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Abstract

Network-Based Contextualisation of LC-MS/MS
Proteomics Data

A. Geiger
Institute for Wine Biotechnology,

University of Stellenbosch,
Private Bag X1, Matieland 7602, South Africa.

Thesis: Master of Science in Wine Biotechnology (Computational Biology)

December 2014

This thesis explores the use of networks as a means to visualise, interpret and
mine MS-based proteomics data.

A network-based approach was applied to a quantitative, cross-species LC-
MS/MS dataset derived from two yeast species, namely Saccharomyces cere-
visiae strain VIN13 and Saccharomyces paradoxus strain RO88.

In order to identify and quantify proteins from the mass spectra, a work�ow
consisting of both custom-built and existing programs was assembled. Net-
works which place the identi�ed proteins in several biological contexts were
then constructed. The contexts included sequence similarity to other proteins,
ontological descriptions, proteins-protein interactions, metabolic pathways and
cellular location.

The contextual, network-based representations of the proteins proved e�ec-
tive for identifying trends and patterns in the data that may otherwise have
been obscured. Moreover, by bringing the experimentally derived data to-
gether with multiple, extant biological resources, the networks represented the
data in a manner that better represents the interconnected biological system
from which the samples were derived. Both existing and new hypotheses based
on proteins relating to the yeast cell wall and proteins of putative oenologi-
cal potential were investigated. These proteins were investigated in light of
their di�erential expression between the two yeast species. Examples of pro-
teins that were investigated included cell wall proteins such as GGP1 and
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SCW4. Proteins with putative oenological potential included haze protection
factor proteins such as HPF2. Furthermore, di�erences in capacity for malo-
ethanolic fermentation between the two strains were also investigated in light
of the protein data. The network-based representations also allowed new hy-
potheses to be formed around proteins that were identi�ed in the dataset, but
were of unknown function.
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Uittreksel

Netwerk-Gebasseerde Kontextualisasie van LC-MS/MS
Proteome Data

(�Network-Based Contextualisation of LC-MS/MS Proteomics Data�)

A. Geiger
Institute vir Wynbiotegnologie,
Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: Magister in die Natuurwetenskappe in Wynbiotegnologie

Desember 2014

Hierdie studie verken die gebruik van netwerke om proteonomiese data te vi-
sualiseer, te interpreteer en te ontgin.

'n Netwerkgebaseerde benadering is gevolg ter ontleding van 'n kwantitatiewe
LC-MS/MS datastel wat afkomstig was van twee gis-spesies nl, Saccharomyces
cerevisiae ras VIN1 en Saccharomyces paradoxus ras RO88.

Die massaspektra is met bestaande en selfgeskrewe rekenaarprogramme ver-
werk om 'n werkvloei saam te stel ter identi�sering en kwanti�sering van die
betrokke proteïene. Hierdie proteïene is dan aan bestaande biologiese data-
basisse gekoppel om die proteïene in biologiese konteks te plaas. Die gekon-
tekstualiseerde is dan gebruik om biologiese netwerke van die data te bou. Die
kontekste beskou onder meer lokalisering van selaktiwiteite, ontologiese be-
skrywings, ooreenkomste in aminosuur-volgordes en interaksies met bekende
proteïene asook assosiasie en verbintenisse met metaboliese paaie.

Hierdie kontekstuele, netwerk-gebaseerde voorstelling van die betrokke prote-
ïene het e�ektief duidelike data-tendense en patrone opgelewer wat andersins
nie opmerkbaar sou wees nie. Daarby het die kombinering van eksperimentele
data en bestaande biologiese bronne 'n beter perspektief aan die data-analise
verleen. Beide bestaande en nuwe hipoteses tov gis-selwandproteïene en pro-
teïene met moontlike wynkundige potensiaal is ondersoek in die lig van hul
di�erensiële uitdrukking in die twee gis-spesies. Voorbeelde wat ondersoek is
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sluit in selwandproteïene soos GGP1 en SCW4 asook waasbeskermingsfaktor-
proteïen HPF2. Verskille tov kapasiteit mbt malo-etanoliese gisting is ook
gevind. Die netwerk-gebaseerde voorstellings het ook aanleiding gegee tot die
formulering van nuwe hipoteses mbt datastel-proteïene waarvan die funksies
tans onbekend is.
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Chapter 1

Introduction and Aims

1.1 Network-based Contextualisation of Omics

Data

The characteristics of biological systems arise from the interactions amongst
the molecules of which they are comprised. However, the coherent behaviours
and responses that are observed in living systems are not solely produced by
the interactions between the individual molecules themselves. Instead, they
are the result of large numbers of functionally diverse sets of components that
interact selectively [1; 2; 3].

The advent of omic technologies have greatly advanced knowledge of living
systems by o�ering system-wide snapshots of classes of molecules at a given
point in time. However, given the interlinked, multi-layered systems from
which these datasets are derived and the generally high volumes of data that
these omic experiments produce, the tasks of data analysis and interpretation
present many new challenges.

Interpreting such large datasets requires a multi-faceted approach, drawing
on both predictive computational tools and extant knowledge contained within
biological databases and literature. Furthermore, the systems-based nature
of the problems necessitates that many layers of information be integrated.
In order to facilitate such tasks, conceptual and physical frameworks for the
integration of experimental data with relevant resources are needed.

Networks are ideal for the study and modelling of complex systems. A
system consisting of interlinked components can be represented as a collection
of nodes and edges and this form of representation o�ers not only an intuitive
means for visualisation, but also a mathematical structure to which a variety
of network analysis tools can be applied. Moreover, representing omics data as
a network o�ers both a global and local perspective of the data, allowing a con-
siderable amount of data to be visualised without obscuring patterns, trends
and relationships [1; 2; 3]. Such network-based approaches have proven to be
e�ective solutions to the problems of data contextualisation and interpretation

1
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[4; 5; 6].
Historically, the �elds of genomics, transcriptomics and metabolomics have

received relatively more attention when compared to proteomics. This can
mainly be attributed to the technical di�culties associated with large scale
proteome analyses [7]. However, collective advances in chromatography, tech-
niques for the ionisation of biomolecules, Mass Spectrometry (MS) and com-
putational capacity have made large-scale proteomics comparable in power to
other more established omics technologies [8].

1.2 Aims

This thesis focuses on the analysis and interpretation of MS-based proteomics
data by making use of networks as a tool for representing proteins within
various biological contexts. The multi-faceted nature and size of the datasets
necessitates the use of both computational network analysis tools and visual
network interpretation of the data. The aims of this work were as follows:
1) Identify and quantify proteins from a LC-MS/MS dataset derived from
a cross-species yeast secretome sample set that was labelled with Tandem
Mass Tags; 2) Construct networks placing the identi�ed proteins in various
biological contexts; 3) Use the networks to investigate and mine the data with
the objectives of investigating existing hypotheses as well as formulating new
hypotheses based on trends and patterns in the data. Each one of the aims
are discussed in more detail below:

1. Various programs and complete software packages for the identi�cation
and quanti�cation of proteins from LC-MS/MS data exist [9; 10; 11].
However, the identi�cation and quanti�cation of proteins from a quanti-
tative, cross-species proteomics experiment requires a customised work-
�ow in order for the data to be interpreted in a statistically defensible
manner [12; 13]. Therefore, the �rst aim was to assemble a work�ow that
would allow for the identi�cation and quanti�cation of proteins from a
quantitative, cross-species proteomics experiment.

2. Although proteins can be viewed as the e�ectors of the cell [14], they
still form part of a larger intricate biological system [1; 2; 15]. Biological
databases o�er ways to represent this system and allow for the contex-
tualisation of omics data. Proteins can be contextualised in a variety of
manners such as their sequence similarity to other proteins, their onto-
logical descriptions, with what other proteins they interact, metabolic
pathways they are associated with and where in the cell they are active.
Moreover, networks have been shown to be an e�ective means for the
analysis and contextualisation of omic data [4]. However, the datasets
have typically been viewed in isolation, using only a small portion of
the the contextual resources at a time. Thus, the second aim was to
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construct a variety of networks using many contexts, either building the
information into the structure of the network itself or as attributes.

3. The �nal aim was to use the constructed networks to mine and interpret
the data for both existing and new hypotheses relating to proteins that
may be of oenological interest.

1.3 Summary

The quantity and quality of proteomics data is likely to increase in keeping with
trends set by other omics technologies [8]. Given the nature and scale of the
data produced by MS-based proteomics experiments, proteomics data mining
is an area that is well suited for network-based approaches. This thesis involves
the development of a work�ow that is able to identify and quantify proteins
using LC-MS/MS data derived from a quantitative, cross-species experimental
design. Moreover, this study o�ers network-based contextualisations of the
proteins which allows for intuitive visualisation and hypotheses generation.
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Chapter 2

Literature review

2.1 Introduction

The technological advances of the past two decades have facilitated the de-
velopment of high throughput (HTP) omic technologies that have greatly ad-
vanced our knowledge of biological systems. A cornerstone in molecular biology
is the �ow of information from DNA to RNA to Protein. The genome of an
organism provides information on its protein-coding capacity, whilst the tran-
scriptome and proteome of an organism gives information about the genes that
are being expressed at that point in time. Furthermore, it is clear that com-
plexity in a living system does not simply arise from the net total of molecules
of which it is comprised, but rather the contextual combination of these com-
ponents [1; 2; 3].

In the past, the �elds of genomics, transcriptomics and metabolomics have
received relatively more attention when compared to proteomics. This can
mainly be attributed to the technical di�culties associated with large scale
proteome analyses [4]. Although great knowledge and biological insight has
been gained from studies of genes and their expression, equal knowledge on
the level of the proteome is required to complete the �ow of information.

The �eld of proteomics involves a variety of various technical disciplines.
However, for the characterisation of entire proteomes the use of Liquid chro-
matography (LC) coupled to Mass Spectrometry (MS) has been shown to be
a very valuable tool allowing for both protein identi�cation and quanti�cation
[5]. Speci�cally, the use of LC coupled to tandem mass spectrometry in shot-
gun proteomics approaches has illustrated the capacity to identify thousands
of proteins from a single sample in one experiment [6; 7; 8; 9]. Thus, large-
scale, high-accuracy proteomics is now comparable in power to other more
established omics technologies [9].

Omic technologies generate high volumes of data and present the opportu-
nity for system-wide understanding of living organisms. However, it is often
di�cult to extract information and observe trends within the data. Further-

1
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more, turning such omic data into biological knowledge requires linking the ex-
perimental data to relevant external databases and literature-based resources.

Proteins can be contextualised in a variety of manners such as sequence sim-
ilarity to other proteins, ontological descriptions, protein interactions, metabolic
pathways which they are involved in and where in the cell they are active. Al-
though all these contexts may be useful by themselves for the interpretation
of proteomics data, in order to interpret a subset of identi�ed proteins as part
of the larger system within which they function, integration of the contexts is
needed in order to gain the best possible systems view.

Networks are ideal for the study and modelling of complex systems and
are thus well suited to act as the sca�old for the integration of multiple layers
of biological data. Furthermore, in biology, networks have been successfully
applied in a myriad of ways for the interpretation of data [10] and provide
a means by which a complex system of interlinked components can be repre-
sented as a collection of nodes and edges. The network-based representation of
proteins within a biological network enables a considerable amount of data to
be visualised without obscuring patterns, trends and relationships that exists
in the data.

In the sections below, proteomics is discussed with focus on LC-MS/MS and
the subsequent data analysis that follows such an experiment. Furthermore,
the challenges of quantitative cross-species proteomics are also discussed. Next,
the interpretation of LC-MS/MS data is discussed with focus on a selection of
contextual resources that are currently available.

2.2 Proteomics

The proteome of an organism can be de�ned as the protein content of any given
cell including their isoforms, splice variants, post-translation modi�cations,
interacting partners as well as higher order complexes [11]. Furthermore, cells
do not have a single �xed proteome [12]. Instead the protein complement of
a cell is dynamic and is determined by a combination of factors such as its
genome, the environment the cell is in at that point in time and even the
history of the cell and what circumstances it has previously encountered [13].
Also the abundance of a protein may vary greatly, having possible dynamic
ranges that span �ve-fold [13].

There are several reasons why is it important to have systematic and quan-
titative information on proteins: 1) Proteins can be viewed as the e�ectors of
biological function within a cell, thus making any information about them or
their expression levels important [14]; 2) Any deviations from genome-based
predicted protein models could possibly be evident in the proteome; 3) mRNA
expression levels are often used to infer subsequent protein levels, however, the
two do not always correlate well [15]. Therefore it is necessary to identify and
quantify proteins in an organism precisely.
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The �eld of proteomics involves a variety of technical disciplines, however,
for the purpose of this work we will focus speci�cally on shotgun proteomics
and the role of Liquid Chromatography (LC) coupled to Mass Spectrometry
(MS) in this technique.

2.3 Liquid Chromatography (LC)

Chromatography allows for the separation, identi�cation and puri�cation of
compounds from complex chemical mixtures [16]. The manner with which
a compound or analyte distributes between two immiscible phases can be de-
scribed by its distribution or partitioning coe�cient. For two immiscible phases
A and B at a given temperature, the partitioning coe�cient can be calculated
as Kd = [A]

[B]
where [A] is the concentration of the analyte in phase A and [B]

is the concentration of the analyte in phase B. Chromatography exploits the
fact that analytes in a complex mixture have di�ering partitioning coe�cients
[17]. All chromatographic systems consist of an immobilised stationary phase
and a mobile phase. The mobile phase may be liquid or gas (always liquid in
LC) and is passed over or through the stationary phase after the sample that
needs to be separated has been applied [18; 17]. During chromatographic sepa-
ration, the analytes associate with the two phases to varying degrees such that
the di�erences in the partitioning coe�cients of the analytes result in their
separation. Two concurrent interactions a�ect the behaviour of an analyte
during chromatographic separation. The �rst involves the interaction of the
analyte with the stationary phase and the second involves interactions caused
by processes such as di�usion which oppose the desired separation [18; 17; 19].

Column chromatography is a form of chromatographic separation where
the stationary phase is either applied to the wall of the column as a thin �lm
or coated onto small discrete particles which are then packed into the column
[18; 19]. The mixture of analytes to be separated is applied and subsequently
eluated with the mobile phase. The mobile phase, also called the eluent, moves
through the column either by gravity or a pump [18].

2.3.1 High-performance liquid chromatography (HPLC)

HPLC is the modern culmination of advances in liquid chromatography and
is a form of column chromatography. In addition to a column, an HPLC
instrument also consists of a delivery system for the mobile phase which can
deliver �ow into the column at a constant rate, a sample injector system to
deliver samples in a reproducible manner and a detector. The latter gives
a continuous record of the analytes in the eluate as they emerge from the
column. Detection of an analyte is typically based on a physical parameter
such as visible or ultra violet absorption or �uorescence [20]. Furthermore, an
HPLC may be coupled to MS for further analysis of the analyte.
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An overview of an HPLC instrument and its components is shown in Figure
2.1A [20]. Samples are placed on a tray from which they are automatically
injected onto the column. Pumping of solvent through the column is contin-
uous and compounds are sensed by a detector as they leave the column. The
result is a plot of detector signal over time called a chromatograph. The chro-
matograph consists of a series of peaks that represent the elution of analytes
as shown in Figure 2.1B.

Figure 2.1: Diagram of an HPLC instrument. (A) shows an overview of
the instrument and its components. (B) is a simpli�ed diagram of the output
with z, x and y representing resolved analytes. Figure adapted from [20].

Chromatographic separations depend upon the choice of stationary and
mobile phases since these a�ect the partitioning coe�cients of the analytes.
Various combinations of mobile and stationary phases can be made and are
de�ned by the type of equilibrium that forms between them. For the separation
of peptides an adsorption equilibrium is often used.

Adsorption chromatography is based on the principle that a material has
the ability to retain a molecule at its surface. This retention is due to non-
ionic attractive forces such as hydrogen-bonding and van der Waals forces and
these occur at speci�c adsorption sites. The adsorption sites have the ability
to discriminate between types of molecules and may be occupied by either
molecules of the analyte or the eluent. The proportion of analytes or eluant
that occupies the adsorption sites is determined by their respective relative
strength of interaction with the mobile phase. As eluent is constantly passed
down the column, the separation of the analytes occurs as a result of di�erences
in the binding strengths of the analytes [17].
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2.3.1.1 Reverse phase high-performance liquid chromatography
(RP-HPLC)

RP-HPLC [21] is a form of adsorption chromatography. In this experimen-
tal system the stationary phase is typically a non-polar n-alkylsilica based
absorbent [22]. The mobile phase is relatively polar and consists of water,
aqueous bu�ers, and organic solvents such as acetonitrile, methanol or mix-
tures thereof [17]. In RP-HPLC, the separation of analytes is predominantly
determined by the composition of the mobile phase. The composition of the
mobile phase may be altered as the chromatographic process proceeds and this
technique is known as gradient elution. Gradient elution is typically applied for
the separation of peptides and may involve alterations to the pH and/or grad-
ual increases in the concentration of organic solvents [22]. In RP-HPLC, only
non-polar interactions with analytes are possible since the stationary phase is
basically inert [21; 22; 17].

2.3.1.2 Chromatographic Performance Parameters

The performance of a chromatographic separation can be measured by cal-
culating measures such as the plate height and resolution. Chromatography
columns can be viewed in terms of numerous adjacent zones in which there is
su�cient space for an analyte to completely equilibrate between two phases.
Each zone is termed a theoretical plate. The resolution of a chromatographic
separation indicates the ability of the system to resolve one analyte peak from
another [17].

2.3.1.3 Liquid Chromatography in Proteomics

The performance of a shotgun proteomics experiment is greatly a�ected by
the ability to separate peptides as much as possible prior to MS. To this end,
techniques such as HPLC are used due to their ability to separate tryptic pep-
tides with high e�ciency. Furthermore, approaches that make use of multiple
LC steps coupled to MS have shown an increased ability to identify proteins
[23; 24; 6; 7].

2.4 Mass Spectrometry

MS can be described as an analytical technique that can be used to identify the
chemical composition of compounds on the basis of the mass-to-charge ratios of
charged particles [25]. A generic mass spectrometer can be divided into three
essential components, namely an ion source responsible for the ionisation of
analytes in the sample, a mass analyser that can measure the mass-to-charge
(m/z) ratio and a detector that can register the amount of ions at each m/z
value [26]. Each one of the components are discussed in more detail below.
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2.4.1 Ion Sources

The �rst step in MS analysis requires the ionisation of the sample. The de-
velopment of electrospray ionisation (ESI) [27; 28] and matrix assisted laser
desorption/ionisation (MALDI) [29; 30] represented a major breakthrough for
MS and proteomics [5]. The development of these so-called `soft' ionisation
techniques solved the problem of generating ions from large non-volatile ana-
lytes such as proteins and peptides without inducing signi�cant analyte frag-
mentation [5].

2.4.1.1 ESI

ESI involves the formation of charged droplets under the in�uence of an intense
electric �eld and results in the production of gas phase ions from solutions
containing dissolved ions [31]. The process can generally be divided into three
steps, namely droplet formation, droplet shrinkage and desorption of gaseous
ions.

Figure 2.2: Diagram depicting ESI and the components involved. (A)
shows the high voltage power supply, metal capillary and �ow of electrons
between the components. (B) is an enlarged view of the liquid cone at the tip
of the capillary. Figure adapted from [31].
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Figure 2.2A illustrates the ESI process and components of the device. En-
richment of positive electrolyte ions occurs at the meniscus of the solution due
to the high electric �eld from the power supply and the needle-like dimension
of the metal capillary. The cations will tend to migrate toward the counter
electrode. As the net charge is pulled down�eld and the liquid expands, the
meniscus forms a cone from which a spray of small positive charged droplets is
emitted. Droplet volume is reduced further by evaporation of the solvent. The
continuous production of charged molecules is assisted by the electrochemical
redox process. Figure 2.2B is an enlarged view of the liquid cone that forms at
the tip of the capillary. This cone is called the Taylor cone. The least stable
point of the cone is the tip, which subsequently extends into a �lament where
the charged droplets are formed [31; 27; 28; 32].

2.4.1.2 MALDI

Figure 2.3 gives an overview of the MALDI process. The �rst step in MALDI
involves mixing the sample with excess matrix material such that the ratio
between sample and matrix is in the range of 1:10000. The mixture is deposited
on a sample plate and the solvent is evaporated which leaves sample-matrix
crystals. An ultraviolet (UV) laser beam with a beam diameter of a few
micrometers is directed at the sample for short pulses lasting only nanoseconds.
This results in the simultaneous desorption and ionisation of both sample
and matrix material and allows them to enter gas phase as intact ions. The
matrix material serves as an absorbing medium for the UV light converting the
incident light energy into molecular electronic energy and serves as a proton
source for the ionisation of samples [29; 30; 33; 34].

2.4.2 Mass Analysers

For the purposes of proteomics work, there are several types of mass analy-
sers in use including time-of-�ight (TOF), quadrupole, Fourier transform ion
cyclotron resonance (FT-ICR), ion trap and orbitrap. Each one of these instru-
ment types makes use of di�erent physical principles to obtain a mass-to-charge
(m/z) ratio and are discussed in more detail below.

2.4.2.1 TOF Mass Analysers

TOF analysers use an electric �eld to accelerate ions which are then separated
along a �ight tube based on their di�erent velocities. If the particles have the
same charge, their velocity (and consequently the time they take to reach the
detector) will depend only on the mass of the particle. Thus, the ions with the
lowest mass will reach the detector �rst. Figure 2.4 shows the ions formed in
the ion source. The ions are then separated in a �eld-free region of the �ight
tube before reaching the detector [35; 36; 37; 38].
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Figure 2.3: Diagram depicting MALDI coupled to a Time-of-Flight
mass analyser. The sample plate is a matrix where each entry is a sample
spot. Sample molecules are ionised by gas-phase proton transfer from the
matrix. The immediate area of laser excitation forms a plume, consisting of
matrix and analyte ions, which directly enters the high-vacuum of the mass
spectrometer. Figure taken from [34].

Figure 2.4: Diagram of a TOF analyser. Figure adapted from [38]

2.4.2.2 FT-ICR

A FT-ICR ion trap makes use of a magnetic �eld to trap ions inside an orbit
as shown in Figure 2.5. When a moving charge enters a magnetic �eld it
experiences a centripetal force which places the ion into orbit. The force on
the ion due to the magnetic �eld is equal to the centripetal force on the ion.
Detectors are placed at �xed positions in the mass analyser where they capture
the electrical signal of ions which pass near or over them, thus producing a
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periodic signal. The m/z of the ion determines the frequency of its cycle which
can be deconvoluted by performing a Fourier transform on the signal [38].

Figure 2.5: Diagram of a FT-ICR mass analyser. Figure taken from [38]

2.4.2.3 Linear Quadrupole Mass Analysers

Linear quadrupole mass analysers or �lters consist of four parallel rods through
which an electrical current is passed. As shown in Figure 2.6, a radio frequency
(RF) quadrupole �eld is created between the four parallel rods and this elec-
trical �eld is oscillated in a time-varying manner such that the paths of ions
passing through the RF can be stabilised or destabilised. Thus, at a given
time, ions of a desired m/z are allowed to pass through to the detector on a
stable trajectory [39; 40; 41].

2.4.2.4 Quadrupole Ion Trap

The quadrupole ion trap is the three dimensional form of the linear quadrupole
mass �lter described in Section 2.4.2.3 and employs similar principles for op-
eration. The quadrupole ion trap also uses an electric �eld for the separation
of the ions by mass to charge ratios. However, in an ion trap, ions of desired
m/z are held and then ejected. Furthermore, in the linear quadrupole mass
analysers forces on the ion is in two dimensions, whereas in the ion trap the
ion experiences forces in three dimensions.

As illustrated in Figure 2.7, the space in which the ions are trapped is de-
�ned by three electrodes, namely the central ring electrode and two adjacent
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Figure 2.6: Diagram of a Quadrupole mass analyser. Figure taken from
[40].

Figure 2.7: Schematic of a quadrupole ion trap. Figure taken from [40].

endcap electrodes. All three electrodes have hyperbolic surfaces. The appara-
tus is radially symmetrical with rO and zO representing the dimensions of the
apparatus as shown in Figure 2.7. Potentials are applied to all the electrodes
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with the ring electrode having an alternating potential of constant RF but
variable amplitude. The result is an electric �eld in the cavity of the analyser
where ions of certain m/z values will orbit in the space. The orbits of ions with
higher mass become more stable as the potential is increased and conversely
the orbits of ions with lower mass become less stable and can then be ejected
onto a detector [40; 41].

2.4.2.5 Orbitrap Mass Analyser

An orbitrap mass analyser di�ers from other types of mass analysers in the
sense that it does not use magnets or RF to place ions in orbit. Instead ions are
electrostatically trapped around a spindle shaped electrode (as shown along
the z-axis in Figure 2.8) in the center of the chamber. The ions are attracted
electrostatically toward the central electrode, however, a centrifugal force also
arises from the initial tangential velocity of the ions. This centrifugal force
compensates for the electrostatic force that an ion encounters. The result is
that ions move in complex spiral patterns around the central electrode [42].

Figure 2.8: Cutaway diagram of orbitrap mass analyser. The red arrow
indicates the point where ions are injected into the orbitrap. Figure adapted
from [43].

Ion oscillation induces a signal voltage which can be picked up by outer
electrode detector plates which are able to represent the oscillation of an ion in
terms of an image current. The m/z of an ion is related to the image current
that the detector will record. A Fourier transform is applied to the signals
provided by the recorded image currents in order to form mass spectra [42].
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2.4.2.6 Hybrid instruments

When several mass analysers of di�erent types are used to construct a mass
spectrometer, it is referred to as a hybrid instrument [38]. Figure 2.9 is a
diagram of one such hybrid instrument that is commonly used for LC-MS/MS.

Figure 2.9: A diagram of the LTQ Orbitrap. This is an example of a
hybrid instrument and consists of three main parts. The �rst section after the
source is a linear ion trap which is able a to detect MS and MSn spectra. In
the C-trap component ions are accrued and their energy dampened after which
they are injected into the orbitrap. Figure taken from [44].

2.4.3 Detectors

The third component of an MS device is the detector, which generates a record
of the ions in the form of a mass spectrum. The mass spectrum is a frequency
histogram indicating the intensity of an ion on the y-axis and the m/z value
of the ion on the x-axis. The m/z is the relationship of the mass of a given
ion, divided by the number of the charges that it has [45].

2.5 MS in Proteomics

MS is currently seen as the most valuable tool in proteomics [5]. MS, with
regard to proteomics, can be used for protein identi�cation, quanti�cation,
protein pro�ling and to study protein interactions and protein modi�cations
[46].

Following electrophoretic or chromatographic separation of sample com-
ponents, peptide mass �ngerprinting (PMF) [47] and sequencing by tandem
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mass spectrometry [48] are two major methods used for the identi�cation of
proteins [49]. An overview of both methods is presented in Figure 2.10.

Figure 2.10: PMF and sequencing by tandem MS. Two common methods
for protein identi�cation via MS. Figure taken from [49].

As shown in Figure 2.10, proteins are separated by gel electrophoresis or
liquid chromatography. A sequence-speci�c endoprotease such as trypsin is
then used to cleave the proteins into peptides. Following the digestion, molec-
ular masses are determined for the peptides. The obtained peptide masses are
then compared to theoretical peptide masses of proteins.

2.6 Shotgun Proteomics with LC-MS/MS

Shotgun proteomics refers to a technique where a complex mixture of proteins
are digested with an enzyme such as trypsin to give a mixture of peptides.
This mixture is then separated using LC and the peptides are sequenced by
tandem mass spectrometry (MS/MS). Automated database searching is done
to identify proteins [50]. Identifying proteins using tandem mass spectrometry
coupled with liquid chromatography is collectively known as LC-MS/MS.

2.6.1 LC-MS/MS

LC-MS/MS is a method that involves the use of more than one mass analyser
in tandem with one another [48]. In a typical MS/MS experiment, a precursor
ion is selected based on its mass by mass analyser 1 (MS1) and focused into
a collision region that precedes a second mass analyser (MS2). The mass
analysers can be arranged either in space as is the case with sector and triple
quadrupole instruments, or in time as is the case with trapping instruments
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such as an ion trap. Key to LC-MS/MS is a process termed Collision Induced
Dissociation (CID) [51]. This process involves the introduction of an inert
gas into a collision zone. In the collision zone the inert gas molecules collide
with the precursor ion. This process produces so called product ions from the
precursor ion and the product ions can then be mass analysed by MS2 [48; 51].

Figure 2.11: The work�ow and layout of a generic MS proteomics
experiment consisting of �ve steps. Figure taken from [46].

Figure 2.11 illustrates the �ve steps of a generic LC-MS/MS proteomics
experiment: 1) Proteins are isolated from the biological sample; 2) Proteins
are digested by enzymes such as trypsin; 3) Peptides are separated by HPLC
which is followed by ionisation of the elute in the ion source of the mass
spectrometer; 4) A mass spectrum of the peptides that eluted at this speci�c
point in time is generated. This spectrum is known as the MS1 spectrum. A
computer then generates list of these co-eluting peptides; 5) Each peptide ion
(as identi�ed by the �rst mass spectrum) is subject to energetic collision with
an inert gas. This spectrum is known as the tandem or MS/MS spectrum.
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Both the MS1 and MS/MS spectra for a single peptide ion are acquired within
approximately one second. These spectra are then stored and used to match
against a protein sequence data base. The desired outcome of the experiment
is the identity of the proteins that constituted the original sample [52].

2.6.2 Sample Preparation

A number of variables in�uence the type and quantity of proteins that are
extracted from a sample. These variables include the size of proteins to be
extracted, their cellular location, the point of extraction relative to the cell's
growth phase, the type of solvents that are used and extraction temperature
[53]. Several methods for protein extraction from yeast have been described
[54; 55; 56; 57]. Steps for selection of proteins occurring within certain cellular
fractions may also be conducted. These fraction may be from organelles inside
the cell or of proteins found in the growth media.

In order to prepare proteins for detection using MS, samples are often fur-
ther separated into fractions based on their physical and chemical properties
using techniques such as two dimensional sodium dodcecyl sulfate polyacril-
amide gel electrophoresis (2D-SDS-PAGE) [58]. 2D-SDS-PAGE involves the
separation of proteins based on their isoelectric point, followed by separation
based on mass. Proteins may then be excised from the gel for digestion with
trypsin and subsequent MS analysis.

2.6.3 Peptide Properties

The relatively large size and characteristics of intact proteins make direct
protein sequencing with MS-based methods di�cult [59]. Consequently, for
proteome sequencing using LC-MS/MS, proteins are �rst cleaved into smaller
peptides before analysis. Although peptides are relative more amenable to MS-
based sequencing than proteins, they are highly variable as each peptide has
its own set of physico-chemical properties that make it unique. These proper-
ties entail physical and chemical features such as molecular weight, isoelectric
point and hydrophobicity of the peptide. Peptide properties have an impact
on the performance of nearly every aspect of the LC-MS/MS method includ-
ing the chromatographic and ionisation steps, fragmentation during CID and
all subsequent events including data analysis and interpretation [60]. Further
complexity is introduced by the occurrence of post-translational modi�cation
(PTM) of proteins. PTM is a form of processing used to control protein activity
and involves chemical alteration to the structure of a protein such as phospho-
rolation, glycosylation and acetylation [61]. PTMs result in a di�erence in the
mass of the protein relative to the molecular weight of the protein calculated
from only the amino acid sequence and thus lead to further heterogeneity in the
peptide population [62]. Moreover, there is also variability arising from sam-
ple preparation which includes factors such as di�erential degradation rates
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of proteins and peptides, the digestion e�ciency of the cleavage enzyme and
preparation-induced modi�cations such as methionine oxidation [63].

2.6.4 Quanti�cation with LC-MS/MS

Figure 2.12: Experimental strategies for global quantitative MS-based
proteomics. Figure adapted from [60].

Figure 2.12 shows experimental strategies that may be used for global quan-
titative proteomic strategies. These include chemical tagging strategies such
as isobaric tagging, in vitro metabolic labelling as well as label-free techniques.
Isobaric tagging may be performed with methods such as iCAT [64], iTRAQ
[65] and Tandem Mass Tags (TMT) [66].

Tandem Mass Tagging involves the attachment of speci�c isobaric reagents
to the primary amines of peptides from di�erent samples. As shown in Figure
2.12, the samples are mixed after attachment of the isobaric labels. Labelled
peptides of the same mass will eluate from the column at the same time and
subsequently appear as a single peak in the MS spectrum.

Because the samples are mixed (Figure 2.12), the same peptide from each
sample appears as a single peak in the MS spectrum. When a tagged peptide
is subjected to CID, the peptides fragment to release reporter ions. The peak
area of these reporter ions can then be captured and used to calculate the
relative abundance of peptides between di�erent samples [67].

2.6.5 Proteomics Across Species

Given the success of MS-based proteomic approaches on samples from individ-
ual species, it is only logical to want to extend the application to investigate
the proteomes of di�erent species under the same conditions. However, when
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cross-species proteomics experiments are attempted it adds complexity. A few
groups have attempted these types of cross-species proteomics experiments ei-
ther by using PMF, LC-Tandem MS or a combination of methods with varying
degrees of success [68; 69; 70; 71; 72].

One of the requirements for a cross-species proteome comparison is that
there must be some degree of sequence similarity between the species [69; 73].
However, even a high degree of overall sequence similarity does not ensure
success seeing that even a single non-synonymous polymorphism between two
strains of the same species may alter the properties of a peptide. For example,
if a glycine residue is substituted for a tryptophan residue, the peptides will
still appear to have a high degree of similarity, however, this single amino acid
change leads to a mass di�erence of 129.06 Daltons [74]. Furthermore, these
sequence changes may alter the physico-chemical properties of the peptide
which consequently a�ects downstream processes as discussed in Section 2.6.3.

Several studies have tried to solve the problems encountered with cross-
species proteomics [68; 71; 72; 75]. Approaches include combining MS-based
protein identi�cations with other data such as amino acid composition, esti-
mated intact protein mass and isoelectric point. These studies have shown
that the number of identi�cations signi�cantly improves using such combined
approaches [68; 75]. Furthermore, it is possible to establish relative protein
abundances using shared peptides [71; 72]. However, the availability of species
or strain-speci�c sequenced genomes of the target species is important.

2.7 MS Data Analysis

After MS analysis, all mass spectra of the peptide fragments are written to
a �le or loaded into a database. The subsequent analysis may vary, although
most approaches involve similar steps [76]. Figure 2.13 gives an overview of
the steps involved in the analysis of spectra after the propriety peak detection
and alignment steps. Each step is discussed in more detail below.

2.7.1 Conversion of MS Spectra

The �rst step entails the conversion of the spectra to a usable format. Most
mass spectrometer vendors make use of proprietary data format for storage of
the data recorded in the mass spectrometer, however, this creates di�culty for
the use and development of software and downstream analysis of data. Hence,
the �rst step in an MS data analysis work�ow is to convert the data from its
proprietary format to an open XML-based format [76].
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Figure 2.13: Generic data analysis work�ow for LC-MS/MS data

2.7.2 Spectral Matching

The second step involves matching the observed spectra to theoretical spec-
tra. The theoretical peptide sequences are obtained by performing an in sil-
ico trypsin digest on a given list of protein sequences which is followed by
matching the observed spectra to theoretical spectra using a spectrum inter-
pretation algorithm. There are many programs that perform this function of
which SEQUEST [77], Mascot [78] and X! Tandem [79] are well known exam-
ples. Most of these sequence searching programs make use of statistical scoring
mechanisms which take into account the size of the sequence database being
searched as well as the likelihood that the top spectrum match is a random
event [47; 76; 79].

2.7.3 Statistical Validation of Peptide Assignments

The third step entails the statistical validation of the peptide assignments
using the scores for the peptide assignments made by the sequence searching
programs. The distributions of the scores are modelled as a mixture of two
populations, namely correct and incorrect peptide assignments. Based on this
mixed model, probabilities of correctness as related to all identi�cations can
be calculated [76]. PeptideProphet [80] is a tool that implements such an
approach.

2.7.4 Protein Inference

The fourth step deals with the identi�cation of proteins based on the peptide
evidence. When a peptide maps uniquely to a protein the identity of the
protein can be inferred in a relatively straightforward manner. However, this
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is often not the case, especially for higher eukaryotic organisms, due to the
frequent occurrence of multiple protein isoforms, protein families, peptides
mapping to multiple proteins and database redundancies. ProteinProphet [81]
is a program that uses probabilities of peptides associated with a given protein
to calculate a probability of identi�cation of that protein. It makes use of the
Occam's razor principle to reduce the protein list to a minimal set of proteins
that can explain all the observed peptides [81].

Figure 2.14: Diagram showing an overview for protein identi�cation
from LC-MS/MS data. The open circles A to D represent proteins in a
mixed sample. The peptides are represented by the open squares. Figure taken
from [81].

Figure 2.14 shows how protein identi�cations are made using peptide level
information in a typical LC-MS/MS experiment of a complex protein mixture.
The open circles A to D represent proteins in a mixed sample. Each sample
protein is enzymatically cleaved into smaller peptides represented by the open
squares. A peptide may be unique to a protein or it may be shared between
sample proteins as indicated by the dashed arrows extending from sample
proteins B and C. The peptides are then subjected to LC-MS/MS to produce
spectra. Some peptides may be selected for fragmentation multiple times as
indicated by the dotted arrows, whilst other peptides may not even be selected
once. All the acquired MS/MS spectra are searched against the sequence
database and assigned a best matching peptide. The best match may not
be correct (as indicated by the black squares) and thus require validation.
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Proteins are then inferred from the validated peptides. The open circles A, B
and C represent proteins identi�ed from the original sample and black circles
represent incorrect protein identi�cations.

There are many tools available that can be pieced together to form a custom
work�ow to perform the tasks in Figure 2.13. However, there are only a few
packages available that aim to provide a single environment that allows one to
perform all of the steps required. One such work�ow is the Trans Proteomic
Pipeline (TPP) [82]. Other similar packages include the openMS proteomics
pipeline (TOPP) [83] and Max Quant [84].

The TPP is a comprehensive suite of software tools that facilitates and
standardises the analysis of LC-MS/MS data. It includes software tools for the
representation and visualisation of MS data, peptide identi�cation, validation,
quanti�cation and protein inference [82].

2.7.5 Protein Interpretation

The �fth step involves interpreting the proteins identi�ed by the LC-MS/MS
work�ow. Even after protein assignments have been made, the output of a
typical shotgun proteomics experiment may still be daunting. At this point,
the output is usually in the form of a large spreadsheet consisting of hundreds
of rows and several columns with each row representing a protein and columns
representing identi�cation attributes.

Although the proteins are identi�ed as independent entities, they function
as part of a greater connected system. Furthermore, most biological functions
arise from interactions between proteins and other molecules [2]. Shotgun pro-
teomics experiments are capable of o�ering quantitative snapshots of entire
proteomes across species and experimental perturbations. However, to inter-
pret the identi�ed proteins as part of a complex system, context is needed.

2.8 Contextualisation

HTP-omic technologies generate high volumes of data and present the oppor-
tunity for system-wide understanding of living organisms. However, it is often
di�cult to extract information and observe trends within the data. Further-
more, turning HTP data into biological knowledge requires linking the exper-
imental data to relevant external databases and literature-based resources.

Proteins can be contextualised in a variety of manners such as their se-
quence similarity to other proteins, their ontological descriptions, with what
other proteins they interact, in what metabolic pathways they form part and
where in the cell they are active. Each context is discussed in more detail
below.
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2.8.1 Orthology Detection

Determining sequence similarity between proteins may o�er insight into their
functions, evolution, cellular locations, post translational modi�cations and
regulation. OrthoMCL was developed to meet the challenges of identifying
orthologous groups across multiple taxa.

Using Markov clustering [85], this pipeline groups putative orthologs, co-
orthologs and paralogs. Homologous proteins can be divided into two major
types, namely orthologs and paralogs. Orthologs di�er from paralogs in that
they evolved from a common ancestor by speciation whilst the latter originate
from duplication events [86; 87].

Figure 2.15: General steps in the OrthoMCL work�ow.

Figure 2.15 shows the major steps in the OrthoMCL work�ow: 1) Or-
thoMCL uses proteome sequence as input; 2) An all-vs-all BLAST is used
to determine the amount of similarity between all the input proteins; 3) The
best reciprocal BLAST hits are grouped into putative orthologs, co-orthologs
and paralogs which are used to construct a network; 4) MCL is applied to
the network in order to form groups of orthologous proteins. MCL includes a
parameter called the in�ation index which the user sets in order to control the
granularity of the resulting clusters.

The performance of various orthology detection methods on a eukaryotic
dataset was evaluated using a statistical technique called Latent Class Analysis
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(LCA) [88]. When di�erent orthology detection methods are compared, infor-
mation regarding instances when methods are in agreement or dis-agreement
can be obtained. LCA can utilise such comparative outputs to deduce infor-
mation regarding sensitivities and speci�cities.

Figure 2.16: Sensisitivity vs speci�ty plot for various orthology detec-
tion softwares. The x-axis of the �gure represents false positive rates and
the y-axis represents false negative rates. Figure taken from [88].

Figure 2.16 shows the results of a performance evaluation of various or-
thology detection methods [88]. Two algorithms, namely OrthoMCL and IN-
PARANOID [89] showed the best overall balance of sensitivity and speci�city
with both these criteria greater than 80%. Another factor that sets OrthoMCL
apart is its ability to cluster orthologs from multiple species, whilst INPARA-
NOID is only able to identify orthologs across two species. OrthoMCL also
outperforms the manually curated KOG database [90] and TribeMCL [91]
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when it comes to the within-group consistency of protein function and domain
architecture.

2.8.2 The Gene Ontology

The Gene Ontology (GO) was created with the goal of producing a dynamic,
controlled vocabulary that can be applied to all organisms even as new knowl-
edge about the genes and gene products arise [92]. This controlled vocabulary
may be used to describe the roles of genes and gene products in any organism.

GO is comprised of three independent ontologies, namely Biological Process
(BP), Molecular Function (MF) and Cellular Component (CC). The ontologies
themselves are trees or DAGs (directed acyclic graphs). The level of the node
within the tree indicates how speci�c the GO term is. Each node in GO
links to other kinds of external information such as gene and protein keyword
databases that give more detailed information about the gene or its products.

Nodes within the BP ontology specify a biological process that a gene or
its product contributes to. A biological process can be de�ned as ordered
assemblies of molecular functions and often involves the chemical or physical
transformation of molecules. Nodes within the MF ontology give information
about the biochemical activity of a gene product. While BP and MF describe
processes and functions, nodes within the CC ontology point to the places in
the cell where a gene product is active.

The existence of a controlled vocabulary such as GO allows for the auto-
mated transference of biological annotations, via gene and protein sequence
similarity, from model organisms to organisms that do not yet have the same
level of information available.

2.8.2.1 Gene Ontology Enrichment

Identifying a subset of overrepresented or enriched GO terms from a larger set
is one approach to narrow the focus of investigation. The Gene Ontology En-
richment Analysis Software Toolkit (GOEAST) is a web-based tool (available
at http://omicslab.genetics.ac.cn/GOEAST/) that allows one to �nd signi�-
cantly enriched GO terms among a given list of genes . GOEAST employs a
hypergeometric test to determine which GO terms are signi�cantly enriched
in the database.

2.8.3 KEGG

The Kyoto Encyclopedia of Genes and Genomes (KEGG) project represents
an e�ort to link genomic information with higher order functional assignments
(available at http://www.genome.jp/kegg/). Making functional assignments
is an ongoing process that requires the linking of a set of genes in the genome
with a network of interacting molecules in the cell.

Stellenbosch University  http://scholar.sun.ac.za

http://omicslab.genetics.ac.cn/GOEAST/
http://www.genome.jp/kegg/


CHAPTER 2. LITERATURE REVIEW 24

KEGG consists of three databases, namely 1) "Pathway" for representa-
tion of higher order functions in terms of a network of interacting molecules.
2) "Genes" which consist of a gene catalog for all the completely sequenced
genomes and some partial genomes. 3) "Ligand" which is a collection of chem-
ical compounds in the cell.

The KEGG metabolic pathway database is comprised of manually drawn
pathway maps that include entries for carbohydrate, energy, lipid, nucleotide,
and amino acid metabolism as well as glycan biosynthesis and metabolism of
cofactors and vitamins. These pathways provide useful context for proteins by
supplying information about their enzymatic function, which reactions they
are involved in and what metabolites are a�ected.

2.8.4 BioGRID

The Biological General Repository for Interaction Datasets (BioGRID) is a
database containing physical and genetic interactions (available at http://
thebiogrid.org/). The current version of BioGRID is comprised of 749912
protein and genetic interactions from several major model organisms and rep-
resents a total 43149 publications [93].

The genetic interactions reveal functional relationships between and within
regulatory modules [2], whilst the physical interactions provide information
about the proteins' direct interactions with each other. Given that proteins
can be viewed as the e�ectors of biological function within a cell [14], and nearly
all cellular responses involve protein interactions [94], a resource such as the
BioGRID is useful for the contextualisation and interpretation of proteomics
data.

The BioGRID repository seeks to collate interaction data from a variety of
platforms and experiments in a consistent and well annotated format. The �rst
public release of BioGRID, originally termed GRID, consisted of interaction
data generated from HTP two-hybrid assays and mass spectrometric platforms
performed on samples from S.cerevisiae only. The BioGRID has since evolved
into a resource for HTP interaction data from other species and now also
contains numerous manually curated interactions sourced from focused studies
or from the literature.

Protein-protein interactions contained within the BioGRID can be sub-
divided into gene-based interactions and physical interactions, of which each
interaction is determined by various methods [95; 93]. The experimental tech-
niques used to detect protein-protein interactions are listed and described in
more detail in Section 2.11.1 of the supplementary materials. Experimental
techniques such as the yeast two hybrid (2-H) system for detecting pairwise
protein interactions [96; 97; 98] and the analysis of puri�ed protein complexes
via MS [99; 3] can both be viewed as HTP hypotheses generating tools. More
recent platforms such as the synthetic genetic array (SGA) and molecular bar-
code (dSLAM) methods bring HTP capability to enable detection of synthetic
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lethal genetic interactions [100; 101]. The yeast 2-H system and the analysis
of puri�ed protein complexes via MS are discussed in more detail below.

2.8.4.1 The Yeast 2-H system

The yeast 2-H method is also known as an interaction trap. It is used to
detect pairwise protein interactions and can be applied in a HTP manner.
The system works by taking advantage of the attributes of the Saccharomyces
cerevisiae GAL4 protein [102]. GAL4 is a transcriptional activator required
for the expression of genes encoding enzymes for galactose utilization and,
like other transcriptional activators, it is a modular protein that requires both
DNA-binding (BD) and activation domains (AD). The 2-H assay operates by
expressing two fusion proteins in yeast namely, the "hunter" and the "bait".
The "hunter" protein is the possible binding partner fused to a yeast AD and
the "bait" is the protein of interest which is fused to a yeast BD. A yeast strain
is transformed with both constructs and the appropriate upstream activating
sequence which is in close proximity to the reporter gene [102]. Thus, if the
reporter gene is expressed it means that there was interaction between the
"hunter" and the "bait" proteins [103].

2.8.4.2 MS-based Analysis of Puri�ed Protein Complexes

Puri�ed protein complexes may be identi�ed by MS using a technique known
as high throughput mass spectrometric protein complex identi�cation (HMS-
PCI) [99]. This technique allows protein-protein interactions to be observed
directly using a tagged bait protein which is then followed by identi�cation
of the interacting partners via MS. The main steps of the assay include the
following [63]: 1) cDNA of interest is cloned into a vector that equips it with
an epitope tag; 2) The vector with the cDNA is then transformed into the
cell of interest. The expressed protein here constitutes the "bait"; 3) A�nity
puri�cation using an antibody against the epitope is used to purify the lysate
obtained from the lysed cells; 4) Competitive elution using a peptide that
encodes the epitope is used to obtain the proteins that were bound speci�cally
to the bait protein; 5) The proteins released via the competitive elution are
then separated by gel electrophoresis followed by identi�cation using MS.

Despite their hypotheses generating utility, HTP interactome datasets are
often prone to high false positive and false negative rates [104; 105]. Each of
the interaction detection methods have di�erent biases and scoring systems
and thus it is important to know what type of interaction is found, how it was
derived and if there are multiple lines of evidence to support it.
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2.8.5 Protein Targeting and the Fungal Secretome

Proteins possess inherent signals that dictate their transport and localisation
within the cell [106]. Protein targeting is the process that governs the move-
ment of proteins within the cell and this routing system relies on a variety of
targeting signals [107].

Signal peptides (SPs) represent one type of targeting signal. This class
of targeting signal is comprised of short transient peptides and is typically
found at the amino terminus of the secreted protein [108]. SPs are typically
comprised of 15-20 hydrophobic amino acid residues and are cleaved o� during
translocation of the protein across the membrane. Proteins containing an SP
direct the ribosomes to the rough endoplasmic reticulum (ER) in order for
polypeptide synthesis to be completed [109].

Knowing if a protein is targeted for transport or further processing can
thus aid in the contextualisation and biological interpretation of proteomics
data. The properties of SPs make them amenable to computational prediction
and consequently a variety of tools exist that are able to identify proteins that
are targeted for membrane translocation. A selection of the available tools
include PrediSi [110], SPEPlip [111], Signal-CF [112], Signal-3L [113], Signal-
BLAST [114] and SignalP-4.1 [115]. There are also several repositories for
signal peptides of which SPdb [107] and FunSecKB are examples. Two of the
repositories, namely SPdb [107] and FunSecKB [116] and one predictive tool,
namely SignalP-4.1 [115] are respectively discussed in more detail below:

SPdb: SPdb is a repository of experimentally derived and computationally
predicted signal peptides for archaea, prokaryotic and eukaryotic organisms
[107]. In its current release (SPdb 5.1), there are 27433 entries, of which 2512
are experimentally veri�ed signal sequences and 24921 are unveri�ed signal se-
quences. SPdb gathers information from two sources, namely Uniprot protein
sequence database [117] and the EMBL nucleotide sequence database [118].

FunSecKB: FunSecKB consists of secreted proteins derived from all avail-
able fungal protein data in the NCBI RefSeq database [116]. The knowledge-
base is comprised of both manually curated entries as well as computationally
assigned instances found with a work�ow that includes SignalP [115], WolfP-
sort [119] and Phobius [120].

SignalP-4.1: Computational predictions of SPs is still very error prone.
This is partially due to di�culty in algorithmically distinguishing SPs from
N-terminal transmembrane helices [115]. SignalP-4.1 makes use of a neural-
network-based method to predict SPs and is able to discriminate them from
transmembrane helices [115].

All the contexts discussed in Section 2.8.1 to Section 2.8.5 may be useful
by themselves for the interpretation of proteomics data. However, in order
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to interpret a subset of identi�ed proteins as part of the larger system within
which they function, integration of the contexts is needed in order to gain the
best possible systems-view. In order to facilitate the integration of data with
contextual resources a conceptual and practical framework is needed.

2.9 Networks

Networks are ideal for the study and modelling of complex systems and have
been applied in many �elds such as engineering, communications and com-
puter science [121]. A network may be used to represent physical entities
such as electrical circuits, roadways and molecules, as well as concepts such as
ecosystems and sociological relationships [122; 123].

A network is also called a graph. A graph G = (V,E) is a mathematical
structure that is made up of two �nite sets V and E. The elements of V are
called vertices or nodes. The elements of E are called edges and each edge is
de�ned as a set of two vertices [124; 121; 123].

A network can be visualised as a set of points (nodes) on a plane or in three
dimensional space with the edges connecting these points [124; 123] and both
the nodes and edges may take on any number of attributes. In addition to
serving as an intuitive visualisation tool, the structure of the network and its
topological features may also yield insight into the data. Furthermore, existing
network analysis indices and tools such as shortest path [125] and clustering
algorithms [85] may be applied to the network. Thus, networks are well suited
as the sca�old for the contextualisation of biological data.

In modern molecular biology, networks have been successfully applied in a
myriad of ways, including the representation of interactions between molecules
[95; 126], modelling of neural networks [127] and predicting functional essen-
tiality from topological features in metabolic networks [128]. For proteomics-
speci�c applications, networks have been used to aid in protein identi�cation
[129] as well as interpretation of proteomics data from MS-based experiments
[130]. A more in depth review of the role of networks in biology is provided
by [10; 131].

When data is represented in tabular format it quickly becomes overwhelm-
ing and thus hampers the e�ective mining and utilisation of the data. Networks
provide a means by which a complex system of interlinked components can be
represented as a collection of nodes and edges. The network-based represen-
tation of proteins within a biological network enables a considerable amount
of data to be visualised without obscuring patterns, trends and relationships
that exist in the data. Several visualisation software packages such as Pajek
[132], Cytoscape [133], Osprey [134] and Gephi [135] may be used to visualise
and explore biological data as a network.
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2.10 Conclusion

It is likely that MS-based proteomics will follow the trend of other omics plat-
forms and that both data quality and quantity will increase as the cost of
producing data will decrease [9]. The data is likely to come from hybrid MS
instrumentation coupled to multiple rounds of LC. Various groups have demon-
strated the capacity of such hybrid instruments and have reported datasets
from which more than 10 000 proteins have been identi�ed from a single ex-
periment [6; 7; 8; 9]. Furthermore, it has been shown that, provided certain
conditions are met, cross-species experiments can be performed with this tech-
nology [71; 72]. Additionally, both labelled and label-free strategies provide
the capacity to add a quantitative dimension to these data sets [60].

The programs available for conducting the general steps of MS data analysis
such as peptide spectral matching, peptide validation and protein inference
are also likely to improve, however, the need to make customised work�ows
that are appropriate for the experimental design and biological aims is clear,
especially for cross-species experiments.

Extant biological resources provide the information with which experimen-
tal data can be contextualised and these resources are constantly evolving and
improving in both size and accuracy. Thus, as these biological resources move
forward in parallel with MS-based proteomic technologies, the ability to mine
these proteomic datasets will greatly improve. However, as the size of exper-
imental data sets grow and the amount of contextual information increases,
deriving biologically relevant insights and knowledge becomes more di�cult.

It is understood that the characteristics of living organisms arises from the
interaction of all the molecules of which they are comprised. However, it is
not solely the interactions between the individual molecules themselves that
gives rise to function, but rather large numbers of functionally diverse sets of
components that interact selectively to produce the coherent behaviours and
responses that are observed in the living system [1; 2; 136]. Thus, in order
to interpret a dataset that o�ers a system-wide snapshot of the components,
many contexts need to be brought together to facilitate a systems-based inter-
pretation of the data. Networks provide a means by which a complex system of
interlinked components can be represented as a collection of nodes and edges
and are thus well suited to serve as a sca�old for the contextualisation of
biological data. Network-based representation o�ers both a global and local
perspective of the data [2; 1; 136] and have been shown to be e�ective solutions
to the problems of data contextualisation and interpretation for various types
of omic data [130; 10; 131].
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2.11 Supplementary Materials

2.11.1 Biogrid Experimental Evidence Codes

Gene-based protein interactions contained within the BioGRID are determined
by various methods including the following experimental systems [93]:

1. Dosage Growth Defect. Dosage refers to the over expression of a gene or
the increased dosage of a gene. If over expression of the gene leads to a
growth defect in a strain that is mutated or deleted for another gene, a
genetic interaction between the two genes can be inferred.

2. Dosage Lethality. If over expression of the gene causes lethality in a
strain that is mutated or deleted for another gene, a genetic interaction
between the two genes can be inferred [137].

3. Dosage Rescue. If over expression of the gene rescues the lethality or
growth defect in a strain that is mutated or deleted for another gene, a
genetic interaction between the two genes can be inferred [138].

4. Phenotypic Enhancement. If the mutation or over expression of one
gene results in the enhancement of any phenotype other than lethality
or growth defect an interaction can be determined.

5. Phenotypic Suppression. If the mutation or over expression of one gene
results in the suppression of any phenotype other than lethality or growth
defect an interaction can be determined.

6. Negative Genetic Interactions. These are applicable to strains where the
combination of mutations and/or deletions in separate genes, which by
themselves cause no signi�cant change in phenotype, results in a more
severe �tness defect or lethality under a given condition. [139].

7. Positive Genetic Interactions. These are applicable to strains where the
combination of mutations and/or deletions in separate genes, which by
themselves cause no signi�cant change in phenotype, results in a less
severe �tness defect under a given condition. [139].

8. Synthetic Lethal Genetic Interaction. These can be identi�ed when a
speci�c mutant is screened for a second-site mutation that either sup-
presses or enhances the original phenotype [100].

9. Genetic Interaction Determined via Growth Defect. These can be iden-
ti�ed when mutations in separate genes, of which each gene causes a
no signi�cant change in phenotype, result in a signi�cant growth defect
under a given condition when both mutations are combined in the same
cell [140].
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10. Genetic Interaction Determined via Synthetic Haplo-insu�ciency. These
are determined in strains where there are mutations or deletions in sepa-
rate genes that cause no signi�cant change in phenotype on its own and
at least one of these genes must be hemizygous. When these mutated or
deleted genes are combined in the same cell under certain conditions it
should result in lethality.

11. Genetic Interaction Determined via Synthetic rescue. These can be iden-
ti�ed when mutations or deletions of one gene rescues the lethality or
growth defect of a strain mutated or deleted for another gene.

Physical protein interactions contained within the BioGRID are determined
by various methods including the following experimental systems [93]:

1. A�nity Capture with Luminescence. A bait protein is tagged with lu-
ciferase and light is emitted when the prey protein immunoprecipitates
with the bait. An epitope tag or polyclonal antibody may then be used
to capture the prey protein from the cell extracts. An interaction can
then be inferred between the bait and prey protein.

2. A�nity Capture with MS. The bait protein is a�nity captured from cell
extracts by either polyclonal antibody or epitope tag. MS-based methods
can then be used to identify the prey protein.

3. A�nity Capture with RNA. An epitope tag or polyclonal antibody is
used to capture the bait protein from the cell extracts. The RNA species
associated with the bait protein can then be identi�ed using Northern
blot, real-time polymerase chain reaction (RT-PCR), a�nity labelling,
sequencing, or microarray analysis.

4. A�nity Capture using Western Blot. The bait protein is a�nity cap-
tured from cell extracts by either a polyclonal antibody or an epitope tag.
A second epitope tag or speci�c polyclonal antibody is used to capture
the associated interaction partner using western blot analysis.

5. Interaction Determined via Biochemical Activity. The biochemical e�ect
that one protein has on another is recorded as a type of modi�cation.
In this type of assay the substrate or "hit" protein is acted upon by
the "bait" protein. For example, the bait protein may be a kinase that
phoshorylates a substrate protein. Possible modi�cations that can be de-
tected include Phosphorylation, Ubiquitination, Sumoylation, Dephos-
phorylation, Methylation, Prenylation, Acetylation, Deubiquitination,
Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetyla-
tion and Demethylation.
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6. Interaction Determined via Co-crystal Structure. X-ray crystallography,
Nuclear Magnetic Resonance (NMR) or Electron Microscopy (EM) may
be used to observe interactions on the atomic level.

7. Interaction Determined by Co-fractionation. When two or more pro-
tein subunits are present in a partially puri�ed protein preparation an
interaction can be inferred.

8. Interaction determined by Co-localization. An interaction can only be
ascertained if two conditions are met. Firstly, co-localisation of two pro-
teins in the cell must be established with indirect immuno�uorescence.
Secondly, if either one of the genes encoding the interacting proteins is
deleted, the other protein should be incorrectly localised.

9. Interaction Determined by Co-puri�cation. If two or more protein sub-
units are present in a puri�ed protein complex an interaction can be
inferred. In this method the observation must be made by classical bio-
chemical fractionation or a�nity puri�cation and one or more additional
fractionation steps.

10. Far Western Analysis. Protein mixtures are electrophoretically separated
followed by the transfer of proteins to a membrane. The membrane is
probed with one or more bait proteins. The location of the prey protein
on the membrane is revealed if the bait and prey proteins form a complex
together and thus a protein-protein interaction can be inferred.

11. Fluorescence Resonance Energy Transfer (FRET). Molecules are labelled
with �uorophores and an interaction is inferred when close proximity
of interaction partners is detected using �uorescence resonance energy
transfer.

12. Protein-Fragment Complementation Assay (PCA). This assay relies on
the joining of two complementary protein fragments to form a functional
reporter protein, for instance the split-ubiquitin assay [141]. The "bait"
and "prey" proteins are fused respectively to either the N- or C- termi-
nal of a fragment reporter protein in such a manner that the "bait" and
"prey" proteins are expressed as part of a reporter protein fragment. If
there is an interaction between the two proteins, the complementary re-
porter peptide fragments will come together to form a functional reporter
protein.

13. Interactions Determined Between Protein and Peptide. This type of in-
teraction is inferred when a peptide, derived from an interaction partner,
interacts with a protein. This category also includes phage display ex-
periments [142].
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14. Protein-RNA. Interactions of this type are derived from an in vitro assay
where proteins and RNA interact.

15. Proximity Label-MS. The identi�cation of the interacting protein in this
assay is determined via similar methods as the second instance of this
list, however, the bait protein in this instance is fused with a protein
that selectively modi�es a nearby protein. This proximal protein has a
di�usible reactive product which can be detected and thus an interaction
can be determined.

16. Reconstituted Complex. Interactions of this type are derived from in
vitro assays using puri�ed proteins.

17. The two hybrid assay operates by expressing two fusion proteins in yeast
namely, the "hunter" and the "bait". The "hunter" protein is the possible
binding partner fused to a yeast AD and the "bait" is the protein of
interest which is fused to a yeast BD. A yeast strain is transformed with
both constructs and the appropriate upstream activating sequence which
is in close proximity to the reporter gene [102]. Thus, if the reporter gene
is expressed it means that there was interaction between the "hunter"
and the "bait" proteins [103].
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Chapter 3

Protein Identi�cation,

Quanti�cation and Network-based

Contextualisation

3.1 Introduction

The �eld of proteomics involves a variety of technical disciplines, however,
for the characterisation of entire proteomes the use of Liquid chromatography
(LC) coupled to Mass Spectrometry (MS) has shown to be a very valuable tool
allowing for both protein identi�cation and quanti�cation [1]. Speci�cally,
the use of approaches involving LC coupled to tandem mass spectrometry
in shotgun proteomics have illustrated the capacity to identify thousands of
proteins from a single sample in one experiment [2; 3; 4; 5].

LC-MS/MS involves the use of more than one mass analyser in tandem with
one another [6]. In a typical LC-MS/MS experiment, a precursor ion is selected
based on its mass by mass analyser one (MS1) and focused into a collision
region that precedes a second mass analyser (MS2). The mass analysers can
be arranged either in space as is the case with sector and triple quadrupole
instruments, or in time as is the case with trapping instruments such as an ion
trap. Key to LC-MS/MS is a process known as Collision Induced Dissociation
(CID) [7]. This process involves the introduction of an inert gas into a collision
zone. In the collision zone the inert gas molecules collide with the precursor
ion. This process produces so called product ions from the precursor ion and
the product ions can then be mass analysed by MS2.

The processing and analysis of proteomics data is a complex process that
consists of multiple steps. These steps include: 1) Performing peak detection
on the native spectra; 2) The processing of the raw data and distinguishing
signal from noise; 3) Matching observed peptide spectra to theoretical spectra;
4) The in silico reassembly of peptides into proteins; 5) Validation of search
results on the peptide and protein levels respectively; 6) Annotation and inter-

1
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pretation of the results. Despite the complexity of the process, the quality and
quantity of MS-based analysis is likely to increase in keeping with the trend
set by other high throughput technologies [8].

Typically, peak detection and processing of the raw LC-MS/MS data is
performed online by proprietary software, however, many tools exist from var-
ious groups that can be pieced together to form a customised work�ow that
perform the rest of these steps. However, there are only a few packages avail-
able that aim to provide a single environment that allows one to perform all of
the steps required. One such work�ow is the Trans Proteomic Pipeline (TPP)
[9]. Other similar packages include the openMS proteomics pipeline (TOPP)
[10] and Max Quant [11]. In this work we will focus on the TPP and the
various tools that are associated with it.

The TPP was selected for use because of its open-source nature and good
description of its component programs and algorithms. Moreover, the TPP is
comprehensive in that it provides tools for to perform all the required steps
for a typical tandem MS experiment. Furthermore, the modular design of the
pipeline means outputs of utilities can easily be linked to custom programs
Deutsch2010.

Even after protein assignments have been made, the output of a typical
shotgun proteomics experiment may still be daunting. At this point, the out-
put is usually in the form of a large spreadsheet consisting of hundreds of rows
and several columns with each row representing a protein and columns rep-
resenting identi�cation attributes. Additionally, quantitative strategies may
provide information about protein abundances [12].

Although the proteins are identi�ed as independent entities, they function
as part of a greater, connected system. Furthermore, most biological functions
arise from interactions between proteins and other molecules [13]. However, to
interpret the identi�ed proteins as part of a complex system, context is needed.

Proteins may be contextualised in a variety of manners such as their se-
quence similarity to other proteins, their ontological descriptions, with what
other proteins they interact, the metabolic pathways in which they are active
and where in the cell they are located. Although these contexts may be useful
by themselves for the interpretation of proteomics data, in order to interpret
a subset of identi�ed proteins as part of the larger system within which they
function, integration of the contexts is needed in order to gain the best possible
systems view.

When data is represented in tabular format it quickly becomes overwhelm-
ing and thus hampers the e�ective mining and utilisation of the data. Networks
provide a means by which a complex system of interlinked components can be
represented as a collection of nodes and edges. A network-based represen-
tation of proteins within a biological network enables a considerable amount
of data to be visualised without obscuring patterns, trends and relationships
that exists in the data. Although much work has been done on the identi�-
cation of proteins from LC-MS/MS data, tools for the contextualisation and
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interpretation of the proteins are still lacking.
This work describes a computational work�ow that makes use of a com-

bination of existing and custom made utilities in order to �rstly identify and
quantify proteins from cross-species LC-MS/MS data and secondly, place the
protein identi�cations into a biological context using network-based methods.
The method is demonstrated using a quantitative LC-MS/MS dataset derived
from two yeast species grown under fermentative conditions.

The LC-MS/MS data was provided by Dr Thulile Ndlovu in the lab of
Prof Florian Bauer and Dr Benoit Divol at the Institute for Wine Biotech-
nology, Stellenbosch. LC-MS/MS analysis was conducted at the Proteomics
Core Facility at Sahlgrenska Academy, University of Gothenburg, Sweden. The
original experimental aims behind the generation of the data were to investi-
gate what proteins were present in the synthetic wine must after conducting
fermentations to dryness using two yeasts, namely S. cerevisiae VIN13 and S.
paradoxus RO88 respectively. The principle goals of the experiment were to
determine the presence of haze protection factor proteins and possible ascer-
tain di�erences in the relative abundances of these proteins between the two
yeast species [14]. This work represents an e�ort to further mine the data
using an alternative computational work�ow for the identi�cation, quanti�ca-
tion and contextualisation of the proteins. Several examples are shown that
illustrate the method's utility for both investigation of existing hypotheses and
the formulation of new hypotheses.

3.2 Methods

3.2.1 Experimental Design and Sample Generation

Figure 3.1 illustrates the experimental design used. Three biological replicates
for VIN13 and RO88 respectively were produced. The samples consisted of
proteins present in the growth media after fermentations where run to dry-
ness. Each replicate sample was digested with trypsin and the resulting pep-
tides labelled with a unique Tandem Mass Tag (TMT). The samples were
then pooled and separated using Strong Cation Exchange Chromatography
(SCX) which resulted 13 fractions. These fractions were then analysed using a
LTQ-Orbitrap-Velos (Thermo Fisher Scienti�c) mass spectrometer interfaced
with an in-house constructed nano-LC column. Further details about sample
generation and the LC-MS/MS work�ow are described in the supplementary
materials Section 3.5.2.

3.2.2 Data Analysis Objectives and Work�ow

The objectives in terms of the data analysis strategy were as follows: 1) To
identify what proteins were expressed in one or both of these yeast species as
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Figure 3.1: Experimental design used to produce the VIN13 and R088
protein mass spectra. Three biological replicates for VIN13 and RO88
respectively were produced. Each replicate sample was labelled with a unique
Tandem Mass Tag (TMT) with Tag masses ranging from 126 Da to 131 Da.

well as to determine relative quantitative di�erences of the proteins produced
by both species using the TandemMass Tag (TMT) signals; 2) To contextualise
and visualise the data; 3) Mine the data to the full extent possible whilst
remaining cognisant of bias and error that is inherent to these data types; 4)
Report and present the data in a manner that is intuitive, easily interpretable
and facilitates easy hypotheses generation and pattern recognition.

The work�ow presented here consisted of the following main components:
identi�cation and quanti�cation of proteins using the Trans Proteomic Pipeline
[9], identi�cation of orthologs using OrthoMCL [15], description of the data
using the Gene ontology [16] supported by GO enrichment analysis using
GOEAST [17], further contextualisation of identi�ed proteins using KEGG
biochemical pathways [18] and the BioGRID interactome database [19] and
visualisation of networks using Cytoscape [20].

3.2.3 Identi�cation and Quanti�cation of Proteins from
Spectra

Figure 3.2 outlines all the major steps and tools used during the identi�cation
and quanti�cation of proteins using the TPP.
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Figure 3.2: Overview of the TPP work�ow utilised for the identi�ca-
tion and quanti�cation of proteins. The ellipses represent programs or
processes whilst the rectangles are inputs and or outputs.

3.2.3.1 Database Search and TMT Quanti�cation

MS raw data �les from all 13 SCX fractions for the TMT 6-plex set were
merged for relative quanti�cation and identi�cation using the Trans Proteomic
Pipeline (TPP) version v4.6 OCCUPY rev 1, Build 201209261035 (MinGW)
on Windows 7. The .raw format data �les were converted to mzXML format
using the msconvert tool in TPP. Database searching was performed with
X!Tandem [21] as part of the TPP. Two work�ows were run using separate
species-speci�c proteome databases in order to ensure that the search space
matched the samples as closely as possible.

The S. cerevisiae VIN13 proteome was obtained from http://www.uniprot.
org/uniprot on 6 June 2013 and contained 3916 proteins. An S. paradoxus the-
oretical proteome was created from the corresponding S. paradoxus NRRL Y-
17217 ORFs [22] downloaded from http://www.broadinstitute.org/annotation/
fungi/comp_yeasts/downloads.html/S1b.ORFs/Spar_extended.fasta.gz on 4
Febraury 2013 and translated using the EMBOSS-6.5.7 [23] translate utility.
The resulting S. paradoxus predicted proteome contained 4787 proteins.
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3.2.3.2 X!Tandem Database Search Parameters

The parent monoisotopic mass error tolerance was set to -2 Da and +4 Da,
cysteine carbamethylation and methionine oxidation were set as potential mass
modi�cations. Appropriate mass modi�cations were allowed for the Tandem
Mass Tags, namely static mass modi�cations at the N-terminal and Lysine (K),
with potential mass modi�cations at the tyrosine residues. Semi-tryptic pep-
tides and up to two missed cleavages were allowed. The tandemparameters.xml
�le used is provided in Figure S1 of the supplemental materials section.

3.2.3.3 Peptide and Protein Prophet

The peptide-spectral matches made by X!Tandem were then validated by Pep-
tide Prophet [24]. The utility performed this validation by learning the distri-
butions of search scores and peptide properties such as the number of termini
compatible with enzymatic cleavage and the number of missed cleavages. For
each result it computes the probability that the peptide assignment is correct
or incorrect.

The output from Peptide Prophet is passed on to Protein Prophet [25]
which in turn computes a probability that proteins are present on the basis of
peptide assignments. Peptides that correspond to more than a single protein
are apportioned among all corresponding proteins. Protein Prophet then de-
rives a minimal list of proteins that is su�cient to account for the observed
peptide assignments using an expectation maximisation algorithm. Both Pep-
tide Prophet and Protein Prophet were used with their default settings.

3.2.3.4 Libra

To capture and process the quantitative TMT information, a modi�ed version
of a program called Libra [9] was used. Libra is is also incorporated in the TPP.
Libra integrates the intensities of the TMT mass to charge ratios in an LC-
MS/MS spectrum and stores the values at the peptide level. Protein Prophet
then infers the simplest list of proteins consistent with the identi�ed peptides
and protein quantity is then derived from the group of peptides associated
with the protein. Libra may be used to perform normalisation of the data
and outlier removal, however, in this instance the cross-species experimental
design necessitated the use of a modi�ed algorithm. Thus, the unprocessed
quantitation.tsv �le containing the peptides and their raw tag values were
retrieved and processed using custom-built Perl programs. The criteria for
the modi�ed algorithm and their intended purpose in the context of the cross-
species experimental design are discussed more in Section 3.2.5.

From the TPP work�ow, two species-speci�c outputs were obtained. Each
output contained un�ltered data pertaining to protein groups, peptides, prob-
abilities and other identi�cation attributes whilst raw mass tag signals were
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obtained from the quantitation.tsv �le. Perl programs were used in order to set
thresholds and parse out the necessary information from these TPP outputs.

3.2.4 Orthology Detection

Two separate sequence comparisons were conducted using OrthoMCL v2.0.5
with default parameters in both cases. In the �rst comparison, orthologs
were the detected between proteomes of S. cerevisiae VIN13 and S. paradoxus
RO88. The outputs from OrthoMCL used in this instance were the lists of
orthologs and co-orthologs between the species. These two �les were then
further processed using a custom written Perl program (score-based �lter)
in order to produce a list of unique protein pairs with one-to-one ortholog
relationships.

For the second comparison, orthologs were detected between proteomes of
S. cerevisiae VIN13, S. paradoxus and S. cerevisiae S288C. The S288C ref-
erence proteome was downloaded from the Saccharomyces Genome Database
(SGD) from the following url: http://downloads.yeastgenome.org/sequence/
S288C_reference/orf_protein/orf_trans_all.fasta.gz on 15 March 2013. The
aim of this step was to associate protein IDs from our target organisms to the
systemic IDs that exist for S. cerevisiae S288C via sequence similarity.

The establishment of this sequence-based relationship for a given protein
enables one to annotate this protein with the extant knowledge contained
within the Gene Ontology, biochemical pathways and interactome databases
that have been used to annotate S288C. The list of orthologs, co-orthologs
and family members (determined using a MCL in�ation value of 10), were
then concatenated into one reference �le for further use. A small fraction of
proteins failed to be grouped into families using OrthoMCL. For these proteins
the best reciprocal BLAST match was used to assign ortholog relationships.
If a protein was designated as `identi�ed in both species', it means that an
ortholog systemic ID was identi�ed in both VIN13 and RO88.

3.2.5 Inferring and Calculating Relative Protein Fold
Change

Criteria for Quantitative Peptides: In order to calculate a relative fold
change between two proteins the following criteria were designed to minimise
false signals and derive the most accurate conclusion from the data: 1) The
protein must be identi�ed in both organisms; 2) there must be at least one
peptide that is unique to the ortholog protein pair; 3) the peptide must have
a complete set of TMT signals, in other words a TMT signal must exist from
every replicate biological sample.
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Normalisation of the TMT Signal: The following normalisation and out-
lier removal was conducted on a subset of peptides successfully labelled with
TMTs: 1) All peptides where one or more of the TMT signals were absent
were excluded; 2) Peptides with a peptide probability less than 0.5 were not
used; 3) Each peptide channel was normalised by the sum of that peptide's
channels; 4) The average and standard deviation (σ) of all the signals for a
given peptide were calculated; 5) If a given signal value deviated by more than
two σ the signal was not used.

Relative Fold Change Ratio: A quantitative signal for the protein was
calculated by taking the average of all of its quantitative peptide constituents
that passed the stipulated peptide �ltering requirement. What remained for
each protein was a value associated with each TMT. An average of the three
biological replicates for RO88 (TMT 126, 127 and 128) and VIN13 (TMT
129, 130 and 131) was calculated respectively. A ratio of relative protein
abundance for a given protein-pair was taken as the ratio of VIN13/RO88.
When the the ratio VIN13/RO88 was less than 1, the negative inverse of
the ratio was reported. To determine if the fold change for a given protein is
statistically signi�cant between the two organisms a simple two tailed t-test for
two independent samples was conducted using the package Statistics::TTest,
Version 1.1.0 by Yun-Fang Juan (http://search.cpan.org/~yunfang/Statistics-
TTest-1.1.0/TTest.pm). To correct for multiple hypotheses testing Benjamini-
Hochberg p-value adjustment [26] was used and implemented in R [27]. The
adjusted p-value threshold for signi�cance was set at 0.1.

3.2.6 Unresolved Identi�cations and Multi-ortholog
Proteins

The protein sequence comparisons performed in Section 3.2.4 revealed numer-
ous cases in the data where the ortholog relationship between the three species
was ambiguous. In other words, clear ortholog relationships could not be es-
tablished by OrthoMCL or alternatively by taking the best reciprocal BLAST
hit relationship. These proteins were attributed as having multiple orthologs.
Some cases where the same set of peptide spectra were matched equally well
to more than one protein by the TPP were also attributed as ambiguous. In
instances where no such ambiguity was detected, the protein was attributed
as single-ortholog or unambiguous in order to distinguish it from the multi-
ortholog cases.

3.2.7 Resources for Network Contextualizations

Several databases and resources were used to place the protein identi�cations
into relevant biological contexts. The resources are described in more detail

Stellenbosch University  http://scholar.sun.ac.za

http://search.cpan.org/~yunfang/Statistics-TTest-1.1.0/TTest.pm
http://search.cpan.org/~yunfang/Statistics-TTest-1.1.0/TTest.pm


CHAPTER 3. PROTEIN IDENTIFICATION, QUANTIFICATION AND

NETWORK-BASED CONTEXTUALISATION 9

below:

3.2.7.1 Kyoto Encyclopaedia for Genes and Genomes (KEGG)

In order to contextualise the proteins within a biochemical context, metabolic
pathways as de�ned by KEGG were used. The yeast metabolic network con-
taining the relationships between proteins, reactions, compounds and their
respective pathways was obtained in .xml format and parsed using custom
Perl programs.

3.2.7.2 The Gene Ontology

The Gene Ontology (GO) is a controlled vocabulary of terms for describing
gene product characteristics [16]. The GO annotation �le for S. cerevisiae
S288C was downloaded from the following url: ftp://ftp.geneontology.org/
pub/go/gene-associations/gene_association.sgd.gz on 25 March 2013.

A Perl program was written in order to connect the identi�ed proteins to
the Gene Ontology. As inputs, this program uses the information acquired
during the second sequence comparison as described in Section 3.2.4, the pro-
teins identi�ed via the TPP along with their identi�cation and quantitative
attributes and a gene association �le for S. cerevisiae S288C.

The contents of the gene association �le connects the systematic ID and
other gene name aliases for S. cerevisiae S288C to corresponding GO-IDs. This
step e�ectively transfers Gene Ontology terms to the identi�ed proteins via the
determined ortholog relationship with S. cerevisiae S288C. The GO-IDs were
then used to retrieve the GO terms that corresponds to each GO-ID.

3.2.7.3 Gene Ontology Enrichment Analysis Software Toolkit
(GOEAST)

GO enrichment analysis was performed using the customised analysis tool of
the GOEAST web-utility [17]. As background for the GO-EAST analysis, a
�le containing all the systemic IDs of S288C and their associated GO terms
was created. As a target, an input list containing all the systemic IDs of the
proteins identi�ed was used. The output from the utility is a tab delimited
�le that consisted of the following information: For each enriched GO term,
a corresponding log-odds ratio and a p-value exists. The log-odds ratio is
the measure for enrichment and the p-value may be used to determine if the
enrichment is statistically signi�cant.

3.2.7.4 BioGRID

A database containing both protein and genetic interactions for S. cerevisiae
was obtained from http://thebiogrid.org/download.php on 8 August 2013 [19].
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The database was split into genetic interactions and protein interactions re-
spectively. Custom written Perl programs were used to parse out the appro-
priate information from the database.

3.2.7.5 Proteins with a Secretion Signal

In order to check if the identi�ed proteins had any secretion signals or were
known to be secreted, two di�erent databases were used as reference, namely
the Signal Peptide database (SPdb) [28] and the Fungal Secretome Knowledge-
Base (FunSecKB) [29]. Additionally, a predictive tool called SignalP-4.1 [30]
was also used. These three sources were used to construct a custom reference
�le containing proteins with a secretion signal. The systemic-and/or common
name IDs of the identi�ed proteins were used to match against the custom
reference �le. If a match occurred the relevant information was incorporated
as a protein attribute and was displayed as such in the Cytoscape sessions.

3.2.8 Contextual Network Construction

3.2.8.1 Overview

Using the outputs obtained from the Sections 3.2.3 to 3.2.7 a variety of net-
works were constructed in order to provide di�erent biological contexts for the
identi�ed proteins, such as functional context through GO terms, biochemical
context in KEGG metabolic pathways and interaction context de�ned by Bi-
oGRID. Each of these networks places either a protein or a module of proteins
in any one of the contexts.

When visualised, all of the networks have a visual style that serves to repre-
sent the proteins and their attributes. Node shapes relate to the type of nodes
in the network. Proteins and protein family modules are ellipses, GO terms
are hexagons and metabolic pathway and protein interaction module nodes ap-
pear as squares with rounded edges in their respective networks. The protein
node border re�ects a continuous color mapping relating to the probability of
the protein identi�cation. Black indicates a high quality identi�cation (high-
est probability of 1), whilst lower quality identi�cations take lighter shades of
grey.

The protein node color corresponds to a continuous color mapping re�ecting
the relative fold change attribute. Red shades indicate a large fold increase
in the quantity of the protein in VIN13 relative to the amount in RO88 with
darker red shades indicating a larger fold change. Blue shades indicate a large
fold increase in the quantity of the protein in RO88 relative to the amount in
VIN13 with darker blue shades indicating a larger fold change. If the protein
node color is white, it means no relative fold change could be calculated for this
protein. Only proteins with statistically signi�cant fold changes have shaded
node colors. The protein node color style also applies to protein family module
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nodes. Relevant information about the protein is built into the visualisation or
the structure of the network and available in tabular format as node attributes.
A selection of attributes that accompany protein nodes include a protein ID
and aliases, a description of the protein, probability of protein identi�cation,
the orthology group type, presence of a secretion signal and associated GO
terms. Quantitated proteins have additional attributes, namely the number of
peptides contributing to the quantitative signal for the protein, the fold change
and the adjusted p-value for fold change signi�cance.

The construction of each network is described below. All networks were
created using custom Perl programs. The outputs were generated in .sif format
and visualised in Cytoscape version 2.8.3.

3.2.8.2 Protein - GO Term network

The protein to GO term network consists of two types of nodes, namely protein
and GO term nodes. A protein node is connected to a GO term node via
an edge if the gene is associated with the GO term as de�ned by the gene
association �le. This network can be seen in Figure 3.3.

3.2.8.3 Protein-Protein GO Overlap Network

The Jaccard index is a set overlap similarity metric and was used here as a
measure of GO term overlap between proteins. It is calculated by dividing the
size of the intersection by the size of the union of two sets [31; 32]. A set in
this instance refers to the GO terms that are associated with a given protein.
The Jaccard index was calculated for every possible pair of identi�ed proteins
resulting in a matrix from which networks can be constructed. The Jaccard
index varies between 0 and 1, with a value of 1 indicating complete set overlap
(the proteins have the same set of associated GO terms), whilst zero indicates
no set overlap. A network was constructed in which each node represents a
protein and each edge represents the overlap between the GO terms associated
with the two proteins as quanti�ed by the Jaccard index. This network can
be �ltered based on a Jaccard index cuto� value. By doing this, one is able to
create network views based on the desired level of connectivity in the network.
Edge attributes for this network include the Jaccard index and a list of the
shared GO terms for each pair of proteins. A selection of the resulting networks
is shown in Figure 3.13 of Section 3.3.5.

3.2.8.4 Protein Family Modules - GO term network

As discussed in Section 3.2.6, a large fraction of the identi�ed proteins in the
dataset matched equally well to multiple orthologs. This ambiguity makes
it di�cult to assign attributes and context to such proteins when treating
them as individuals. In order to contextualise and represent these ambiguous
proteins, protein family modules were created. To de�ne the members of a
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Figure 3.3: The protein - GO term network in un�ltered form. Proteins
are represented as circular nodes and GO terms are represented as hexagonal
nodes. The protein node border re�ects a continuous color mapping between
black and white relating to the probability of the protein identi�cation where
black indicates a high quality identi�cation and white indicates a low qual-
ity identi�cation. The protein node color corresponds to a continuous color
mapping re�ecting the relative fold change attribute. Red shades indicate an
increase in the quantity of the protein in VIN13 relative to the amount in
RO88. Blue shades indicate a fold increase in the quantity of the protein in
RO88 relative to the amount in VIN13. Darker shades indicate a larger fold
change. A white protein node color indicates that no relative fold change could
be calculated for this protein. An edge between a protein node and GO term
indicates that the GO term is ascribed to the protein.

module, the protein families derived from OrthoMCL analysis of the three
species performed in Section 3.2.4 were used. Thus, a protein family module
may consist of one or more S288C derived systemic IDs and one or more
VIN13 and/or RO88 IDs. For the proteins which had to be grouped according
to best reciprocal BLAST matches, modules were created from these BLAST-
de�ned families. In the instances where there was a shared member between
an OrthoMCL family module and a BLAST module, a new combined module
with a unique ID was formed.

For the purpose of this work�ow, family modules are characterised as one
of two types, namely modules consisting of non ambiguous members and mod-
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ules consisting of ambiguous members. Modules consisting of non ambiguous
members have only one systemic ID, tied to one ortholog in VIN13 and/or
RO88 respectively. Modules consisting of ambiguous members contain one or
more systemic ID, tied to one or more orthologs in VIN13 and/or RO88. Pro-
teins that matched equally well to more than one spectrum, and thus were
unresolved by the TPP may also form part of these modules.

For the modules that contain multiple VIN13 and RO88 proteins of which a
subset contain proteins with quantitative mass tag information, an agglomera-
tive relative fold change signal was calculated for the module using the average
of the VIN13/RO88 ratios for the proteins in that module.If proteins within
the same module were found with opposing quantitative patterns, an attribute
indicating this was created.

A network was constructed linking each protein family module to GO terms
associated with the proteins within that module. This network (Figure 3.4)
consisted of two types of nodes, namely protein family module nodes and GO
term nodes. A protein family module node is connected to a GO term node
via an edge if a protein within the module is associated with the GO term.
Each protein family module has various attributes displayed in the attribute
columns of the Cytoscape session, including module members, number of mem-
bers, module type, agglomerative relative fold change (when applicable), which
member proteins carry the quantitative signal, what member proteins have a
secretion signal and if so in what database. A list of GO terms that describe
all of the module members is also provided. Protein family modules and their
attributes were constructed using custom written Perl programs.

Figure 3.4: Un�ltered protein family modules - GO term network.
The visual mapping style is the same as in Figure 3.3 except that the nodes
here are protein family modules and not proteins.
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3.2.8.5 Protein Modules GO Overlap Network

This network is constructed in a similar fashion to the protein-protein GO
network described in Section 3.2.8.3, however, the nodes here are the protein
family modules described in Section 3.2.8.4.

3.2.8.6 Protein - Metabolic Pathway network

The KEGG biochemical pathway data was used to construct this network,
shown in Figure 3.5. The identi�ed proteins are linked to the pathway nodes
via their systemic ID, thus an identi�ed protein will be linked to its corre-
sponding pathway(s) with an edge. Pathways are linked together with an edge
if they share a compound.

Figure 3.5: Protein metabolic network. Proteins are represented as cir-
cular nodes and the metabolic pathway nodes are rounded rectangles. The
visual mapping style for the protein nodes are the same as in Figure 3.3. An
edge between a protein node and a pathway node means that the protein is
involved in the pathway.
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3.2.8.7 Protein-Protein Interactome Networks

The BioGRID interactome database was used to construct the protein-protein
interactome networks. If a known interaction existed between any of the iden-
ti�ed proteins, an edge was formed between these two proteins. Each edge
between interacting proteins was attributed with the nature of the interaction
which entails the following attributes: the type of interaction which may be
physical or genetic, the method used to detect the interaction as well as a
publication identi�er.

All genetic interactions are determined by genetic interference experiments
and assays. The three types of genetic interference methods applicable here
are additive genetic interactions de�ned by inequality, suppressive genetic in-
teraction de�ned by inequality and synthetic genetic interaction de�ned by
inequality.

The physical protein-protein interactions refer to direct physical interaction
of two proteins or co-existence in a stable complex. The interaction detection
methods relevant for this dataset include a�nity chromatography, two hybrid
assays, �uorescent resonance energy transfer, protein complementation assays,
pull downs and enzymatic studies.

When the protein-protein interactome network is visualised in Cytoscape,
its edge dense nature makes it di�cult to visually interpret, thus two fur-
ther methods were used to generate di�erent views of the interactome net-
work. Firstly, the network was split into genetic-based interactions and phys-
ical protein-protein interactions. These networks can be seen in Figure 3.6.
The protein interactions were further split into a subset of protein interactions
with more than one line of evidence as shown in Figure S5.

For both the gene-based and physical-based protein interaction networks,
Minimum Spanning Tree (MST) views of the original networks were created
(Figure S4). MSTs are sparser subnetworks connecting all the nodes of the
original network and thus re�ect and retain much of information that was in
the original network whilst reducing complexity.

The edges of the original un�ltered interactome networks were undirected
and all have equal weights. Kruskal's minimum spanning tree algorithm [33]
was then applied to these un�ltered interactome networks which resulted in
MSTs of the original networks respectively.

3.2.8.8 Protein Interactome Module Networks

In order to create modules of interacting proteins, the protein-protein inter-
action networks in Section 3.2.8.7 were clustered using the Markov Clustering
Algorithm [34].

For the genetic interactome network an in�ation value of 1.7 was used,
resulting in the creation of 50 clusters. For the physical-based protein interac-
tome network an in�ation value of 4.9 was used which resulted in the creation
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Figure 3.6: Protein-protein interactome networks. (A) and (B) are gene-
based and physical-based protein-protein interaction networks respectively.
The visual mapping style is the same as in Figure 3.3 except that there are no
GO term nodes in this network.

of 52 clusters. Networks where the interactome modules connect to the GO
terms of the proteins within the modules were created and can be seen in
Figure 3.7.

Figure 3.7: Protein-protein interactome module to GO term networks.
Figures (A) and (B) are gene-based and physical-based protein-protein interac-
tion module networks respectively. The blue rectangular nodes are interaction
modules and the green nodes are GO terms.
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Table 3.1: Summary and �gure reference for all networks constructed
in Section 3.2.8.

Network type Figure reference
Protein - GO term 3.3
Protein family modules - GO term 3.4
Metabolic pathway 3.5
Protein interactome 3.6
Protein interaction modules - GO 3.7
Protein - enriched GO term for Cellular Com-
ponent

3.10

Protein - enriched GO term for Molecular
Function

3.11

Protein - enriched GO term for Biological Pro-
cess

3.12

Protein - GO overlap 3.13
Protein - GO overlap 0.2 3.14
Protein interactome - MSTs S4
Physical-based protein-protein interaction mul-
tiple lines evidence

S5

3.3 Results and Discussion

3.3.1 Overview

Presented and discussed in this section are the results of the network con-
structions described in Section 3.2.8. Any of the attributes provided can be
used to �lter and create subnetworks from the main networks. Such �lters
can be used in numerous combinations and thus e�ectively creates a relatively
easy and quick method by which one can investigate the networks for existing
hypotheses or formulate new hypotheses based on what is observed.

The examples of network interpretation presented in this section serve to
illustrate the utility of the method and showcase instances where it is most
valuable. However, it is not meant as an exhaustive interpretation of the data.

Given the size of the dataset and the multiple combinations of �ltering
criteria that may be used, a myriad of subnetworks can be generated. The
relevance of these outputs are largely determined by the aims and objectives.
One of the main goals of this work�ow was to provide a set of contextualised
networks from which one can explore the results of an experiment.

Table 3.1 is a summary of all the networks constructed (Section 3.2.8) and
provides a �gure reference.
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3.3.2 Filtering Criteria

Any attribute assigned to a node or an edge in any of the networks may be
used as a �ltering criteria from which one can constrain the data within a
given context. Furthermore, these criteria may be used in combination with
one another and may span multiple network types. Some of the criteria are
described in sections 3.3.2.1 through 3.3.2.3 below.

3.3.2.1 Protein Probability

The protein probability represents the probability that a protein has been cor-
rectly identi�ed. Factored into the calculation of the protein probability are
variables from both the peptide level and protein level, including the prob-
abilities of the peptides that group with the protein, percentage of protein
coverage and number of unique peptides [25]. The protein probability is thus
a good metric of data quality and can be thresholded in order to create con-
textualised outputs at the desired level of error versus sensitivity. The ability
to �lter the data at the contextualised level is advantageous because it is easy
to see what data is removed by a given �ltering criteria and why the data
is excluded. This provides one with more information from which to make
decisions about thresholds in a data dependant manner as opposed to apply-
ing arbitrary cuto�s. In order to interpret the networks, it is advisable that
the identi�ed proteins �rst be �ltered based on their probability. A probabil-
ity threshold may be chosen based on the information obtained from protein
prophet. Figures S2 and S3 illustrate this information for the identi�cations
made in VIN13 and RO88 respectively.

3.3.2.2 Di�erential Identi�cations

Di�erential identi�cation refers to the ability to infer the presence of a protein
expressed by one organism and not by the other in a mixed sample context.
However, caution must be taken when interpreting the di�erential identi�ca-
tion results. What can be inferred from these results is that a given protein
could only be detected in one organism and not in the other using the mass
spectrometry and data analysis work�ow described. It does not necessarily
mean that the protein was not present in the sample. There can be multiple
reasons why a protein was identi�ed in one organism and not in the other.
The following scenarios are all plausible for this dataset. The peptides of a
protein may be present in very low quantities in one species relative to the
other, leading to a detection bias against that protein. The thresholds which
are used to determine ortholog relationships may, if set too stringently, exclude
certain legitimate ortholog relationships. Conversely, if the ortholog criteria
is too lax, illegitimate ortholog assignments will lead to an over-represented
count of proteins identi�ed in both species.
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3.3.2.3 Relative Fold Change

When interpreting the relative protein fold changes it is crucial to take heed
of the number of peptides that contribute to the quantitative signal. Multiple
quantitative peptides are required in order to calculate a standard deviation
for the quantitative signal. Special care must be taken when interpreting the
relative protein fold change in cases where there was only one quantitative
peptide available from which to calculate the relative protein fold change.

3.3.2.4 GO Terms

The Gene Ontology provides a useful controlled vocabulary that can be used
to contextualise the data. In addition, the Gene Ontology consists of three
distinct hierarchies or categories represented as independent directed acyclic
graphs (DAGs) or directed acyclic networks [16]. In this work, the three hier-
archies, namely molecular function, biological process and cellular component
o�er a valuable means for contextual constraint of the data since the GO
category attribute can be used to create subnetworks.

3.3.2.5 GO Enrichment

When GO terms are statistically signi�cantly enriched in this context, it means
that the GO terms connected to the proteins are over-represented in the
dataset. Thus, constraining network outputs to only enriched GO terms and
their proteins may provide biological insight.

3.3.2.6 Proteins with a Secretion Signal

Since this experiment involved analysis of the secretome, one of the desired out-
comes was to see if any proteins with known secretion signals could be observed
in the data. In total, 15 proteins with known secretion signals were detected.
Of these 15 instances, 10 were detected in SignalP-4.1 only, two instances were
detected in the Fungal Secretome database only, another two instances were
detected in SPdb only and only one instance had a secretion signal de�ned by
both the Fungal Secretome database and SignalP-4.1 database.

3.3.3 Overview of Results

A total of 396 proteins are presented and contextualised as a result of the
work�ow. 169 of the 396 proteins were identi�ed in both VIN13 and RO88,
whilst 115 proteins could only be identi�ed in VIN13 and 112 only identi�ed
in RO88. Figure 3.8 shows these results as a Venn diagram.

Of the 169 proteins identi�ed in both species, a relative fold change could
only be calculated for 111 of these proteins. Of the 111 proteins with a calcu-
lated fold change, 81 instances had only 1 peptide that met the criteria set by
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Figure 3.8: The amount of proteins identi�ed in both species and in
VIN13 and RO88 only. A total of 396 proteins are presented and contex-
tualised as a result of the work�ow. 169 of the 396 proteins were identi�ed in
both VIN13 and RO88, whilst 115 proteins could only be identi�ed in VIN13
and 112 only identi�ed in RO88.

the method for calculation of the relative fold change. The other 30 instances
had 2 or more peptides available for the calculation of the relative fold change
with the highest amount of peptides reaching 5. Figure 3.9 shows the result
as a Venn diagram. Furthermore, of the 111 calculated fold changes, only 77
were statistically signi�cant. 70 of these 77 indicated a higher relative protein
abundance in VIN13 with only 7 instances indicating higher relative protein
abundance in RO88.

3.3.4 The Protein - GO Term Networks

The un�ltered Protein - GO term network (Figure 3.3) consists of 1501 nodes
and 4498 edges. 396 of the nodes are protein nodes and 1104 are GO term
nodes. 561 of the GO term nodes belonged to domain biological process,
189 to cellular component and 354 to molecular functions. A GO term may
connect to multiple proteins, whilst a protein may connect to multiple GO
terms. As can be seen in Figure 3.3, this network is very dense. In order to
sparsify this network, it was �ltered to retain only enriched GO terms. 95
GO terms were statistically signi�cantly enriched in the dataset, 41 of these
belonged to the category biological process, 21 to cellular component and 34 to
molecular function. Protein - GO term subnetworks for each of the categories
were created using only the enriched GO terms and are displayed in Figures
3.10, 3.11, and 3.12.
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Figure 3.9: The amount of proteins for which fold changes could be
calculated. Of the 169 proteins identi�ed in both species, fold changes could
only be calculated for 111. However, of this 111, 81 proteins had only one
quantitative peptide that met the criteria set in Section 3.2.5, whilst only 30
proteins had 2 or more peptides from which to calculate a relative fold change.
Furthermore, only 77 of the fold changes were found as statistically signi�cant
by the method.

3.3.5 Protein - Protein GO Overlap Networks

The protein-protein GO overlap network illustrates the similarity between pro-
teins based on their functional annotation in terms of associated GO terms,
quanti�ed using the Jaccard index. Table 3.2 shows the decrease in the total
number of edges as the Jaccard index threshold is increased. At a Jaccard
index threshold of 0.0 every protein is connected to at least 1 other protein,
since every protein, if it is de�ned within the gene ontology, must have at least
a high level GO term ascribed to it. At a Jaccard index of 0.1, proteins with
very little connection to other proteins are revealed, whilst at a Jaccard index
of 0.9 only proteins with high similarity in terms of the GO terms ascribed to
them remain connected. It was also observed that systemic IDs that cluster in
the same protein families were also described by many of the same or exactly
the same GO terms.

Figure 3.13 illustrates the information in Table 3.2 and demonstrates that
using a set overlap measure such as the Jaccard index may be a useful �ltering
criteria. Furthermore, this approach can be used to identify groups of func-
tionally similar proteins at predetermined threshold values and is also useful
to �nd protein instances where the annotation appears non-obvious. Thus, a
network-based view of GO term overlap provides one with a di�erent perspec-
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Figure 3.10: Network of enriched cellular component GO terms. This
is a subnetwork of the protein - GO term network constrained to only enriched
GO terms belonging to the category cellular component and the proteins that
are associated with this subset of GO terms. The visual style is the same as
in Figure 3.3.

Table 3.2: The number of edges that exist at di�erent Jaccard index
thresholds as determined for the protein-protein network.

Jaccard Index Threshold Number of Edges
0.0 42383
0.1 10495
0.2 3006
0.3 1762
0.4 1205
0.5 782
0.6 509
0.7 311
0.8 177
0.9 90

tive on the dataset from which additional and possibly obscured information
about the proteins can be gleaned. More speci�c results from this approach
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Figure 3.11: Network of enriched molecular function GO terms. This
is a subnetwork of the protein - GO term network constrained to only enriched
GO terms belonging to the category molecular function and the proteins that
are associated with this subset of GO terms. The visual mapping style is the
same as in Figure 3.3.

are described in Section 3.3.5.1.

3.3.5.1 Protein - Protein GO Overlap Network with a Jaccard
Index Threshold of 0.2

A subnetwork of the protein-protein GO overlap network was created where
an edge can only exist if the Jaccard index between two nodes is greater than
or equal to 0.2. This network is displayed in Figure 3.14A. Apparent in this
network were 22 individual proteins and four groupings that became discon-
nected, indicating that these proteins share only a few GO terms with the
other proteins in the dataset.

Table 3.3 contains a summary of some of the attributes for the proteins
in the GTPase group. Now that the view has been constrained to a group of
interest one may choose to decide on other �ltering criteria, such as probability
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Figure 3.12: Network of enriched biological process GO terms. This is
a subnetwork of the protein - GO term network constrained to only enriched
GO terms belonging to the category biological process and the proteins that
are associated with this subset of GO terms. The visual mapping style is the
same as in Figure 3.3.

Table 3.3: A subselection of attributes belonging to the proteins of the
GTPase group. In the protein probability column the VIN13 probability is
given �rst followed by the RO88 probability. If the probability of identi�cation
for the proteins was the same in both species, only one number is given. The
number of GO terms and number of enriched GO terms columns give the
amount of GO terms that describe the proteins and the number of enriched
GO terms respectively.

Protein ID
Identi�ed in
species

Probability of
identi�cation

Number
of GO
Terms

Number
enriched
GO terms

YOR101W RO88-only 0.9628 13 3
YLR289W VIN13-only 0.2829 13 3
YLL001W Both 0.3594 ; 0.3032 18 2
KRH2 RO88-only 0.2818 14 2
SRA1 RO88-only 0.4033 11 3
GLC5 Both 0.9812 ; 1 17 3
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Figure 3.13: Protein-protein GO overlap networks. (A) - (E) are protein-
protein networks with Jaccard index thresholds of (A) 0.1 (B) 0.3 (C) 0.5 (D)
0.7 (E) 0.9. The networks consist only of protein nodes and the visual mapping
style for the nodes is the same as in Figure 3.3. Edge sizes are scaled according
to the Jaccard index between the two connected nodes, a thicker edge represent
a higher Jaccard index.

of identi�cation, to further �lter the output. In this case, a justi�able choice
may be made to single out proteins such as KRH2 because it was identi�ed
in only one of the target species at a relatively low probability. What this
example illustrates is the ability and relative ease with which the method
allows a grouping of proteins that shares biologically relevant connections to be
identi�ed and interpreted prior to the application of a data quality threshold.
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Figure 3.14: The protein-protein GO overlap network at a Jaccard
index threshold of 0.2. (A) is the entire protein-protein GO overlap network
at this threshold. (B) and (C) are the GTPase group and Histone group
subnetworks respectively. The visual mapping style and network type is the
same as in Figure 3.13.

This is in contrast to approaches where relatively arbitrary determined data
quality thresholds are applied �rst, and what remains of the data thereafter is
then interpreted.

Another one of the four groupings that become disconnected at the 0.2
threshold is illustrated in 3.14C (hereafter referred to as the Histone group)
and is comprised of YNL031C, BUR5, YBL002W and SPT12. This example
was chosen to illustrate how the work�ow described is capable of dealing with
ambiguities and redundancies encountered with data of this kind.

YBL002W is Histone H2B and is identi�ed only in VIN13 with a protein
probability of 1.0 and has 9 GO terms associated with it, none of which are
enriched. SPT12 is also described as Histone H2B and is identi�ed only in
RO88 with a protein probability of 0.998 and has 11 GO terms ascribed to
it, none of which are enriched. 9 GO terms are shared between SPT12 and
YBL002W, however, SPT12 has 2 GO terms not ascribed to YBL002W.
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Unlike YBL002W and SPT12, YNL031C and BUR5 are both described as
Histone protein H3 and correspond to the same set of identi�ed mass spectra.
They are identi�ed in both VIN13 and RO88 with protein probabilities of
0.6328 and 0.6523 respectively and these proteins were found to be 6.14 fold
more abundant in VIN13. YNL031C has 7 GO terms ascribed to it, none of
which are enriched, whilst BUR5 has 9 GO terms ascribed to it, none of which
are enriched. YNL031C and BUR5 are �agged as ambiguous because they
belong to a multiple ortholog group and they correspond to two proteins in
RO88 to which the spectra match equally well.

Consequently, YNL031C and BUR5 are best viewed in the context of the
protein family modules networks discussed in Section 3.2.8.4. By doing this,
it becomes clear that both YNL031C and BUR5 are grouped in the same
module, namely Ortholog module 81, which has 5 members (Figure 3.15). We
can now also easily obtain a non-redundant view of this module and the GO
terms ascribed to the member proteins of this module.

D N A  b i n d i n g

rRNA 
t r a n s c r i p t i o n  
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Figure 3.15: Orthology module 81 with the GO terms that describe
it. The members of Ortholog module 81 are YNL031C, BUR5, YBL002W and
SPT12 (histone group). Family modules are represented as circular nodes and
GO terms are represented as hexagonal nodes. The size of the family module
node corresponds to the number of proteins in the module. An edge between
a protein family module node and a GO term indicates that the GO term is
ascribed to the protein family module. The visual mapping style is the same
as in Figure 3.3 except that the nodes here are protein family modules and
not proteins.

The above example illustrates how one may use multiple network-based
contextualisations of the data to interpret a given grouping of proteins. Fur-
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thermore, the use of the protein family modules network illustrates how re-
dundancy created by annotation may be obviated in an automated fashion.

3.3.6 Proteins Relating to the Yeast Cell Wall

The fungal cell wall is a highly dynamic cellular organelle with four major
functions, namely the stabilisation of internal osmotic conditions, protection
against environmental and physical stresses, maintaining the shape of the cell
and acting as a sca�old to which proteins can attach [35].

The yeast cell wall has two layers and consists mainly of polysaccharides
with three sugars, namely mannose, glucose and N-acetylglucosamine as the
predominant building blocks [36]. The inner layer is composed of β-1,3 glucan
and chitin, whilst the outer layer consists of mainly β-1,6 glucan and heavily
glycosylated mannoproteins [35]. Given the vital functions of the cell wall,
it is of great interest from both a fundamental biological perspective and an
applied point of view. In this section we focus especially on parietal proteins
and/or yeast mannoproteins identi�ed in the dataset with positive oenological
properties and the role that they ful�ll in the cell wall, as well as those proteins
that are actively secreted into the growth media.

3.3.6.1 Oenological Functions of Parietal Yeast Proteins

Several oenological functions of parietal yeast mannoproteins have been de-
scribed: 1) Yeast mannoproteins can combine with anthocyanins and tannins
in wine leading to increased colour stability [37] and decreased astringency
resulting in a wine with more body, better mouthfeel and with an increased
resistance to oxidation [38]; 2) The growth of malolactic bacteria in wine is
stimulated by the presence of parietal mannoproteins [39]; 3) Crystallization
of tartrate salt can be prevented with the use of mannoproteins and can thus
aid in achieving tartrate stability in wine [40]; 4) Mannoproteins and aromatic
compounds may interact during the winemaking process and this interaction
occurs especially during ageing of the wine on the lees. Interactions between
yeast proteins and aromatic metabolites in wines can lead to modi�cations of
volatility and aromatic intensity of wines as well as contribute to overall aroma
stability in wines [38]; 5) Heat stability can be conferred to wines due to the
presence of certain mannoproteins [41]; 6) Mannoproteins play a considerable
role in the adsorption of Ochratoxin A [42; 43; 44], a dangerous fungal sec-
ondary metabolite often found in grapes, grape juices and wines [45]; 7) The
passive release of molecules due to yeast autolysis while wine ages on the lees
increases the mannoprotein level and the amount of yeast-derived amino acids
in the wine [46]. It is believed that this winemaking practice may protect the
wine from oxidation and add to the complexity of aroma and �avour to the
wine; 8) Mannoproteins are of importance for wines where the �or technique
is applied. Film-forming yeasts or �or yeasts spontaneously develop on the
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surface of the wine, forming a thick mat of cells called the velum. Velum
yeast posess a 49-kDa hydrophobic cell wall mannoprotein which correlates
with velum formation and surface hydrophobicity [47]; 9) Mannoproteins are
also of particular interest in the manufacture of several sparkling wines for the
role that they play in the �occulation of yeast strains [48; 49]; 10) A com-
mon problem during the production of white wines is the formation of haze, a
phenomina that occurs predominantly due to the relatively slow rate at which
grape proteins denature and precipitate. Several glycoproteins have been ob-
served to reduce visible haziness by decreasing the particle size of the haze
[50; 51; 52; 53].

The amount and type of proteins released by yeast during the wine making
process and ageing on the lees is very much dependant on the speci�c yeast
strain used and the nutritional conditions of the must [38]. Furthermore, it
has been shown that the strain of yeast used determines the in�uence that the
mannoproteins have and that the proteins released during the fermentation
process itself are more reactive than those released during yeast autolysis [37].

Due to their positive oenological properties [38] and wine haze reduction
potential [50], mannoproteins and the genetic determinants involved with their
release were a group of high interest for this study. Proteins of interest included
targets such as the haze protection factor proteins (HPFs) YOL155C (also
known as HPF1) and YDR055W (also known as HPF2 or PST1) [54], β-
1,6 exoglucanases such as EXG1 (YLR300W) [51] and proteins involved with
chitin metabolism such as Chitin synthase III (YBR023C) [52] and Chitin
transglycosylase (YGR189C) [53].

A current hypothesis suggests that many of the proteins listed above are
secreted into the growth media and are produced in higher abundance in RO88
relative to VIN13 [14]. In order to �nd evidence in support of or against this
hypothesis, known relevant target proteins were investigated in the network
context. Also, all of the constructed networks were queried for the string
"cell wall" starting with the protein to GO term network. By executing this
query, all proteins that match this string in their description or in the GO
terms ascribed to them were returned and a cell-wall-themed subnetwork was
created. This network allowed the investigation of all the identi�ed proteins
under the cell wall theme with the added GO context.

The cell wall subnetwork in Figure 3.16 consists of 45 nodes of which 36
are proteins and nine are GO terms. Statistically signi�cant fold changes were
found for seven of the proteins, four of which were more abundant in RO88,
whilst three were found to be more abundant in VIN13. Seven of the proteins
also have known secretion signals. Of the nine GO terms in the network, "cell
wall", "fungal-type cell wall" and "fungal-type cell wall organization" are of the
highest degree. These GO terms are relatively high level GO terms and thus
give somewhat unspeci�c knowledge about the proteins that they describe.
The other six GO terms, such as "cell wall mannoprotein biosynthetic process",
are more speci�c.
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Figure 3.16: Subnetwork of the protein-GO term network �ltered for
all nodes relating to the cell wall. The visual mapping style is the same
as in Figure 3.3. The dashed arrows point to GO terms.

The cell wall subnetwork in Figure 3.16 can be further �ltered by selecting
for only proteins with signi�cant fold changes between the species. This sub-
selection of proteins can then be visualised in the GO term overlap network
and is illustrated in Figure 3.17.

The protein pair with the highest amount of GO overlap is HPF2 and SSR1
with a Jaccard index of 0.6. A selection of low level enriched GO terms for
this subnetwork include terms such as "membrane", "fungal-type cell wall",
"fungal-type cell wall organization", "extracellular region" and "anchored to
membrane". Table 3.4 provides a selection of attributes that describe the seven
proteins in this network.

All seven proteins shown in Figure 3.17 are of interest for fundamental cell
wall biology and their possible positive oenological traits which are described
in Section 3.3.6.1. These proteins are discussed in more detail below.

3.3.6.2 HPF2

YDR055W, also known as HPF2, is a cell wall mannoprotein that is capable
of reducing the particle size of aggregate proteins, however, the mechanism
by which it confers this haze protective ability is not yet fully understood
[54]. It has been found that HPFs do not prevent wine proteins from forming
aggregates, instead it is the manner in which the wine proteins aggregate
that is altered [55]. Furthermore, it has been suggested that HPFs act by
competing with wine proteins for other wine components and by this mode of
action prevent the formation of protein aggregations which are large enough
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Figure 3.17: A cell wall subnetwork of the protein-protein network
with edges weighted by Jaccard index. The visual mapping style is the
same as in Figure 3.13.

to be detected as haze [54].
As shown in Table 3.4, HPF2 has a secretion signal and has been shown

to be secreted by regenerating protoplasts [56]. The data con�rms the pres-
ence of HPF2 in the secretome at higher relative abundance in RO88 when
compared to VIN13. However, it has been suggested that the glycan structure
and possible strain-speci�c manner of post translational glycan modi�cation
is of high importance for the role that this protein plays in white wine haze
protection in addition to the quantity at which this protein is present [57].

3.3.6.3 Structural Cell Wall Proteins

Much of the current research pertaining to cell wall rigidity has focused on the
polysaccharide components. However, it has been suggested that cell wall pro-
teins should also be considered as important for cell wall rigidity [58]. Many cell
wall proteins are modi�ed by the addition of short O-linked sugar chains. It is
thought that these sugar chains a�ect the secretory process of cell wall proteins
and may directly contribute to cell wall rigidity [59]. Several of the proteins
that a�ect the structure of the cell wall in either a direct or indirect manner
identi�ed in this dataset are illustrated in Figure 3.17 and summarised in Ta-
ble 3.4. These proteins include SSR1, YBR162C, YGR279C and YMR068W,
each of which is discussed in more detail below.

The main layer of the cell wall is believed to be a mesh-like structure
consisting of proteins, 1,6-β-glucan and chitin that are cross-linked with the
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Table 3.4: A subselection of attributes belonging to the proteins of the
cell wall subnetworks. In the Probability of identi�cation column the VIN13
probability is given �rst followed by the RO88 probability. If the probability of
identi�cation for the proteins was the same in both species, only one number
is given. The number of quantitative peptides column indicates the number of
peptides that were available to derive the fold change. The fold change column
gives the relative fold change ratio for VIN13/RO88 as calculated in Section
3.2.5. The secretion signal column may contain either a Yes or No variable to
indicate if the protein has a secretion signal de�ned within the databases.

Protein-ID
Probability of
identi�cation

Fold change
Number of
quantitative
peptides

Secretion
signal

HPF2 1 -1.22 3 Yes
GGP1 1 -1.51 2 No
SSR1 0.9999 -1.33 1 No
YAP3 0.59 ; 0.6554 -2.64 1 No
YBR162C 1 1.45 1 Yes
YGR279C 1 1.49 3 No
YMR068W 1 2.33 1 No

side chains of 1,3-β-glucan. However, before cross-linking with the 1,3-β-glucan
side chains can occur these side chains need to be modi�ed. YMR307W, also
known as GGP1, is a β-1,3-glucanosyltransferase and is believed to provide the
enzymatic activity for the modi�cation of the side chains [60], hence performing
a vital role in the formation of the fungal cell wall. Another protein that
modi�es components of the cell wall is YGR279C (also known as SCW4) which
is similar to glucanases. The paralog for YGR279C, namely YMR305C (also
known as SCW10), was also identi�ed in both species, however, no fold change
could be calculated. It was previously found that SCW4 and SCW10 may play
a direct or indirect role in the anchoring of proteins to β-1,6-glucan [61; 62; 63].
Furthermore, it has been suggested that, in addition to glucanase function,
SCW4 and SCW10 also act as transglucosylases that provide the the necessary
glucan polymers required for stabilisation of the fusion stage during yeast
mating [63].

Whereas both GGP1 and SCW4 provide direct enzymatic modi�cation of
cell wall components, a protein, namely SSR1, that can be described as a core
structural cell wall component, was also observed in this dataset. SSR1 is a
glycoprotein that is located in the inner layer of the cell wall and associates
with glucan [64]. YMR068W, a protein with regulatory function, was also
identi�ed. YMR068W (also known as AVO2) is a component of a protein
complex containing the Tor2p kinase and other proteins referred to as the
TOR complex 2 (TORC2). TORC2 has two main known functions: Firstly,
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it is required for progression in the G1 phase of the cell cycle and also signals
initiation of translation. It shares these functions with its homolog TORC1.
Secondly, TORC2 is involved in the polarised distribution of actin in the cy-
toskeleton and this function is unique to TORC2. It has been proposed that
given these two functions, TORC2 possibly integrates temporal and spatial
control of cell growth [65].

Another protein that is covalently bound to the cell wall is YBR162C,
also known as TOS1. This protein is currently of unknown function, however,
mutants with this gene knocked out are highly resistant to treatment with
beta-1,3-glucanase [66]. Furthermore, a transcription factor study using DNA
microarrays revealed that YBR162C is a target for the SBF transcription
factor which is under the control of cell cycle regulation [67]. Genes activated
by SBF are predominantly involved in yeast cell budding, and in membrane
and cell-wall biosynthesis [67]. TOS1 also has a predicted secretion signal, is
upregulated in VIN13 and seeing that its function is still unknown, it may be
a protein of potential oenological interest.

TOS1, SCW4 and AVO2 were all present in VIN13 in higher abundance
when compared to RO88, whilst CCW14 and GGP1 are more abundant in
RO88. Given the roles and di�erential expression of these proteins by VIN13
and RO88, it is possible that these two yeast di�er quite signi�cantly in terms
of their respective cell wall composition and regulation even when grown in
isolation under the same conditions.

3.3.6.4 Yapsins

YLR120C (also known as YAP3 or YPS1) is an aspartic protease and belongs
to a family of �ve glycosyl phosphatidyl inositol-linked aspartyl proteases also
known as yapsins. The paralog for YPS1, namely YPS2, was also identi�ed
in the dataset, but was identi�ed in RO88 only with a relatively low protein
probability of 0.4728. The yapsin family of proteases are believed to process
cell wall proteins involved in the maintenance of cell wall integrity [68]. YPS1
is active on the cell surface [69] where it is able to cleave at clusters of ba-
sic amino acids (C terminal to basic residues) within peptides and proteins
[70]. Expression of YPS1 is induced during periods of cell wall stress and
remodelling as shown by genome-wide expression experiments [71; 72; 73; 74].
Further evidence supporting the induction of YPS1 can be found in the results
of quantitative immunoblotting experiments [75]. When the cells were shifted
from 24°C to 37°C , YPS1 levels increased 12-fold. Also, YPS1 could not be
detected with immuno�uorescence at 24°C but was detected at 37°C showing
�uorescence localised at the plasma membrane.

In summary, YPS1 is expressed in a temperature dependant manner [75]
and according to the data it is upregulated RO88 when compared to VIN13.
Furthermore, there is a di�erence in the optimum growth temperature for
VIN13 and RO88. Thus, given these facts, YPS1 and indeed the yapsin protein
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family, are interesting targets for their possible oenological role, especially in
RO88.

3.3.7 Proteins Relating to Malo-Ethanolic Fermentation
(MEF)

In order to make sense of the data, parameters such as the growth conditions
and time point of sample extraction must be kept in mind. The yeasts were
grown separately in MS300 media (Section 3.5.2.1) and fermentations were
allowed to run to dryness. In other words, just prior to the point of protein
extraction glucose was limiting in the media.

For the greater portion of time during the growth of the yeast used in this
study, metabolism is fermentative for both species and the Crabtree regula-
tory system [76] is in e�ect. Under these conditions mitochondrial activities
are restricted [77] and carbon �ow is steered away from biosynthesis towards
ethanol production [78]. However, even under fermentative conditions, some
biosynthetic activity is still required and is essential for the survival of the
organism [79]. Biosynthetic processes produce NADH and consume NADPH
resulting in a redox imbalance with NADH needing to be reoxidised. Alco-
holic fermentation is a redox neutral process and can thus not account for the
reoxidation of assimilatory NADH. In S. cerevisiae and other yeast, the for-
mation of glycerol is a well understood mechanism by which the redox balance
is restored [80]. An auxillary pathway for the regeneration of NADH involving
malic acid and the malo-ethanolic pathway in yeast has also been proposed
[81].

A key di�erence of oenological interest between S. paradoxus strain RO88
and other members of the Saccharomyces genus is the ability of RO88 to reduce
the amount of L-malic acid in the must via malo-ethanolic (ME) fermentation,
whilst still being able to produce a wine of good quality [82].

Notable variations in the degradation of L-Malic acid within the Saccha-
romyces sensu stricto group have been observed. The degradation of L-malic
acid also appears to correlate with the optimal growth temperature of the in-
dividual strains. L-Malic acid synthesis was observed with cryotolerant species
of S. cerevisiae such as S. bayanus, S. pastorianusS. uvarum, whilst thermo-
tolerant strains of S. cerevisiae and S. paradoxus (such as strain RO88) were
able to degrade between 40 and 48% of L-malic acid [83; 84; 85].

Furthermore, it was previously found that strain RO88 of S. paradoxus
was able to degrade 38% of malic acid in Chardonnay must [82]. Increased
expression of the malic enzyme gene in strain RO88 of S. paradoxus was also
observed towards the end of fermentation when glucose was depleted [82].
It is noteworthy that VIN13 is characterised as having an optimum growth
temperature of between 12-16°C and can thus be classi�ed as a cryotolerant
strain of S. cerevisiae [86].
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S. cerevisiae can only use L-Malic acid in the presence of one or more
fermentable carbon sources. Deletion of the gene encoding the malic acid
enzyme (EC:1.1.1.38) revealed that it was non essential for the survival of the
organism. There appears to be no active transport system for L-Malic acid in
S. cerevisiae, however, mitochondrial L-Malic acid transporters do exist [82].

A study investigating the underlying mechanisms that control the ability
of a yeast to degrade extracellular L-Malic acid during alcoholic fermentation
was conducted using three di�erent species of Saccharomyces and the results
showed that all three had varying abilities to degrade L-Malic acid [82]. S.
bayanus EC1118 and S. cerevisiae 71B were only able to degrade 8 and 17% of
L-Malic acid respectively, however, S. paradoxus RO88 was able to degrade 28-
38% of L-Malic acid [82]. Concomitant gene expression analysis revealed that
increased expression of the malic acid enzyme led to increased degradation of
L-Malic acid [82]. Di�erent promoter sequences also exist between S. paradoxus
RO88, S.bayanus EC1118 and S. cerevisiae 71B. Hence, it was proposed that
di�erent transcriptional regulatory mechanisms in these strains may explain
the ability of S. paradoxus RO88 to degrade L-Malic acid to a greater extent
[79].

Figure 3.18 shows two ways by which S. cerevisiae and other yeast are
able to regenerate NADH. Under these experimental conditions, the glycerol
formation pathway is likely active and up regulated for VIN13. Given the en-
hanced malic acid degradation ability of S. paradoxus RO88 [82], the pathway
involving malic acid is likely active in RO88 under the experimental conditions
de�ned in Section 3.5.2.1.

Although MAE1 was not detected in the protein dataset at hand, many
protein constituents playing a role in the TCA cycle were identi�ed. Six were
found to be relatively more abundant in VIN13 when compared to RO88.
These proteins are illustrated in Figure 3.19 B and include GLU1, ACO2,
ACN17, IDH2, PDA1 and IDP1. Table 3.5 summarises a selection of at-
tributes ascribed to these six proteins. GLU1, also known as ACO1, is the
aconitase enzyme and ACO2 is a putative mitochondrial aconitase isozyme
with high sequence similarity to ACO1. Both the identi�cation and quanti�-
cation of GLU1 and ACO2 are based on the same set of peptide spectra. IDP1
is a mitochondrial NADP-speci�c isocitrate dehydrogenase, whilst IDH2 is a
subunit of mitochondrial NAD(+)-dependent isocitrate dehydrogenase. PDA1
is the E1 alpha subunit of the pyruvate dehydrogenase (PDH) complex and
ACN17 is an iron-sulfur protein subunit of succinate dehydrogenase. Thus, all
six of these proteins have direct enzymatic function within the mitochondria
or form part of larger complexes that are involved in the TCA cycle.

The data possibly suggest that under the same stipulated growth condi-
tions, the two yeast are making use of two di�erent pathways to maintain the
redox balance for core biosynthetic reactions in lieu of the predominant redox-
neutral ethanol production. The suppositions being that S. paradoxus RO88
uses the auxillary pathway for the regenaration of NADH involving malic acid
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Figure 3.18: A simpli�ed metabolic pathway diagram of the mecha-
nisms for reoxidation of assimilatory NADH in S. cerevisiae. The
top half of the diagram shows the reoxidation of NADH via glycerol forma-
tion. The bottom half of the diagram shows MEF. The diagram contains some
of the key enzymes, compounds and pathways involved. The rectangles with
rounded edges are pathways, circular shapes are compounds and rectangles
are enzymes. Dashed lines indicate an indirect pathway link and solid lines
are direct biochemical reactions involving the enzymes.

and the malo-ethanolic pathway [81] and that S. cerevisiae VIN13 is maintain-
ing redox balance via the formation of glycerol [80]. Further support for this
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Figure 3.19: Protein metabolic network with TCA and glycerol
metabolism subnetworks. (A) is all of the identi�ed proteins within a
metabolic context. A selection of pathways are pointed out for reference. (B)
is a subnetwork of (A) and shows the six TCA cycle proteins that had signi�-
cant fold changes. (C) is also a subnetwork of (A) and shows two proteins that
had signi�cant fold changes and are involved in glycerol and glycerophospho-
lipid metabolism.

hypothesis is evidenced by higher abundance levels of the glycerol producing
enzymes, DAR1 and RHR2 in VIN13 as shown in Figure 3.19C. Additional
attributes for DAR1 and RHR2 are shown in Table 3.5. RHR2, also known
as GGP1, is a constitutively expressed glycerol-1-phosphatase and is the enzy-
matic step prior to the formation of glycerol as shown in Figure 3.18. RHR2
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catalyses the formation of glycerol from lysophosphatidate. This enzyme is
unidirectional and thus an increase in it's abundance leads to increased glyc-
erol production. DAR1, also known as GPD1, is a NAD-dependent glycerol-3-
phosphate dehydrogenase and catalysis the formation of glycerone phosphate
from glycerol 3-phosphate as shown in Figure 3.18. GCY1 then uses glycerol
3-phosphate as a substrate for the production of glycerol.

Table 3.5: A subselection of attributes belonging to the proteins
shown in Figure 3.19. In the protein probability column the VIN13 prob-
ability is given �rst followed by the RO88 probability. If the probability of
identi�cation for the proteins was the same in both species, only one number
is given. The number of quantitative peptides column indicates the number of
peptides that were available to derive the fold change.

Protein-ID
Probability of
identi�cation

Fold change
Number of quanti-
tative peptides

IDP1 1 8.74 1
IDH2 0.9656 ; 0.9867 3.4 1
YER178W 0.9669 ; 0.9441 9.57 1
ACN17 0.7402 ; 1 3.79 1
ACO2 0.9928 ; 1 4.15 1
GLU1 0.9928 ; 1 4.15 1
RHR2 0.5276 ; 0.7162 5.96 1
DAR1 0.9916 ; 0.9956 7.0 1

3.3.8 YHR138C - a Protein of Unknown Function

YHR138C is described as a protein of unknown function but has three GO
terms, namely "cellular component", "endopeptidase inhibitor activity" and
"vacuole fusion, non-autophagic" ascribed to it as shown in Figure 3.20 A.

Table 3.6: A subselection of attributes for YHR138C and its inter-
acting proteins. The column descriptions are the same as in Table 3.5

.

Protein-ID
Probability of
identi�cation

Fold change
Number of quanti-
tative peptides

YHR138C 0.5405 ; 0.9886 1.5 1

AIM3
0.6786 (RO88
only)

na na

ILV3 1 2.9 2

LYS11
0.989 (VIN13
only)

na na
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Figure 3.20: YHR138C in GO and interactome contexts respectively.
(A) is the GO context and (B) is the interactome context. The visual mapping
style is the same as in Figure 3.3.

3.3.8.1 YHR138C Interactions

Relatively little is known about YHR138C, however, it is similar to PBI2, a
protein required for e�cient vacuole inheritance [87]. It has been demonstrated
that when both YHR138C and PBI2 are knocked out in S. cerevisiae, highly
fragmented vacuoles indicative of faulty vacuole fusion are observed [88]. How-
ever, in the respective individual gene mutant strains, the vacuole formation
was una�ected [88].

According to the BioGRID database, YHR138C has three protein-protein
interactions with other proteins in the dataset and these are illustrated in
Figure 3.20 B. Two of these interactions were detected via genetic interference,
namely YBR108W (also known as AIM3) [89] and ILV3 [90]. AIM3 is a protein
that inhibits barbed-end actin �lament elongation [91] and ILV3 catalyzes the
third step in the common pathway leading to the biosynthesis of branched-
chain amino acids [92].

YHR138C also has another genetic interaction [93] with ARP1 (not iden-
ti�ed in this data). ARP1 is an actin-related protein which forms part of the
dynactin complex that is required for nuclear migration and spindle orienta-
tion [94]. In addition to the genetic interactions, YHR138C also has a known
physical association with LYS11 [95]. LYS11 is a NAD-linked homo-isocitrate
dehydrogenase located in the mitochondria and is responsible for catalysing
the fourth step of lysine biosynthesis [96].

3.3.8.2 The Role of Vacuoles in Yeast

Whilst actively growing, the cells of S. cerevisiae and other yeast have sev-
eral prominent vacuoles that are functionally similar to plant vacuoles and
mammalian lysosomes. Historically, vacuoles have been viewed only as "end-
points" or terminal compartments in the biosynthetic and endocytic pathways
[97]. Although acting as a terminal compartment is a vital function, this rela-
tively simplistic view describes the vacuole to be no more than a compartment
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where unwanted materials and obsolete components from either the cytoplasm
or extracellular space are sent to be degraded and recycled. A recent review
suggest that vacuoles are more than just "end-points" but also act as "cross-
roads" that are able to dynamically respond to changes in the extracellular
environment [97].

Vacuoles in yeast, like many other subcellular organelles, are not synthe-
sised anew during cell division. Instead they are inherited from the mother cell
[98]. During the early stages of the S-phase in S. cerevisiae, a tubular-vesicular
"segregation" structure is projected by the vacuole into the newly formed bud.
It is via this "segregation" structure that the daughter cell can receive mater-
nal vacuolar vesicles, which can then fuse to establish the daughter vacuoles
[99; 100; 101].

The redistribution of vacuoles from mother to daughter cell is an actin-
dependent process that requires the temporal and spatial control of physical
vacuole movement as well as adjustment of vacuolar function during this re-
distribution process [102]. Thus, the literature provides logical possible expla-
nations for the interactions between YHR138C, PBI2 and ARP1 respectively.
However, the link between YHR138C, ILV3 and LYS11 is less clear.

3.3.8.3 YHR138C Interaction With ILV3 and LYS11

A possible explanation for the interactions of YHR138C with ILV3 and LYS11
may be found by looking at vesicle formation and its role during endocytotic
processes and how it relates to other factors such as vacuoles in the cell, actin,
changes in the cell wall and changes in nutritional availability.

Actin cortical patches are known endocytic sites and endocytic proteins
have also been found to colocalize with these actin patches [103; 104; 105; 106].
Furthermore, it is known that cell surface proteins may enter the cells by
endocytosis [107] of which the �rst step involves transiting to early endosomes.
This is followed by intersection of the endosomes with the carboxypeptidase
Y pathway as multivesicular bodies and then transport to the vacuole. One
such cell surface protein known to be edocytosed is GAP1, a general amino
acid permease. When cytosolic amino acids are limited, GAP1 is targeted for
degradation via endocytosis [108].

Nutrients become limiting toward the end of fermentation and this is the
point at which proteins for this dataset were extracted. Thus, under these
nutrient-limiting conditions it is possible that GAP1 will be targeted for ubiq-
uitination via endocyctosis and amino acid biosynthetic capacity will increase.
From the data and literature presented it is known that the protein of unknown
function, YHR138C, is involved with endocytosis and vacuoles in possibly more
than one way. Additionally, vacuoles are cellular bodies known to be dynamic
and responsive to nutrient changes [97]. Furthermore, YHR138C interacts with
two enzymes at the core of amino acid metabolism which links it to nitrogen
metabolism. Thus, from this summation one can formulate the hypothesis
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that YHR138C is somehow involved or connected to a nitrogen-source driven
regulatory circuit. Figure 3.21 illustrates the hypothesis diagrammatically.

Figure 3.21: Possible hypothesis for the function of YHR138C.

3.4 Summary and Conclusion

The examples presented here illustrate only a few of many possible cases of
how the respective network contextualisations of the data can be combined to
investigate existing hypotheses, or formulate new hypotheses from the dataset.
Also, the work�ow described allows one much more control over data quality at
the point of interpretation without being overwhelmed by the shear volume of
information that is available. Furthermore, the multiple �ltering criteria avail-
able and visual nature of the network representations facilitate easy pattern
recognition as well as reporting of the results. Thus, the method is successful
in bringing together captured LC-MS/MS data, combining it with database
and literature resources in a manner that is statistically defensible, and al-
lows for the maximal extraction of biologically relevant knowledge from the
experiment.
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3.5 Supplementary Material

3.5.1 Supplementary Figures and Tables

Table S1 shows the decrease in the total number of edges as the threshold for
edge creation between protein family module nodes is increased. This network
is similar to the network described in Section 3.3.5, the di�erence is in the
node type.

Table S1: The number of edges that exist at di�erent Jaccard index
thresholds as determined for the protein family modules GO overlap
network.

Jaccard index threshold number of edges
0.0 31526
0.1 7572
0.2 2035
0.3 1075
0.4 676
0.5 407
0.6 250
0.7 120
0.8 50
0.9 18
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Figure S1: Parameters used for X!Tandem.
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Figure S2: The output from Protein Prophet for VIN13 proteins. The
x-axis of the graph indicates the minimum probability and the y-axis represents
both sensitivity and error. The red line indicates sensitivity, whilst the green
line indicates error. The corresponding table provides the values from which
the graph is plotted.

Figure S3: The output from Protein Prophet for RO88 proteins. The
x-axis of the graph indicates the minimum probability and the y-axis represents
both sensitivity and error. The red line indicates sensitivity, whilst the green
line indicates error. The corresponding table provides the values from which
the graph is plotted.
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Figure S4: The minimum spanning trees of the gene-based and
physical-based protein-protein interaction networks respectively. (A)
is the minimum spanning tree of the gene-based protein-protein interaction net-
work. (B) is the minimum spanning tree of the physical-based protein-protein
interaction network. The visual mapping scheme is the same as in Figure 3.6.

Figure S5: Physical-based protein-protein interaction network �ltered
for one or more line of evidence. The visual mapping scheme is the same
as in Figure 3.6.
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3.5.2 Supplementary Materials and Methods

3.5.2.1 Fermentation media and conditions

This study made use of S. cerevisiae strain VIN13 and S. paradoxus strain
RO88 [82]. Both yeast were used to ferment to dryness chemically de�ned
MS300 media [109] containing 200 g/l glucose and fructose. Fermentations
were carried out in triplicate with yeast pre-cultures grown in YPD broth (BD
Becton, Dickinson and Company, catelog number 242820). Synthetic must
were inoculated to obtain a �nal concentration of 106 cells/ml. All fermenta-
tions were carried out in Erlenmeyer �asks using a 100 ml working volume.
Vessels were closed with fermentation caps and no agitation was used. The
fermentations were conducted in a room maintained at 25°C. Residual glu-
cose and fructose concentrations were less than 5 g/l as measured using a
D-glucose/fructose kit (Amersham).

3.5.2.2 Protein Puri�cation for TMT Analysis

Protein puri�cation was carried out following the protocol described [110].
Fermented MS300 was centrifuged at 5000 rpm for 5 minutes to remove cells
and concentrated with Millipore Membrane Centrifugal Filter devices with a
molecular weight cut-o� of 10kDa. An ice-cold ethanol solution containing
15% (w/v) trichloro-acetic acid (TCA) was used to dilute concentrates at 4°C
and the pellet was washed with ice-cold ethanol and centrifuged. The vacuum
dried protein pellet was solubilized in 100 µl of 6 M urea, 2 M thiourea and 10
mM DTT. The proteins were then alkylated with 50 mM iodoacetamide for
40 minutes at room temperature in the dark.

3.5.2.3 TMTs for Relative Quanti�cation

Total protein concentration was determined using Pierce BCA Protein Assay
(Thermo Scienti�c). After pooling tubes in each group (VIN13 and RO88,
respectively) there was 85 µg in each sample. Each sample was diluted with
0.5 M TEAB (triethyl ammonium bicarbonate) and then diluted with milli-Q
water to a 4-fold dilution to a pH >8. To each sample, SDS (sodium dodecyl
sulphate) solution to a �nal concentration of 0.1% and trypsin (dissolved in
milli-Q water) with a ratio of 1:10 was added. Digestion was done overnight
at 37°C .

3.5.2.4 Labelling with TMT reagents

TMT reagents 126, 127 and 128 for RO88 and 129, 130 and 131 for VIN13
were dissolved in ethanol and added to the respective sample according to
the manufacturer's protocol. After labelling, the samples were combined and
concentrated. TMT-labelled peptides were separated with Strong Cation Ex-
change Chromatography (SCX). The concentrated peptides were acidi�ed by
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10% formic acid and diluted with SCX solvent A (25 mM ammonium formate,
pH 2.8, 20% acetonitrile (ACN)) and injected onto a PolySULFOETHYL A
�SCX column (2.1 mm i.d. x 10 cm length, 5 µm particle size, 300 Å pore
size). SCX chromatography and fractionation was carried out on an ÄKTA
puri�er system (GE healthcare) at 0.25 mL/min �ow rate using the following
gradient: 0% B (500 mM ammonium formate, pH 2.8, 20% ACN) for 5 min;
0-40% B for 20 min; 40-100% B for 10 min and 100% B held for 10 min. UV
absorbance at 254 and 280 nm was monitored while fractions were collected
at 0.5 mL intervals. The peptide containing fractions were desalted on Pep-
Clean�C18 spin columns according to manufacturer's instructions (Thermo
Fisher Scienti�c) and dried down in a Speed Vac.

3.5.2.5 LC-MS/MS Analysis on LTQ-Orbitrap-Velos

The desalted and dried fractions were reconstituted into 0.1% formic acid and
analysed on a LTQ-Orbitrap-Velos (Thermo Fisher Scienti�c) interfaced with
an in-house constructed nano-LC column. Two-micro liter sample injections
were made with an Easy-nLC autosampler (Thermo Fisher Scienti�c, Inc.,
Waltham, MA, USA), running at 200 nl/min. The peptides were trapped on
a pre-column (45 x 0.075 mm i.d.) and separated on a reversed phase column,
200 x 0.075 mm, packed in-house with 3 µm Reprosil-Pur C18-AQ particles.
The gradient was as followed; 0-90 min 5-37% acetonitrile (ACN), 0.1% formic
acid, 90-93 min 37-90% ACN, 0.1% formic acid and the last 5 min at 90%
ACN, 0.1% formic acid.

3.5.2.6 LTQ-Orbitrap Velos Settings

LTQ-Orbitrap Velos settings were as follows: spray voltage 1.4 kV; 1 microscan
for MS1 scans at 60 000 resolutions (m/z 400) and full MS mass range m/z
400-2000. The LTQ-Orbitrap Velos was operated in a data-dependent mode
with one MS1 FTMS scan precursor ions followed by CID (collision induced
dissociation) and HCD (high energy collision dissociation), MS2 scans of the
�ve most abundant protonated ions in each FTMS scan. The settings for the
MS2 were as follows: 1 microscans for HCD-MS2 at 7500 resolution (at m/z
400); mass range m/z 100-2000 with a collision energy of 50%; 1 microscans
for CID-MS2 with a collision energy of 30%.
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Chapter 4

Conclusion

4.1 Concluding Remarks

Large-scale, MS-based proteomics is comparable in power to other more es-
tablished omics technologies [1], however, it also comes with the challenges of
interpreting high throughput datasets. Networks are well suited for the con-
textualisation, interpretation and mining of such data. In this work, networks
were used as a conceptual framework within which hundreds of proteins, iden-
ti�ed via LC-MS/MS, could be placed into biological contexts representative
of the system from which the sample set was derived. The network-based con-
textualisation of the dataset allowed for the observation of trends, patterns
and non-obvious biological connections. Moreover, existing hypotheses were
investigated and new hypotheses were formulated.

4.1.1 Aim 1

Sections 2.6.3 through 2.6.5 of Chapter 2 stress the importance of peptide
physico-chemical properties, especially for LC-MS/MS datasets derived from
quantitative cross-species proteomics experiments. In order to appropriately
analyse a dataset of this nature, a work�ow was assembled to facilitate the
identi�cation and quanti�cation of proteins. The work�ow, which consisted
of both existing and custom-written programs is presented in Sections 3.2.3
through 3.2.6 of Chapter 3. The work�ow was designed with the goal of min-
imising false positive and false negative protein identi�cations. This was done
by matching the observed spectra to theoretical spectra derived from organism-
speci�c databases, thus ensuring that the search space matched the samples
as closely as possible. This resulted in species-speci�c protein identi�cations,
with each protein having a speci�c probability of identi�cation.

The interpretation of quantitative information within this cross-species
experiment required the application of customised criteria for isobarically-
labelled peptide selection and reporting of relative fold change which were
discussed in more detail in Section 3.2.5 of Chapter 3. Application of the pep-

1
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tide criteria resulted in a reduced risk of false quantitative signal for proteins.
Thus, the �rst project aim of identifying and quantifying proteins from a LC-
MS/MS dataset derived from an isobarically labelled, cross-species secretome
sample was achieved.

4.1.2 Aim 2

Networks have been shown as an e�ective means for the analysis and contextu-
alisation of omics data [2]. The second aim was to construct networks placing
the identi�ed proteins in various biological contexts. This aim was achieved
with the networks described in Section 3.2.8 of Chapter 3. The biological re-
sources used to provide context are described in more detail in Section 2.8 of
Chapter 2.

4.1.3 Aim 3

The utility of the method as a tool to explore the data with the objectives of
investigating existing and formulating new hypotheses was illustrated through
a selection of examples of potential oenological relevance. In particular, pro-
teins related to the cell wall, malo-ethanolic fermentation as well as proteins
of unknown function were investigated within the biological contexts provided
by the networks. These integrated biological contexts allowed for deeper un-
derstanding and interpretation of the identi�ed proteins and the relationships
amongst them, thus addressing the third aim of this thesis.

4.2 Future Work

The analysis of data derived from shotgun proteomics experiments is an area
of research that is well suited for the application of network-based methods,
not only as a visualisation and contextual sca�old, but also for problems such
as protein identi�cation and inference [3]. The work conducted in this Master's
thesis may be extended in various ways. The areas of focus may be split into
two parts: 1) Problems dealing with the identi�cation and quanti�cation of
proteins; 2) The interpretation of the large numbers of proteins derived from
whole proteome experiments.

4.2.1 Protein Identi�cation and Quanti�cation

Con�dence in protein identi�cations may be increased by taking a consensus
view from various peptide spectral matching programs and peptide and protein
validation programs. The protein inference problem in particular is one area
that has potential for increasing the amount of proteins that can be extracted
from a LC-MS/MS dataset [3]. More sophisticated methods for the integration
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of quantitative signals from isobarically-labelled peptides may also be applied
[4]. Moreover, improved experimental design, sample preparation and peptide
separation may improve the amount of proteins characterised as well as the
con�dence in their identi�cations and quantitative signals.

4.2.2 Protein Interpretation

The construction of contextual networks presented in this work draws on the
existence of extant biological knowledge from a variety of resources. These
resources are continuously developing with both the volume and accuracy of
the knowledge contained within them increasing. Thus, as the size of pro-
teomics datasets and the amount of information with which to describe them
increases, the size of the resulting networks constructed will also increase. Al-
though initial visual interpretation may be hampered, networks are well suited
for the mining of large datasets and a myriad of network analysis tools exists.
Moreover, utilisation of such network analysis tools and investigation of the
network topology itself may further increase the ability to observe system-wide
patterns and trends.

In summary, a quantitative, cross-species LC-MS/MS dataset was success-
fully analysed, contextualised, interpreted and mined using a customised work-
�ow facilitating protein identi�cation, quanti�cation and network-based con-
textualisation.
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