of N points in d-dimensional space,
find the k nearest points to a specified query point.

3. Fixed-Radius Search: Given a set of N points in d-dimensional space, find all
the points that are within a distance δ from a query point. A slight extension of
this problem is called the All-pairs Fixed-Radius Nearest Neighbours Search
by (Aref and Barbara, 1995) or Self-Spatial Join Search by (Noske, 2004) and is
defined as: Given a set of N points in d-dimensional space, find all pairs of points
within a distance δ from each other.

Solving any of the above queries will result in the same general strategy being followed.
Which is creating an indexing structure of the space. An indexing structure serves to
limit the amount of actual distance calculations that are computed between points or
objects. Without an indexing structure the brute-force or sequential-scan method must
be followed, where each point is compared to all the other points each time a query is
answered. Instead, an indexing structure is built during the preprocessing phase, leading
to reduced search times during the query phase.
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For this study the primary field of focus is nonlocal solid mechanics numerical modelling
methods. In such methods the materials being modelled are discretized into mesh points.
Each mesh point is then assumed to only be influenced by the neighbouring points that are
within the horizon (δ) of that point. Therefore an all-pairs fixed-radius nearest neighbours
search must be done to determine the neighbouring mesh points of all the N mesh points
in the model before the relevant mechanics calculations can be done. Thus, we will look
at all indexing structures from the perspective of the solving the all-pairs search. Note
however, that indexing structures made for a specific type of proximity problem mentioned
above can generally be used for the other types of proximity problems as well. All the
indexing structures mentioned below, unless stated otherwise, can be used for all three
types of proximity searches.

The fixed-radius nearest neighbours search problem is an important step in many areas of
interest other than numerical mechanics modelling, ranging from geographical information
systems (GIS), air traffic control, pattern recognition, molecular dynamics and N-body
problems to similarity searching in object databases. Therefore the algorithms designed
here are applicable to many other fields of study.

Another thing to note regarding the all-pairs problems is the sparsity condition. The
sparsity condition arises when a ball of radius δ in the space contains no more than
some c points. Thus, the sparsity condition implies that all the points in the space are
spread out and not clumped together. For most of the engineering problems that we are
interested in the points will be spread out, and the sparsity condition will be present. It is
important to note that all all-pairs fixed-radius nearest neighbours search algorithms are
designed assuming the sparsity condition will be present. If the condition is not present
all points may be positioned in a clump of size δ. If this is the case there will be O(N2)

pairs of points present. Any neighbour searching algorithm will thus have a minimum
running time of O(N2), which is equivalent to the sequential search brute-force approach
of the problem. Thus, if the sparsity condition is not present, it precludes the design of
an algorithm.

3.4 Types of Indexing Structures in Vector Space

Vast amounts of indexing structures have been developed over the years, each with their
own advantages and disadvantages, preprocessing times and query times. Various ways
of categorizing indexing structures exists. Here we divide them into non-hierarchical
methods, recursive partitioning methods, and a third category for miscellaneous methods
that do not fit into the previous two.
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3.4.1 Non-Hierarchical Methods

Methods described in this category are the inverted list or projection, space-filling curves,
and fixed-grid methods. The brute-force or sequential-scan method described above also
belong to this category.

We start with the inverted list technique described by Knuth (1973). This technique
is referred to as the projection method by Bentley and Friedman (1979). The method
involves keeping, for each dimension, a sequence of the points in space sorted according
to that dimension. Thus, the indexing structure consists of d sorted arrays of length N .
The search is done by looking at one of the d arrays and eliminating all candidate points
outside the search range for that dimension. All the remaining points are then searched
exhaustively. This method works well when the points are uniformly spaced in a certain
d-dimension. Looking at that d-array will then eliminate most of the points required
to further search through. The d sorted arrays can be constructed in O(dN logN) time
according to Bentley and Friedman (1979).

Space-filling curve methods work by mapping all d-dimensional points onto a real line and
from there using one-dimensional indexing structures for answering approximate queries.
The mapping is done by interleaving a space-filling curve through all the points in the
space. The ordering of the points on the real line is the positions of the points on the
space-filling curve. Various space-filling curves exists such as the Hilbert or Peano-Hilbert
curve (Sagan, 1994), and Morton ordering or z-ordering (Morton, 1966).

One of the first mentions of the fixed-grid method was by Bentley et al. (1977). They
divide the search space into equally sized non-overlapping hyper cubes by overlaying a
fixed-grid over all the points. Hyper cubes are cubes in higher dimensions where d ≥ 4. We
call the subspaces the hyper cubes create bins. The points that lie in the same hypercube
are grouped together in the same bin. The bin that a point occupies can be determined
in constant time. The fixed-grid method works by making the bin side-lengths (i.e. grid
spacing) equal to δ. A point x is inside a specific bin that has 3d − 1 adjacent bins. To
construct the neighbour list of point x an exhaustive search only has to done for points
that occupy the same bin as point x or are in one of the 3d − 1 adjacent bins. Bentley
et al. (1977) prove that the number of distance calculations required is linear (O(N))

given that the sparsity condition is present, and propose three data structures to handle
the fixed-grid index namely, a hash table, a balanced tree, and a multidimensional array.
The hash table and multidimensional array’s build time is O(dN) while the balanced
tree’s build time is O(dN logN). The distance measure they use is the L∞ metric, where
a hyper sphere with radius δ becomes a hypercube with side length δ. There algorithm
can also be extended to other Ls metrics.

The fixed-grid method works well for very low dimensions (d ≤ 3), however in higher

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. FIXED-RADIUS NEAREST NEIGHBOURS SEARCHING 23

dimensions (d ≥ 4) it starts suffering from poor space utilization as most bins become
empty (Castelli, 2004). Therefore, grid-files were developed as extensions of the fixed-grid
to accommodate higher dimensions better. More information on grid-files can be found
in Tamminen (1982), Hinrichs and Nievergelt (1983), and Nievergelt et al. (1984). For
this study the maximum amount of dimensions will always be three.

3.4.2 Recursive Partitioning Methods

The following indexing structures recursively divide the objects in space according to
some criteria, and are usually stored using a tree data structure. Notable trees we will be
describing here are the K-d tree, Quadtree, and R-tree but many more exist.

The k-d tree or multidimensional binary tree was first developed by Bentley (1975). A k-d
tree recursively divides the objects or points in space by a d− 1 dimensional hyper plane
perpendicular to an axis. The hyper plane splits the data creating two subsets of equal
size. The axis chosen to divide along can be alternate, or it can be calculated according
to the layout of the data. Each internal node in the tree thus has two children nodes.
With the initial k-d tree points were stored in internal nodes and leaf nodes. Subsequent
improvements made that all points are stored in leaf nodes only. Many variations and
extensions of the k-d tree exist. In Bentley (1990) the k-d tree is improved to handle
semi-dynamic point sets better. In Al-Furaih et al. (2000) the authors represent several
algorithms for the parallel construction of a k-d tree for distributed memory systems.

Quadtrees (Samet, 1984) recursively divide the search space into 2d subspaces by splitting
equally each axis in half during each division step. Each internal node therefore has 2d

children nodes. In Andreica and Tapus (2012) the authors construct a multidimensional
quad-tree index to answer fixed-radius nearest neighbour queries consisting of complex
arbitrary geometries. They build a quadtree index of complex geometrical shapes in any
d-dimensional space. Thereafter, given a query point or polyhedron q and a search radius
r, they quickly enumerate all objects within distance r from q. There quadtree data
structure can also be distributed over multiple machines. Given a query, the nodes of the
quadtree containing the reduced search space is computed and sent to all the machines,
which then send back all objects contained in those nodes as candidates.

R-trees (Guttman, 1984) work by recursively dividing the space into hyper rectangles.
The hyper rectangle of an internal node encloses the hyper rectangles of its children
nodes. Hyper rectangles on the same level of the tree may possibly overlap creating
complexities not present in the above-mentioned trees. The points in space are all stored
in the leaf nodes of the tree. Over the years there have been many extensions to the
R-tree. The R+-tree (Sellis et al., 1987) minimizes the overlap of the hyper rectangles on
the same level by using splitting rules that do not allow the hyper rectangles to overlap.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. FIXED-RADIUS NEAREST NEIGHBOURS SEARCHING 24

The R∗-tree (Beckmann et al., 1990) improves upon most of the performance issues of
the original R-tree. In Sharifzadeh and Shahabi (2010) the R-tree is combined with the
Voronoi diagram, creating a unique structure for solving nearest neighbour queries.

A recursive method that does not result in a tree data structure, called divide and conquer,
is described by Bentley and Shamos (1976) to solve the all-pairs search specifically. Their
method works by recursively dividing the point set N in half through a d− 1 dimensional
plane. All the points on either side of the plane within a distance δ are then projected
onto the plane and neighbouring pairs are calculated.

3.4.3 Miscellaneous Methods

In Chazelle (1983), the author combines several range searching procedures to solve the all-
pairs search. The algorithm only works for points in a plane and not for higher dimensions.
It works by using the planar point location algorithm of Preparata (1981), along with
range searching procedures developed by Bentley and Ottmann (1979), Edelsbrunner
(1980), and McCreight (1980). All the circles created by the N points on the plane create
a graph, which is stored using a tree. Preparata’s method of planar point location is then
used to return in which region of the graph or in what circle the query point is located
in. The preprocessing time for creating the indexing structure of Chazelle’s algorithm
is O(N2logN), while the query time for a single point is O(I + logN) with I being the
number of pairs reported.

Dickerson and Drysdale (1990) developed an algorithm that uses Delaunay triangulation
to solve the all-pairs search. The Delaunay triangulation is the dual of the Voronoi
diagram first introduced by Shamos and Hoey (1975). Their algorithm works by first
constructing, as a preprocessing phase, the Delaunay triangulation of the point set in a
plane in O(N logN) time. Thereafter the neighbour search can be done in O(N + I) time,
with I being the number of pairs reported. Their algorithm has an advantage over the
linear time fixed-grid algorithm by Bentley et al. (1977) in that after the preprocessing
phase the Delaunay triangulation can accommodate various horizon lengths. Whereas the
fixed-grid indexing structure set up by Bentley et al. (1977) is done for a fixed horizon.

The algorithm by Dickerson and Drysdale (1990) is further improved upon by Turau
(1991). Turau added an extra information gathering step during the preprocessing phase
to improve the search time of O(N + I) to O(I), where I is again the number of pairs
reported. The preprocessing time remains O(N logN).

Kanda and Sugihara (2005) describes an algorithm they develop for doing range queries
on a plane using the Voronoi diagram. Usually the shapes of range queries are square or
circular. Their method works for any general query shape. Their algorithm compared,
on average, favourably to the fixed-grid and k-d tree techniques for general query shapes.
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3.4.4 Choosing an Indexing Structure

With the vast amount of indexing structures available in the literature, it is important
to choose the appropriate one that will give the best performance. In various articles the
authors discuss comparative results of non-hierarchical methods against recursive-based
methods.

In Bentley and Friedman (1979), the authors give an overview of indexing structures that
can be used for range searching. The methods they reviewed (among others) are: the
brute-force approach, projection or inverted lists, fixed-grid method, and the k-d tree.
The authors state that the fixed-grid method give the best results when the points are
uniformly spaced, while the k-d tree is the best data structure to use when the points are
more variably spaced.

In Artemova et al. (2011) the authors illustrate again that hierarchical indexing structures
perform better than fixed-grid indexing structures where the point sets are more variably
spaced. They compare neighbour list constructions for molecular based simulations where
the point sets are typically much more varied than solid mechanics material modelling
and find that the hierarchical based algorithms perform slightly better than the grid-based
algorithm. Further, in Castelli (2004) the authors state that recursive based methods that
result in tree data structures are much more amenable to handling higher dimensions than
non-hierarchical methods.

Putting this all together the fixed-grid method is a natural choice for constructing neigh-
bour lists in numerical material modelling. The fixed-grid is simple to construct and can
be built in linear time (O(N)). The dimensions will be low, being either two or three.
Furthermore, the point layout will be mostly uniform, meaning there will be very few or
mostly no empty bins. Numerical material modelling also does not require multiple neigh-
bour list construction such as say molecular dynamics. The indexing structure therefore,
does not have to be dynamic. The neighbour list only needs to be constructed once.

3.5 Summary

There are three main classes of proximity queries: range search, k-nearest neighbour
search, and fixed-radius nearest neighbour searching. The nearest neighbour search is
applicable to this study. Specifically the all-pairs fixed-radius nearest neighbours search
variation. Our focus is on meshless mechanics methods were all mesh points have pairwise
interaction forces if they are within a certain distance δ of each other.

We have seen that to solve proximity searches an indexing structure is used to index the
objects in space. This serves to minimize the amount of distance calculations required,
thereby greatly reducing the search time.
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A large number of indexing structures, with variations and extensions, are available in
the literature. In this chapter we covered a few:

• Non-Hierarchical Methods

– Brute-force or Sequential scan

– Inverted lists or Projection

– Space-filling curves

– Fixed-grid

• Recursive-based Methods

– K-d Tree

– Quadtree

– R-Tree

– Divide and Conquer

• Miscellaneous Methods

– Planar point location

– Delaunay Triangulation

The fixed-grid method is the most promising of all the techniques. It is one of the more
simpler data structures to create and builds in linear time (O(N)). It is sufficient in
handling lower dimensional (d ≤ 3) search spaces, and point sets in numerical material
modelling will be mostly uniformly spaced. To the best of our knowledge nobody has
previously attempted to design an algorithm, implementing the fixed-grid method, for
massively parallel systems before.
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Chapter 4

Fixed-Grid Algorithm for Distributed
CPUs

4.1 Introduction

This chapter describes the fixed-grid method of solving the all-pairs fixed-radius nearest
neighbours search. It further describes the design of the CPU algorithm, implementing
the fixed-grid method, for distributed memory architecture and discusses the scalability
results that were obtained.

4.2 The Fixed-Grid Method

The brute force method of solving the fixed-radius neighbour search is to do distance
calculations between all of the mesh points in the problem. For N points this results in
N2 distance calculations. The brute force method does not scale well and quickly becomes
very time consuming.

The fixed grid method is a well-known method of solving the fixed-radius neighbour search
in a much quicker time. The method works by limiting the search space required for each
mesh point to find all of its neighbours. This is done by overlaying a grid over the problem
domain. The grid divides the domain up into separate regions that are called bins. The
grid spacing is equal to the maximum horizon δmax of the problem domain. Thus, a mesh
point’s neighbourhood can only occupy the point’s own bin and adjacent bins. With
the brute-force approach the whole problem domain needs to be searched for prospective
neighbours. Now the search space of each mesh point is limited to occupied and adjacent
bins. Figure 4.1 shows a problem domain that is divided up among 25 bins, with four
mesh points inside each bin. The indicated mesh point’s neighbourhood does not stretch
beyond the adjacent bins of the occupied bin, therefore only the shaded area needs to
be searched. This reduces the search space substantially where the fixed-grid method

27
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δmax

δmax

Figure 4.1: The neighbourhood area of mesh points never reach beyond adjacent bins

requires O(N) operations while the brute force method mentioned previously requires
O(N2) operations.

For the fixed-grid method a certain amount of preprocessing is required before the neigh-
bour search can be done. First the fixed-grid parameters must be calculated. Then the
unique number of each bin must be calculated. The adjacent bins of every bin must also
be calculated and stored. The mesh points must then be stored according to the bins
that they occupy.

4.2.1 The Unique Bin Number

The unique number (or ID) for each bin is calculated with

bid = (bz − 1)BxBy + (by − 1)Bx + bx (4.2.1)

for three dimensions and with

bid = (by − 1)Bx + bx (4.2.2)

for two dimension. The bx, by and bz symbols are the bin coordinates along each dimension
(counting in bin increments), while Bx and By are the total number of bins in the direction
of that dimension. The Figure 4.2 shows the square two-dimensional problem domain from
Figure 4.1 divided up among 25 bins, five along each dimension. Only the bin numbers
are shown. Bin number 14 will be calculated using equation 4.2.2 as (3 − 1)5 + 4 = 14.
In this way all the bins have a unique number.
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Figure 4.2: A simple two-dimensional problem domain showing only the bins

4.2.2 Adjacent Bin Calculation and Storage

The adjacent bin numbers are calculated using equation 4.2.1 and 4.2.2 again. However
now the bx, by, and bz bin coordinates are incremented from −1 to +1 to calculate all the
bin numbers adjacent to a specific bin. The bounds of the incremented coordinates are
checked to make sure it falls within the domain. For example, the adjacent bin numbers
of bin 14 are 8, 9, 10, 13, 15, 18, 19 and 20.

The adjacent bin list is stored using one array. The array holds the adjacent bin numbers
for each bin sequentially. In two dimensions each bin has a maximum of eight adjacent
neighbours, while in three dimensions each bin has a maximum of 26. Thus, the starting
index of a bin’s adjacent list stored in the array can easily be obtained by multiplying
eight or 26 by one minus the bin number. For example from Figure 4.2 the bin array will
start with {2, 6, 7, 0, 0, 0, 0, 0, 1, ...}, showing the adjacent bin numbers of bin number one.
The one indicates the first neighbouring bin number of bin number two at index number
eight.

4.2.3 Storage of Mesh Points According to Bins

All the mesh points must be stored according to which bin they occupy, for quick access
when the neighbour search is being done. This is done using three arrays. The first array
holds the amount of mesh points per bin. Thus, it is known how many mesh points are
in each bin. The second array holds the sum off all the previous elements in the first
array. The third array is a long list of all the mesh point id’s ordered according to the bin
number they occupy. Thus, to obtain all the material point id’s of a specific bin, one first
gets the starting index from the second array and then the amount of points from the
first array. The starting index and the amount of points are then used to loop through
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all the mesh points of a specific bin in the third array.

With the adjacent bins of every bin known, and the mesh points stored according to
the bins, only looping through the relevant portions of all the arrays can quickly do the
neighbour search. All the candidate mesh points in the shaded area of Figure 4.1 can
quickly be accessed for all the reference mesh points in this way.

4.2.4 Alternative Grid Spacing

An alternative, of the fixed-grid method, is to make the grid spacing smaller than the
maximum horizon δmax. A grid spacing smaller than δmax may limit the search space
required for each mesh point, depending on the size chosen. It does however require
that more than one level of adjacent bins need to be searched along each dimension.
Different grid spacing’s were not investigated in this study. Here we only focus on parallel
scalability. Therefore we chose to make the grid spacing equal to δmax.

4.2.5 Mesh Point Horizon

In peridynamics the horizon of a mesh point is dependant on the size of the material cell
represented by the mesh point. The problem domain can thus be discretised into mesh
points with different horizons. In this case the δ chosen for the grid spacing will be equal
to the maximum horizon of all the mesh points. This will result in the search space (the
shaded area in Figure 4.1) being larger relevant to the horizon of the mesh point. Thus,
the more mesh point horizons differ in the problem domain, the worse the performance of
the fixed grid method will be, given that one picks the grid spacing equal to the maximum
horizon size. The influence of a variable horizon size was not tested in this study. Here we
focussed on the parallel scalability of the algorithm and kept the horizon sizes constant
for all problems. For a study on the ways of optimizing the fixed-grid method, for serial
computing, see Noske (2004).

4.3 Memory Organization

The CPU fixed-grid algorithm was designed for parallel-distributed memory computation
as shown in Figure 2.2. This implies that each processor has its own local memory
connected to the other processor’s local memory via a network. The mesh points are
divided among the processors. Thus, each processor only has access to its local part of
the domain. Any other data, such as mesh point coordinates and horizon sizes, required
from other parts of the domain, must be communicated across the network.

Figure 4.3 illustrates that communication between processors will always be required
given that we are modelling materials in which the mesh points will always be evenly
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δ

Processor 0 Processor 1

Figure 4.3: Mesh points distributed across processors

distributed. There will always be mesh point bonds overlapping processor boundaries.
This necessitates a communication step in the CPU algorithm before the neighbour search
is done.

The goal in designing any parallel algorithm is to minimize the required communication
as much as possible. Thereby gaining the most performance from a parallel system.
Therefore it would be foolish to communicate all the mesh point data to all the processors.
This communication would take longer than running the problem on a single processor.
Therefore the communication step must have as little communication as possible.

The communication step in the CPU fixed-grid algorithm works as follows: Each processor
has its own mesh points and these points occupy bins. The search space required for a
mesh point is the occupied bin and adjacent bins as illustrated in Figure 4.1. Thus, all
the points in the adjacent bins of the occupied bins of the processor at the boundaries of
the processor must be sent across as shown in Figure 4.4. In the Figure all the blue mesh
points must be sent from processor 0 to 1, and all the red mesh points must be sent from
processor 1 to 0. It is worth noting that the processor boundaries will not necessarily be
in line with the grid spacing as is the case in Figure 4.4.

4.4 Hardware and Software

4.4.1 Software

The code written for this thesis made use of Trilinos (www.trilinos.org) software libraries.
Trilinos is an object-oriented software framework developed for engineering and scientific
applications, at Sandia National Laboratories. It consists of various software packages,
each with a specific use in mind. For the CPU fixed-grid algorithm the Teuchos and
Tpetra packages were used. Teuchos has an array wrapper class, which was used for all
arrays in the algorithm. Tpetra has a set of classes that facilitate distributed memory
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Figure 4.4: The coloured mesh points all need to be communicated from one processor’s memory
to another and vice versa

communication by utilizing MPI protocols. Among these, the Map, Multivector, and
Exporter classes were used. Furthermore the algorithm was written in C++ in an existing
peridynamics application.

4.4.2 Hardware

The code was written and tested on an Apple MacBook Air mid 2012 model. It has a 1.8
GHz Intel Core i5 processor and 4 GB of 1600 MHz DDR3 memory. The timing results of
the algorithm were then obtained from a system running two Intel Xeon E5-2680 CPUs
with eight physical cores each. Each CPU can have a total of 16 logical cores if hyper-
threading is enabled. The system has 32 GB of memory. The parallel performance of
the algorithm was tested across the cores of the two CPU processors. This represents a
best-case scenario of a system with real distributed CPU processors. Therefore, in the
results we talk about the amount of cores on which the problems were run. However, when
we talk about the algorithm in general we use processors to allude to a large distributed
system.

4.5 Algorithm Design

The algorithm has three phases: Preprocessing, communication, and neighbour searching.
In the preprocessing step, the input data is obtained and preprocessed into the relevant
data arrays that are required for communication and neighbour searching. These data
arrays are the adjacent bin array (section 4.2.2), the mesh point arrays (section 4.2.3),
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and the occupied bin array. Each processor calculates the adjacent bin list of all the bins
covering the domain. The occupied bin array holds all the bin numbers that the local
processor has mesh points inside off. The communication step works by looping through
the number of processor in the system (i ← 0 to p − 1). For each loop all the mesh
points that need to be communicated to processor p are determined and sent. Lastly
the neighbour search is conducted where the candidate neighbour points are only in the
occupied and adjacent bins of the reference mesh point. Therefore the search time for
each mesh point is significantly reduced. The algorithm is shown in Algorithm 1.

Algorithm 1 The CPU algorithm for distributed memory
1: Input Parameters: n coordinates, n horizon sizes . n is local subset of N
2: Preprocessing Phase
3: Calculate local min and max coordinates along each dimension
4: Process 0 gathers local min and max coordinates from all processors
5: Process 0 calculates global min and max coordinates along each dimension
6: Process 0 scatters global min and max coordinates to all processors
7: Calculate bin size and fixed-grid parameters
8: Calculate adjacent bin list
9: Insert local mesh points into bins

10: Calculate occupied bin list

11: Communication Phase
12: for i← 0 to p− 1 do
13: Processor i scatters occupied bin list to all other processors
14: if my process 6= i then
15: Calculate all local mesh points k that are within occupied or adjacent bins to

process i′s occupied bin list
16: end if
17: Process i gathers all mesh points k
18: end for
19: Insert newly received mesh points k into bins

20: Neighbour Search
21: for i← 0 to n do . n is local subset of N
22: for b← adjacent and occupied bins of i do
23: for j ← mesh points in b do
24: L2 ← distance between i and j
25: if L2 < horizon then
26: Store j as neighbour of i
27: end if
28: end for
29: end for
30: end for
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Table 4.1: Problem Sizes Used in Testing the CPU Algorithm

Problem Name Mesh points (N)

50K 50,653
100K 103,823
150K 148,877
200K 205,379
250K 250,047
500K 512,000

Table 4.2: CPU Fixed-Grid Algorithm Results

Number of Average Time (sec)
Cores 50K 100K 150K 200K 250K 500K

1 0.055 0.116 0.168 0.233 0.280 0.578
2 0.029 0.058 0.088 0.122 0.149 0.309
4 0.018 0.036 0.055 0.072 0.090 0.172
8 0.017 0.031 0.043 0.055 0.067 0.125
16 0.025 0.039 0.050 0.070 0.075 0.128
32 0.068 0.098 0.117 0.159 0.162 0.263

4.6 Performance Testing Details

A set of problems was run to test the algorithm. All the problems were simple cubes
with side lengths of 10 with no applied load or boundary conditions. The horizon size δ
was set to equal three times the mesh point radius. All the mesh points were the same
size. Timing data was only measured over the execution of the algorithm (to compute
the neighbour list) and not for other peridynamic calculations. The neighbour list was
constructed only once per run, as subsequent searches during the simulation will give
similar results. The different problem sizes are shown in Table 4.1. All the problem sizes
were run with 1, 2, 4, 8, 16, and 32 cores respectively. Numerous runs were done to get
the average for each combination of problem size and system size.

4.7 Results

4.7.1 Timing

The timing results of the CPU fixed-grid algorithm are shown in Table 4.2.

Figure 4.5 shows the run-times from Table 4.2. Each plot is for a different problem size.
It can clearly be seen that the run-times are reduced as the number of cores increases up
to a point between eight and 16 cores. After that the run-time for the algorithm starts
increasing. This is interesting because it shows that the algorithm actually becomes slower
as one increases the cores beyond a certain amount. Furthermore, the run-times increase
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Figure 4.5: Run-times of CPU algorithm for increasing number of cores
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Figure 4.6: Run-times of CPU algorithm for increasing problem size

as the problem size increases, as expected. This Figure shows that there is a sweet spot,
between eight and 16 cores, where the run-time is a minimum. Increasing the amount of
cores beyond this point results in slower algorithm run-times.

Another representation of Table 4.2 is given in Figure 4.6. Figure 4.6 shows the run-times
as the problem size increases for different number of cores. This Figure shows again that
the highest number of cores does not necessarily result in the fastest run-time. The fastest
run-times are obtained from using eight and 16 cores. The Figure also indicates that the
algorithm indeed scales linearly (O(N)) as expected.
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Figure 4.7: Scalability of CPU algorithm
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Figure 4.8: Speedup of CPU algorithm

4.7.2 Scalability and Speedup

Figures 4.7 and 4.8 show the scalability and speedup of the algorithm for different problem
sizes. These two figures enforce the run-time results of the previous two figures. The
scalability reduces drastically as the number of cores increases, showing that the algorithm
is not efficient for large parallel systems. The speedup shows the same thing. The solid
straight line in Figure 4.8 represents ideal speedup. The maximum amount of performance
gain is only four-fold between eight and 16 cores. Thereafter the performance gain reduces
as the number of cores increase. Both the scalability and speedup results show that the
CPU algorithm’s scaling is poor and that it is not at all amenable to a massively parallel-
distributed system.
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Figure 4.9: Run-times of the three different steps of the CPU algorithm for a 500K problem

4.7.3 Timing of Algorithm Parts

Figures 4.9 and 4.10 reveal the reason why the algorithm’s scaling is poor. Figure 4.9
shows the run-times of the three main steps in the algorithm as explained in section
4.5. Figure 4.10 shows the same data but only the percentage of total time for each
step. As one starts with one core the nearest neighbour search step dominates. The
preprocessing requires very little time and there is no communication. As the number of
cores increases the preprocessing and neighbour searching step times both reduce, while
the communication step time increases. With 32 cores the communication step takes up
80% of the time. It turns out that the fixed-grid method is so effective and the neighbour
search calculations so inexpensive that any communication will trump calculations very
quickly. The communication cost relative to the other steps keeps rising as the number
of cores increase. In this example the communication cost increases because the number
of boundaries across which mesh point data must be communicated becomes more while
the amount of mesh points per process becomes less. This result highlights a problem in
scaling the fixed-grid algorithm to many distributed processors.

4.7.4 Iso-efficiency Curves

Figure 4.11 shows the iso-efficiency curves of the algorithm. The contour lines show the
scalability that was achieved for a certain problem size and number of cores. Vertical
lines as shown in the Figure indicate very poor scalability while horizontal lines indicate
great scalability. The vertical lines indicate that the problem size must increase infinitely
to achieve the same scalability for more cores. This proves that the fixed-grid algorithm
is not scalable to large amounts of distributed processors.

The algorithm is however, very inexpensive if communication costs are excluded. If the
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Figure 4.11: Iso-efficiency curves of the CPU algorithm

problem is divided up among distributed processors such that no communication is re-
quired the algorithm will be much faster and more scalable.

4.8 Summary

A description of how the fixed-grid method works for solving the all-pairs fixed-radius
nearest neighbours search was provided in this chapter. The design of an algorithm was
also described, implementing the fixed-grid method, for CPU distributed parallel systems.
It was found that the algorithm is not scalable whatsoever. A minimum run-time between
eight and 16 cores were reached and increased as more cores were used. It was found that
the communication step of the algorithm totally dominates as the number of cores increase.
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This is because of the increasing amount of boundaries across which mesh points must be
communicated. The algorithm, which reaches a maximum speedup between eight and 16
cores, will be very proficient for desktop type set-ups where the amount of parallelism is
low. The algorithm however, will not fully harness next-generation supercomputers that
are massively parallel and distributed. Partitioning the problem without any overlapping
regions results in too much communication across processors. A method of reducing this
communication must be found.
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Chapter 5

Fixed-Grid Algorithm for
Heterogeneous Systems

5.1 Introduction

In this chapter a neighbour searching algorithm is designed for heterogeneous systems.
Focus is placed on partitioning the problem so that there is no communication of the mesh
point data required. The algorithm is designed to offload the bulk of the calculations
onto a GPU accelerator. The algorithm is tested on a system with one and two GPUs
respectively. Due to hardware constraints we could only test on a maximum of two GPUs.

The chapter starts with the algorithm design, and explains the hardware and software
used. Thereafter the results of the single GPU are compared with the chapter four results
for distributed CPUs. The results of using two GPUs are analysed to determine the
scalability of a larger system, given the new problem-partitioning scheme.

5.2 Algorithm Design

The algorithm described for the heterogeneous system is similar to the CPU algorithm
of section 4.5. Only now there is no communication required between processors. From
chapter 4 we have discovered that the communication step of the fixed-grid algorithm
is dominant. Therefore in this algorithm the problem is divided up among the CPU
processors in an overlapping manner such that no communication is required between
CPUs. The CPUs only initiate the bulk of the calculations on their respective GPUs.
Therefore there is only data transferred between the GPU and CPU memory.

The GPU algorithm also has one small improvement compared to the CPU algorithm.
Instead of calculating and storing the adjacent bin list, we calculate a stencil array that
provides the offset of the bin number of each adjacent bin. The stencil array is at most

40
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27 elements long for three dimensions i.e. the maximum amount of adjacent bins in
three dimensions is 26. Thus, giving 27 when the reference bin is included. Instead of
looping through the stored adjacent bin numbers, the program loops through the stencil
array and increments the reference bin number by the offset stored in the stencil. Using
the stencil technique for the CPU algorithm won’t improve the CPU times significantly
because calculating the adjacent bin list was part of the preprocessing step (section 4.5).
From Figure 4.9 it can be seen that the preprocessing step’s time was almost negligible.
To use the stencil technique one requires that none of the occupied bins are on the edge
of the domain. Therefore, one would extend the amount of bins by two in each dimension
to ensure that empty bins surround the domain.

The algorithm consists of two kernels (also called functors), namely a binning functor
and a building functor. The binning functor inserts the mesh points into the bins, while
the building functor builds the actual neighbour list. For the GPU algorithm one must
distinguish between what happens on the CPU and what kernels are offloaded to the
GPU. Furthermore, one must also keep track of where data is stored i.e. on the device
memory or host memory.

There are six arrays used in the algorithm. Coordinates is a two-dimensional array storing
the mesh point coordinates. The stencil array holds the offsets to calculate the adjacent
bin numbers of a reference bin. The bins array is a two-dimensional array that stores the
mesh point id’s according to the bin the points occupy. The bincount array keeps count
of how many mesh points are inserted into each bin. Lastly there is the neighbours and
numneigh arrays. Neighbours, a two-dimensional array, holds the mesh point id of every
neighbour for each point (the neighbour list), and numneigh keeps count of the amount
of neighbours for each mesh point. The algorithm is shown in Algorithm 2.

5.3 Hardware and Software

5.3.1 Software

The code written for the GPU algorithm again made use of Trilinos (www.trilinos.org)
software libraries. For the GPU algorithm the Kokkos package was used. Kokkos imple-
ments a shared memory parallel programming model and facilitates the memory manage-
ment and kernel invocation on the GPU. It provides an abstract envelope (layer) for the
Nvidia CUDA (Compute Unified Device Architecture) programming model, facilitating
the portable use of CUDA. Furthermore the algorithm was written in C++.
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Algorithm 2 The GPU algorithm
1: procedure Host Algorithm(coordinates, horizon)
2: Calculate bin size and fixed-grid parameters
3: Calculate stencil array
4: Copy stencil and coordinates array to device memory
5: Allocate bincount, bins, neighbours and numneigh arrays on device memory
6: Binning Functor . A map operation of each mesh point x in coordinates
7: Building Functor . A map operation of each mesh point x in coordinates
8: end procedure

9: procedure Binning Functor(x)
10: bid ← bin number of x
11: Add x to bins array at index of bid
12: Increment bincount at index of bid
13: end procedure

14: procedure Building Functor(x)
15: bid ← bin number of x
16: for b← adjacent bins of bid do . Adjacent bins calculated using stencil
17: for y ← mesh point id’s in b do
18: Get coordinates of y from coordinates
19: L2 ← distance between x and y
20: if L2 < horizon then
21: Store y in neighbours at index of x
22: Increment numneigh at index of x
23: end if
24: end for
25: end for
26: end procedure

5.3.2 Hardware

The timing results of the algorithm was then obtained from a system with two Nvidia
Tesla K40 GPUs. Each K40 processor has 2880 CUDA cores and can deliver a peak
double precision floating point performance of 1.43 Tflops.

5.4 Measuring CPU vs. GPU Performance

Nvidia’s CUDA parallel computing platform poses a problem as to measuring the scala-
bility or speedup of the GPU algorithm as was done previously in chapter four. Because
CUDA decides the amount of threads or streams that the data is divided into, there is
no way of specifying the amount of cores that is being utilised on the GPU processor.
Previously, for the CPU, we used different amounts of cores to measure the scalability
of the algorithm. We only have access to two GPU processors, which severely limits the
scalability that can be measured. Therefore relative throughput was used to compare the

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. FIXED-GRID ALGORITHM FOR HETEROGENEOUS SYSTEMS 43

CPU and GPU results. Throughput is defined in section 2.4.4. Relative throughput is
defined as

Relative Throughput =
GPU Throughput
CPU Throughput

(5.4.1)

Relative throughput measures the ratio of GPU throughput over CPU throughput. As
throughput is a good measure of how much work is done per a given time, relative through-
put serves as an indication of how much performance is gained.

5.5 Performance Testing Details

The algorithm performance was tested with two different configurations. First, a single
CPU-GPU pair was used. These results are discussed in section 5.6.1. Second, two CPU-
GPU pairs were used. These results are discussed in section 5.6.2. In the first case, the
whole problem resides on the single CPU memory. The coordinates array transferred
to GPU memory for calculations contain the coordinates of all the mesh points in the
problem. In the second case, the problem is split in half between the two CPUs. In
chapter four however, we have shown that a distributed mesh leads to an unscalable
algorithm. If the CPUs require communication before the calculations are offloaded to
their GPUs it would still result in an unscalable algorithm. Therefore, the problem was
split in half with overlapping regions so that no communication is required between the
distributed CPU memories beforehand. The coordinates array in the second case has half
the mesh points plus some overlapping region. Therefore, what was tested represents a
heterogeneous architecture with shared memory between the CPUs.

A set of problems was run to test the proposed algorithm. All the problems were simple
cubes with side lengths of 10 with no applied load or boundary conditions. The horizon
size was set to equal three times the mesh point radius. Furthermore, all the mesh points
were the same size. The problem sizes tested are shown in Table 5.1. Numerous test runs
were done to get the average time of the algorithm for each problem size.

5.6 Results

Table 5.2 shows the run-time and throughput results obtained from using one and two
GPUs respectively.

5.6.1 One GPU Compared with One CPU

In the first case, we compare one GPU with the results from chapter four. Figure 5.1 shows
the relative throughput of one GPU from Table 5.2 compared to the CPU throughput
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Table 5.1: Problem Sizes Used in Testing the GPU Algorithm

Problem Name Mesh Points (N)

125K 125,000
1,000K 1,000,000
3,375K 3,375,000
8,000K 8,000,000
15,625K 15,625,000
27,000K 27,000,000
42,875K 42,875,000
64,000K 64,000,000

Table 5.2: GPU Fixed-Grid Algorithm Results

Problem One GPU Two GPUs

Name Time (sec) Throughput (106 Points
second

) Time (sec) Throughput (106 Points
second

)

125K 0.004 32.5 0.003 40.8
1,000K 0.024 42.4 0.013 75.0
3,375K 0.103 32.8 0.052 65.4
8,000K 0.248 32.3 0.121 66.1
15,625K 0.501 31.2 0.256 61.1
27,000K 0.859 31.4 0.443 60.9
42,875K 1.403 30.6 0.726 59.0
64,000K 2.105 30.4 1.063 60.2

of chapter four’s results. One can see that the GPU outperforms the CPUs significantly.
Important to note is that a single GPU delivers between 30 and 36 times the throughput
when compared to a single CPU. This shows that the GPU is faster regardless of whether
communication is required or not. The GPU, overall, provides from six to 40 times the
performance, depending on how many CPU cores were used. The results show that a
GPU does give better throughput than a CPU. This is however, to be expected as GPUs
are high throughput devices. From Table 5.2 and Figure 5.4 one can see the throughput
delivered by the single GPU is constant at 30 million points per second.

In Figure 5.2 the GPU times from Table 5.2 are plotted against the CPU times from
Figure 4.6. One can see that the GPU times are much faster. Important to note is the
single GPU time compared to the single CPU time. This shows again that a single GPU
is faster than a single CPU regardless of whether communication is required or not. These
results show that the algorithm is well suited to take advantage of the parallelism offered
by a GPU processor and that significant performance gains can be obtained in such a
way.
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Figure 5.1: Relative throughput of the CPU algorithm from chapter four vs. a single CPU-GPU
pair. The GPUs throughput was taken as a constant 30 million
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Figure 5.4: The single and double CPU-GPU pair’s throughput from Table 5.2

5.6.2 Scalability of Two GPUs

In the second case we compare the performance of two GPUs with one. Figure 5.3 and
5.4 show the run-times and throughput of the GPU algorithm for one and two GPUs
respectively. Here it can be seen that going from one to two GPUs perfectly doubles the
obtained throughput and halves the run-time. This is a result of major importance which
indicate that a very large problem can be mapped to multiple GPUs without losing much
efficiency of the system. This is provided that the problem is partitioned in an overlapping
manner, such that the CPUs controlling the GPUs do not have to communicate mesh point
data beforehand.
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5.7 Summary

In this chapter the design of a GPU neighbour searching algorithm was explained. The
algorithm performance was measured on one and two GPUs. In the case of one GPU it was
found that a single GPU significantly outperforms a single CPU. It was found therefore,
that the algorithm could take full advantage of the parallelism of a GPU processor. In the
case of two GPUs, the problem was partitioned with an overlap so that no communication
prior to neighbour searching is required. It was found that two GPUs delivered twice as
much throughput compared to one, showing that the proposed algorithm may be scalable
to massively parallel systems with multiple GPUs.
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Chapter 6

Conclusion

6.1 Summary of Results

This thesis set out to design an algorithm for solving the all-pairs fixed-radius nearest
neighbours search that is scalable to massively parallel systems. The all-pairs search
problem is stated as follows: Given a set of N points in d-dimensional space, find all pairs
of points within a distance δ of one another. This search is required by any nonlocal
solid mechanics method to construct the neighbour list of each mesh point in the problem
domain prior to the relevant mechanics calculations. Furthermore, GPU computing has
become very popular in the last decade. Most of the fastest supercomputers in the world
today employ GPU processors as accelerators to CPU processors. It is also believed
that the next-generation exascale supercomputers will be heterogeneous. Therefore the
focus was to design an algorithm that takes advantage of the parallelism offered by GPU
processors. Two algorithms, implementing the fixed-grid method, were developed. The
first was for a distributed CPU system. The second was for a heterogeneous architecture
consisting of CPUs and GPUs.

For the first algorithm, from chapter four, the problem domain is partitioned among
multiple CPU cores in a non-overlapping manner. Therefore the algorithm follows a
SPMD programming model. The following results were obtained:

• The algorithm reaches an optimum run-time between eight and 16 cores. With an
increasing number of cores the run-time increases as well.

• The scalability, speedup and iso-efficiency plots confirm that the algorithm is not
scalable and quickly becomes inefficient as the number of cores increase.

• Figures 4.9 and 4.10 show that the communication cost becomes dominant as the
number of cores increase.

48
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From the results it is clear that the CPU algorithm is not scalable to massively parallel
systems. This is because the calculations of the fixed-grid method are very light and any
communication required will quickly trump such calculations. The solution therefore is
to avoid communication of mesh point data across processor boundaries. Dividing the
problem domain up among the processors in an overlapping manner can do this.

For the second algorithm from chapter five, the problem domain is partitioned in an over-
lapping manner such that no communication is required between processors beforehand.
This represents a shared memory system. The algorithm was tested on one and two GPU
processors respectively. The single GPU performance was compared to the single CPU
performance to investigate the performance gain obtainable with no communication re-
quired. The performance of two GPUs were compared with that of one, to determine how
scalable a multi GPU system might be. The following results were obtained:

• The single GPU outperformed the single CPU by a factor of between 30 and 36.

• A single GPU also outperforms multiple CPU cores as the relative throughput was
always at least greater than eight as shown in Figure 5.1.

• Two GPUs delivered exactly twice the throughput of one GPU.

Two conclusions can be drawn from the results. Firstly, the fixed-grid algorithm is
amenable to exploit the parallelism offered by a GPU processor. Therefore the algorithm
delivers much more performance on a GPU processor compared to a CPU processor. On
a single GPU the algorithm will outperform any CPU system size, running the algorithm
from chapter four, as shown by Figure 5.1. Secondly, if the problem domain is partitioned
in such a way that no communication is required it becomes very scalable. Two GPUs
delivered twice the performance of one GPU.

In conclusion, the developed algorithm can take advantage of the parallelism offered by
GPU processors. Furthermore, the calculations required are very light weight, therefore
communication must be avoided. Dividing the problem up into regions that overlap can
do this. It is the ideal to be able to run computer simulations without any limit on the
size of the problem. To harness the power of next generation computers, problems will be
very large and will not fit on the memory of one processor. Therefore it is important that
the algorithm is scalable on a distributed system. An algorithm was designed that will be
scalable and fast on massive heterogeneous systems, facilitating extreme scale simulations.

6.2 Proposed Future Work

Two additional projects are proposed: Firstly, the design of a CPU algorithm that parti-
tions the problem in an overlapping manner so that no communication is required before
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the neighbour search is done. It is believed that without communication costs the fixed-
grid CPU algorithm will perform much better. The algorithm is amenable to GPU pro-
cessors, but will also be very scalable on a distributed CPU system if the communication
costs are nullified. Secondly, due to hardware constraints we were not able to test our
GPU algorithm with more than two GPU processors. Another project would be to test
the algorithm on a system comprising many GPUs to confirm that it is indeed scalable.
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