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Abstract

We consider the problem of portfolio's asset allocation characterised by risk
and return. Prior to the 2007-2008 �nancial crisis, this important problem
was tackled using mainly the Markowitz mean-variance framework. However,
throughout the past decade of challenging markets, particularly for equities,
this framework has exhibited multiple drawbacks.

Today many investors approach this problem with a `safety �rst' rule that
puts risk management at the heart of decision-making. Risk-based strategies
have gained a lot of popularity since the recent �nancial crisis. One of the
`trendiest' of the modern risk-based strategies is the Risk Parity model, which
puts diversi�cation in terms of risk, but not in terms of dollar values, at the
core of portfolio risk management.

Inspired by the works of Maillard et al. (2010), Bruder and Roncalli (2012),
and Roncalli and Weisang (2012), we examine the reliability and relationship
between the traditional mean-variance framework and risk parity. We em-
phasise, through multiple examples, the non-diversi�cation of the traditional
mean-variance framework. The central focus of this thesis is on examining the
main Risk-Parity strategies, i.e. the Inverse Volatility, Equal Risk Contribu-
tion and the Risk Budgeting strategies.

Lastly, we turn our attention to the problem of maximizing the absolute
expected value of the logarithmic portfolio wealth (sometimes called the drift
term) introduced by Oderda (2013). The drift term of the portfolio is given by
the sum of the expected price logarithmic growth rate, the expected cash �ow,
and half of its variance. The solution to this problem is a linear combination
of three famous risk-based strategies and the high cash �ow return portfolio.
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Opsomming

Ons kyk na die probleem van batetoewysing in portefeuljes wat gekenmerk
word deur risiko en wins. Voor die 2007-2008 �nansiele krisis, was hierdie be-
langrike probleem deur die Markowitz gemiddelde-variansie raamwerk aangepak.
Gedurende die afgelope dekade van uitdagende markte, veral vir aandele, het
hierdie raamwerk verskeie nadele getoon.

Vandag, benader baie beleggers hierdie probleem met 'n `veiligheid eerste'
reël wat risikobestuur in die hart van besluitneming plaas. Risiko-gebaseerde
strategieë het baie gewild geword sedert die onlangse �nansiële krisis. Een
van die gewildste van die moderne risiko-gebaseerde strategieë is die Risiko-
Gelykheid model wat diversi�kasie in die hart van portefeulje risiko bestuur
plaas.

Geïnspireer deur die werke van Maillard et al. (2010), Bruder and Roncalli
(2012), en Roncalli and Weisang (2012), ondersoek ons die betroubaarheid en
verhouding tussen die tradisionele gemiddelde-variansie raamwerk en Risiko-
Gelykheid. Ons beklemtoon, deur middel van verskeie voorbeelde, die nie-
diversi�kasie van die tradisionele gemiddelde-variansie raamwerk. Die sentrale
fokus van hierdie tesis is op die behandeling van Risiko-Gelykheid strategieë,
naamlik, die Omgekeerde Volatiliteit, Gelyke Risiko-Bydrae en Risiko Begrot-
ing strategieë.

Ten slotte, fokus ons aandag op die probleem van maksimering van absolute
verwagte waarde van die logaritmiese portefeulje welvaart (soms genoem die
drif term) bekendgestel deur Oderda (2013). Die drif term van die portefeulje
word gegee deur die som van die verwagte prys logaritmiese groeikoers, die
verwagte kontantvloei, en die helfte van die variansie. Die oplossing vir hierdie
probleem is 'n lineêre kombinasie van drie bekende risiko-gebaseerde strategieë
en die hoë kontantvloei wins portefeulje.
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Chapter 1

Introduction

In the aftermath of the 2007/2008 �nancial crisis, which was characterized by
low-interest rates and high risks of draw-down on the capital markets, most
institutional investment companies experienced a large number of subprime
investors defaulting their loans. Academics believed that this event was due
to the deterioration of housing prices, which led to home owners owning more
than their property's worth. The problem persisted to an extent that central
banks of several developed countries resorted to coordinating action to provide
liquidity support to �nancial institutions. Speci�cally, the US Federal Reserve
Bank (FED) slashed both the discount and the fund rates. However, none of
these actions turned in�ation down and even the volume of investment in the
equity market remained red1.

This detrimental behaviour of the economy led to almost all investment
strategies performing very poorly. The performance of the markets left an
indelible impression on investors about the strategies they had implemented.
The question was, `What went wrong with the strategies we used to believe in?'
This triggered a search by both academic researchers and market practitioners
to �nd an alternative investment strategy that would perform well during all
kinds of market scenarios.

Before we commence the search here, one needs to understand the fun-
damentals of the existing strategies. The origin of market analysis, in par-
ticular, the stock price movements, was �rst introduced by Bachelier (1900)
in his PhD thesis entitled `The Theory of Speculation'. Markowitz (1952)2

contributed to market analysis by incorporating multiple assets that form a
portfolio and developing the mean-variance strategy3. He determined the con-

1The total number of contracts or shares that have been recorded as an activity in the
equity marketplace for a period of time

21990 Economics Nobel prize winner.
3An investment model that combines the expected return and risk of the portfolio and

gives decision on allocation of assets through mathematical optimization techniques.

1
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CHAPTER 1. INTRODUCTION 2

cept of an e�cient portfolio4 and showed that there exist multiple e�cient
portfolios that form the e�cient frontier5. The Markowitz strategy requires
three input parameters, namely the expected return, correlation matrix and
the covariance matrix of asset returns. The precise estimation of these pa-
rameters is often di�cult and subjected to signi�cant errors. These problems
lead to many investors implementing some `rule of thumb' as an alternative
investment strategy. The most commonly used rule is 60/40 strategy which
simply allocates 60% of investment wealth to stocks and 40% to bonds.

Contradicting this idea of anticipating asset price movement in order to
beat the market prices, Fama (1995)6 argued in his work entitled `Random
walks in stock market prices' that asset expected returns follow Martingale
expectation. He developed the e�cient-market hypothesis (EMH), illustrating
the fact that the price of an asset is an accurate re�ection of all available
information in the market. However, Lo and MacKinlay (2011) disputed the
idea of Fama, and argued that the EMH is not completely valid. Incorporating
asset cross autocorrelation returns, one could still be able to predict future
asset returns.

More recent research focuses on risk-based asset allocations to protect in-
vestments against signi�cant losses, with diversi�cation controlling the invest-
ment decision. Institutional investment reports show that risk-based portfolio
allocations were the only strategies that performed exceptionally during the re-
cent crisis, see Peters (2010), Podkaminer (2013), Rappoport and Nottebohm
(2012) and Romahi and Santiago (2012). In particular, the so-called Risk Par-
ity scheme (i.e., an investment strategy that has a constant level of risk that
is equally divided amongst the components in a portfolio) gained popularity
since the recent �nancial crisis.

The main objective of this thesis is to study the risk-based strategies with
more emphasis on the risk parity strategy. This strategy has been dominating
the investment media, particularly in the journal of investing and the journal
of portfolio management. In addition, Roncalli (2013) and Lussier (2013) pub-
lished separately books detailing this concept. The former devoted his book to
the concept of risk parity while the latter seeks to identify the structural qual-
ities or characteristics required when building a portfolio to reliably increase
the likelihood of excess performance.

We study the risk parity strategy in comparison with the other three risk-
based strategies, namely, Minimum Variance, Equal Weighted and Maximum
Diversi�cation. The main advantage of these strategies is that they diminish
the input parameters of the traditional mean-variance strategy. In particular,

4The only portfolio that o�ers maximum return for a given level of risk.
5A curve characterised by all e�cient portfolios.
6One of the recipient of the 2013 economics Nobel Prize laureate.
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CHAPTER 1. INTRODUCTION 3

the estimation of expected return is not accountable for portfolio's composi-
tions.

However, in order to determine the e�cient risk-based strategy, it is im-
portant to understand the traditional mean-variance strategy. We show how
risk-based strategies are linked with the mean-variance strategy. From the
e�cient portfolio7 we decompose the covariance matrix into the product of di-
agonal matrix and correlation matrix. Applying the same approach to the risk
parity approach, we �nd that the risk contribution of a component is actually
the square of the component Sharpe ratio.

1.1 Origin of Asset Allocation

In this section, we present the genesis of the popular investment strategy that
builds on the ideas of optimizing the trade-o� between returns and risks. Port-
folio management, or asset allocation, is never trivial, particularly when there
is risk associated with the choice of assets. An excellent portfolio design is
characterized by basic concepts, such as safe investment, high income of re-
turn and a potential for capital appreciation in the future. Safe investment
refers to a strategy that holds a variety of asset classes. The intuition behind
this is that if one class is performing badly, the entire portfolio performance
could still be compensated for by the remaining asset classes. Investors in
this case compose their portfolios based on their return objectives, liability
requirements, risk tolerance and some taxation.

Most portfolio allocations rest on the mean-variance framework which is
now described here. Markowitz (1952) noted the return of the mean-variance
portfolio, a desirable thing, while risk is considered undesirable. A quadratic
optimization technique is typically implemented to determine the optimum
portfolio that will serve the interest of investors.

A series of successful research studies have been conducted with attempts
to improve the original mean-variance model. Among the researchers are Tobin
(1958) who introduced risk-free assets to balance portfolio return and devel-
oped the separation theorem; Sharpe (1964), Mossin (1966), Treynor (1962),
Lintner (1965) who developed the Capital Asset Pricing model and Black and
Litterman (1992) who extended that model to incorporate investors' views.
We detail more of the mean-variance strategy in the next subsection.

1.1.1 Mean-Variance Framework

We begin the description of this strategy by �rst introducing the following
notations. We consider a situation where the investor wants to invest a unit

7To be de�ned in the next section.
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CHAPTER 1. INTRODUCTION 4

Figure 1.1: Adjusted Daily Stock Prices of PAYX

amount, say x0 > 0, in n-risky assets (or components). This implies that x0 has
to be distributed amongst all n-assets according to the investors' preferences
and requirements. The main objective of investment, in general, is to obtain
pro�t from the future performance of these n-assets. However, this perfor-
mance is not known in advance, and all components are subjected to random
future prices. For instance, Figure 1.1 shows the degree of randomness a stock
ticker PAYX has undergone since 26 March 1990.

Since portfolios are held for a period of time, we de�ne the standard return8

of the ith security as

Ri,t =
xi,t
xi,t−1

, t = 1, . . . , K, (1.1.1)

where xi,t−1 and xi,t are the unit closing and opening prices of the security in the
market at times t−1 and t, respectively. However, asset-return measurements
are not necessarily determined from daily stock prices. For example, they could
be determined using security prices taken hourly, weekly, monthly, yearly, etc.
The rate of return (or simply, the arithmetic-price return), ri,t for the ith

security is given by

ri,t =
xi,t − xi,t−1

xi,t−1

, t = 1, . . . , K. (1.1.2)

Thus, the value of xi,t is expressible as

xi,t = (1 + ri,t)xi,t−1, (1.1.3)

which resembles the geometric return of the ith asset (analysis of assets or
portfolios using this notation is covered in chapter 8). Note that from here on,

8Another measure of returns is logarithmic, which does not posses linearity property
and is precisely used for stock prices analysis.
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CHAPTER 1. INTRODUCTION 5

throughout the rest of the thesis, we will omit the subscript t for presentation
purpose and we shall use it only when necessary.

In order to determine the �rst two moments of the ith asset, we consider
its K-trailing arithmetic returns, 

ri1
ri2
...
riK

 . (1.1.4)

The expected return, r̄i, and variance, σ2
i , of this component, are,

r̄i =
1

K

K∑
k=1

rik, (1.1.5)

σ2
i =

1

K − 1

K∑
k=1

(rik − r̄i)2. (1.1.6)

The volatility of the ith component, σi, is the square root of its variance. Very
often, investors invest a quantity of a security, and thus each component weight
can be expressed as

zi =
xi
x0

i = 1, . . . , n, (1.1.7)

where xi denotes the quantity of security i. Thus, the vectors of weights and
returns of n-assets are denoted by z and r, respectively.

De�nition 1.1. A portfolio is a collective set of n-random pay-o� assets that
can be expressed as a linear combination of the vector of weights z ∈ Rn ful-
�lling the budget constraint zT1 = 1, where 1 ∈ Rn is a vector of ones and the
return of the portfolio is given by zT r.

These assets are believed to hedge the initial invested amount over time.
The challenge is how to distribute the investor's wealth among these assets in
a portfolio 9. Note that zi denotes the proportion of the investor's wealth in
asset i. The risk (volatility) of the portfolio is given by,

σ(z) =
√

zTΣz, (1.1.8)

where Σ ∈ Rn×n is a positive-de�nite covariance matrix of asset returns. We
denote σij as the covariance constant between asset i and j in the market.

9Assets can be bought or sold in shares, e.g. if one rand buys 0.25 shares of security and
gives a pro�t of 3 rands, then for 10 rands, one can purchase 2.5 shares and provide pro�t
of 30 rands.
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CHAPTER 1. INTRODUCTION 6

More details about portfolio-risk measures are given in section (2.1). It is
important to note that the weights of assets in a portfolio are not strictly
positive. Some may be negative, indicating the borrowing of a risk-free asset.
Since the objective of investment is to hedge funds, the selection of asset-
weights is crucial. Assuming that all investors are rational, i.e, all investors
will appreciate an optimal portfolio10, and in addition, their risk tolerance is
heterogeneous, we can infer the objective of investment. The investor either
wishes to maximize the expected return for a given level of risk (volatility), or
to minimize the risk for a given level of expected return. We denote by r̄ ∈ Rn,
a vector of asset expected returns in a portfolio. The portfolio expected return
is given by,

µ(z) = zT r̄. (1.1.9)

Consider the former objective. Following Roncalli (2013), the system with
only budget being constrained for this problem is expressed mathematically as

zMVO = arg max
z∈Rn

(
zT r̄− λ

2
zTΣz

)
(1.1.10)

such that

zT1 = 1,

where λ is considered the risk-aversion parameter11. The Lagrangian function
for this system is

L(z, λ0) = zT r̄− λ

2
zTΣz + λ0(1Tz− 1). (1.1.11)

The �rst order di�erential equations are:

∂L(z, λ0)

∂z
= r̄− λΣz + λ01 = 0, (1.1.12)

∂L(z, λ0)

∂λ0

= zT1− 1 = 0 (1.1.13)

From equation (1.1.12), it follows that

zMVO = λ−1Σ−1(r̄ + λ01). (1.1.14)

Substituting the above equation into equation (1.1.13), we have

λ0 =
λ− 1

TΣ−1r̄

1TΣ−11
. (1.1.15)

10 Portfolio z∗ is optimal if, for any other attainable portfolio, there does not exist a
portfolio z such that µz∗ < µz and σz∗ ≥ σz or µx∗ = µx and σx∗ > σx.

11Parameter used to scale the acceptable risk level of an investor.
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CHAPTER 1. INTRODUCTION 7

Thus, equation (1.1.12) is given by

zMVO = λ−1Σ−1r̄ + λ−1Σ−1λ01

= λ−1Σ−1r + λ−1Σ−1

[
λ0 − 1

TΣ−1r̄

1TΣ−11

]
1

=
Σ−1

1

1TΣ−11
+ λ−1Σ−1

[
r̄− 1

1
TΣ−1

1TΣ−11
r̄

]
. (1.1.16)

The solution in equation (1.1.16) is interpreted as follows: The �rst term
is called the global minimum variance portfolio (discussed in the next chap-
ter). The second term determines the portfolio's expected return relative to
individual-asset expected returns, see Lee (2011).

In the absence of budget constraint, the Lagrange function of the above
mathematical problem (1.1.10) with target variance, σ2

0, is given by,

L(z) = zT r̄− λ
2
(zTΣz− σ2

0). (1.1.17)

Also, the �rst-order condition of the above function (1.1.17) is:

∂L(z)
∂z

= r̄− λΣz = 0, (1.1.18)

which implies that the solution to the unconstrained mean-variance portfolio
is given by:

zMVO = λΣ−1r̄. (1.1.19)

Alternatively, for an investor who wants to minimize the portfolio variance
given the level of expected return and adding more constrains, for example,
the short-selling constrain, the problem can be speci�ed mathematically as
follows,

zMVO = arg min
z∈Rn

1
2
zTΣz (1.1.20)

such that 
zT1 = 1,
zT r̄ = a,
0 ≤ z ≤ 1,

where 0 ∈ Rn is a vector of zeros. The �rst constraint means that the investor
has fully utilized his or her wealth in an investment. The second constraint
denotes the target of the expected return, while the last constraint means that
there is no short-selling of securities during the period of investment. The
standard mean-variance solution to this problem is detailed in Appendix A.1.
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CHAPTER 1. INTRODUCTION 8

To understand more about the mean-variance strategy, we consider Figure
1.2 as an example. The blue curve is called the e�cient frontier12. The portfolio
marked `x' is called the global minimum variance portfolio and is obtained by
minimizing the variance of the portfolio with no assumption of the expected
return considered. An investor targeting 14% risk will prefer portfolio `A' to
`C' because the former has almost 15% expected return while the latter has
12% expected return. Also, portfolio `A' is by assumption preferred to `B'
because `A' has lower risk compared to portfolio `B'.

By studying liquidity preference, Tobin (1958) showed that the balance
between the risk-returns of the portfolio can be obtained by the lending or
borrowing of assets at risk-free rates13. This technique is often referred to as
leverage and such portfolio boundary conditions are de�ned as

zleverage = {z ∈ Rn
+ : zT1 = `}, (1.1.21)

where ` ≥ 1, is the size of leveraged portfolio. We denote by

z0 = 1− zT1, (1.1.22)

the weight of the risk-free asset and by r0, the associated rate of return. In
particular, the case z0 < 0 indicates that investors have borrowed the risk-free
asset. Similarly, z0 > 0 indicates that they were over the budget and hence
lent the remaining wealth at a risk free rate. Thus the return of such portfolio
consisting of risk-free asset is de�ned as

r(z) = r0 + zT (r− r01), (1.1.23)

and the expected return is

r̄(z) = r0 + zT (r̄− r01). (1.1.24)

Another boundary condition that is under consideration is called threshold
and is de�ned as follows:

zthreshold = {z ∈ [a, b]n : zT1 = 1}, (1.1.25)

such that asset weights are given as

0 ≤ a ≤ zi ≤ b ≤ 1 for i = 1, . . . , n.

The above constraint means that some shares can be given boundaries, that
are within the common, `no short-selling' constraint.

Fixed income assets in this strategy alter the objectives of the investors
signi�cantly. Investors in this case hold the tangency portfolio (often known

12A curve representing all optimal portfolios.
13A special type of asset with zero variance (equivalent to �xed deposit).
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Figure 1.2: Markowitz E�cient Frontier

as market portfolio) which is a blend of risky assets and risk-free assets; see
Figure 1.3. This portfolio is obtained by maximizing the Sharpe ratio de�ned
as follows:

SR(z) =
zT r̄− r0√

zTΣz
. (1.1.26)

Although the mean-variance strategy provides optimum portfolios, it has
su�ered a lot of criticisms around stability issues. Most of this criticism re-
volves around the required plug-in parameters. The mean-variance strategy
tends to maximize the errors associated with an estimation of these input
parameters which lead to portfolio's instability; see Michaud (1989).

Several techniques have been proposed to deal with the problem of estimat-
ing parameters that are reliant on statistical measures. The most important
input parameters in the mean-variance framework is Σ, which describes the
asset movement with respect to each other in terms of returns and a vector
of expected returns r̄; see Satchell (2011). For any signi�cant change in the
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Figure 1.3: E�cient Frontier with Risk Free Asset

input parameters, the entire allocation changes dramatically.

Hanoch and Levy (1969) indicate the error of mean-variance optimization
when investors are almost certain about the future performance of assets.

Example 1.2. Consider two portfolios X and Y as denoted in the following
table: The expected return of portfolio X is larger than that of portfolio Y .

Table 1.1: Statistical Analysis of Strategies

x P(X = x) y P(Y = y)
5 0.8 50 0.99

500 0.2 5000 0.01
x̄ 104 ȳ 99.5

var(x) 7844 var(y) 242574.75

Also, we observe that the variance of portfolio Y is larger than that of portfolio
X. Thus, following the mean-variance criterion, one would de�nitely choose
portfolio X. However, with portfolio Y , we are almost certain about the return
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CHAPTER 1. INTRODUCTION 11

of 50. In this case one would consider portfolio Y , which disputes the decision
given by the mean-variance strategy.

From the Black and Litterman (1992) (BL) model, the estimation of the in-
put parameters of the mean-variance strategy were improved by incorporating
the investor views14 of the economy, in which the expected return and variance
of the portfolio were given as

µBL =
[
(τΣ)−1 + PTΩ−1P

]−1 [
(τΣ)−1π + PTΩ−1q

]
, (1.1.27)

σ2
BL =

[
(τΣ)−1 + PTΩ−1P

]−1

, (1.1.28)

respectively. The notations are described as follows,

1. Σ denotes the n× n covariance matrix.

2. P is the k × 1 matrix of views.

3. Ω is the k × k diagonal matrix of views.

4. q is a views vector of expected return; see Salomons (2007).

In practise, this model is di�cult to implement since it involves unknown
parameters such as τ (denoting variance scaling parameter according to Black
and Litterman (1992)) which is di�cult to predict and also, specifying views
about assets requires experience.

1.2 On Risk Parity

In recent years, the risk-parity concept has been introduced in the investment
realm and most investors have already shown interest in it, not only because of
its �exibility, but also because of its improvement of investment principles. In a
typical portfolio that one might deploy, say 60% allocation to equities and 40%
to bonds which is a common asset allocation for simple portfolio, how much risk
is contributed by equities and bonds, respectively? It turns out that equities
dominate in terms of risk contribution, almost 90% of risk of the portfolio
is from equities. The idea of risk parity is that, having several categories of
risk, say bonds, equities, real estate, hedge funds, etc, one can allocate assets
based on their respective risk contributions (preferably equalizing their risk
contributions), see Rappoport and Nottebohm (2012).

The question arises, `What are the consequences of allocating assets with
the objective of equalizing their risk contributions?' This suggests one invests

14Investors information about the markets, sectors or speci�c company performance.
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more in bonds (about 90%) as well as 70% in equities which implies that the
portfolio is exposed to leverage risk; see Lee (2011). Another observation is
that when interest rates goes down, the value of the bond goes up. Thus,
bonds with longer expiration dates, carry greater risk.

The origin of this strategy dates back to the question put to Bob Prince15

by Ray Dalio16 in 1996 as `What kind of investment strategy will perform well
across all economic scenarios?' His intention was to develop a self-maintained
investment strategy that would manage his family wealth under di�erent mar-
ket regimes in his absence. While trying to �gure out which strategy would
suit their objective, Prince identi�ed a portfolio that has half in�ation and half
de�ation, and this was improved to incorporate growth markets. Since then,
the fund investment �rm `Bridgewater associates' has been using this approach
under the name `All Weather Strategy' for managing funds; see Table 1.2.

Table 1.2: All Weather Assets Portfolio of Ray Dalio

Growth In�ation

Rising Equities

In�ation
Linked Bonds
Commodities ↙Market Expectation

Falling

Nominal
Bonds In�ation
Linked Bonds

Nominal Bonds
Equities

The term `risk parity' was �rst introduced by Edward Qian17 in his work
entitled `E�cient Portfolios Through True Diversi�cation'. Naively, this phe-
nomenon can be described as a strategy that determines risk for the entire
portfolio and divides this risk equally amongst components. This strategy
caught the attention of many investors in the recent �nancial crisis. Analysis
during this period shows that the alpha strategy's performance was poor than
the risk parity portfolios.

De�nition 1.3. Risk parity is an innovative investment approach that allo-
cates the weight of portfolio components through their risk contributions to the
risk of the portfolio.

The application of the RP concept in theory is somewhat confusing. Others
refer to RP as the Equal Risk Contribution (ERC) strategy. However, it
should be emphasized that the two strategies resemble each other if they consist
of only two assets or all pair-wise correlations are the same. This approach

15An employee at Bridgewater Associates.
16The founder of Bridgewater Associates.
17Chief investment o�cer and head of research at PanAgora Asset Management Inc. in

Boston
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provides investors with a `spanner'18 to the detrimental behavioural tendency
borne in the traditional asset allocation. The portfolio in this case is diversi�ed
by risk, not by capital.

Indeed, the risk-parity approach, especially when compared to traditional
investment concepts, has shown good performance. Instead of picking a static
stock-bond, the investors decide how much volatility they are willing to take
for a speci�c asset. The following example illustrates the risk contributions of
components in a typical portfolio.

Example 1.4. Consider the 60/40 strategy with annual volatility of both stock
and bond being 15% and 5%, respectively, and their correlation determined to
be 20%. Generally, stock returns are more volatile than bonds. Thus, the risk
contribution19 of the stock is

RCstock =
(0.6)2(0.15)2 + (0.20)(0.15)(0.05)(0.40)(0.60)

(0.60)2(0.15)2 + 2((0.20)(0.15)(0.05)(0.40)(0.60)) + (0.40)2(0.05)2

= 0.918 = 91.8%.

This implies that the risk contribution of a bond to the portfolio risk is

RCbond = 1− θstock = 0.082 = 8.24%.

Similarly, when we alter the weight allocations, say 40/60 strategy, stock still
dominates bonds in terms of risk contribution; see Figure 1.4. The stock con-
tributes 75.9% while bonds only contribute 24.1% to the entire portfolio risk.
Stocks in reality are more volatile than bonds, hence a 40/60 or 60/40 allocation
strategy is not diversi�ed as intended.

The risk-parity approach is not restricted to asset allocation. We can still
apply risk parity in derivative instruments such as options, futures, swaps and
forwards. Features of a risk-parity portfolio are not new, some of its theoretical
components come from the Markowitz mean-variance strategy. The main task
of investment managers applying risk parity is �rst to manage risk in which
the optimized function includes constraints for

1. short positions, and

2. long constraints, which are sometimes relaxed to accommodate leverage.

This strategy has shown good performance in the rising interest rates envi-
ronment against the traditional 60/40 strategy which was considered the most
balanced strategy by investors prior to the 2007/2008 �nancial crisis, see Fig-
ure 1.5.

18Full tool kit that merges investment theory, robust optimization and the risk budgeting
contrast to the traditional approach.

19Formally de�ned in section (2.4).
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Figure 1.4: Asset Allocation Based on MVO

Figure 1.5: 60/40 Strategy vs Risk Parity. Source: Sallient Investment Insti-
tution.
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1.2.1 Asset Classes

Asset classes are groups of securities that are bound by the same rules and
regulations of investment and have the same behaviour in the market environ-
ment. Examples of asset classes are equities (i.e. stocks), bonds (�xed-income
assets), real estates, commodities and cash.

The most important feature of risk parity is the way assets are grouped
together to form a portfolio. This allows investors to diversify portfolios by
asset classes through their risk contribution; Bhansali et al. (2012). The large
amount of weight allocation is targeted on the low-correlated asset classes,
examples are equities versus exchange traded funds, OTC swaps versus listed
future; see Kunz (2011).

1.2.2 Diversi�cation

Diversi�cation of a portfolio refers to a blending of a variety of asset classes
such that the performance of the portfolio remains balanced under di�erent
economic climates. The term `diversi�cation' in �nance is sometimes described
as `Don't put all your eggs in one basket'. This means that one needs to invest
money in di�erent asset classes with the idea of not being a�ected by only one
risk factor. 20

For instance, consider a basket carrying two types of eggs (i.e large eggs
and small eggs). One can think of large eggs as stocks and small eggs as bonds.
Because bonds are less volatile compared to stocks (except during a period of
hyperin�ation or when there is a danger of a government default), we assume
that each type of egg yields the relative return of 1 and 9, respectively21.
Implementing a 60/40 strategy, this basket yields an equivalent of 58, i.e (6×
9) + (4× 1). The large eggs contribute 93.1% to this basket while small eggs
contribute 6.9%. Clearly, one can infer that this basket is diversi�ed in terms
of reward and not the deviation from this reward.

Fund managers believe that holding di�erent types of assets is more ap-
pealing investment than active investments. The main idea here is that if one
market drops in performance, it could be that the other market(s) appreci-
ates in performance value. Risk embedded in a risk-parity portfolio can also
be demysti�ed and even its drivers could be exposed. If the investor were
to diversify such portfolio, s/he should �rst have to implement the following
recipe,

1. Understand how to group components according to their classi�cations.
20The investor believes in holding di�erent types of assets from di�erent markets than

active investor who trace markets performance and tries to hedge from mispricing of markets
products.

21In reality stock are more compensated than bonds

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 16

2. Find the relation between the component classi�cations and their eco-
nomic sources of risk.

Podkaminer (2013) and Bhansali et al. (2012) used the same technique for
diversifying their portfolios termed the `Risk factor approach'. This approach
allocates capital across a range of uncorrelated assets, such that if a speci�c
asset class declines, it will be compensated by the other and hence the return
of the portfolio is maintained.

1.2.3 Correlation between Asset Classes

Investors �rst tool to diminish risk is typically through diversi�cation among
asset classes with low pair-wise correlation. This is attained during the normal
economic scenarios. However, at the times of the �nancial crisis, correlation
amongst asset classes increases, failing diversi�cation. The typical 60/40 strat-
egy exhibit over 90% of risk coming from equity market class; see Qian (2011).
Figure 1.6 illustrates the di�erence of the correlations at the normal and crisis
state22 for the components against the S& P 500. It follows that component
correlations during �nancial crisis increases signi�cantly, resulting in an in-
crease of portfolio's risk.

Figure 1.6: E�ect of Correlation during Crisis

22A state is considered normal if component returns are above −5%, otherwise is referred
to crisis state; Benson et al. (2012).
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1.2.4 Leverage

Although risk parity seems to be more diversi�ed strategy, very often practi-
tioners are not satis�ed with the return of this strategy. The strategy provides
lower returns compare to the traditional mean-variance strategy. In order
to enhance the same portfolio return as a traditional mean-variance strategy,
leverage is introduced; see Romahi and Santiago (2012) and Bhansali et al.
(2012). Leverage in a portfolio comes in di�erent formats. The institutional
investors might wish to leverage the entire portfolio by borrowing money from
a plan-wide borrowing facility, or alternatively by applying the derivative in-
strument to leverage the portfolio to the optimum Sharpe ratio.

1.3 Implementation of Risk Parity Strategy

Many of the �nancial institutions have already started o�ering this product to
their clients. Examples are:

1. Global asset allocation (e.g IBRA fund of Invesco or the All Weather
Strategy of Bridgewater);

2. Commodity allocation (e.g the Lyxor Commodity Active Fund);

3. Bond Indexation (e.g the RB EGBI index sponsored by Lyxor and cal-
culated by Citigroup);

4. Equity indexation (e.g the SmartIX ERC indexes sponsored by Lyxor
and calculated by FTSE).

About this thesis

This work is divided into eight chapters. The �rst four chapters seek to de-
mystify the analytical frameworks of the investment strategies. We discuss the
risk-based strategies and their relationships with the traditional mean-variance
e�cient portfolio. More precisely, Chapter 1 highlights the background of the
�nancial crisis and the insight of the traditional mean-variance strategy and
its �aws. Furthermore, the appealing of the recent investment direction, i.e.,
risk parity approach, is discussed.

Chapter 2 is dedicated to the introduction of risk measures and the theo-
retical frameworks of the risk-based strategies with more emphasis on the risk
parity strategy. We give a distinction between the naive risk parity and the
equal risk contribution strategies under volatility as a risk measure. Chap-
ter 3 illustrates the general proof for risk parity strategy being mean-variance
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e�cient. Lastly, Chapter 4 is dedicated to the risk budgeting strategy, an ex-
tension of the equal risk contribution strategy which integrate investor's views
about the risk budget.

The second part is dedicated to risk parity using downside risk measures. In
Chapter 5, we discuss the risk parity using expected shortfall and risk factors.
Chapter 6 is devoted to the discussion of portfolio's rebalancing, transaction
costs and leverage. In Chapter 7 we do the empirical simulations of the intro-
duced investment strategies.

Lastly, in Chapter 8 we discuss Oderda (2013)'s approach to portfolio's
asset allocation. This approach maximizes the expected return of the loga-
rithmic wealth which yields an interesting solution that is actually a linear
combination of risk-based strategies and the market portfolio.

In Appendix A, we provide the analytical derivation of the standard mean-
variance portfolio solution and the proofs of the properties of the risk-parity
portfolio (known as the equal-risk contribution properties of Maillard et al.
(2010)) .
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Chapter 2

Understanding Risk-Based

Strategies

In this chapter we present an overview of the theoretical framework of risk-
parity (RP) strategies and some robust investment strategies, namely, equal
weighting (EW), global minimum variance (GMV), and maximum diversi�ca-
tion (MD). These strategies are often classi�ed as risk-based, or risk-controlled,
or µ-free, or Smart-beta, or Non-market cap strategies, and have gained huge
attention in the aftermath of the recent 2007-2008 �nancial crisis. Perhaps
this is because the de�nition of portfolio diversi�cation has been reviewed and
put on the heart of these investment strategies.

In contrast, portfolios constructed based on diversi�cation of wealth1 showed
pessimistic results during this period. In particular, equity markets performed
poorly, with returns recorded at -50%. The Johannesburg Stock Exchange
(JSE)2 also recorded a 40% drop of its All Share Index. The greatest incen-
tive for using risk-based strategies in the investment realm is the ability to
determine asset allocations without the need to estimate portfolio expected
return.

Risk-based strategies are often called robust in the literature because of
their good performance during the recent crisis. However, the term robust is
actually over-used; see Poddig and Unger (2012). Generally, a strategy is called
robust if its optimum solution under uncertain input parameters is consistent
or stable with the objective value. This is called `solution robustness', and
examples are EW, MV and MD strategies. Other methods for determining
the robustness of strategies focus on the sensitivity of input parameters, and
this is called `Structured robustness'. RP is an example of such strategies
because it is less sensitive to changes of input parameters than the traditional
mean-variance strategy.

1Builds based on the Markowitz mean variance strategy.
2The leading African trade market.

19
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Risk-based strategies exclude any information regarding the expected re-
turn in the composition of portfolios. Another constraint unusual in the mean-
variance strategy is that components have equal amounts of risk contributions
to the entire portfolio risk. The portfolio allocates risk (known as the beta
chaser) instead of capital allocation (known as the alpha chaser). More intu-
itively, risk parity can be thought of as a way to construct a portfolio that has
a constant level of risk that is equally divided amongst asset.

The strategy accounts more asset classes as in traditional mixed funds,
often making a pure weighting of shares and pensions, any of these asset classes
share percentage of the total risk (and not in total assets). For instance,
Scherer (2012) used risk parity approach to analyse the US Futures. Portfolios
constructed in this manner generate a better Sharpe ratio and lower setbacks
in falling markets.

We start by discussing some risk measures that are under consideration
for portfolio constructions. These are Volatility, Semi-Variance, Value at Risk
(VaR) and Conditional Value at Risk (CVaR). The use of these measures
depends on the investor's ability to perform the necessary computations.

2.1 Risk Measures

Although the main aim of investment is to achieve positive returns during any
kind of the economic cycle, these returns are subjected to risk. Risk plays an
important role in portfolio's decision making. In particular, it is the �rst step
to determine in portfolio's risk management. It is a positive and increasing
function de�ned on the domain of R and is bounded below by zero. For
instance, if ξ(z) denotes the risk of the portfolio, then for any ε > 0, we have

ξ2(z) ≥ ε||z||2, (2.1.1)

which corresponds to a non-degenerating function. A practitioner tries by all
means to diminish this, but risk is relative. An investment with more risk
will be more compensated when the markets are in favourable conditions and
will perform severely in unfavourable market conditions. In this section, we
highlight a variety of portfolio risk measures.

2.1.1 Variance

Variance measures the deviation of component returns from the mean (or
expected return) of the portfolio. The square root of this measure is known
as volatility, de�ned as in (1.1.8). This measure is the most popular risk
measure in the investment realm. It dominates other risk measures because of
its computational simplicity and ease of interpretation.
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2.1.2 Semi-Variance

Although variance is a popular measure of risk in the investment industries,
it has been criticised for incorporating both lower and upper returns of the
mean when determining risk. Semi-Variance excludes returns above a given
benchmark (often the mean) and concentrates on the lower level of returns
(known as portfolio loss). Therefore, for any continuous distribution of returns,
portfolio Semi-Variance, SVp, is de�ned as

SV 2
p =

∫ r̄

−∞
(r̄− r)2f(r)dr. (2.1.2)

The function f denotes the distribution of the return, r. The integral limits
can be interpreted as the range of returns investors dislike that are less than
a given benchmark return r̄. In the discrete case, the Semi-Variance portfolio
is given by

SV 2
p =

∑
r<r̄

(r̄− r)2P(r = r). (2.1.3)

2.1.3 Value at Risk (VaR)

This measure of risk generalizes the likelihood of a portfolio under-performing
through downside statistical measures. For random portfolio returns, VaR can
be determined as follows,

VaRα(r(z)) = inf{` ∈ R : P(r(z) > `) ≤ 1− α}, (2.1.4)

where α denotes the con�dence level. This measure of risk assesses the poten-
tial losses of a portfolio over a given future time period with a given degree
of con�dence. Commonly used con�dence levels are 95% to 99%. Since we
assess the potential losses, it is important to use these levels of con�dence,
particularly when marketing for the company. This measure will be detailed
in Chapter 3 for further portfolio analysis.

2.1.4 Conditional Value at Risk (CVaR)

This risk measure provides the probability of returns falling below VaR. It is
often argued that VaR provides the threshold not to be exceeded by portfolio
returns, and thus does not precisely give the amount exceeding this threshold.
However, CVaR, which is often called expected shortfall (ES), provides the
expected amount exceeding VaR:

CVaRz(α) = −E[r(z)|r(z) ≤ −VaRα(r(z))], (2.1.5)

where E denotes the conditional expectation operator, VaRz(α) is the threshold
not to be exceeded for a given portfolio z and α denotes the con�dence level.
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2.2 Important Properties of Risk-Based

Strategies

As with any risk-based strategy, it is important to de�ne the properties of
risk and its sources from assets. In this section, we present these important
properties and then discuss the theoretical frameworks and the previous studies
of the risk-based strategies in the latter sections.

2.2.1 Marginal Contribution

Marginal contribution in a portfolio is a quantitative measure that determines
the signi�cant impact of components to the entire portfolio risk. There are
two approaches of determining this measure, i.e., the discrete and continuous
marginal risk contributions.

2.2.1.1 Discrete Marginal Contribution (DMC)

The DMC of a component is determined by taking the di�erence between the
risk measure of the portfolio and the portfolio risk measured without that
component. If ξ(z̃) denotes the risk measure computed without component i,
i.e.,

z̃ = z \ zi, (2.2.1)

then the marginal risk contribution of this component is given by:

MCi(z) = ξ(z)− ξ(z̃). (2.2.2)

DMC is mainly used in the simulation of VaR models for trading and simulation-
based stochastic analysis. The disadvantage of DMC is that it is not additive,
and thus can not be applied for risk decomposition.

2.2.1.2 Continuous Marginal Contribution (CMC)

The CMC of the components is obtained by taking the partial derivative to
the entire portfolio risk with each and every component in the portfolio. For
instance, the marginal risk contribution of the ith component is de�ned as
follows:

De�nition 2.1. Let ξ(z) be the risk measure of the portfolio, then the marginal
risk contribution of the ith asset is:

MCi(z) =
∂ξ(z)

∂zi
. (2.2.3)
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In particular,
∂ξ(z)

∂zi
denotes a small change in the entire portfolio risk pos-

sessed by the ith component. We denote byMC(z) a vector of asset marginal
contributions in a portfolio, i.e.,

MC(z) =
∂ξ(z)

∂z
. (2.2.4)

The risk of the portfolio is required to be homogeneous function such that the
decomposition is possible. Recall the de�nition of homogeneous function as
follows:

De�nition 2.2. Let f : Rn → R be a function. We say that f is homogeneous
of degree d ∈ R if f(az) = adf(z) for a ∈ R and z ∈ Rn.

Proposition 2.3. The volatility σ(z) of a portfolio is a homogeneous function
of degree one. Moreover, the marginal risk contributions of components are
given by,

∂σ(z)

∂z
=

Σz

(zTΣz)
1
2

, for z ∈ Rn. (2.2.5)

Proof. First, we show that volatility is a homogeneous function of degree one.
By considering portfolio's volatility as de�ned in equation (1.1.8) and let c ∈ R,
we can write

0 ≤ σ(cz) =
(

(cz)TΣ(cz)
) 1

2
=
(
c2zTΣz

) 1
2

= |c|
(
zTΣz

) 1
2

= |c|σ(z) = cσ(z),

which proves the �rst statement. To show equation (2.2.5), we simply take the
partial derivative of the volatility, i.e.,

∂σ(z)

∂z
=
∂
(
zTΣz

) 1
2

∂z
=

1

2

(
zTΣz

)− 1
2

2Σz =
Σz

(zTΣz)
1
2

. (2.2.6)

Clearly, the marginal risk contribution of a particular asset is directly pro-
portional to the ith row of the product matrices Σz, i.e.,

∂σ(z)

∂zi
∝ (Σz)i = ziσ

2
i + σi

n∑
i6=j

zjσjρij, (2.2.7)

where ρij denotes the correlation between the ith and the jth components.
Normalizing this by portfolio risk, we get,

∂σ (z)

∂zi
=

(Σz)i
σ(z)

. (2.2.8)
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2.2.1.3 Beta Contributions

An alternative to determine the sensitivity or signi�cant change to the portfolio
risk due to the change in component weights is to use beta de�ned as follows,

βi =
cov(ri, r(z))

σ2(z)
i = 1, . . . , n, (2.2.9)

where cov(ri, r(z)) denotes the covariance of the component return and the
return of the portfolio, see Salomons (2007). Moreover, equations (2.2.8) and
(2.2.9) simplify the marginal risk contributions. By expanding the numerator
of equation (2.2.9), we have,

cov(ri, r(z)) = cov(ri, z1r1 + z2r2 + · · ·+ ziri + · · ·+ znrn)

= cov(ri, z1r1) + · · ·+ cov(ri, ziri) + · · ·+ cov(ri, znrn)

= z1σi1 + · · ·+ ziσ
2
i + · · ·+ znσin. (2.2.10)

Hence,

βi =
cov(ri, r(z))

σ2(z)
, (2.2.11)

which implies that

cov(ri, r(z)) = βiσ
2(z). (2.2.12)

We showed in Proposition (2.3) that,

∂σ(z)

∂ (z)
=

Σz

(zTΣz)
1
2

=
(Σz)

σ(z)
. (2.2.13)

Clearly,
Σz

σ(z)
is a vector of component marginal contributions. Now we con-

sider Σz,

Σz =


σ2

1 σ12 · · · σ1n

σ12 σ2
2 · · · σ2n

...
...

. . .
...

σn1 σn2 · · · σ2
n



z1

z2
...
zn

 =


z1σ

2
1 + z2σ12 + · · ·+ znσ1n

z1σ21 + z2σ
2
2 + · · ·+ z2σ2n
...

z1σn1 + z2σn2 + · · ·+ znσ
2
n

 . (2.2.14)

This implies that the ith row corresponds to:

(Σz)i = z1σi1 + z2σi2 + · · ·+ ziσ
2
i + · · ·+ znσin. (2.2.15)

Since, ρiiσiσi = σ2
i , from equation (2.2.11) we deduce that

MCi(z) =
∂σ(z)

∂zi
=

(Σz)i
σ(z)

=
βiσ

2(z)

σ(z)
= βiσ(z). (2.2.16)
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Remark 2.4. The marginal contribution of the ith asset can be expressed as
the product of its volatility and linear correlation between its return and the
return of the portfolio, i.e.,

MCi(z) = βiσ(z) =
(Σz)i
σ2(z)

=
cov(ri, r(z))

σ(z)
=
ρi,zσiσ(z)

σ(z)

= ρi,zσi, (2.2.17)

where ρi,z is a correlation between the return of the ith component and the
portfolio.

This leads to the conclusion that sensitivity of the ith asset in a portfolio
is:

βi =
cov(ri, r(z))

σ2(z)
=

σiz
σ(z)

× 1

σ(z)
=
MCi(z)

σ(z)
. (2.2.18)

Similarly, correlation of the ith component with respect to the portfolio is,

ρi,z = βi ×
σ(z)

σi
=
MCi(z)

σ(z)
× σ(z)

σi
= σ−1

i MCi(z). (2.2.19)

2.2.2 Risk Contribution

In the literature, component risk contribution is de�ned as the weighted marginal
contribution. It is classi�ed into two, namely the absolute and the relative risk
contributions.

De�nition 2.5. Let σ(z) be the risk measure of the portfolio z. Then the
relative risk contribution of the ith component is:

RCi(z) = ziMCi(z), (2.2.20)

whereMCi is given as in equation (2.2.3).

2.2.2.1 Absolute Risk Contribution

The absolute risk contribution of the ith component is given by,

RCabsi = zi(Σz)i = zi

n∑
i=1

zjcov(ri, rj) = zicov(ri, r(z)). (2.2.21)

Considering all components in a universe, equation (2.2.21) is expressed as
follows:

RCabs = DzΣz, (2.2.22)
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where Dz denotes the diagonal matrix with entries in the main diagonal rep-
resenting a vector of component weights. Moreover, the absolute risk contri-
bution of the ith component can be related to the standard deviation of the
portfolio. In this case, we have

RCabsi =
zi
∑n

j=1 zjcov(ri, rj)

σ(z)
=
zicov(ri, r(z)

σ(z)
. (2.2.23)

2.2.2.2 Relative Risk Contribution

The relative risk contributions require that their respective sum equal to the
total portfolio volatility. In order to obtain the risk measure of the portfolio
as the sum of component risk contributions, we use the following theorem for
the additive decomposition of continuous function which state as follows,

Theorem 2.6 (Euler's Theorem). Let f : Rn → R be a di�erentiable function.
Then f is homogeneous of degree r if and only if for all z ∈ Rn it satis�es
Euler's partial di�erential equation

rf(z) =
n∑
i=1

zi
∂f(z)

∂zi
. (2.2.24)

See Fleming (1977) for the proof of this Theorem. In the case of volatility,
the portfolio risk can be expressed as a linear combination of asset relative risk
contributions, i.e.,

σ(z) = z1 ·
∂σ(z)

∂z1

+ z2 ·
∂σ(z)

∂z2

+ · · ·+ zn ·
∂σ(z)

∂zn

=
n∑
i=1

ziMCi(z)

= zTMC(z)

= 1
TRC(z), (2.2.25)

whereMC(z) and RC(z) are n× 1 vector of marginal and relative risk contri-
butions, respectively.

The percentage risk contribution is simply expressed as the ratio of com-
ponent risk contribution to the overall portfolio risk, i.e.,

%RCi(z) =
RCi(z)

ξ(z)
. (2.2.26)

Alternatively, the marginal and relative risk contribution of the ith component
respectively are given by:

MCi(z) = βiσ(z), (2.2.27)

RCreli (z) = ziβiσ(z) i = 1, . . . , n. (2.2.28)
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Also, the percentage contribution is

%RCi(z) = ziβi i = 1, . . . , n. (2.2.29)

2.2.3 Diversi�cation Index

Another important concept in the risk-based strategies is called diversi�cation,
a concept that has various de�nition in the literature. In the case of volatility
as risk measure, Choueifaty and Coignard (2008) de�ned diversi�cation in-
dex as the ratio between two di�erent risk measures, the component-weighted
volatilities and the total portfolio volatility, i.e.

DR(z) =
zTσ√
zTΣz

. (2.2.30)

A portfolio with the highest ratio in this case is considered better diversi�ed
in terms of risk. We detail more about this concept in the next section.

Another way to deem diversi�cation is to consider portfolio's concentration.
The commonly used concentration measure is called Her�ndahl Hirschman
Index (HHI) de�ned as follows,

HHI =

(∑n
i z

2
i

)
− 1

n

1− 1
n

, n ≥ 2. (2.2.31)

It is the normalized Her�ndahl index, which is given by,

HI(z) =
n∑
i=1

z2
i . (2.2.32)

HHI takes values between 0 and 1. If the value determined is zero, the cor-
responding portfolio is equally-weighted3 and a portfolio with only one com-
ponents yields the value one. Other measures of portfolio's risk diversi�cation
include the Gini index and the Shannon entropy; see Roncalli (2013).

2.2.4 Stability

Portfolio stability, determined as the sum of the absolute values of the dif-
ference between each position at time treb+ and treb− , is a measure of change
in portfolio weights during rebalancing. This measure, often termed portfolio
turnover, is useful to determine the transaction cost4. Mathematically, port-
folio turnover is given by,

Turnover(treb) =
n∑
i

|zi(treb+)− zi(treb−)|. (2.2.33)

3Investment strategy that will be more detailed in the next section.
4More detail of transaction cost is discussed in Chapter 6.
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It is sometimes included as a constrain in the optimization problem where in-
vestor assign some constant not to be exceeded, typically between 0 and 1. The
higher the value of portfolio turnover, the more expensive is the rebalancing.
The average portfolio turnover is given by,

Average Turnover =
1

H

H∑
treb=1

Turnover(treb), (2.2.34)

where H is the number of rebalancing terms.

2.3 Risk-Based Strategies

The primary question to address in the investment industry is `what is the
proportion of wealth one has to allocate to a particular asset?' To help resolve
this important problem, several strategies have been established with the in-
tention to help investors make the right choice in the �nancial industry. In
particular, the traditional mean-variance strategy has been dominating since
the last mid-century. However, due to the �aws associated with this strategy,
the recent investment direction is focusing on the risk-based strategies, an in-
vestment strategies that put diversi�cation of risk at the heart of components
allocation. The most incentives of these strategies is that the estimation of the
expected return does not play a role in the portfolio's composition and hence
they focus on risk management.

In this section, we present the three famous strategies, namely Equal-
Weighted, Global Minimum Variance and Maximum Diversi�cation strategies.
The investor using any of these strategies strives to minimize the portfolio's
risk. Balancing risk of the components better prepares for unknown future
events. Moreover, these strategies share one common characteristic which is
the requirement of risk model as the input parameter.

2.3.1 Equal Weighted Strategy

The Equal Weighted (EW) strategy is a type of strategy where investors are
pleased to hold equal proportions of asset weights in their portfolio. It is
often referred to as a `rule of thumb' strategy because it does not rely on any
available optimization models and it is easy to establish. This strategy excludes
the use of parameter estimations in the classical mean-variance optimization
strategy for the allocation of assets. Merton (1980) noted that the estimation
of such additional parameters is di�cult and also subjected to errors. Hence,
EW strategy is considered well-diversi�ed in terms of asset weights and often
referred to as robust in a sense that no estimation parameters are needed for
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the allocation of weights. Also, it does not take into account the trends of the
economy5 for portfolio's composition.

Weights in this case are determined by the number of assets available in
a portfolio. For instance, if we have n-securities in a portfolio, then each
component capital weight is:

zEWi = n−1, i = 1, . . . , n. (2.3.1)

Thus, it is apparent that the more assets available in a portfolio, the lower is the
fractional allocation. The number of components in a portfolio play a major
role in the allocation of components. This is the reason Lussier (2013) describe
the EW strategy as a simple strategy which bene�ts from the law of large
numbers. The author argues that over the long-run, this strategy performs
better for atleast three reasons: First the strategy's bene�ts is from the small-
cap bias. Secondly, it yields e�cient diversi�cation of idiosyncratic risk. And
thirdly, it is more concerned about the e�cient smoothing of component-price
�uctuations.

The return and volatility of this portfolio depend on the number of assets
included. For instance, if we have n assets in a portfolio, then the return and
volatility of the portfolio becomes:

rEW =
1

n

n∑
i=1

ri, (2.3.2)

σEW =
√

(1
n
)TΣ1

n
=

1

n

√
1TΣ1. (2.3.3)

Also, the marginal and risk contribution of components in a portfolio are the
same, i.e

MCEW =
Σ1√
1TΣ1

(2.3.4)

RCEW = D 1
n
MC, (2.3.5)

where D 1
n
is the diagonal matrix of z = 1

n
. In addition, the percentage contri-

bution of components is:

%RCEW = D 1
n

MC
σEW

= D 1
n

Σ−1
1

1TΣ−11
. (2.3.6)

The percentage contribution of the EW portfolio can be described as the prod-
uct of EW portfolio solution and the GMV solution. Hence, the percentage
contribution of the ith component correspond to

%RCEWi =
1

n

(Σ−1
1)i

1TΣ−11
i = 1, . . . , n. (2.3.7)

5The information related to asset returns and volatilities
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Lee (2011) noted that the EW strategy is mean-variance e�cient if correlations
of the components is the same and volatilities and returns are identical. Al-
though this strategy seems to be the most simplest in an investment industry,
it has been criticized for being illiquid6 and also lacks economic representa-
tion. Investors in this case take some risk that is not compensated at any
circumstance. Thus, its performance could sometimes be outperformed by
capital-weighted strategies. However, Lussier (2013) concluded that if EW
strategy is implemented for diversi�cation and balanced universe, then the
approach is better than the capital-weighted strategy.

To illustrate the bene�t of diversi�cation of the EW portfolio, we report
in Figure 2.1 the risk versus the number of assets. By considering constant
correlation matrices, ρ = 40% and ρ = 20%, and also constant volatility of
assets, σi = 30%, we con�rm, as noted by Lussier (2013), that the bene�t of
diversi�cation is realized as n (the number of assets)7 start from 100 and more.

Figure 2.1: Risk of EW Portfolio over n-Assets

6It does not o�er the opportunity to rebalance the portfolio
7In this simulation, we consider n between 100 and 1000.
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2.3.2 Global Minimum Variance Strategy

The Global Minimum Variance (GMV) portfolio is a strategy that focusses on
obtaining the lowest risk of the portfolio on the e�cient frontier, see Best and
Grauer (1992). It is found on the left-tip of the e�ciency frontier exhibiting
that it is the only portfolio with the minimum risk in a given universe, hence
the name global minimum variance. Allocations of capital weights in this
strategy do not involve the target expected return and it is the only strategy
on the e�ciency frontier to do so. It uses quadratic optimization technique
to obtain asset capital allocations such that the risk of the portfolio is the
minimum one. The only input parameters required in the optimized solution
is the correlations and volatilities. The unconstrained global minimum variance
portfolio problem is expressed as follows:

zGMVun = arg min
z∈Rn

1
2
zTΣz (2.3.8)

such that zT1 = 1.

Thus, following the same approach in Appendix A.1, we obtain the solution
to the above system as:

zGMVun =
Σ−1

1

1TΣ−11
. (2.3.9)

This solution exhibits that weights in a GMV portfolio are inversely propor-
tional to the covariance matrix, i.e.

zGMVun ∝ Σ−1
1. (2.3.10)

Moreover, the volatility of the global minimum variance portfolio is given as
follows:

σGMVun =

√[
Σ−11

1TΣ−11

]T
Σ

Σ−11

1TΣ−11

=

√
1TΣ−1ΣΣ−11

[1TΣ−11]2
=

1

1TΣ−11
. (2.3.11)

For the constrained global minimum variance portfolio, in particular, long-only,
the problem is expressed as follows:

zGMVc = arg min
z∈Rn

1
2
zTΣz (2.3.12)

such that {
zT1 = 1
0 ≤ z ≤ 1.

Below, we illustrate analytical expression for this approach over the two assets
universe.
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2.3.2.1 Global Minimum Variance over Two-Assets Universe

The above optimization problem is expressed as follows:

zGMVc = argmin
z1,z2

σ2
GMV,c (2.3.13)

such that {
zT1 = 1
0 ≤ z ≤ 1.

where the variance is given by,

σ2
GMV,c = z2

1σ
2
1 + z2

2σ
2
2 + 2z1z2ρ1,2σ1σ2

= z2
1σ

2
1 + (1− z1)2σ2

2 + 2z1(1− z1)ρ1,2σ1σ2. (2.3.14)

Taking the derivative of equation (2.3.14) with respect to z1, yield the follow-
ing,

∂σ2
GMV,c

∂z1

= 2z1σ
2
1 + 2(1− z1)(−1)σ2

2 + 2(1− z1)ρ1,2σ1σ2 − 2z1ρ1,2σ1σ2 = 0.

Rearranging, we have

z1

(
2σ2

1 + 2σ2
2 − 4ρ1,2σ1σ2

)
= 2σ2

2 − 2ρ1,2σ1σ2. (2.3.15)

Thus,

zGMV,c
1 =

2σ2
2 − 2ρ1,2σ1σ2

2σ2
1 + 2σ2

2 − 4ρ1,2σ1σ2

=
σ2

2 − ρ1,2σ1σ2

σ2
1 + σ2

2 − 2ρ1,2σ1σ2

. (2.3.16)

Also, the weight of the second component is,

zGMV,c
2 = 1− zGMV,c

1 . (2.3.17)

In Chapter 7, we illustrate numerically that a portfolio based on the mini-
mum variance approach minimizes both component volatilities and correla-
tions by equalizing the marginal risk contributions. This result is also veri�ed
by Linzmeier (2011). Thus, we can think of GMV strategy as an investment
approach that determines weights such that component marginal risk contri-
butions are equal. Although GMV incorporates the estimation of parameters,
the allocation of the long-only portfolio seems to be more concentrated in few
assets, which does not re�ect the idea of risk-diversi�cation through various
asset classes.

Lee (2011) proved an interesting property of the GMV strategy which sim-
plify the analysis of the marginal and risk contributions of components in
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this strategy. The most interesting property is that the covariance between
any portfolio or asset with GMV portfolio is simply the variance of the GMV
portfolio. Considering arbitrary portfolio z∗, this property is expressed math-
ematical as follows:

σzGMV ,z∗ = zTGMV Σz∗

=

(
Σ−1

1

1TΣ−11

)T

Σz∗ =
1
TΣ−1

1TΣ−11
Σz∗

=
1

1TΣ−11
. (2.3.18)

Thus, from equation (2.2.9), we deduce that beta is equal to one. Moreover,
the marginal and risk contribution of the ith asset as de�ned in equations
(2.2.27) and (2.2.28), respectively, are,

MCi = σGMV , (2.3.19)

RCi = ziσGMV , i = 1, . . . , n, (2.3.20)

since beta of the ith asset is one, see equation (2.3.18), the percentage contri-
bution is as follows

%RCi = zGMV
i . (2.3.21)

Recall the solution to the mean-variance optimization as given in equation
(1.1.16). That is,

zMVO =
Σ−1

1

1TΣ−11
+ λ−1Σ−1

[
r̄− 1

Σ−1
1

1TΣ−11
r̄

]
. (2.3.22)

As Lee (2011) noted, when components have the same expected returns, then
the next term in equation (2.3.22) is zero and the solution to the mean-variance
optimization is the same as the global minimum variance portfolio. In other
words, the GMV strategy is mean variance e�cient if all components in the
universe have identical expected returns.

2.3.3 Maximum Diversi�cation Strategy

Another risk-based investment strategy that has recently come under consid-
eration is the maximum diversi�cation (MD). Choueifaty and Coignard (2008)
de�ned a quantitative measure of portfolio diversi�cation as the ratio between
the weighted average volatilities to the volatility of the portfolio. Mathemati-
cally, this ratio is expressed as follows:

DR(z) =
zTσ√
zTΣz

, (2.3.23)
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where σ is a vector of component volatilities. Equation (2.3.23) can be in-
terpreted as the ratio between non-diversi�ed portfolio's risk (determined in a
universe of uncorrelated assets) to the total portfolio risk, see Meucci (2009).
The main idea is to obtain portfolio's composite that maximizes this ratio. In
other words, this ratio measures the distance between two portfolio volatilities.

Unlike the MVO, the MD approach diminishes the impact of exogenous
shocks that might come from concentrated assets. The strategy often incor-
porate components with high volatility, as long as they have low pair-wise
correlations. Since the objective of this strategy is to attain the highest diver-
si�ed portfolio in a given universe, we have the following relationship,

zTσ ≥
√

zTΣz. (2.3.24)

It is clear that the ratio between the weighted average volatilities and the
portfolio's risk will always be greater or equal to one. In addition, for a single
component investment, DR(z) equals to one. According to Choueifaty and
Coignard (2008), this measure of portfolio diversi�cation means that the higher
is this ratio, the more diversi�ed is the portfolio.

Alternatively, Lussier (2013) formulated portfolio diversi�cation bene�t de-
�ned as follows,

DB(z) = 1−
√

zTΣz

zTσ
, (2.3.25)

which is zero when invested in only one component or when pair-wise cor-
relations of components is the same. However, in the case where pair-wise
correlations is negative one, the diversi�cation bene�t is one. According to
Lussier (2013), the objective of an investor is to maximize DR(z) which is
equivalent to minimizing equation (2.3.25).

Consider the maximization problem as the objective of an investor. Choueifaty
et al. (2013) described the maximum diversi�cation portfolio as a solution to
the following quadratic optimization problem:

zMD = argmax
z∈Rn

DR(z) (2.3.26)

such that {
zT1 = 1
0 ≤ z ≤ 1.

Note that this strategy looks similar to the Sharpe ratio (well known as tan-
gency portfolio) in the absence of risk-free asset except that instead of a vec-
tor expected returns, we use a vector of volatilities. Thus the solution to this
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strategy can be obtained by making direct substitution to the solution of the
portfolio maximum Sharpe ratio and is given by the following:

zMD =

(
σ2

σA

)
Σ−1σ, (2.3.27)

where σA is the weighted average component volatilities. Roncalli (2013) ex-
pressed the optimization problem of system (2.3.26) as follows,

zMD = argmax
z∈Rn

lnDR(z) (2.3.28)

such that {
zT1 = 1
0 ≤ z ≤ 1.

Note that the natural logarithm is introduced for simplifying the objective
function. This is equivalent to maximizing the diversi�cation ratio, see Choueifaty
et al. (2013). The Lagrangian function of the above system is

L(λ, λc, z) = lnDR(z) + λc(z
T
1− 1) + λTz, (2.3.29)

where λ ∈ Rn and λc ∈ R. The term lnDR(z) can be expanded as

ln(zTσ)− 1

2
ln(zTΣz). (2.3.30)

The �rst-order derivative of equation (2.3.29) with respect to portfolio z yields
the following:

∂L(λ, λc, z)

∂z
=

σ

zTσ
− Σz

zTΣz
+ λc1 + λ = 0. (2.3.31)

The above equation is satis�ed for the minimum values of λ's and z. In ad-
dition, Roncalli (2013) extended the analysis of this strategy by determining
the threshold correlation of components with the market portfolio such that
the weights remain positive. The portfolio maximizing the above objective
function is given by:

zMD
i = DR(zMD)

σiσMD

σ2
i

(
1− ρi,m

ρ∗

)
i = 1, . . . , n, (2.3.32)

where σ2
i denotes the idiosyncratic variance and ρi,m is the correlation between

the ith asset and the market portfolio and is given as:

ρi,m =
βiσm
σi

. (2.3.33)
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Note that βi denotes the sensitivity of the ith component to the portfolio. It
is clear that the allocations will remain positive if the following condition is
always true: ρi,m < ρ∗. The volatility of the ith asset in this case is given by:

σi =
√
β2
i σ

2
m + σ2

i , (2.3.34)

ρ∗ denotes the threshold correlation given by:

ρ∗ =
1 +

∑n
i=1

ρ2i,m
1−ρ2i,m∑n

i=1
ρi,m

1−ρ2i,m

. (2.3.35)

Several correlation properties for both the portfolio that satis�es equation
(2.3.31) and the under-performing portfolio have been established, see Ron-
calli (2013). These properties adhere to what Choueifaty et al. (2013) de-
scribed as `the core properties of Maximum Diversi�cation strategy'. In order
to determine these properties, equation (2.3.31) is express as follows,

Σz =
σ2
MD

zTσ
σ + λσ2

MD =
σ2
MD

DR(z)
σ + λσ2

MD, (2.3.36)

since DRMD =
zTσ

σ2
MD

. Considering the portfolio that under-performs the MD

with the same �xed budgetary constraint, the correlation between these port-
folios is given by,

ρz,zMD =
zTΣzMD

σ(z)σ(zMD)
=

zT

σ(z)σ(zMD)

[
σ(zMD)

DR(zMD)
σ + λσ2

p(z
MD)

]

=
DR(z)

DR(zMD)
+
σp(z

MD)

σ(z)
zTλ, (2.3.37)

with z denoting an arbitrary portfolio that is under-performing. This high-
lights that correlation between these portfolios is dependent on the budgetary
constraint for as long as λ > 0. When λ = 0, correlation is directly pro-
portional to the ratio of their diversi�cation ratios. Some of the interesting
observations on this strategy are,

1. Component correlations to MD portfolio are the same when considering
the �xed budget constraint, i.e., if zMD denotes the solution to the MD
portfolio, then for any other asset, zi, we have

ρzi,zMD = ρzj ,zMD i, j = 1, . . . , n. (2.3.38)

2. MD strategy is the same as the maximizing Sharpe ratio when all com-
ponents have same Sharpe ratio.

3. The marginal risk contributions of portfolio constituents are all equal,
see Choueifaty and Coignard (2008) and Clarke et al. (2013).
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2.4 Risk Parity Strategy

Risk Parity (RP) approach is a general concept for investment strategies that
allocate component weights based on their risk features. The idea behind this
approach is that by allocating stocks, bonds, commodities and other invest-
ment securities by their respective amount of risk, the common concentration
of portfolio risk coming from one market regime may be diminished. This
approach requires only the covariance matrix as an input parameter, the same
as the minimum variance portfolio. However, the di�erence between the two
strategies is that the former does not require optimization technique for the
composition of portfolio (often referred to as an ad-hoc rule).

From literature perspective, the attraction of this strategy is the believe
that diversi�cation is a form of added value in the investment realm. Indeed
when considering diversi�cation as the spread of portfolio risk to the available
components in a universe, RP strategy is the right candidate. This is because
all components in the universe play an important role in the portfolio's per-
formance. However, there is a slight misunderstanding of this concept in the
literature. Practitioners often refer to RP as Equal Risk Contribution (ERC).
It worth mentioning that the two are di�erent. Fisher et al. (2012a) described
RP as the inverse volatility strategy and the ERC strategy of Maillard et al.
(2010) as the beta strategy. In this section we present the formulations and
possible solutions to the famous risk parity strategy (i.e Inverse Volatility),
and we shall discuss the ERC strategy in the next sections.

2.4.1 Inverse Volatility Strategy

Inverse Volatility (IV) strategy, often called naive Risk Parity, weights compo-
nent assets inversely to their standalone volatilities (normalized so that weights
sum to one). This is a simply investment strategy in which component weights
are determined based on their respective volatilities. Investors implementing
this strategy make assumption that all pair-wise correlations are the same. In
contrast to other risk-based strategies, correlation of the components does not
play any role in the allocation of weights for this strategy. In this case, the
weight of the ith component is given as follows:

zIVi ∝ σ−1
i , i = 1, . . . , n. (2.4.1)

More precisely, the weight of components are normalized such that their sum
add up to one, i.e.,

zIVi =
σ−1
i∑n

j=1 σ
−1
j

, for i = 1, . . . , n. (2.4.2)

This is called unlevered risk parity.
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However, the return of the IV strategy seems to be lower than that of
the heuristic mean-variance approach. In addition, the risk parity portfolios
do not lie on the e�cient frontier of the Markowitz mean-variance strategy.
Thus, practitioners implementing these approaches use leverage to obtain the
same level of portfolio risk (volatility) as mean-variance approach.

2.5 Equal Risk Contribution Strategy

The equal risk contribution (ERC) is de�ned as one of the risk-based strategies
in which weights are determined by equalizing component risk contributions.
Maillard et al. (2010) studied the properties of equal risk contribution and
�nd that its volatility lies between the volatility of the equal weighted and
the minimum variance portfolios. This strategy mimics the EW strategy, but
instead of equalizing component exposures, investors equalize component risk
contributions. More precisely, if RCi denotes the risk contribution of the ith

asset in a portfolio of n-assets, then for any other asset, say j, the allocations
of the ERC strategy are such that:

RCi = RCj i, j = 1, . . . , n. (2.5.1)

In this case, components with high risk contribution will be given less prefer-
ence in terms of weights than low risk contribution.

Thus, the ERC strategy can be seen as the strategy that shares its total
risk to the available components in the investment universe. In particular,
each component risk contribution is given by:

RCi =
σERC
n

i = 1, . . . , n, (2.5.2)

where σERC is the volatility of the ERC portfolio. Thus, the volatility of the
ERC portfolio is given by the total sum of the risk contributions, i.e.

σERC =
n∑
i=1

RCi. (2.5.3)

The idea of ERC is to �nd a portfolio that is well diversi�ed in terms of risk, not
capital, across all asset classes. This strategy can also be extended such that
the allocations is determined through their respective factor contributions, see
Chapter 5.

2.5.1 Speci�cation of ERC

We consider a portfolio of n-assets and mimic the notation of Maillard et al.
(2010) on the speci�cation of equal risk contribution strategy de�ned as follows:

zERC = {z ∈ [0, 1]n : zT1 = 1,RCi = RCj i, j = 1, . . . , n}. (2.5.4)
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The domain of this problem is a set of all positive numbers less than or equal to
one. This illustrates that no short-selling of assets is allowed which make it eas-
ier to compare with other heuristic risk-based strategies, because they do not
possess negative weights. The �rst constraint indicates full budget utilization
and the second one ensures that components have equal risk contributions.

Considering the relative risk contributions in a universe of n-assets, one
can think of ERC portfolio as the solution to the following non-linear system

z1

n∑
i=1

zicov(r1, ri) = z2

n∑
i=1

zicov(r2, ri)

z1

n∑
i=1

zicov(r1, ri) = z3

n∑
i=1

zicov(r3, ri)

... (2.5.5)

z1

n∑
i=1

zicov(r1, ri) = zn

n∑
i=1

zicov(rn, ri),

such that {
zT1 = 1
0 ≤ z ≤ 1.

Remark 2.7. For n = 2, the ERC portfolio weights are independent of the
correlation parameter ρ, i.e., i.e

z1 (Σz)1 = z2 (Σz)2

z1

(
z1σ

2
1 + ρ12σ1σ2z2

)
= z2

(
z2σ

2
2 + ρ12σ1σ2z1

)
z2

1σ
2
1 = z2

2σ
2
2,

The weights of the portfolio are given by,

z1 =
σ−1

1

σ−1
1 + σ−1

2

(2.5.6)

and

z2 =
σ−1

2

σ−1
1 + σ−1

2

. (2.5.7)

This solution is similar to the IV portfolio. However, for multiple asset
portfolios (i.e., n > 2), it is not easy to �nd the analytical solution. Below
here we highlight alternative direction in obtaining the solution to the ERC.
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2.5.2 Allocation of ERC Strategy

Maillard et al. (2010) showed that for ERC portfolio, component weights are
directly proportional to their respective inverse beta normalized by the number
of portfolio assets, and hence called the beta strategy, see Fisher et al. (2012a).

Proposition 2.8. Component weights of the ERC are directly proportional to
their inverse beta normalised to the number of constituents in a ERC portfolio,
i.e.,

zERCi =
β−1
i

n
, i = 1, . . . , n. (2.5.8)

Proof. Consider equation (2.2.15) with the ith component, which gives (Σz)i =
σiz. This implies that beta in equation (2.2.18) is given by,

βi =
σiz
σ2(z)

, i = 1, . . . , n, (2.5.9)

where σ2(z) denotes portfolio variance. Making the covariance the subject, we
have,

σiz = βiσ
2(z), i = 1, . . . , n. (2.5.10)

We recall that ERC allocate assets such that their corresponding risk contri-
butions are equal. This implies that the risk contribution of the ith component
is given as follows:

RCi =
σ(z)

n
, i = 1, . . . , n. (2.5.11)

From equation (2.2.20) we can write the covariance of the ith component and
ERC portfolio as:

σi,zERC =
σ(z)RCi

zi
, i = 1, . . . , n. (2.5.12)

Replacing equations (2.5.12) and (2.5.11) into equation (2.5.10) gives the fol-
lowing:

zERCi =
β−1
i

n
, i = 1, . . . , n. (2.5.13)

In particular, if we consider the budget constraint, 1Tz = 1, equation (2.5.13)
becomes,

zERCi =
β−1
i∑n

j=1 β
−1
j

i = 1, . . . , n. (2.5.14)
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Equation (2.5.13) can be interpreted as follows, the more dominant is the
component risk (volatility), the lower the allocation of weight or vice versa.
This makes sense because according to Qian (2009), the goal of risk-based
investors is to protect their investment against severe losses of either the stocks
or bonds over a long-term investment. However, equation (2.5.13) is considered
endogenous because it turns out that we are using the unknowns to �nd the
unknowns. Beta is a function of zi which is not known yet. Thus, a solution
to problem (2.5.4) is not a closed-form which means that the total sum of
portfolio weights do not add up to one.

One of the main scepticism that many investors have about the RP or
ERC is the lack of an explicit objective function, see Lee (2011). It is well
known that in order to determine the optimum solution of a particular prob-
lem, a well de�ned objective function is required. Fortunately, for the ERC
approach, Maillard et al. (2010) provided two approaches to determine the
optimal solution. The �rst approach uses sequential quadratic programming
(SQP) algorithm where the system to be solved is de�ned as follows:

zERC = arg min
z∈Rn

f(z) (2.5.15)

such that {
zT1 = 1
0 ≤ z ≤ 1,

and

f(z) =
n∑
i=1

n∑
j=1

(
zi(Σz)i − zj(Σz)j

)2
, (2.5.16)

which measures the square of the di�erence between all pairs of component
risk contributions. Alternatively, this function can be expressed as the square
or absolute of the average value of the di�erences between component risk
contributions and their respective risk budgets. Thus, equation (2.5.16) can
be expressed as follows:

f(z) =
n∑
i=1

(
RCi −

1

n

)2

, (2.5.17)

and the absolute form is given as:

f(z) =
n∑
i=1

|RCi −
1

n
|. (2.5.18)

These are the special cases of the risk budgeting strategy where the budgets are
the same for all components. By assumption, investors in this case minimize
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any of these functions as their objective for investment. If f(z) is equal to
zero, then the solution to the above system is an ERC, i.e., RCi = RCj for
all i and j. Unfortunately, none of the above de�ned functions is convex and
thus obtaining the minimum solution might be di�cult. Also, Griveau-Billion
et al. (2013) argue that SQP algorithm is time-consuming and does not always
converge, especially for n > 200.

Maillard et al. (2010) suggest an alternative to system (2.5.15), which in-
volves optimization technique de�ned as follows,

x∗ = arg min
x∈Rn

√
xTΣx (2.5.19)

such that {
xT1 ≥ c
x ≥ 0,

where x is an arbitrary portfolio and c denotes a constant to which the budget
constrain has been relaxed to obtain the condition f(x∗) = 0. Hence, the
weights of the ERC strategy in this case are given by,

zERCi =
x∗i∑n
i=1 x

∗
i

i = 1, . . . , n. (2.5.20)

The solution in this case exists and is unique.

2.5.3 Alternative Approach for Solving ERC Weights

Apart from Maillard et al. (2010) approaches, several algorithms that dispute
the use of optimization technique for fast and e�cient computation of ERC
portfolios have been suggested. Chaves et al. (2012) adapted Newton's Algo-
rithm to determine the optimal solution of the ERC strategy.

The Newton's algorithm generates a sequence of approximated solutions
around a point, say a, of non-linear system using Taylor's expansion de�ned
as follows,

f(z) ≈ f(a) + J(a)(z− a), (2.5.21)

in which higher-order terms are excluded. J(a) denotes the Jacobian matrix.
Because we are interested in �nding the solution such that f(z) = 0, solving
for z in the approximation (2.5.21) gives,

z = a−
[
J(a)

]−1
f(a). (2.5.22)

The idea behind this approach is to repeatedly iterate solution (2.5.22) until a
desired or close solution is found. In particular, given the initial guess solution,
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say zk, one can approximate the optimal solution as,

zk+1 = zk −
[
J(zk)

]−1

f(zk) k = 0, 1, . . . (2.5.23)

The solution in this case is the one that is close to f(z) = 0. This implies that
at each iterative step, the algorithm computes the inverse Jacobian matrix and
the function f(z) to determine the new solution zk+1. This solution is used to
test whether f(z) = 0 or not.

To express the problem of risk parity weights in Newton's algorithm, we
consider n > 1 assets and note that the total risk contributions is given by,

DzΣz = c1, (2.5.24)

which can simply expressed as

Σz− c

z
= 0. (2.5.25)

An alternative to the ERC solution is to use similar approach as in the
mean-variance strategy. As noted by Kaya and Lee (2012), the objective of
investment is to maximize the generalized non-linear utility function subject
to a non-linear constrain. This approach has a special characteristic which
allows components to have di�erent risk contributions. On the other hand,
Maillard et al. (2010) minimize the volatility of the portfolio subject to the
non-linear constraint. The optimization problem is then de�ned as follows:

zERC = arg min
z∈Rn

zTΣz (2.5.26)

such that {
1
T ln z ≥ c

z ≥ 0,

where ln z is a vector denoting natural logarithm of components weights and
c ∈ R. The associated Lagrange function is

L(z, λ) = zTΣz− λ(1T ln z− c). (2.5.27)

The solution, zERC , veri�es the following �rst-order condition,

∂L(z, λ)

∂z
= 2Σz− z−1 = 0, (2.5.28)

where λ = 1 and,

z−1 =


z−1

1

z−1
2
...
z−1
n

 . (2.5.29)
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Thus, for the ith component, we have

2(Σz)i − z−1
i = 0, i = 1, . . . , n, (2.5.30)

which can be expressed as follows

zi(Σz)i =
1

2
, i = 1, . . . , n. (2.5.31)

In addition, if equation (2.5.31) holds, then we have the following

zTΣz =
n

2
. (2.5.32)

Hence, from the two equations, i.e (2.5.32) and (2.5.31), we deduce that the
risk contribution of the ith component is

RCi =
zi(Σz)i
zTΣz

=
1/2

n/2
=

1

n
. (2.5.33)

This result indicates that the risk contribution of a component is inversely pro-
portional to the total number of the components in a universe. In particular,
the absolute risk contribution of a two assets portfolio is derived as follows.
Recall the weights of this portfolio as illustrated in example (2.7). We know
that the absolute risk contribution of a component is given as,

RCabs = zT
Σz

σ(z)
,

and the percentage contribution is,

%RCabs = zT
Σz

σ2(z)
. (2.5.34)

Expanding the above equation (2.5.34) for the two assets portfolio and consider
the absolute risk contribution of the �rst component, we have

%RCabs1 =
z2

1σ
2
1 + z1z2ρ1,2σ1σ2

σ2(z)
, (2.5.35)

where the variance in this case is given by,

σ2(z) = z2
1σ

2
1 + z2

2σ
2
2 + 2z1z2ρ1,2σ1σ2. (2.5.36)

Substituting the corresponding weights as given in example (2.7) into equation
(2.5.35), yield the following absolute risk contribution,

%RCasb1 =

(
σ−1
1

(σ−1
1 +σ−1

2 )

)2

σ2
1 +

(
σ−1
1

(σ−1
1 +σ−1

2 )

)(
σ−1
2

(σ−1
1 +σ−1

2 )

)
σ1σ2ρ1,2(

σ−1
1

(σ−1
1 +σ−1

2 )

)2

σ2
1 +

(
σ−1
2

(σ−1
1 +σ−1

2 )

)2

σ2
2 + 2

(
σ−1
1

(σ−1
1 +σ−1

2 )

)(
σ−1
2

(σ−1
1 +σ−1

2 )

)
ρ1,2σ1σ2

=
1 + ρ1,2

(σ−1
1 + σ−1

2 )2

(σ−1
1 + σ−1

2 )2

2(1 + ρ1,2)

=
1

2
. (2.5.37)
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This result veri�es that for the two assets portfolio, the percentage contribution
of a component is 50%.

2.6 Dilemma of Risk Parity

Although risk parity seems to be more robust portfolio allocation strategy in
terms of diversifying risk, it has its own downfall. The expected return and
risk of the portfolio constructed in this manner is usually lower than that of
a typical 60/40. To enhance the same risk as the 60/40 portfolio, investors
introduce leverage, a technique that raised many sceptics to many investors in
the implementation of risk parity strategy; see Bhansali et al. (2012).

2.6.1 Leverage Concern

Risk parity is assumed to be suitable strategy for the time of recent �nancial
crisis, particularly when the growth market is declining. During such period,
leverage portfolio is highly required. Usually, leverage is implemented through
�xed income assets such as government bonds. The problem with risk parity
arises as the growth markets start giving potential results and investors be-
come interested in it. For risk parity, this implies that leverage is no longer
necessary. Thus, maintaining return of risk parity tantamount mean variance
becomes di�cult. Also, when borrowing becomes more expensive, the risk
parity strategy might produce bad results. The portfolio tends to be more
concentrated in the �xed income assets.

2.6.2 Correlation Concern

Another way of constructing a well diversi�ed portfolio is to hold assets that are
less correlated to each other. However, selection of asset classes requires care
since markets incorporate convertible assets. Careless selection of assets may
lead to highly correlated portfolio constituent and thus result with an under-
diversi�ed portfolio. Romahi and Santiago (2012) introduced an alternative
approach on portfolio construction using risk parity assumptions. Instead of
diversifying portfolio through component risk contributions, investors imple-
ment a di�erent strategy that focuses on the risk factor. This approach is
detailed in Chapter 5.

2.7 Summary

In this chapter, we presented various risk measures that are under considera-
tion for portfolio's construction. We introduced the popular risk-based strate-
gies with more attention on the risk parity strategy. The empirical study which
support the theory of these strategies is presented in Chapter 7.
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By considering a simple example, we illustrate the comparison of the risk-
based strategies. We observe that if components have the same volatilities
and all pair-wise correlations are also equal, then all strategies lead to the
same allocation. Lussier (2013), also identi�ed the same results. In addition,
he discovered that in the case of identical asset returns and volatilities, all
strategies lead to the same allocation only in the two assets case. For n > 2, the
EW (which bene�ts from the law of large number) and ERC strategy produce
di�erent allocation. Note that for the two assets case, only single correlation
is available. Thus, the EW strategy will be more appropriate if practitioners
are not certain about their estimation of the required input parameters.

Unlike the GMV portfolio, the ERC strategy includes all the components
in a universe. However, its volatility is signi�cantly higher than that of the
GMV portfolio. In particular, Maillard et al. (2010) showed analytically that
the volatility of the ERC lies between the volatility of the GMV and EW
portfolios. The ERC strategy produces a portfolio such that component risk
contributions is the same, while the EW strategy determined the allocation
based on the number of component in the universe. The latter makes sense
if we believe that neither stock returns nor risk can be forecast. The GMV
strategy allocation is such that components marginal contributions are the
same, while the MD strategy maximizes the diversi�cation ratio. Moreover,
MD is the same as the maximum Sharpe ratio strategy if all components have
the same marginal volatility.
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Chapter 3

Link between Risk Parity and

E�cient Mean-Variance Portfolio

In this Chapter, we discuss the relationship between risk parity and the mean
variance strategy. In practice, there are many questions evolving around the
risk parity strategy, mainly the out-performance of this strategy against other
investment strategies, see Romahi and Santiago (2012), Rappoport and Notte-
bohm (2012). We illustrate the general condition for which risk parity strategy
is mean-variance e�cient. In particular, for the conditions, say all pair-wise
correlations are the same and components have the same Sharpe ratios, risk
parity is still mean-variance e�cient.

3.1 Decomposition of the MV Input

Parameters

The covariance matrix can be decomposed as the matrix multiplication of
correlation matrix and the vector matrix of asset standard deviations. i.e.,

Σ = DσCDσ, (3.1.1)

where Dσ is a diagonal matrix with a vector of volatilities σ in the main
diagonal, i.e.,

Dσ =


σ1 0 · · · 0

0 σ2
. . .

...
...

. . . . . . 0
0 · · · 0 σn

 , (3.1.2)

which can be generalised for any vector x, i.e., Dx. C is a symmetric correlation
matrix, i.e., ρij = ρji, that explains the strength of the relationship between

47
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relative asset classes. That is,

C =


1 ρ12 · · · ρ1n

ρ21
. . . . . .

...
...

. . . . . . ρn−1n

ρn1 · · · ρnn−1 1

 . (3.1.3)

De�nition 3.1. If r0 does not play any role in a portfolio, then the security
Sharpe ratio, si, is de�ned as,

si =
r̄i
σi
, i = 1, . . . , n, (3.1.4)

where r̄i denotes the expected return of the ith security and σi is the correspond-
ing volatility.

We denote by s a vector of security Sharpe ratios, i.e.,

sT = (s1, . . . , sn) . (3.1.5)

This vector can be decomposed as a diagonal matrix of inverse volatilities and
a vector of expected returns, i.e.,

s = Dσ−1 r̄ =


σ−1

1 0 · · · 0
0 σ−1

2 · · · 0
...

. . . . . .
...

0 · · · 0 σ−1
n



r̄1

r̄2
...
r̄n

 . (3.1.6)

When risk free asset is not included in a portfolio, the Sharpe ratio is then
given as a function of weights, expected return and the covariance matrix of
the risky assets.

De�nition 3.2. Let z ∈ Rn be an arbitrary portfolio of only risky assets with
volatility 0 < σ(z) <∞ and a vector of components excess return r̄. Then the
portfolio's Sharpe ratio is given by:

S(z, r̄,Σ) =
zT r̄√
zTΣz

. (3.1.7)

Let us consider the following useful properties,

Σ = DσCDσ (3.1.8)

Σ−1 = Dσ−1C−1Dσ−1 (3.1.9)

(σ−1)TΣσ−1 = 1
TC1. (3.1.10)
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Remark 3.3. The inverse of a diagonal matrix Dσ−1 is actually the diagonal
matrix Dσ, i.e.,

D−1
σ = Dσ−1 . (3.1.11)

Proposition 3.4. The decomposition of the portfolio's covariance matrix leads
to the Sharpe ratio expressed as the product of the vector of security Sharpe
ratios and weights per weighted correlation of securities, i.e.

zT r̄√
zTΣz

=
zT s√
zTCz

(3.1.12)

Proof. We consider the properties of the inner product vectors, i.e.,

zT r̄ = 〈z, r̄〉. (3.1.13)

Using this property we can express the left hand side of equation (3.1.12) as:

zT r̄√
zTΣz

=
〈z, r̄〉√
〈z,Σz〉

. (3.1.14)

Note that the following property holds, r̄ = Dσs. Thus, equation (3.1.14) can
be expressed as follows:

〈z, r̄〉√
〈z,Σz〉

=
〈z, Dσs〉√
〈z, DσCDσz〉

=
〈Dσz, s〉√
〈Dσz, CDσz〉

. (3.1.15)

Setting z̃ = Dσz, we have

〈z̃, s〉√
〈z̃, Cz̃〉

=
z̃T s√
z̃TCz̃

. (3.1.16)

Remark 3.5. The portfolio that uniquely maximizes the mean-variance is
given by:

zMVO = λΣ−1r̄ = λ


Σ−1

1

Σ−1
2
...

Σ−1
n



r̄1

r̄2
...
r̄n

 , (3.1.17)

where Σ−1
i correspond to the ith row of the inverse covariance matrix Σ and

λ =
1

1TΣ−1r̄
,

see Glombek (2012) for a proof. This means that the ith component is given as
follows:

zMVO
i = λΣ−1

i r̄ i = 1, . . . , n.
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3.2 Risk Parity and Mean-Variance E�cient

As many questions are still asked based on the performance of risk parity, Kaya
and Lee (2012) and Kaya (2012) answer the one relevant to e�ciency. The
former illustrates e�cient risk parity on a special condition, while the latter
gives the general case.

3.2.1 Conditional E�ciency of Risk Parity

We consider the situation where components have identical Sharpe ratios and
their pair-wise correlations is the same.

Proposition 3.6. Let z ∈ Rn be a risk parity portfolio. Then z is mean
variance e�cient if components have identical Sharpe ratios and correlations
are the same.

Proof. Consider the e�cient mean variance solution given in Remark (3.5),
and assume without loss of generality that λ = 1. This means

zMVO = Σ−1r̄. (3.2.1)

If Dz denotes the diagonal matrix of n-component weights, i.e

Dz =


z1 0 · · · 0
0 z2 · · · 0
...

...
. . .

...
0 0 · · · zn

 , (3.2.2)

then the risk contribution of components is:

RC(z) = Dz
Σz

σ(z)
. (3.2.3)

Substituting z by equation (3.2.1), we have

RC(z) = Dz
Σ(Σ−1r̄)

σ(z)
=
Dzr̄

σ(z)
. (3.2.4)

Thus, the risk contribution of the ith component is given as follows:

RCi(z) =
r̄i(Σ

−1r̄)i
σ(z)

(3.2.5)

Using property (3.1.9), and letting bij denote the entries of the inverse corre-
lation matrix C−1, it follows that the entries of the inverse covariance matrix
Σ−1 are given by:

σ−1
ij =

bij
σiσj

. (3.2.6)
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Thus, equation (3.2.5) becomes:

RCi(z) =
r̄i
[
σ−1
i1 r̄1 + σ−1

i2 r̄2 + · · ·+ σ−1
in r̄n

]
σ(z)

=
r̄i

[
r̄1bi1
σiσ1

+ r̄2bi2
σiσ2

+ · · ·+ r̄nbin
σiσn

]
σ(z)

=

(
r̄i
σi

)2

σ(z)

[
r̄1σibi1
r̄iσ1

+
r̄2σibi2
r̄iσ2

+ · · ·+ r̄nσibin
r̄iσn

]
. (3.2.7)

Letting si =
r̄i
σi
, the above equation becomes:

RCi(z) =
s2
i

σ(z)

[
s1

si
b1i +

s2

si
b2i + · · ·+ sn

si
bni

]
. (3.2.8)

Thus, the ERC portfolio satis�es the following equation:

RCi(z)

RCj(z)
=

(
si
sj

)2 [ s1
si
b1i + s2

si
b2i + · · ·+ sn

si
bni

s1
sj
b1j + s2

sj
b2j + · · ·+ sn

sj
bnj

]
. (3.2.9)

For the case of equal Sharpe ratios and correlations, i.e., si = s and bij =
b, respectively, and s and b are arbitrary constants, then the ERC strategy
satis�es the following:

RCi(z)

RCj(z)
= 1, (3.2.10)

which proves that the ERC portfolio is mean-variance e�cient if the component
Sharpe ratios and correlations are the same.

3.2.2 General E�cient Risk Parity

Proposition (3.6) illustrates the e�ciency of risk parity to the mean-variance
portfolio under some speci�ed conditions. This gives bounds to the under-
standing of e�cient risk parity in a general context. However, Kaya (2012)
extends the proof to the general case when correlations and Sharpe ratios are
di�erent.

Theorem 3.7. Let z ∈ Rn be a risk parity portfolio. Then, z is mean-variance
e�cient if and only if the following condition holds:

DsC
−1s = c̃1, (3.2.11)

where s is a column vector of component Sharpe ratios, Ds is a diagonal matrix
with component Sharpe ratios in the main diagonal, C−1 an inverse correlation
matrix, c̃ is an arbitrary constant and 1 a column vector of ones.
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Proof. (⇒) Suppose zMVO ∈ Rn is an e�cient mean-variance portfolio. We
need to show that if zMVO satisfy the risk parity, then condition (3.2.11) holds.
Recall that the total absolute risk contributions of the risk parity portfolios
satisfy the following:

DzΣ
−1z = c1. (3.2.12)

Using Remark (3.5), the left hand side of equation (3.2.12) can be written as
follows:

DzΣz = DzΣ(λΣ−1r̄) = λ


z1r̄1

z2r̄2
...

znr̄n

 . (3.2.13)

Thus, for the ith component, we have

(DzΣz)i = λzir̄i i = 1, . . . , n. (3.2.14)

Substituting again the zMVO
i in the equation (3.2.14), we have,

(DzΣz)i = λ(λΣ−1r̄)ir̄i = λ2r̄iΣ
−1
i r̄ i = 1, . . . , n. (3.2.15)

De�ne by Dr̄, a diagonal matrix of component expected returns, i.e.,

Dr̄ =


r̄1 0 · · · 0
0 r̄2 · · · 0
...

...
. . .

...
0 0 · · · r̄n

 . (3.2.16)

Now, equation (3.2.15) can be expressed in a matrix form equation, i.e.,

DzΣz = λ2Dr̄Σ
−1r̄. (3.2.17)

Using property (3.1.9) in equation (3.2.17), we have:

λ2Dr̄Dσ−1C−1Dσ−1 r̄ = λ2DsC
−1s, (3.2.18)

where Ds = Dr̄Dσ−1 and s = Dσ−1 r̄. Thus, equation (3.2.12) is equivalent to:

λ2DsC
−1s = c1. (3.2.19)

If we let
c

λ2
= c̃, we have

DsC
−1s = c̃1. (3.2.20)

Hence, if z is mean-variance e�cient and satisfy the risk parity portfolio, then
the condition (3.2.11) holds.

(⇐) Suppose the Sharpe ratios and correlations satisfy condition (3.2.11).
We need to show that:
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1. If z is mean-variance e�cient, then z is the risk parity portfolio.

2. If z is a risk parity portfolio, then z is also e�cient.

Consider the �rst condition, i.e z ∈ Rn is mean-variance e�cient. That is,

z = λΣ−1r̄. (3.2.21)

From equation (3.2.20), it follows that the risk contribution satisfy:

DzΣz = DsC
−1s = c̃1, (3.2.22)

which implies that risk parity is also mean-variance e�cient.

To prove the second condition, we assume that z∗ ∈ Rn is a risk parity
portfolio with �xed volatility. According to Kaya and Lee (2012), z∗ exists
and is unique. We need to show that z∗ = λΣ−1r̄ also satis�es the following
condition

Dz∗Σz∗ = c̃1, (3.2.23)

for some constant c̃ ≥ 0. Consider the above equation (3.2.23). This could be
written as,

c̃1 = Dr̄Dσ−1C−1Dσ−1 r̄ = Dr̄Σ
−1r̄.

Alternatively,

r̄ = c̃ΣD−1
r̄ 1. (3.2.24)

Thus,

z∗ = λΣ−1r̄ = λΣ−1(c̃ΣD−1
r̄ 1) = c̃λD−1

r̄ 1. (3.2.25)

Substituting the above equation into the total absolute risk contribution, we
have

Dz∗Σz∗ = Dz∗Σ(c̃λD−1
r̄ 1) = λDz∗(c̃ΣD−1

r̄ 1).

Replacing equation (3.2.24) into the above equation, yields

Dz∗Σz∗ = λDz∗ r̄ = λ


z∗1 r̄1

z∗2 r̄2
...

z∗nr̄n

 . (3.2.26)

But, equation (3.2.25) implies that the ith component is given by,

z∗i = c̃λ
1

r̄i
i = 1, . . . , n.
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Thus, the total absolute risk contribution in equation (3.2.26) is given by,

Dz∗Σz∗ = c̃λ2



1

r̄ 1
r̄1

1

r̄ 2
r̄2

...
1

r̄ n
r̄n


= c̃λ2

1.

Setting c̃λ2 = c proves that z∗ = λΣ−1r̄ is a risk parity and is also e�cient
portfolio.

3.2.3 Risk Parity and Tangency Portfolio

Instead of focussing on the risk and return of the portfolios, investors may
consider maximizing the portfolio Sharpe ratio which changes the objective of
the standard mean variance strategy. The portfolio that maximizes the Sharpe
ratio in the mean-variance framework is known as the tangency portfolio and
is given by the following:

zTP =
Σ−1r̄

1TΣ−1r̄
, 1

TΣ−1r̄ 6= 0. (3.2.27)

The portfolio's maximum Sharpe ratio is given by:

max
z∈Rn

S(z, r̄,Σ) = max
z̃∈Rn

S(z̃, s, C) =
√

r̄TΣ−1r̄,

with the optimum weights being proportional to the inverse of the covariance
matrix and a vector of expected returns, i.e

zTP ∝ Σ−1r̄, (3.2.28)

under a �xed budgeting constraint:

zT1 = 1, (3.2.29)

see Glombek (2012) and Fisher et al. (2012a). In particular, we can express
the portfolio weights as:

zMSR = D−1
σ C−1s, (3.2.30)

when λ is one.

Below we distinguish two cases related to the Sharpe ratio in portfolio
selection. First, we notice that when components have identical Sharpe ratio,
then the MVO portfolio is the same as the most diversi�ed portfolio, i.e.

zMSR = D−1
σ C−1

1, (3.2.31)
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and this solution can be expressed as:

CDσz
MSR = 1. (3.2.32)

Secondly, if we consider the case of uncorrelated assets, and assume that Sharpe
ratios are equal, the results are equivalent to the volatility portfolio and weights
are given by:

zMSR = D−1
σ I−1

n 1, (3.2.33)

which can be represented as:

InDσz
MSR = 1, (3.2.34)

where I is n-dimensional identity matrix.

Thus the risk parity portfolio satisfy the following equation:

(IDσz
∗) •(CDσz

∗) = 1 •1, (3.2.35)

where • denotes the Hadamard element-by-element product (also called the
Schur product) of two identically-sized matrices with the following properties:

1. A •B = B •A,

2. 1n •A = A,

for n-dimensional matrices A, B and 1n (i.e an n-dimension matrix of ones).

When Sharpe ratios are di�erent, the weights of the risk parity satisfy the
following equation:

(IDσz
∗) •(CDσz

∗) = s •s, (3.2.36)

where the left hand side indicates the total risk contributions. This implies
that the risk contribution of asset i is:

RCi(z) = s2
i . (3.2.37)

Alternatively, this result could be seen as a direct consequence of equation
(3.2.8), where the correlation between components is zero. Thus, the com-
ponent risk contributions in a portfolio are directly proportional to their re-
spective Sharpe ratio squared if Sharpe ratios are identical and correlation is
zero.
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3.2.4 RP Outperform MVO

According to Mossin (1966), Sharpe (1964), Treynor (1962) and Lintner (1965),
the portfolio that has the highest return in the mean variance framework is
the one with the highest Sharpe ratio.

In practice, there are still many doubts about risk parity implementation.
In particular, practitioners lodge concern about the future performance of RP,
Inker (2011). We illustrate the condition under which RP outperforms other
investment strategies, particularly, the MVO. We determine this condition
based on Fisher et al. (2012a) approach which requires two portfolios, say w
and z, with the vector of component expected returns denoted by m and the
future covariance matrix Ω. We know that risk parity portfolio weights, in
particular, the IV portfolio weights, are inversely proportional to their respec-
tive volatilities. If we denote by w the vector of risk parity weights, then
one can just substitute this vector by the corresponding vector of component
volatilities and obtain the following Sharpe ratio:

S(w,m,Ω) =
mTw√
wTΩw

=
mTσ−1√

(σ−1)TΩσ−1
, (3.2.38)

where σ−1 ∈ Rn is a vector of component inverse volatilities. Similarly, for
any other mean-variance portfolio, say z ∈ Rn, the Sharpe ratio1 is:

S(z,m,Ω) =
mTz√
zTΩz

=
mTΣ−1r̄√

(Σ−1r̄)TΩΣ−1r̄
, (3.2.39)

where z is given as in equation (3.2.28).

The RP strategy outperforms the mean-variance strategy if and only if the
following holds:

mT

(
σ−1√

(σ−1)TΩσ−1
− Σ−1r̄√

(Σ−1r̄)TΩΣ−1r̄

)
> 0. (3.2.40)

In other words, risk parity portfolio outperforms the tangency portfolio if and
only if its Sharpe ratio is superior. But, from the theory of the mean-variance
optimization, the return of the portfolio is not determined through future co-
variance estimations. Using the solution of the two strategies, RP outperforms
tangency portfolio if and only if the following hold:

mT

(
σ−1

√
1Tσ−1

− Σ−1r̄√
1TΣ−1r̄

)
> 0. (3.2.41)

1Determined in the absent of risk-free asset.
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Interpreting this solution, the RP outperforms the tangency portfolio if the
linear combination of RP solution (i.e., a vector of component weights) and
the vector of component expected returns is greater than that of the tangency
portfolio. If they are equal, then the two portfolios are the same. Otherwise,
risk parity has underperformed.

However, when the future covariance estimation is similar to the historical
covariance, and components have di�erent Sharpe ratios, then the condition
for RP outperforming tangency portfolio changes. Using properties (3.1.8),
(3.1.9) and (3.1.10) and setting:

s = {si =
r̄i
σi
}, s̃ = {s̃i =

mi

σi
} and v = z •σ = {ziσi} i = 1, . . . , n,

the inequality (3.2.40) can be written as:

s̃σT

 σ−1

√
1TC1

−
v
σ√(

v
σ

)T
DσCDσ

(
v
σ

)
 = s̃σT

(
σ−1

√
1TC1

−
v
σ√

(vTCv)

)
> 0.

Distributing the multiplication of σT , we have:

s̃

(
1√
1TC1

− v√
(vTCv)

)
> 0. (3.2.42)

But, the solution of the tangency portfolio is given by:

Σ−1r̄√
r̄TΣ−1r̄

=
D−1
σ C−1D−1

σ (sσ)√
(sσ)TDσ−1C−1Dσ−1(sσ)

=
Dσ−1C−1s√

sTC−1s
. (3.2.43)

Hence, the risk parity portfolio outperform the tangency portfolio if and only
if the following is satis�ed:

s

(
1√
1TC1

− Dσ−1C−1s√
sTC−1s

)
> 0. (3.2.44)
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Chapter 4

Risk Budgeting Approach

In this Chapter we present the risk-budgeting (RB) strategy of Bruder and
Roncalli (2012) used to construct a portfolio of multi-asset classes. Unlike other
risk parity approaches discussed in Chapter 2, the RB approach integrates
investor's views about component risk budgets in a universe. Investors, in this
case, use the information of components in the markets and specify the level of
risk contribution they are willing to take. More speci�cally, the risk budgeting
portfolio, z = (z1, z2, . . . , zn)T , is such that each component risk contribution
matches the corresponding risk budget, b = (b1, b2, . . . , bn)T . Contrary to the
ERC strategy, the risk contributions of a two assets portfolio is not necessarily
equal.

De�nition 4.1. Risk budgeting is a process in which the risk of a portfolio
is measured, divided into some component risk contributions using the theory
of asset allocation, each component is assigned risk budget, and the sum of
component risk budgets adds up to one, see Pearson (2011).

The decomposition of risk helps investors to conceptualize and also to be
decisive1 on risk allocation whenever portfolio is to be established. Thus,
the risk budget portfolio consists of quantitative constraint of asset classes,
manager's views about the risk budgets, factors in�uencing the performance
of assets, maintenance of risk budget constraint through leverage, continuous
monitoring of risk budgeting for sources of risk and allocation of assets based
on the de�ned risk budget.

4.1 Speci�cation of Risk Budgeting Portfolio

In Chapter 2, we de�ned the risk contribution of assets in a portfolio. Bruder
and Roncalli (2012) took the de�nition of risk contribution further by intro-

1Investors are able to �lter assets based on their risk contribution. Thus the combination
of risk decomposition and set of risk sources generate the subject of risk budgeting.

58
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ducing the constraint of each asset risk contribution called risk budget. For a
portfolio of n-assets, it is very convenient to de�ne the risk budgeting portfolio
as a solution to the following system:

RC1(z1, z2, . . . , zn) = b1

RC2(z1, z2, . . . , zn) = b2

...

RCi(z1, z2, . . . , zn) = bi
...

RCn(z1, z2, . . . , zn) = bn.

This system is not based on any optimization technique and also does not
integrate the expected return estimation in the portfolio's composition.

But the system above has few drawbacks. First, it does not explicitly re�ect
component exposures and small risk budget. Secondly, specifying that other
assets have negative risk budget implies that the risk is concentrated in the
other assets which does not re�ect diversi�cation objective. Thus, the above
system could be expressed precisely as a non-linear system, i.e.,

zi(Σz)i = bi(z
TΣz)

n∑
i=1

zi = 1

n∑
i=1

bi = 1

zi ≥ 0
bi ≥ 0,

(4.1.1)

to explicitly re�ect the marginal risk contribution for each asset.

The only quandary that arises from system (4.1.1) is when an investor
speci�es zero risk budget for a speci�c asset. Bruder and Roncalli (2012)
showed that there exist two solutions in this case. We denote by (Σz)i, the i

th

row of the product of the covariance matrix and vector of exposure. Recall that
σij = ρijσiσj denotes the covariance between the return of the i

th and jth assets
where ρij is the corresponding correlation. The marginal risk contribution of
the ith asset is then given by:

MCi(z) =
∂σ(z)

∂zi
=
ziσ

2
i + σiΣj 6=izjσjρij

σ(z)
. (4.1.2)

Thus, the absolute risk contribution of the kth-asset assigned zero risk budget
in a portfolio of n-assets is given as:

RCk(z) = zkMCk(z) = zk
zkσ

2
k + σkΣj 6=kzjσjρkj

σ(z)
= 0. (4.1.3)
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Solving the above equation, we obtain two solutions, i.e.

z∗k = 0 or z∗∗k = −σkΣj 6=kzjσjρkj
σ2
k

(4.1.4)

and z∗∗ can only be positive if ρkj < 0, since σi > 0 by de�nition. However,
setting asset risk budget to zero, the investor has an intuition that this asset
will not form part of the portfolio. Moreover, this makes the solution to system
(4.1.1) to be di�cult to obtain. In general, the positive solution of this problem
depends on the structure of the covariance (or information) matrix. Bruder
and Roncalli (2012) suggest that instead of setting component risk budgets
to zero, one removes the corresponding assets and determine the composition
with only non-zero risk budget components. In this case, the non-linear system
(4.1.1) is written as follows:

zRB = {z ∈ [0, 1]n :
n∑
i=1

zi = 1,RCi(z) = biσ(z)}, (4.1.5)

where bi ∈ (0, 1]n for i = 1, . . . , n and their sum is one.

4.1.1 Some Analytical Solutions of the RB Portfolio

In determining the analytical solution of the RB portfolio in a general case,
Bruder and Roncalli (2012) observed that it is impossible and only few special
cases can be obtained. In what follows we illustrate these special cases.

4.1.1.1 RB in a Two-Assets Universe

In a two assets case, Roncalli (2013) found that the risk budgeting solution of
system (4.1.1) is a complex function characterised by component volatilities,
correlation and risk budget. The solution in this case satisfy the following
system:(

RC1

RC2

)
=

(
z2σ2

1 + z(1− z)ρσ1σ2

(1− z)2σ2
2 + z(1− z)ρσ1σ2

)
=

(
bσ(z)

(1− b)σ(z)

)
, (4.1.6)

where z and (1− z) are the weights of the respective assets, b and (1− b) their
corresponding risk budgets, and σ1 and σ2 represent their volatilities while
σ(z) is the total portfolio volatility.

To solve system (4.1.6), we �rst express it as a function in which quadratic
formula will be e�cient, i.e

z2σ2
1 + z(1− z)ρσ1σ2

b
=

(1− z)2σ2
2 + z(1− z)ρσ1σ2

1− b
, (4.1.7)
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which can simply be written as,

z2σ2
1 + zρσ1σ2 − z2ρσ1σ2 − z2σ2

1b− zρσ1σ2b

+ z2ρσ1σ2b − σ2
2b + 2bσ2

2z − bσ2
2z

2 − bρσ1σ2z + bρσ1σ2z = 0.

Rearranging terms in order to apply the quadratic formula, we have

z2 : (1− b)σ2
1 + (2b− 1)ρσ1σ2 − bσ2

2

z : (1− 2b)ρσ1σ2 + 2bσ2
2

C : −bσ2
2.

We determine separately the square root part of the formula as follows. First
we make substitution for B2 − 4AC , i.e.,

B2 − 4AC = 4(b− 1
2
)2ρ2σ2

1σ
2
2 + 4b(1− b)σ2

1σ
2
2.

Substituting everything in the quadratic formula yield the following,

z =
−
[
(1− 2b)ρσ1σ2 + 2bσ2

2

]
+
√

4(b− 1
2
)2ρ2σ2

1σ
2
2 + 4b(1− b)σ2

1σ
2
2

2
[
(1− b)σ2

1 + (2b− 1)ρσ1σ2 − bσ2
2

] .

Rearranging and taking out the common factor of 4σ2
1σ

2
2 from the square root,

yields,

z =
2(b− 1

2
)ρσ1σ2 − 2bσ2

2 + 2σ1σ2

√
(b− 1

2
)2ρ2 + b(1− b)

2
[
(1− b)σ2

1 + 2(b− 1
2
)ρσ1σ2 − bσ2

2

] , (4.1.8)

and taking out the common factor of two, gives the following,

z =
(b− 1

2
)ρσ1σ2 − bσ2

2 + σ1σ2

√
(b− 1

2
)2ρ2 + b(1− b)

(1− b)σ2
1 + (b− 1

2
)ρσ1σ2 − bσ2

2

, (4.1.9)

which con�rms the complexity of the risk budgeting solution. Thus, determin-
ing the general solution will get even worse than the two-assets case because of
the increase in parameters such as n-volatilities and budgets, n(n−1)

2
pair-wise

correlations. For some constant correlations matrix, say ρ ∈ {−1, 0, 1}, the
solution, z(ρ), to equation (4.1.9) is

z(−1) =
σ2

σ1 + σ2

, (4.1.10)

z(0) =

√
bσ2√

1− bσ1 +
√
bσ2

, (4.1.11)
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z(1) =
bσ2

σ1(1− b)− bσ2

, (4.1.12)

Note that we only considered the positive sign in the preceding square root
because in the case of negative, we often �nd negative solutions which violates
the weight constrains. See Appendix (A.2.1) for some of the proofs. More
precisely, in the long-only portfolio, the solution to this problem is a set of all
positive weights.

4.1.1.2 RB in the General Universe (i.e Case n > 2)

The two-assets case has already shown complexity of how the solution appears
which suggests that for the general case, the solution might be even more
di�cult. Again, Roncalli (2013) determine the RB solution for special cases of
uniform correlations, ρi,j = ρ, amongst the components in a universe. Below
we detail how to obtain such analytical solution.

For the case ρ = 0, which simply says that there is no correlation amongst
the n-assets of the portfolio, the solution to system (4.1.1) can be obtained as
follows. Considering the marginal contribution as de�ned in equation (4.1.2).
The risk contribution of the ith asset is then given by:

RCi(z) = zi
ziσ

2
i + σiΣj 6=izjρijσj

σ(z)
=
z2
i σ

2
i

σ(z)
. (4.1.13)

But from equation (4.1.1), we have

bi(z
TΣz) = zi(Σz)i = z2

i σ
2
i = RCi(z)σ(z). (4.1.14)

We know that

σ2(z) = zTΣz, (4.1.15)

hence we can deduce that:

bi(z
TΣz) = RCi(z)σ(z), (4.1.16)

which implies that,

RCi(z) = biσ(z). (4.1.17)

Hence

biσ
2
p(z) = z2

i σ
2
i , (4.1.18)

which yields the following for both the ith and jth assets√
biσ(z) = ziσi,

√
bjσ(z) = zjσi. (4.1.19)
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Thus, the solution of the ith component is given by:

zi =
σ−1
i

√
bi∑n

j=1 σ
−1
j

√
bj
, (4.1.20)

since the weights add up to one. Equation (4.1.20) illustrates that component
exposure is directly proportional to the product of the square root of their
risk budget and the inverse volatility when pair-wise correlations is zero. This
implies that, if a component, say zi, increases (decreases) in volatility, then
there should be a decrease (increase) of weight.

In the same approach, we can show that for the case ρ = 1, we have

bjziσi = bizjσj, (4.1.21)

and we can deduce that

zi =
σ−1
i bi∑n

j=1 σ
−1
j bj

. (4.1.22)

Also for ρ = − 1

n− 1
which indicates perfect negative correlation, we have

zi =
σ−1
i∑n

j=1 σ
−1
j

, (4.1.23)

which simply exhibits that component exposures are inversely proportional to
the volatility of the returns, i.e.,

zi ∝ σ−1
i . (4.1.24)

See Appendix (A.2) for the proofs. This result implies that the RB portfolio
is IV e�cient if the constant correlation reaches its lower bound. Moreover,
Bruder and Roncalli (2012) showed that the variance of the portfolio in this
case is zero. Recall the de�nition of variance as in equation (4.1.15). This
implies that,

σ2(z) = z2
1σ

2
1 + z1σ1

∑
j 6=1

ρσjzj + z2
2σ

2
2 + z2σ2

∑
j 6=2

ρσjzj + · · ·

+ z2
i σ

2
i + ziσi

∑
j 6=i

ρσjzj + · · ·+ z2
nσ

2
n + znσn

∑
j 6=n

ρσjzj,

which can be written as

σ2(z) =
n∑
i=1

σ2
i z

2
i +

n∑
i=1

σizi∑
j 6=i

ρσjzj


=

n∑
i=1

σ2
i z

2
i +

n∑
i=1

ρσizi
 n∑

j=1

σjzj − σizi


 .
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Rearranging, we have

σ2(z) = (1− ρ)
n∑
i=1

σ2
i z

2
i + ρ

n∑
i=1

σizi

 n∑
j=1

σjzj

 . (4.1.25)

Setting σizi = σjzj = $ and substituting for ρ = − 1
n−1

, the above equation
(4.1.25) becomes,

σ2(z) = (1− (− 1
n−1

))
n∑
i=1

$2 + ρ

n∑
i=1

$(
n∑
j=1

$)

= n2

n−1
$2 − n2

n−1
$2 = 0. (4.1.26)

The quandary of �nding the general solution arises when ρ is not a constant
matrix. However, Bruder and Roncalli (2012) deduced the �nancial interpre-
tation of the general solution to system (4.1.5) by �rst considering the fact
that beta is given by,

βi =
(Σz)i
σ2(z)

, (4.1.27)

see (2.2.18) and (2.2.9). This implies that the ith-row of the covariance matrix
is given as follows,

(Σz)i = βiσ
2(z), (4.1.28)

and the risk contribution is

RCi = biβizi. (4.1.29)

The risk budgeting portfolio is such that,

βiziσ
2(z)

bi
=
βjzjσ

2(z)

bj
.

We can now infer that

zi =
biβ
−1
i∑

j=1 bjβ
−1
j

i = 1, . . . , n. (4.1.30)

Equation (4.1.30) indicates that the exposure of component i is directly pro-
portional to the product of its inverse beta and the risk budget. It is similar
to the solution given in equation (2.5.14), except that in this case, the risk
budgets are incorporated. However, it does not provide a close-form solution
because of endogeneity, see Maillard et al. (2010), and thus �nding the solution
to the RB portfolio requires the use of numerical solution.
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4.2 Optimization of Risk Budget Portfolio

In this section, we present the optimization techniques for �nding the risk
budgeting portfolio. Bruder and Roncalli (2012) suggested two approaches in
determining the optimal RB portfolio. These are the optimization program
and the search algorithms.

4.2.1 RB using Optimization Program

In order to determine the optimal solution of system (4.1.5), we follow Bruder
and Roncalli (2012) approach in which the optimization program for the RB
portfolio is de�ned as follows,

z∗ = arg min
z∈Rn

√
zTΣz

s.t


n∑
i=1

bi ln zi ≥ c

z ≥ 0,

(4.2.1)

where the arbitrary constant, c, is scaled to satisfy the budget constrain. In
other words, the program minimizes a convex function (i.e portfolio's volatil-
ity) subject to convex constrain. The Lagrange function for this optimization
problem is,

L(z, λ, λc) = (zΣz)
1
2 − λc(bT ln z− c)− λTz (4.2.2)

where λ ∈ Rn and λc ∈ R are the Lagrange multipliers. The �rst-order
conditions satisfy the following,

∂L(z, λ, λc)

∂z
=
∂σ(z)

∂z
− λ1− λc

(
b

z

)
= 0, (4.2.3)

and the Karush Kuhn-Tucker conditions are,

min (λ, z) = 0 (4.2.4)

min
(
λc,b

T ln z− c
)

= 0. (4.2.5)

Note that the �rst-order derivative is taken with respect to all components in
a universe, i.e

∂L(z, λ, λc)

∂z
=
∂L(z, λ, λc)

∂


z1

z2
...
zn


and

(
b

z

)
=



b1

z1
b2

z2
...
bn
zn


. (4.2.6)

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. RISK BUDGETING APPROACH 66

Moreover, we notice that z should be strictly positive as ln(z) is unde�ned for
z = 0 and therefore condition (4.2.4) will be satis�ed for λ = 0. In particular,
the solution to the ith component is,

∂σ(z)

∂zi
− λc

bi
zi

= 0, (4.2.7)

which implies the following,

zi
∂σ(z)

∂zi
= λcbi. (4.2.8)

This solution indicates that the risk contribution of a component is directly
proportional to the respective risk budget. The scaling factor λc is interpreted
as the adjustment parameter for constant c to obtain the solution z∗.

Thus, the optimal solution to the RB portfolio is obtained by normalizing
the solution z∗. In particular, the ith-component weight is given by,

zRBi =
z∗i∑n
j=1 z

∗
j

i = 1, . . . , n. (4.2.9)

In this case, the optimal RB portfolio exists and is unique. However, this result
is only valid in the case of system (4.1.5).

In the case where some risk budgets are set to zero, the investment universe
can be divided into two, i.e. the set where component risk budgets are zeros,
denoted by N , and the set of non-zero risk budgets. The Lagrange function
of the optimization problem (4.2.1) is,

L(z, λ, λc) = (zΣz)
1
2 − λc(

∑
i/∈N

bi ln zi − c)− λTz (4.2.10)

and the respective �rst-order condition is,

L(λ, λc, z) =


∂σ(z)

∂z
− λ1− λc

b

z
= 0 if i /∈ N

∂σ(z)

∂z
− λ1 = 0 if i ∈ N .

Thus, if i /∈ N , we still have the solution as described above. However, for
the case i ∈ N , we have two cases to consider. First, if zi = 0, it implies

that λi > 0 and
∂σ(z)

∂z
> 0. Secondly, if zi > 0, it implies that λi = 0 and

∂σ(z)

∂z
= 0. As noted in the speci�cation of the risk budgeting in section (4.1),

the positivity of the risk budgeting solution when some risk budgets are set to
zero depends on the structure of the covariance (or information) matrix.
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4.2.2 Algorithmic Approach

The �rst approach minimizes the sum of square of the di�erence between the
risk contributions of components. The system to be solved in this case is,

zRB = arg min
z∈Rn

f(z, b)

s.t

{
1
Tz = 1

0 ≤ z ≤ 1,

(4.2.11)

where the function,

f(z, b) =
n∑
i=1

(
zi(Σz)i∑n
j=1 zj(Σz)j

− bi

)2

.

Note that this function, f(z, b), is deduced from system (4.1.1), where the
speci�cation for the ith and jth components, respectively, is

zi(Σz)i = biσ(z), and zj(Σz)j = bjσ(z). (4.2.12)

Equating the two component speci�cations, and taking the jth-sum both sides
gives the following,

zi(Σz)i∑n
j=1 zj(Σz)j

= bi.

Rearranging, and squaring both side yield:(
zi(Σz)i∑n
j=1 zj(Σz)j

− bi

)2

= 0.

Now taking the sum with respect to the ith elements, gives

n∑
i=1

(
zi(Σz)i∑n
j=1 zj(Σz)j

− bi

)2

= 0.

Thus, the function to be optimized under the risk budgeting constraints be-
comes:

f(z, b) =
n∑
i=1

(
zi(Σz)i∑n
j=1 zj(Σz)j

− bi

)2

.

Alternatively, Roncalli (2013) considered the following function

f(z, b) =
n∑
i=1

n∑
j=1

(
zi(Σz)i
bi

− zj(Σz)j
bj

)2

as the appropriate function for de�ning the optimization problem of the risk
budgeting portfolio. The solution of the risk budgeting portfolio in this case
may be found by using the sequential quadratic programming (SQP) algo-
rithm, see Roncalli (2013).

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. RISK BUDGETING APPROACH 68

4.2.2.1 Jacobi Power Method

Despite the endogenous of solution (4.1.30) for system (4.1.5), Roncalli (2013)
suggests the implementation of Jacobi algorithm for �nding the optimum so-
lution of the risk budgeting portfolio. The algorithm iterates the following
function,

zk+1 =
bi
/
βki∑n

j=1 bj
/
βkj
, (4.2.13)

until a certain error tolerance is met. In the case of Chaves et al. (2012), the
algorithm terminates if the following condition is satis�ed,

n∑
i=1

n∑
j=1

(
zi(Σz)i
bi

− zj(Σz)j
bj

)2

< ε, (4.2.14)

where ε is a tolerance level. According to Roncalli (2013), this algorithm
converges well for a small universe, and also when the starting point is well
chosen2. However, for large universe, it often fails.

4.2.2.2 Cyclical Coordinate Descent (CCD) Algorithm

Griveau-Billion et al. (2013) present a recent algorithm for the computation
of the RB portfolio. This algorithm design is based on the capabilities of
handling an enormous amount of data and the speed of getting the results.
The minimized function is required to be convex and di�erentiable. Unlike
the classical descent algorithm, the CCD algorithm searches the value for each
component which minimizes the objective function. The great incentives about
this algorithm is its simplicity and easy to implement.

To illustrate the insight of this algorithm, we follow Griveau-Billion et al.
(2013) approach which resume from the solution given in equation (4.2.7) of
the risk budgeting system (4.2.1). If we assume without loss of generality that
λc = 1, solution (4.2.7) then is expressed as,

∂L(z, λ)

∂zi
=

(Σz)i
σ(z)

− bi
zi

= 0. (4.2.15)

This implies that,

zi(Σz)i − biσ(z) = 0. (4.2.16)

Expanding the left hand side, we have

z2
i σ

2
i + ziσi

∑
j 6=i

zjσjρi,j − bjσ(z) = 0. (4.2.17)

2The required starting point for facilitating the convergence of this algorithm is any of
the solutions obtained with the constant correlation matrix.
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Thus, the solution to this problem can be solved using the quadratic formula,
i.e

zRBi =
−σi

∑
j 6=i zjσjρi,j +

√
(σi
∑

j 6=i zjσjρi,j)
2 + 4biσ2

i σ(z)

2σ2
i

. (4.2.18)

Since the solution to this problem is restricted to only positive weights, then
only positive roots given by the above equation (4.2.18) will be considered.
This approach will be iterated amongst all components in a given universe.
However, to ease the input parameter at each iteration stage, the above equa-
tion is expressed as follows,

zRBi =
−(Σz)i + ziσ

2
i +

√
((Σz)i + ziσ2

i )
2 + 4σ2

i biσ(z)

2σ2
i

, (4.2.19)

because the covariance matrix and the volatility of the portfolio can be easily
obtained. Since the algorithm determines the values of components that min-
imizes the objective function, to keep track of the updated components, we
de�ne two portfolios,

z = (z1, . . . , zi−1, zi, zi+1, . . . , zn) (4.2.20)

and, z̃ = (z1, . . . , zi−1, z
RB
i , zi+1, . . . , zn), (4.2.21)

to re�ect the portfolio before and after the update of the ith-component. The
updates of the vector, Σz, and the portfolio's volatility, σ(z), respectively are
given by,

Σ(z̃) = Σz− Σ.,izi + Σ.,iz̃i, (4.2.22)

and

σ(z̃) =
√
σ2(z)− 2ziΣi,.zi + z2

i σ
2
i + 2z̃iΣi,.z̃i − z̃2σ2

i , (4.2.23)

where Σi,. and Σ.,i denote the i
th row and column of the covariance matrix.

4.3 Analytical Comparison of the GMV, EW

and RB Portfolios

Bruder and Roncalli (2012) adopted the approach of Maillard et al. (2010) in
the ranking of risk for the above mentioned strategies. However, the latter
integrate the risk budget in the analysis. In this case, the EW strategy is such
that each component weight is equal to the risk budget, i.e.,

zEWi = bi i = 1, . . . , n, (4.3.1)
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which implies that the EW is as follows,

zEWi
bi

=
zEWj
bj

. (4.3.2)

Also, we recall that the GMV portfolio is such that any pair of the component
marginal-risk contributions in a universe is identical, i.e.,

∂σ(z)

∂zi
=
∂σ(z)

∂zj
. (4.3.3)

According to Roncalli (2013), the volatility of the risk budgeting portfolio lies
between the volatility of the GMV and the EW portfolio and this can be shown
analytically by considering the optimization problem (4.2.1) with an additional
budget constrain. In this case, the Lagrange function becomes,

L(λ, λ0, λc, z) = σ(z)− λ0(1Tz− 1)− λTz− λc

 n∑
i=1

bi ln zi − c

 , (4.3.4)

where the corresponding �rst-order condition satis�es,

z
∂σ(z)

∂z
= λT0 z + λTc b, (4.3.5)

because λ0 ∈ R is set to zero in order to satisfy the RB portfolio. In particular,
for the ith-component, we have

zi
∂σ(z)

∂zi
= λ0zi + λcbi. (4.3.6)

Thus, the solution to this problem is a function of c, and if we consider c ∈

{c1, c2}, with c1 ≤ c2, then the constrain
n∑
i=1

bi ln zi − c ≥ 0 implies that

n∑
i=1

bi ln zi − c2 ≤
n∑
i=1

bi ln zi − c1. In other words, the constrain with c = c1 is

less expensive than the one with c = c2. Thus, the volatilities are ranked as
follows,

σ(z∗(c1)) ≤ σ(z∗(c2)). (4.3.7)

In particular, if c = −∞, then the result of the optimization problem (4.2.1)

correspond to minimum variance portfolio. Also, if c =
n∑
i=1

bi ln bi, the solution

is the equal weighted portfolio.
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However, for c ∈ (−∞,
n∑
i

bi ln bi), the solution to the optimization prob-

lem (4.2.1) may be called the risk budgeting with c scaled to obtain the desired
constrains. Thus, the ranking of portfolio's volatility is as follows,

σ(z∗(c1)) ≤ σ(z∗(c)) ≤ σ(z∗(c2)), (4.3.8)

which shows that the volatility of the risk budgeting portfolio lies between the
volatility of the equal budgeting portfolio and the global minimum variance
portfolio.

4.4 Generalized Risk-Based Strategy

In this section, we present a generic risk-based investment strategy proposed
by Jurczenko et al. (2013) which encapsulate the characteristics of the other
risk-based strategies discussed in Chapter 2. This strategy consists of two
calibration parameters, γ and δ, and are adjusted to obtain the characteristic of
a speci�c risk-based strategy. The former controls sensitivity to the covariance
estimate and the later takes care of the risk tolerance of an investors. Thus,
the generalised risk-based strategy is the solution to the following system,

zγi
σδi
MCi =

zγj
σδj
MCj = τ i, j = 1, . . . , n (4.4.1)

such that, zT1 = 1.

The marginal risk contributionsMC are de�ned as in equation (2.2.3) and τ is
just targeted constant. Table (4.1) details the characteristics of the risk-based
strategies for speci�c values of γ and δ.

Table 4.1: Calibration of (γ, δ) and Characteristics of Risk-Based Strategies

Portfolio MV MD ERC EW
(γ, δ) (0.0) (0, 1) (1.0) (∞, 0)

Characteristics MCi(z)=MCj(z)
MCi(z)

σi
=
MCj(z)

σj
ρi,p = ρj,p

RCi=RCj zi = zj =
1

n

The term
zγi
σδi
MCi looks similar to the risk contribution of the ith compo-

nent except that the weight are now modi�ed and hence called modi�ed risk
contribution. The crucial task in this general approach is to determine the ex-
istence and uniqueness of solution and interpret it. Since risk-based investors
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are opt to diminish risk of the portfolio, the above system can be re-written
to re�ect explicitly their objective, i.e

z∗ = arg min
z∈Rn

1

2
zTΣz (4.4.2)

such that,
n∑
i=1

σδi (z
1−γ
i − 1)

1− γ
≥ c ,

where c is an arbitrary constant. The associate Lagrange function is given as
follows:

L(z, λc) =
1

2
zTΣz− λc

 n∑
i=1

(
σδi (z

1−γ
i − 1)

1− γ

)
− c

 , (4.4.3)

where λc ≥ 0. Now, the �rst order derivative gives:

∂L(z, λc)

∂z
= Σz− λc


σδ1z

−γ
1

σδ2z
−γ
2
...

σδnz
−γ
n

 = 0. (4.4.4)

Multiply equation (4.4.4) by inverse portfolio volatility, σ−1(z), gives the fol-
lowing:

zγi
σδi
MCi =

λc
σ(z)

. (4.4.5)

This provides the characteristics of the solution to system (4.4.1). The optimal
solution, z∗, may not necessarily satisfy the budgetary constrain. Thus the
optimal solution of the generalised risk-based (GRB) strategy is normalised as
follows,

zGRBi =
z∗i
1Tz∗

, i = 1 . . . , n. (4.4.6)

In this case the solution exists and is unique.

Alternatively, Jurczenko et al. (2013) show the existence and uniqueness of
the solution by considering the second-order condition of system (4.4.4), i.e.

∂2L(z, λc)

∂z2
= Σ + λcγ



σδ1
z1+γ

1
σδ2
z1+γ

2
...
σδn
z1+γ
n


. (4.4.7)
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We notice that for any value of δ and γ ∈ {0, 2k + 1,+∞}, the solution will
always be attained when the covariance is positively de�nite and k ∈ Z+.
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Chapter 5

Alternative Risk Measures and

Risk Parity

In this chapter, we present other risk parity approaches called tail risk parity
and factor risk parity. The former allocates components based on the downside
risk measure while the latter considers the primitive sources of risk underlying
asset returns.

5.1 Tail Risk Parity (TRP)

This is an asset allocation strategy that reduces drawdowns and allows to
retain a good portion of the upside by giving better diversi�cation of risk
and return sources and protects investment against systemic crisis at a price
signi�cantly lower than the options market. It is a very transparent strategy,
in other words we can implement the strategy with vanilla cash instrument,
regular stocks and bonds. Also, it is robust strategy in a sense that it uses
non-parametric portfolio construction. Similar to risk parity strategies, TRP
is also �exible in a sense that it accommodates a variety of asset classes and
risk appetite.

Alankar et al. (2012) argue that volatility measures normal dispersion of
portfolio returns. It is regarded as a simple measure of risk in terms of compu-
tation. However, it does not consider extreme losses of the portfolio. Further
more, it does not di�erentiate between pro�ts and losses. However, when
volatility of the portfolio is the same as the risk of the TRP, often called
expected tail loss (ETL), then risk parity strategy is equivalent to tail risk
parity.

The idea of TRP is to diversify the portfolio through the use of extreme
losses. The red shaded area in Figure 5.1 illustrates the expected tail loss of
the portfolio given a speci�c con�dence level. The return of JCP, DF, NEM,
and CLF are below a speci�c level of investors preference. For example, one
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Figure 5.1: Expected Tail Loss

may prefer to measure returns below 1% level of con�dence. This distinguishes
between pro�t and losses as losses are de�ned as the negative returns of the
portfolios. Academics believe that this risk is the one investors are not aware
of and cause severe impact on portfolio's performance in the event of �nancial
crisis.

The advantage of the TRP is that it is a forward looking strategy. The
expected return of the portfolio is anticipated prior the worst market scenarios
using the con�dence level as probability. Investors in this case optimize the
portfolio based on level of preference on the expected return and the expected
tail loss. We notice that the expected tail loss (or conditional value at risk) is
a success measure of the value at risk. Thus, we begin by discussing the value
at risk and later continue with expected tail loss.

5.1.1 Value-at-Risk

In this subsection, we highlight brie�y an alternative risk measure called Value
at Risk VaRα(r(z)) for portfolio construction. This measure is the threshold
that determines the possible portfolio losses under con�dence level (known as
probability) for a speci�c time horizon. It answers questions, such as `what
is the most one can lose in an investment over the next trading period with
certain con�dent level α'? In particular, this con�dent level is the probability
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of getting the return, r(z), of the portfolio, below a speci�c benchmark, i.e.,

P(r(z) ≤ −VaRα(r(z)) = α. (5.1.1)

The α value normally ranges between 0.01 and 0.05. These are convenient
measures of level of con�dence used to communicate across board members and
clients. The time horizon is considered one in order to simplify the calculation.
The α-quantile of portfolio's return is given by,

VaRα(r(z)) = inf{` ∈ R|P(r(z) > `) ≤ 1− α}. (5.1.2)

The most appealing with this approach is that it is forward looking (i.e.,
investors are able to anticipate the possible loss of the portfolio for the next
coming day, week, month, or any speci�c trading period). It illustrates the
concern that investors might be facing, such as the loss of portfolio value. This
loss is classi�ed as depreciation of portfolio return.

In general, VaR is a measure of the potential loss of risky portfolio value
over a de�ned period for a given probability known as con�dence level. For
any random portfolio return that is normally distributed with mean r̄(z) and
variance σ2(z), the portfolio value at risk is given by,

VaRα = −(r̄(z) + zα × σ(z))× x, (5.1.3)

where zα is the left-tail of the α percentile of the standard normal distribution1,
σ the volatility (or standard deviation) and x is the value of the portfolio.

Example 5.1. Suppose the investor computed the mean and the standard de-
viation as (r̄(z) = 0.5%, σ(z) = 6%) of the portfolio worth one million rands.
Then the 99% analytical VaR for the next trading day is:

VaRα(r(z)) = −(0.005 + (−2.3263× 0.06))× R1, 000000.00

= R134, 578.00

This tells us that there is 1% chance of losing R134, 578.00 in the next
trading day. There are three designated approaches to determine VaR namely
analytical (also known as Parametric), Non-parametric (historical simulations)
and lastly the Monte Carlo simulations. The distinctions of these methodolo-
gies are illustrated in the lecture notes of the Federal Reserve Bank of Boston
lead by Embrechts et al. (2005).

Like any other risk measure, VaR has pros and cons that arises in practice.
The good side of VaR is that it predicts the future loss of portfolio value under
certain probability by assuming that asset returns are normally distributed.

1The right tail of the distribution is considered the pro�t of the investment
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The main idea of determining the e�cient risk measure is to construct portfolio
allocations strategy that diversify risk through component risk contributions,
such that component with highest risk contributions are given less preference
in weighting than those with less risk contribution.

Artzner et al. (1999) noted that VaR is not a coherent risk measure since
it fails to satisfy some of the properties of coherent measure. In particular,
Sub-additivity does not hold for this measure. Constructing a portfolio based
on this risk measure may lead to a concentration of portfolio risk and when one
is considering maximizing return as the objective of investment, the resulting
portfolio may be riskier. Thus, an alternative downside risk measure which
conform with the objective of risk decomposition is called conditional value-
at-risk (CVaR).

5.2 Conditional Value-at-Risk

This measure diminish the lack of adequacy of VaR and adheres to the prop-
erties of coherent risk measures as de�ned by Artzner et al. (1999). The term
CVaR and Expected Shortfall were named separately in the works of Rock-
afellar et al. (2002) and Clark and Siems (2002), respectively. CVaR can be
decomposed into component risk contributions since it adheres to the prop-
erties of coherent risk measures, see Boudt et al. (2013a). We assume that
component returns of the portfolio are normally distributed. Below we present
in details this risk measure and its application in risk budgeting portfolio.

De�nition 5.2. CVaR is a probabilistic risk measure that provide the expected
risk (often regarded as loss) of the portfolio under con�dence level exceeding
the threshold VaR, de�ned as:

CVaRα(r(z)) = −E[r(z)|r(z) ≤ −VaRα(r(z))], (5.2.1)

where E denote the expectation operator and VaRα(r(z)) is the threshold not
to be exceeded.

Recall that the expected return of the portfolio is given as the sum of
the product of components expected returns, r̄(z), and quantity held on each
component, i.e.,

r̄(z) =
n∑
i=1

zir̄i. (5.2.2)

Boudt et al. (2013a) showed that portfolios constructed using CVaR as risk
measure provide less interest in buying assets that have risk above the VaR.
Optimization of such portfolios without constraints yield similar results of risk
parity portfolio of Bruder and Roncalli (2012).
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The marginal contribution of the ith component is:

MCCV aRi =
∂CVaRα(r(z))

∂zi
. (5.2.3)

This denotes the signi�cant change in CVaR possessed by component i. It can
also be denoted by:

MCCV aRi =
∂
(
−E[r(z)|r(z) ≤ −VaRα(r(z))]

)
∂zi

. (5.2.4)

The component risk contribution to the CVaR as a risk measure is the weighted
marginal contribution given by:

RCCV aRi = zi
∂
(
−E[r(z)|r(z) ≤ −VaRα(r(z))]

)
∂zi

. (5.2.5)

Proposition 5.3. The risk contribution of components in a portfolio can be
expressed as the negative conditional expectation of component returns given
that the returns are lower than a given threshold, i.e

RCCV aRi = −E[ziri|r̄(z) ≤ −VaRα(r(z))], (5.2.6)

where VaRz(α) represents the threshold not to be exceeded given by:

P[zT r ≤ −VaRα(r(z))] = α. (5.2.7)

Proof. The proof follows from Scaillet (2004). Suppose X = −
n∑
j=1

zjrj and

Yi = −ri, i = 1, . . . , n, so that equation (5.2.1) can be written as:

CVaR = E[X + ziYi|X + ziYi ≤ −VaRα(r(z))]. (5.2.8)

The results in equation (5.2.6) is a direct consequence of the following
Lemma.

Lemma 5.4. If (X, Y ) represents a pair of vectors, and

CVaRα(ε) = E[X + εY |X + εY ≤ −VaRα(ε)], (5.2.9)

is the conditional expectation of the portfolio where α-quantile is given by:

P[X + εY ≤ −VaRα(ε)] = α, (5.2.10)

then the marginal contribution of component i to the portfolio risk is:

∂CVaRα(ε)

∂ε
= E[Y |X + εY ≤ −VaRα(ε)]. (5.2.11)
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Proof. We consider a pair of vectors (X, Y ) and set the function f(x, y) to be
the probability density function. Now, the conditional expectation of portfolio
return given that a particular threshold has been exceeded (i.e. VaRα(ε)) is:

E[X + εY |X + εY ≤ −VaRα(ε)] =
E[X + εY ]∆X+εY≤Q(ε,α)

α

=
1

α

∫ [∫ Q(ε,α)−εY

−∞
(x+ εy)f(x, y)dx

]
dy,

where ∆X+εY≤Q(ε,α) is an indicator. It provides the value of asset negative
returns when a given threshold is exceeded, otherwise it gives zero. Recall
that the objective of CVaR is to concentrate on the negative return because
they are the ones considered undesirable thing. Taking the derivative of the
above equation with respect to ε yields:

1

α

∫ [∫ Q(ε,α)−εY

−∞
yf(x, y)dx+ Q(ε, α)f(Q(ε, α)− εy, y)

(
∂Q(ε, α)

∂ε
− y
)]

dy.

Thus, the percentage contribution of component i is:

%RCCV aRi =
RCCV aRi

CVaRα(z)

=
E[ziri|r̄(z) ≤ −VaRα(z)]

E[r̄(z)|r̄(z) ≤ −VaRα(z)]
, (5.2.12)

where [ziri|r̄(z) ≤ −VaRα(z)] denotes an absolute CVaR contribution of a
component i, see Boudt et al. (2013a). Market practitioners and academic
researchers have already noted that the risk of the portfolio is dominated by
one market regime, usually stock/equity market, see Levell et al. (2010) and
Bhansali et al. (2012). We de�ne below the largest component condition value
at risk concentration in a portfolio as:

Cz(α) = max
i=1,...,n

RCCV aRi . (5.2.13)

One can think of this component as the one with the highest negative return
in a universe. For the ERC strategy, such component is restricted to identical
amount of risk contribution of the remaining assets.

5.2.1 Optimization with CVaR

Resuming from the assumption of investors rationality, the optimum portfolio
using CVaR incorporate expected return. The investor's objective in this case
is a function of three components, namely, the maximum expected return, min-
imum CVaR and maximum diversi�cation of the downside risk concentration.
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Boudt et al. (2013a) introduced two strategies of optimization such function,
namely, the minimum conditional value at risk concentration (MCC) and the
percentage constraint contribution (PCC) based portfolios.

The objective function of the MCC strategy is to maximize diversi�cation
of the downside risk concentration. Thus, the problem can be de�ned as:

zMCC = arg min
z∈Rn

Cz(α) (5.2.14)

such that

zT1 = 1.

Portfolios optimized using this strategy yield a balance between the downside
risk diversi�cation and the minimum CVaR. Embedding portfolio targeted
return into this strategy, the optimization problem becomes:

z = arg min
z∈Rn

Cz(α) (5.2.15)

such that, {
zT1 = 1
µTz ≥ a.

This strategy is often referred to as the mean-CVaR because it yields an e�-
cient frontier for various target of returns and risks.

The ERC based on the CVaR constrain the percentage contributions of
components often known as risk budgets in the work of Bruder and Roncalli
(2012). It has a special property which requires all the component risk contri-
butions to be equal, i.e.,

%RCCV aR1 = %RCCV aR2 = · · · = %RCCV aRn . (5.2.16)

Thus, the relative weights of such portfolio components are inversely propor-
tional, i.e.,

zi
zj

=
∂CVaR/∂zj
∂CVaR/∂zi

. (5.2.17)

However, the fact that ERC does not incorporate expected return in the port-
folio composition, leads to the MCC strategy given more consideration in prac-
tise, Boudt et al. (2013b).
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5.2.2 Findings of CVaR Portfolios

Based on the US bond, S&P 500, NAREIT and GSCI asset class index, Boudt
et al. (2013b) analysed the minimum CVaR, MCC, ERC and EW portfolios
over the period January 1984 to June 2010. The minimum CVaR portfolio
allocates asset risk contributions e�ciently to the total risk of the portfolio.
However, in the absence of budgetary constrain, risk of components still seem
to be concentrated on other asset classes which yield high portfolio turnover.
Compared to ERC, minimum CVaR yield exceptional results. ERC portfo-
lio provides a portfolio with lowest risk concentration of assets and lowest
turnover, but it su�ers from the highest total risk.

Unlike ERC portfolio of Qian (2013b), the MCC portfolio allows investors
to include more investment objectives and constraints. In terms of turnover,
MCC is lower than minimum CVaR. It provides a balance between the overall
risk of the portfolio, expected return and high diversi�cation with low portfolio
turnover. The incorporation of expected return in portfolio optimization as
objective or constraint serve a good advantage to this approach.

In their empirical results, Boudt et al. (2013a) showed that EW and 60/40
portfolios fail to produce diversi�ed portfolio using ex-ante. The new strategy
MCC that incorporates both the downside risk diversi�cation and low CVaR
portfolio, provides the largest CVaR diversi�cation, with the total portfolio
CVaR signi�cantly higher than that of minimum CVaR portfolio, but the
returns are superior than other strategies.

Based on di�erent market regime and sampling data, minimum CVaR port-
folio performed well during the bear market, but su�ers good side of return
during normal or bull market. Its performance is less a�ected when market
switch to more negative observation (i.e., when markets are declining). Thus,
the minimum CVaR is recommended in the bear market and MCC in a normal
or bull market.

5.2.3 Minimum CVaR versus other µ−Free Strategies
In this subsection, we compare the minimum CVaR strategy with other risk-
based strategies using data collected from �nance.yahoo website. This com-
prises MSCI index from eight countries denoted by the following tickers over
the period April 2003 to August 2014: EWA, EWJ, EWY, EWG, EWW, EFA,
EEM and EWZ. Table (5.1) depicts the summary statistics of these strategies
performance. We �nd that the volatility of the minimum CVaR (MCVaR)
portfolio is signi�cantly higher than the global minimum variance portfolio
(GMV). Also, the cumulative performance of a portfolio has been consistently
outperforming the GMV portfolio until the beginning of 2011 and since then,
the result has been favourable for GMV, see Figure (5.2).
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Table 5.1: Performance Statistics of the µ-free Strategies vs MCVaR

Strategies
EW IV ERC MD GMV MCVaR

r̄(z) 8.96 8.06 8.06 7.51 2.91 20.21
σ(z) 26.31 25.28 25.22 24.8 20.96 21.57
CVaR -3.98 -3.84 -3.82 -3.72 -3.13 -3.21
DR(z) 0.32 0.28 0.28 0.23 0 0
Sharpe 0.46 0.43 0.43 0.42 0.24 0.21

Figure 5.2: Comparison of Minimum CVaR and other µ−Free Portfolios

5.3 Factor Risk Parity

Contrary to the previous analysis of portfolio's strategies based on asset classes,
we present in this section, risk parity approach which seeks diversi�cation
based on the primitive sources of risk underlying the asset returns. Bhansali
et al. (2012) show through example that risk parity portfolio designed using
asset classes is not truly diversi�ed.

In practice, there are three types of factor models. The �rst one is the
macroeconomic factor model in which factors are observed from the macro-
�nancial variables. The second one is the fundamental factor model where
factors are created from observed asset characteristics. Lastly, we have sta-
tistical factor model which assumes that factors are unobservable and can be
determined from the asset returns. These approaches provide better explana-
tion of asset returns that is distinguishable from other asset return models. In
addition, they provide intense analysis of risks of the returns.

We study the improved risk parity strategy that seeks to equalize factors
instead of asset class risk contributions and hence the name factor risk par-
ity. Many articles have been published and most intend to address the short-
comings of original risk parity strategy; see Roncalli and Weisang (2012) and
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Bhansali et al. (2012). The believe is that there is an overlap of correlations
amongst asset classes which exhibit poor diversi�cation of strategies. Benson
et al. (2012) show that during the time of �nancial crisis, correlations increases
signi�cantly. Thus, risk parity portfolio may not sound diversi�ed if assets in
a portfolio are dominated by equity-like assets class which leads the portfolio
risk still dominated by the growth market.

The promising diversi�cation of strategies is through factor models. Factors
are the fundamental building blocks that make up asset classes, for instance,
equity asset class may constitute US equity, Non-US equity, and bond class
may constitute US government bond, SA government bond and so on. These
constituents are called factors. To understand more of factors, we recommend
an example given by Bhansali et al. (2012) where asset classes were considered
foods and factors were considered nutrients. It states that `Although the body
needs food, it actually needs nutrients to build strong bones and muscles'.
Thus, it is more important to consume nutritious food than just a basket full
of food. The believe is that portfolios constructed based on factors yield a
more diversi�ed and e�cient portfolio than asset class portfolios.

Factor risk parity strategy mimics the ordinary risk parity portfolio con-
struction2. Instead of diversifying portfolio risk based on asset class risk con-
tributions, we use factor risk contributions. It has been shown that careless
selection of asset classes may still lead to the entire portfolio risk dominated
by unique risk of market regime; see Bhansali et al. (2012) and Podkaminer
(2013). In addition, the existence of convertible assets fuel this problem. There
are a variety of risk factors in the investment environment and example are
growth, in�ation, liquidity, volatility and momentum.

Example 5.5. Consider the dominant risk factors, namely growth and in�a-
tion as the drivers of asset returns, then the portfolio return is given by:

rp(Z) = Zere + Zbrb + E, (5.3.1)

where Ze and Zb are the weights associated with growth and in�ation risk
factor, respectively. The term E is the residual and re and rb are the returns
of the respective risk factors. The risk of the portfolio is then given by:

σfp (Z) =
√
σ2
e
Z2
e

+ σ2
b
Z2
b

+ 2ρebσeσbZeZb + σ2
E
. (5.3.2)

5.3.1 Framework of Factor Based Risk Parity

In constructing the framework of factor risk parity, we consider approaches
of Zivot (2011), Roncalli and Weisang (2012) and Peeters (2013). We con-
sider a portfolio of n-assets, i.e., {a1, . . . , an} and assume that their varia-
tions are explained by K-observable macroeconomic factors denoted by the

2Asset class based risk parity portfolio.
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set {f1, . . . , fK} which are independent and identically distributed (i.i.d.) with
mean r̄f and variance σ2

f . The general factor model for asset returns is given
as follows:

r = ā + Bft +Dσεt, (5.3.3)

which shows that asset returns are dependent on factors. In a matrix form,
we have:
r1t

r2t
...
rnt

 =


ā1

ā2
...
ān

+


b11 b12 · · · b1K

b21 b22 · · · b2K
...

...
. . .

...
bn1 bn2 · · · bnK



f1t

f2t
...
fKt

+


σ1 0 · · · 0
0 σ2 · · · 0
...

... · · · ...
0 0 · · · σn



ε1t

ε2t
...
εnt

 .

This implies that the return of the ith asset is given by the following linearly
equation:

rit = āi +
K∑
k=1

bkifkt + σiεit i = 1, . . . , n, (5.3.4)

where āi is a constant of the i
th asset (often set to zero), bki is the factor loading

to the ith and εi denotes the error term at time t, see Roncalli and Weisang
(2012) and Bhansali et al. (2012). Because the error terms are uncorrelated,
their covariance is given as follows:

σεitεjs =

{
σi if i = j and t = s
0 otherwise.

(5.3.5)

Also, the covariance of a speci�c error term with risk factors is zero. That is,

σfk,εit = 0, (5.3.6)

and this is because the asset returns in a linear factor model are explained by
the risk of factors and risk not coming from factors (often called idiosyncratic
risk of assets). This means that factors do not span the entire risk of the
portfolio. The covariance matrix of factor-based portfolio return is:

Σt = BTSB +Dσ, (5.3.7)

where S denotes the K×K covariance matrix of factor returns. We de�ne the
variance of the ith asset as follows:

σ2
it = BT

i SBi + σ2
i , i = 1, . . . , n. (5.3.8)
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Also, the covariance and correlation between assets in the factor-based strate-
gies are:

σij,t = BT
i SBj, (5.3.9)

ρij,t =
σij,t

(σ2
itσ

2
jt)

1
2

, i, j = 1, . . . , n. (5.3.10)

respectively. Multiplying equation (5.3.3) from the left by a transpose vector
of component weights z, we have:

zT r = zT āt + zTBft + zTDσε. (5.3.11)

Setting αt = zT āt, βt = zTB and ςt = zTDσ, we can write, respectively, the
return and variance of the linear factor model as:

r(z) = αt + βtft + ςtεt, (5.3.12)

σ2
t = βTSβ + σ2

εt . (5.3.13)

Note that σ2
εt = zTDσz. Peeters (2013) and Zivot (2011) combined the two

covariance matrices by �rst assuming that εt
i.i.d.∼ N (0, σ2

εt). Thus, the factor
model return is:

r(z) = αt +

(
βTt
σε

)T (
ft
et

)
= αt + γT

(
ft
et

)
, (5.3.14)

where et =
εt
σε

i.i.d.∼ N (0, 1) and the expression of the covariance matrix is:

Π =


s11 s12 · · · s1k 0
s21 s22 · · · s2k 0
...

...
. . .

...
...

sk1 sk2 · · · skk 0
0 0 · · · 0 1

 . (5.3.15)

Therefore the volatility of the portfolio under linear factor model is given by:

σ(γ) =
√
γTΠγ. (5.3.16)

5.3.2 Risk Decomposition of Factor-Based Risk Parity

From relation (5.3.16), it is clear that the homogeneity property of coherent
risk measures is achieved. Thus, we mimic the ERC of asset classes in de�ning
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Figure 5.3: Backtesting of Factor-Based, Traditional Risk Parity and 60/40
Strategy. Source: JPMorgan Asset

the marginal and risk contribution of factors. Using Theorem (2.6), we denote
factor-based portfolio volatility as follows:

σ(γ) = γ1
∂σ(γ)

∂γ1

+ γ2
∂σ(γ)

∂γ2

+ · · ·+ γk+1
∂σ(γ)

∂γk+1

= β1
∂σ(γ)

∂β1

+ β2
∂σ(γ)

∂β2

+ · · ·+ βk
∂σ(γ)

∂βk
+ σε

∂σ(γ)

∂σε
. (5.3.17)

The marginal contribution,MCfi,t, of the ith asset is denoted as:

MCfi,t =
∂σ(γ)

∂γi,t
, (5.3.18)

and the risk contribution, RCfi (γ), as:

RCfi (γ) = γi
∂σ(γ)

∂γi
. (5.3.19)

Figure (5.3) illustrates the performance of factor based risk parity (long only
and long-short) against the traditional risk parity and the 60/40 asset alloca-
tion strategies. It is clear that the factor-based risk parity strategies performed
well over the period 2001 until 2012 with the long-only factor risk parity dom-
inating the performance. Moreover, factor-based risk parity, whether long or
short, performs better than the traditional risk parity as well as 60/40 strategy.

5.3.3 Draw-Backs of Factor Risk Parity

Although factor-based risk parity seems well constructed in terms of managing
diversi�cation of portfolios, there are still drawbacks related to this approach.
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Podkaminer (2013) highlighted some of these drawbacks which include imple-
mentation of factors for portfolio construction. The main challenge is that
there is no natural way to invest in many factors directly. Furthermore, the
weight allocation of factors and forward looking assumptions are di�cult to
determine.
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Chapter 6

Rebalancing, Transaction Cost

and Leverage

As noted by Lussier (2013), asset allocation is a process in which participants
in the investment industry keep track of the evolution of markets, and bet
according to their liability requirements, return objectives, risk tolerance and
some taxation. A well performing investment strategy consists of a periodical
rebalancing which is subjected to the transaction cost. Investors implementing
rebalancing methodology in their portfolio compositions believe that rebalanc-
ing is a source of some added value. In this chapter, we discuss the implemen-
tation of rebalancing portfolios, their corresponding transaction cost and one
of the `trendiest' problem in the risk-based asset allocation called leverage.

6.1 Portfolio Rebalancing

Portfolio rebalancing in an investment world is the action of rede�ning the
weights of the portfolio such that its performance is equivalent to the corre-
sponding benchmark portfolio. Although this technique diminish signi�cantly
the total risk of the portfolio, it is often exposed to transaction costs.

6.1.1 Portfolio's Trading Cost

Although risk parity strategy mitigates detrimental behavioural tendency of
the traditional asset allocation, it can be improved by incorporating the re-
balancing penalties. That is, the cost of buying or selling of assets in order
to rebalance the portfolio and avoid turnover, see Darolles et al. (2012). The
impact of transaction cost leads to a substantial drag on the performance of
strategies.

In order to trace the cost of rebalancing portfolios, we consider the nota-
tions of Anderson et al. (2012) in which components of the portfolio are de�ned

88
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as functions of time. Investors in this case specify the waiting period for the
next rebalancing day, say h. We denote by zt−1 ∈ Rn, the portfolio before
rebalancing, and by zt ∈ Rn, the portfolio at the rebalancing date. Volatil-
ity of a component in this case is a function of the trailing returns over the
waiting period and is de�ned as in equation (1.1.6). The covariance matrix of
components is given as:

Σt =


σ2

(1),t σ(1,2),t · · · σ(1,n),t

σ(2,1),t σ2
(2),t · · · σ(2,n),t

...
...

. . .
...

σ(n,1),t σ(n,2),t · · · σ2
(n),t

 , (6.1.1)

where σ(i,j),t is the covariance between asset i and j in a portfolio at time t.

The cost of rebalancing the portfolio is de�ned as:

kt

n∑
i=1

zt−1,i ln

(
zt−1,i

zt,i

)
, (6.1.2)

where kt ∈ R+ is the dynamic trading cost of reallocating component zt−1,i to
zt,i in a portfolio. In practice, the cost of rebalancing a portfolio changes over
time due to the dynamics of security prices. In the event where borrowing
is prohibited, expression (6.1.2) exhibits that portfolio or asset rebalancing
is directly proportional to its ratio of security weights. In �nance, we have a
variety of trading penalties (or cost). We have commission which is the amount
charged for making trading, the bid or ask spread which is the di�erent in prices
for buying an asset and immediately sell it, and the last one is market impact
which is the cost of trading multiple stocks.

For the case where the investor is willing to minimize the risk of the port-
folio, the objective function of the portfolio embroiling trading cost becomes:

z∗ = argmin
z∈R

σ(zt) + γkt

n∑
i=1

zt−1,i ln

(
zt−1,i

zt,i

) . (6.1.3)

Taking the �rst order derivative of the above equation with respect to zt,i, we
have:

∂σ(zt)

∂zt,i
+ λktzt−1,i

(
−zt−1,i

z2
t,i

× 1
zt−1,i

zt,i

)
= 0,

which implies that:

∂σ(zt)

∂zt,i
=
λktzt−1,i

zt,i
.
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Thus,

zt,i
∂σ(zt)

∂zt,i
= γktzt−1,i,

indicating that the risk contribution of the ith component at time t is propor-
tional to the preceding allocation. Darolles et al. (2012) showed that for small
adjustment of portfolio reallocation, this trading cost is inversely proportional
to the preceding allocation.

Expanding equation (6.1.2), we have:

kt

n∑
i=1

zt−1,i ln

(
zt−1,i

zt,i

)
= −kt

n∑
i=1

zt−1,i ln

(
1 +

zt,i − zt−1,i

zt−1,i

)
. (6.1.4)

Setting x =
zt,i − zt−1,i

zt−1,i

, we have:

ln

(
1 +

zt,i − zt−1,i

zt−1,i

)
= ln(1 + x).

We know from Taylor's series that the expansion of the above function around
point zero gives the following:

ln(1 + x) =
∞∑
i=1

(−1)1+ix
i

i
∀ |x| < 1.

Thus, omitting the higher order terms and substituting the above expansion
into equation (6.1.4), yields the following:

kt

n∑
i=1

zt−1,i ln

(
zt−1,i

zt,i

)
≈ −kt

n∑
i=1

zt−1,i

(
x− x2

2

)

= −kt
n∑
i=1

zt−1,i

zt,i − zt−1,i

zt−1,i

−
(
zt,i − zt−1,i

)2

2z2
t−1,i

 .

Applying full budget constraint to the above equation, yields the following:

−kt
n∑
i=1

zt−1,i

zt,i − zt−1,i

zt−1,i

−
(
zt,i − zt−1,i

)2

2z2
t−1,i

 =
kt
2

n∑
i=1

(zt,i − zt−1,i)
2

zt−1,i

.

(6.1.5)

Usually, equities are the ones dominating in terms of risk and thus are given
low weight as to diversify the portfolio risk. From equation (6.1.5), we notice

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. REBALANCING, TRANSACTION COST AND LEVERAGE 91

that assets with small (large) amount of weights will be more (less) expensive
in terms of trading costs.

Goldberg and Mahmoud (2013) compared several strategies including min-
imum variance, risk parity, beta, traditional 60/40, and equal weighted based
on portfolio turnover. The authors �nd that on average, minimum variance
strategy dominated all other strategies in terms of portfolio turnover, followed
by low beta (ERC), and then risk parity strategy. However, the rise of turnover
seems to be more reliant on market regimes. This is because the demands of
rebalancing is highly experienced during the bear markets than bull markets.

6.2 Leverage and Inverse-Volatility Portfolio

In this subsection, we discuss the use of leverage in the risk parity strategies,
particularly, for the Inverse-Volatility (IV) strategy. Practitioners using risk
parity strategies often use leverage to enhance desired risk of their respective
benchmark portfolio1. Sebastian (2012) argued that risk parity provides lower
return and risk than any of these benchmark portfolios, and thus could be
levered to match the respective benchmark portfolio risk.

Since component weights of the IV portfolio are inversely proportional to
their respective volatilities, for the time dependent variables, these weights are
given as follows:

zi,t =
σ−1
i,t∑n

j=1 σ
−1
j,t

, i = 1, 2, . . . , n. (6.2.1)

The subscript t represents the time a particular measure is taken. The question
is `how to leverage risk parity given its benchmark portfolio?' Levered portfolio
refers to a combination of risky assets and money in the bank (i.e., cash, either
borrowed or lent). The weights of unlevered risk parity portfolio are multiplied
by the leverage ratio, a constant term that controls leverage as de�ned by
Asness et al. (2012) from equation (6.2.1) as follows:

Lt =
1∑n

j=1 σ
−1
j,t

. (6.2.2)

When leverage is not applied, this term is identical for all components. For
the levered RP portfolio, this leverage term is set to a constant which Ander-
son et al. (2012) de�ne as the ratio between the volatility of the benchmark
portfolio to the volatility of unlevered risk parity. That is,

Lt =
σB,t
σIV,t

, (6.2.3)

1This could be value-weighted market such as 60/40 or the mean variance portfolio with
target risk/return.
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where σB,t and σIV,t, respectively, are the volatilities of the benchmark and
the Inverse Volatility portfolio (or unlevered risk parity) at time t. Levering a
portfolio simply means that one borrow or lends money at risk free rate and
invest in a speci�c asset class in order to enhance desired expected return.
The common class where leverage is applied is �xed-income asset, such as gov-
ernment bonds, particularly treasury bond. Applying leverage on risk parity
portfolio, we multiply the weights of the assets in a unlevered portfolio by the
leverage ratio. Thus, the levered portfolio is then given by

zLi,t = Ltzi,t i = 1, . . . , n, (6.2.4)

where zi,t is the weight of the ith component in a unlevered portfolio. This
means that if the volatility of the IV portfolio is lower than a speci�c bench-
mark portfolio, then we determine the leverage ratio and multiply it to each
and every component.

To illustrate the levered IV strategy, we consider a numerical example for
a universe of two asset classes (i.e., CRSP stock and bond) depicted in Table
6.1 with monthly returns over the period 1926-2010. Stock has a volatility of
5.42% and is allocated 14.91% while the bond with volatility 0.95% is allocated
85.09%. It is clear that the higher (or lower) the volatility of the component,
the lower (or higher) is the allocation. The most interesting aspect about the
IV strategy is that all components in the investment universe contribute to
the performance of the portfolio. This re�ects better diversi�cation, unlike
the long-only GMV and MD strategies which often have little or no exposure
to some components in their optimization solutions.

Levering IV, we get a portfolio with expected return signi�cantly higher
than both IV and its respective benchmark portfolio (i.e. 60/40), exhibit in
Table 6.1.

Table 6.1: Leverage Inverse Volatility vs. 60/40 Portfolio

Summary Statistics Strategies
Assets r̄i σi ρ IV 60/40 Levered IV

CRSP Stock 0.91% 5.42%
10.80%

14.91% 60% 41.07%
CRSP Bond 0.42% 0.95% 85.09% 40% 234.59%
Volatility 1.20% 3.31% 3.31%

Expected return 0.50% 0.72% 1.37%
Leverage ratio 2.76

The return of risk parity in this case is given by:

rRPt =
n∑
i=1

zi,tri,t. (6.2.5)
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Figure 6.1: Levered vs. Unlevered Risk Parity Portfolio over the Period (1926-
2010): Source: Anderson et al. (2012).

However, for the levered risk parity portfolio, the return is given by,

rL,t = zTt rt + 1
T (zL

t − zt)(r− rb,t), (6.2.6)

where z∗t ∈ Rn is vector of risk parity weights with leverage ratio applied on
each and every component at time t. The rate of borrowed assets at time t is
denoted by rb,t. The second term in the above equation is the one that provide
additional return on risk parity approach and can be considered leverage term.
Levered risk parity will resemble unlevered risk parity if zL

t = zt or r = rb,t.
Thus, the excess return of the levered risk parity is given by:

reL,t = rL,t − r0. (6.2.7)

Figure 6.1 illustrates the performance of levered risk parity against value
weighted, unlevered risk parity and 60/40 strategies. Levered risk parity in
this case outperformed other three strategies on several occasions. However,
Anderson et al. (2012) showed that period of backtesting has a signi�cant
impact on the results exhibited in this �gure. They divided the period of
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backtesting into four and analyse each subdivision. The authors conclude
that for the periods (1926-1945, 2001-2010), levered risk parity performed ex-
ceptionally well. 60/40 and the value weighted strategies only outperformed
during the (1946-1982), and all strategies showed consistence growth during
the period (1983-2000) except for unlevered risk parity.

Naranjo (2009) discussed the importance of leverage in a portfolio and
indicated that during the demand of frequent rebalancing, �xed-income asset
is no longer the best asset to consider as it requires long-term investment. It
follows that investment in bond is risky because the longer it takes to the
expiration, the higher the chances of government to fail to repay the bond. An
alternatives to the �xed income asset in this case are derivative instruments
such as option futures, and any other short term traded contracts.

6.2.1 Levered Portfolio and Lower Risk

To determine the condition under which levered portfolio obtains signi�cant
risk, we consider two portfolios, levered and unlevered. These portfolios consist
of two asset classes, say bond and equity as in Ruban and Melas (2010). Since
leverage is applied at a speci�c time period, we denote elements that build these
portfolios as function of time. We denote by σ2

L,t(z) and σ2
u,t(z), respectively,

the variance of the levered and unlevered portfolios. Asset class weights at
time t are zb,t for the bond and ze,t for equity. Now the variance of each of the
two portfolios is:

σ2
L,t(zt) = L2

t z
2
b,tσ

2
b,t + z2

e,tσ
2
e,t + 2Ltρtze,tzb,tσ

2
e,tσ

2
b,t (6.2.8)

σ2
u,t(zt) = z2

b,tσ
2
b,t + z2

e,tσ
2
e,t + 2ρtze,tzb,tσ

2
e,tσ

2
b,t, (6.2.9)

where zt is the vector of weights at time t. Since we expect the levered portfolio
to exhibit lower risk than unlevered portfolio, we have the following condition:

σ2
L,t(zt) < σ2

u,t(zt). (6.2.10)

Substituting equations (6.2.8) and (6.2.9) in the above equation, yields:

L2
t z

2
b,tσ

2
b,t + z2

e,tσ
2
e,t + 2Ltρtze,tzb,tσ

2
e,tσ

2
b,t − (z2

b,tσ
2
b,t + z2

e,tσ
2
e,t + 2ρtze,tzb,tσ

2
e,tσ

2
b,t) < 0

which implies that

(L2
t − 1)z2

b,tσ
2
b,t + 2(Lt − 1)ρtzb,tze,tσb,tσe,t < 0. (6.2.11)

After performing some algebra, we have:

(Lt + 1)zb,tσb,t + 2ρtze,tσe,t < 0. (6.2.12)

Rearranging, we �nd that:

ρt < −
1

2
(Lt + 1)

zb,t
ze,t

σb,t
σe,t

. (6.2.13)
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Thus, levered portfolio provides lower volatility whenever the above condition
is met. Although the introduction of leverage in a portfolio is to reduce risk
while achieving desired portfolio return, this technique has limitation. Se-
bastian (2012) studied the bene�ts of leverage in a portfolio and argued that
until a certain point of risk-return tradeo� of the traditional e�cient frontier
is exceeded, the bene�ts of levered portfolio will always be zero. Hence it is
so apparent that the bene�ts of leverage will only be accumulated when the
investors operate in high risk levels.

6.3 Diversi�ed Fund Strategies

Diversi�cation of fund strategies originates from the Markowitz (1952) mean-
variance strategy. The author suggests that investors should hold a variety
of asset classes in their portfolios; see Chapter 1. Tobin (1958) deployed this
theory and incorporates risk-free asset which lead to separation theorem. The
optimal portfolio is then a combination of the risk-free asset and the e�cient
portfolio and is called the tangent portfolio. Since investors have di�erent
appetite of risk, their allocation will also be di�erent. Bruder and Roncalli
(2012) classi�ed risk tolerance of fund investors into three categories. These
are conservative (low risk tolerance), moderate (medium risk tolerance) and
aggressive (risk lover); see Figure 6.2a.

Figure 6.2: Diversi�cation of Modern Portfolio Constructions

(a) Illustration of Investors Risk Pro�le (b) Diversi�ed Fund Strategies

The conservative investor may allocates 20% of his wealth in the risky assets
and 80% in the risk-free asset. On the other hand, the moderate and aggressive
investors allocate the same amount of wealth to the risky portfolio and risk-free
asset. However, the latter deploys leverage technique in his portfolio to have
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high risk pro�le. Bruder and Roncalli (2012) named the portfolios allocated in
these manners the diversi�ed fund strategies, well know as `lifestyle portfolios'.
The conservative, moderate and aggressive investor's portfolio, respectively,
corresponds to the defensive, balanced and dynamic fund strategies; see Figure
6.2b.

While these funds allocation strategies are well established in terms of in-
vestors risk tolerance, they are not well diversi�ed in practice. Roncalli (2013)
simulated these strategies based on their risk contributions and observed that
defensive and balanced strategies are not stable. The risk of the dynamic
strategy is almost explained by the equity market. It follows that risk man-
agement of fund investment is di�cult due to the fact that there is no simple
relationship between the investor's risk tolerance and the risk of the diversi�ed
fund.

Alternatively, the risk parity portfolios provide a balance allocation of as-
sets through the risk contributions. However, this strategy also faces some
drawbacks. By de�nition, it overweights low-volatile components, particu-
larly, the �xed-income asset. This allocation provides low return and risk of
the portfolio which push investors to deploy leverage technique. Also, Ron-
calli (2013) argue that this approach involves practitioners that are in the asset
management industry.

As Qian (2013a) noted, risk parity portfolio is well diversi�ed in terms
of risk. Practitioners implementing this strategy incorporate large number of
components2. They use strategic asset allocation (SAA), i.e., a technique that
involves the selection of asset classes for the long-term investment.

2Example is the Korea Investment Corporation (KIC)
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Chapter 7

An Empirical Study of Risk-Based

Strategies

In this Chapter, we conduct a statistical analysis of the risk-based strategies
discussed in Chapter 2. In order to do a comparison, we consider the long-only
constrain case.

7.1 Toy Example

We consider a simple universe of �ve components, z = {z1, . . . , z5}, where
the input parameters of these strategies are volatilities and correlations of
components, given in each part of the tables, 7.1 and 7.2, below. We provide
in every strategy of each part the individual weights, the volatility, the risk
contributions, and the diversi�cation ratio; see Subsection 2.3.3.

Part A of Table 7.1 considers identical volatilities and equal pair-wise corre-
lations of components. The results of these strategies are identical. However,
part B exhibits di�erent results after considering di�erent volatilities of the
components. ERC, IV and MD portfolios exhibit the same diversi�cation ra-
tios. Also, the composition of the portfolios are almost the same exhibiting
identical volatilities as well as the Sharpe ratio. The MD and GMV strategies
have little or no exposure to the highly volatile components. Furthermore, the
GMV portfolio exhibits lower volatility and diversi�cation ratio compared to
other risk-based strategies.

We notice that for the cases of equal volatilities and di�erent pair-wise
correlations, the MD and GMV strategies exhibit the same results. Also the
IV and EW strategies have the same results; see part C of Table 7.2. However,
for the cases of di�erent pair-wise correlations and volatilities, the GMV and
MD strategies still short some components and they have large exposure in low-
volatile components. Obviously, the EW strategy is exhibiting high risk in all
cases where inputs are not all the same though the allocation is consistent.
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CHAPTER 7. AN EMPIRICAL STUDY OF RISK-BASED STRATEGIES 100

7.2 Analysis of Risk-Based Strategies with

Real Data

The second analysis uses two datasets taken from the yahoo.�nance website.
The �rst dataset, Dataset1, is a universe of the following tickers: SPY, MDY,
IWM, EFA, VEIEX, VWEHX, VFSUX and TLT over the period July 2002 to
August 2014. In Table 7.3, we provide a descriptive statistics of these tickers.
Note that VFSUX is the only component exhibiting low-volatility during this
period.

Table 7.3: Descriptive Statistics for Dataset1

Assets
SPY MDY IWM EFA VEIEX VWEHX VFSUX TLT

Mean (%) 0.77 1.00 1.00 0.78 1.29 0.65 0.29 0.64
Std. Error 0.0035 0.0041 0.0046 0.0044 0.0056 0.0020 0.0006 0.0032
Median 0.0127 0.0144 0.0169 0.012 0.0109 0.0088 0.0037 0.0075

Std. Dev (%) 4.21 4.93 5.56 5.29 6.68 2.45 0.71 3.88
Sample Variance (%) 0.18 0.24 0.31 0.28 0.45 0.06 0.00 0.15

Kurtosis 1.93 2.66 1.20 1.73 2.02 13.62 9.64 2.60
Skewness -0.7890 -0.7375 -0.5066 -0.7185 -0.6400 -1.8296 -1.3569 0.3891
Range 27.45 36.32 36.34 34.04 45.83 23.98 6.27 27.41

Minimum (%) -16,52 -21.55 -20.96 -20.83 -27.67 -15.50 -3.46 -13.07
Maximum (%) 10.92 14.78 15.39 13.21 18.16 8.49 2.82 14.34

Sum 1.1230 1.4529 1.4437 1.1348 1.8759 0.9464 0.4204 0.9316
Count 145 145 145 145 145 145 145 145

Table 7.4 depicts the correlation matrix of these component arithmetic
returns, with TLT exhibiting negative correlation with almost all the compo-
nents in a universe except VFSUX. The pair-wise correlations of components
range from −0.3566 to 0.9660. Their corresponding covariance matrix is given
in Table 7.5 and we notice that this matrix is not positively de�nite.

Table 7.4: Correlation Matrix of Monthly Asset Returns

Assets SPY MDY IWM EFA VEIEX VWEHX VFSUX TLT
SPY 1
MDY 0.9403 1
IWM 0.9125 0.9660 1
EFA 0.8978 0.8560 0.8193 1

VEIEX 0.8120 0.8136 0.7673 0.8854 1
VWEHX 0.6594 0.6903 0.6285 0.6736 0.6643 1
VFSUX 0.3192 0.3349 0.2420 0.4130 0.4326 0.6869 1
TLT -0.3214 -0.3362 -0.3566 -0.2212 -0.2506 -0.1288 0.1155 1
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Table 7.5: Covariance Matrix of Monthly Asset Returns

Assets SPY MDY IWM EFA VEIEX VWEHX VFSUX TLT
SPY 0.00176 0.00194 0.00212 0.00199 0.00277 0.00068 0.00009 -0.00052
MDY 0.00194 0.00241 0.00263 0.00222 0.00266 0.00083 0.00012 -0.00064
IWM 0.00212 0.00263 0.00307 0.00239 0.00283 0.00085 0.00009 -0.00076
EFA 0.00199 0.00222 0.00239 0.00278 0.00311 0.00087 0.00015 -0.00045

VEIEX 0.00227 0.00266 0.00283 0.00311 0.00444 0.00108 0.00020 -0.00065
VWEHX 0.00068 0.00083 0.00085 0.00087 0.00108 0.00060 0.00012 -0.00012
VFSUX 0.00009 0.00012 0.00009 0.00015 0.00020 0.00012 0.00005 0.00003
TLT -0.00052 -0.00064 -0.00076 -0.00045 -0.00065 -0.00012 0.00003 0.00149

Table 7.6: Statistical Analysis of Risk-Based Strategies for Dataset1

Strategies
Assets GMV ERC MD IV EW
SPY 0% 6.26% 1.93% 7.80% 12.5%
MDY 0% 5.32% 0% 6.67% 12.5%
IWM 0% 5.12% 16.80% 5.91% 12.5%
EFA 0% 4.67% 0% 6.21% 12.5%

VEIEX 0% 3.90% 2.36% 4.92% 12.5%
VWEHX 0% 10.55% 0% 13.40% 12.5%
VFSUX 98.79% 43.68% 49.04% 46.62% 12.5%
TLT 1.21% 20.50% 29.87% 8.47% 12.5%

zTσ 0.74 2.68 2.68 2.63 4.21
DR(z) 1.06 1.68 1.84 1.38 1.28
σ(z) 0.70% 1.60% 1.46% 1.91% 3.28%

Table 7.7: Component Marginal and Risk Contributions

Strategies
GMV IV ERC MD EW

Assets MCi(z) %RCi MCi(z) %RCi MCi(z) %RCi MCi(z) %RCi MCi(z) %RCi
SPY 0.0124 0 0.0377 15.4 0.0319 12.5 0.0229 3 0.0394 15
MDY 0.0152 0 0.0444 15.6 0.0375 12.5 0.0280 0 0.0463 17.7
IWM 0.0120 0 0.0474 14.7 0.0392 12.6 0.0303 34.9 0.0504 19.2
EFA 0.0208 0 0.0483 15.7 0.0427 12.5 0.0312 0 0.0498 19.0

VEIEX 0.0274 0 0.0587 15.1 0.0512 12.5 0.0364 5.9 0.0608 23.2
VWEHX 0.0164 0 0.0205 14.4 0.0189 12.5 0.0139 0 0.0187 7.1
VFSUX 0.0070 98.8 0.0043 10.5 0.0045 12.4 0.0038 12.9 0.0033 1.2
TLT 0.0070 1.2 −0.0033 −1.5 0.0097 12.5 0.0211 43.3 −0.0062 −2.3

As shown analytically by Scherer (2011), the minimum variance portfolio
tends to overweight low-volatile components; see Table 7.6. It dominates in
terms of low volatility compared to other risk-based strategies. Also, we report
in Figure 7.4 and 7.5, respectively, the time series of portfolio allocations and
observe a strong variation of the GMV strategy in Dataset2, exhibiting the
highest portfolio turnover; see Figure 7.7.
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We con�rm Choueifaty et al. (2013)'s result that the MD strategy allocates
to low-volatile and often to low pair-wise correlation components. In terms of
stability, the MD strategy shows strong variations of the allocation of portfolios
in both the datasets. It shares the similarity with the GMV strategy in that
they both exhibit high portfolio turnover in both the datasets.

In contrast, the ERC, IV and EW strategies consider all components in a
universe for the portfolio's compositions. In particular, the ERC and IV strate-
gies allocate more wealth to low-volatile components; see Table 7.6. The EW
portfolio dominates in terms of risk and perhaps this is because practitioners
using this approach often take risk that is not compensated.

Figures 7.1, 7.2 and 7.3 we present backtesting performance of these strate-
gies using the same period of dataset except on the last �gure which is deter-
mined through the MSCI Indices of 22-countries. Since 2002, all these strate-
gies show gradual growth until the impact of the 2007-2008 �nancial crisis.

The second dataset, Dataset2, is composed of MSCI Index of the following
ticker: EWA, EWJ, EWY, EWG, EWW, EFA, EEM, and EWZ. Table 7.9
depicts the analysis of both the marginal and risk contributions of components
for di�erent strategies mentioned above. Note that, in this case, C denotes
the normalised risk contributions of components. We observe, as noted in
theory that the GMV strategy turns to equalize marginal risk contributions
of components. Also the ERC strategy preserves its constraint of equalizing
components risk contributions. Lastly, EW strategy has di�erent structure
of risk contributions and this is because it does not take into account the
parameter estimate for the allocation of asset weights.

Table 7.8: Covariance Matrix of Monthly Asset Returns for Dataset 2

Assets EWA EWJ EWY EWG EWW EFA EEM EWZ
EWA 0.0050 0.0024 0.0048 0.0041 0.0040 0.0034 0.0045 0.0009
EWJ 0.0024 0.0026 0.0027 0.0024 0.0024 0.0022 0.0024 0.0006
EWY 0.0048 0.0027 0.0073 0.0047 0.0045 0.0036 0.0053 0.0010
EWG 0.0041 0.0024 0.0047 0.0050 0.0039 0.0036 0.0042 0.0010
EWW 0.0040 0.0024 0.0045 0.0039 0.0050 0.0032 0.0043 0.0006
EFA 0.0034 0.0022 0.0036 0.0036 0.0032 0.0029 0.0034 0.0008
EEM 0.0045 0.0024 0.0053 0.0042 0.0043 0.0034 0.0050 0.0009
EWZ 0.0009 0.0006 0.0010 0.0010 0.0006 0.0008 0.0009 0.0087

In Figure 7.3, we back-tested these strategies using monthly returns of the
MSCI index from 15-countries. The period of this simulation is from April
1996 to February 2014. We observe that prior 2005, MD strategy has not
shown good performance in terms of cumulative return against other risk-based
strategies. However, starting from 2005 to February 2014 of the simulation,
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Table 7.9: Marginal and Risk Contribution of Assets

Strategies
GMV ERC EW

Assets (Σz)i RCi(z) Ci (Σz)i RCi(z) Ci (Σz)i RCi(z) Ci
EWA 0.0521 0.0000 0.00% 0.0627 0.0067 12.5% 0.0644 0.0080 14.2%
EWJ 0.0459 0.0258 56.2% 0.0392 0.0067 12.5% 0.0387 0.0048 8.5%
EWY 0.0570 0.0000 0.00% 0.0722 0.0067 12.5% 0.0750 0.0094 16.6%
EWG 0.0529 0.0000 0.00% 0.0622 0.0067 12.5% 0.0637 0.0080 14.1%
EWW 0.0499 0.0000 0.00% 0.0601 0.0067 12.5% 0.0619 0.0077 13.7%
EFA 0.0459 0.0120 26.0% 0.0502 0.0067 12.5% 0.0509 0.0064 11.2%
EEM 0.0517 0.0000 0.00% 0.0642 0.0067 12.5% 0.0662 0.0083 14.6%
EWZ 0.0459 0.0082 17.8% 0.0399 0.0067 12.5% 0.0322 0.0040 7.1%

Table 7.10: Statistical Analysis of Strategies

Strategies
Assets GMV ERC EW MD Expected Return Volatility Sharpe Ratio
EWA 0.00% 10.73% 12.5% 3% 1.0135 7.09% 14.2912
EWJ 56.17% 17.16% 12.5% 29% 1.0071 5.08% 19.8275
EWY 0.00% 9.32% 12.5% 14% 1.0147 8.59% 11.8098
EWG 0.00% 10.83% 12.5% 4% 1.0119 7.07% 14.3109
EWW 0.00% 11.19% 12.5% 16% 1.0167 7.11% 14.3039
EFA 26.03% 13.41% 12.5% 0% 1.0089 5.40% 18.6866
EEM 0.00% 10.49% 12.5% 0% 1.0139 7.08% 14.3213
EWZ 17.81% 16.88% 12.5% 34% 1.0180 9.35% 10.8856

zT r̄ 1.0095 1.0129 1.0131 1.0138
σ(z) 4.59% 5.38% 5.66% 5.25%

s 21.97707 18.81496 17.89291 19.2951
DR(z) 1.2895 1.3075 1.2534 1.4236

MD performed better than the remaining strategies. Around 2005, ERC and
Risk Parity (IV) have shown good performance against the EW strategy. We
should note that the analysis was based on the indices that are a�ected by the
same market risk.

We notice that prior to the year 2007, the RP strategy has been outper-
formed by the MD strategy. But, from 2009 until 2014, RP shows good per-
formance, outperforming the MD strategy. However, Anderson et al. (2012)
noted that period of analysis has a signi�cant impact on the results exhibited
by back-testing. This is due to the fact that other assets are more recent and
as such longer periods might lead to uneven results.

In contrast, RP strategies, i.e., the ERC and IV, seem to be more diversi�ed
as all assets play a role in its performance. Looking at the volatilities of
components in Table 7.10, EWJ seems to be dominating and hence allocated
signi�cant weight. For the EW strategy, the risk contribution of asset EWZ
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Figure 7.1: Back-Testing of Risk-Based Strategies for Dataset1

Figure 7.2: Back-Testing of Risk-Based Strategies for Dataset2

Figure 7.3: Back-Testing of Risk-Based Strategies for MSCI Index of 15-
Countries

is signi�cant even though its volatility is high. We remark that indeed1 the
volatility of the RP strategy lies between the volatility of the other strategies,
in particular, the EW and the GMV portfolios as noted by Maillard et al.
(2010).

1Based on the choosen assets.
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Figure 7.4: Time Series Portfolio Weights of Risk-Based Strategies for Dataset1
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Figure 7.5: Time Series Portfolio Weights of Risk-Based Strategies for Dataset2
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Figure 7.6: Annual Average Turnover of Risk-Based Strategies for Dataset1

Figure 7.7: Annual Average Turnover of Risk-Based Strategies for Dataset2
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Chapter 8

Risk Parity and Stochastic

Portfolio Theory

In this chapter, we turn our attention to the problem of maximizing portfolio's
absolute log wealth, at a �xed tracking error risk level. We present Oderda
(2013)'s approach to determine the optimum solution to this problem. The
author deploys stochastic portfolio theory (SPT) as another version of invest-
ment approach in which the focus is on the markets behaviour and arbitrage
opportunities. This theory is based on the work of Fernholz (2002) for the op-
timization of stochastic portfolios. It originates from the idea of Fernholz and
Shay (1982) for the analysis of long term portfolio performance in continuous
time. Oderda (2013) showed that the solution to the portfolio maximizing
relative log wealth is a linear combination of the market portfolio, and of four
alternative allocation strategies:

1. The maximum expected cash �ow rate of return portfolio.

2. The equally weighted portfolio.

3. The risk parity portfolio.

4. The global minimum variance portfolio.

This provides an immediate link between the risk-based strategies and the util-
ity theory. The latter could be strategies depending on the focus of expected
returns of dividend or coupons paying assets.

8.1 Stochastic Portfolio Theory

In this section we present the basic structures of stochastic portfolio model
from Fernholz (2002).

108
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8.1.1 The Stochastic Model

The standard modelM of �nancial markets is usually described under �ltered
probability space (Ω,F,P,Ft) with the notations described as follows,

1. Ω denotes a set containing all di�erent states1 of the economy.

2. Ft is the information exhibited by the Brownian motion W (t) ∈ Rd at
time t ∈ [0,∞).

3. F denotes a set of all information available in the market.

Considering a set of n-risky assets and the risk-free asset with the price process
given as xi(t) for i = 1, . . . , n and xf (t), respectively. The dynamics of assets
prices are given by:

dxi(t) = xi(t)
(
r̄i(t)dt+ σT

i (t)dW (t)
)

(8.1.1)

and

dxf (t) = xf (t)rf (t)dt t ∈ [0,∞) . (8.1.2)

The notations are described as follows:

1. σT
i (t) ∈ R1×d is a vector of stock price volatilities on d-dimensional

Brownian motion W .

2. σ(t) ∈ Rn×d is the di�usion matrix of the Brownian motion.

3. rf (t) and r̄i(t) denotes the risk-free rate and the mean rate of returns
respectively.

More intuitively, the positive de�nite covariance matrix is de�ned as:

Σ(t) = σ(t)σT (t). (8.1.3)

The growth rate process of the stocks is de�ned as:

γi(t) = r̄i(t)−
σ2
i (t)

2
. (8.1.4)

The logarithmic return of the ith asset is de�ned as:

d lnxi(t) = γi(t)dt+ σT (t)dW (t), (8.1.5)

1Historical evolution of security prices.
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8.1.2 Settings of Stochastic Portfolio Processes

We de�ne in this subsection a portfolio as stochastic process with weights given
as function of time. We restrict ourself to n-risky assets and �xed budgeting
constraint and denote the portfolio as:

z(t) = (z1(t), . . . , zn(t))T . (8.1.6)

The logarithmic return of the portfolio is given as:

d lnVz(t) = γz(t)dt+ σT
z (t)dW (t), (8.1.7)

where Vz(t) is the value of the portfolio at time t, γz(t) = zT (t)γ(t)+γ∗z(t) and
σT

z (t) = zT (t)σ(t) denote the growth rate and volatility of the value process,
respectively.

The value process of the portfolio is given as the sum of the martingale
component and the drift term given by both the rate of growth of the assets
and the portfolio, including portfolio cash �ow. It is given by:

d lnVz(t) = zT (t)γ(t)dt+
1

2

[
zTDσ(t) − zT (t)Σ(t)z(t)

]
dt

+ zT (t)δ(t)dt+ σz(t)dW (t),

where Dσ(t) is a diagonal matrix with entries in the main diagonal given by as
component volatilities.

8.1.2.1 Optimization of log-Wealth Portfolio

We assume that the investor objective is to maximize the portfolio wealth (or
value) for a �xed volatility. The problem can be speci�ed mathematically as:

z∗(t) = argmax
z∈Rn

U(z(t),σ(t), γ(t), δ(t))

Subject to

{
zT (t)1 = 1
zT (t)Σ(t)z(t) = σ0(t),

(8.1.8)

where U(·) denotes the function to be maximized. Since investors will be
interested in maximizing the log-wealth of the portfolio, we de�ne this function
as:

U(·) = zT (t)γ(t) +
1

2

[
zTDσ(t) − zT (t)Σ(t)z(t)

]
+ zT (t)δ(t). (8.1.9)

We notice that the di�usion term in our utility function is not present and
this is because we are maximizing the drift term, not the noise. Thus, the
Lagrange function of the above problem is:

L = zT (t)γ(t) +
1

2

[
zTDσ(t) − zT (t)Σ(t)z(t)

]
+ zT (t)δ(t)

− λ1(zT (t)1− 1)− λ2(zT (t)Σ(t)z(t)− σ0(t)),
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where zT (t)1 − 1 and zT (t)Σ(t)z(t) − σ0(t) are budget and risk constraints
respectively. λ1 and λ2 are the Lagrange multipliers. The �rst derivative of
the above equation with respect to z(t) yields:

γ(t) +
1

2

[
Dσ(t) − 2Σ(t)z(t)

]
+ δ(t)− λ11− 2λ2Σ(t)z(t) = 0. (8.1.10)

We have,

z∗(t) =
Σ−1(t)

[
γ(t) + 1

2
Dσ(t) + δ(t)

]
1 + 2λ2

− λ1Σ−1(t)1

1 + 2λ2

(8.1.11)

This solution could be written as:

z∗(t) = A
Σ−1(t)

[
γ(t) + 1

2
Dσ(t) + δ(t)

]
1TΣ−1(t)

[
γ(t) + 1

2
Dσ(t) + δ(t)

] +B
Σ−1(t)1

1TΣ−1(t)1
, (8.1.12)

where the coe�cients A and B are as follows:

A =
1
TΣ−1(t)

[
γ(t) + 1

2
Dσ(t) + δ(t)

]
1 + 2λ2

and B =
λ11

TΣ−1(t)1

1 + 2λ2

.

8.2 Link between the Risk-Based Strategies

and the Portfolio Maximizing Log-Wealth

In order to determine the link between the risk-based strategies and the port-
folio maximizing the log-wealth, we follow Oderda (2013)'s approach in which
the covariance matrix is the key parameter that enable us to deduce the re-
lationship. We have seen that correlations and components volatilities play a
major role in asset allocation. In particular, several characteristics of strategies
are observed using correlations and variances of assets.

Our interest lies on the product of the covariance matrix and vector of
components volatilities denoted by Σ−1(t)Dσ(t) in equation (8.1.12). We begin
by decomposing our covariance as a product of two matrices using Hadamard
criteria for matrix multiplication. This is an entry-wise multiplication of ma-
trices. If we denote by C(t) ∈ Rn×n the original correlation matrix of asset
returns at time t and Γ(t) a matrix of product of component volatilities, then
the covariance matrix can be written as:

Σ(t) = Γ(t) •C(t). (8.2.1)

Since Γ(t) is given by the product of volatilities, its main diagonal entries are
variances of component returns.

Correlation also plays an important role in the characterization of a port-
folio. For instance, the MD strategy allocates components such that their
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return correlations with the portfolio is uniform. Thus, it becomes relevant to
decompose also C(t) into uniform correlation matrix and the matrix formed
by taking the di�erence (component-wise) of the original correlation matrix
and the uniform correlation matrix. The decomposition is given as:

C(t) = C0(t) + ∆C(t), (8.2.2)

where

C0(t) =


1 ρ̄(t) · · · ρ̄(t)
ρ̄(t) 1 · · · ρ̄(t)
...

...
. . .

...
ρ̄(t) ρ̄(t) · · · 1

 , (8.2.3)

and ρ̄(t) is determine as follows:

ρ̄(t) =
1

n(n− 1)

n∑
i6=j

ρi,j. (8.2.4)

∆C(t) =


0 ρ1,2(t)− ρ̄(t) · · · ρ1,n(t)− ρ̄(t)

ρ2,1(t)− ρ̄(t) 0 · · · ρ2,n(t)− ρ̄(t)
...

...
. . .

...
ρn,1(t)− ρ̄(t) ρn,2(t)− ρ̄(t) · · · 0

 (8.2.5)

where ρi,j denote the correlation between the ith and jth components in the
C(t). The inverse covariance matrix can now be expressed as:

Σ−1(t) = Γ−1(t) • [C0(t) + ∆C(t)]−1, (8.2.6)

where entries of the matrix Γ−1(t) are given by:

Γ−1
i,j (t) = [σi(t)σj(t)]

−1 i, j = 1, . . . , n. (8.2.7)

Proposition 8.1. The inverse of the decomposed correlation matrix satisfy
the following expression:[

C0(t) + ∆C(t)
]−1

= C−1
0 (t)−

[
I + C−1

0 (t)∆C(t)
]−1

C−1
0 (t)∆C(t)C−1

0 (t), (8.2.8)

where C0(t) is a uniform correlation matrix and ∆C(t) is as de�ned in equation
(8.2.5).

Proof. Consider equation (8.2.2), and suppose that C0(t) and ∆C(t) are square
invertible matrices. Then the inverse C(t) follows the intuition below:[

C0(t) + ∆C(t)
]−1

= C−1
0 (t) +X, (8.2.9)
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where X is an unknown matrix. To �nd X, we multiply both side from the
right by

[
C0(t) + ∆C(t)

]
, which yield the following:[

C−1
0 (t) +X

] [
C0(t) + ∆C(t)

]
=
[
C0(t) + ∆C(t)

]−1 [
C0(t) + ∆C(t)

]
= I, (8.2.10)

where I is the identity matrix. Expanding the left hand side, we have:

C−1
0 (t)C0(t) +XC0(t) + C−1

0 (t)∆C(t) +X∆C(t) = I. (8.2.11)

We know that any square invertible matrix multiplied by its inverse yield a
diagonal matrix. Thus I can be written as follows:

I = C−1
0 (t)C0(t). (8.2.12)

Thus,

X
[
C0(t) + ∆C(t)

]
= −C−1

0 (t)∆C(t). (8.2.13)

Now, multiplying both side by
[
C0(t) + ∆C(t)

]−1
, we have

X = −C−1
0 (t)∆C(t)

[
C0(t) + ∆C(t)

]−1

= −C−1
0 (t)∆C(t)

[
C−1

0 (t) +X
]

= −C−1
0 (t)∆C(t)C−1

0 (t)− C−1
0 (t)∆C(t)X (8.2.14)

Now, rearranging with subject to be X, we have[
I + C−1

0 (t)∆C(t)
]
X = −C−1

0 (t)∆C(t)C−1
0 (t). (8.2.15)

Multiplying both side from the left by
[
I + C−1

0 (t)∆C(t)
]−1

gives:

X = −
[
I + C−1

0 (t)∆C(t)
]−1

C−1
0 (t)∆C(t)C−1

0 (t). (8.2.16)

Thus, substituting X in equation (8.2.9), yields the following results:[
C0(t) + ∆C(t)

]−1
= C−1

0 (t)−
[
I + C−1

0 (t)∆C(t)
]−1

C−1
0 (t)∆C(t)C−1

0 (t). (8.2.17)

Our main interest is to deduce the characteristics of the risk-based strate-
gies from this term Σ−1Dσ(t). This can be written as follows:

Σ−1Dσ(t) =
[
Γ−1(t) •C−1(t)

]
Dσ(t)

=
[
Γ−1(t) •

[
C0(t) + ∆C−1(t)

]−1
]
Dσ(t) (8.2.18)

But, C0(t) satis�es the following expression:

C0(t) = ρ̃(t)Λ1 + (1− ρ̃(t))I, (8.2.19)
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where Λ1 denotes n-dimensional matrix of ones and I is the identity matrix.
In matrix form, we have:

C0(t) =


ρ̃(t) ρ̃(t) · · · ρ̃(t)
ρ̃(t) ρ̃(t) · · · ρ̃(t)

.

.

.

.

.

.

.

.

.

.

.

.

ρ̃(t) ρ̃(t) · · · ρ̃(t)

+


1− ρ̃(t) 0 · · · 0

0 1− ρ̃(t) · · · 0
.

.

.

.

.

.

.

.

.

.

.

.

0 0 · · · 1− ρ̃(t)

. (8.2.20)

Thus, C0(t) is commutative, therefore, there exist constants such that the
inverse of C0(t) is given by,

C−1
0 (t) = φΛ1 + ψI. (8.2.21)

Using the following properties,

Λ1Λ1 = nΛ1,

Λ1I = Λ1,

we can determine equation (8.2.12) by multiplying equations (8.2.21) and
(8.2.19), i.e.,

C−1
0 (t)C0(t) = [φΛ1 + ψI]

[
ρ̃(t)Λ1 + (1− ρ̃(t))I

]
= φρ̃(t)Λ1Λ1 + φ(1− ρ̃(t))Λ1I + ψρ̃(t)IΛ1 + ψ(1− ρ̃(t))II
= nρ̃(t)φΛ1 + φ(1− ρ̃(t))Λ1 + ψρ̃(t)Λ1 + ψ(1− ρ̃(t))I (8.2.22)

This implies that I is given by:

I =
[
nφρ̃(t) + ψρ̃(t) + φ(1− ρ̃(t))

]
Λ1 + ψ(1− ρ̃(t))I, (8.2.23)

and this equation is satis�ed for:

ψ =
1

1− ρ̃(t)
, and (8.2.24)

φ = − ρ̃(t)

(1− ρ̃(t))
[
nρ̃(t) + (1− ρ̃(t))

] . (8.2.25)

Substituting these equations in equation (8.2.21), yield the following:

C−1
0 (t) = − ρ̃(t)

(1− ρ̃(t))
[
nρ̃(t) + (1− ρ̃(t))

]Λ1 +
1

1− ρ̃(t)
I. (8.2.26)

Now, looking at equations (8.2.6) and (8.1), we can express equation (8.2.18)
as follows:[

Γ−1(t) •

[
C−1

0 (t)−
[
1 + C−1

0 (t)∆C(t)
]−1

C−1
0 (t)∆C(t)C−1

0 (t)
]]
Dσ(t) (8.2.27)
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We extract the properties of the risk-based strategies from the above equation
by �rst considering the following term:

[
Γ−1(t) •C−1

0 (t)
]
Dσ(t) =

Γ−1(t) •

(
− ρ̃(t)

(1− ρ̃(t))
[
nρ̃(t) + (1− ρ̃(t))

]Λ1 +
1

1− ρ̃(t)
I

)Dσ(t).

But,

[
Γ−1(t) •Λ1

]
Dσ(t) =





1

σ2
1

1

σ1σ2

· · · 1

σ1σn
1

σ2σ1

1

σ2
2

· · · 1

σ2σn
...

...
. . .

...
1

σnσ1

1

σnσ2

· · · 1

σ2
n


•


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1






σ2

1

σ2
2
...
σ2
n



=
n∑
i=1

σi



1

σ1
1

σ2
...
1

σn


. (8.2.28)

Also,

[
Γ−1(t) •I

]
Λσ(t) =





1

σ2
1

1

σ1σ2

· · · 1

σ1σn
1

σ2σ1

1

σ2
2

· · · 1

σ2σn
...

...
. . .

...
1

σnσ1

1

σnσ2

· · · 1

σ2
n


•


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1






σ2

1

σ2
2
...
σ2
n



=


1
1
...
1

 . (8.2.29)
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Thus,

[
Γ−1(t) •C−1

0 (t)
]
Dσ(t) =

1

(1− ρ̃(t))


1
1
...
1



− nρ̃(t)
∑n

i=1 σi

(1− ρ̃(t))
[
nρ̃(t) + (1− ρ̃(t))

]


1

σ1
1

σ2
...
1

σn


, (8.2.30)

which re�ects the basic property of the equal-weighted and risk parity strate-
gies. We have seen that component weights in a risk parity portfolio are
directly proportional to their inverse volatilities. Thus, the solution (8.1.12)
can be interpreted as a linear combination of the three risk-control strategies,
namely the minimum variance, equal weighted and risk parity strategies, with
additional high cash �ow rate of portfolio return.

8.3 Conclusion

The risk parity (RP) strategies, as an alternative to a traditional portfolio of 60
percent equities and 40 percent bond, have been widely adopted by investors.
RP is a set of asset allocation techniques for genuinely diversi�ed risk portfolio.
It is intuitively appealing and empirically attractive.

These strategies are a good starting point for investors willing to manage
risk of their portfolios. Risk of the portfolio is diversi�ed across all components
in a universe. The incentive of these strategies in the investment realm is the
exclusion of the expected return estimate. Investor who deploys any of the
risk parity strategies assumes that estimation of expected return is di�cult
to obtain. In addition, they can be extended with the factor risk parity of
Roncalli and Weisang (2012).

We studied the risk parity strategies in line with the other risk-based strate-
gies, i.e., the equal weighted, minimum variance and maximum diversi�cation.
Using an empirical study in Chapter 7, we observe that the risk parity strate-
gies exhibit low portfolio turnover compared to the MD, MV. The EW portfolio
dominates in terms of low portfolio turnover.
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Appendix A

Proofs of Risk Budget Properties

A.1 Standard Mean Variance Portfolio

Solution

Consider the problem of minimizing portfolio's risk for a given level of expected
return formulated as follows,

zMVO = arg min
z∈Rn

1

2
zTΣz, (A.1.1)

subject to,

g(z) = zT1− 1 = 0, (A.1.2)

h(z) = zT r− a = 0. (A.1.3)

The �rst constrain is called the budget constraint and the second constraint
represents the level of expected return of portfolio. This problem is solved by
applying the Lagrangian multipliers method in order to �nd the critical points
that will give the solution to the given constraint. Thus, the Lagrangian
function is given as,

L(z, λ, γ) =
1

2
zTΣz− λ(zT r− a)− γ(zT1− 1). (A.1.4)

The critical or optimum points to this problem are found by �rst order di�er-
ential equation. Now we solve the following equations,

∂L(z, λ, γ)

∂z
= Σz− λr− γ1 = 0, (A.1.5)

and

∂L(z, λ, γ)

∂λ
= a− zT r = 0, (A.1.6)
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∂L(z, λ, γ)

∂γ
= 1− zT1 = 0. (A.1.7)

From equation (A.1.5), we have

zMVO = Σ−1 (γ1 + λr) = λΣ−1r + γΣ−11 (A.1.8)

as a solution to (A.1.1) with the parameter λ and γ. By substituting (A.1.8)
into (A.1.6) and (A.1.7), we have a system of linear equations,(

rTΣ−1r
)
λ+

(
rTΣ−11

)
γ = a (A.1.9)

(
1TΣ−1r

)
λ+

(
1TΣ−11

)
γ = 1, (A.1.10)

which can be written as, [
B A
A C

][
λ
γ

]
=

[
a
1

]
. (A.1.11)

Where

M =

[
B A
A C

]
=

[
rTΣ−1r rTΣ−11
1TΣ−1r 1TΣ−11

]
. (A.1.12)

The solution to equation (A.1.11) is unique if and only if D = det(M) 6= 0.
We �rst show that M is positive. Since Σ is a symmetric and positively
de�nite matrix (i.e. for each z 6= 0, zTΣz = σ2

p > 0), so is Σ−1. This implies

A,B,C > 0. To show that D = BC−A2 6= 0, we consider the vector Ar−B1.
By assumption, Ar− B1 6= 0 (since Ar− B1 = 0 if and only if r = 1, which
is forbidden by our assumption that r is a vector of random variables that can
not all be equal). So positive de�niteness of Σ−1, we have

0 < (Ar−B1)TΣ−1(Ar−B1)

= A2rTΣ−1r− ABrTΣ1−BA1TΣr +B21TΣ−11

= −BA2 +B2C = B(BC − A2). (A.1.13)

Since B > 0, we have D > 0 and in particular D 6= 0.[
λ
γ

]
=

1

D

[ C −A
−A B

][
a
1

] (A.1.14)

Thus the solution to λ and γ is,

λ =
Ca− A
D

and γ =
−Aa+B

D
. (A.1.15)
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The value of λ and γ can now be substituted to �nd the weights of the portfolio.
i.e.

zMVO =

(
Ca− A
D

)
Σ−1r +

(
−Aa+B

D

)
Σ−11

=
1

D

[
BΣ−11− AΣ−1r

]
+

1

D

[
CΣ−1r− AΣ−11

]
a (A.1.16)

Let g =
1

D

[
BΣ−11− AΣ−1r

]
and h =

1

D

[
CΣ−1r− AΣ−11

]
. Then we can

write equation (A.1.8) as,

zMVO = g + ha (A.1.17)

A.2 Analysis of Risk Budgeting Solutions for

Special Cases of ρ.

A.2.1 Two-Assets Based RB-Solutions with Constant
Correlations

Consider the solution as given in equation (4.1.9). For ρ = −1, we have

z =
−(b− 1

2
)σ1σ2 − bσ2

2 + σ1σ2

√
(b− 1

2
)2 + b(1− b)

(1− b)σ2
1 − 2(b− 1)σ1σ2 − bσ2

2

.

Rearranging, we �nd the following,

z =
σ2[σ1 − bσ1 − bσ2]

(σ1 + σ2)[σ1 − bσ1 − bσ2]

=
σ2

σ1 + σ2

. (A.2.1)

For the case ρ = 0, we have

z =
−bσ2

2 + σ1σ2

√
b(1− b)

(1− b)σ2
1 − bσ2

2

=

√
b
√

1− bσ1σ2 − bσ2
2

(1− b)σ2
1 − bσ2

2

=

√
bσ2(
√

1− bσ1 −
√
bσ2)

(
√

1− bσ1 +
√
bσ2)(

√
1− bσ1 −

√
bσ2)

=

√
bσ2

(
√

1− bσ1 +
√
bσ2)

, (A.2.2)
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and when ρ = 1, we have

z =
(b− 1

2
)σ1σ2 − bσ2

2 + 1
2
σ1σ2

(1− b)σ2
1 − bσ2

2 + 2(b− 1
2
)σ1σ2

=
bσ1σ2 − bσ2

σ2
1 − bσ2

1 − bσ2
2 + 2bσ1σ2 − σ1σ2

=
bσ2(σ1 − σ2)

σ1(σ1 − σ2)− b(σ1 − σ2)2

=
bσ2

(1− b)σ1 + bσ2

. (A.2.3)

A.2.2 When ρ = 1.

(Σz)i = ziσ
2
i + σi

∑
j 6=i

σjzj. (A.2.4)

Thus,

biσ
2(z) = zi(Σz)i = zi

ziσ2
i + σi

∑
j 6=i

zjσj

 , (A.2.5)

alternatively,

bjσ
2(z) = zj

zjσ2
j + σj

∑
i6=j

ziσi

 . (A.2.6)

Dividing (A.2.5) with (A.2.6) yields,

bi
bj

=
zi

(
ziσ

2
i + σi

∑
j 6=i zjσj

)
zj

(
zjσ2

j + σj
∑

j 6=i ziσi

) . (A.2.7)

Hence,

biz
2
jσ

2
j + biσjzj

∑
j 6=i

ziσi = bjz
2
i σ

2
i + bjσizi

∑
j 6=i

zjσj, (A.2.8)

which could be written as,

bizjσj(zjσj +
∑
j 6=i

ziσi) = bjziσi(ziσi +
∑
j 6=i

zjσj) (A.2.9)

bizjσj(
∑
j=i

zjσj) = bjziσi(
∑
j=i

zjσj). (A.2.10)
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Thus,

bizjσj = bjziσi. (A.2.11)

Rearranging and using the budget constraint for the jth components, i.e,

n∑
j=1

zj =
n∑
j=1

bjziσi
biσj

, i = 1, . . . , n (A.2.12)

gives the following,

ziσi
bi

n∑
j=1

bj
σj

= 1, i = 1, . . . , n. (A.2.13)

Thus,

zi =
biσ
−1
i∑n

j=1 bjσ
−1
j

, i = 1, . . . , n. (A.2.14)

A.2.3 The Perfect Negative Correlation

Note that the perfect opposite correlation general term is given as ρ = − 1

n− 1
.

This leads the variance of the portfolio to be zero (i.e., σ2
p(z) = 0). Thus,

zi(Σz)i = zi

ziσ2
i −

σi
n− 1

∑
j 6=i

σjzj


= ziσi

ziσi − 1

n− 1

∑
j 6=i

σjzj

 = 0. (A.2.15)

Dividing both side by ziσi and including the ith term in the summation yield,

ziσi −

 1

n− 1

n∑
j=1

σjzj −
ziσi
n− 1


= ziσi

(
n

n− 1

)
− 1

n− 1

n∑
j=1

σjzj = 0. (A.2.16)

Thus,

ziσi

(
n

n− 1

)
=

1

n− 1

n∑
j=1

σjzj. (A.2.17)
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Similarly, for the jth asset, we have,

zjσj

(
n

n− 1

)
=

1

n− 1

n∑
j=1

σjzj. (A.2.18)

Dividing equation (A.2.17) by equation (A.2.18), gives,

ziσi
zjσj

= 1. (A.2.19)

Setting zj to be the subject, and taking the sum both side yield,

n∑
j=1

zj =
n∑
j=1

ziσi
σj

. (A.2.20)

This implies that,

ziσi

n∑
j=1

1

σj
= 1. (A.2.21)

Hence,

zi =
σ−1
i∑

j=1 σ
−1
j

. (A.2.22)

A.2.4 Risk Budgeting Portfolio Formula

Consider the risk budgeting portfolio in equation (4.1.1)

zi(Σz)i = biσ
2(z) (A.2.23)
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Now for ρ not a constant we have,

L.H.S = zi(Σz)i (A.2.24)

= zi


ρ1σ

2
1 ρ12σ1σ2 · · · ρ1nσ1σn

ρ21σ2σ1 ρ2σ
2
2 · · · ρ2nσ2σn

...
...

. . .
...

ρn1σnσ1 ρn2σnσ2 · · · ρnσ
2
n



z1

z2
...
zn



= zi



ρ1,1σ
2
1z1 + σ1

∑
j 6=1

ρ1,jσjzj

ρ2,2σ
2
2z2 + σ2

∑
j 6=2

ρ2,jσjzj

...

ρi,iσ
2
nzn + σi

∑
j 6=i

ρi,jσjzj

...

ρn,nσ
2
nzn + σn

∑
j 6=n

ρn,jσjzj


= ρi,iσ

2
i z

2
i + ziσi

n∑
j 6=i

ρi,jσjzj i = 1 . . . , n. (A.2.25)

Thus, for constant correlation matrix, ρi,j = ρ, we have

L.H.S = σ2
i z

2
i + ρσizi

n∑
j=1

σjzj − ρσ2
j z

2
j

= σizi

(1− ρ)σizi + ρ
n∑
j=1

σjzj


(A.2.26)

Hence, the risk contribution of the ith component is given by,

σizi

(1− ρ)σizi + ρ

n∑
j=1

σjzj

 = biσ
2(z). (A.2.27)
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