
Design and Implementation of Generic Flight Software
for a CubeSat

by

André Emile Heunis

Thesis presented in partial fulfilment of the requirements for the
degree of

Master of Engineering
at Stellenbosch University

Supervisor:

Prof W. H. Steyn
Department Electrical and Electronic Engineering

plt
Typewritten Text
December 2014

plt
Typewritten Text

plt
Typewritten Text

plt
Typewritten Text

plt
Typewritten Text

Declaration

By submitting this thesis electronically, I declare that the entirety of the work con-
tained therein is my own, original work, that I am the owner of the copyright thereof
(unless to the extent explicitly otherwise stated) and that I have not previously in
its entirety or in part submitted it for obtaining any qualification.

October 2014

Copyright © 2014 Stellenbosch University
All rights reserved

Stellenbosch University http://scholar.sun.ac.za

Abstract

The main on-board computer in a satellite is responsible for ensuring the correct
operation of the entire system. It performs this task using flight software. In order to
reduce future development costs, it is desirable to develop generic software that can
be re-used on subsequent missions. This thesis details the design and implementation
of a generic flight software application for CubeSats.
A generic, modular framework is used in order to increase the re-usability of the flight
software architecture. In order to simplify the management of the various on-board
processes, the software is built upon the FreeRTOS real-time operating system.
The Consultative Committee for Space Data Systems’ telemetry and telecommand
packet definitions are used to interface with ground stations. In addition, a number
of services defined in the European Cooperation for Space Standardisation’s Packet
Utilisation Standard are used to perform the functions required from the flight
software.
The final application contains all the command and data handling functionality
required in a standard CubeSat mission. Mechanisms for the collection, storage and
transmission of housekeeping data are included as well as the implementation of
basic fault tolerance techniques. Through testing it is shown that the FreeRTOS
scheduler can be used to ensure the software meets hard-real time requirements.

iii

Stellenbosch University http://scholar.sun.ac.za

Opsomming

Die hoof aanboordrekenaar in ’n satelliet verseker die korrekte werking van die hele
stelsel. Die rekenaar voer hierdie taak uit deur van vlugsagteware gebruik te maak.
Om toekomstige ontwikkelingskostes te verminder, is dit noodsaaklik om generiese
sagteware te ontwikkel wat hergebruik kan word op daaropvolgende missies. Hierdie
tesis handel oor die besonderhede van die ontwerp en implementering van generiese
vlugsagteware vir ’n CubeSat.
’n Generiese, modulêre raamwerk word gebruik om die hergebruik van die sagte-
ware te verbeter. Ten einde die beheer van die verskillende aanboordprosesse te
vereenvoudig, word die sagteware gebou op die FreeRTOS reëletyd bedryfstelsel.
Die telemetrie- en telebevelpakket definisies van die “Consultative Committee for
Space Data Systems” word gebruik om met grondstasies te kommunikeer. Daarby
is ’n aantal dienste omskryf in die “Packet Utilisation Standard” van die “European
Cooperation for Space Standardisation” gebruik om die vereiste funksies van die
vlugsagteware uit te voer.
Die finale sagteware bevat al die bevel en data-hantering funksies soos wat vereis
word van ’n standaard CubeSat missie. Meganismes vir die versameling, bewaring en
oordrag van huishoudelike data is ingesluit sowel as die implementering van basiese
fouttolerante tegnieke. Toetse het gewys dat die FreeRTOS skeduleerder gebruik
kan word om te verseker dat die sagteware aan harde reëletyd vereistes voldoen.

iv

Stellenbosch University http://scholar.sun.ac.za

Acknowledgements

The following people deserve more acknowledgement than they are receiving here.

• Prof. W.H. Steyn for accepting me as a student and showing me how to be
a better engineer.

• Pieter Botma, Christo Groenewald, Jako Gerber, Mike-Alex Kear-
ney and Willem Jordaan for their wisdom, knowledge and inexhaustible
patience.

• Gerhard Janse van Vuuren and Jan-Hielke le Roux for being the best.

• My parents, Riki Schutte and all my friends for the unconditional love,
support and motivation.

v

Stellenbosch University http://scholar.sun.ac.za

Contents

Abstract iii

Opsomming iv

Acknowledgements v

List of Figures ix

List of Tables xi

Nomenclature xii

Acknowledgements xiv

1 Introduction and Problem Description 1
1.1 The CubeSat Standard . 1

1.1.1 CubeSat in the ESL . 2
1.2 Satellite system overview . 3
1.3 Challenges in the space environment 4
1.4 Software reuse . 6
1.5 Project goals . 7
1.6 Brief Chapter overview . 7

2 Flight Software Background Information 9
2.1 Requirements of flight software . 9
2.2 RTOS . 11

2.2.1 Multitasking . 11
2.2.1.1 The Scheduler . 12
2.2.1.2 Task Communication 14
2.2.1.3 Semaphores and Task Synchronisation 14

2.2.2 Resource management . 14
2.2.3 Memory management . 15

2.3 Fault Tolerance . 16
2.3.1 Possible faults . 16
2.3.2 Architectural level fault tolerance 17
2.3.3 Application level fault tolerance 17

2.3.3.1 Single-version software fault tolerance techniques . . 18

vi

Stellenbosch University http://scholar.sun.ac.za

CONTENTS vii

2.3.3.2 Watchdog timers . 19
2.3.4 Conclusion . 19

2.4 Existing hardware and drivers . 20
2.4.1 CubeComputer . 20
2.4.2 Board Support Package . 20

2.5 Conclusion . 21

3 Flight Software Design Phase 23
3.1 Structural Design Choices . 23

3.1.1 Modular Programming . 23
3.1.2 Memory Allocation . 24

3.2 FreeRTOS . 24
3.2.1 Choosing a RTOS . 24
3.2.2 FreeRTOS Implementation 26

3.2.2.1 Configuration . 27
3.2.2.2 Kernel Memory Management 27

3.3 Flight Software overview . 28
3.4 Flight Software Standards . 30

3.4.1 CCSDS Packet Standard . 31
3.4.2 ECSS Packet Utilisation Standard 33
3.4.3 PUS Services . 35

3.5 Conclusion . 36

4 Command and Data Handling 37
4.1 The I2C interface . 37

4.1.1 The I2C manager . 38
4.1.2 The I2C interface . 39

4.2 Service 1 implementation . 41
4.3 Service 8 implementation . 42
4.4 Service 11 implementation . 42

4.4.1 The Command Schedule . 43
4.4.2 Scheduling service subtypes 44

4.5 Service 13 Implementation . 47
4.5.1 Large Data Upload . 49
4.5.2 Large Data Download . 50
4.5.3 Re-transferring missing packets 50
4.5.4 Notes on the Transfer Protocol 53

4.6 The Filesystem . 54
4.6.1 SD cards . 55
4.6.2 The File System . 55
4.6.3 The File System Interface Library 56

4.7 Service 131: Mass storage interface 58
4.8 Subsystem Command Managers . 59
4.9 Transceiver communication . 61
4.10 Conclusion . 62

5 The Housekeeping System 64

Stellenbosch University http://scholar.sun.ac.za

CONTENTS viii

5.1 Service 3: Housekeeping and diagnostic data reporting 64
5.1.1 Housekeeping data collection 66
5.1.2 SID masks . 67

5.2 Service 15: On-board storage and retrieval 67
5.2.1 Packet Reception and Storage 69
5.2.2 Sub-service Implementation 70

5.3 Fault Tolerance . 71
5.3.1 Hardware fault tolerance . 71
5.3.2 Architectural level fault tolerance 72
5.3.3 Application level fault tolerance 72

5.3.3.1 Error Detection . 72
5.3.3.2 Fault treatment and continued service 74
5.3.3.3 Watchdog timers . 74

5.4 Conclusion . 76

6 Testing and Verification 78
6.1 Testing phase set-up . 78

6.1.1 CubeDock . 78
6.1.2 Ground Software Simulation 79

6.2 System Evaluation . 80
6.2.1 System configuration . 81
6.2.2 System testing . 82

7 Conclusion 87
7.1 Future Work . 88

A Service 131: File System Interface 90
A.1 List directory contents (131, 1) . 90
A.2 Downloading a file from the file system (131, 2) 90
A.3 Deleting a file from the file system (131, 3) 91
A.4 Reset the file system (131, 4) . 91
A.5 Format the mass storage device and reset the file system (131, 5) . . 92
A.6 Directory contents report (131, 6) . 92
A.7 File requested for download (131, 7) 92
A.8 File download service subtypes (131, 128) to (131, 135) 93

B Mission specific elements of the flight software 94
B.1 Addition of subsystems . 94
B.2 CCSDS modifications . 95
B.3 System modifications . 95

Bibliography 97

Stellenbosch University http://scholar.sun.ac.za

List of Figures

1.1 The P-POD launcher [1]. 1
1.2 A stack containing CubeSense, CubeControl, and CubeComputer 2
1.3 Flux intensity map for energy levels > 38 MeV at a) 400 km, b) 800 km

and c) 1100 km. Adapted from [2] . 5
1.4 Framework Concept. Adapted from [3] 6

2.1 Task state machine. Adapted from [4] 12
2.2 Examples of common scheduling algorithms 13
2.3 Difference between the availability of a semaphore and a mutex. Adapted

from [4]. 15
2.4 CubeComputer Block Diagram. Adapted from [5] 21

3.1 Typical FreeRTOS application main function 29
3.2 Typical FreeRTOS task structure . 30
3.3 Overview of Flight Software Module Structure 31
3.4 CCSDS Telecommand Structure [6] . 32
3.5 CCSDS Telemetry Structure [6] . 33
3.6 PUS Telecommand Data Field Header [7] 33
3.7 PUS Telemetry Data Field Header [7] 34

4.1 Structure of the I2C manager task . 38
4.2 Structure of the I2C access function . 40
4.3 Example of mutex transferral . 41
4.4 Application Data field contents for a “perform function” telecommand . 42
4.5 Example of command schedule operation 45
4.6 The splitting of a service data unit into parts. Adapted from [7] 48
4.7 The format of a Service Data Unit. Adapted from [7] 49
4.8 The packet data format for a telecommand containing a Service Data

Unit part. Adapted from [7] . 49
4.9 Service 13 SDU upload protocol . 51
4.10 Service 13 SDU download protocol . 52
4.11 Example of an image file before (left) and after (right) dropped packets

are retransmitted. 53
4.12 Path of a telecommand from transceiver to subsystem manager 60
4.13 Flow diagram showing how new data is detected and read from the trans-

ceiver . 62

ix

Stellenbosch University http://scholar.sun.ac.za

LIST OF FIGURES x

5.1 Example of Payload data SID [8]. 65
5.2 Flow of the housekeeping collection task. 66
5.3 Service 15 Concept. Adapted from [9] 68
5.4 Format of a packet store entry . 70
5.5 Watchdog Manager Structure. Adapted from [10] 75

6.1 The main tab of the ground software simulation application 80
6.2 Diagram of the test setup used during debugging and testing 81
6.3 Single Script Client . 83
6.4 Upload Large Data client . 84

A.1 Service 131,1 telecommand packet application data 90
A.2 Service 131,2 telecommand packet application data 91
A.3 Service 131,7 telemetry source packet, source data 92
A.4 Service 131,8 telemetry source packet, source data 92

Stellenbosch University http://scholar.sun.ac.za

List of Tables

2.1 Generic and Mission specific Flight Software Components 10

6.1 Tests used to evaluate the flight software 82
6.2 Tests used to evaluate the flight software 85

xi

Stellenbosch University http://scholar.sun.ac.za

Nomenclature

Abbreviations and Acronyms

ADCS Attitude Determination and Control Subsystem

APID Application Process Identifier

BSP Board Support Package

CCF Common Cause Fault

CCSDS Consultative Committee for Space Data Systems

CMSIS Cortex Microcontroller Software Interface Standard

CUC CCSDS Unsegmented Code

DMA Direct Memory Access

EBI External Bus Interface

ECC Error Correcting Codes

ECSS European Cooperation for Space Standardisation

EDAC Error Detection and Correction

EPS Electrical Power System

ESL Electronic Systems Laboratory

FATFS File Allocation Table File System

ISR Interrupt Service Routine

LEO Low Earth Orbit

MCU Micro-controller Unit

MPU Memory Protection Unit

OBC On-board Computer

PC Personal Computer

PEC Packet Error Control

PUS Packet Utilisation Standard

xii

Stellenbosch University http://scholar.sun.ac.za

NOMENCLATURE xiii

RTC Real Time Clock

RTOS Real Time Operating System

SAA South Atlantic Anomaly

SCS Satellite Control Software

SD Secure Digital

SDU Service Data Unit

SEE Single Event Effect

SEU Single Event Upset

SID Structure Identifier

SPI Serial Peripheral Interface

SPOF Single Point of Failure

SRAM Static Random-Access Memory

SSID Secondary Station Identifier

TID Total Ionizing Dose

TMR Triple Modular Redundancy

UART Universal Asynchronous Receiver/Transmitter

UI Unnumbered Information

WOD Whole Orbit Data

Stellenbosch University http://scholar.sun.ac.za

Acknowledgements

The following people deserve more acknowledgement than they are receiving here.

• Prof. W.H. Steyn for accepting me as a student and showing me how to be
a better engineer.

• Pieter Botma, Christo Groenewald, Jako Gerber, Mike-Alex Kear-
ney and Willem Jordaan for their wisdom, knowledge and inexhaustible
patience.

• Gerhard Janse van Vuuren and Jan-Hielke le Roux for being the best.

• My parents, Riki Schutte and all my friends for the unconditional love,
support and motivation.

xiv

Stellenbosch University http://scholar.sun.ac.za

Chapter 1

Introduction and Problem
Description

1.1 The CubeSat Standard
As has always been the case in most disciplines of engineering, there is a drive in
satellite engineering to do more with fewer resources and a lower cost budget. This
has led to the development of the CubeSat standard, initially presented in [11]. A
1 unit (1U) CubeSat has dimensions of 10 x 10 x 10 cm and weighs roughly 1 kg.
CubeSat units can be added together to form larger satellites such as 2U (10 x 10 x
20 cm) or 3U (10 x 10 x 30 cm) satellites.
There are two main advantages to using the CubeSat standard. Firstly, adhering to
a set of standards during development can significantly decrease the development
time and cost of future projects that share the standards [11]. Space qualified com-
ponents required to assemble a complete CubeSat can easily be purchased, removing
the requirement to develop new components for each subsystem. Secondly, the im-
plementation of the standard has enabled the development of a standard CubeSat
deployer shown in Figure 1.1.

Figure 1.1 – The P-POD launcher [1].

1

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION AND PROBLEM DESCRIPTION 2

The development of the Poly Picosatellite Orbital Deployer (P-POD) and the relat-
ively light weight of CubeSats makes it easy to piggyback a CubeSat on the launch
of a larger satellite or share the cost of a launch between many small satellites.

1.1.1 CubeSat in the ESL

The Electronic Systems Laboatory (ESL) at Stellenbosch University has already de-
veloped a number of subsystem components that conform to the CubeSat standard.
The main components among these include:

• CubeComputer: An Attitude Determination and Control System (ADCS)
On-Board Computer (OBC) that can also operate as the main OBC for a
CubeSat;

• CubeSense: A sun and horizon sensor combination;

• CubeControl: An ADCS actuator system for magnetic control and reaction
wheels.

Figure 1.2 shows a stack containing CubeComputer, CubeSense, and CubeControl.

Figure 1.2 – A stack containing CubeSense, CubeControl, and CubeComputer

Although these components have flown on multiple satellite missions, the ESL has
yet to launch a CubeSat assembled exclusively at Stellenbosch University. The QB50
project is an international effort to launch a network of 50 satellites into Low Earth
Orbit (LEO). The main payloads of these satellites will be scientific sensors for
measuring key parameters in the lower thermosphere. Parameters involved in the
re-entry process will also be measured and compared with expected trajectories and
orbital lifetimes[12]. The ESL is currently developing a CubeSat named ZA-AeroSat
as its contribution to the QB50 project.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION AND PROBLEM DESCRIPTION 3

1.2 Satellite system overview
In order for a satellite to function effectively, a number of on-board subsystems have
to work in unison. This section provides a brief overview of the subsystems generally
found on a CubeSat.
On-Board Computer. The OBC is the centre of all the activity on board the
satellite. It interfaces with all the other subsystems in order to provide services such
as command and data handling, health monitoring and spacecraft timekeeping.
The command and data handling system serves two major purposes [13]. Firstly, it
receives, validates, decodes and distributes commands to other spacecraft systems.
Decoded commands received from a ground station may also need to be encoded
into a format that can be used by subsystems on-board the satellite. For example,
the format of command parameters for a particular subsystem or the transmission
of data via an I2C bus. Secondly, it gathers, processes, and formats housekeeping
and payload data for use by on-board housekeeping procedures or downlink to a
ground station. Data may also need to be stored in persistent memory if no ground
station is available to downlink data to.
The OBC is also used to monitor the overall health of the satellite. Health as-
sessment can be achieved in a variety of ways depending on the subsystem being
assessed. Telemetry sensors can be used to check that subsystem parameters such
as temperature or current values are acceptable. The return values of certain pro-
cesses can also be checked against expected values to see if a system is functioning
correctly. Telemetry data collected from each subsystem is also stored for download
to a ground station. A ground crew can then inspect the telemetry data to assess
the state of the satellite. If error conditions are detected in any of the subsystems
or processes, then corrective actions can be taken such as an OBC reset or disabling
a part of the malfunctioning subsystem.
Electrical Power System. The Electrical Power System (EPS) on a satellite is
responsible for providing, storing, distributing, and regulating power to the entire
satellite system. It also supplies an interface through which it can communicate
with the OBC. A conventional CubeSat EPS consists of solar cells, batteries, and
power distribution and control circuitry [13].
Attitude Determination and Control System. The ADCS stabilises the satel-
lite in the presence of disturbances and orientates it according to image capture or
antenna pointing requirements. Sensors mounted on the satellite are used to de-
termine the satellite’s attitude and actuators are then used to control it. Passive
control methods such as aerodynamic or gravity gradient control can also be used
to place the satellite in a certain attitude without the use of actuators. The ADCS
system is also responsible for managing the use of the propulsion system during
orbital maintenance and manoeuvres.
Telecommunications System. The telecommunications subsystem provides the
interface between the ground station and the satellite and is responsible for trans-
mitting telemetry packets and receiving telecommand packets. It generally consists
of antennas and transmitter and receiver circuitry. This transceiver hardware usu-
ally contains redundant components in order to ensure communication with the

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION AND PROBLEM DESCRIPTION 4

satellite will be possible. Another responsibility of the communications subsystem
is the encoding and decoding of packets using the chosen protocol for the mission.
Studies done in [14] and [15] show that the most common protocol used in CubeSat
mission between 2003 and 2012 was AX.25. This decoding and encoding of commu-
nication protocol packets is not to be confused with the decoding and encoding of
telecommand and telemetry packets occurring in the command and data handling
system.
Payload. The payload is the hardware and software on the satellite that performs
the fundamental task for which the satellite was flown. In other words, it is the
component of the spacecraft that interacts with the outside world to accomplish the
mission’s objectives [13]. As such, each mission usually carries a unique payload.
Examples of payloads include observation instruments, communication systems and
scientific experiments.

1.3 Challenges in the space environment
In most embedded systems, the system should ideally be able to run indefinitely
without a reboot or maintenance after initialising. In a satellite system, this is
more a requirement than an ideal due to a number of unique challenges that are
posed by the remote space environment. Once a satellite is in orbit, it is impossible
to physically interact with it. Inspecting and maintaining the integrity of the on
board subsystems is therefore a task that needs to be performed by the OBC. Fault
isolation and repair procedures also need to be selected and executed in order to
ensure the satellite can continue operating in the presence of damage or faults within
a subsystem.
A satellite is only in range of a ground station for a small percentage of its orbit.
For the rest of its orbit, the satellite needs to be able to operate autonomously
without assistance from a ground station. The OBC therefore needs to support the
scheduling of processes for execution at a point when the satellite is not in range
of the ground station. Telemetry and payload data collected during the orbit also
need to be stored in persistent memory for download when a ground station comes
into range.
Radiation in space can cause many faults within a satellite system. Most CubeSats
operate in LEO where they are protected from the majority of high energy charged
particles by the earth’s magnetic field. However, the South Atlantic Anomaly (SAA)
is a region where the Van Allen belts extend into the LEO range, allowing a large
amount of charged particles into the atmosphere. Figure 1.3 shows the flux intensity
map for regions experiencing energy levels bigger than 38 MeV.
The effects of this radiation on electronic equipment are separated into two areas
namely Total Ionizing Dose (TID) and Single Event Effects (SEE)[16].

• The Total Ionizing Dose of electronic equipment is a measure of the amount
of radiation a component can withstand before it degrades beyond a reliable
state. TID radiation is built up from trapped electrons, trapped protons, and
solar flare protons in the device.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION AND PROBLEM DESCRIPTION 5

a)

b)

c)

Figure 1.3 – Flux intensity map for energy levels > 38 MeV at a) 400 km, b) 800 km
and c) 1100 km. Adapted from [2]

• A Single Event Effect (SEE) occurs when a charged particle deposits suffi-
cient energy into the device. Common SEEs include the Single Event Upset
(SEU) and the Single Event Latchup (SEL). A SEU generally manifests as a
bit-flip in memory or a transient pulse in combinational logic. SEUs generally
cause undesired effects in the software of a system. On the other hand, a SEL
can permanently damage the hardware of a system. A SEL occurs when a
charged particle creates a parasitic short circuit within a transistor resulting
in excessive current flow. The only way to remove the latchup is to power
cycle the device.

The occurrence of one of these faults has the potential to cripple a satellite system
and end a mission prematurely, especially if they go undetected. Various hardware
and software fault tolerance techniques are therefore required to increase the ro-

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION AND PROBLEM DESCRIPTION 6

bustness of a satellite system. These techniques are further discussed in Chapter
5.

1.4 Software reuse
Beck et al. found that reusing as much software as possible is an important factor
in increasing product quality while reducing costs and development times [17]. It
is therefore logical to develop software to be easily applicable to different projects.
Furthermore, Pasetti and Pree state in [3] that, in order for software reuse to be
truly effective, the full architecture of the software system must be made reusable.
Merely reusing pieces of code from an existing system does not transfer the initial
intellectual investment to the new project.
Conventional methods used to achieve these reusable architectures include Domain-
specific Architectures and, similarly, Software Frameworks [18]. Software Frame-
works provide the skeleton for a set of applications or “domain”. It should then be
possible to develop any application within the specific domain as an extension of
the architecture provided by the framework. This is achieved by constructing the
framework out of components with a defined composition and interaction. Frame-
works also make provision for the addition of application-specific code according to
the requirements of the domain. Frameworks therefore reuse both code and design.
Figure 1.4 shows the concept of a framework and how it interacts with application
specific components. In the figure, the shaded components are application specific
while the unshaded areas represent the reusable architecture.

Framework

Component 1

Interface

Composition

Component 2

Interface

Composition

Component 3

Interface

Composition

Component 4
Composition

Component 5
Composition

Figure 1.4 – Framework Concept. Adapted from [3]

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION AND PROBLEM DESCRIPTION 7

1.5 Project goals
This chapter introduced the CubeSat standard and gave a summary of the ESL’s
involvement in CubeSat development. A brief description of each of the subsystems
generally found in a CubeSat was given as well as an overview of the challenges
faced when operating in a space environment.
From the above information, it is clear that even a small satellite is a complex
system consisting of smaller, individual subsystems. In order for the satellite to be
fully operational, each subsystem needs to operate correctly and in unison with the
rest of the satellite. The satellite system should also be robust enough to enable
continuous operation in the harsh environment of outer space. To satisfy all of these
requirements, flight software is implemented on the main OBC of the satellite to
manage and monitor the system and interface with the ground station. The main
goal of this project is to develop reusable flight software for a CubeSat. As an
additional requirement, the software will be developed using the FreeRTOS Real
Time Operating System (RTOS).
The goals of the project outlined in this thesis are therefore as follows:

• To design and develop flight software for a CubeSat;

• To implement the flight software using FreeRTOS;

• To develop the flight software with a generic architecture so that it is easy to
modify and reuse;

• To integrate and test the flight software on CubeSat OBC hardware.

1.6 Brief Chapter overview
This section provides an indication of what is covered in each chapter.

1. Chapter 2 provides an overview of the functionality required from flight soft-
ware. Background information on the capabilities and tools provided by a
RTOS is also presented followed by a quick summary of the OBC hardware.

2. Chapter 3 covers the initial design phase of the flight software. Firstly, the
chosen RTOS is evaluated against similar products and it’s configuration for
the project is discussed. Secondly, the general structure of the flight software
is developed. Most notably, the structure of the managers for each subsystem
and their interfaces. Various initial design choices concerning aspects of the
development (e.g software robustness, satellite software standards, etc.) are
also discussed and motivated. Finally, the development and testing set-up
used during the project is presented.

3. Chapter 4 presents all the components of the flight software involved in com-
mand and data handling processes. Initially the design of the I2C manager
is presented as it is the pathway used for almost all commands and data.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION AND PROBLEM DESCRIPTION 8

Command management and scheduling are then discussed as part of com-
mand handling followed by an explanation of the data upload and download
procedures and the file system interface.

4. Chapter 5 focuses on the housekeeping procedures and fault tolerance mech-
anisms. The processes involved in the collection, processing and storage of
housekeeping data are presented as well as the mechanisms used to increase
the robustness of the software.

5. Chapter 6 presents the various tests that were used to evaluate the function-
ality and performance of the flight software.

6. Chapter 7 concludes the thesis with a summary of the design, development and
evaluation process that was followed in this project. Possible improvements to
the final version of the flight software are also discussed.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2

Flight Software Background
Information

In Chapter 1, the need for flight software on satellites was established by examining
the complexity inherent to even small satellite systems. It was also noted that
the management of this complexity is further aggravated by the fact that satellites
operate remotely (autonomously) and do so in the harsh environment of outer space.
This chapter details the main background information required for the development
of generic satellite flight software using a RTOS.
In the first section, the requirements for a generic flight software application are
derived. Next, the main functions of a RTOS as well as tools generally included in
a RTOS are discussed. An overview of embedded fault tolerance techniques that
can be used to increase the robustness of the flight software are also presented.
Finally an overview of the hardware and drivers that will act as a platform for the
development of the flight software is given.

2.1 Requirements of flight software
Before the design of a system can begin, it is important to define its requirements.
For this project, a balance had to be found between the project goals of producing
functioning flight software and producing a generic application. In other words,
enough complexity had to be included in the software to make it applicable to
any mission while not over-developing so that it became difficult to adapt for new
systems. The simplest way to do this was to look at the flight software design of a
number of existing microsatellites and existing flight software frameworks. In this
way, the most common and essential parts of flight software could be identified and
included in the generic application. Components that would have to be modified
extensively depending on the mission of the satellite were identified as “mission-
specific”. Although provision would be made for these components in the generic
application, their implementation would be largely left to the user. A few of the
cases that were studied to identify the requirements of flight software are listed
below.

9

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. FLIGHT SOFTWARE BACKGROUND INFORMATION 10

Generic Components Mission-specific Components
Health and Housekeeping

Housekeeping collection
Housekeeping storage

Recovery procedures
Error handling

Command handling
Command Handling
Command Scheduling

Command processing
Subsystems

Subsystem management
Payload management

Subsystem interfaces
Satellite mode management

Data Handling
Data Storage

Data Formats

Table 2.1 – Generic and Mission specific Flight Software Components

• TheUPMSat-2microsatellite runs OBC software that controls telemetry and
telecommand reception and transmission; measurement, processing and stor-
age/transmission of sensor data; and payload command and data management.
[19]

• A Pattern-based framework is presented by [20] to guide the development
of an architecture for satellite flight software. The main packages defined in
the framework include payload management; navigation and control; commu-
nications; subsystem management; and supervising and monitoring.

• The flight software of SwissCube contained modules for handling command
Management and scheduling, data storage, modes of operation, and house-
keeping [21].

• TheCKUTEXmicrosatellite defined modules called Computer Software Com-
ponents for ADCS, Command and Data Handling; EPS; Telemetry, Tracking
and Command and Housekeeping and Error Handling [22].

• The NTNU test satellite runs OBC code that handles system control, house-
keeping, data storage, payload processing and command management [23].

From the cases above, a number of generic software components could be identified.
Table 2.1 shows the components identified as generic and those identified as mission-
specific. The primary goal of the project would be to implement all the functionality
listed in the “Generic Components” column.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. FLIGHT SOFTWARE BACKGROUND INFORMATION 11

Another responsibility of flight software is to ensure that on-board processes meet
any real-time requirements they might have. The different types of real-time re-
quirements and examples of subsystems containing these requirements is given in
Section 2.2.

2.2 RTOS
One of the project goals was to implement the flight software using FreeRTOS.
This section presents the basic functionality and tools included in most RTOSs.
A RTOS can be used to greatly simplify the management of the various aspects
of a real-time embedded application. Conventional operating systems provide an
interface between an application and the hardware on which the application runs.
A real time operating system is therefore an OS that is tailored to meet real time
requirements in applications with time-critical functions [24]. According to [24],
there are three types of real time requirements that can be identified namely:

• Hard requirements: Missing a deadline results in failure of the system.

• Firm requirements: Small tolerance for missed deadlines. System will continue
to run but with a generally unacceptable reduction in performance.

• Soft requirements: Deadlines may be missed. Loss of performance due to
missed deadlines can be recovered from.

A single system can consist of any combination of hard, firm, and soft requirements
depending on its function. However, the more hard real-time requirements are placed
on the system, the more deterministic it is considered to be. Determinism is a
measure of how predictable a system is. The more predictable the execution timings
in a system are, the less likely it is to miss a deadline.
The various components of a RTOS are briefly discussed below.

2.2.1 Multitasking

The main advantage of using an RTOS in an embedded system is the multitasking
capability that it adds to the application. Although a single Central Processing Unit
(CPU) can only process one thread of execution at a time, the required functions
of the application can be divided into separate processes called tasks. The tasks in
a system are managed by a scheduler that chooses which task to run according to
a scheduling algorithm. Each task has its own entry point and is assigned its own
stack from the heap. Its execution will normally be done in an infinite loop that
continues running unless the task is removed from the scheduler managing the tasks.
The CPU can then rapidly switch between processing the different tasks to achieve
the effect of simultaneous execution. The process of saving the state of a task, and
switching execution to another is know as a context switch [4]. During operation,
a task will switch between various states of operation. The basic states a task can
exist in are listed below.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. FLIGHT SOFTWARE BACKGROUND INFORMATION 12

• Running: A task in the Running state is the task currently being executed
by the CPU.

• Ready: Tasks that are not currently being executed but are available to the
scheduler are in the Ready state. If a task is preempted by the scheduler, it is
transitioned into the Ready state to allow the CPU to execute the next task
selected by the scheduler.

• Blocked: Tasks in the Blocked state wait for events to occur that transition
them to the Ready State. For example, an interrupt or the expiration of a
delay.

• Suspended: Tasks in the Suspended state are not available to the scheduler.
They will never be selected by the scheduler unless a separate task or interrupt
transfers them from the Suspended state to the Blocked state.

Figure 2.1 shows the possible transitions between these states.

Figure 2.1 – Task state machine. Adapted from [4]

2.2.1.1 The Scheduler

In order for multiple processes to be running simultaneously, each task is added
to a scheduler. The scheduler then switches between each task according to the
scheduling algorithm being used. There are various methods of scheduling that can
be used according to the needs of the application [25].

• Cooperative Scheduling allows tasks to run until they specifically yield to
the next task awaiting execution. This ensures that a task will always be able
to achieve a certain amount of execution before being blocked but also trusts
tasks to execute in a timely manner. Any delay or lack of response in one task
will result in the whole system slowing down.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. FLIGHT SOFTWARE BACKGROUND INFORMATION 13

TaskO1

TaskO2

TaskO3

TaskO1OyieldsO
TaskO2OyieldsO

TaskO3OyieldsO

C
oo

pe
ra

tiv
e

R
ou

nd
-R

ob
in

P
re

-e
m

pt
iv

e
OP

rio
rit

yO
B

as
ed

TaskO1

TaskO2

TaskO3

EndOofOtimeOslice.
TaskO1Oblocked

RTOSOtimeOslicesO

EndOofOtimeOslice.
TaskO2Oblocked

TaskO1

TaskO2

TaskO3

RTOSOtimeOslicesO

HighOpriorityOTaskOrunsOtoO
completionOregardlessOofOwhetherO

lowerOpriorityOtasksOareOready

TasksOwithOequalO
priorityOfollowOround-

robinOscheduling

Figure 2.2 – Examples of common scheduling algorithms

• Round-Robin Scheduling assigns each task an equal time slice to execute
before it is replaced with the next task awaiting execution. This ensures that
each task gets CPU time but the absence of priorities means that important
tasks with strict deadlines receive the same CPU time as less important tasks.

• Pre-emptive Priority-based Scheduling requires developers to assign pri-
orities to tasks. Running tasks are immediately pre-empted when a task with
a higher priority becomes available for execution. When two tasks of the same
priority are scheduled to execute, a simpler algorithm (such as round-robin
scheduling) can be used. This method is more deterministic than the above
mentioned algorithms and ensures that tasks with hard real-time requirements
are executed ahead of tasks with soft requirements. However, assigning pri-
orities incorrectly could cause certain tasks to be completely starved of CPU
time.

Figure 2.2 shows examples of the three procedures described above. Less common

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. FLIGHT SOFTWARE BACKGROUND INFORMATION 14

forms of scheduling include time partition scheduling, deadline scheduling and pri-
ority decay scheduling. Further information on these can be found in [25].

2.2.1.2 Task Communication

In a multitasking environment, there are rarely tasks that operate independently of
other processes. Certain tasks may require the results of a separate process in order
to complete or need to notify other tasks of an event or failure. For this reason, a
RTOS will include mechanisms for intertask communication such as queues, pipes,
messages and mailboxes, and event flags [26].

2.2.1.3 Semaphores and Task Synchronisation

Task synchronisation can be achieved through the use of a semaphore. A semaphore
can be thought of as an item that can be given or taken by a task. The most basic
type of semaphore is the binary semaphore. A binary semaphore can only be taken
once. If a task attempts to take a binary semaphore that is not available, that task
will go into a blocked state until a separate process gives it the semaphore. In this
way, it is possible to synchronise the execution of two tasks.
Tasks can be synchronised with interrupts and other tasks by first requiring a sem-
aphore to be given from the interrupt or task before running. In other words, when
synchronising with an interrupt, a task will run to a point and then remain blocked
until an interrupt occurs which gives the semaphore to the task. A semaphore can
also exist as a queue called a counting semaphore. This allows, for example, multiple
instances of the same interrupt to occur while a handler task is running. When the
handler task completes, a number of semaphores will be available to be received and
the handler task will execute until the counting semaphore queue is empty [4].

2.2.2 Resource management

In any application with multiple threads of execution, access to a resource that is
shared between tasks must be managed using mutual exclusion. Without proper
management, a task using a certain resource could be replaced by a higher priority
task before it is done with the resource. This would leave the resource in an unknown
state possibly resulting in data corruption and errors in any task that uses the
resource in the future.
A mutex is a type of binary semaphore that is used to control access to a shared
resource [4]. When a shared resource is protected by a mutex, a task that wishes to
make use of the resource must first acquire the mutex. If a different task has already
acquired the mutex, the first task will go into a blocked state until the mutex becomes
available again. Tasks must always make a mutex available for acquisition once they
are done with its associated resource. If they do not, no other task will ever be able
to access the resource. Figure 2.3 illustrates the main difference between a mutex
and a semaphore. A “give” operation can be performed on a semaphore even if a
task is still processing the event that previously caused the semaphore to be given.
This makes semaphores ideal for task synchronisation. Conversely, a mutex must be
returned before another task can obtain it making it ideal for resource management.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. FLIGHT SOFTWARE BACKGROUND INFORMATION 15

Semaphore TaskSemaphoreGive()

Semaphore TaskSemaphoreGive()

Semaphore TaskSemaphoreGive()

Task A
MutexGive()

Task B

MutexGive()

MutexGive()

Task A

Task B

Task B

Task A

Figure 2.3 – Difference between the availability of a semaphore and a mutex. Adapted
from [4].

There are two common problems associated with mutual exclusion [4]. The first
is priority inversion. This occurs when a task with a high priority is waiting for
a task with a lower priority to release a mutex. The second problem is known as
a deadlock. A deadlock occurs when two tasks are blocked because they are each
waiting for a resource that is held by the other. The best way to avoid both these
problems is to consider their potential occurrence during development.
Critical sections, or critical regions, also require a form of mutual exclusion. A crit-
ical section is used to ensure that only one thread of execution can access shared
data or a shared resource [27]. Critical sections can be implemented by disabling
interrupts while the shared resource is being accessed. This will also prevent a pre-
emptive context switch so the currently running thread will be the only running
thread. However, disabling interrupts in this way can drastically decrease the per-
formance of the system. Especially a system with hard real time requirements. This
method of implementing critical sections can be improved upon by only disabling
the scheduler and leaving interrupts enabled.

2.2.3 Memory management

Memory management is another function performed by an RTOS. It refers to the
management of the allocation and deallocation of the memory required by kernel
objects such as tasks and queues. This management can be simple or complex
depending on the way the application functions. Applications that only make use
of static memory allocation only require heap memory to be allocated before the
application starts. This amount of memory will then stay constant for the entire
lifetime of the application.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. FLIGHT SOFTWARE BACKGROUND INFORMATION 16

Applications that dynamically create and remove tasks and queues have extra com-
plexities to consider such as memory fragmentation. Most applications allocate the
memory they require before the scheduler is started and then keep that memory
allocated for the lifetime of the application. In this case, or if the memory being
freed and re-allocated is always the same size, fragmentation will not be a problem.
However if tasks of different stack sizes are deleted and then reallocated, a sufficient
memory management algorithm will need to be implemented. Without a memory
management algorithm that meets the needs of the application, memory fragmenta-
tion will occur, slowing the system down and leading to a loss of determinism. With
sufficient fragmentation, the system could also appear to run out of memory when
in fact there are many small blocks of memory available that are too small to meet
the system requirements.

2.3 Fault Tolerance
Fault tolerance is a vital component in any autonomous system. This is especially
true for satellite systems due to the conditions discussed in Section 1.3. According to
Torres-Pomales, fault tolerance generally refers to the use of techniques to increase
the likelihood that the final design embodiment will produce the correct outputs [28].
Detecting and managing faults is a complex procedure that needs to be tailored
specifically for the type of system and the environment it operates in. It is also
inefficient to safeguard a system against faults that will never occur. This section
provides an overview of faults and fault tolerant techniques relevant to satellite
systems

2.3.1 Possible faults

In order to equip software with the necessary tools to remove and recover from faults,
it is important to define exactly what can go wrong. Appropriate fault tolerance
mechanisms can then be put in place according to the specifics of the application.
According to Butler, a fault is a defect in hardware or software that can lead to
an incorrect state [29]. These defects can result from a deficiency in the structure
of the system such as a logical design flaw, programming error, compiler error or
manufacturing defect. Faults can also be generated by external factors such as
SEUs or environmental damage to hardware. The frequency or period that a fault
is present for will also influence the best way to handle it. Faults can be classified
as:

• Transient faults that appear for a short period and then disappear;

• Permanent faults that remain in the system unless they are removed;

• Intermittent faults that periodically appear and disappear.

Certain faults, known as common cause faults (CCF), can cause errors in different
areas of the system simultaneously. CCFs usually occur if there is a fault at a single
point of failure (SPOF) in the system such as a single power source.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. FLIGHT SOFTWARE BACKGROUND INFORMATION 17

Errors can be defined as the impact of a fault on the system’s state. An error is
therefore the result of a fault upsetting an operation in the system. It is important
to note that the duration of a fault does not necessarily determine the duration of
the error it causes. A transient or intermittent fault can corrupt or damage parts
of the system that are persistent between different states, thus causing a permanent
error. Comparatively small faults should therefore be treated as having the potential
to cause extensive damage. Failures occur when the service delivered by a system
malfunctions or ceases due to the presence of errors.
Techniques used to prevent or mitigate faults can be implemented on an architectural
or application level. The following sections discuss the difference between these two
categories and the various techniques they include.

2.3.2 Architectural level fault tolerance

Architectural level fault tolerance refers to techniques that are applied during the
development of the system architecture. As the topic of this thesis is the development
of software, the various techniques to implement fault tolerance in the hardware
architecture will not be covered. The hardware fault tolerance implemented on the
CubeComputer OBC will be briefly discussed in Chapter 5 to motivate choices in
the software fault tolerance design.
One method to enhance the fault tolerance of a system is to develop its architecture
to be modular [28]. When developing a modular system, the software engineering
concepts of coupling (the level of interdependencies between modules) and cohesion
(the level of relation between functions in a single module) are very important.
Developing a system with low coupling automatically raises the fault tolerance of an
application by decreasing the likelihood that faults can spread beyond the modules
they originate in. The clear interfaces and confinement of functionality that modular
programming provides also simplifies the testing of software. This increases the
likelihood that programming errors will be found during development.
Implementing the functionality of a module using atomic actions increases the fault
tolerance of an application in a similar way to modular programming. An atomic
action uses an exclusive set of components to perform its function. While the action
is being performed, there is no interaction with any components not required to
perform the function. The action therefore appears as a single, indivisible, instant-
aneous action to the rest of the application. Should an error be detected during
the atomic action, then that error will be confined to the components taking part.
Error recovery procedures for the specific error will then only have to take those
components into account.

2.3.3 Application level fault tolerance

Application level fault tolerance refers to fault tolerance techniques that are imple-
mented by the application code. At this level, a distinction can be made between
single-version and multi-version software fault tolerance techniques. Single-version
techniques improve the fault tolerance of an application within a single version of

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. FLIGHT SOFTWARE BACKGROUND INFORMATION 18

the software. These techniques include mechanisms to handle the detection and
containment of errors as well as any recovery processes.
Multi-version techniques make use of multiple versions of software, executed sequen-
tially or in parallel, to ensure that failure in one version does not cause a system
failure. In this way, the fault tolerance of an application is increased by using al-
ternative methods of error detection in the different versions, performing replication
checks or implementing majority voting [28]. However, the cost of implementing
multi-version fault tolerance techniques is too high in terms of both system and
financial resources to be able to implement on a CubeSat. The scope of this thesis
therefore does not include multi-version techniques and only single version tech-
niques will be expanded upon below.

2.3.3.1 Single-version software fault tolerance techniques

Regardless of the actual technique used, there are four steps to implementing single
version fault tolerance techniques. These are Detection, Confinement and Assess-
ment, Recovery and Fault Treatment [30].
Detection of errors in single version software requires the software to have know-
ledge of the intended state of the system. Different checks can then be performed
do determine when the current state deviates from the intended state.

• Environmental checks such as checking for dangerous temperatures, over-
currents and low power levels.

• Timing checks such as a watchdog timer for detecting unresponsive applica-
tions or timeout checks for detecting unresponsive subsystems.

• Coding checks using redundant data such as a checksum.

• Reasonableness checks such as checking that outputs are within predefined
threshold values.

• Structural checks such as checking data for null pointers.

When implementing fault tolerance in a modularised application, it is important
that each module contains self-protection and self-checking. Implementing self-
protection means that a module protects itself against inheriting faults from the
rest of the system. This could happen during interaction with a separate module.
Implementing self-checking means that a module checks its own outputs to ensure
that faults originating in that module do not spread to the rest of the system [31].
Confinement and assessment procedures limit the extent to which an error can
affect the system. Confinement is mainly achieved on an architectural level by
developing software to be modular. By defining interfaces to modules and containing
operations within modules it becomes easier to contain errors within the module that
they occur. Once an error is detected, damage assessment procedures can be run on
components associated with the process that produced the error to determine the
extent of the damage to the system.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. FLIGHT SOFTWARE BACKGROUND INFORMATION 19

Recovery techniques can be separated into two categories: forward recovery and
backward recovery. Forward recovery attempts to correct or suppress errors in order
to allow the system to continue functioning. Even if it is functioning in a less optimal
state. Redundant information can be added to data in the form of Error Correcting
Codes (ECC) that can detect and correct bit flips. The process of “scrubbing”
memory refers to the process of recovering corrupted memory by storing data with
ECCs and then periodically evaluating the codes to determine if corruption has
occurred [29]. If faults cannot be removed in this way, then redundant software can
be enabled to replace the faulty section or outputs from the faulty software can be
ignored. Backward error recovery attempts to return the system to a previous state
in which it was functioning correctly. These techniques can be as simple as resetting
the OBC or can grow very complex as with the checkpoint and restart method [28].
Once an error is detected, the system is returned to a previous state that is either
predefined or dynamically saved as a “checkpoint” during operation. Backward error
recovery carries the advantage of being able to recover from unanticipated, transient
errors.
In order to ensure successful continued service, it is important that operators can
determine the cause of the fault even after it is successfully removed. New versions
of the application software may need to be developed in order to remove bugs in the
code or provide tolerance against faults that were initially unanticipated. For this
reason it is important that a system has the capability to store information about
its operation and the detected errors.

2.3.3.2 Watchdog timers

One of the simplest and most common fault tolerance mechanisms is the watchdog
timer. A watchdog timer is a piece of hardware usually found as a peripheral unit
built into a microcontroller unit (MCU). It consists of a timer that counts towards
a fixed, predetermined value. The system’s software needs to reset the timer to its
original value before it times out. If a time-out occurs, it means the system has
become too unresponsive to continue functioning and a system reset is asserted [32].
The choice of the counter’s value needs to strike a balance between being small
enough to respond to errors quickly, but big enough to avoid unnecessary resets due
to execution variation. Although the basic way to handle a watchdog time-out is to
reset the system, other actions can also be taken before the reset such as recording
system information for debugging or ensuring the system boots up in a safe mode
or state.

2.3.4 Conclusion

This section presented some classes of faults that can occur in software applica-
tions as well as some common techniques used to increase the robustness of software
against these faults. There are a great many more fault tolerance techniques used in
embedded systems and other software applications than have been listed here. How-
ever, many of these require more resources that are generally available for CubeSat
projects and are therefore not considered relevant. The design and implementation
of the techniques used in the flight software is presented in Chapter 5.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. FLIGHT SOFTWARE BACKGROUND INFORMATION 20

2.4 Existing hardware and drivers
This section provides a brief overview of the existing hardware and software produced
in the ESL that the flight software will be built upon. Firstly, the CubeComputer
main OBC will be discussed to provide an idea of the typical hardware on which the
flight software will run. Secondly, the various drivers developed for CubeComputer
will be discussed as they provide access to the various features and functionalities
of the board.

2.4.1 CubeComputer

CubeComputer uses the EFM32 Giant Gecko as its main Micro-controller Unit
(MCU). The Giant Gecko has, as its processor, a 32-bit ARM Cortex-M3 that runs
at up to 48 MHz. Up to 1024 kB Flash and 128 kB of RAM are available as well as a
number of energy efficient, autonomous peripherals[33]. These include a Real Time
Counter, Timers, ADCS, External Memory Interface, Universal Asynchronous Re-
ceiver/Transmitter (UART), Serial Peripheral Interface (SPI), and Inter-Integrated
Circuit (I2C). A number of low energy modes are also available. Memory and data
storage features that are included externally on CubeComputer include

• 256 KB of EEPROM.

• 4 MB of Flash for Code Storage.

• 2 x 1 MB of external Static Random-Access Memory (SRAM) for Data Stor-
age. These include SEU protection via a Field Programmable Gate Array
(FPGA)-based Error Detection and Correction (EDAC) and SEL protection
by detecting and isolating latchup currents.

• MicroSD card socket supporting microSD card capacities up to 2 GB.

Figure 2.4 shows a block diagram of the CubeComputer feature layout.
More detail on the characteristics and capabilities of CubeComputer can be found
in [5].

2.4.2 Board Support Package

The CubeComputer Board Support Package (BSP) is a collection of libraries con-
taining drivers for the various features on the CubeComputer OBC. The following
libraries were available at the time of writing.

• bsp_acmp: Initialises Analogue Comparator channels to detect latchup cur-
rents in the SRAM modules.

• bsp_adc: Controls the ADC module.

• bsp_boot: Interfaces with the boot table located in the external EEPROM
and flash.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. FLIGHT SOFTWARE BACKGROUND INFORMATION 21

256KB
EEPROM

kCodeH

4MB
Flash

kCodeH

FPGA
kEDACH

2cxcWMB
SRAM
kDataH

MicroSD
kStorageH Debug

MCU
CortexIM4

PiggybackcHeader

M
ai

nc
H

e
ad

er
ck

W3
4I

p
in

H

EBI

SPI UART

CAN

2cxcI2C

4c
xc

A
D

C

3c
xc

P
W

M

S
P

I

U
A

R
T

Figure 2.4 – CubeComputer Block Diagram. Adapted from [5]

• bsp_dma: Contains functions to initialise the Direct Memory Access (DMA)
module.

• bsp_ebi: Contains functions for initialising the External Bus Interface (EBI),
enabling and disabling the SRAM modules, and writing data to the EEPROM
memory.

• bsp_i2c: Used to control and use the I2C bus.

• bsp_rtc: Used to control the Real Time Clock.

• bsp_see: Contains function to assist with memory scrubbing as well as
latchup detection and removal.

• bsp_uart: Used to initialise and interface with the CubeComputer UART
channels.

• bsp_wdg: Contains functions to control the Watchdog Timer peripheral.

Drivers to initialise and interface with the microSD card and FATFS file system are
also included. These are discussed in further detail in Chapter 4. The BSP also
includes an Eclipse project pre-programmed with test functions that can be used to
test the features of CubeComputer.

2.5 Conclusion
This chapter derived the requirements for generic flight software by examining in-
dustry standards, existing flight software framework designs, and the flight software

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. FLIGHT SOFTWARE BACKGROUND INFORMATION 22

designs for existing microsatellites. ADCS, EPS, communication subsystems, pay-
load hardware and a main OBC were found to be the hardware subsystems most
commonly found on microsatellites. It was also found that the OBC hardware is
responsible for command and data handling, housekeeping procedures and software
fault tolerance. The real-time needs of satellite flight software were also identified.
A discussion of the capabilities and tools generally provided by a RTOS was given
as well as an overview of software fault tolerance techniques relevant to the flight
software design. Existing hardware and software components that will be used to
develop the software were also presented. These included the CubeComputer main
OBC and the CubeComputer BSP.
The following chapters show how the information provided in this chapter was used
to design and implement the flight software application. Chapter 3 covers the design
of the structure of the flight software and the implementation of FreeRTOS. Chapters
4 and 5 then cover the design and implementation of command and data handling
and housekeeping respectively.

Stellenbosch University http://scholar.sun.ac.za

Chapter 3

Flight Software Design Phase

Having established the requirements of the flight software as well as the tools that
would be used during development, a number of design choices had to be made. This
chapter starts by choosing particular software engineering techniques and principles
to guide the design and development process. The configuration settings chosen to
adapt FreeRTOS for the flight software application are also presented. With a base
on which to build the software established, the structure of the software as well as
the interface between the satellite and the ground are then defined.

3.1 Structural Design Choices
From the start of the project, two design choices were made that would influence the
structure of the whole application. Both of these choices were made in the interest
of keeping the software robust and re-usable.

3.1.1 Modular Programming

The first choice was to use modular programming techniques as described in [34].
Modular programming divides an application into modules with each module hand-
ling a single function within the application. Each module consists of an interface
and an implementation. The interface allows other modules to interact with the
implementation while all the details of the implementation are hidden from the rest
of the application. As will be discussed in relevant sections of this report, the in-
terfaces to most of the modules in the flight software consist mainly of command
queues that conform to a specific format and functions that return data such as
housekeeping parameters. Having separate modules with clearly defined interfaces
makes the software easier to adapt for specific missions and therefore makes the
software more re-usable.
In the C programming language, the#include directive and the static keyword can
be used to increase the modularity of software. This is because they help to clearly
define whether certain variables, functions and data types are part of a module’s
interface or part of it’s implementation. Specifically, the #include directive is used
to assign an interface to an implementation and clearly define its dependencies. The
choice to use a modular approach therefore conforms to the project aim of making

23

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. FLIGHT SOFTWARE DESIGN PHASE 24

the software easy to use and expand upon. As stated in Section 2.3.2, a modular
design also increases the fault tolerance of software.

3.1.2 Memory Allocation

Another basic design choice was to completely avoid the use of dynamic memory
allocation within the application source code. The main reason for this decision is
to maintain the software’s robustness through the avoidance of memory leaks. A
memory leak is when memory that is dynamically allocated within the source code
is not freed when it is not longer required. Memory leaks can cause a system to slow
down and eventually run out of memory. The only way to get rid of a memory leak
in this case would be to reset the OBC. The malloc() and free() library functions
are also unsuitable for a flight software applications because they cause memory
fragmentation. Sufficient fragmentation in memory may even cause a call to malloc
to fail despite heap space being available [35]. While the FreeRTOS kernel does use
dynamic memory allocation to create tasks, queues and semaphores, this will mostly
only be done before the scheduler is started. The memory management performed
by the FreeRTOS kernel is discussed in 3.2.2.
The choice to use only statically allocated memory also meant that memory could
become a limiting factor during development. The growth of the application code
size would have to be monitored due to the fact that the application developed
would not include mission specific libraries and sub-system interfaces. There would
therefore still need to be ample memory left to add in any such code when tailoring
the software for a specific mission.

3.2 FreeRTOS
As mentioned in Chapter 1, the use of FreeRTOS was one of the requirements of
the project. This section motivates the suitability of FreeRTOS for this project
by evaluating its specifications and comparing it against similar products. The
configuration of the RTOS for the flight software is also covered.

3.2.1 Choosing a RTOS

In recent years, the RTOS market has experienced radical growth. While this
provides a large variety from which embedded developers can choose the most suit-
able RTOS, it has also complicated the process of distinguishing between products
that will help or hurt a project. Traditionally, measures of performance, function-
ality and compatibility with development tools are the logical criteria by which a
RTOS is selected. Interrupt response latency, latency jitter, worst case interrupt re-
sponse time, context switch time overhead and software timer jitter can all be taken
into account when measuring the performance of an RTOS [36] [37]. The middle-
ware support in a RTOS is also commonly considered. In [38], Moore identifies four
main areas of middleware namely:

• Networking for data transfer and remote diagnosis.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. FLIGHT SOFTWARE DESIGN PHASE 25

• File Systems for data storage and logging.

• Universal Serial Bus (USB) for connecting to a USB device or PC.

• Graphical User Interface (GUI) for receiving visual output and entering
commands via a display.

However, there is currently no RTOS that has been shown to be far superior to
the rest in a technical sense leading to a requirement for other criteria that are less
quantitative. Krasner states that the best RTOS for a project is the simplest and
most intuitive RTOS that can satisfy the requirements of the system being developed
[39]. This statement is the result of identifying elements that affect the “time to
market” of a project. The “ease of use” of a RTOS can be measured by evaluating
factors outside of its technical capabilities including:

• Simple services.

• Consistent naming conventions.

• Good documentation.

• Good support.

• Availability of source code.

• Availability of demonstration software for target hardware.

Aside from these factors, choosing a RTOS that has an existing port for the hardware
being used for the system will speed up development time. Porting a RTOS to a new
processor architecture can be very time-consuming due to the in-depth knowledge
that is required of both the operating system and target hardware. Choosing a RTOS
that is overqualified for the project will also have a negative impact on development
time. Aside from the technical considerations of increased system overhead and
memory footprint, using a RTOS with too much complexity results in an increased
learning curve and a greater chance of misuse during development [39]. Although
this project is not aimed at a market as such, it also carries a time constraint and
the elements discussed above are therefore also applicable.
In an embedded market study done in 2013, FreeRTOS was the most widely used
RTOS that was commercially available [40]. It also ranked highest in RTOSs that
companies planned to use in the next 12 months. From a technical point of view,
FreeRTOS is suited to a flight software application. It is a lightweight RTOS that is
highly configurable depending on the requirements of an application. The following
aspects are relevant to this project. All the points listed in the remainder of this
section were taken from the FreeRTOS website [41].

• A flash footprint of around 5 to 10 kB when using a minimal configuration.

• Includes all the basic RTOS tools such as a configurable task scheduler, re-
source management mechanisms and timers.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. FLIGHT SOFTWARE DESIGN PHASE 26

• A context switch time of 84 CPU cycles using a Cortex-M3 with the compiler
set to optimise for speed.

• Very configurable according to the needs of an application.

• Designed to be small and simple and therefore does not include middleware
features such as networking support, graphical environments and web servers.

From an “ease of use” point of view, the following aspects are relevant.

• Basic kernel contained in 3 source files.

• Existing port to the Cortex-M3 microcontroller used on CubeComputer. Demon-
stration projects available to speed up the learning curve.

• Free open source code.

• Online API documentation.

• Written in C using a strict naming convention.

• Free monitored support forum.

FreeRTOS therefore satisfies both the traditional, technical criteria and appears easy
to learn and use. It is a lightweight OS designed for small embedded systems with
real time requirements making it ideal for a CubeSat system.

3.2.2 FreeRTOS Implementation

As a FreeRTOS port for the ARM Cortex-M3 exists, “installing” FreeRTOS in the
BSP Eclipse project is a simple process. The first step is to include the header and
source files that contain the functionality required from the application. FreeRTOS
handlers then need to be installed for the SysTick, PendSV and SVCCall interrupt
vectors. The BSP project uses the handlers defined in the EFM32 startup file for
the ARM embedded workbench. In C, defining a symbol as “weak” allows it to be
overwritten by a “strong” symbol of the same name. As the vector symbols are
Cortex Microcontroller Software Interface Standard (CMSIS) compliant and were
defined as “weak” symbols, the default handlers can be replaced by adding

#define vPortSVCHandler SVC_Handler
#define xPortPendSVHandler PendSV_Handler
#define xPortSysTickHandler SysTick_Handler

to the configuration file FreeRTOSConfig.h. Here, vPortSVCHandler, xPortPendS-
VHandler and xPortSysTickHandler are the FreeRTOS defined handlers.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. FLIGHT SOFTWARE DESIGN PHASE 27

3.2.2.1 Configuration

A number of parameters also have to be set in the configuration file, FreeRTOSCon-
fig.h. Some of the main parameters that required specification are listed below.

• configUSE_PREEMPTION: Selects either the preemptive or cooperative sched-
uler.

• configTICK_RATE_HZ: Sets the frequency of the FreeRTOS tick interrupt
which the kernel uses to measure time. Higher values mean the kernel can
measure time with a higher resolution but requires more CPU time to be given
to the kernel. The tick rate also indicates the speed at which the scheduler
can switch between tasks. For example, a tick rate of 100 Hz means a context
switch can potentially occur every 10 ms allowing 100 context switches per
second. With the Giant Gecko’s clock speed of 48 MHz, a FreeRTOS tick rate
of 100 Hz would mean that each task would be run for about 480,000 clock
cycles before relinquishing CPU control back to the scheduler.

• configTOTAL_HEAP_SIZE: Sets the total size of the heap available to the
kernel

• configMAX_PRIORITIES: The number of priorities that can be assumed by
a FreeRTOS task. Each extra priority that is added increases the amount of
RAM required by the application.

Many other configuration options are possible such as the inclusion or exclusion
of various task control utilities, semaphores and mutexes, coroutines and software
timers. As with the number of priorities, each extra feature that is included increases
the memory footprint of the operating system.

3.2.2.2 Kernel Memory Management

As discussed in Section 2.2.3, memory management is important to avoid fragment-
ation and preserve determinism. FreeRTOS provides four different memory man-
agement schemes from which one is selected according to the requirements of the
overall application.

• heap1.c: Does not permit allocated memory to be freed once it is allocated.
This implementation is used if no tasks, queues or semaphores are ever deleted.
It is fully deterministic and will not result in fragmentation.

• heap2.c: Allows the freeing of allocated memory but does not include a coales-
cence algorithm (i.e. it does not combine adjacent smaller blocks of memory
into larger ones). It should therefore not be used if the memory being freed
and reallocated is not a constant size and happens unpredictably. This scheme
is efficient but not deterministic.

• heap3.c: Implements thread safe versions of the C library functions malloc()
and free(). This scheme is not deterministic and considerably increases the
kernel code size.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. FLIGHT SOFTWARE DESIGN PHASE 28

• heap4.c: This scheme uses a first fit algorithm and includes a coalescence
algorithm. It prevents memory fragmentation even when memory blocks of
random sizes are freed and allocated. It is not deterministic.

In Section 3.1, a design choice was made to avoid dynamic memory allocation during
development. This refers to dynamic allocation from the system heap which is sep-
arate to the heap used by the FreeRTOS kernel. As shown in Figure 3.2, FreeRTOS
tasks are implemented as infinite loops and are not allowed to execute past the end of
their implementation functions. Should a task reach the end of its implementation
function, a “HardFault” exception will occur. To prevent this, the vTaskDelete()
function can be placed at the end of each task implementation function to remove
the broken task. This allows for the implementation of error handling routines such
as possibly reinitialising the task. In order to make this function available, heap2.c
is currently used as a memory management scheme. As deleting a task in this way is
expected to be a very rare occurrence, the determinism of the flight software should
not be affected. As a side note, using any of the memory management schemes
other than heap3.c results in FreeRTOS managing a heap separate from the main
program heap. All the data structures used by FreeRTOS are then allocated from
the FreeRTOS heap.
With the kernel added to the project and configuration options set, FreeRTOS func-
tionality can now be included in the project. The structure of a typical main loop in
a FreeRTOS application is shown in Figure 3.1. Once the scheduler is started, the
tasks that have been added to the scheduler are executed according to the schedul-
ing algorithm. Tasks are implemented as functions that are never allowed to return.
Tasks can therefore run continuously, periodically, or be synchronised with an event
as described in Section 2.2.1.3. The typical structure of a task is shown in Figure
3.2. Each task is assigned its own stack by the kernel when the task is created. The
optimal size of the stack required by a task can only realistically be determined after
the task has been fully implemented. This process will be more difficult if the task
uses dynamic memory allocation.

3.3 Flight Software overview
For the initial design of the structure of the flight software, a top-down approach was
used to break the overall system down into smaller components. As stated in Section
1.2, almost all nano-satellites will carry an instance of the following components:

• Main OBC

• ADCS

• Communications hardware

• Electrical power system

• Payload

• Housekeeping

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. FLIGHT SOFTWARE DESIGN PHASE 29

Figure 3.1 – Typical FreeRTOS application main function

• On-board data storage

It was therefore decided to develop software modules for each of these subsystems
that could easily be adapted according to a mission’s specific needs. Figure 3.3 shows
a broad overview of the structure of the flight software. Except for the On-board
Data Storage module, the structure for each of the subsystem modules is the same.
Each module has a FreeRTOS task that acts as a manager for the module and is
aware of each hardware and software component in the subsystem. The manager
task reads commands and requests from a FreeRTOS message queue specific to
that manager task. Depending on the command, these commands are then either
directed to the interfaces to the specific hardware component or handled by mission
specific procedures in the module itself. This manner of interaction between system
components conforms to the choice to develop modular software as well as re-usable

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. FLIGHT SOFTWARE DESIGN PHASE 30

Figure 3.2 – Typical FreeRTOS task structure

framework structure presented in Section 1.4.

3.4 Flight Software Standards
Although one of the project goals was to develop the software as generic and reusable,
it was necessary to choose a specific telemetry and telecommand interface between
the flight software and the ground station control software. As the first mission in
which it was planned to use the flight software was the QB50 mission, it was chosen
to develop the interface to conform to the ground software that would potentially be
used for QB50. For Stellenbosch University, one of the candidates for ground control
software was the Satellite Control Software (SCS) program developed by the Swiss
Space Centre. During the development phase of the flight software, SCS was the
most developed and popular ground control suite available for teams contributing
to the QB50 mission and it was therefore chosen to develop the flight software to
conform to the SCS interface.
The interface used in SCS is based on standards set out by the Consultative Com-
mittee for Space Data Systems (CCSDS). Since its inception in 1982, the CCSDS
has been developing standards and recommendations concerning the storage and
transmission of data in space systems. This standardisation promotes collaboration
and cost sharing between space agencies as well as simplifying the reuse and im-
provement of space data systems. The relevance and popularity of the standards
are justified by [42], a list of 718 past and future missions that implement them.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. FLIGHT SOFTWARE DESIGN PHASE 31

Comms

ADCS

EPS
Payload

ADCSv
sensor

interface

ADCSv
actuator
interface

Flightvsoftwarevmodule
Missionvspecificvsoftware

Housekeeping

Filesystem

Transceiver
interface

EPS
interface

Payload
interface

Commandvandv
DatavHandling

FreeRTOS

Transceiverv
hardware

Sensor
hardware

Actuator
hardware

EPSv
hardware

Payloadv
hardware

Massv
storage
device

OBCv
hardware

CubeComputer
BSP

SatellitevHardware

Figure 3.3 – Overview of Flight Software Module Structure

Developing the software to conform to these standards should therefore increase the
re-usability of the software as existing ground software will be able to interface with
the satellite and engineers will be familiar with the packet formats.

3.4.1 CCSDS Packet Standard

In order to interface with a ground station, the flight software would need to be
able to decode and interpret the telecommand packets sent to it as well as format
telemetry packets correctly for downlink to the ground station. The telecommand
standard is specified in [43] and is shown in Figure 3.4.

1. The Packet ID fields identify the packet

• The Version Number field indicates what variation (if any) of the tele-
command packet structure is being used.

• The Type field indicates whether the packet is a telecommand or tele-
metry source packet.

• The Data Field Header Flag indicates whether a Telecommand or
Telemetry Data Field Header field is included in the packet.

• The Application Process ID holds a unique value which corresponds
to an on-board process or subsystem. This is the final destination for

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. FLIGHT SOFTWARE DESIGN PHASE 32

Version
Number

Type Data
Field

Header
Flag

3 1 1 11

16

Sequence
Flags

Sequence
Count

Packet Sequence
Control

Packet
Length

16 16

Telecommand
Data Field

Header

Application
Data

Packet
Error

Control

24 Variable 16

2 14

PacketLHeaderL848Lbits)

PacketLID

PacketLDataLFieldL8Variable)

APID

Figure 3.4 – CCSDS Telecommand Structure [6]

this packet. The values that can be assigned to this field are therefore
mission specific.

2. The Packet Sequence Control field identifies a packet in a series of tele-
commands.

• The Sequence Flags field indicates where a packet belongs in a series
of telecommands. A packet can also hold a “stand-alone” telecommand.

• The Sequence Count field identifies a specific telecommand, enabling
it to be traced in the telecommand system. A separate sequence count is
maintained for each APID in the satellite system.

3. The Packet Length field indicates the length of the Packet Data field in
octets (8 bit groups).

4. The Telecommand or Telemetry Data Field Header field contains any in-
formation necessary for the execution of the telecommand other than the ap-
plication data.

5. The Application Data field contains data used during the execution of the
destination process.

6. The Packet Error Control (PEC) field is used to transmit an error detec-
tion code with the packet in order to verify its integrity upon arriving at its
destination.

Telemetry packets are used to transmit data from the satellite to the ground station.
The CCSDS standard for a telemetry packet is defined in [44] and is shown in Figure
3.5.
For a telemetry packet, all the fields in the packet header are the same as for telecom-
mand packets with the exception of the Grouping Flags field replacing the Sequence
Flags field. The Grouping Flags field simply indicates where a telemetry packet
belongs in a group of telemetry packets. In the telemetry packet data field, the
Data Field Header and Packet Error Control fields perform the same function as in
the telecommand packet definition. The Source Data field replaces the Application
Data field and is used to hold the telemetry data the packet is carrying.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. FLIGHT SOFTWARE DESIGN PHASE 33

Version
Number

Type Data
Field

Header
Flag

APID

3 1 1 11

16

PacketGID

Grouping
Flags

Source
Sequence

Count

PacketGSequence
Control

PacketG
Length

16 16

PacketGHeaderG848GBitsB PacketGDataGFieldG8VariableB

Telemetry
DataGField

Header

Source
Data

Packet
Error

Control

64 Variable 16

2 14

Figure 3.5 – CCSDS Telemetry Structure [6]

CCSDS
Secondary

HeaderBFlag

TCBPacketBPUS
VersionBNumber

Ack ServiceBType ServiceBSubtype

Boolean
(1Bbit)

Enumerated
(3Bbits)

Enumerated
(4Bbits)

Enumerated
(8Bbits)

Enumerated
(8Bbits)

Figure 3.6 – PUS Telecommand Data Field Header [7]

3.4.2 ECSS Packet Utilisation Standard

To complement the telemetry and telecommand packet standards developed by the
CCSDS, the European Cooperation for Space Standardisation (ECSS) developed
the Packet Utilisation Standard (PUS). The PUS defines an application level in-
terface for interactions between the satellite flight software and the ground support
software. It does this by defining a structure for the Data Field Header and Ap-
plication or Source Data fields in telecommand and telemetry packets respectively.
The structure of the Data Field Header field in a telecommand packet is given in
Figure 3.6. Optional fields exist in the packet definition that are not included in the
flight software. This is to keep the overhead of each telecommand packet small; an
important factor considering the tight link budget of most CubeSat missions.
The PUS includes many optional services, packet fields and recommendations. These
are included in the standard to make it applicable to as wide a range of missions as
possible. The standard was not written with the expectation that it be applied in
full to every mission. It therefore needs to be tailored for every mission, including
more or less of the standard depending on what resources are available or what is
required of the satellite. This is especially true for a CubeSat mission where a lot
of the detail included for larger, more complex satellites is not required or cannot
be supported.
The fields in the Data Field Header hold the following information:

• CCSDS Secondary Header Flag: This bit is set to zero to indicate a
“non-CCSDS defined secondary header".

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. FLIGHT SOFTWARE DESIGN PHASE 34

Spare TM)Source)Packet
PUS)Version)

Number

Spare Service)Type Service)
Subtype

Fixed
BitString)

(1)bit)

Enumerated
(3)bits)

Fixed
BitString
(4)bits)

Enumerated
(8)bits)

Enumerated
(8)bits)

Time

Absolute
Time

(40)bits)

Figure 3.7 – PUS Telemetry Data Field Header [7]

• TC Packet PUS Version Number: An indication of the PUS version
number that the packet belongs to.

• Ack: This field holds an indication of what acknowledgements should be sent
to the ground by the Telecommand Verification service (see Section 4.2) during
the execution of this telecommand. Which stages of execution are verified
depends on which bits in the field are set.

- - - 1: Acknowledge acceptance
- - 1 -: Acknowledge execution start
- 1 - -: Acknowledge execution progress
1 - - -: Acknowledge execution completion

• Service Type: Indicates which service type the packet belongs to.

• Service Subtype: Indicates which service subtype the packet belongs to.

The structure of the Data Field Header field for a telemetry packet is shown in
Figure 3.7. As before, optional fields exist but are not implemented in SCS and are
therefore not relevant.
The spare bits are included in order to maintain symmetry between the separate
types of header. In order to include a time stamp with the telemetry packet, 5 bytes
are reserved at the end of the header. These bytes represent time using the CCSDS
Unsegmented Code (CUC) time format defined in [45]. In this case, 4 bytes are used
to represent coarse time (counting seconds) with 1 byte counting fine time (counting
subseconds). This allows for storage of time stamps up to roughly 136 years from
the chosen epoch with a precision of roughly 4 milliseconds. Equation 3.4.1 shows
how the bytes in the Time field are used to calculate a time value.

Time = Epoch + C1 ∗ 224 + C2 ∗ 216 + C3 ∗ 28 + C4 ∗ 20 + F1 ∗ 2−8 (3.4.1)

In Equation 3.4.1, the epoch time is a reference from which time is measured and
can be chosen according to the requirements of a specific mission. The variables C1,
C2, C3 and C4 represent the values stored in the 4 coarse time bytes while F1 is
the fine time byte.
The last fields that still need to be defined in order to completely specify the structure
of the telemetry and telecommand packets are the Application Data and Source Data
fields. The structures of these fields are defined by the PUS services.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. FLIGHT SOFTWARE DESIGN PHASE 35

3.4.3 PUS Services

Within the PUS, a set of standard PUS services are defined. These services act as
the interface between the satellite and the ground segment and are designed to be
independent of the satellite’s mission and on-board architecture. Each service type
relates to a specific function on the satellite. Within each service type, there is also
a service subtype for each function that the service has to perform. Each service
subtype defines the structure of the Source or Packet Data field for telemetry or
telecommand packets belonging to that subtype. The minimum capability set of a
service defines the minimum number of service subtypes that need to be included in
the service implementation. A complete list of the 19 standard services defined by
the ECSS can be found on page 50 of [7].
Implementing all of the standard PUS services for a CubeSat would be extremely
time consuming not to mention superfluous. A subset of the standard services
was therefore selected according to the basic functionality generally required on a
CubeSat mission. The services and sub-services recommended for implementation
in [9] were used as a starting point with additional sub-services being implemented
as the need for them became apparent. Each of the services that were implemented
are briefly discussed below. The details of their sub-services and implementation is
discussed in Chapters 4 and 5.
Service 1: Telecommand Verification Service The minimum capability set of
this service provides a means for reporting the success or failure of the delivery and
execution of a telecommand. On the detection of one of these conditions, a telemetry
packet is generated and transmitted to the ground station by the service. This packet
uniquely identifies a telecommand and indicates the result of its processing. More
detail is provided on the implementation of this service in Section 4.2.
Service 3: Housekeeping and Diagnostic Data Reporting Service This
service handles the collection and transmission of housekeeping and diagnostic data
reporting. Each predefined set of housekeeping parameters is given a Structure
Identification (SID) field. The SID is used to identify which set of housekeeping
parameters a telemetry packet contains when it is received by the ground station.
More detail is provided on the implementation of this service in Section 5.1.
Service 8: Function Management Service This service provides control of
subsystems or application processes to the ground station. In order to do this,
each function within an application process or subsystem is assigned a Function ID.
The combination of the APID contained in a telecommand packet’s Packet ID, and
the Function ID contained in the same packet’s Application Data field, enable the
service to direct the telecommand to its destination and execute the correct function.
Also contained in the Application Data field will be any parameters required by the
function. More detail is provided on the implementation of this service in Section
4.3.
Service 11: On-board Operations Scheduling Service Service 11 handles the
scheduling of operations for future execution on-board the satellite. Telecommand
packets are stored in an on-board schedule and sent to the relevant destination when
the on-board time reaches the time stamp attached to the received telecommand.
The service contains functions to control the operation of the schedule and as well as

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. FLIGHT SOFTWARE DESIGN PHASE 36

report and manipulate its contents. The implementation and sub-services of service
11 is discussed in detail in section 4.4.
Service 13: Large Data Transfer Service Service 13 handles the transfer of
large data units between the ground station and the satellite. In the context of
this service, a large data unit is defined as any set of data that does not fit into a
standard telecommand packet’s Application Data field. For a typical mission, large
data units that are uploaded could include new versions of the flight software and
command scripts. Downloads could include command schedules, captured images
and other payload data. More detail is provided on the implementation of this
service in Section 4.7.
Service 15: On-board Storage and Retrieval Service Service 15 provides
storage of telemetry packets that are generated for transmission when no ground
station is in range for download. The contents of the storage managed by this
service can then be examined and downloaded when the satellite passes over the
ground station. The implementation of this Service is detailed in Section 5.2.
Service 131: File System Interface Service Service 131 is a custom service
included to provide direct control over CubeComputer’s microSD card and the file
system running on it. Functions such as examining the contents of the file system,
downloading files and resetting the file system are included in this service. The
implementation of this service is detailed in Section 4.7.
The decision to implement the PUS and its services was an important one as it
reduced the number of decisions that would have to be made concerning data formats
and protocols. The extensive existing documentation for the PUS makes it easier
for users of the software to learn its structure and adapt it for future missions.
Achieving this easy re-usability is one the main project goals.

3.5 Conclusion
This chapter covered the design phase of the flight software development process.
A number of design philosophies, such as the use of modular programming, were
adopted to guide the development of the software. FreeRTOS was then evaluated
to determine its suitability as a foundation for satellite flight software. Having been
found to be adequate, the installation and initial configuration of FreeRTOS was
then discussed.
With a foundation established, the flight software was broken down into components
using a top-down approach and the research conducted in Chapter 2. Each compon-
ent handles a specific function on-board the satellite and contains a manager task
that acts as its interface to the rest of the satellite. The interfaces to the satellite
subsystems are contained in their corresponding modules.
In order to establish a well defined interface between the satellite and ground ser-
vices, the CCSDS packet standard was adopted. The PUS was included in the
project along with its accompanying service definitions in order to make use of the
well-defined functionality included in the services. The following chapters describe
the implementation of the structure developed in this chapter.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4

Command and Data Handling

The main OBC in a satellite acts as a central hub for communications between
subsystems. Command and data handling activities therefore comprise the majority
of the flight software’s responsibilities.
The command handling specific components of the flight software are used whenever
commands are retrieved from the transceiver by the OBC . A telecommand packet
will either be destined for one of the services mentioned in Section 3.4.3 or one of the
satellites subsystems. The command handling components ensure that telecommand
packets reach their destinations in a timely manner. Command handling in the flight
software comprises of the functionality provided by PUS services 1 (telecommand
verification), 8 (function management) and 11 (on-board operations scheduling).
Various types of data also need to be communicated between different processes
on the satellite as well as downlinked to the ground. Data handling components
include PUS service 13 (large data transfer), the interface to the file system and the
interface to the I2C bus. In order for the functionality provided by the services to
be used by the various subsystems, generic subsystem managers were implemented
for each major subsystem.
This chapter presents the above-mentioned components starting with the manage-
ment of the I2C bus. Once the communication between different hardware sub-
systems has been established, the different services involved in command and data
handling are presented. Finally, the structure of the subsystem managers and the
way they interact with the services and the I2C bus is discussed.

4.1 The I2C interface
In a CubeSat using the I2C bus, the main OBC is usually the only bus master
and manages the other on-board subsystems. In a system where the bus master is
running multiple tasks, it is important to ensure that only a single task is allowed
access to the bus at a time. Attempting to send a new message over the bus before
the previous transfer is complete could result in corrupted data being sent to or
returned from one of the subsystems. If this corruption is not detected, the satellite
system could malfunction and enter an unknown state. In order to ensure efficient

37

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. COMMAND AND DATA HANDLING 38

Figure 4.1 – Structure of the I2C manager task

communication on the satellite, various issues needed to be addressed when designing
the I2C interface between the flight software application and the subsystems.
There are two main options for managing the interaction of the application with
the bus. A FreeRTOS task dedicated to the management of the bus or a mutually
exclusive global function. Initially, a manager task was used with success. However,
it was later replaced by a global function after the complexities and disadvantages
of using a manager task became apparent. The following section describes the
implementation of the manager task as well as its shortcomings. Following that, the
interface developed to replace the manager task is discussed.

4.1.1 The I2C manager

Before it was decided to use a global, mutually exclusive function to access the I2C
bus, an I2C manager task was used. Any message that needed to be sent to a
subsystem would have to be sent to an I2C message queue. The I2C manager would
read messages from the queue and deliver them to their destinations. The basic
structure of the manager is shown in Figure 4.1.
In this way, application tasks wouldn’t have to worry about activity on the bus
because only the manager task would have access to it. Application tasks would

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. COMMAND AND DATA HANDLING 39

also be able to continue after sending their message to the manager without having
to wait for possible delays in communication such as transfers already in progress.
However, although this approach worked for a time, a number of problems became
apparent as development progressed.
In order to conserve memory, messages to the I2C queue contained references to data
that needed to be sent over I2C rather than the data itself. As application tasks
could not be sure how long it would take for the manager to send the message data,
the buffers containing the message data would have to be protected by mutexes.
This was to ensure that the messages in the buffers wouldn’t be overwritten before
they had been sent. Every message buffer in the flight software would therefore need
to be protected by a mutex.
Although sending I2C requests to a manager task allowed application tasks to avoid
having to wait for existing or higher priority transfers, it was found that few tasks
could continue after sending a message as they first required a response to their
message. This therefore invalidated the main advantage of application tasks not
handling their own I2C communications. Returning responses to application tasks
that had sent requests to subsystems was also a complex issue. The application
tasks had to poll a flag that would be set by the I2C manager to indicate when a
response had been received.
Another problem with this approach was that it would be difficult to prioritise
messages. Simply adding messages to the I2C message queue meant that there was
a chance that high priority messages would have to wait for low priority messages
to be processed. Various methods could be used to add priorities to messages but
this would add more complexity to a system that was already overly complex.
By examining the complexities and shortcomings presented above, it was clear that
this was not the most efficient manner in which to manage bus interactions. It
was therefore decided to use the alternative approach of using a mutually exclusive
global function to access the I2C bus.

4.1.2 The I2C interface

The structure of the function used to access the I2C bus in the flight software is
shown in Figure 4.2. This approach solves the issues described in Section 4.1.1.
As the I2C transfer now takes place within the application task, no protection of
shared memory or notification of transfer completion is required. The problem of
prioritising messages is also simpler as I2C messages will inherit the priority of the
task sending them. An example of this is shown in Figure 4.3.
In the figure, two tasks of different priorities try to send data over the I2C bus while
a separate, lower-priority task is already busy with it. The lower priority task is
allowed to finish it’s transmission as it has possession of the mutex. Once the mutex
is made available, the highest priority task trying to obtain the mutex becomes
active. In this way, higher priority messages will get processed sooner than lower
priority ones.
This method is, however, not perfect. Figure 4.3 illustrates a problem known as
priority inversion in which a higher priority task is waiting for a lower priority task to

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. COMMAND AND DATA HANDLING 40

Figure 4.2 – Structure of the I2C access function

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. COMMAND AND DATA HANDLING 41

HighvPriorityv(HP)

ThevLPvtaskvtakesvthevmutexv
beforevbeingvpreemptedvbyv

avMPvtask

MediumvPriorityv(MP)

LowvPriorityv(LP)

ThevMPvtaskvtriesvtovobtain
thevmutexvandvgoesvintovav

blockedvstate

ThevHPvtaskvtriesvtovobtain
thevmutexvandvgoesvintovav

blockedvstate

ThevLPvtaskvcompletesvit'sv
transfervandvreleasesvthev

mutex

ThevHPvtaskvobtainsvthev
mutexvevenvthoughvthevMPv

triedvtovobtainvitvfirst

Figure 4.3 – Example of mutex transferral

finish executing. This situation can be further aggravated if a medium priority task
that doesn’t need the mutex starts executing. This would further delay the execution
of the higher priority task as the medium priority will pre-empt the lower priority
task. FreeRTOS mutexes include a priority inheritance mechanism to minimise the
time for which priority inversion can occur. Priority inheritance temporarily raises
the priority of a task holding a mutex to the priority of the highest priority task
that is trying to obtain the mutex. In this way, high priority messages will be sent
as soon as possible.
Depending on the result of the transfer, the interface function will return a code
indicating if the transfer was successful and, if not, the reason for failure. Error
codes include errors that occurred due to erroneous parameters being passed to the
function or transfer timeouts.

4.2 Service 1 implementation
Service 1 provides the capability for the flight software to generate reports that verify
the reception and execution of telecommands. The extent to which the different
stages of execution are reported depends entirely on the information that the various
application processes receive from the subsystems executing the commands. For
most CubeSat systems, the data supplied in this way is minimal. It was therefore
considered sufficient to implement the verification of only three stages of execution:

• Acceptance: This stage occurs prior to execution and a success report is sent
if the telecommand’s checksum is valid and the destination application process
supports the telecommand.

• Start: Verification of this stage indicates that the parameters of the telecom-
mand are valid and that execution can begin.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. COMMAND AND DATA HANDLING 42

Function ID Parameter Value
Fixed CharString Deduced

Repeated

Figure 4.4 – Application Data field contents for a “perform function” telecommand

• Completion: Verification reports for this stage are generated according to
the result of a telecommand’s execution.

For each of these stages, a separate sub-service exists for reporting the success or
failure of the stage. This means six sub-services are implemented in Service 1.
Each of these sub-services consists of the generation and transmission of a telemetry
packet containing information about the telecommand being executed. The Source
Data field of a generated telemetry packet will contain copies of the Packet ID and
Packet Sequence Control fields from the telecommand packet being verified. In the
case of a failure report, an error code will also be included indicating the reason for
the failure.
Not every telecommand needs to be verified in this way. The “Ack” field in a CCSDS
telecommand packet indicates what acknowledgements are expected for a specific
telecommand (see Section 3.4.2).

4.3 Service 8 implementation
Service 8 is the Function Management service. Telecommand packets containing
commands for application processes not implemented as services are assigned to
Service 8. These application processes can be any component that has functionality
which may be controlled from the ground such as an imager or deployable element.
The only service sub-type included in Service 8 is the “perform function” service.
The Application Data field in a telecommand packet belonging to this service sub-
type is shown in Figure 4.4.
The combination of the APID and Function ID fields in the packet can be used
to uniquely identify the telecommand. If the telecommand needs to be sent to
a subsystem, the destination application process will then format the parameters
correctly for use by the subsystem.

4.4 Service 11 implementation
As briefly mentioned in section 3.4.3, the On-board Operations Scheduling service
provides an on-board command schedule from which commands are released (ex-
ecuted) according to their accompanying time tags. The service also provides ser-
vice users with functions to manipulate the schedule and the commands it holds.
Depending on the extent to which the service is implemented, the times of various
scheduling events are stored. An example of such an event is the time at which the
schedule was enabled.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. COMMAND AND DATA HANDLING 43

Of the 19 service subtypes included in this service, the following are implemented:

• Subtype 1: Enable the release of telecommands from the schedule.

• Subtype 2: Disable the release of telecommands from the schedule.

• Subtype 3: Reset the telecommand schedule .

• Subtype 4: Insert a telecommand into the schedule.

• Subtype 5: Delete telecommands within a specified range of sequence numbers.

• Subtype 6: Delete telecommands scheduled for execution over a specified time
period.

• Subtype 7: Time-shift selected telecommands.

• Subtype 13: Report an existing command schedule summary.

• Subtype 15: Time-shift all telecommands.

• Subtype 17: Generate a summary of the command schedule contents.

From the list above, only a request to service subtype 13 will return a telemetry
packet. All the other subtypes handle telecommands used to control the service. If
desired, subtypes 13 and 17 could be implemented as a single subtype.

4.4.1 The Command Schedule

The structure of the command schedule itself is not defined in the PUS standard and
a suitable structure therefore needed to be developed to hold telecommands awaiting
execution. Two possible options for such a structure include a statically allocated
fixed-size array and a dynamically allocated linked list. The fixed-size array is the
safer option. The static memory allocation is less likely to result in an attempt to
access a NULL pointer and the amount of heap memory used by the schedule is
restricted. The most basic way of storing commands in this structure would be in
chronological order with next telecommand to be executed stored in the first element
of the array. However, the process of adding and removing telecommands from a
schedule structured in this way would be very inefficient. In the worst case, each
element of the array would have to be copied to the next array index in order to
make space for an entry in the first index. The linked list would be more efficient in
this regard. Adding and removing an element anywhere in a schedule constructed
as a linked list would consist of finding the correct chronological position in the
list, dynamically allocating memory for the new entry, and adding it to the list by
assigning two pointers. The time taken to execute this process is far more predictable
(and therefore, real-time) but the robustness of static memory allocation would be
lost if this approach was followed. In order to utilise the advantages provided by
the two approaches, a structure that incorporated elements of both was used.
The final command schedule structure is a statically allocated fixed size array of the
custom data type TC_schedule_entry. This data type includes the following fields:

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. COMMAND AND DATA HANDLING 44

typedef struct tcScheduleEntry {
uint8_t TC[MAX_TC_PKTSIZE] ; // The schedu l e entry
uint32_t exe_time ; // The time tag
struct tcScheduleEntry ∗ next_TC ; // The next s chedu l e entry
bool f r e e ; // Flag i n d i c a t i n g a v a i l a b l e s t o rage

}TC_schedule_entry ;

Using this structure, telecommand packets can be added to and removed from the
static array without having to move the other entries around each time. This is due
to each entry holding a reference to the next chronological entry in the schedule.
A separate pointer to the first entry in the list is also kept to speed up schedule
operations. When a telecommand is added to the schedule that has an earlier time
tag than any other entry, the ‘first entry’ pointer is set to point to the memory
address of the array element where the telecommand is stored. A software timer is
then set to count down the time between the new entry’s time tag and the current
OBC time. When the timer expires, the schedule entry pointed to by the first entry
pointer is removed from the list and executed. The schedule array element is then
reinitialised to default values and marked as available to store a new telecommand
packet.
Figure 4.5 gives an example of how the state of the schedule array changes as different
telecommands move in and out of the schedule.

1. State A in Figure 4.5 shows a command schedule with space for five entries.
Two telecommands (1 and 2) set to execute at times 1 and 3 respectively
have been added to the array. The ‘first entry’ pointer is pointing to the next
telecommand that needs to be executed.

2. In state B, telecommand 3, with execution time 2, has been added to the
schedule in the first available memory slot. As its execution time falls between
that of telecommands 1 and 2, it is placed between them in the ‘linked list’.

3. In state C, telecommand 1 has been released from the queue due to some event
such as deletion or execution. The remaining telecommands have retained their
positions in memory but are now at the front of the linked list. The ‘first entry’
pointer now points to telecommand 3.

4. In state D, a new telecommand has been added to the schedule. Although its
execution time is later than both of the telecommands added earlier, it is still
placed in the first available memory slot at the beginning.

This method was considered the implementation that would provide the best balance
between robustness and speed.

4.4.2 Scheduling service subtypes

With the structure of the command schedule defined, the implementation of the
service subtypes described in 3.4.3 was relatively simple.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. COMMAND AND DATA HANDLING 45

TC 1 TC 2

exe time = 1 exe time = 3

first_TC

next_TCA

TC 1 TC 2

exe time = 1 exe time = 3

first_TC

next_TCB

exe time = 2

TC 3

next_TC

TC 2

exe time = 3

first_TC

C

exe time = 2

TC 3

next_TC

TC 2

exe time = 3

first_TC

D

exe time = 2

TC 3

next_TC

TC 4

exe time = 4

next_TC

Figure 4.5 – Example of command schedule operation

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. COMMAND AND DATA HANDLING 46

• Subtype 1 and 2: Enabling and disabling the release of telecom-
mands. A flag is kept indicating whether the release of commands from the
schedule is enabled or disabled. When a command’s execution time is reached,
the flag is evaluated. If release is enabled, the telecommand packet is removed
from the schedule and sent to service 8 for decoding and execution. If release
is disabled, the command is removed from the schedule and an execution start
failure report is sent via Service 1.

• Subtype 3: Resetting the command schedule. As defined in [7], a reset
of the schedule entails clearing and disabling the schedule, and resetting all
the scheduling event information. All the elements in the command sched-
ule structure are set to default values and marked as available to store new
commands.

• Subtype 4: Inserting telecommands in the schedule. The method
of how commands are added to the schedule has already been discussed in
Section 4.4.1. However, a number of errors can occur that may prevent the
telecommand being added to the schedule. In this implementation of the
service, these errors include the command schedule being full, the destination
APID of the telecommand being invalid, and the time tag included with the
telecommand referring to the past.

• Subtype 5: Deleting telecommands from the schedule. A command to
delete telecommands from the schedule will contain ‘APID’, ‘Sequence Count’,
and ‘Number of Telecommands’ fields as application data. The schedule will
first be searched for the entry uniquely identified by the combination of the
APID and sequence count. This entry will be deleted along with a number
of successive entries belonging to the same APID. The number of successive
entries that will be deleted is indicated by the ‘Number of Telecommands’ field

• Subtype 6: Deleting telecommands over a time period. This service
subtype deletes telecommands from the schedule according to their execution
time rather than their destination. A command of this type includes a ‘Range’
field that indicates the format of the time period. Depending on the range field,
up to two time tags will also be included in the command. The time period is
then set up as follows:

– Range = 0. Time Period = “All”. Commands are deleted from the
beginning to the end of the schedule.

– Range = 1. Time Period = “Between”. Commands with execution time
between time tag 1 and time tag 2 (inclusive) are deleted.

– Range = 2. Time Period = “Before”. Commands with execution time
less than or equal to time tag 1 are deleted.

– Range = 3. Time Period = “After”. Commands with execution time
greater than or equal to time tag 1 are deleted.

• Subtype 7: Time-shift selected telecommands. A command belonging
to this subtype includes ‘Time Offset’, ‘APID’, ‘Sequence Count’, and ‘Number

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. COMMAND AND DATA HANDLING 47

of Telecommands’ fields as application data. The selection of telecommands to
time-shift uses the latter 3 fields of the application data and is the same as the
process used in Subtype 5. The ‘Time Offset’ field holds a positive or negative
value by which to shift the execution times of the scheduled commands. A
positive value shifts the execution time to a later stage while a negative value
shifts it to an earlier stage. A command will not be shifted if the shift will
result in it having a time earlier than the current OBC time.

• Subtype 13: Summary schedule report. A telecommand packet belong-
ing to this service subtype is a request for a downlink of a summary schedule
report of every telecommand currently in the command schedule. The schedule
report itself is generated by service subtype 17.

• Subtype 15: Time shift all telecommands. This service is similar to sub-
type 7 except that it automatically applies to every command in the schedule.
The application data for a telecommand packet belonging to this subtype
therefore only consists of a positive or negative time offset which will be added
to the release time of every command in the schedule.

• Subtype 17: Report command schedule as summary. This service
constructs a report schedule of every telecommand in the schedule in summary
form. The first element in the source data of a summary schedule report
indicates the number of telecommands contained in the report. After that, the
release time, APID, and sequence count of each telecommand are included.

4.5 Service 13 Implementation
The PUS defines Service 13 as the Large Data Transfer service. This service provides
a protocol for the uplink and downlink of large sets of data referred to as Service Data
Units (SDU). As mentioned in Section 3.4.3, a SDU is a set of data that does not
fit in the application data field of a single telecommand packet. This service could
therefore be required and utilised by the flight software in a number of scenarios.
For example:

• The upload of a binary file containing a new version of the flight software.

• The downlink of image files.

• The downlink of large log files for processing on the ground.

• The transfer of mission specific files. For example, the scripts for the QB50
payloads.

A full list of the sub-services implemented in Service 13 is given below. Sub-services
1 to 8 apply to a downlink operation while 9 to 16 apply to uplink.

1. Downlink the first part of a SDU.

2. Downlink an intermediate part of a SDU.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. COMMAND AND DATA HANDLING 48

SDU
Header

PH
DFH
CI

PartmNom1

PH
DFH
CI

PartmNom2

PH
DFH
CI

PartmNom3

PH
DFH
CI

PartmNomN

ServicemData

OriginalmServicemDatamUnit

PH:mPacketmHeader
DFH:mDatamFieldmHeader
CI:mTransfermControlmInformation

Figure 4.6 – The splitting of a service data unit into parts. Adapted from [7]

3. Downlink the last part of a SDU.

4. Downlink a report of a transfer abort initiated by the sending end.

5. Receive downlink reception acknowledgement.

6. Receive a report of unsuccessfully received parts.

7. Re-transfer part of a SDU.

8. Receive a transfer abort notification from the receiving end.

9. Accept the first part of a SDU.

10. Accept an intermediate part of a SDU.

11. Accept the last part of a SDU.

12. Accept a re-transferred part of a SDU.

13. Transfer abort initiated by the sending end.

14. Uplink reception acknowledgement report.

15. Downlink a report of unsuccessfully received parts.

16. Send a notification of a transfer abort initiated by the receiving end.

Figure 4.6 shows how a SDU is split into fixed size parts for transmission. The
format of a standard SDU is shown in Figure 4.7. The fields of the SDU hold the
following information:

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. COMMAND AND DATA HANDLING 49

Unit
Type

Packet
Header

Data Field
Header

Packet Data

6 bytes Deduced Any1 byte

Figure 4.7 – The format of a Service Data Unit. Adapted from [7]

Service Data
Unit ID

Sequence
Number

Service Data
Unit Part

1 byte 2 bytes Fixed Octet
String

Figure 4.8 – The packet data format for a telecommand containing a Service Data
Unit part. Adapted from [7]

• Unit Type: Indicates whether the packet that follows is a standard or exten-
ded packet.

• Packet Header: Standard CCSDS packet header as defined for telemetry
and telecommand packets.

• Data Field Header: Standard data field header as defined for telemetry and
telecommand packets.

• Packet Data: The large set of data being uploaded or downloaded.

The format of the packet data field is shown in Figure 4.8. The structure of each
large set of data is defined by a SDU ID that is used to uniquely identify the SDU.
This ID can be used to identify which SDU a packet belongs to when multiple large
data transfers are being sent from or received by the same process.
To achieve the functionality listed above, the service is split into two operational seg-
ments for downlink and uplink data transfers. The protocols involved with downlink
and uplink are identical with the distinction being that the uplink implementation is
concerned with receiving, acknowledging, and assembling the data while the down-
link implementation disassembles, packages, and transmits it. This section presents
the implementation of the following functionality.

4.5.1 Large Data Upload

Initially, the service will receive the first part of a new SDU through service subtype
9. If the packet is error-free, a “transfer information” structure containing inform-
ation about the current transfer is initialised. This structure holds information on
the last successfully received packet in the transfer and whether missing packets
have been detected. After the structure is updated with the Service Data Unit ID,
a reception timer is started. If the timer reaches a specified timeout interval before
the next SDU part is received, it will be assumed the transfer has failed and the

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. COMMAND AND DATA HANDLING 50

entire operation will be aborted. Sub-service 16 will then be used to notify the
ground station of the abort. The same process of updating the context of the trans-
fer information structure and resetting the reception timer applies to the reception
of intermediate parts.
If, at any point during the transfer, an erroneous packet is received by the service
or a discontinuity in packet sequence counts is detected, the sequence counts of
the missing packets will be recorded and the transfer information structure will be
updated. When the final part of a SDU is received, the service will either send an
acknowledgement that the entire SDU was successfully received or a request will
be sent for the re-transfer of the missing packets. The service will then send an
acknowledge when all the remaining parts have been successfully received. If the
last part of the SDU is not received, the transfer will be aborted. A flow diagram
of the uplink process is shown in Figure 4.9

4.5.2 Large Data Download

The downlink procedure is almost identical to the uplink procedure. After receiving
an indication from an on-board process that a large data unit is available for down-
load, the service will split the data into parts of a predefined size. Except for the
last part, this size is usually the maximum size of the source data field in a telecom-
mand packet. Each part is then transmitted until the last part of the SDU has been
sent. Upon sending the last part, an acknowledgement timer is started. If neither
an acknowledgement, request for re-transfer or abort notification are received before
the timer times out, the service will assume the transfer has failed. The download
operation will be aborted and notifications will be sent to the data source as well as
the receiving end of the transfer. If a request for re-transfer is received, the reques-
ted parts shall be collected from the data source and downlinked. This process will
be repeated until the successful reception of the entire SDU has been acknowledged
by the receiving end. A flow diagram of the downlink procedure is shown in Figure
4.10

4.5.3 Re-transferring missing packets

A number of components are required order to keep track of missed packets during
an upload operation. Firstly, an array of 16 bit unsigned integers is initialised for
storing the sequence numbers of the missed packets. The size of the memory reserved
is determined by the largest number of parts expected to be transferred at once by
the service. This is to ensure that no matter how many parts are unsuccessfully
transmitted, the transfer will not have to be restarted. At the time of writing, the
largest data unit expected to be uploaded is a binary file containing a new version
of the flight software. A binary file of 150kB will require 633 parts to transfer and
an array of 633 16-bit unsigned integers is therefore currently reserved in memory.
Secondly, two counters are kept: one for recording the amount of packets that have
been missed and one for the number of repeated packets that have been received.
As an upload operation progresses, the sequence numbers of any missing packets
are recorded and the missing packets counter is incremented. When the final packet
is received, the stored sequence numbers are communicated to the ground station

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. COMMAND AND DATA HANDLING 51

Figure 4.9 – Service 13 SDU upload protocol

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. COMMAND AND DATA HANDLING 52

Figure 4.10 – Service 13 SDU download protocol

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. COMMAND AND DATA HANDLING 53

Figure 4.11 – Example of an image file before (left) and after (right) dropped packets
are retransmitted.

which will start repeating the missing packets. As the satellite receives the repeated
packets, the array holding the sequence numbers of the missing packets is updated.
If the reception timer times out during the transfer of repeated packets, it is assumed
that not all the packets were successfully transmitted and the process is repeated
using the updated array. This process continues until an abort command is received
from the ground station or the entire SDU is received.
Figure 4.11 shows an image file that was explicitly transferred with packets missing.
The black areas on the left image are portions of data that were not received and
therefore remain empty. After the first round of transmission, the sending end was
automatically notified of the packets that were not received successfully. The missing
data was extracted from the source a second time and retransmitted. The receiving
end then received the re-transmitted packets and used the sequence numbers to
place the new data in the correct location in the file.

4.5.4 Notes on the Transfer Protocol

During the development of this service as well as the file transfer service for Ser-
vice 131 (see Section 4.7), a number of compromises were made to adapt the PUS
defined service for the flight software. This section discusses which methods and
modifications were used and the rationale behind them.
An optional functionality of the service that is not included in the flight software is
the use of a sliding window. If a sliding window is used, a window size is defined.
The window size defines the amount by which the sequence count of the SDU part
currently being transmitted can exceed the sequence count of the last SDU part that
was acknowledged. The sliding window is therefore defined by the sequence count of
the last acknowledged part and the window size and only parts with sequence counts
inside the sliding window may be sent. For example, if the window size is 50 and the
last part for which an acknowledge was received had a sequence count of 100, then
no parts past the 150th part will be sent. The combination of a slow uplink speed
and short ground station overpass times create a need for the fastest, most efficient
communication possible. In this case lessons were learned by communicating with

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. COMMAND AND DATA HANDLING 54

engineers that were previously involved with the SUNSAT mission [46]. Engineers
involved with this mission found it was far more efficient to transmit all the data
in a large data set at once and then retransmit any packets that weren’t success-
fully received rather than receive acknowledgements for each packet. As the service
supports the functionality of retransmitting packets, it was decided to follow the
approach recommended by the SUNSAT engineers and not make use of the sliding
window.
A second compromise that had to be made was the choice to abort a transfer if the
final packet is not received during an upload operation. This is because the service
definition does not allow for the communication of how many parts a SDU consists
of. Therefore, if the final part is not received, the service has no way of knowing
how many packets are missing from the transfer.
The final decision that had to be made concerned the passing of large quantities
of data to and from the service. The mechanism used to pass large data units
from a source process to the large data transfer service can follow different methods
according to the memory resources available. For a downlink operation, the service
data unit can be passed to the transfer service in one block or already split into
data blocks. For this implementation, it was decided that the sending process would
provide the service with a reference to the complete data unit available for download.
This approach was chosen in order to abstract away the details of the operation of
the service from mission specific processes. The entire protocol of the downlink
(splitting up the data unit, acknowledging packets, handling transmission errors)
is therefore confined to the large data transfer service. When receiving a SDU via
an uplink procedure, it is up to the user to either supply enough storage space to
temporarily store the data or ensure the target subsystem can piece together the
separate parts.

4.6 The Filesystem
On a remote system, recording events and whole orbit data is necessary in order
for operators to assess the operation of the system and make decisions about how
to proceed with the mission. Error logs give an indication of any faults that may
have occurred on the satellite as well as whether any of the recovery procedures
were successful. A whole orbit data log can give the operator of a ground station an
overview of the status of all the subsystems at a glance. Payload outputs such as
scientific data and images also need to be stored until the next pass over the ground
station provides an opportunity for them to be downloaded.
Due to the issues inherent in operating an autonomous system in outer space, it is
possible that the OBC could experience several resets over its lifetime. Persistent
storage capabilities are therefore required to retain this data. On CubeComputer,
the main OBC used in the ESL, a micro SD card is used over a SPI bus as a mass
storage device. This microSD card slot provides a platform for the persistent storage
required for the above mentioned data to survive these resets.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. COMMAND AND DATA HANDLING 55

4.6.1 SD cards

SD cards are NAND flash memory devices designed for security, capacity and per-
formance. The SanDisk SD Cards currently used with CubeComputer include cer-
tain features which are relevant in the context of this project.
Although NAND flash is less susceptible to radiation induced errors than volatile
memory, errors could still occur on the SPI bus and while data is stored in the
memory waiting for download. To mitigate these errors, memory field error correc-
tion is supported by including an error correction code when sectors are written to.
If errors are present when the data is read, the defects are corrected before the data
is transmitted[47].
Wear levelling is a technique used to extend the life of flash devices. A particular
block of flash memory can only support a certain number of read/write cycles in
it’s lifetime. Always writing to the same locations in the memory can therefore
result in the device malfunctioning when the majority of the memory on the device
is still functional. Wear levelling algorithms attempt to maximise the lifetime of a
device by distributing read/write operations evenly over every block on the device.
Typical NAND flash devices (such as microSD cards) are rated for around 100,000
program/erase cycles [48]. For this reason, wear levelling is implemented by the
micro-controllers on most SD cards.

4.6.2 The File System

When dealing with persistent memory, implementing a file system can simplify de-
velopment, operation and re-use of the software. Any decent file system abstracts
away low level details of interacting with the memory and provides an interface for
the initialisation and use of its features. The FATFS (File Allocation Table File
System) is included in the CubeComputer board support package and was the ini-
tial choice of file system during flight software design. However, not all SD cards
are guaranteed to include the specialised features discussed in Section 4.6.1 and
FATFS does not natively include these features. A number of other file systems
were therefore looked into to see if a file system could be found that did support
this functionality.

• JFFS2, UBI: Implement wear levelling but can only be implemented on raw
flash devices.

• Btrfs, Reliance Nitro: These and multiple other similar systems implement
fault tolerance but are commercial and not open-source. They also include a
host of other features not required for the flight software such as support for
distributed systems.

As no suitable alternative could be found that was both suitable and realistic, it
was decided to implement FATFS and leave it up to the SD card itself and the flight
software to handle wear levelling and fault tolerance.
The following specifications of FATFS are notable:

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. COMMAND AND DATA HANDLING 56

• Memory usage According to the FATFS application note, the memory used
by FATFS with all its functionality enabled can be determined by

Memory usage (bytes) = 10675 + V*4 + 2 + V*560 + F*550

where V is the number of volumes holding the file system and F is the number
of open files.

• File name length The maximum length of a file name can be set to up to
255 characters according to the available memory.

• Re-entrancy File operations to files on the same volume are not re-entrant.

• Critical sections The FAT structure could be broken should a critical section
such as a write operation be interrupted. The f_sync() function can be used
to prevent data corruption should an OBC reset occur during a critical section.

4.6.3 The File System Interface Library

The File System Interface Library is the gateway through which the services and
subsystems in the flight software access the file system. The functions in this library
mainly act as wrapper functions for the functions included in the FATFS API. For
reasons that will be discussed below, any process that wishes to interact with the
file system should do so through this library. The library includes the following
functionality.

• Initialise the file system.

• Create a new file.

• Delete a file.

• Create a new directory.

• Delete a directory.

• Write to a file.

• Read from a file.

• List files/directories in a directory.

• Obtain the size of a file.

There are a few reasons for confining access to the file system to be through this
library. The first and most important reason is mutual exclusion. In a system with
multiple tasks running simultaneously, it is difficult to guarantee that multiple tasks
won’t attempt to open and perform operations on the same file. Particularly, FATFS
does not allow duplicated opening of a file in write mode. Accessing the file system
through the library provides a simple way to manage access and therefore prevent
data corruption and memory shortages.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. COMMAND AND DATA HANDLING 57

The implementation of the library also allows the flight software developer to ab-
stract away the details of interaction with the file system. For example, obtaining
and releasing semaphores used for mutual exclusion, checking if files have grown too
large and checking the available memory on the volume. In its current state, this
method only allows one task to access one file at a time. While this may seem like
the slowest method of handling file access from multiple tasks, it is the most robust.
It is also expected that there will not be any processes with hard real-time deadlines
that will require access to the file-system. If multiple-file access is required, new file
objects and mutexes will need to be defined to handle the extra open files.
The use of the wrapper functions also makes the code more modular. If it is decided
in future work to use a different file system or a completely different method of
storage, then the particulars of FATFS will not be difficult to remove from the
applications source code.
The implementation of the functionality included in the library will now be dis-
cussed. For most of the functions other than file system initialisation, the directory
and name of the file on which to perform the operation are passed as arguments.
The “file system access” mutex is then taken and held while the function is executed.
It is returned when the function is complete and the file has been closed. In order
to leave error handling procedures up to users of the library, various error codes are
defined that can be returned by the library. The following error codes are defined:

• fs_success is returned if a library function is successfully completed.

• fs_FSnotEn is returned if the file system is not enabled or functioning cor-
rectly when the function is called.

• fs_noDir is returned if the directory passed to the function does not exist.

• fs_noFile is returned if no file exists that corresponds to the file name passed
to the function.

• fs_fileTooBig is returned if a function attempts to add data to a file that is
already larger than the allowed file size.

• fs_rEOF is returned if a function attempts to read past the end of a file.

• fs_FSfull is returned if there is no free space left on the mass storage device.

It is up to the user to check for the appropriate errors and define procedures to follow
if an error is detected. The functionality of the File System Interface is implemented
as discussed below.
File system initialisation This function initialises the “file system access” mutex
and creates the FATFS file system on the microSD card.
Creating and deleting files and directories The functions to create files and
directories perform two checks before creating the new object. Firstly, a flag which
indicates that the file system is currently enabled (i.e. correctly initialised and
operating) is polled. If it is, then the file system access mutex is taken and the

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. COMMAND AND DATA HANDLING 58

existence of the directory path passed to the function is checked. If either of these
checks fail the function will return an error code.
Writing and reading data The library functions to read and write data perform
the same two checks as those performed when creating directories with the addition
of checking if the specified file already exists. If it does not, the function returns
with a corresponding error code. It is left to a file’s data source to check that a file
does not grow too large. This is because each file may have different specifications
for how large it is allowed to grow. The function for writing data to a file also checks
if there is enough storage space left on the volume to complete the write operation.
List contents of a directory This functions populates a buffer supplied as a
function parameter with the names of any directories and files within a specified
directory. The names are added to the buffer as C-style strings with directories
identified by appending a ’/’ character to the start of the name. Error codes are
returned if the file system is not enabled, if the specified directory does not exist
or if the supplied buffer is too small to contain the entire content of the specified
directory.

4.7 Service 131: Mass storage interface
Although the specific file systems and on-board storage mediums used will differ for
various satellites, these elements will be present in the vast majority of missions. It
was therefore decided to develop a custom service which would provide management
and data retrieval sub-services for a storage medium. In other words, an interface
to an on-board mass storage device. As the CubeComputer OBC uses a microSD
card for mass storage, the service was developed to use the file system interface
documented in Section 4.6.3. However, due to the modular nature of the flight
software, the function calls to the file system interface can easily be replaced by an
interface to a different storage medium.
The decision to implement the on-board storage interface as a service and not a
library is mainly due to the readability and extensibility that the service structure
provides. Adding the interface as a service is a better way to include it as part of the
generic framework of the flight software. Adding it as a separate subsystem would
mean communication to the interface would be through service 8 which would group
it with mission specific subsystems.
The sub-services listed below are implemented to give the service it’s functional-
ity. All the sub-services with identifiers above 128 are involved in the process of
downloading a file.

• Service 1: List the contents of a directory.

• Service 2: Download a file.

• Service 3: Delete a file.

• Service 4: Reset the file system.

• Service 5: Format the drive and reset the file system.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. COMMAND AND DATA HANDLING 59

• Service 6: Report the contents of a directory.

• Service 7: Request the download of a file.

• Service 128: Transmit the first part of a file.

• Service 129: Transmit an intermediate part of a file.

• Service 130: Transmit the last part of a file.

• Service 131: Report a download abort initiated by the sending end.

• Service 132: Receive acknowledge of successful file download.

• Service 133: Receive request for re-transfer of unsuccessfully transmitted file
parts.

• Service 134: Transmit a part of a file requested for re-transfer.

• Service 135: Receive request from the receiving end to abort a file download.

The protocol for downloading a file is exactly the same as described in Section 4.5.2
for a large data download operation. However, the download of a file is implemented
separately to the download of data to maintain low coupling between the modules.
Placing support for downloading files in Service 13 would require the service to have
knowledge of file names, directories and file reading capabilities for finding data that
is requested for re-transfer. As these functions are not required for downloading data
not stored on the file system, adding these functions to Service 13 would decrease
the modularity of the software.
As this service is not a standard PUS service, a full definition of the interface to the
sub-services is given in Appendix A.

4.8 Subsystem Command Managers
With services 8 and 11 implemented, any telecommand can now be routed to a
subsystem or scheduled for execution at a future time. Service 8 is used to direct
commands to an application process not belonging to a particular service. The
majority of these processes will belong to one of the modules identified in Section
3.3. In order for these modules to receive telecommands and relay them to the
destination hardware subsystem, each module contains a manager task. These tasks
perform three main functions:

• To act as an application level interface between the flight software and the
software of the subsystems;

• To process/handle data received from subsystems;

• To analyse housekeeping data and execute confinement/recovery procedures.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. COMMAND AND DATA HANDLING 60

Figure 4.12 – Path of a telecommand from transceiver to subsystem manager

The manager tasks are one of the areas in the flight software where a line can be
drawn between the generic application and the mission specific code. This is because
the implementation of the functions listed above will potentially change for every
subsystem and mission. The contents of a manager task will therefore be altered
according to the subsystems belonging to a specific module.
Figure 4.12 shows the path of a telecommand destined for a subsystem manager
from reception to execution.
The use of command queues provides a generic interface to subsystems by requiring
commands to be formatted according to the following predefined structure.
typedef struct{

uint8_t params [CDH_CMD_PARAMLEN] ; // Command parameters
uint16_t PacketID ; // Packet ID
uint16_t PacketSC ; // Packet sequence count

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. COMMAND AND DATA HANDLING 61

uint8_t funct ion_id ; // Command ID
uint8_t APID; // Des t ina t ion module
uint8_t param_len ; // Parameter count

}CDH_CMD_TypeDef;

The fields in this definition should satisfy the requirements of most commands but
additional fields can easily be added if required. Adopting a generic interface for
communicating commands around the flight software makes it easy to add and
remove modules while requiring little modification to the source code.

4.9 Transceiver communication
In most satellites, the main OBC communicates with a ground station through a
transceiver module. This hardware is responsible for handling the network protocol
as well as the physical transmission and reception of data. As the main OBC will
be the I2C bus master, it can push any data it wants transmitted to the satellite’s
transceiver board. However, when the transceiver receives new data from a ground
station, it cannot push this data to the OBC as it is a slave device.
There are then two ways the OBC can be notified of the new data. Firstly, a flag
can be set on the transceiver board indicating that new data is available. The
OBC will then have to periodically poll this flag and execute a read operation when
the new data is detected. A more efficient alternative to this can be used if the
transceiver supplies the flag as a hard signal to the OBC. This signal can then be
used to generate an interrupt on the OBC in which it executes a read operation to
obtain the new data. The second, more efficient method is currently implemented
in the flight software. The rest of this section describes the implementation of the
interrupt.
In embedded systems, it is always desirable to keep an Interrupt Service Routine
(ISR) as short as possible. This is to ensure that another event that would cause
an interrupt is not missed while the initial interrupt is still being processed. FreeR-
TOS provides semaphores that can be used to defer processing to a handler task.
As shown in Figure 4.13, the handler task initially tries to take the semaphore as-
sociated with the transceiver interrupt but is transitioned into a blocked state as
the semaphore is not available. When the interrupt occurs, the ISR only clears the
interrupt and performs a “give” operation to unblock the handler task. The handler
task will then read the new data from the transceiver and be transitioned back into
the blocked state to wait for another interrupt to occur.
In order to ensure that no interrupts are missed, the semaphore used to synchronise
the handler task with the ISR is implemented as a counting semaphore. As briefly
mentioned in 2.2.1.3, basic binary semaphores can be thought of as being able to
queue up a single “give” operation at a time. If more than one interrupt occurs while
the handler is busy, it will only detect that one interrupt occurred when it attempts
to take the semaphore again. Counting semaphores can queue up multiple give
operations ensuring that the handler task will process each interrupt that occurred.
Using counting semaphores ensures that each received packet will be read from the
transceiver module.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. COMMAND AND DATA HANDLING 62

Figure 4.13 – Flow diagram showing how new data is detected and read from the
transceiver

As described in Section 4.1.2, the priority inheritance mechanism implemented by
FreeRTOS will prevent excessive delays in retrieving I2C data if other tasks are using
the I2C bus. The system can also easily be changed to use a polling mechanism. By
replacing the line that attempts to take the semaphore with a delay, and checking
the flag before reading the data, the task will periodically check if the transceiver
has received new data from the ground station.

4.10 Conclusion
This chapter presented the implementation of all the command and data handling
components in the flight software. Starting from a low level, the way in which
access to the I2C bus is controlled was presented. Next, the services involved in
telecommand verification, management and scheduling were discussed followed by
an explanation of the services and protocols used to upload and download large
collections of data.The microSD card storage medium and the FATFS file system
were also presented. To add features such as modularity and re-entrancy to the file
system, a file system interface library was developed. The use of this interface makes
it easier to use the file system within the RTOS environment as well as simplifying
the process of replacing it if a different method of data storage is required.
With the command and data handling services defined, the subsystem managers
were presented along with the way they relay commands and data between the flight

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. COMMAND AND DATA HANDLING 63

software services and the satellite’s subsystems. The method with which commands
are retrieved from the transceiver module and passed to the command handling
services was also presented.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5

The Housekeeping System

The challenges presented in Section 1.3 make housekeeping data collection and pro-
cessing an essential task on any satellite. Housekeeping data collected from on-board
sensors can be used to initiate autonomous recovery procedures on the satellite. The
data can also be formatted, stored and downlinked for use by the ground station
staff.
In the context of generic flight software, it is difficult to define what should be in-
cluded in a housekeeping system that is easily configurable for any mission. Each
satellite will have an unique set of sensors in each of its subsystems. Each sensor
could then also have different requirements in terms of sampling frequencies, proced-
ures to process the data, and threshold values at which error conditions are detected.
It was therefore decided to develop the housekeeping system as a framework that
allows users to specify the variables mentioned above as well as procedures to run
on detection of an error condition. The two PUS services implemented to control
this communication are Service 3 and Service 15.
Fault tolerance techniques are also important to prevent and mitigate errors. The
sections in this chapter present the services used for collection and on-board storage
of housekeeping data as well the fault tolerance techniques implemented.

5.1 Service 3: Housekeeping and diagnostic data
reporting

PUS Service 3 provides the flight software with a method of reporting housekeeping
data to the ground station. Housekeeping data is sampled and packaged according
to a set of mission specific structures. Each of these structures is assigned a SID
and holds a set of related data. For example, separate structures can be defined for
ADCS parameters, on-board currents, event timings and temperatures. An example
of a SID definition for payload data is shown in Figure 5.1.
Any number of structures can be defined depending on the requirements of the
mission. Telemetry packets belonging to this service contain, as source data, both
the housekeeping data and the SID of a specific structure. The SID is then used on
the ground to link the data to a specific structure. The SIDs and the values they
contain in their definitions are mission specific and will therefore be redefined for

64

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. THE HOUSEKEEPING SYSTEM 65

Figure 5.1 – Example of Payload data SID [8].

every mission. In order to avoid requiring the flight software to be heavily modified
for each mission, the specific knowledge of the format of these structures is confined
to the subsystems they belong to. Housekeeping diagnostic and recovery procedures
are therefore also left to the developers of the specific subsystems.
The following sub-services were implemented in accordance with the recommenda-
tions made in [9]. Custom services (with subtype IDs of 128 and higher) were also
implemented to extend the functionality of the service.

• Subtype 5 and 6: Enabling and Disabling Housekeeping Parameter
report generation. Requests to these services either enable or disable para-
meter generation for a specific Structure ID. Housekeeping data sources be-
longing to disabled SIDs can still be sampled for on-board diagnostic purposes.

• Subtype 25: Housekeeping Parameter Report This sub-service gener-
ates and downloads telemetry packets containing the housekeeping data of
each structure ID for which report generation is enabled. Telemetry packets
generated in this way can also be sent to Service 15 for storage in the on-board
packet stores (see Section 5.2).

• Subtype 128: Changing reporting frequency This sub-service can be
used to change the frequency at which the different SIDs are sampled.

• Subtype 129: Set SID mask Requests to this service subtype change the
value of the SID mask. As discussed later in this section, the SID mask
indicates which of the values in each SID should be updated at each sampling
interval.

• Subtype 130: Request SID mask This sub-service is used to request the
current value of a specific SID mask. In order for a ground station to decode
the data contained in a telemetry packet, it must have knowledge of the state
of each SID mask. If the state of a SID mask is unknown at any point, this
service can be used to verify it.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. THE HOUSEKEEPING SYSTEM 66

5.1.1 Housekeeping data collection

The generation of housekeeping data is achieved by implementing sub-service 25 as
a FreeRTOS task. At every collection interval, the task passes empty structures
specific to the relevant SIDs to the housekeeping collection functions located in each
subsystem manager. These housekeeping collection functions populate the struc-
tures with the sensor readings belonging to the SID. When the populated structure
is returned to the sub-service 25 task, a telemetry packet containing the housekeep-
ing data as well as it’s SID is constructed and downlinked. Figure 5.2 illustrates the
operation of this task.

Figure 5.2 – Flow of the housekeeping collection task.

Two options exist for controlling the periodicity of the sub-service 25 task. FreeR-
TOS provides both the vTaskDelay() and vTaskDelayUntil() functions. Both func-
tions allow the developer to specify a number of RTOS ticks for which the task should
be delayed. The difference is that vTaskDelay() specifies a number of ticks relative
to when it is called while vTaskDelayUntil() specifies an absolute time at which the
task will be allowed to continue execution. This absolute time is calculated using a
count of the number of ticks that have elapsed. This count is updated every time
vTaskDelayUntil() is called allowing for accurate periodic execution. The delays
introduced by vTaskDelayUntil() are therefore considered predictable and real-time.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. THE HOUSEKEEPING SYSTEM 67

5.1.2 SID masks

It may not be desirable to retrieve all the telemetry defined in a certain SID at each
collection interval. Communication bandwidth and on-board storage space can be
saved by only collecting those parameters that are of interest at the given time. For
this reason, each SID has a mask of 4 bytes assigned to it. Each bit in the mask
corresponds to a specific item in the SID. At each collection interval, if a specific
telemetry item’s mask bit is set to 0, it will not be sampled. Using 4 bytes, a
collection of up to 32 sensors can be controlled for a single SID.
As only the telemetry values with corresponding SID mask values of 1 are included
in the telemetry packet, the structure and length of a housekeeping telemetry packet
depend on the state of the SID mask. The efficiency of the system could be increased
if functions were added to construct telemetry packets to only be as large as needed.
For example, using only a single bit instead of a full byte for a SID value that
only indicates if a subsystem is enabled. This functionality is not currently in
the system as its implementation depends heavily on the structures designed for a
specific mission.

5.2 Service 15: On-board storage and retrieval
Service 15 provides a means to store telemetry packets generated on the satellite in
so-called “packet stores”. These packet stores are predefined locations in the main
OBC’s memory and are each assigned a Store ID that corresponds to a Structure
ID defined in Service 3. Housekeeping packets generated by Service 3 can therefore
be routed to Service 15 for storage in a specific packet store rather than being
downlinked. Service 15 was included in the flight software for use in the following
cases.

• If the satellite experiences low coverage from a ground station then the ma-
jority of Service 3 housekeeping packets will not be received. Storing these
packets on-board during periods where no ground station is available will al-
low operators to retrieve information about the satellite for all stages of the
orbit.

• If lowering power consumption is a concern for engineers, then packets can be
stored rather than being constantly downlinked whenever they are generated.
Specific packets can then be selected and downloaded as they are required.

• The service can be used to implement a “lost packet recovery” mechanism. If
erroneous housekeeping packets are received by the ground station during an
overpass, these packets can then be requested for download if they were stored
in a packet store.

Figure 5.3 illustrates the concept of the service. In the flight software, the packet
store is kept in the file system on the microSD card. Each SID from Service 3 has
its own Store ID and each Store ID’s packets are kept in a directory separate to the
other Store IDs. The state of each packet store is recorded in a structure containing
the elements shown below.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. THE HOUSEKEEPING SYSTEM 68

Service53:5Housekeeping5
collection5and5reporting

Service535
housekeeping5packet

ADCS
housekeeping

packet5
store

OBC
housekeeping

packet
store

EPS
housekeeping

packet5
store

Packet51

Packet52

Packet53

Packet51 Packet51

Packet52

Service5155packet5stores

Service515
Telecommands

Service5155
Telemetry

Figure 5.3 – Service 15 Concept. Adapted from [9]

/// S t ruc tu re used to d e f i n e a Store ID
typedef struct{

uint8_t StoreID ; // Store ID
bool enabled ; // Packet s t o r e enab led f l a g
char s to r e_d i r [1 1] ; // Store d i r e c t o r y name
char fName [2 1] ; // Store f i l e name

}STOREIDinfo_TypeDef ;

An array of these structures is used to track the state of the service with each index
of the array tracking a specific store. When the service receives a packet, the array
index corresponding to the SID’s store is determined. From then on, the relevant
store and all its information is accessed with this index.
The sub-services implemented to provide an interface to this system are presented
below.

• Subtype 1 and 2: Enabling and Disabling storage in specified packet
stores. Requests to these services enable or disable storage in specific packet
stores. If telemetry packet’s corresponding packet store is enabled, it will be
stored in the packet store rather than downloaded.

• Subtype 9: Downlinking the contents of a packet store for a specified
time period. This sub-service handles the downloading of packets that were
generated within a specified time period. In order to make this type of packet
selection possible, packets are added to stores preceded with time stamps. As
packets exist in the packet store as complete telemetry source packets, they
are downloaded exactly as they are stored. The sequence number and time
stamp contained in the generated packet will then serve to identify the packet
as one being downloaded from a store.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. THE HOUSEKEEPING SYSTEM 69

• Subtype 128: Abort packet store download. When a request to this
sub-service is received, a flag will be set indicating that a download abort was
requested. The task responsible for downloading the contents of a packet store
will check this flag after each packet is downloaded. If a request for abort is
detected, the download operation will stop and be reset for the next download
request.

Service 15 is implemented by using two FreeRTOS tasks. One to receive and store
packets, and one to handle the download of packet store contents. The following
sections will describe their implementation.

5.2.1 Packet Reception and Storage

The first task is used to receive redirected packets for storage in a specific packet
store. Packets redirected for storage are received on message queue. The structure
used to define each element of the queue is shown below.

typedef struct{
uint8_t struct_packet [MAX_PACKETSIZE] ;
uint8_t packet_sid ;
short l ength ;

}S15_Packet_TypeDef ;

Using this structure, each message holds the data for the entire telemetry packet it
represents. If a pointer to data residing in Service 3 was used, one of two structural
modifications would have to be made to the interface between Services 3 and 15.
Either the memory being referenced would have to be protected with a mutex, or
separate buffers would have to be defined for each Structure ID. If a mutex was used,
situations could arise in which the housekeeping data collection processes in Service
3 end up waiting for some slow or faulty process in Service 15. This increased level
of coupling between the services was considered unacceptable. Defining separate
buffers for each Store ID was also deemed inappropriate as it would increase the
number of source code modifications required each time the software was adapted
for a mission. If many SIDs were defined, it could also result in higher memory
usage than the method shown in the listing above. It was therefore chosen to pass
the packets to Service 15 by value and not by reference.
Once packets are received by this service, they are appended as the newest entry
to the packet store corresponding to the SID of the received packet. In the flight
software, the packet stores have been implemented as directories on the microSD
card. As packets are received, they are appended to the end of the newest file in
the directory corresponding to the correct packet store. If a file grows too large, an
error code is returned to indicate that a new file should be created. The reason for
using the microSD card instead of volatile memory on the OBC is so that the packet
stores will survive an OBC reset. The abundance of memory on the SD card also
enables packet stores to maintain a large catalogue of packets.
As the PUS given in [7] assumes that packet stores are kept in RAM, it does not
specify a storage format. A custom format for storing telemetry packets in files was

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. THE HOUSEKEEPING SYSTEM 70

therefore implemented. The format of each packet store entry is shown in Figure
5.4.

Time of
Storage

Packet
Length

Packet

Enumerated
(5 bytes)

Enumerated
(2 bytes)

Enumerated
(n bytes)

Figure 5.4 – Format of a packet store entry

The bytes containing the data shown above are written to a file as raw binary data.
The time stamp indicating the time that the packet was added to the store is placed
first. This is to make it easier to find specific packets requested for download. The
time is constructed from 5 bytes in the same format used in CCSDS telemetry
packets. The next two bytes indicate the length of the entire telemetry packet.
After the packet length, the next bytes are the packet itself. It was decided that this
structure would be the easiest to use when searching for and downloading specific
packets using sub-service 9. This process is described in Section 5.2.2.

5.2.2 Sub-service Implementation

For sub-services 1 and 2, storage in the Store ID specified is enabled or disabled
by setting a flag associated with the specified store. When the packet reception
task receives a new packet to be stored, it checks if the store corresponding to the
packet’s SID is enabled. If it is, then the store entry header shown in Figure 5.4 is
added to the front of the packet and the whole entry is added to the relevant store
When a “packet store contents download” request is received via sub-service 9, the
first step is to find the first packet requested for download in the packet store. Four
different time span options are available for this request.

• All: Every entry in the specified packet store is downloaded.

• Between: All the entries between two specified time instances are down-
loaded.

• Before: All the entries before a specified time instance are downloaded.

• After: All the entries after a specified time instance are downloaded.

Once the first packet corresponding to the request is found, housekeeping packets
will be extracted and downloaded one by one exactly as they are stored. This carries
on until the final packet specified by the request has been downloaded. Packets are
read from the store in the following manner.

1. The time stamp and length of a packet are read from the packet store file.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. THE HOUSEKEEPING SYSTEM 71

2. If the time stamp of the packet does not fall within the specified time span,
the file index is incremented an amount equal to the packet length. Thereby
skipping the current packet and leaving the file index at the start of the next
packet store entry.

3. If the time stamp does fall within the specified time span, the packet is read
from the store and downloaded. The file index will then be at the start of the
next packet store entry.

4. This process continues until a time stamp is read that falls after the specified
time span or the end of the store is reached. The download process can also
be aborted by a request to sub-service 128.

Once the contents of a store have been downloaded, there is usually little reason
to keep the packets on-board. A way to remove packets from the store is therefore
required. While the PUS for Service 15 specifies sub-services for this functionality,
these sub-services deal with the removal of sets of packets. As the file system does not
support the removal of data from a file, removing packets from a store would involve
rewriting the file without the specified packets. As this would be very inefficient, it
was decided implement the removal of packet store entries through the use of the
“Delete file” sub-service included in Service 131 (see Section 4.7). The names of files
in a store are taken from the time stamp of the first entry in the file, it is possible
to choose files to delete by examining the contents of a directory.
Service 3 is separated from Service 15 as housekeeping collection should not be
adversely affected by errors with the packet storage system or the file system. Service
15 is not as independent from the file system as it has to record the file and directory
names used in the packet stores. The use of the File System Interface library in
Service 15 makes the service easier to modify if a storage mechanism other than the
microSD card is implemented. One way to make Service 15 more robust would be
to implement functionality that creates a packet store in RAM should the SD card
or SPI bus fail.

5.3 Fault Tolerance
As stated in Section 2.3, a transient or intermittent fault can corrupt or damage
parts of the system that are persistent between different states, thus causing a
permanent error. In a system as remote as a satellite system, even small errors
with a low probability of occurrence should be treated seriously. In this section,
the implementation of fault tolerant techniques in the flight software is discussed.
As presented in Section 2.3, fault tolerant techniques can be implemented on an
architectural level and an application level.

5.3.1 Hardware fault tolerance

Architectural fault tolerance techniques can be applied to both hardware and soft-
ware architectures. Although this section concerns the implementation of software
techniques, the selection and effectiveness of these techniques is influenced by the

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. THE HOUSEKEEPING SYSTEM 72

hardware architecture. For this reason, a summary of fault tolerance techniques im-
plemented on the CubeComputer is given. The information in this section is taken
from [5].
Faults caused due to TID and SEL events are primarily hardware faults. CubeCom-
puter can detect and disable an SRAM module in which a SEL has occurred within
20µs. The device can then be power cycled to remove the latchup. As SRAM is
especially susceptible to SEUs, the stack and heap memory for an application run-
ning on CubeComputer will be kept in it’s two external SRAM modules. When
data is written to SRAM, it first goes through the EDAC module implemented in
the FPGA. The EDAC module has the capability to detect up to 6 and correct up
to two bit errors per byte. The same data is then written to both of the SRAM
modules. In this way, if one of the modules fails or requires a power cycle, no data
will be lost.
CubeComputer also contains both internal and external watchdog timers. Both of
these timers need to be reset by the main application before timing out to prevent
them resetting the OBC. The internal timer is used to detect lock-ups in the ap-
plication code due to SEUs or programming errors. If an error causes the internal
watchdog to malfunction, the external watchdog will power cycle the OBC in order
to remove the fault.

5.3.2 Architectural level fault tolerance

As mentioned before, the flight software is developed in a modular structure. Each
module performs its own application level checks to confine errors within a single
module and prevent the spread of external errors.
Any shared memory was also assigned a mutex to prevent corruption. It was also
insured that no two tasks required access to more than one of the same mutex. This
lowered the possibility of a deadlock condition.

5.3.3 Application level fault tolerance

In the context of generic software, application level fault tolerance is difficult to
implement as error detection generally requires knowledge of the intended state of
the software or the intended output of a function. For example, the threshold value
for the current drawn by a subsystem. Error handling and recovery procedures will
also be implemented differently for every system. The flight software therefore only
includes fault tolerance mechanisms applicable to every mission. This means that
of the four fault tolerance stages discussed in Section 2.3.3, it is primarily only the
detection step that is included in the flight software.

5.3.3.1 Error Detection

In a CubeSat system, implementation of fault tolerance is generally confined to
single-version techniques. The use of multi-version redundancy techniques such as
design diversity or TMR is undesirable to small CubeSat development budgets and
the tight specifications of the CubeSat standard. Various combinations of the checks

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. THE HOUSEKEEPING SYSTEM 73

documented in Chapter 2 are implemented at points in the flight software using if
statements. Lower level checks include:

• Checking for NULL pointers.

• Checking if an array index is out of bounds. This includes indices that
are negative or larger than the size of the array.

• Checking for a stack overflow. FreeRTOS can be set to perform run time
stack checking although this increases the time taken to perform a context
switch [4]. If it is enabled, a stack overflow will be caught and the hook func-
tion for an application stack overflow will be run. The handle and name of
the task in which the overflow occurred will be passed to the hook function.
At this point, two options are available. Either the OBC can be reset or the
software can attempt to restart the task in which the overflow occurred. Re-
starting a specific task requires very careful design considerations and the task
parameters may have been corrupted by the overflow. As the flight software
does not use dynamic memory allocation, stack overflows are expected to be
rare and a simple OBC reset is currently done in the hook function. Logging
of the overflow can also be placed in the hook function.

• Checking for numeric overflow. Attempting to store a value in a data type
not large enough to hold the value will result in data corruption. For example,
the maximum value that an 8-bit unsigned integer can hold is 255. Attempting
to store a value larger than 255 will therefore result in overflow. Using an 8-bit
signed integer lowers the maximum value that can be stored to 127 due to the
sign bit. Checks for numeric overflow are therefore specific to the data types
they protect.

• Checking that division by zero does not occur.

Application level checks include:

• Checking for invalid commands. For example, checking that a command is
being received by the correct subsystem.

• Checking for invalid command parameters such as parameters that are
out of range and sequence numbers that are out of order.

• Checking for invalid checksum values in new commands and data.

• Checking that subsystems return sensible values and housekeeping data.

• Performing time-out checks using the watchdog timers.

The extent to which these checks are implemented is dependant on a number of
factors including the probability of an error occurring in a section of code, the
total code size and timing considerations. As these characteristics will change from
mission to mission, these checks are only included in critical areas of the generic
flight software application. The overhead and code size contributed by adding these

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. THE HOUSEKEEPING SYSTEM 74

checks to the software is generally insignificant in comparison to the faults that can
occur if these errors go unnoticed.

5.3.3.2 Fault treatment and continued service

The procedure followed to remove a fault or ensure it does not negatively influence
the system depends largely on the state of the system and where it is detected. As
discussed in Section 2.3.3.1, both forward and backward recovery techniques exist
for removing faults from a system.
Forward error recovery techniques implemented in the flight software mainly include
the use of the EDAC system in CubeComputer’s FPGA and the use of the file
system to facilitate data and error logging procedures. The EDAC system is used to
execute “memory scrubbing” activities as described in 2.3.3.1. The CubeComputer
BSP includes functions that will read a section of data from the external SRAM
module through the FPGA and then write it back. This will correct up to two bit
errors per byte of data read. The BSP functions automatically keep track of which
addresses in the SRAM still need to be scrubbed. As the probability of more than
two bit flips per byte occurring is very low, this process should not have a very
high priority within the system. It is therefore placed in the FreeRTOS idle task.
The idle task has the lowest priority in the system and therefore only runs when
no other tasks are running. The scrubbing procedure therefore only runs when the
flight software is idle. The use of Whole Orbit Data (WOD) and error log files can
also be considered forward recovery techniques as they assist ground teams with
deciding how to proceed with a mission when faults occur.
Backward error recovery is based on the idea of returning the system to a previ-
ous state in which a detected error was absent. It was decided not to implement a
checkpoint method of backward recovery as these methods depend heavily on the
full mission-specific satellite system and are complex to implement and maintain.
OBC resets are the main method used to save the system from errors that cannot
be removed by the forward recovery methods. These resets are mainly performed
by the watchdog timer design presented in Section 5.3.3.3. For errors that can’t be
removed by a reset, a safe-mode flight software application is kept on CubeCom-
puter’s EEPROM. This application operates the satellite in the safest way possible
while a ground station crew performs diagnostics.

5.3.3.3 Watchdog timers

A multitasking system presents more potential errors that will not be detected by
a standard watchdog mechanism. As long as one task remains able to reset the
watchdog counter, any number of other tasks could become unresponsive without
the watchdog knowing about it. Two or more tasks could enter a deadlock situation
as described in Section 2.2.2, causing them to remain at the same point in their
execution indefinitely. Tasks with a higher priority could also starve lower priority
tasks of CPU time, making them unable to execute at all. The watchdog timer
therefore needs to be adapted to service each task independently of the others.
However, not all tasks can be serviced in the same manner. In [10], Murphy distin-
guishes between two types of tasks: regular tasks and waiting tasks. Regular tasks

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. THE HOUSEKEEPING SYSTEM 75

run at periodic intervals as they complete a cycle of execution or react to a periodic
timer. Waiting tasks react to events or inputs occurring at irregular intervals. As
the flight software contains both regular and waiting tasks, a watchdog timer had
to be implemented that accommodated both. Therefore, a watchdog manager task
was implemented to add some intelligence to the timer. Two different methods of
implementing the watchdog timer manager task were considered.
The first method was taken from [10]. In this scheme, the watchdog timer exists as
a high priority task that checks on the operation of the other tasks. Each regular
task has its own state flag that can assume a value of either alive or unknown. At
some point in the regular task’s execution, the flag is set to alive. If the watchdog
manager task checks the flag and sees alive, it assumes the task is working correctly
and sets the flag to unknown. If the watchdog task does not see unknown on any
task’s status flag, the watchdog timer is reset or “kicked”. The regular task then
needs to set the status flag back from unknown to alive before the next time the
watchdog manager task reads the flag. These variables do not need to be mutually
exclusive as atomic operations are performed on them.
As waiting tasks might not execute in every watchdog time-out period, an extra
state is required to handle them. Before every blocking line of code in a waiting
task, the state flag is set to asleep. Like alive, the asleep state is seen as a valid state
by the watchdog manager. The flag is then set to alive as soon as the task receives
input and begins executing. Figure 5.5 shows a diagram containing an example of
how this method would work. In the figure, Task 0 and Task 1 are regular states
and Task 2 is a waiting state.

Task(0(execution(loop

Set(task(0(status(flag(to(
ALIVE

Task(2(execution(loop

Set(task(2(status(flag(to(
ALIVE

Task(2(wait(for(event/input

Set(task(2(status(flag(to(
ASLEEP

Task(1(execution(loop

Set(task(1(status(flag(to(
ALIVE

IfWall(flags(alive(or(asleepm
{

}
else
{
(((Record(error(data
(((Reboot(flight(software
}

Set(all(alive(flags(to(unknown

Wait(for(a(period(less(than(
the(watchdog(timout(interval

Watchdog(Manager System(Tasks

Figure 5.5 – Watchdog Manager Structure. Adapted from [10]

The second method was taken from [49]. As in the first method, this scheme consists
of a single high priority watchdog manager task. However, instead of state flags,
the watchdog manager task maintains a structure containing a counting integer for
each other task in the system. Each time a task starts or loops, that task’s counter

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. THE HOUSEKEEPING SYSTEM 76

is incremented. If each task’s counter is above zero when the manager task runs,
the watchdog timer is reset. Advanced functionality can be added by including
minimum and maximum values for each counter. These values can then be used to
check if the tasks are running at the expected frequency. Of course, populating these
fields accurately requires extensive profiling of the system and even then, separate
timers may have to be set up for tasks that very rarely execute.
At the time of writing, the flight software consists of over 20 tasks of which nearly
all can be classified as waiting tasks. The majority of these waiting tasks react
mostly to telecommands from a ground station. As it is very difficult to predict
how often certain telecommands will be used, profiling the software will most likely
yield inaccurate results. The fact that the system has relatively few tasks also does
not justify adding the complexity required by the second method. Therefore, it was
decided to use the first method.
One exception to the mechanism shown in Figure 5.5 is tasks that are used to
transfer large amounts of data. For example, the task used to manage large data
downloads in Service 13. These tasks will receive commands to transfer data, set
their state flags to alive, and begin the transfer procedure. In most cases, these
transfers will last longer than the watchdog time-out period which would cause an
unwanted reset. For this reason, resetting the state flags of the tasks performing
the transfers needs to be done at intervals during the transfer. For example, after
each packet store entry in a Service 15 download or each SDU part in a Service 13
download.
The frequency at which the watchdog manager task checks the state flags is de-
pendant on the execution speed of the slowest task. Lower priority tasks may also
take longer than expected to execute if high priority tasks are very active over a
period. The watchdog time-out period can therefore only be accurately determined
once the entire system has been assembled. Once the execution time of the slowest
task has been determined, the time-out period can be set slightly longer to account
for scheduling jitter and execution variation. If an unresponsive task is detected by
the watchdog manager, debugging information about the malfunctioning task can
be saved before the timer is allowed to expire.

5.4 Conclusion
This chapter presented the services and fault tolerance mechanisms that make up the
housekeeping system. The two services implemented were Service 3: Housekeeping
Reporting and Service 15: On-board Storage and Retrieval. These services control
the collection, storage and transmission of housekeeping data. Users of the flight
software are required to implement mission specific housekeeping structures as well
as functions to populate them according to the requirements of the subsystems. The
file system interface is used by Service 15 to store housekeeping packets.
Various fault tolerance mechanisms were implemented to increase the reliability of
the satellite system. Due to the limited capacity of CubeSat systems, the imple-
mented tolerance techniques consist mainly of single-version software techniques.
Single-version techniques that were implemented include architectural and applica-

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. THE HOUSEKEEPING SYSTEM 77

tion level checks, a memory scrubbing procedure and a watchdog timer tailored for
a RTOS. The file system library discussed in Chapter 4 can also be used to maintain
error logs or storage of data other than what is stored by Service 15. This data can
then be downloaded and inspected by ground station teams to identify faults and
initiate recovery procedures.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6

Testing and Verification

The previous chapters of this thesis described how the various components of the
flight software were designed and implemented. This chapter details the methods
that were used to evaluate the operation of the software.
The first section of this chapter details all the components that were developed
and included exclusively for testing purposes during the development of the flight
software. Next, different components and characteristics of the flight software were
identified that could be tested in order to verify that the application was working
as desired. The rest of the chapter details the tests that were carried out as well as
the results that were obtained.

6.1 Testing phase set-up
During the development of the flight software, the modular structure allowed each
component to be tested as it was developed. For these tests, it was desirable to obtain
a set-up as close to a full communication chain as possible. To achieve this, various
hardware was used along with the main OBC and testing software was developed.
This section presents these additional components and describes the testing set-up
used during development.
For the tests conducted below, the flight software was loaded onto CubeComputer
version 2B. Models of the CubeSense and CubeAim ADCS systems were available for
integration with CubeComputer. The CubeSense model was added with a camera
acting as a Nadir sensor. As discussed in Section 6.1.1, a CubeDock module was
added in order to simulate the missing subsystems. The CubeDock module would
primarily be used to simulate a transceiver module.

6.1.1 CubeDock

CubeDock is a general purpose platform developed in the ESL for testing and sim-
ulation purposes. The standard CubeDock setup consists of a Giant Gecko MCU,
power regulation and control, UART and WIFI interfacing as well as lines config-
urable by means of link resistors. These link resistors allow the user to include or
exclude functionality from the board on a hardware level. Having the same dimen-
sions and header configurations as the other CubeSat hardware boards developed in

78

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. TESTING AND VERIFICATION 79

the ESL, it can easily be added to a stack of CubeSat hardware and programmed
to perform the desired function. For this project, programming and integrating a
CubeDock with CubeComputer was the only way to sufficiently test if the flight
software would be able to effectively manage an entire satellite system.
The reason for this was that purchasing a copy of each subsystem’s hardware could
not be justified for the sole purpose of testing this project. In order to test if the flight
software on CubeComputer could manage and maintain an entire satellite system,
certain subsystems would need to be simulated. As CubeDock can be assigned
multiple I2C addresses, the interfaces to multiple subsystems could be simulated
by programming CubeDock to accept and reply to telecommands and telemetry
requests. The following procedures and aspects of the flight software could then be
effectively evaluated and stress tested.

• Subsystem telemetry acquisition and logging: In order to simulate a
subsystem’s telemetry and data capture capabilities, data structures contain-
ing fabricated sensor readings and image data were hard coded into the simu-
lated subsystems. This enabled the data handling, housekeeping and logging
procedures to be tested. The effectiveness and impact of recovery proced-
ures could now also be tested by seeing if the system responded correctly to
abnormal telemetry received from subsystems.

• I2C management: With the exception of the SD card and the filesystem it
supports, every subsystem managed by the flight software communicates with
the OBC over I2C. CubeComputer has a primary I2C bus used for general
subsystems and payloads as well as a secondary I2C bus intended to be used
exclusively for ADCS subsystems. This gives the bus the potential to become
a major bottleneck in the command and data handling system. Therefore, it
was important to ensure that the I2C bus was managed to allow effective and
fair communication with each subsystem while still managing to meet hard
real-time requirements.

• Modular programming: One of the goals of this project was to develop the
software in a modular, reusable style. The ease with which the interfaces to
the subsystems being simulated on CubeDock could be added to or removed
from the flight software application would be a good measure of the extent of
the software’s modularity.

As one of the subsystems being simulated on CubeDock would be the transceiver
board, the UART interface to the PC used for testing would be contained in CubeDock,
which would then be connected to the PC via serial port. This accurately simulates
the final implementation of the software in which the main flight software applica-
tion is not exposed to the details of communication with the ground station. Data
is simply sent in the correct format to the transceiver board.

6.1.2 Ground Software Simulation

For the majority of the project, the various functions of the satellite were tested by
sending commands and data to it via UART from a PC. In order to do this, an ap-

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. TESTING AND VERIFICATION 80

Figure 6.1 – The main tab of the ground software simulation application

plication was developed in C# using an express version of Visual Studio 2012. This
application can be used to send commands and data to the satellite as well as receive
and decode the various telemetry packets, file downloads and image downloads. The
application was developed to conform to the CCSDS standards discussed in Section
3.4.1. The packetisation of the AX.25 protocol is not included in the communication
between the application and the flight software as this protocol is handled by the
transceiver on a satellite and the flight software therefore needs no knowledge of it.
Image data that is downloaded from the flight software can be converted to a bitmap
image file and displayed in the application. The main tab of the ground software
simulation software is shown in Figure 6.1.
The final test setup that was used for the majority of the development is shown
diagrammatically in Figure 6.2. The CubeDock module is connected to the PC
through a UART to serial converter. Using the hardware and software described
in this section, the transfer of data packets to and from the flight software could
be tested as if it were part of a full satellite system. Each of the services, subsys-
tem managers and interfaces could be tested as if the flight software was receiving
telecommands through an actual transceiver. The packetisation and transmission of
telemetry source packets could also be tested. Detection and handling of erroneous
elements in packets such as incorrectly set flags or out-of-range parameters were
tested by explicitly adding errors during the assembly of the packets in the ground
station application.

6.2 System Evaluation
During development, the set-up described in Section 6.1 was used to test each com-
ponent of the flight software individually as it was implemented. Having imple-
mented all the functionality that would be included in the generic flight software,

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. TESTING AND VERIFICATION 81

CubeComputer

CubeDock

I2C

Master

Slave

UART to USB
converter

Ground Station
Simulation

Figure 6.2 – Diagram of the test setup used during debugging and testing

the system could now be tested as a whole. A number of tests were designed and
performed in order to determine whether the software functioned as desired.

6.2.1 System configuration

Before qualifying the system, a number of modifications were made to bring the
software as close to a final version as possible. This was important to do before the
tests were carried out as the results could affected by some of the changes.

• The priorities of different tasks in the software were simply set according to
their real-time requirements. The task managing the ADCS algorithms was
given the highest priority after the watchdog manager task. The priority of
the interrupt handler task for the transceiver “Receive Ready” interrupt was
set lower than the ADCS task, but higher than most other tasks to ensure the
buffers in the transceiver would not overflow because data was being read too
slowly.

• The stack usage of the tasks in the system was measured and the size of the
memory assigned to each task was adjusted accordingly. The stack usage of
each task in the application was measured using the
uxTaskGetStackHighWaterMark ()

function from the FreeRTOS API. This function returns the minimum stack
space that was unused since the task began executing. This information was
used to identify tasks that were allocated more stack space than they would
ever need. Reducing the memory assigned to these tasks would optimise the
total memory required by the flight software application.

• A coding standard was implemented to make the software more understandable
and easier to use.

With the final system modifications made, the evaluation could begin.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. TESTING AND VERIFICATION 82

Test System Aspects Tested Test Method
1. Run multiple processes
simultaneously

RTOS scheduler, resource and
memory management.

Simultaneously download an
image, send telecommands,
and collect housekeeping
data.

2. Conformance to CCSDS
standard.

Correct packet formats and
protocols

Test with SCS GS software
and C# software

3. Stack usage and memory
footprint.

Optimal memory use. Test high watermarks

4. Real time requirements
testing.

Real time execution and de-
terminism, scheduling of com-
mands

CubeControl synchronisation

5. Software robustness. Robustness against erroneous
packets, invalid TC params,
etc

Send packets with errors in
parameters, checksums, etc

6. Execution timings Execution time of commonly
executed areas of code

Hardware measurements us-
ing GPIO pins

Table 6.1 – Tests used to evaluate the flight software

6.2.2 System testing

The first step in the testing process was to determine which aspects of the system
could be evaluated to determine if the system was functioning satisfactorily. Table
6.1 shows the different aspects that were tested and the methods used to evaluate
their operation. In the remainder of this section, the tests and their results are
presented. The test software presented in Section 6.1.2 was used for most of the
tests discussed below.
Test 1: Simultaneous execution of processes. For this test, a number of com-
mands were given to the software in addition to it performing various background
tasks. The default background tasks of memory scrubbing and the watchdog man-
ager were enabled as well as the periodic collection and logging of housekeeping data
from various subsystems. In addition to these background tasks, the download of a
large file from the file system was initiated. With the file download and background
task in process, various commands were sent to subsystems from the test software.
The timely execution of these commands was confirmation that the flight software
could execute multiple processes simultaneously.
Test 2: Conformance to CCSDS standard. While the test software was de-
veloped to use the CCSDS packet format, it was still desirable to test the flight
software with externally developed ground software to insure the CCSDS standard
had been correctly interpreted. To do this, the recently released Satellite Con-
trol Software (SCS) ground station application was used. The SCS application also
makes use of the PUS standard and could therefore be used to verify that the format
used for telecommand and telemetry packets was correct. Scripts for sending Service
15 telecommands from the SCS application were included in the default installation
and could be sent to the flight software using SCS’s Single Script Client.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. TESTING AND VERIFICATION 83

Figure 6.3 – Single Script Client

It was demonstrated that the flight software could successfully receive and decode
these commands confirming that the packet structure had been implemented cor-
rectly. The protocol used to receive a file uploaded using Service 13 could also be
checked using the Large Data Upload Client included in the installation.
This sub-application was successfully used to upload test files that were then stored
on the microSD card and checked to verify that the upload was successful. The
successful upload of files using the SCS application confirmed that the Large Data
Transfer protocol had been successfully implemented in the flight software
Test 3: Stack usage and memory footprint. The binary size of the final ap-
plication is 170 kB. This is excluding all test code and subsystem interfaces used for
testing throughout the project. In order to optimise the size of the heap assigned
to FreeRTOS, the stack size of each task was set to just above the maximum re-
quirements of the task at the time of writing. The length of all the communication
queues were also minimised. After this optimisation, the operating system could
run with 35 kB of heap memory available to it.
Test 4: Real time requirements testing. During the implementation of the
command scheduling service, it was verified that commands could be scheduled for
execution at specific times. It was still desired to perform a practical test that
would demonstrate the ability of the system to meet hard real time requirements.
A suitable test was found in the ESL’s CubeControl module. The execution loop in
CubeControl contains an execution loop that contains a 5 ms window in which it
must receive a synchronisation command from the main OBC. If it does not receive

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. TESTING AND VERIFICATION 84

Figure 6.4 – Upload Large Data client

this command, it will return an error and malfunction. The CubeControl module
could therefore be used to test whether the flight software could meet hard real time
requirements. After integrating the CubeSense module with the flight software to a
minimal extent, the application was run and the correct functioning of CubeSense
was confirmed while the system performed various unrelated tasks. This validated
the compliance of the flight software with the hard real time requirements.
Test 5: Software Robustness. A number of tests were performed to evaluate
the robustness of the flight software. Certain tasks were hard-coded to intentionally
become unresponsive at certain points. The watchdog manager task would then
identify the offending task as being unresponsive and allow CubeComputer’s watch-
dog timer to time out. Packets were also sent to the flight software with checksum
errors and incorrect parameters. It was shown that the software could detect these
errors and, in appropriate cases, notify the ground station of the failure.
Test 6: System timings. Although Test 4 had already verified that the system
could comply with real-time requirements, it was still desirable to obtain some values
for the execution timings of certain aspects of the flight software. This would give
insight into the operation of the system and help to identify any bottlenecks in
execution. The simplest, most accurate method that could be used to obtain these
measurements was through the use of an available GPIO pin on the MCU. An easily
accessible pin was found in the Data line of the secondary I2C bus. To use this pin
for measuring timings, the initialisation of the secondary I2C bus was removed from
the flight software and the pin previously used as the Data line was initialised as a
standard output pin. The pin was then connected to an oscilloscope. By toggling
the level of the pin at various points in the software, the execution time of sections
of code could be measured.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. TESTING AND VERIFICATION 85

Operation Execution Time (ms)
1. Boot Time 34
2. Transfer of packet to sub-
system manager

0.12

3. Reception of packet over
I2C and transfer to subsystem
manager

26

4. Generation and transmis-
sion of telecommand verifica-
tion

3

5. Transfer of packet to sub-
system manager while down-
loading a file from the file sys-
tem

11.6

6. Transfer of packet to sub-
system manager while down-
loading a file from the file
system with the priority of
telecommand reception task
raised

3.6

7. Writing a 242 byte SDU
part to the file system

33

Table 6.2 – Tests used to evaluate the flight software

The timings obtained are shown in Table 6.2. All of the timings in the table were
obtained with the watchdog timer manager task and memory scrubbing procedure
running in the background. Timing 1 is the time taken to initialise every peripheral,
manager and service used by the basic flight software application. Timings 2 to 6
indicate the effect of various events on the transfer of a telecommand packet around
the flight software. Timing 2 is the time taken for a telecommand packet to be
transferred to its destination after it has been received from the transceiver. This
can therefore be used as a base timing to which the other timings can be compared.
Comparing timings 3 and 4 to timing 2 leads to the conclusion that the slow speed
of the I2C bus is a bottleneck in the operation of the system.
To obtain timing 5, a file download task was run at the same priority as the tele-
command handling tasks. A file download procedure was chosen as it a relatively
lengthy and resource intensive operation. Timing 6 then shows the effect that rais-
ing the priority of one of the command handling tasks can have. Timing 7 simply
shows the time required to write a buffer to a file in the file system; an operation
that could happen over 1000 times during a file upload. The relatively long time
required to do this is not considered to be a major bottleneck as data written to
files will generally be received over the I2C bus at a similar rate.
The success of the tests described in this chapter indicated that the software was
functioning as desired. Two of the desired characteristics of the software, namely its
genericity and re-usability, were difficult to test. As stated throughout the thesis,

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. TESTING AND VERIFICATION 86

multiple measures were taken to strive towards these goals. The ease with which
subsystem modules such CubeSense and CubeControl had been integrated with and
removed from the flight software was considered a good indication that these goals
had been achieved; at least to an elementary extent.

Stellenbosch University http://scholar.sun.ac.za

Chapter 7

Conclusion

The primary goal of this project was to develop a generic flight software application
for a CubeSat using FreeRTOS. Initial phases of the project consisted of research
to determine the requirements and specifications of flight software. This research
identified the need for a command and data handling system, subsystem managers,
a housekeeping system and the implementation of software robustness techniques. It
was also decided to develop the software in a modular fashion to make the software
easier to adapt for a specific mission.
During the design phase, it was decided to adopt the CCSDS standard and its ex-
tension, the PUS. The use of this standard simplified the design process, provided
a definition for the interface between the satellite and the ground station, and in-
creased the re-usability and maintainability of the software. The PUS contains
definitions for services that perform the functions of each of the components iden-
tified during the research phase. These services were subsequently implemented
giving the flight software the required functionality. Aside from the PUS services,
other vital components were also implemented to complete the application. Inter-
face libraries for the I2C bus and third-party file system were developed as well as
subsystem managers to interface between the services and on-board subsystems.
Various fault tolerance techniques were also implemented to increase the robustness
of the application. A watchdog timer manager was implemented in order to detect
unresponsive tasks and return the system to an operational state. Application level
coding checks were included in critical and frequently used areas of the software to
protect against human errors, software bugs and other unexpected faults. To pro-
tect the system against excessive radiation-induced bit flips in the SRAM, existing
memory scrubbing routines were included in low priority tasks.
Once all of the above-mentioned components had been implemented, various tests
were carried out to evaluate the functionality and performance of the flight software.
The first test was to verify whether the CCSDS packet structure and file transfer
protocols had been correctly implemented. To do this, the SCS ground station
application was used to send telecommands and files to the flight software, which
could successfully decode these messages. In addition to testing each individual
component, the ability of the software to simultaneously respond to various requests
while performing separate background tasks was tested. The capability of the system

87

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 7. CONCLUSION 88

to meet hard real-time requirements was also tested along with its ability to detect,
mitigate and recover from errors and faults.
Once the above-mentioned tests had been completed, each of the project goals had
been achieved and the first version of the flight software application was complete.
The goal of implementing the flight software as a generic application had been
achieved by implementing all the core functionality required from OBC software.

7.1 Future Work
As the flight software has yet to be tested as part of a complete satellite system,
there are undoubtedly hidden faults that are yet to be discovered. However, until
such a time, there are a few improvements that can be made to the existing com-
ponents of the software. Only existing components are considered here as adding
new functionality to the software increases its complexity and therefore reduces its
re-usability.

• Intelligence could be added to the file system initialisation procedure to provide
backup storage should the microSD card or SPI bus fail. In these cases, a new
file system could be created in flash memory. The file system could be created
with less functionality and available storage space but would allow the storage
of critical diagnostic data.

• The Cortex-M3 used on CubeComputer contains a Memory Protection Unit
(MPU) that supports up to 8 protected memory regions. FreeRTOS contains
support for the Cortex-M3 MPU and it can therefore be used to increase the
robustness of the system by only giving tasks permission to use memory and
peripherals that they require.

• The watchdog manager task can be improved to monitor tasks in more in-
telligent ways depending on the type of task. For example, distinctions can
be made between tasks according to frequency of execution or their execu-
tion time. This would help to avoid unnecessary resets while improving the
speed at which unresponsive tasks are detected. Efforts could also be made to
only reset individual unresponsive tasks, returning the system to full operation
without resetting the entire application.

• The memory management schemes provided by FreeRTOS could be extended
to manage the heap memory used by the entire application. If this is done, it
will be safer to use libraries that use dynamic memory allocation such as data
compression libraries.

In conclusion, the implementation of tried and tested standards is highly recom-
mended when developing flight software. Especially for inexperienced developers
and software which is intended for multiple different missions. The use of a RTOS
is also recommended as long as an appropriate RTOS is selected according to the
needs of the mission. The tools provided by such a product can be of great as-
sistance during development. As the complexity that can be included in a CubeSat

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 7. CONCLUSION 89

grows, the use of a RTOS in CubeSat flight software is expected to become standard
practice.

Stellenbosch University http://scholar.sun.ac.za

Appendix A

Service 131: File System
Interface

Each of the PUS services discussed in this thesis defines formats for the application
data and source data fields of its telecommand and telemetry packets. The defin-
itions used for elements of the standard PUS services can be found in [7]. During
the course of this project, a custom service was to developed to provide an interface
between the ground station and the file system in the flight software. As the packet
formats for this service are not documented anywhere, this appendix is provided to
illustrate the structure of requests and reports defined for Service 131.

A.1 List directory contents (131, 1)
This request shall generate a list containing the names of any files and directories
within a directory. The structure of the resulting telemetry packet is defined by
Subtype 6.

Character String

Absolute Path

Figure A.1 – Service 131,1 telecommand packet application data

Absolute Path:

This field contains a null terminated string making up the absolute path
to the directory for which the list shall be generated.

A.2 Downloading a file from the file system (131, 2)
This request will initiate the download of a file stored on the mass storage device.
If the file is too large to be downloaded in a single telemetry packet, the file will be

90

Stellenbosch University http://scholar.sun.ac.za

APPENDIX A. SERVICE 131: FILE SYSTEM INTERFACE 91

downloaded via the large data transfer portion of this service. The service subtypes
involved in the transfer protocol are subtypes 128 to 135.

Absolute Path File name

Character String Character String

Figure A.2 – Service 131,2 telecommand packet application data

Absolute Path:

This field contains a null terminated string making up the absolute path
to the directory where the file to be downloaded is situated.

File Name:

This field contains a null terminated string making up the name of the file
to be downloaded.

Only one file can be downloaded at a time. The system needs to either receive an
acknowledge of successful download or an abort command before it can initiate the
transfer of a different file.

A.3 Deleting a file from the file system (131, 3)
This request will remove a file from the file system. The structure of a telecommand
packet belonging to this sub-service is the same as a packet belonging to sub-service
(131,2)
Absolute Path:

This field contains a null terminated string making up the absolute path
to the directory where the file to be deleted is situated.

File Name:

This field contains a null terminated string making up the name of the file
to be deleted.

A.4 Reset the file system (131, 4)
This request will reset the file system without clearing the data currently stored
on the mass storage device. A telecommand packet belonging to this sub-service
contains no application data.

Stellenbosch University http://scholar.sun.ac.za

APPENDIX A. SERVICE 131: FILE SYSTEM INTERFACE 92

A.5 Format the mass storage device and reset the file
system (131, 5)

This request will clear all data from the mass storage device used by the file system.
The file system will then be reinitialised. A telecommand packet belonging to this
sub-service contains no application data.

A.6 Directory contents report (131, 6)
This report contains the list generated by Service (131, 1).

Character String

Item NameN

1 octet

Repeated N times

Figure A.3 – Service 131,7 telemetry source packet, source data

N:

The number of items contained in the list.

Item:

A null terminated string containing the name of a file or directory.

A.7 File requested for download (131, 7)
This report contains a file requested for download by Service (131, 2).

Variable octet string

File Data

Figure A.4 – Service 131,8 telemetry source packet, source data

File Data:

The data making up the file requested for download.

Stellenbosch University http://scholar.sun.ac.za

APPENDIX A. SERVICE 131: FILE SYSTEM INTERFACE 93

A.8 File download service subtypes (131, 128) to (131,
135)

The list below contains the service subtypes involved in downloading a large file
from the file system to the ground station.

• (131, 128): Downlink the first part of a file.

• (131, 129): Downlink an intermediate part of a file.

• (131, 130): Downlink the last part of a file.

• (131, 131): Downlink a report of transfer abort by the satellite.

• (131, 132): Receive downlink reception acknowledge.

• (131, 133): Receive report of unsuccessfully received parts.

• (131, 134): Downlink a part requested for re-transfer.

• (131, 135): Receive transfer abort from the receiving end.

The protocol for the file transfer matches that of service 13 except for the way in
which the Large Data Unit ID is used. In service 13, the Large Data Unit ID field is
populated with mission-specific values that uniquely identify the data that is being
downloaded. As files will be created and deleted often with different names and
contents, it does not make sense to try and assign an unique ID to each file. The
ID will therefore simply act as a count for the number of files downloaded and will
be incremented with each download. In this way, the ID field can still be used to
ensure each received packet belongs to the correct file.

Stellenbosch University http://scholar.sun.ac.za

Appendix B

Mission specific elements of the
flight software

The flight software in this project has been developed to provide a framework that
is as generic and configurable as possible. However, every satellite mission is unique
and it is unavoidable that a number of additions and configurations will have to be
made to the software for every mission. This appendix provides a list of additions
that will need to be made to the software when configuring it for a specific mission.

B.1 Addition of subsystems
The primary modification that will have to be made is the addition of the mission-
specific subsystems. The following steps should be taken in order to integrate a
subsystem with the flight software.

• Integrate the interface to the subsystem with the relevant subsystem manager
task. After this has been done, the manager task should be able to receive
a telecommand and format it into an I2C message that can be sent to the
subsystem.

• Alter the FSW_COMM_receiveTC task to decode messages received from
the transceiver module according to the transceiver’s transfer format.

• In order for Service 3 (housekeeping collection) to be able to collect the re-
quired telemetry from the added subsystems, two additions are required. The
structures that hold the housekeeping data as well as the functions that pop-
ulate the structures. The structures will be located in Service 3 while the
housekeeping data collection functions will reside in the relevant subsystem
modules.

• Application level fault tolerance to verify the correct functioning of subsystems.

• Recovery procedures that can be executed should a fault be detected in one
of the subsystems.

94

Stellenbosch University http://scholar.sun.ac.za

APPENDIX B. MISSION SPECIFIC ELEMENTS OF THE FLIGHT SOFTWARE 95

B.2 CCSDS modifications
Various modifications will also have to be made to the PUS services to configure
them according to the needs of the mission.

• The APIDs for each process will need to be defined in order to identify the
destination of a telecommand packet and the source of a telemetry packet.

• If any new application processes are defined, the tracking of sequence counts
for received telecommands and released telemetry packets will need to be im-
plemented in order to uniquely identify telecommands.

• Functions to configure the services during operation should be added to the
relevant subsystem managers.

• Requests to Service 1 (telecommand verification) should be placed in areas
of the code where confirmation of telecommand execution will be important.
Mission specific error codes should also be defined for notifying ground station
operators of the reason for a telecommand failure.

• Service 8 should be modified so that it can direct a telecommand from the
ground to any application process.

• The length of the command queue managed by Service 11 should be set ac-
cording to the needs of the mission.

• Each large set of data that is expected to be downloaded or uploaded using
Service 13 (Large Data Transfer) should be assigned an ID in order to identify
what sort of data a packet contains. Functions should also be implemented
to transfer packets received during an upload operation to their destination
on-board the satellite.

• The number of packets that can be missed in an upload or download procedure
before the transfer is aborted should be decided upon. The array that stores
the sequence numbers of missed packets should then be sized accordingly.

• Each structure defined for Service 3 should have a corresponding store in
Service 15.

B.3 System modifications
A few components of the flight software will need to be configured regardless of
whether changes are made to the subsystem definitions and PUS services.

• The priorities of all the tasks in the flight software should be set according to
the needs of the mission. For most missions, it should be sufficient to operate
most of the tasks on the same priority level. The watchdog manager task
should always run at a higher priority than any other task.

Stellenbosch University http://scholar.sun.ac.za

APPENDIX B. MISSION SPECIFIC ELEMENTS OF THE FLIGHT SOFTWARE 96

• The start-up procedure of the flight software should be configured to ensure
that the various components, subsystems and service are started in the correct
order.

• The lengths of the various buffers, message queues and similar data types
should be set according to the system requirements and the available memory
in the system.

• Most satellites periodically transmit a beacon message to indicate that the
satellite is still functional. The contents of this message should be defined and
implemented in the BEACON_PULSE() task.

Once all of the above steps have been carried out, the flight software should be fully
integrated and configured for a specific mission.

Stellenbosch University http://scholar.sun.ac.za

Bibliography

[1] VGNet: Lecture CubeSats Veron Breda. Amateur Radio Station PE0Sat.
Available at: www.pe0sat.vgnet.nl/tag/lecture/

[2] Ginet, G., Madden, D., Dichter, B. and Brautigam, D.: Energetic proton maps
for the south atlantic anomaly. In: Radiation Effects Data Workshop, 2007
IEEE, vol. 0, pp. 1–8. July 2007.

[3] Pasetti, A. and Pree, W.: A Reusable Architecture for Satellite Control Soft-
ware. IEE/AIAA 19th Digital Avionics Systems Conference, 2001.

[4] Barry, R.: Using the FreeRTOS Real Rime Kernel. Cortex-M3 Edition. Real
Time Engineers Ltd, 2010.

[5] Botma, P.: CubeComputer Version 3: General Purpose Onboard Computer.
Datasheet Revision D. 2013.

[6] George, F. and Billeter, S.: Satellite Control Software TM & TC Packets Defin-
ition Recommendation. Swiss Space Centre EPFL, November 2013.

[7] ECSS: Space engineering (ECSS-E-70-41A). January 2003.

[8] Swiss Space Center EPFL: SwissCube housekeeping parameters. 2009.

[9] Masson, L., Voumard, Y. and Richard, M.: QB50 Recommendation for Flight
Software Implementation. 2014.

[10] Murphy, N.: Watchdog timers. EE Times-India, November 2000.

[11] Heidt, H., Puig-suari, P.J., Moore, P.A.S., Nakasuka, P.S. and Twiggs, P.R.J.:
CubeSat: A new Generation of Picosatellite for Education and Industry Low-
Cost Space Experimentation. 14TH Annual/USU Conference on Small Satel-
lites, North Logan, Utah, USA, 2000.

[12] von Karman Institute for Fluid Dynamics: QB50. https://www.qb50.eu.

[13] Wertz, J.R. and Larson, W.J.: Space Mission Analysis and Design. Third Edi-
tion. Microcosm Press, 1999.

[14] Klofas, B. and Anderson, J.: A Survey of CubeSat Communication Systems.
CubeSat Developers’ Conference, 2008.

97

Stellenbosch University http://scholar.sun.ac.za

www.pe0sat.vgnet.nl/tag/lecture/
https://www.qb50.eu

BIBLIOGRAPHY 98

[15] Klofas, B. and Leveque, K.: A Survey of CubeSat Communication System.
CubeSat Developers’ Workshop, April 2013.

[16] LaBel, K.A., Gates, M.M., Moran, A.K., Marshall, P.W., Seidleck, C.M. and
Dale, C.J.: Commercial microelectronics technologies for applications in the
satellite radiation environment.
Available at: radhome.gsfc.nasa.gov/radhome/papers/aspen.htm.

[17] Beck, R.P., Desai, S.R., Radigan, R.P. and Vroom, D.Q.: Software Reuse: A
Competitive Advantage. AT&T Bell Laboratories, 1991.

[18] Johnson, R.E.: Frameworks = (Components + Patterns). Communications of
the ACM, vol. 40, no. 10, pp. 39–42, 1997.

[19] Alonso, A., Salazar, E. and de la Puente, J.A.: Design of on-board software for
an experimental satellite. 2012.

[20] dos Santos, W. and da Cunha, A.M.: Towards a pattern-based framework for
satellite flight software using a model-driven approach. 2009 Brazilian Sym-
posium on Aerospace Engineering and Applications, 2009.

[21] Cosandier, B., Florian, G. and Choueiri, T.: Swisscube flight software architec-
ture. Swiss Space Centre EPFL, August 2007.

[22] Kuo, T., Juanj, J., Tsai, Y., Tsai, Y. and Sheu, J.: Flight Software Develop-
ment for a University Microsatellite. Journal of Aeronautics, Astronautics and
Aviation, 2012.

[23] Holmstrom, D.E.: Software and Software Architecture for a Student Satellite.
Norwegian University of Science and Technology, 2012.

[24] Renesas Electronics Corporation: General RTOS concepts. 2010.

[25] Schaffer, J. and Reid, S.: The Joy of Scheduling. QNX Software Systems, 2011.

[26] Martin, S: Introduction to Real - Time Operating Systems. Quadros Systems
Inc., 2013.

[27] Suleman, M.A., Mutlu, O., Qureshi, M.K. and Patt, Y.N.: Accelerating critical
section execution with asymmetric multi-core architectures. ACM SIGPLAN
Notices, vol. 44, no. 3, p. 253, February 2009.
Available at: http://portal.acm.org/citation.cfm?doid=1508284.
1508274

[28] Torres-Pomales, W.: Software Fault Tolerance : A Tutorial. Langley Research
Center, October 2000.

[29] Butler, R.W.: A Primer on Architectural Level Fault Tolerance. Langley Re-
search Center, February 2008.

[30] Burns, A. and Wellings, A.: Real-Time Systems and their Programming Lan-
guages. Addison Wesley, 1990.

Stellenbosch University http://scholar.sun.ac.za

radhome.gsfc.nasa.gov/radhome/papers/aspen.htm.
http://portal.acm.org/citation.cfm?doid=1508284.1508274
http://portal.acm.org/citation.cfm?doid=1508284.1508274

BIBLIOGRAPHY 99

[31] Abbott, R.J.: Resourceful systems for fault tolerance, reliability, and safety.
ACM Computing Surveys, vol. 22, no. 1, pp. 35–68, 1990.

[32] Conrad, J.M.: Advanced Embedded Systems Concepts using the Renesas RX63N
Microcontroller. Renesas Electronics Corporation, 2014. ISBN 9781935772958.

[33] Silicon Labs: EFM32GG Reference Manual: Giant Gecko Series. 2013.

[34] Pouly, J. and Jouanneau, S.: Model-based Specification of the Flight Software
of an Autonomous Satellite. 2012.

[35] Ganssle, J.: The Art of Designing Embedded Systems. 2000. ISBN 0750698691.

[36] Aroca, R.V. and Caurin, G.: A Real Time Operating Systems (RTOS) Com-
parison. 2007.

[37] Otava, L.: Analysis of Selected RTOS Characteristics. 2010.

[38] Moore, R.: How to Pick an RTOS. Micro Digital, Inc, 2012.

[39] Krasner, J.: RTOS Selection and Its Impact on Enhancing Time-To-Market
and On-Time Design Outcomes. Embedded Market Forecasters, March 2007.

[40] UBM Tech Electronics: 2013 Embedded Market Study. DESIGN WEST Em-
bedded Systems Conference, 2013.

[41] FreeRTOS: Features overview.
Available at: www.freertos.org/FreeRTOS_Features.html

[42] Consultative Committee for Space Data Systems: CCSDS Missions. 2014.
Available at: public.ccsds.org/implementations/missions.aspx

[43] Consultative Committee for Space Data Systems: CCSDS Data System Stand-
ards: Telecommand. June 2001.

[44] Consultative Committee for Space Data Systems: CCSDS Data System Stand-
ards: Telemetry. November 2000.

[45] Consultative Committee for Space Data Systems: CCSDS 301.0-B-2: Time
Code Formats. 1990.

[46] Milne, G.W., Schoonwinkel, A., du Plessis, J.J., Mostert, S., Steyn, W.H.,
vd Westhuizen, K., vd Merwe, D.A., Grobler, H., Koekemoer, J.A. and Steen-
kamp, N.: SUNSAT - Launch and First Six Month’s Orbital Performance. 13th
Annual AIAA/USU Conference on Small Satellites, 1999.

[47] Sandisk Corporation: SanDisk SD Card Product Family Version 2.2. 2007.

[48] Thatcher, J., Coughlin, T., Handy, J. and Ekker, N.: NAND Flash Solid State
Storage for the Enterprise: An In-depth Look at Reliability. 2009.

[49] Ganssle, J.: Great watchdog timers for embedded systems. 2011.
Available at: www.ganssle.com/watchdogs.htm

Stellenbosch University http://scholar.sun.ac.za

www.freertos.org/FreeRTOS_Features.html
public.ccsds.org/implementations/missions.aspx
www.ganssle.com/watchdogs.htm

	Abstract
	Opsomming
	Acknowledgements
	List of Figures
	List of Tables
	Nomenclature
	Acknowledgements
	1 Introduction and Problem Description
	1.1 The CubeSat Standard
	1.1.1 CubeSat in the ESL

	1.2 Satellite system overview
	1.3 Challenges in the space environment
	1.4 Software reuse
	1.5 Project goals
	1.6 Brief Chapter overview

	2 Flight Software Background Information
	2.1 Requirements of flight software
	2.2 RTOS
	2.2.1 Multitasking
	2.2.1.1 The Scheduler
	2.2.1.2 Task Communication
	2.2.1.3 Semaphores and Task Synchronisation

	2.2.2 Resource management
	2.2.3 Memory management

	2.3 Fault Tolerance
	2.3.1 Possible faults
	2.3.2 Architectural level fault tolerance
	2.3.3 Application level fault tolerance
	2.3.3.1 Single-version software fault tolerance techniques
	2.3.3.2 Watchdog timers

	2.3.4 Conclusion

	2.4 Existing hardware and drivers
	2.4.1 CubeComputer
	2.4.2 Board Support Package

	2.5 Conclusion

	3 Flight Software Design Phase
	3.1 Structural Design Choices
	3.1.1 Modular Programming
	3.1.2 Memory Allocation

	3.2 FreeRTOS
	3.2.1 Choosing a RTOS
	3.2.2 FreeRTOS Implementation
	3.2.2.1 Configuration
	3.2.2.2 Kernel Memory Management

	3.3 Flight Software overview
	3.4 Flight Software Standards
	3.4.1 CCSDS Packet Standard
	3.4.2 ECSS Packet Utilisation Standard
	3.4.3 PUS Services

	3.5 Conclusion

	4 Command and Data Handling
	4.1 The I2C interface
	4.1.1 The I2C manager
	4.1.2 The I2C interface

	4.2 Service 1 implementation
	4.3 Service 8 implementation
	4.4 Service 11 implementation
	4.4.1 The Command Schedule
	4.4.2 Scheduling service subtypes

	4.5 Service 13 Implementation
	4.5.1 Large Data Upload
	4.5.2 Large Data Download
	4.5.3 Re-transferring missing packets
	4.5.4 Notes on the Transfer Protocol

	4.6 The Filesystem
	4.6.1 SD cards
	4.6.2 The File System
	4.6.3 The File System Interface Library

	4.7 Service 131: Mass storage interface
	4.8 Subsystem Command Managers
	4.9 Transceiver communication
	4.10 Conclusion

	5 The Housekeeping System
	5.1 Service 3: Housekeeping and diagnostic data reporting
	5.1.1 Housekeeping data collection
	5.1.2 SID masks

	5.2 Service 15: On-board storage and retrieval
	5.2.1 Packet Reception and Storage
	5.2.2 Sub-service Implementation

	5.3 Fault Tolerance
	5.3.1 Hardware fault tolerance
	5.3.2 Architectural level fault tolerance
	5.3.3 Application level fault tolerance
	5.3.3.1 Error Detection
	5.3.3.2 Fault treatment and continued service
	5.3.3.3 Watchdog timers

	5.4 Conclusion

	6 Testing and Verification
	6.1 Testing phase set-up
	6.1.1 CubeDock
	6.1.2 Ground Software Simulation

	6.2 System Evaluation
	6.2.1 System configuration
	6.2.2 System testing

	7 Conclusion
	7.1 Future Work

	A Service 131: File System Interface
	A.1 List directory contents (131, 1)
	A.2 Downloading a file from the file system (131, 2)
	A.3 Deleting a file from the file system (131, 3)
	A.4 Reset the file system (131, 4)
	A.5 Format the mass storage device and reset the file system (131, 5)
	A.6 Directory contents report (131, 6)
	A.7 File requested for download (131, 7)
	A.8 File download service subtypes (131, 128) to (131, 135)

	B Mission specific elements of the flight software
	B.1 Addition of subsystems
	B.2 CCSDS modifications
	B.3 System modifications

	Bibliography

