
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

JAAKKO LAMPI

Large-Scale Distributed Data Management and Processing
Using R, Hadoop and MapReduce

Master's Thesis
Degree Programme in Computer Science and Engineering

May 2014

2

Lampi J. (2014) Large-Scale Distributed Data Management and Processing Using
R, Hadoop and MapReduce. University of Oulu, Department of Computer Science and
Engineering. Master's Thesis, 98 p.

ABSTRACT

The exponential growth of raw, i.e. unstructured, data collected by various methods
has forced companies to change their business strategies and operational
approaches. The revenue strategies of a growing number of companies are solely
based on the information gained from data and the utilization of it. Managing and
processing large-scale data sets, also know as Big Data, requires new methods and
techniques, but storing and transporting the ever-growing amount of data also
creates new technological challenges. Wireless sensor networks monitor their clients
and track their behavior. A client on a wireless sensor network can be anything from
a random object to a living being. The Internet of Things binds these clients
together, forming a single, massive network. Data is progressively produced and
collected by, for example, research projects, commercial products, and governments
for different means.

This thesis comprises theory for managing large-scale data sets, introduces existing
techniques and technologies, and analyzes the situation vis-a-vis the growing
amount of data. As an implementation, a Hadoop cluster running R and Matlab is
built and sample data sets collected from different sources are stored and analyzed
by using the cluster. Datasets include the cellular band of the long-term spectral
occupancy findings from the observatory of IIT (Illinois Institute of Technology)
and open weather data from weatherunderground.com. An R software environment
running on the master node is used as the main tool for calculations and controlling
the data flow between different software. These include Hadoop's HDFS and
MapReduce for storage and analysis, as well as a Matlab server for processing
sample data and pipelining it to R. The hypothesis that the cold weather front and
snowing in the Chicago (IL, US) area should be shown on the cellular band
occupancy is set.

As a result of the implementation, thorough, step-by-step guides for setting up and
managing a Hadoop cluster and using it via an R environment are produced, along
with examples and calculations being done. Analysis of datasets and a comparison
of performance between R and MapReduce is produced and speculated upon.
Results of the analysis correlate somewhat with the weather, but the dataset used
for performance comparison should clearly have been larger in order to produce
viable results through distributed computing.

Key words: Big data, distributed computing, MapReduce, Hadoop, HDFS, R,
RHadoop, Matlab

3

Lampi J. (2014) Suurten hajautettujen tietoaineistojen hallinta ja käsittely R:llä,
Hadoopilla ja MapReducella. Oulun yliopisto, Tietotekniikan osasto. Diplomityö, 98 s.

TIIVISTELMÄ

Raakadatan eli eri menetelmillä kerätyn strukturoimattoman datan määrän huikea
kasvu viime vuosina on ajanut yrityksiä muuttamaan strategioitaan ja
toimintamallejaan. Monien uusien yritysten tuottostrategiat pohjautuvat puhtaasti
datasta saatavaan informaation ja sen hyväksikäyttöön. Suuret datamäärat ja niin
kutsuttu Big Data vaativat uusia menetelmiä ja sovelluksia niin datan prosessoinin
kuin analysoinninkin suhteen, mutta myös suurien datamäärien fyysinen
tallettaminen ja datan siirtäminen tietokannoista käyttäjille ovat luoneet uusia
teknologisia haasteita. Langattomat sensoriverkot seuraavat käyttäjiään, joita
voivat periaatteessa olla kaikki fyysiset objektit ja elävät olennot, ja valvovat ja
tallentavat niiden käyttäytymistä. Niin kutsuttu Internet of Things yhdistää nämä
objektit, tai asiat, yhteen massiiviseen verkostoon. Dataa ja informaatiota kerätään
yhä kasvavalla vauhdilla esimerkiksi tutkimusprojekteissa, kaupalliseen
tarkoitukseen ja valtioiden turvallisuuden takaamiseen.

Diplomityössä käsitellään teoriaa suurten datamäärien hallinnasta, esitellään
uusien ja olemassa olevien tekniikoiden ja teknologioiden käyttöä sekä analysoidaan
tilannetta datan ja tiedon kannalta. Työosuudessa käydään vaiheittain läpi Hadoop-
klusterin rakentaminen ja yleisimpien analysointityökalujen käyttö. Käytettävänä
oleva testidata analysoidaan rakennettua klusteria hyväksi käyttäen,
analysointitulokset ja klusterin laskentatehokkuus kirjataan ylös ja saatuja tuloksia
analysoidaan olemassa olevien ratkaisujen ja tarpeiden näkökulmasta. Työssä
käytetyt tietoaineistot ovat IIT (Illinois Institute of Technology) havaintoasemalla
kerätty mobiilikaistan käyttöaste sekä avoin säädata weatherunderground.com:ista.
Analysointituloksena mobiilikaistan käyttöasteen oletetaan korreloivan kylmään ja
lumiseen aikaväliin Chigagon alueella Amerikassa.

Työn tuloksena ovat tarkat asennus- ja käyttöohjeet Hadoop-klusterille ja
käytetyille ohjelmistoille, aineistojen analysointitulokset sekä analysoinnin
suorituskykyvertailu käyttäen R-ohjelmistoympäristöä ja MapReducea.
Lopputuloksena voidaan esittää, että mobiilikaistan käyttöasteen voidaan jossain
määrin todeta korreloivan sääolosuhteiden kanssa. Suorituskykymittauksessa
käytetty tietoaineisto oli selvästi liian pieni, että hajautetusta laskennasta voitaisiin
hyötyä.

Avainsanat: Big data, hajautettu tiedostojärjestelmä, MapReduce, Hadoop, HDFS,
R, RHadoop, Matlab

4

TABLE OF CONTENTS

ABSTRACT
TIIVISTELMÄ
TABLE OF CONTENTS
FOREWORD
LIST OF ABBREVIATIONS AND SYMBOLS
1. INTRODUCTION...9
2. LARGE-SCALE DATA...11

2.1. The concept ...11
2.2. Open big data...12
2.3. Structured vs unstructured data... 14

3. DATA MANAGEMENT FOR BIG DATA... 16
3.1. Keeping it all together... 16
3.2. Centralized vs distributed vs cloud-based approach..18
3.3. Hadoop framework.. 19

3.3.1. HDFS... 20
3.3.2. MapReduce.. 23
3.3.3. YARN...25

3.4. Windows Azure..26
3.5. Amazon AWS ..27
3.6. Other platforms..28

4. DATA STORING...29
4.1. Hyperscale storage and scalability...29
4.2. RDBMS and SQL.. 30
4.3. NoSQL...31
4.4. Apache Hive...32
4.5. Apache HBase and ZooKeeper..33

5. PROCESSING THE DATA..36
5.1. Data processing, analysis, and visualization..36
5.2. Data mining... 39
5.3. Analytical tools and applications... 42

5.3.1. R... 42
5.3.2. Apache Pig... 44
5.3.3. Splunk.. 46
5.3.4. D3.js... 47
5.3.5. Google Prediction API... 48
5.3.6. Google BigQuery... 48

6. IMPLEMENTATION.. 49
6.1. Goals of the implementation..50
6.2. The implementation... 50
6.3. Analyzed datasets...53
6.4. Details and results of analysis..53
6.5. Post-thesis considerations..61

5

7. DISCUSSION... 63
8. SUMMARY...64
9. REFERENCES..65
10. APPENDICES... 70

6

FOREWORD

The aim of this thesis is to give the reader a clear picture of what large-scale data is, how
data is collected, managed and analyzed, and how the field has evolved. The thesis also
introduces some of the most commonly used solutions and applications. At the end, the
implementation of a Hadoop cluster is set up to virtual machines. Both R and Matlab are
set up and external R libraries1 are used to set up communication between R, HDFS and
Matlab. Data samples are stored, analyzed and plotted using the system that is set up. All
the steps from setting up the system to analyzing the data are documented. As the thesis
and its outcome are part of a broader international research project, the University of
Oulu granted funding to support the process.

I would like to thank Prof. Juha Röning and Dr. Jaakko Suutala for the challenge,
guidance and supervision, and Maritta Juvani and Varpu Pitkänen for their help in
general. In addition, I would like to thank my wife and my parents for their
immeasurable support over the years of studying that led to this thesis.

Oulu, Finland, May 28th, 2014

Jaakko Lampi

1 Most importantly rmr2 and rhdfs by Revolution Analytics and R.matlab. Full list can be found in the
thesis.

7

LIST OF SYMBOLS AND ABBREVIATIONS

3V Velocity, Volume and Variety

4V Value, Velocity, Volume and Variety

AI Artificial Intelligence

API Application Programing Interface

BI Business Intelligence

CDN Content Delivery Network

CRUD Create, Read, Update, Delete functionality in RDBMS

DBMS Database Management System

DFS Distributed File System

EB Exabyte, 1018 bytes

exaFLOPS million million Floating Operations Per Second

GB Gigabyte, 109 bytes

GFS Google File System

GUI Graphical User Interface

HDFS Hadoop Distributed File System

HDP Hortonworks Data Platform

IDE Integrated Development Environment

IIT Illinois Institute of Technology

IoT Intenet of Things

ITU International Telecommunications Union

KB Kilobyte, 103 bytes

LAN Local Area Network

MB Megabyte, 106 bytes

MRv2 MapReduce v2

NAS Networked Storage

NDFS Nutch Distributed File System

NFS Network File System'

NLP Natural Language Processing

8

PB Petabyte, 1015 bytes

petaFLOPS thousand million Floating Operations Per Second

RDBMS Relational Database Management System

SAN Storage-Area Network

SQL Structured Query Language

TB Terabyte, 1012 bytes

UDF User Defined Functions (Pig)

WSN Wireless Sensor Networks

ZB Zettabyte, 1021 bytes

9

1. INTRODUCTION

Long gone are the days when global enterprises, reseach organizations and governments
were able to handle all the data they produced and managed in a logical, mostly
structured form and use relational databases and structured query languages (SQL) or
similar techniques to query it. Companies, programs and network sensors produce huge
amount of fresh data, around 2.5 EBs (exabytes)[2] every single day, and it is estimated
that over 90% of existing data has been generated during the last two years [1]. Some
predictions say the annual global data production in 2020 will be about 30 times faster
than it was in 2010 - 35 Zettabytes (ZB)2 per year [49].

So how much is this aforementioned huge amount of data? One good example that could
make the relation more tangible is the large hadron collider (LHC), the 27-km-long
particle collider built by CERN in Switzerland. When working on full power, its 150

2 1ZB = 1,024EB = 1,048,576PB = 1,073,741,824TB = 1,099,511,627,776GB

10

million sensors produce data 40 million times per second, resulting approximately a
petabyte (PB) per second. Before the raw data gets stored, it is analyzed and screened,
and only a fraction of the initially produced data gets through for the final stage of
analyzation. "Only" about 25PBs of essential information is stored annually, which
would be equal to about 35 million compact discs (CD). To put it simply, the (numbers
of) large-scale datasets, or big data as it is also called, are big enough to be beyond
normal human comprehension.

Even though this thesis is not referring to or citing LHC later on, it provides a good
example of the requirements for modern data management and storage. Single-computer
systems, centralized storages, and undistributed data processing is simply too slow and
inefficient for today's needs, which connects the LHC example to the newer large-scale
data-related techniques and frameworks this thesis is all about.

Even though SQL and database normalization were some of the biggest innovations of
the previous century, both have been pushed to their limits thanks to the sheer amount of
new data and the complexity restrictions they hold. A new way of managing and storing
data was needed and new techniques evolved. The collecting and storing of data started
moving from structured to unstructured, data storage centers and "data marts" kept
popping up, and programs and frameworks, such as Hadoop, were introduced to deal
with the ever-growing amount of information.

This thesis introduces the most common programs, frameworks and techniques used
when managing, storing and analyzing large-scale data sets. It is assumed that the reader
has at least basic knowledge and understanding of information technology, databases,
most common programming languages and internet (and its protocols). The purpose of
the thesis is to study and set up a functional Hadoop cluster and high-level data analysis
tools that will serve as a base for later development for analyzing purposes. The
implementation consists of setting up a Hadoop cluster along with R and necessary
external libraries, analyzing two sample datasets, and drawing conclusions on the
performance of MapReduce compared to R. The environment is configured so that the
HDFS, MapReduce and Matlab server can be controlled via R's interface. Sample
datasets include 2 months' worth of cellular band long-term spectral occupancy findings
from the observatory of IIT (Illinois Institute of Technology) and open data from
weatherunderground.com.

11

2. LARGE-SCALE DATA

As briefly mentioned in the previous chapter, large-scale data refers to datasets big
enough to be out of the scope of the traditional (relational) database programs and tools
[8]. There are no actual size guidelines that determine when a dataset is considered “big”.
As technology evolves day by day, the size of a dataset remains more and more
subjective. This varies from field to field - for example, a dataset used for governmental
purposes can vary a lot from one used in the medical field. A rough guideline is that if a
dataset is bigger than few TB (terabyte), it is most likely considered to be large-scale.

2.1. The concept

Today large datasets are a part of every field that somehow involves digital information.
To give a few examples, datasets and their purposes and end goals vary among the fields
of healthcare (e.g. diagnosing a patient according to the symptoms, genomics etc.),
human behaviour (e.g. preventing crime, boost sales etc.), weather (e.g. forecasts), and
finance (e.g. risk analysis and portfolio evaluation).

When comparing large-scale datasets to more traditional data, the biggest differences
come from scalability, distribution, and the structure of the data. Whereas RDBMS
(relational database management system) database tables are created in advance for data
that has a known and structured format, big data systems and databases tend to be either
unstructured or a combination of structured and unstructured data. Large-scale data sets
are usually broken into pieces among multiple commodity servers that do not share
memory or processing power, and the software knows the location of different pieces of
data. RDBMS usually resides on one server3, sharing one bigger storage component
between multiple processors. Storing, processing and managing a huge amount of data
with structured tables and centralized storing and processing components would be too
slow and expensive for a company to gain any signicant results.

Dealing with large data sets, the usage of a distributed storage system is the key. In a
distributed envinronment, one node acts as a master node and other nodes act as slaves.
One data entity is usually split into smaller pieces and divided between nodes. For
countering a server breakdown or network problems, every piece of split data is
replicated among different servers and among different server racks. This ensures the
accessibility of data if a whole rack of servers goes down for any reason. Replication and
distribution also has its downside. The updating of existing data is slow, and generally
not suggested. If a single entry is changed for any reason, it has to be changed globally.

3 Distributed SQL solutions exist also, for example Google's F1. It combines the scalability of NoSQL
systems and usability of traditional SQL systems

12

2.2. Open big data

Open data is data that is free for everyone to use without any restrictions. It can be reused
and redistributed and it should be accessible at little to no cost, and preferably
downloadable from the internet [48]. Open data can be produced by anyone, on any
subject imaginable, which has partially contributed to the exponential growth of data.
Open data is also produced by devices and sensors for and from any field and purpose
imaginable, from farming to astronomy. A lot of the produced data is uploaded to the
internet, and while the uploading process has to date been mostly a manual process, new
techniques and solutions have been developed. Devices and sensors have progressively
evolved to act more as autonomous units, taking care of gathering the data, processing
the information, and then uploading it to the internet. Even though not all of this data is
necessarily open, the so-called Internet of Things has and will change the everyday lives
all over the world.

Internet of Things (IoT) as a concept was first proposed in 1999 and finally published as
a report in 2005 by International Telecommunications Union (ITU). The name refers to
an internet-based network that covers technologies such as nanotechnology, sensor
technology and intelligent embedded technology and RFID technology [8]. It has grown
and gained more understanding conceptually, and today IoT has been incorporated into
many companies' development strategies. IoT is widely agreed to be a part of future's
Internet: some scenarios foresee IoT having its own, independent global network,
protocols and standards [9]. Some researchers see IoT as a combination of physical and
cyber things, being ubiquitous with everything being connected. The table 1 illustrates
the previous statement a bit further.

Table 1: Things classification

Things

Cyber Physical

Entities (software) Objects (fridge)

Actions (data about X is created) Behaviour (walking)

Events (Bitcoin transaction) Tendency (average temperature raises)

Services (Amazon EC2 cloud storage) Physical events (eclipse)

Basically everything a person sees or interacts with during a day can be connected to IoT.
From cell phones, personal computers and cars to light bulbs, livestock and your
doorbell, everything receives and sends information and interacts with each other, with or

13

without human intervention [10]. This means the amount of sensors and the data
produced is growing exponentially. Most likely the majority of collected and processed
data will be unstructured, and this puts a huge strain on existing systems. The newest
frameworks and tools can handle the load and the sheer amount of data today, but very
quickly even they will be outdated. It is estimated that by 20154 everything we own will
be wirelessly connected, producing torrents of terabytes of data. That is, if the technology
can collect, process and analyze all the information [11]. Even though this study is a bit
outdated, more like a visionary prediction, the general direction is very accurate.

In the core of IoT are wireless sensor networks (WSN). Sensor networks have been used
for quite some time already in different fields, such as healthcare, environmental
monitoring, and military [12]. Tremendous progress in both the hardware and software
fields have enabled sensor nodes and the networks themselves to function more and more
independently. There are many ways that a WSN can be implemented. In the example
below, sensors (slaves) report to the central node (master), which processes the raw data
from the sensors and forwards it to the internet and further along to the parties who are
collecting the information from the WSN. It could be a home security system, the heart
monitor of an elderly person, or a collection of different types of sensors that a
government uses for tracking its citizens. Figure 2 illustrates a high-level WSN data flow.

4 Since the study is a bit outdated, this will most likely happen during few coming years.

Figure 2: Example of an WSN application.

14

The point of this chapter is to emphasize the importance of big data-related technologies.
As the amount of data grows greater, large-scale data frameworks, such as Hadoop, will
gain more integration into existing solutions, and hybrid systems with easy-to-use
interfaces will obfuscate the underlying techniques from the end user. The management,
storage and processing of the data will trend towards cloud-based solutions and parallel
execution.

2.3. Structured vs unstructured data

Structured data usually consists of data that is of known format, such as numbers, dates
and strings (names, addresses, clusters of words), i.e. it refers to data with a high level of
organization [13]. Structured data is defined and (mostly) machine-readable, it's stored in
well-defined mathematical structure and it has rules and standards. Structured data is
usually used in systems that use RDBMS and SQL for storing and querying the data.

Essentially all the data that is not stored following a pre-defined rules or structures can be
classified as unstructured data. This could be for example any binary data or textual
information, that a computer program could not use. Even data that has some level of
structure is treated as unstructured, if the structure does not reflect a useful schema [15].

There is an area, however, where structured and unstructured data overlap. For example
unstructured data can be stored in a column of a table within a relational database.
Structured data can be saved to file and stored in HDFS. This gray area is called "semi-
structured data" and many times the data falls within this category instead of being
clearly well defined or not defined at all. As an example, video is usually thought to be
unstructured data but an image is structured. What about an animated image, such as a
GIF? It is still an image, but it serves as a very low quality (and very short) audio-less
video. A date stored as char? The list goes on.

15

Table 2: Examples of structured, unstructured and semi-structured data

Structured data Unstructured data

Digital images Social media

Names, URLs, C++ Semantics

DNA Behavior

Radio frequency spectrum Weather

XML

Natural languages

Large-scale data is by default unstructured. It is collected from different events
automatically and usually stored as-is. Most of the large-scale frameworks have high-
level interfaces and underlying techniques to deal with structured data as well, but in
comparison to RDBMS batch-type systems they lose in terms of performance when
dealing with smaller structured-data datasets. This fact is demonstrated in the
implementation, where the used datasets are relatively small and quite well structured.

16

3. DATA MANAGEMENT FOR BIG DATA

Computer systems have been moving towards decentralization quite a while, thanks to
the lowered costs of networking, high transfer speeds, and cloud-based solutions. New
cloud-based services, known as 'Anything as a Service' (XaaS, word 'anything'
collectively referring to the whole cluster of different services) have been introduced
with a growing pace, which lowers the costs and complexity of entering the market. This
chapter discusses everyday differences and challenges the large-scale data management
addresses, as well as main elements and use cases of different system architectures
(centralized, distributed and cloud-based), continues onto distributed approach, and
wraps up with cloud-based solutions.

Different software, platforms and frameworks exist for managing big data. Different
versions of the same frameworks have been forked and some companies have built and
optimized their own versions of existing software for more task-specific functionality.
This thesis will focus mostly on Hadoop, since it was also used in the implementation,
and will only briefly introduce a few other widely-used frameworks.

3.1. Keeping it all together

Traditional approaches to information management have mostly focused on dealing with
structured data. However, the majority of data produced today is in unstructured format;
it is estimated that around 85-90% of all the data today is unstructured [17]. Adding this
to the sheer amount of information companies are dealing with today, the management of
an information system can become a pretty demanding task. Issues such as performance,
scalability, replication and consistency introduce challenges that certainly already existed
earlier, but previously the scope has been different.

17

Data on a large scale is not a new thing. Fields such as physics, meteorology, genomics
and banking have been dealing with heaps of data and information for decades. It is only
quite recently, though, that new techniques and software frameworks have made big data
conceivable for the masses. Connected networks of cheap commodity computers can
easily outperform high-cost supercomputers. For example, as of late 2013, the network of
Bitcoin mining computers produced a hashrate of 64 exaFLOPS (EFLOPS), which is 256
times more than the top 500 supercomputers' hashrate combined (250 petaFLOPS
(PFLOPS)) [20]. Big data can be characterized with the following 4 'V's: [39]

✔ Volume - the vast amount of data

✔ Variety - different forms and types of data

✔ Velocity - the pace the new data is generated

✔ Veracity - the quality and uncertainty of produced data

The first "V", volume, is the most obvious and commonly the best understood aspect of
big data: there's a lot of it. The nature of how the data is produced and gathered adds the
second "V", variety, to the list. Data can be structured or unstructured, binary or textual,
generated by and for scientific research and social media and so forth. Velocity is the
growing speed of the date being generated. Sensors, laboratories, observatories, software
and devices produce and stream a vast amount of new data every second. Veracity - a
feature that was added later to the list of big data characteristics - describes the uncertain

Figure 3: Different stages of data.

18

nature of the generated data. Data quality can be bad or noisy and its content can be
lacking the necessary accuracy for decision-making. All these aforementioned traits on
top of issues that traditional data management poses can easily turn a project dealing with
big data into a cumbersome task.

3.2. Centralized vs distributed vs cloud-based approach

In a purely centralized model, all computing resources reside at the primary datacenter
[19]. A centralized system consists of a single computer or a cluster of computers in one
location. Not only the computers, but most of the management, data processing and data
itself is in the same location, including personnel and support. Remote sites usually use
thin clients to access the resources of the datacenter. The benefits of a centralized
systems include lower costs, better security, and less complexity and administrative
overhead. It has a few drawbacks, though. For example, if the network connection, e.g.
Wide Area Network (WAN) to the datacenter fails, the whole datacenter would be
unreachable to a remote client. In centralized database systems the data is duplicated
clearly less (or not at all), so the access to the data might get competitive. Processing the
data in a centralized system can be executed in parallel, sharing memory and / or disks,
but this approach is scalable only to certain limits.

In a distributed system, a network connects different sites. This can be a Local Area
Network (LAN) connecting a few servers and client machines in a building, or a
continent-wide system architecture connecting thousands of machines via the internet.
Distributed systems offer more scalability and flexibility than centralized systems: in a
purely distributed model, every site is self-sustained for the most part. Communication
with the main datacenter is needed, but some of the services, such as email server, could
be found on each site, and access management and shared file hosting would be handled
locally as well. This means that every site would be independent and if one site would
fail, it would not affect the others. Costs are higher than for a centralized system. Since
additional hardware and software costs start stacking up, its administration and even the
rent of the physical sites will add up pretty quickly. It is part of a company's strategy to
decide what approach would suit them the best, how big the budget is, what are the
possible points of failure, and its needs for the future.

Cloud computing can be defined as a large-scale distributed computing paradigm based
on virtualized computing, storage resources, and modern web technologies [18]. Cloud
computing services can be divided to three main categories, depending on their
functionality. The first one on the list is IaaS (Infrastructure as a Service). Using IaaS,
companies and enterprises can upload their own programs and applications into the cloud
and manage them via the Internet in a distributed fashion. IaaS is followed by Platform as
a Service (PaaS), which gives users the possibility to program their own applications
using the platform in the cloud. The last one on the list is Software as a Service (SaaS),

19

by which clients can choose what existing applications and programs they want to use.
More cloud-based services exist, but they are beyond the scope of this thesis. This
distributed model offers clients very dynamic and versatile ground for setting up and
managing large-scale data solutions. Some of the most widely used frameworks and
applications are open-source (such as Hadoop and its submodules), and most of the XaaS
services are based on a month-by-month subscription, keeping the entry level to cloud-
based services low.

3.3. Hadoop framework

In the world of RDBMS and centralized web servers, the division between components
and their role in a system was straightforward and logical. When handling unstructured
datasets that are possibly many thousand or million times bigger than what we are used
to when dealing with traditional, structured data, lines get a bit more blurred. Hadoop and
its modules and tools take care of every step of the process, from analyzing to storing5
and processing and management. For some it is a data management tool and for others, it
is a framework for parallel execution in a distibuted system that enables the calculation
power of supercomputers [4].

Hadoop is an open source platform that makes the processing of very large sets of data
relatively easy and simple. It does not care whether the data is structured, unstructed or
hybrid. It evolved from the sole need to store, process and manage massive amounts of
data that previous systems were not able to handle. It includes a lot of different sub-
projects, or modules, of which the most common and important ones are briefly
explained below. All of the projects and different modules are open-source.

Hadoop is based on Apache Lucene6 and Apache Nutch7, both of which are created by
Doug Cutting, also the creator of Hadoop. It started as a sub-project of Lucene as an open
source web search engine (Nutch). Soon after Google released Google File System
(GFS) and MapReduce, Hadoop added both of them to its implentation8, giving the base
for the Hadoop Distributed File System (HDFS) and Hadoop's implementation of
MapReduce.

5 Hadoop and its HDFS is structurally a file system, not DBMS.
6 An open source information retrieval library, http://lucene.apache.org/
7 A web search engine based on Lucene, http://nutch.apache.org/
8 They were included initially to Nutch, which itself evolved to Hadoop in 2008.

20

3.3.1. HDFS

HDFS is a distributed filesystem that runs on large clusters of commodity9 machines. It is
based on the design of the Google File System (GFS), which was originally part of
Nutch. HDFS is able to store very large amounts of data and is designed to run on
numerous machines in parallel, supporting clearly larger files than other distributed
filesystems [4]. For better integration with MapReduce and to minimize latencies, HDFS
data can also be processed locally10 in a cluster. Latency-wise this is a significant step
from networked storage (NAS) and storage-area network (SAN)-type storage, which do
not allow such locality at all.

Hadoop's cluster structure is sometimes referred to as "shared nothing". This means that
the only shared part is the network of clusters; storage and processing, i.e. the computing
nodes, can be seen as individual units. This helps to bring down the latency compared to
a network file system (NFS). HDFS is mainly architectured and optimized for large
datasets and high streaming speeds, and that introduces a few drawbacks if used with a
more general implementation. For example, HDFS assumes that the data is written only
once and then only read after that, i.e. written data can't be updated (the only operations
are write, delete, append and read). The way the data is stored, sequential reading should
be used instead of parallel, which once again does not serve the purposes of a system that
would need random access to the data for smaller latency. There is also no local caching
of the read data.

HDFS breaks a file into pieces of a fixed size and stores them to the cluster, possibly on
different nodes within the cluster. The support for multiple nodes, i.e. machines and
disks, enables the use of far larger file sizes than single-disk systems. In order to be able
to manage the stored data in such a way, HDFS needs to have reliable access to the file
metadata. Metadata can be read and written simultaneously by multiple clients, which
means that the reliable metadata synchronization is crucial for filesystem functioning. To
be able to keep the metadata synchronized, HDFS implements a dedicated master-slave
architectured (single) NameNode machine, which regulates and manages all the HDFS
clients' access to the metadata. Usually a cluster is limited to one NameNode, but on
larger datasets throughput can be raised by adding more NameNodes. Multiple
NameNodes also enable user and category isolation in different namespaces.

9 Off-the-shelf, i.e. normal PCs and servers that are widely sold everywhere
10 Data Locality (DAS)

21

As seen in figure 4, the implementation of HDFS is structured as fixed size blocks of
data. When storing data, files are broken down into multiple blocks and stored in several
DataNodes11 in the Hadoop cluster. To access a file, HDFS has to address multiple
DataNodes, which means the file sizes can be much bigger than those stored in a system
that supports only one machine, or a disk.

On the local filesystem of a DataNode, every data block is stored in a separate file. A
DataNode doesn't have any other information about the HDFS file structure. For
improved throughput, a DataNode decides, based on heuristics, what kind of local file
structure would serve the purpose best and creates the directories accordingly.

Metadata has a very important role in HDFS; it stores the information about the different
data blocks and the DataNodes they reside in. To be able to access and manage metadata
reliably and as fast as possible, is crucial for the system to function smoothly. Even while
the HDFS files are practically write-once / read-many, metadata can be read and written
simultaneously by many clients, which makes the synchronization of the information a
high priority. For keeping the sync up-to-date 100% of the time, HDFS has a dedicated
machine - the NameNode - created only for this purpose. It stores the metadata of the
entire cluster. For each block, metadata tracks permissions, location and filenames. Since
the amount of actual metadata per file is very low, the metadata is stored in the main
memory of the NameNode - a NameNode with only 4GB RAM can already store great

11 Data nodes are individual machines within the cluster

Figure 4: HDFS architecture [4].

22

number of files in the memory.

A Hadoop cluster uses master-slave architecture. As a master, the NameNode controls the
access of clients to files within the cluster and manages the namespace. Since there is
only one NameNode in a cluster, the architecture of the system stays relatively simple,
but the downside of this is that if the NameNode goes down, the whole cluster goes down
with it.

When a client writes data in a HDFS file, it gets replicated as a part of the write operation
in a form of data pipeline. Data is first written in a local file, which eventually grows to a
full block of data. When the block is ready, or full, the client gets the list of assigned
DataNodes for replicas of the block from the NameNode. The first DataNode on the list
receives the client's data blocks and saves them to its local filesystem. Then the
DataNode sends the blocks to the next DataNode on the list and this goes on for as long
as there are receiving DataNodes on the list. The last DataNode saves the data, but does
not forward it anymore. HDFS is also aware of how different machines are distributed
between the computer racks. This ensures good performance, since performance among
machines within a rack tend to be better than the performance among the machines on
separate racks due to network latency. Also, it guarantees that the data is not lost in case a
whole rack gets destroyed. HDFS has to be fine-tuned to work fluently. Some of the
settings, such as block size and the replication factor, can be specified for a file
separately during its creation. Otherwise values specified in Hadoop configuration are
used.

NameNode decides how the blocks are replicated. As seen in Figure 1, it receives
periodical information (heartbeat and block report) from each DataNode - this ensures
that DataNodes stay synchronized all the time. Upon startup, the first thing a DataNode
does is send the block report to the NameNode, so that the whole distribution within the
cluster of DataNodes becomes clear. Also, a missing heartbeat informs the NameNode of
a DataNode failure. A missing DataNode is marked as dead and no more requests are
made to the one that is down. Since some of the replicas have now gone missing,
NameNode has to reorganize replication for some of the blocks. The replication factor of
blocks is constantly monitored. If it falls behind, a new replication process is triggered
immediately. To protect the data from a single machine breakdown or malfuction, data is
replicated over the clusters to multiple addresses; both NAS and SAN are mostly used as
secondary storage for data protection.

On top of the normal data files, Hadoop has other files that help HDFS functioning and
simplifies processing. SequenceFile provides data structure for key-value pairs and
simplifies storing the data tremendously, since data storage itself is not aware of the key-
value layout. MapFile, which is actually a directory, contains the sequence file and an
index file that has the information of the key offsets of the sequence file. SetFile and
arrayFile are mapFiles that deal with more specialized key-value pairs, such as keys with
null-value. BloomMapFile is an implementation of a mapFile that provides a fast
membership testing of keys. These files together form very fast and flexible access to the
data, and they are well suited for supporting MapReduce implementation.

23

3.3.2. MapReduce

The MapReduce framework was first built by Google in 2004 to be able to handle the
ever-growing amount of indexed data from the internet. After that, as-is and with some
alterations it has been adopted by many other companies. The working model of mapping
and reducing originates from the earlier functional programming languages, where the
problem was divided into smaller chunks, solved, and then brought back together (divide
and conquer-principle)[4]. MapReduce can be seen as a complement to an RDBMS.
Whereas RDBMS has its strength in point queries of an indexed data set and the constant
updating of already existing data, MapReduce is clearly a better fit when the whole
dataset has to be analyzed for a reasonable outcome. Applications that need to write data
once and read it multiple times or constantly will get the most use out of MapReduce.
Fundamental differences between RDBMS and MapReduce can be seen in table 3.

Table 3: RDBMS and MapReduce main differences [5]

RDBMS MapReduce

Data Gigabytes Petabytes

Access Interactive and batch Batch

Updates Read + write many Write once, read many

Structure Static schema Dynamic schema

Integrity High Low

Scaling Nonlinear Linear

MapReduce is a programming model for data processing [5]. It is used for querying large
sets of distributed data as a MapReduce job. Used together with Hadoop's HDFS12,
Hive13 and other additional software, MapReduce can be used to query huge datasets
without problems. Inside Hadoop, MapReduce can be run in multiple different
languages, such as Java, Ruby and Python. A MapReduce job works in two phases – the
mapping phase and the reducing phase. Each phase has key-value pairs as input and
output and together mappers and reducers make Hadoop jobs. To solve a specific
problem, the user has to implement classes for both mappers and reducers and build the
main application to control the execution of jobs. The Map function takes in raw data as
an input (value) - the key points to the offset where that part of data is found in the file. A
key can also be null and structured on the mapper.

12 Or other similar distributed file systems
13 Apache Hive helps querying and managing large datasets by defining structure

24

The main classes that form the MapReduce execution pipeline are shown in figure 5.
While there are also some optional classes used with MapReduce, the ones listed below
are non-optional [5].

Table 4: MapReduce classes

Driver Main program, initializes MapReduce job. Defines
configuration, specifies components, formats and how different
parts, e.g. mappers and reducers work.

InputData Initial storage of MapReduce task data.

InputFormat Rules for reading and splitting input data to smaller pieces. A
lot of different variations exist.

InputSplit A unit of work for a single map task in MapReduce program
(can consist of hundreds of tasks).

RecordReader Reads the data inside a mapper task, converts to key-value
pairs for the mapper.

Mapper User-defined initial phase for a MapReduce program. Takes in
key-value pairs (k1, v1) and transforms to output pair (k2, v2) for

Figure 5: MapReduce high level architecure [5].

25

shuffle and sort.

Partition Inputs to the reduce tasks. Determines which reducer the key-
value pairs are given to (one reducer for one key, multiple key-
value pairs with the same key might exist).

Shuffle When key-space for a map task is partitioned, intermediate
outputs are moved to reducers.

Sort The set of intermediate key-value pairs is sorted to (k2, {v2, … ,
v2}) before introducing to the reducer.

Reducer User-defined second phase of a a MapReduce program.
Receives a key and all the values, each key gets reduced once,
output now transforms to (k3 v3).

OutputFormat How the output is produced (by either mapper or reducer).
Defines location for output data and points the RecordWriter
for the output.

RecordWriter Defines how output records are written.

3.3.3. YARN

YARN, also called MapReduce 2.0 (MRv2), is a newer version of MapReduce that was
introduced in Hadoop-0.23. It separates the major functionalities of the job tracker,
resource management and job scheduling to a separate daemon. The idea is to have a
global resource management and per-application ApplicationMaster [5]. The data
computation network is formed by a ResourceManager and a NodeManager slave in each
node. The ApplicationMaster negotiates resources from the ResourceManager and works
with the NodeManager to execute and monitor tasks.

The ResourceManager has two separated components, Scheduler and
ApplicationsManager. Scheduler allocates resources to the running applications -
scheduling is based on the resource requirements of the applications. The
ApplicationsManager handles the job-applications, chooses the container for
ApplicationMaster execution, and restarts the ApplicationMaster container on failure. All
the previous MapReduce version jobs run unchanged on YARN.

26

3.4. Windows Azure

Windows Azure is a cloud-based platform that lets its users build applications with a
wide range of programming languages and tools of their choosing. Building, deploying
and managing applications on the platform is made flexible and efficient [40]. Windows
Azure services can be divided into 4 main categories: computing, networking, data, and
app services. These services provide a diverse stack of applications and solutions that
enable cloud-based management, data processing, storing and analysis. Below is a brief
list of features:

Figure 6: YARN communication flow [5].

27

✔ Virtual machines, web sites and mobile services

✔ Networking services

✔ Recovery, analytics, distributed data processing, variety of databases

✔ HDInsight - Microsoft's cloud-based Hadoop service

✔ Applications, caching and a Content Delivery Network (CDN)

Running along the operating system14, Windows Azure also provides its own relational
query language, SQL Azure. SQL Azure can be used to query both structured and
unstructured data. Since the query language is relational, it has mechanics to convert a
query to make it work with an unstructured dataset as well. The third entity of the
platform is AppFabric, the middleware component that includes services such as Access
Control and Service Bus [41].

HDInsight is Microsoft's cloud-based version of Hadoop15. It's a scalable PaaS -service
within the Azure platform that lets the user control Hadoop and all its components via
Windows Azure's interface. HDInsight combines Hadoop with enterprise-level security
and manageability, integrating some of the Microsoft's well-known tools, such as Excel.
It also fully supports some of the common software used in the Hadoop ecosystem, such
as Pig and Hive. Compared to administrating and managing a Hadoop cluster locally,
HDInsight eases the task significantly.

3.5. Amazon AWS

Amazon Web Services (AWS) is also a cloud-based computing platform, which offers a
range of easily scalable services on the cloud [42]. AWS has different setups and
configurations for startups, enterprises and governments, with pricing starting from free.
AWS is a whole family of services and applications that cover everything from storage to
analysis. Listed below are a few of the most well known products:

✔ Elastic Compute Cloud, EC2

Scalable cloud computing

✔ Simple Storage Service, S3

Online storage service

14 Microsoft brands the Windows Azure as the operating system in the cloud [41]
15 As of writing, Hadoop version 2.2 had just been added to HDInsight

28

✔ Cloudfront

Content delivery network

✔ DynamoDB

NoSQL database services

✔ Elastic MapReduce, EMR

Hadoop cluster -based processing service

Same as with Windows Azure, the initial setup of software and services takes only
minutes. Platforms take care of administration and configuration, providing the user with
a neat interface to control the services. Amazon guarantees reliability for their services
and products, e.g. if the monthly down time of EC2 exceeds 1%, a client is reimbursed
30% of the monthly fees.

Amazon EMR is a very easily scalable Hadoop-powered processing service. A Hadoop
cluster can be resized with a few clicks and new clusters can be added just as easily.
EMR can used in conjuction with EC2 and S3, Hadoop's HDFS and its other tools, such
as Mahout16, Pig and Hive. EMR supports a variety of programming languages, such as
Ruby, Java, C++. R can be used via Hadoop streaming [44].

3.6. Other platforms

A variety of other platforms and services for managing and analyzing big data exist.
Whereas Microsoft's Windows Azure and Amazon's Web Services provide a full-scale
cloud-based platform so that the client does not necessarily even have to worry about the
version or configuration of Hadoop, some companies have forked their own versions of
the framework or integrated it with other software. The two most notable distributions
are made by Cloudera and Hortonworks. As of this writing Doug Cutting, who initially
created Hadoop, works as a Chief Architect at Cloudera; Hortonworks is a major
contributors to Hadoop [45]. Cloudera's Hadoop distribution CDH4 comes with Hadoop
2.0, a user interface and additional security features suited for enterprises. Project
packages include e.g. Flume, Hbase, Mahout, Oozie17, Sqoop and Zookeeper. HDP-2 is
Hortonworks' distribution, includes Hadoop 2.2 with a user interface and an enterprise
suite of tools. Additional software include e.g. Hive, Hbase, Sqoop, Flume, Knox,
Ambari and Zookeeper [46].

16 Apache Mahout, a scalable machine learning library [43]
17 Apache Oozie, a workflow scheduler [47]

29

4. DATA STORING

RDBMS, relational databases and structured data have been dominating the field for over
40 years [49]. Now, when the clear majority of produced data is in unstructured form,
new solutions are needed for both storing and querying it. This section introduces some
of the existing solutions for both structured and unstructured data.

4.1. Hyperscale storage and scalability

Today, data is everything. Data equals more money and power (and in some cases other
assets, such as safety) than ever before. The core strategy for the success of many new
and young startups hovers around data, and data only. Companies, governments and
research facilities are focusing on how to squeeze every piece of data from the subjects
that are studied, tracked and reseached. Business intelligence (BI) is pushed to its limits,
mining and analyzing data to ensure a juicy annual turnover. All the new data that is
produced has to be physically kept somewhere and the system that takes care of storing it
has to be very flexible, has to run impeccably and, most of all, has to be effortlessly
scalable. Data-intensive solutions and applications are built on a very scalable
architecture. For most, a distributed storage or cloud-based service is enough, but
companies with colossal amounts of data in their possession and whose daily data
production is measured in hundreds of PBs need something else. Some of the bigger
players, such as Google, Amazon, Yahoo! and Facebook, set their own datacenters across
the world at strategically sound spots. Their data is centralized in multiple datacenters all
over the world and for preventing the loss of data, it gets duplicated over multiple
datacenters [16]. As of writing, Google for example has 12 datacenters, located in Asia,
the Americas and Europe.

Hyperscale data centers have an architecture that is designed to provide a single,
massively scalable computer architecture [38]. Data centers have a large amount of
commodity servers (more simple and cheap machines is better than fewer high-end
machines [16]) that are bundled to clusters and managed as singles systems. Most startup
companies begin with smaller setups but (can) grow extremely fast, creating a need for
flexible architecture for storage. On a (local) Hadoop cluster, scaling is pretty
straightforward. A new DataNode can be set up by installing Hadoop to a server,
configuring it and adding the new node to NameNode's (master node) slaves-list. Now
both storage capacity and processing power have been added to the cluster. Data is
evenly spread throughout the cluster and replicated to multiple servers and stacks.

Both Windows Azure and Amazon AWS, mentioned in the previous section, would meet
the needs of a fast-paced, growing young company with their affordable pricing and
painless scalability. Cloud-based storage is getting more and more popular and some

30

predictions state that by 2020 one third of all data will either pass through or live in a
cloud [49]. For a relatively small amount of money a company will have the maintenance
of their databases - which in many case are the most valuable asset of a company -
covered, with security and backups ensured, at least mediocre interface to the data,
scalability with a few clicks, and very good server up-time.

4.2. RDBMS and SQL

Relational databases and database management systems have been the dominant storage
choice for decades. The relational model was created by E. F. Codd in 1970 [50] and was
quickly adopted by database researchers and companies. In the relative model, all data is
stored in tuples that follow the same pattern and have the same amount of components.
Tuples are linked to others by a primary key and foreign keys and each attribute has to be
atomic. A database is made up of tables, where each tuple makes a row. Data can now be
accessed and queried by SQL using their primary and foreign keys and attribute names.

Table 5: An example of SQL table contents

table 'employee_details'

id first_name last_name age weight_kg height_cm

1 John Doe 34 68 186

2 Jane Doe 33 124 151

If the height of Ms. Jane Doe in table 5 should now be queried, the SQL query would be
formed as:

SELECT height_cm

FROM employee_details

WHERE first_name ="Jane"

AND last_name ="Doe";

Today a vast variety of different open-source and commercial RDBMS and SQL software
exists. Open solutions are very popular and are widely used across different-sized IT
companies. According to a website that tracks database usage, as of writing the top three

31

most used database engines in order are Oracle, MySQL and Microsoft SQL Server. Of
this list, MySQL is open source, while Oracle and Microsoft SQL Server are commercial
software and mostly used in enterprises. SQL in general is very fast, thanks to its
structured form. Data in the database can be written, read and updated unlimited times
very efficiently. RDBMS and applications that use it are usually focusing 'ACID'
-transactions [51]:

✔ Atomicity: If any part of a transactions fails, it's cancelled

✔ Consistency: Database has to remain in a consistent state

✔ Isolation: Transactions should not interfere

✔ Durability: Persistence of completed transactions

On the minus side, SQL does not scale that well, which can be crucial for companies that
rely on a rapidly growing database. As a solution, NoSQL (storing and querying massive
unstructured datasets) was created.

4.3. NoSQL

NoSQL was created to meet the needs of the maturing internet and the services bound to
it - in short, scalability. Even its name includes SQL18. NoSQL doesn't follow the
relational database model - it more like filters the databases that are not using the
relational model. As mentioned earlier, the ACID-bound transactions wouldn't work on
large datasets and in distributed systems consistency is simply not possible. The NoSQL
system follows the BASE -transaction model, which can be listed as [51]:

✔ Basic availability: Successful or failed response is guaranteed

✔ Soft state: State of the system can change without any input

✔ Eventual consistency: System can be temporarily in an inconsistent state

With ACID changed to BASE, on top of learning new technologies, additional hardship
might arise from changing how one thinks of the data, of querying and storing it. For
programmers that have worked with SQL databases for a long time, the new paradigm
can be confusing. In a NoSQL system, storage types, features and attributes differ from
each other. Below is a short introduction of each and a few examples of products that use

18 Different meanings of the name exist

32

it [52]:

✔ Document databases

Loosely structured set of key - value pairs in (usually JSON) documents

Simple and efficient model

MongoDB, CouchDB

✔ Graph databases

Data nodes and their relationships

ACID / RDBMS compliant, complex

Neo4J, FlockDB

✔ Key-value stores

A hash table of (unique) key - value pairs

Easily scalable

Oracle Berkeley DB, Amazon Dynamo, Redis,

✔ Column-oriented stores

Set of key - value pairs in columns, no empty values stored

Semi-structured data

Google Big Table, HBase

4.4. Apache Hive

Apache Hive is a distributed data warehouse built on top of Hadoop. It provides an SQL-
like interface for querying and managing data in distributed storage, such as HDFS or
HBase; queries are then translated to MapReduce jobs on the run. Hive is not built for
real-time queries, so underlying Hadoop's infrastructure and MapReduce can cause
substantial latency. It's best used as a batch-oriented tool for bigger data sets, since for
smaller data sets traditional RDBMS easily outperforms Hive [7]. Since Hive is meant to
be used with larger data sets, it performs on par with Hadoop and MapReduce.

Hive's query language is called QL. QL enables both an SQL-like approach and custom
mappers and reducers from the MapReduce framework. As shown in table 6, Hive data is
divided into 4 different organizational mechanisms:

33

Table 6: Hive data mechanisms

Databases Namespaces that separate tables and other data units.

Tables Units of data with alike schema (similar to RDBMS table
structure)

Partitions 1 or more partition keys on each table for determining how the
data is stored. Allows user to identify rows that satisfy certain
criteria.

Buckets Partitions can be divided into buckets based on the hash function
of a table column.

Hive metadata is stored in MetaStore, which is a relational database containing the Hive
schema. MetaStore synchronizes itself with the rest of the metadata componenst of
Hadoop framework.

4.5. Apache HBase and ZooKeeper

As we learnt on earlier pages, HDFS's architecture supports only the "write once – read
multiple" type of data access. To overcome the constraints of HDFS's sequential data
access, HBase adds an additional layer of data accessibility to Hadoop. HBase runs on
top of Hadoop, providing near-realtime, table-organized read-write access to both the
structured and unstructured data it holds.

HBase is an implementation of Google's BigTable, a version that is better suited for
Hadoop. Like HDFS, HBase uses master-slave architecture and the data management is
distributed and controlled by HBase master (HMaster). HBase implementations generally
use mostly denormalized data so they can take advantage of HDFS's features, such as
replication and failover. However, it doesn't support secondary indexing nor transactions
- its strength lies in Create, Read, Update and Delete (CRUD) operations.

When storing a table, HBase partitions the table into regions depending on size. Every
region gets sorted and randomly distributed among the region servers. When creating a
new table entry, HBase chooses the region server and writes it there. If, however, the size
does not correlate with the previously set size limits, the table is split automatically.
When a read or update happens, HBase directs the client to the correct region server and
the region server manages the actual read / update operation.

Distributed HBase relies on a Zookeeper cluster. The cluster is managed by HBase and it

34

starts and shuts down with HBase. Zookeeper is a synchronization service, where
multiple nodes of Zookeeper units19 connects the client to the HMaster. The Master
Zookeeper unit is chosen by the consensus of the Zookeeper units. If any of the
Zookeeper units should fail, a new master unit is chosen by the consesus of the rest of the
units. When a client writes to the ensemble, every unit within the ensemble receives the
data and the master unit is responsible for writing the data to the file system. In this way
every write synchronizes the master Zookeeper unit and the (region) server.

19 A cluster of Zookeepers is called an 'ensemble', where a Zookeeper unit is a separated
machine / server. An ensemble has to comprise at least 1 unit.

Figure 7: High-level architecture of HBase [4].

35

The high-level architecture of HBase can be seen in figure 7. A few components that
have not yet been mentioned are Memstore (key-value data cache for improved
performance), WAL (Write-Ahead-Log; keeps track of data changes to ensure correct
functionality during possible server failures) and HFile (reads and writes to and from
HDFS).

36

5. PROCESSING THE DATA

Data processing and analysis consists of numerous methods and paradigms. This chapter
goes through some of the common ones and outlines applications and tools that have
been globally used in data processing and analysis for years.

5.1. Data processing, analysis, and visualization

Traditional data analysis consists of mostly statistical methods, and they vary quite a lot
from the methods used with big data analyzation. However, depending on data and the
task, traditional data analysis methods can be used to analyze larger datasets as well. The
most common traditional data analysis methods are listed in table 7 [23]. Cluster analysis
is a statistical method for grouping objects. Factor, correlation and regression analysis
focus on the relations of the elements, A/B testing compares two elements, statistical
analysis uses statistics and probability, and data mining uses different algorithm for
gaining new information from random and fuzzy data.

Table 7: Description of some of the most widely used traditional data analysis methods

Cluster analysis Method for differentiating objects with particular
features and grouping them into clusters according to the
features. No training data.

Factor analysis Grouping closely related variables into a factor and then
using the factor to reveal the information from the data.

Correlation analysis Analytical method for determining relations, such as
correlation and mutual restriction on sampled data and
conducting forecast accordingly.

Regression analysis Tool for finding correlations between variables,
identifies dependance relationships among variables.

A/B testing Methods for comparing target variables against test
variables.

Statistical analysis Analysis based on statistical theory, randomness and
uncertainty are modeled with probability theory.

Data mining Process for extracting previously unknown information
from datasets.

37

Methods for processing larger data sets differ quite a lot from traditional data analysis
methods. Some of them are listed in table 8 [23].

Table 8: Description of techniques used to analyze large data sets

Bloom filter Tests whether an element belong to a set comparing hash
values of data other than self in a bit array.

Hashing Transforms data into fixed-length numerical or index
values.

Index Data structure for indexing some of the data, can be used
for both structured and unstructured data.

Triel Variant of a hash tree that utilizes common prefixes of
character strings to reduce comparison.

Parallel computing Utilizes multiple computing units instead of one.
Problem is divided to multiple pieces and solved
independently in parallel.

As mentioned before, in some cases traditional methods can be used for big data analysis
as well. By default, however, large and unstructured datasets are best analyzed using
methods that are solely created for that purpose. Bloom filters store hash values about
other entities of data. Hashing is a simple and efficient method that reshapes the data into
index or numerical values. Indexing comes with the price of extra storage load, but is
very efficient. Triel focuses on word frequency statistics and rapid retrieval. Parallel
computing divides a task among processing units.

38

Data analysis research can be divided into different technical fields. The division tries to
separate the data (and the research) into different characteristic entities and keep the
research focused on a narrower subset of the whole field. Even some of the methods
overlap. The basic separation of fields can done as seen in table 9.

Table 9: Fields of research in the field of data analysis

Structured data analysis Business and research -produced structured data;
analysis mainly based on data mining and statistical
analysis.

Text data analysis Includes emails, logs, social media and web pages,
making the textual information the most common
format of stored information. Extracts useful
information from unstructured text. Involved
techniques and processes include machine learning,
data mining, statistics and computational linquistics.
Most text analyzing systems are based on natural
language processing (NLP).

Web data analysis Automatizes information retrieval, extraction and
evaluation from web documents and services for
knowledge discovery. Closely related to other
research fields, such as database, NLP and text
mining. Web data analysis consists of three main
sub-fields - content, structure and usage mining.

Multimedia data analysis Mainly analysis of images, videos and audio. Due to
the rich character of information, multimedia data
analysis is very challenging. Uses metadata for
syntax and context. Elements such as words,
sequences and texts are used to extract information.

Network data analysis Extracts and analyzes internet-produced networking
information, e.g. from websites / companies such as
Twitter, Facebook and LinkedIn. Massive amounts
of data mostly in describing connection between two
peers. Predicting new connections and communities,
the evolution of the network and social influences
are the main fields of analysis.

Mobile data analysis Analyzes the mobile application produced data, such
geographical information, mobile communities with
similar interests.

39

5.2. Data mining

Data mining is a major part of data analysis. It is a process in which previously unknown
patterns and actionable information are extracted from raw data [21]. The data mining
process has been progressively gaining interest for over a decade, and companies of
various sizes are giving the field more attention. The foundation of data mining lies in a
few different fields, such as data reduction, probabability theory, and microeconomics.
Most of the time, data is pre-processed before the actual mining starts and, if needed,
transformed to more suitable format, e.g. via normalization. Data pre-processing is the
most crucial part of the process, since the data that gets stored is usually very distorted
and noisy. There are a lot of different techniques to achieve this goal. A mathematical
approach, such as histograms, maximums and minimums or using human logic (e.g.
sex=male, pregnant=yes), filling in the missing values, and so forth.

Figure 8: Different entities of a mining system.

Different steps for making the raw data useful, i.e. gaining insight and actionable
information from the dataset, are shown in table 10. One example goes from building a
model with existing data to comparing it with new data and finally using the discovered
information to predict future events [21].

Table 10: Different steps of mining

1. Model Building a model for a solved problem → using the model to
solve an unsolved problem

2. Discover Discovering previously unknown patterns / gaining information
about something seemingly unrelated

3. Predict Predict the forthcoming using the previously found information

40

Data mining can be divided into different sub-categories and directions depending on the
approach to modeling and the field. The most common directions for modeling today are
statistical data mining, machine learning data mining, and computational data mining
[22]. Statisticians were the first ones to model the data, calling it "data mining". The term
data mining was first used in a derogatory way to talk about extracting data that wasn't
present in the dataset. Today statisticians see data mining as an underlying distribution of
data that the visible data is based on. Some see data mining as a synonym for machine
learning, where the dataset is used to train the algorithm, e.g. through Bayes nets and
hidden Markov models. The newest approach to the field is computational data mining,
which sees data mining as an algorithmic problem. In general, data mining consists of 5
major elements:

✔ Transform and load the data into a system (warehouse, datacenter, DFS etc)

✔ Store and manage the data

✔ Provide access to the data for business analysts and other professionals

✔ Analyze the data

✔ Present the data in a useful format

Architecturally a typical data mining system consists of the components shown in the
following figure. Different setups, programs and systems can be built somewhat
differently and they can be programmed for more specific tasks. Some Hadoop modules,
such as Hive and Mahout, are suitable tools for data mining. Hive can ease mining tasks
by providing its own SQL-like language, QL, which fully supports MapReduce. Mahout
adds machine learning capabilities with clustering and classification to the mining
process.

41

Figure 9: Example architecture of a data mining system.

Table 11: Responsibilities of the components of a data mining system

User interface User-specified queries and data mining tasks.

Pattern evaluation Employs interestingness measures of a pattern and
interacts with data mining engine and knowledge base.

Knowledge base Interestingness of different patterns, concept
hierarchies, user beliefs etc.

Data mining engine Consists of different functional modules for tasks, such
as association, characterization and cluster analysis.

Data server Fetches relevant data according to the user requests.

Data repository One or more databases, a data warehouse, datacenter,
cloud-based service etc.

42

5.3. Analytical tools and applications

Some commonly used data processing and analytical tools are described below. In the
implementation part of this thesis, R played the main role in analysis.

5.3.1. R

R is a high-level statistical language and a computing environment that was derived from
the language S (most of the system-supplied functions are written in S [37]). R has grown
to be one of the most used statistics and analysis softwares, partially due to the fact that it
is open source, has a big active community, and includes thousands of custom-made
packages. According to the survey “What Analytics, Data mining, Big Data software did
you use in the past 12 months for a real project?”20, R was the most used tool for
analyzing and visualizing big data among the survey participants in 2012 [23]. Tiobe.com
(Programming community index) has also steadily ranked R as one of the most popular
programs in the field, even surpassing commercial softwares such as Matlab and SAS.

The most important tool for using R is the console. GUI has very limited set of features
and functionality, which means all the real work is done via console. Using the console is
very straightforward: the user types the command and hits enter, R prints the result to the
screen. Mathematical operations, setting variables, declaring functions and data
structures, etc. can be done quickly and easily. Technically, everything the user types is
an expression [32]. Below is a short example of how R takes the expression and what it
prints as an output.

20 By KDNuggets

43

Table 12: Few examples of R console commands

Expression Output

Calculations 1+1*2 3

Sequences 1:5 1,2,3,4,5

Vectors c(1,2) + c(3,4) 4,6

Functions cos(3.141593) -1

Variables x <- 4 [user types x and enter]
4

Data structures a <- array(c(1,2,3,4,5,6) [user types a and enter]
1 3 5
2 4 6

Objects o <- list(item="bike",
price="80")

[user types o$item and enter]
bike

R can be run in batch mode, which means a sequence of commands can be saved into a
file and used later for more complex processing, dramatically hastening the process
compared to typing every command one by one. R can also be run as a web application21,
a server22 or inside Emacs23. R includes several default packages for visualizing data.
With these packages, the user can e.g. draw all the Microsoft Excel / Apache Open Office
Spreadsheet -type charts and plots [31]. The default packages are usually everything the
user needs - they are very feature-rich. New packages can be installed via the Graphical
User Interface (GUI) or console. RStudio24 introduces an integrated development
environment (IDE) for R, which grants the user a whole new world of visual information,
usability, and performance.

Using R with large datasets involves a few additional steps. R alone is not very well
suited for handling huge loads of data, but combining R with custom packages and
additional software makes it a very efficient analytics tool for big data. PbdR, which
stands for 'programming with big data in R', is a set of packages that extends R's core
functionality to parallel execution on multiple cores by introducing external libraries to
R. R can be also bundled with Hadoop. RHadoop is a collection of four R packages that
allow users to manage and analyze data with Hadoop [34, 35, 36].

21 RApache, http://rapache.net/
22 RServe, http://rforge.net/Rserve/
23 ESS, http://ess.r-project.org/
24 RStudio, http://www.rstudio.com/

44

5.3.2. Apache Pig

Apache Pig is an execution platform and high-level scripting language (Pig Latin) for
analyzing large datasets. Pig scripts run on HDFS and MapReduce clusters, or locally on
a single machine where HDFS or MapReduce are not required. Pig's compiler translates
Pig Latin into sequences of MapReduce programs. Pig Latin's high level of
parallelization and ease of use makes it very popular among Hadoop users.

PigLatin allows users to describe the dataflow, i.e. how data from one or more inputs
should be read, processed and stored to one or more outputs [24]. Dataflow can be
everything from a simple linear word count to a more complex set of joined inputs and
split streams of data sent to different operators. The presence of typical programming
language elements, such as conditionals, are missing. Pig Latin focuses on data flow, not
control.

Instead of using MapReduce directly, using it through Pig provides many advantages. Pig
Latin scripts manage MapReduce jobs and the three main tasks involved: map, shuffle,
and reduce automatically. It also provides all the necessary data operations, such as join,
order by, and union. Using MapReduce e.g. for grouping is possible (that's what shuffling
and reducing basically do), but more complex tasks, such as join, must be custom-
programmed by the user. Table 13 quotes the 'Pig Philosophy' [25] directly, pointing out
a few of the most important aspects of Pig.

Pig comes with its own shell, Grunt, which enables the user to communicate with HDFS
straight from the shell25. In addition, Pig itself and MapReduce can be controlled via
Grunt. For the most part, Pig is a strongly typed language - this is, if the schema is
defined. Without defined schema, adaption to the actual type will happen in runtime. Pig
Latin is case sensitive. One of the most powerful features of Pig is the user-defined
functions (UDF). UDFs can be written in Java or Python (executed in Jython26). User-
created UDFs are stored and collected in Piggybank. They are not included in PigJAR by
default, so they need to be registered manually. There is also a Pig Eclipse plugin,
PigPen, that provides a powerful IDE [26].

25 After version 0.5, all the Hadoop's fs shell commands are available
26 Python for the Java Platform, http://www.jython.org/

45

Table 13: Pig's features [25]

Pigs eat anything Pig can operate on data whether it has metadata
or not. It can operate on data that is relational,
nested, or unstructured. And it can easily be
extended to operate on data beyond files,
including key/value stores, databases, etc.

Pigs live anywhere Pig is intended to be a language for parallel data
processing. It is not tied to one particular parallel
framework. It has been implemented first on
Hadoop, but we do not intend that to be only on
Hadoop.

Pigs are domestic animals Pig is designed to be easily controlled and
modified by its users.

Pig allows integration of user code wherever
possible, so it currently supports user-defined
field transformation functions, user-defined
aggregates, and user-defined conditionals. These
functions can be written in Java or in scripting
languages that can compile down to Java (e.g.,
Jython). Pig supports user-provided load and
store functions. It supports external executables
via its stream command and MapRe- duce JARs
via its mapreduce command. It allows users to
provide a custom partitioner for their jobs in some
circumstances, and to set the level of reduce
parallelism for their jobs.

Pig has an optimizer that rearranges some
operations in Pig Latin scripts to give better
performance, combines MapReduce jobs
together, etc. However, users can easily turn this
optimizer off to prevent it from making changes
that do not make sense in their situation.

Pigs fly Pig processes data quickly. We want to
consistently improve performance, and not
implement features in ways that weigh Pig down
so it can’t fly.

46

5.3.3. Splunk

Splunk started as a text analyzer for logs but has grown out to be a whole platform. Its
main functionalies are [27]:

Table 14: Functional entities of Splunk

Data collection Both static data collection and monitoring and adding
changes to files and / or structure real-time. Data can
be collected from network ports, programs or scripts
and relational databases. Other RDBMS functions are
also possible.

Data indexing Collected data is broken down into events; it's
processed and the high-speed index is updated.

Search and analysis The Splunk Processing Language lets the user search
and manipulate data for the desired results. Results
can be presented as events, tables and charts.

Splunk can be used via browser-based user interface or directly by using the command
line client. Splunk can be configured and used very easily through graphical user
interface. It can handle most of the different data types that are thrown to it, including
different kinds of log files, network feeds, system metrics, structured RDBMS data, and
social data. Initially Splunk has to be configured with the different types of data, each
type becoming its own data input. Data can be local or remote and the data can be loaded
in as files and directories, network sources, windows data, or other. Splunk can be
enabled to accept input from a TCP or UDP port. When enabled, Splunk will index
incoming network data, such as syslog information that is generated on remote machines.
Splunk is also designed as an infrastructure where third party apps and users can write
their own scripts on top of the default mechanism, to get data from sources that are not
included in the initial setup.

To get the data from all the instances and machines e.g. in an enterprise, Splunk has a
special setup called forwarders. Forwarders include only the essential components, and
their main responsibility is to send data from the parent machine to the main Splunk
indexer. Using forwarders is the best practice for using Splunk. Using forwarders users
gain many benefits, such as:

47

✔ Automated buffering of remote data

✔ Support of add-ons

✔ Remote adminstration

✔ Secure data transfering

✔ Well suited for scalability

Splunk also has an additional platform, Hunk, that runs on top of Hadoop. It's built to
rapidly explore, analyze, and visualize the data in Hadoop [28]. Hunk works seamlessly
with YARN and MapReduce. It focuses on making the analysis of data smooth and user
experience-oriented. Features such as integrated analytics, fast deploy and deep analysis,
interactive search, and results preview make Hunk a full-featured platform for Hadoop.

5.3.4. D3.js

D3 is a Javascript-heavy client-side visualization tool for manipulating documents based
on data [29]. Compared to other (actual) analysis tools, D3 is clearly a lighter solution
and is meant solely for visualizing the data on the web browser. D3 greatly helps the user
analyze the data; a dynamic and interactive library with hundreds of pre-built functions
enable the user to inspect and modify the object document model (DOM) of the HTML
page containing the loaded data [30]. Since the presentation happens on a web page,
HTML 5 techniques and CSS are widely used to create the highly visualized models. D3
includes following visual presentation tools:

Table 15: D3 visualization tools

Transitions Interpolation of e.g. color, size, location etc.

Mathematical functions 2D transformation, different distributions.

Arrays 3D operations.

Geometry Polygons, convex hull, marching squares etc.

Color Manipulation of tones, brightness etc.

48

5.3.5. Google Prediction API

Google Prediction API is a cloud-based analysis tool that uses machine learning to
estimate and predict results according to the data uploaded to Google's RESTful API. The
user does not need to know anything about artificial intelligence (AI) or machine
learning to be able to use the tools. They are very easy to use and straightforward.
However, the simplicity and the cloud-based approach limits Google Prediction API's
usefulness for bigger and more complex queries.

A user first needs to upload the training data to the Goole Prediction API (the user must
have a Google account and Google developer's console with Google Prediction and
Google Cloud Storage activated) and train the system according to the uploaded data.
The format of the training data is a comma-separated two- or more column and multiple-
row text file, where the first column is the correct answer and latter columns are features
the system gets trained with. When the system is trained, the user can start sending
queries with similar content as the ones the system was trained with, minus the first
column.

5.3.6. Google BigQuery

Google BigQuery is an online query service for massive datasets. It is an external
implementation of one of Google's core methodologies, Dremel, and according to
Google, it can scan 35 billion rows of unindexed data in some tens of seconds [53].
BigQuery lets the user do SQL-like queries of the data, which has been uploaded to the
Google servers beforehand. Synchronous query requests are stored for 24 hours.
BigQuery is accessible via Google's bundled internet-based tools user interface or a
command-line tool. BigQuery also has a REST API that supports variety of languages,
such as Java, Python and Ruby.

49

6. IMPLEMENTATION

The implementation part of this thesis consists of a Hadoop cluster used together with R
and Matlab. R is used to control and command both Hadoop (HDFS and MapReduce) for
storing and analyzing the data and Matlab acts as a server for processing Matlab
functions, reading .mat -files, and embedding the functionality and power of Matlab to R
via R's external libraries. The cluster built was used to analyze two datasets - 2 months'
worth of cellular (840 - 902MHz) data band findings from long-term spectral occupancy
data used by Global RF Spectrum Opportunity Assessment and open weather data from
weatherunderground.com.

50

6.1. Goals of the implementation

The goal of this implementation was to set up a Hadoop cluster in the network of Oulu
University, gather data and analyze it by using the cluster, and draw conclusions based on
the outcome. The implementation serves as a test platform and initial setup for Global RF
Spectrum Opportunity Assessment for their forthcoming research, and the analysis
results should give ideas and directions regarding what kind of solutions would best meet
their needs. Secondly, using the results from the analysed data that was processed during
the implementation, the author of this thesis tries to prove whether the initially set
hypothesis is right or wrong.

6.2. The implementation

The initial test version, a single-node Hadoop 2.2.0 installation, was set up on a local
Ubuntu-powered PC. As soon as that version was up and running with R and Matlab, the
setting up of the real implementation cluster started. The cluster was set up on the Virtues
network, which serves as a testbed for research and study projects in the information
processing and computer engineering laboratories in Oulu University. Th network uses
virtual servers with CentOS 6.5 and the implementation project was granted 3 of them.
Initially the servers had only 2GB of RAM each, but during the implementation phase
the amount of memory was first doubled to 4GBs, then finally to 8GB on every server
due to problems with Hadoop. SSH connection via terminal (both on Ubuntu and OS X)
was used as the only interface to the network.

Hadoop installation itself is quite a straightforward task (all the installation steps and
commands are attached as appendices). As Hadoop was installed and configured, R was
set up and tested (every server). Then Matlab was installed to the server, which acted as
the NameNode / master node of the cluster, by the administrators due to licensing issues
(Matlab is commercial software). When Matlab was tested and working, all the necessary
R packages for both Hadoop and Matlab were installed on the master node. These
packages included:

✔ Rcpp

✔ RJSONIO

✔ Digest

✔ Functional

✔ Stringr

✔ Plyr

51

✔ Bitops

✔ Reshape2

✔ rJava

✔ caTools

✔ Lattice

✔ zoo

✔ xts

✔ R.methodsS3

✔ R.oo

✔ R.utils

✔ R.matlab

✔ rmr2

✔ rhdfs

✔ rhbase

Figure 11: Main components of the nodes in the cluster.

52

Now R was capable of controlling the Matlab server and communicating with it (this had
to be done in separate terminal windows, one running the Matlab server and another
running R). R was also ready to control HDFS (rhdfs) and MapReduce (rmr2).

The spectral occupancy data was gathered and stored in files on a file-per-day basis in
HDF5-format. Matlab functions for extracting necessary information from the HDF-5
files were provided and the first step of the analysis was to process the HDF-5 files with
Matlab using R to get the data from the files to the R environment. Initially the R code
for processing the HDF-5 files was developed and tested by using one HDF-5 file only.
A loop that reads every file from a folder and combines the results to one R variable was
developed but was not taken into use, since one HDF-5 file was enough for the
development and testing phase (reading all the HDF-5 files took quite a bit of time).
When the final variables for plotting were constructed, an hourly moving average of the
time series (power and occupancy) was processed by R and timed for the later
comparison. When the first part, which was considered to be the reading and extracting
of information from the HDF-5 files with Matlab and the calculating of the moving
averages with R, was completed and the gained information was plotted (average PSD,
power and occupancy times, and duty cycle) and stored as R -variables, development
continued with the weather data. This whole process was also timed.

Matlab functions for weather data were once again provided. Functions could be run
manually to fetch measurements after the needed arguments had been set. Fetched data
got stored in .mat -format, meaning it had to be read to R variables once again by using
the Matlab server with R. The resulting R variables got stored in HDFS using R's HDFS
package (rhdfs), which doesn't support actual big data and is suitable only for smallish
files. Since the weather data itself was not massive, it was a good candidate to test R's
HDFS capabilities. Weather data was stored in files with a month's worth of
measurement data from a single location per file. Originally there were four files - two
from Chicago and two from Turku (December 2013 and January 2014), but in the later
phase of development the data from Turku was dropped, since it did not relate to the final
resulting analysis. After the weather data got stored as R variables in HDFS, it was read
once more and plotted - initially as a plot per month, but it was later merged as one plot
for the whole measured period.

In the final phase, a MapReduce code for calculating hourly moving averages for two
months of spectral occupancy data (for power and occupancy) data was built. Making
MapReduce work on all three nodes of the cluster was very painstaking and took a huge
amount of time in total - most likely over half of all the time spent on the
implementation. More details about these issues will be presented in later chapters.
Theoretically the code is very simple. Before MapReduce the input data is pre-processed
to contain dates and hours as keys instead of the timestamps of when a single
measurement was taken. On the mapper part, both power and occupancy calculations are
constructed to value vectors for a unique date-hour key and forwarded to reducer. A
reducer gets one unique key with a vector of values mapped to it at a time; it calculates
the mean value and stores the result. When both mapper and reducer were done, the final

53

resulting data frame with date and hour as a key and mean value of all the measurements
of that hour were constructed. Both processes got timed, a little bit of post-processing
was done to the resulting data frame, and the results were plotted. In figure 11 the cluster
node setup is seen.

6.3. Analyzed datasets

Datasets used in this thesis included the long-term spectral occupancy findings from the
observatory of IIT (Illinois Institute of Technology) along with open weather-related data
from weatherunderground.com (data was gathered from Chicago, IL, US). It should be
noted that from the full spectrum of 30MHz to 3Ghz of the spectral occupancy data only
the cellular band, 840 - 902MHz, was extracted and used for the analysis. Signals were
analyzed from December 1, 2013 to January 30, 2014. This time window was chosen
because of the unusually cold winter and heavy snowfall in the Chicago area around
Christmastime in 2013. The unusually cold weather front that followed the snow storm
amplified the already problematic conditions. Since the situation grew somewhat chaotic
during the snowfall, a hypothesis was set that it should be reflected on the spectral
occupancy (cellular band) as well.

6.4. Details and results of analysis

First the datasets were analyzed using Matlab, R, and a few of its external packages.
After that the spectral occupancy data was analyzed once more using MapReduce on a
Hadoop cluster. Due to the size and simplicity of the weather data, it was only analyzed
by R. Weather data was in the Matlab .mat -format and had to be converted to R variable
before processing. All virtual machines used in the analysis were running on the Virtues
network. The performance of the spectral occupancy data analysis both with R and with
MapReduce were compared and the resulting data was plotted. Exact instructions and
code regarding how to replicate the analysis steps and results can be found in appendix
5. Complete setup guides for virtual machines and the software used are explained step
by step in appendices 2, 3 and 4.

From the technical point of view, the sample size of the data used for the analysis was
clearly too small to gain benefits from HDFS and Hadoop's parallel execution. Also,
when analyzing data with MapReduce, it was basically already in structured form.
Virtual machines and the Virtues network also posed problems for the communication
between the Hadoop nodes, constantly running out of memory or hitting a blocked port.
If the amount of data had been 10-50 times bigger (the largest matrix / variable size was

54

around 500MB), the situation would have been different. It should be noted, however,
that in that case the data would have been in HDFS at the time of analysis and would
have been written there by a tool meant for writing big data, such as Flume or Sqoop.
That was out of the scope of this thesis, and in this implementation, spectral occupancy
data was stored as variables in the R environment and passed to HDFS / MapReduce via
RHadoop's RMR2-library.

The weather dataset had average values calculated along with the hourly measured data;
the former were used in the analysis. The spectral occupancy data was initially stored on
a file-per-day basis. To be able to analyze the full time window, separated files and the
data within were first read and processed one by one using Matlab functions provided by
Global RF Spectrum Opportunity Assessment. After this, the resulting arrays and
matrices were stored as R variables. The time series (occupancy and power) were then
processed further by calculating an hourly moving average (both with R and
MapReduce) and the process was timed. As a final step the resulting values were plotted.
The timed results can be seen on the table 16.

Calculations of the moving averages went pretty much as expected. Because of the
extended time spent configuring Hadoop and trying to fix problems, it became fairly
obvious that the time spent calculating moving averages with MapReduce will be
multiple times slower than doing the same with R. However, the results were surprising,
since the time it took for MapReduce to calculate moving averages was excruciatingly
slow - nearly 1000 times slower on a power time series. Tens of different kinds of
configurations were tried on all 1 to 3 nodes, but nothing seemed to help. Results seem to
back up the verdicts of the previous group who was configurating Hadoop at the
university and who shared some insight with the author - Hadoop on this kind of
environment and servers is slow. At the end of the day, the cluster did not get to work
with a 100% success rate. Jobs still failed seemingly randomly and the slowness of the
servers indicate there might be something wrong with Virtues itself. If one has patience
enough though to wait for nearly ten-minute cycles for MapReduce processing, the jobs
will eventually succeed.

Times of the initial Matlab to R calculations can be seen in table 17. Timed results for
weather-related calculations can be seen in table 18.

55

Table 16: Comparison of processing times

Timed action Time

Moving average with R, time series power 0.42s

Moving average with R, time series occupancy 0.64s

Moving average with MapReduce, time series power 389.63s

Moving average with MapReduce, time series occupancy 388.23s

As the plotted data shows in figure 9, the occupancy of the cellular band does peak
around Christmas. Over the time analyzed, band occupancy ranges from around 60% to a
bit over 70% after Christmas (December 25). On the weather data plot for Chicago, the
highest snow depth is recorded in the middle of December. The average temperature
fluctuates quite a lot but dips below the average low (-7.2°C in December)27 a few times.
On top of this, the speed of wind is pretty fast for such cold weather. Results of the
analysis as a whole, however, are not exclusionary enough to state the obvious
correlation between cellular occupancy and the abnormal weather. The peak in the
occupancy time series can at least partially be explainened by the Christmas holidays and
nature of the family-oriented celebration. Duty Cycle stays on 100% for almost the full
width of the band, only coming downwards on both ends. That should not indicate
anything special or steer the analysis to any particular direction. On the average power
spectral density plot, two somewhat wider waveforms can be spotted on bands 868 -
880MHz and 882 - 890MHz. There's also waveforms on 863 - 865MHz and 851 -
856MHz.

In figure 12 the calculated average hourly occupancy of the cellular band over the time
window of two months is plotted. Figure 13 shows the integrated power of the band over
the time window. Figure 14 shows the percentual duty cycle over the cellular band and
figure 15 shows the average spectral density over the band. Figure 16 combines weather
findings from Chicago. Table 15 shows the processing time for spectral occupancy
Matlab file conversion to R variables and finally table 16 shows times for previously
mentioned weather-related processes. As a side note, about a day's worth of
measurements around January 13-14 seem to be missing.

27 http://www.climate-zone.com/climate/united-states/illinois/chicago/index_centigrade.htm

56

On the calculations, a threshold of 10dB (offset, get_integrated_signal_time_series) and
4dB (tolerance, get_noise_floor) were used.

Figure 12: Cellular band (840 - 902MHz) occupancy.

57

Figure 13: Cellular band (840 - 902MHz) integrated power.

58

On the calculations, a threshold of 10dB (offset, get_integrated_signal_time_series) and
4db (tolerance, get_noise_floor) were used.

Figure 14: Duty cycle of the band.

59

Figure 15: Average power spectral density.

60

Figure 16: Chicago weather measurements.

61

Table 17: Processing the spectral occupancy data

Calculating and converting Matlab files to R variables 867.21s

Table 18: Processing the Chicago weather data

Reading .mat files and converting them to R variables,
storing variables in HDFS

440.5s

Reading data from HDFS and plotting them 30.5s

Everything altogether 471.056s

6.5. Post-thesis considerations

If the university or The Global RF Spectrum Opportunity Assessment want to use
Hadoop for their projects, a few things should be considered. First and foremost, the
amount of data needs to be big, with a minimum starting from a few GBs to make
Hadoop and MapReduce useful. The system should also be able to store large-scale data
in HDFS without the medium-layer that was used in this work (manually processing /
reading the data, putting together files and variables and then storing it in HDFS). Tools
such as Flume or Sqoop would help a lot with populating HDFS.

The environment where the cluster runs should be fully manageable. If the administrators
are not the same people who manage the cluster, they should have relatively good
knowledge of the Hadoop cluster running in their domain, its needs and constraints for
the network. In this implementation, the whole solution was running in a multi-purpose
network. That should not be the case for a real-world solution, which should be
configured only for the cluster.

Additional tools, such as HBase for random reading and writing, should be considered.
Most likely there will be a time when the part of the data needs alteration or access and
MapReduce's capabilities are not very strong in that area. The data that enters the HDFS
could possible be pre-processed, if it would be logically reasonable due to the volume
and nature of the data. That would make the later processing quicker and easier.

If it would be possible, using only either Matlab or R would cut one extra layer off from
processing the data. In the implementation, the amount of data was relatively small and
the interoperation of R and Matlab worked incredibly well, but it could become a bottle
neck with files sizes of e.g. TBs. Also, the cluster consisted of only two slave nodes.
When moving from a single-machine Hadoop solution to a cluster solution, it should be

62

made bigger from the very beginning, e.g. 10-20 slave nodes. This would nicely add
some processing power to the cluster compared to the delay and lag introduced by the
communication between the nodes in the implementation.

63

7. DISCUSSION

From the educational point of view, the implementation definitely helped the author gain
an understanding of large-scale data solutions, setting up a framework to process and
analyze data, tune it, and solve problems in the cluster. Naturally, in a real world situation
administrators would have full access and rights to do whatever is necessary to keep the
cluster running as smooth as possible. A lot of the time in this work was spent
pinpointing configurational problems that were often caused by the virtual machines or
the network itself, consulting with the administrators, bouncing emails back and forth
(with some added delay), and finally getting a compromise that worked for both.

Since the field of large-scale data and solutions for analyzing big data were somewhat
new for the department, the best sources of information were various internet-based
forums. The different versions and bundles of Hadoop that are put together by different
companies made the beginning a bit confusing. On top of that, RHadoop's different
versions that work only with certain versions of Hadoop made the fixing of errors of a
seemingly random nature quite a desperate task.

As mentioned before, the system that was set up worked well for the purpose of study
and giving directions for what would be needed for a real world solution. If The Global
RF Spectrum Opportunity Assessment decides to use Hadoop for managing and
analyzing the data, their solution should be able to store the data straight to HDFS and
have a bigger toolset to work with the data. Tools should be able to deal with both
structured and unstructured data. The hard value of the implementation for the university
and the project remains to be seen. The Global RF Spectrum Opportunity Assessment,
the project for which this work was done, hopefully gains at least some insights of the
usability, features, and the actual need for such implentation. If the data would be
gathered and stored straight in HDFS, in a favorable format, a Hadoop multi-node cluster
would most likely help with analyzing the vast amount of data they possess.

If the author would have been able to focus more on the work, possibly by physically
being at the university, the whole process would have been many times less laborious.
Interruptions to the work caused by different factors (e.g. a new job), delays, and a lack
of help close by created a mental barrier that was quite difficult to cross on a few
occasions, when it came to continuing or even thinking about the work. It has certainly
been a good exercise in self-discipline, and while the resulting work may be lacking in
areas, the author is absolutely content with the outcome.

64

8. SUMMARY

All in all the work was very educational and hopefully gives directions and ideas as to
what kind of solutions and systems could be used by either one or both the university and
the Global RF Spectrum Opportunity Assessment. To avoid the contant problems that
occured during the implementation, a cloud-based, scalable PaaS-service could be a good
starting point.

The problems in the network (and the delays fixing them) made the Hadoop cluster
configuration and RHadoop as software feel somewhat unstable due to the random
character of the errors. The fact that the author didn't reside at the university while the
second half of the work was done definitely made finishing the work more complicated.
Hours and days spent on configurating the cluster, from which about one third was spent
reading forums, made it quite clear that a Hadoop cluster might be trivial to set up, but
getting it stable and running without problems involves thorough knowledge of different
parts of the system, root permissions, and full administrative rights to the cluster.

65

9. REFERENCES

[1] Dragland Å. (2013) Big Data – better or worse. Sintef Research news. URL:
http://www.sintef.no/home/Press-Room/Research-News/Big-Data--for-better-or-worse/.
Accessed 18.11.2013.

[2] Press release (2011). Every day we create 2.5 quintillion bytes of data.
storagenewsletter.com. URL: http://www.storagenewsletter.com/rubriques/market-
reportsresearch/ibm-cmo-study/. Accessed 3.10.1.2013.

[3] Manyika J., Chui M., Brown B., Bughin J., Dobbs R., Roxburgh C. & Hung Byers, A.
(2011) Big data: The next frontier for innovation, competition and productivity. The
McKinsey Global Institute.

[4] Lublisnky B., Smith K.T. & Yakubovich A. (2013) Professional Hadoop Solutions.
Wros Press.

[5] White T. (2013) Hadoop: The definite guide. O'Reilly.

[6] Apache Hadoop Next Generation MapReduce YARN (2013). hadoop.apache.org.
URL: https://hadoop.apache.org/docs/current2/hadoop-yarn/hadoop-yarn-
site/YARN.html Accessed 16.12.2013.

[7] Tiwari S. (2011) Professional NoSQL. Wrox Press.

[8] Hersent O., Boswarthick D. & Elloumi O. (2012) The Internet of Things: Key
Applications and Protocols. John Wiley and Sons.

[9] Ning H. (2013) Unit and Ubiquitous Internet of Things. Auerbach Publications.

[10] Zhou H. (2013) The Internet of Things in the Cloud: A Middleware Perspective.
Auerbach Publications.

[11] Gartner Research (2005). Extracting Value From the Massively Connected World of
2015. URL: https://www.gartner.com/doc/476440. Accessed 21.1.2014.

http://www.sintef.no/home/Press-Room/Research-News/Big-Data--for-better-or-worse/
https://www.gartner.com/doc/476440
https://hadoop.apache.org/docs/current2/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current2/hadoop-yarn/hadoop-yarn-site/YARN.html
http://www.storagenewsletter.com/rubriques/market-reportsresearch/ibm-cmo-study/
http://www.storagenewsletter.com/rubriques/market-reportsresearch/ibm-cmo-study/

66

[12] Shafiullah K., Al-Sakib K.P. & Nabil A.A. (2013) Wireless Sensor Networks:
Current Status and Future Trends. Auerbach Publications.

[13] Bright Planet (2012). Structured vs Unstructured data. URL:
http://www.brightplanet.com/2012/06/structured-vs-unstructured-data/. Accessed
21.1.2014.

[14] Hurwitz J., Nugent A., Halper F. & Kaufman M. (2013). Big Data For Dummies.
John Wiley and Sons, Inc.

[15] Manuja M. & Garg D. (2011) Semantic Web Mining of Un-structured Data:
Challenges and Opportunities. International Journal of Engineering (IJE), 5 (3).

[16] Wired (2012). Google’s Data Center Engineer Shares Secrets of ‘Warehouse’
Computing. URL: http://www.wired.com/wiredenterprise/2012/01/google-man/.
Accessed 22.1.2014.

[17] Mohanty S., Jagadeesh M. & Srivatsa H. (2013) Big Data Imperatives: Enterprise
Big Data Warehouse, BI Implementations and Analytics. Apress.

[18] Hameurlain A., Rahayu W. & Taniar D. (2013). Data Management In Cloud, GRID
and P2P Systems. 6th International Conference, Globe 2013.

[19] Compuquip Technologies (2009). Centralized vs Distributed Computing. URL:
http://www.compuquip.com/it-services-blog/2009/11/centralized-vs-distributed-
computing/.Accessed 24.1.2014.

[20] Forbes (2013). Global Bitcoin Computing Power now 256 times faster than top 500
supercomputers, combined! URL:
http://www.forbes.com/sites/reuvencohen/2013/11/28/global-bitcoin-computing-power-
now-256-times-faster-than-top-500-supercomputers-combined/. Accessed 24.1.2014.

[21] Agarval B. B. & Tayal S. P. (2009) Data Mining and Data Warehousing. Laxmi
Publications.

http://www.forbes.com/sites/reuvencohen/2013/11/28/global-bitcoin-computing-power-now-256-times-faster-than-top-500-supercomputers-combined/
http://www.forbes.com/sites/reuvencohen/2013/11/28/global-bitcoin-computing-power-now-256-times-faster-than-top-500-supercomputers-combined/
http://www.compuquip.com/it-services-blog/2009/11/centralized-vs-distributed-computing/
http://www.compuquip.com/it-services-blog/2009/11/centralized-vs-distributed-computing/
http://www.wired.com/wiredenterprise/2012/01/google-man/
http://www.brightplanet.com/2012/06/structured-vs-unstructured-data/

67

[22] Rajaman A., Leskovec J. & Ullman J. D. (2014) Mining of Massive Datasets.
Stanford University.

[23] Min C., Shiwen M. & Yunhao L. (2014) Big Data: A survey. Springer.

[24] Gates A. (2011) Programming Pig. O'Reilly Media.

[25] Apache (2013) Apache Pig Philosophy. URL: http://pig.apache.org/philosophy.html.
Accessed 29.1.2014.

[26] Tiwari S. (2011) Professional NoSQL. Wrox Press.

[27] Zadrozny P. & Kodali R. (2013) Big Data Analytics Using Splunk. Apress.

[28] Splunk (2013) Hunk: Splunk Analytics in Hadoop. URL:
http://www.splunk.com/web_assets/pdfs/secure/Hunk_Product_Data_Sheet.pdf.
Accessed 30.1.2014.

[29] D3 – Data Driven Documents. URL: http://d3js.org/. Accessed 30.1.2014.

[30] D3 documentation. URL: http://vis.stanford.edu/files/2011-D3-InfoVis.pdf.
Accessed 30.1.2014.

[31] Adler J. (2010) R in a Nutshell. O'Reilly.

[32] Pace L. (2012) Beginning R – An Introduction to Statistical Programming. Apress.

[33] r-pbd.org. pbdR home page. URL: http://r-pbd.org/. Accessed 31.1.2014.

[34] Github.com. RHadoop. URL:
https://github.com/RevolutionAnalytics/RHadoop/wiki. Accessed 31.1.2014.

[35] Revolution Analytics. How to program MapReduce jobs in Hadoop with R. URL:

https://github.com/RevolutionAnalytics/RHadoop/wiki
http://r-pbd.org/
http://vis.stanford.edu/files/2011-D3-InfoVis.pdf
http://d3js.org/
http://www.splunk.com/web_assets/pdfs/secure/Hunk_Product_Data_Sheet.pdf
http://pig.apache.org/philosophy.html

68

http://blog.revolutionanalytics.com/2011/09/mapreduce-hadoop-r.html. Accessed
31.1.2014.

[36] GitHub.com. MapReduce in R - my first MapReduce job. URL:
https://github.com/RevolutionAnalytics/rmr2/blob/master/docs/tutorial.md. Accessed
31.1.2014.

[37] An introduction to R, v.3.0.2. URL: http://cran.r-project.org/doc/manuals/R-
intro.pdf. Accessed 31.1.2014.

[38] Storage Switzerland LLC (2013). What is a Hyperscale Data Center? URL:
http://www.storage-
switzerland.com/Articles/Entries/2013/5/20_What_Is_A_Hyperscale_Data_Center.html.
Accessed: 31.1.2014.

[39] IBM Big data hub. URL: http://www.ibmbigdatahub.com/infographic/four-vs-big-
data. Accessed 25.5.2014.

[40] Tulloch M. (2013) Introducing Windows Azure For IT Professionals. Microsoft
Press.

[41] Redkar T. (2009) Windows Azure Platform. Apress.

[42] Amazon Web Services. URL: https://aws.amazon.com/. Accessed 25.5.2014

[43] Apache Mahout. URL: https://mahout.apache.org/. Accessed 25.5.2014

[44] Amazon EMR. URL: https://aws.amazon.com/elasticmapreduce/faqs/. Accessed
25.5.2014.

[45] Hadoop distributions. URL: http://wiki.apache.org/hadoop/Distributions%20and
%20Commercial%20Support. Accessed: 25.5.2014.

[46] Hortonworks. URL: http://hortonworks.com/hdp/. Accessed: 25.5.2014.

http://hortonworks.com/hdp/
http://wiki.apache.org/hadoop/Distributions%20and%20Commercial%20Support
http://wiki.apache.org/hadoop/Distributions%20and%20Commercial%20Support
https://aws.amazon.com/elasticmapreduce/faqs/
https://mahout.apache.org/
https://aws.amazon.com/
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.storage-switzerland.com/Articles/Entries/2013/5/20_What_Is_A_Hyperscale_Data_Center.html
http://www.storage-switzerland.com/Articles/Entries/2013/5/20_What_Is_A_Hyperscale_Data_Center.html
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/manuals/R-intro.pdf
https://github.com/RevolutionAnalytics/rmr2/blob/master/docs/tutorial.md
http://blog.revolutionanalytics.com/2011/09/mapreduce-hadoop-r.html

69

[47] Apache Oozie. URL: https://oozie.apache.org/. Accessed: 25.5.2014.

[48] Open data handbook. URL: http://opendatahandbook.org/. Accessed: 26.5.2014.

[49] CSC.com. URL: http://www.csc.com/insights/flxwd/78931-
big_data_universe_beginning_to_explode. Accessed: 26.5.2014.

[50] Matthew N & Stones R. (2005) Beginning Databases with PostreSQL. Apress.

[51] Vaish G. (2013) Getting Started With NoSQL. Packt Publishing.

[52] Tiwari S. (2011) Professional NoSQL. John Wiley and Sons.

[53] Google BigQuery. URL: https://cloud.google.com/files/BigQueryTechnicalWP.pdf.
Accessed: 26.5.2014.

https://cloud.google.com/files/BigQueryTechnicalWP.pdf
http://www.csc.com/insights/flxwd/78931-big_data_universe_beginning_to_explode
http://www.csc.com/insights/flxwd/78931-big_data_universe_beginning_to_explode
http://opendatahandbook.org/
https://oozie.apache.org/

70

10. APPENDICES

Appendix 1 Pig Schema

Appendix 2 Hadoop installation steps

Appendix 3 R + RHadoop installation steps

Appendix 4 R.matlab installation steps and functionality testing

Appendix 5 R scripts used in analysis

Appendix 6 Troubleshoot

71

Appendix 1. Pig Schema [24]

Data type Syntax Example

int int as (a:int)

long long as (a:long)

float float as (a:float)

double double as (a:double)

chararray chararray as (a:chararray)

bytearray bytearray as (a:bytearray)

map map[] or map[type], type
any valid type, declares all
values to this be type.

as (a:map[], b:map[int])

tuple tuple() or tuple(fields),
fields is comma-separated
list of field declarations.

as (a:tuple(), b:tuple(x:int,
y:int))

bag bag{} or bag{t:fields},t is
name of a tuple, fields is
comma-separated list of
field declarations.

(a:bag{}, b:bag{t: (x:int,
y:int)})

72

Appendix 2. Hadoop cluster installation steps in Virtues environment

When following these instructions, a few issues to keep in mind:

✔ version numbers will change over time

✔ file structure, setup folders, and some file names might be vary

✔ depending on possible earlier setup, some steps might be unnecessary

✔ be 100% certain all the necessary ports are open

✔ warning util.NativeCodeLoader: Unable to... can be ignored (32 / 64 bit
warning)

✔ Master = NameNode, slave = DataNode

Master node setup

[1] Login to the remote server

ssh [username]@ssh.virtues.fi

ssh [server name, e.g. vm0086]

[2] Download and install Java

sudo yum install java-1.7.0-openjdk-devel

[3] Create a soft link for Java (or change the folder name)

cd /usr/lib/jvm

sudo ln -s java-1.7.0-openjdk.x86_64 jdk

[4] Open .bashrc and add following variables to the file

nano ~/.bashrc

export JAVA_HOME=/usr/lib/jvm/jdk/

export JRE_HOME=/usr/lib/jvm/jre-1.7.0-openjdk.x86_64

export PATH=$PATH:JRE_HOME/bin

73

export HADOOP_INSTALL=$HOME/hadoop

export PATH=$PATH:$HADOOP_INSTALL/bin

export PATH=$PATH:$HADOOP_INSTALL/sbin

export HADOOP_MAPRED_HOME=$HADOOP_INSTALL

export HADOOP_COMMON_HOME=$HADOOP_INSTALL

export HADOOP_YARN_HOME=$HADOOP_INSTALL

export YARN_CONF_DIR=$HADOOP_INSTALL/etc/hadoop

export HADOOP_CONF_DIR=$HADOOP_INSTALL/etc/hadoop

export HADOOP_HDFS_HOME=$HADOOP_INSTALL

export HADOOP_CMD=$HADOOP_INSTALL/bin/hadoop

export HADOOP_STREAMING=$HADOOP_INSTALL/share/hadoop/tools/lib/hadoop-
streaming-2.2.0.jar

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_INSTALL/lib/native

export HADOOP_OPTS="-Djava.library.path=$HADOOP_INSTALL/lib"

 [5] Test Java configuration works

java -version

 [6] Create ssh-keys

ssh-keygen -t rsa

// save key to ’/home/[username]/.ssh’

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

chmod 0600 ~/.ssh/authorized_keys

[7] Test ssh

ssh localhost

[8] Download and install Hadoop

cd ~

wget http://apache.mesi.com.ar/hadoop/common/hadoop-2.2.0/hadoop-
2.2.0.tar.gz

tar -xzf hadoop-2.2.0.tar.gz

mv hadoop-2.2.0 hadoop

rm hadoop-2.2.0.tar.gz

74

[9] Open hadoop-env.sh and add a variable to the end of the file

nano hadoop-env.sh

export HADOOP_OPTS=-Djava.net.preferIPv4Stack=true

[10] Navigate to Hadoop root folder

cd ~/hadoop

[11] Create folder structure for datanode and namenode -related data

mkdir -p data/dfs/name // master node only

mkdir -p data/dfs/namesecondary // master node only

mkdir -p data/dfs/node // slave node only

mkdir -p data/dfs/data // slave nodes only

[12] Navigate to the configuration folder

cd ~/hadoop/etc/hadoop

[13] Open core-site.xml and add following properties between
<configuration></configuration> -tags

nano core-site.xml

<property>
<name>fs.default.name</name>
<value>hdfs://master:9000</value>

</property>
<property>

<name>hadoop.tmp.dir</name>
<value>/home/lampija/tmp</value>

</property>
<property>

<name>hadoop.http.staticuser.user</name>
<value>hdfs</value>

</property>

[14] Open hdsf-site.xml and add new properties between
<configuration></configuration> -tags

nano hdfs-site.xml

75

 <property>
<name>dfs.namenode.safemode.min.datanodes</name>

 <value>1</value>
</property>
<property>

<name>dfs.namenode.checkpoint.dir</name>
<value>file:///home/[username]/data/dfs/namesecondary</value>

</property>
<property>

<name>dfs.namenode.name.dir</name>
<value>file:///home/[username]/data/dfs/name</value>

</property>
<property>

<name>dfs.datanode.data.dir</name>
<value>file:///home/[username]/data/dfs/data</value>

</property>
<property>

<name>dfs.datanode.address</name>
<value>master:10001</value>

</property>
<property>

<name>dfs.datanode.ipc.address</name>
<value>master:10002</value>

</property>
<property>

<name>dfs.replication</name>
<value>2</value>

</property>
<property>

<name>dfs.permissions</name>
<value>false</value>

</property>

[15] Change the name of mapreduce configuration file

mv mapred-site.xml.template mapred-site.xml

[16] Open mapred-site.xml and add new properties between
<configuration></configuration> -tags

nano mapred-site.xml

<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>

</property>
<property>

<name>mapreduce.jobtracker.address</name>
<value>localhost:9001</value>

</property>

76

<property>
<name>mapreduce.map.memory.mb</name>
<value>2048</value>

</property>
<property>

<name>mapreduce.reduce.memory.mb</name>
<value>4096</value>

</property>
<property>

<name>mapreduce.map.java.opts</name>
<value>-Xmx1024m</value>

</property>
<property>

<name>mapreduce.reduce.java.opts</name>
<value>-Xmx3072m</value>

</property>
<property>

<name>mapreduce.job.maps</name>
<value>2</value>

</property>
<property>

<name>mapreduce.job.reduces</name>
<value>1</value>

</property>
<property>

<name>mapreduce.reduce.maxattempts</name>
<value>10</value>

</property>
<property>

<name>mapreduce.job.ubertask.enable</name>
<value>false</value>

</property>
<property>

<name>mapreduce.task.timeout</name>
<value>0</value>

</property>
<property>

<name>mapreduce.tasktracker.reduce.tasks.maximum</name>
<value>1</value>

</property>

[17] Open yarn-site.xml and add new properties between
<configuration></configuration> -tags

nano yarn-site.xml

<property>

<name>yarn.nodemanager.vmem-pmem-ratio</name>
<value>2</value>

77

</property>
<property>

<name>yarn.scheduler.minimum-allocation-mb</name>
<value>2048</value>

</property>
<property>

<name>yarn.nodemanager.resource.memory-mb</name>
<value>8192</value>

</property>
<property>

<name>yarn.nodemanager.local-dirs</name>
<value>file:///home/lampija/mydata/dfs/node</value>

</property>
<property>

<name>yarn.nodemanager.address</name>
<value>0.0.0.0:12000</value>

</property>
<property>

<name>yarn.resourcemanager.address</name>
<value>master:9999</value>

</property>
<property>

<name>yarn.resourcemanager.admin.address</name>
<value>master:10003</value>

</property>
<property>

<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>

</property>
<property>

<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>

</property>
<property>

<name>yarn.resourcemanager.resource-tracker.address</name>
<value>master:10004</value>

</property>
<property>

<name>yarn.resourcemanager.scheduler.address</name>
<value>master:10005</value>

</property>
<property>

<name>yarn.resourcemanager.address</name>
<value>master:10006</value>

</property>

78

Set up a slave node and configure the communication between the nodes (open the
connection on a new tab on shell / terminal)

[18] Install Hadoop to another server by following steps [1 - 17].

[19] Open hosts-file and add following lines to the file (change ip-addresses
accordingly)

nano ~/etc/hosts

[ip address.of the.master.node] master

[ip address.of a.slave.node] slave1

[20] Open slaves-file and add following line to the file

nano ~/hadoop/etc/hadoop/slaves

slave1

[21] Open master-file and add following line to the file

nano ~/hadoop/etc/hadoop/master

master

[22] Change to master node, open hosts-file and add following lines (change ip-
addresses accordingly)

nano ~/etc/hosts

[ip address.of the.master.node] master

[ip address.of a.slave.node] slave1

[23] Open slaves-file and add following line to the file

nano ~/hadoop/etc/hadoop/slaves

slave1

79

[24] Open master-file and add following line to the file

nano ~/hadoop/etc/hadoop/master

master

[25] Add master node’s ssh keys to slave’s authorized keys

ssh-copy-id -i $HOME/.ssh/id_rsa.pub [username]@slave1

[26] Ensure master can connect to the slave1 without a password

ssh slave1

Set up another slave node, reconfigure the communication between master and two
slave nodes (ssh connection in a new terminal tab once again)

✔ change 'slave1' to 'slave2' where found on [27]

[27] Set up the second slave node by following steps [18], [19 - 21]

[28] Follow steps [22 - 26] to reconfigure master node's settings

[29] Format NameNode

hadoop namenode -format

[30] Start Hadoop

start-dfs.sh

start-yarn.sh

[31] Ensure NameNode, ResourceManager and SecondaryNameNode are running

jps

[32] Check the data nodes are functioning properly

hadoop dfsadmin -report

80

[33] Log in to the slave1

ssh slave1

[34] Ensure DataNode and NodeManager are running

jps

[35] Exit back to master and check slave2

exit

ssh slave2

jps

[36] Shut down Hadoop and Yarn

stop-dfs.sh

stop-yarn.sh

81

Appendix 3. R + RHadoop installation steps

✔ install R & RHadoop on CentOS 6.5 (rmr2 has to be set up on every
node)

[1] Open a browser on page

http://cran.r-project.org/web/packages/available_packages_by_name.html

[2] Download following packages e.g. to a folder 'R' on a local machine :

Rcpp

RJSONIO

Digest

Functional

Stringr

Plyr

Bitops

Reshape2

rJava

caTools

Lattice

zoo

xts

[3] Open a browser on page

https://github.com/RevolutionAnalytics/RHadoop/wiki/Downloads

[4] Download following packages to the same folder as R-libraries

- rmr2

- rhdfs

[5] From your local machine, upload the folder containing all the files to Virtues

scp -r R [username]@ssh.virtues.fi:/home/[username]

https://github.com/RevolutionAnalytics/RHadoop/wiki/Downloads
http://cran.r-project.org/web/packages/available_packages_by_name.html

82

[6] Login to Virtues

ssh [username]@ssh.virtues.fi

[7] Forward the folder to the nodes you want to install them

scp -r R [machineName]:/home/[username]

scp -r R [machineName2]/[username]

...

[8] Login to the a virtual machine

ssh [machineName]

[9] Install R

sudo yum install R-core R-devel

[10] Navigate to the folder with forwarded R packages

cd R/

[11] Install R packages (ensure the correct version)

sudo R CMD INSTALL Rcpp_0.11.0.tar.gz

sudo R CMD INSTALL RJSONIO_1.0-3.tar.gz

sudo R CMD INSTALL digest_0.6.4.tar.gz

sudo R CMD INSTALL functional_0.4.tar.gz

sudo R CMD INSTALL stringr_0.6.2.tar.gz

sudo R CMD INSTALL plyr_1.8.tar.gz

sudo R CMD INSTALL bitops_1.0-6.tar.gz

sudo R CMD INSTALL reshape2_1.2.2.tar.gz

sudo R CMD INSTALL caTools_1.16.tar.gz

sudo R CMD INSTALL lattice_0.20-29.tar.gz

sudo R CMD INSTALL zoo_1.7-11.tar.gz

sudo R CMD INSTALL xts_0.9-7.tar.gz

83

[12] Configure and install RHadoop packages

sudo R CMD INSTALL rmr rmr2_2.3.0.tar.gz

sudo JAVA_HOME=/usr/lib/jvm/jdk R CMD javareconf

sudo R CMD INSTALL rJava rJava_0.9-6.tar.gz

sudo HADOOP_CMD=$HADOOP_INSTALL/bin/hadoop R CMD INSTALL rhdfs
rhdfs_1.0.8.tar.gz

[13] By following steps [10 - 13] install R and RHadoop to both slave nodes too

[14] Login to master node

[15] Start Hadoop services

start-dfs.sh

start-yarn.sh

or

hadoop-daemon.sh start [namenode / secondarynamenode / datanode]

yarn-daemon.sh start [nodemanager / resourcemanager]

[16] Test R / RHadoop installation, type:

R

library (rmr2)

library (rhdfs)

hdfs.init()

groups = rbinom(32, n = 50, prob = 0.4)

groups = to.dfs(groups)

from.dfs(
mapreduce(

input = groups,

map = function(., v) keyval(v, 1),

reduce = function(k, vv) keyval(k, length(vv))

)

)

84

#should echo:

$key

[1] 8 9 10 11 12 13 14 15 16 17

$val

[1] 3 4 2 9 8 6 13 2 1 2

85

Appendix 4 R.matlab installation steps and functionality testing

✔ Install and configure Matlab on CentOS 6.5

✔ make sure Matlab is installed and works

✔ configure R on the machine Matlab is installed

✔ matlab m-files have to reside in the R working directory

[1] Open a browser on page

http://cran.r-project.org/web/packages/available_packages_by_name.html

[2] Download following packages e.g. to a folder 'matlab' on local machine :

R.methodsS3

R.oo

R.utils

R.matlab

[3] Send the folder to the server

scp -r path_to/matlab [username]@ssh.virtues.fi:/home/[username]

scp -r path_to/matlab vm0086:/home/[username]

[4] Install packages (ensure correct versions)

sudo R CMD INSTALL R.methodsS3_1.6.1.tar.gz

sudo R CMD INSTALL R.oo_1.17.0.tar.gz

sudo R CMD INSTALL R.utils_1.29.8.tar.gz

sudo R CMD INSTALL R.matlab_2.2.3.tar.gz

[5] Launch R

R

[6] Load packages

library(R.matlab)

http://cran.r-project.org/web/packages/available_packages_by_name.html

86

[7] Launch Matlab server from R

Matlab$startServer()

[8] Open a new tab, log into the same virtual machine as matlab is running

 ssh [username]@ssh.virtues.fi

ssh [machineName]

[9] Launch R

R

[10] Load libraries

library(R.matlab)

[11] Create a Matlab client

matlab <- Matlab()

[12] Connect to the Matlab server (might take a little while)

open(matlab)

[13] Run an expression on the Matlab server

evaluate(matlab, "A=1+2;", "B=ones(2,20);")

[14] Get variables from Matlab to R

data <- getVariable(matlab, c("A", "B"))

[15] Print variables out

print(data)

[16] Set variables in R

abc <- matrix(rnorm(10000), ncol=100)

print(abc)

87

[17] Set a variable in Matlab

setVariable(matlab, xyz=abc)

[18] Get earlier set variables from Matlab

fromMatlab <- getVariable(matlab, "xyz")

print(fromMatlab)

[19] Create a Matlab function on R

setFunction(matlab, " \
function [win,aver]=dice(B) \
gains=[-1,2,-3,4,-5,6]; \
plays=unidrnd(6,B,1); \
win=sum(gains(plays)); \
aver=win/B; \

");

evaluate(matlab, "[w,a]=dice(1000);")

result <- getVariable(matlab, c("w", "a"))

print(result)

[20] Read function from m-file, data from HDF5-file and plot it

evaluate(matlab,
"[f_array,time_array,spectrum_array]=get_spectrum_ranges('test.hdf5', 840, 902);")

f_array <- getVariable(matlab, c("f_array"))

time_array <- getVariable(matlab, c("time_array"))

spectrum_array <- getVariable(matlab, c("spectrum_array"))

evaluate(matlab,
"[PSD]=get_PSDs(f_array,time_array,spectrum_array,'average');")

PSD <- getVariable(matlab, c("PSD"))

x = unlist(f_array)

y = unlist(PSD)

plot(x,y,type="l", col="blue", main="Average PSD", xlab="Frequency (MHz)",
ylab="Power (dBm)")

[21] Close Matlab client and server

close(matlab)

88

Appendix 5: R scripts used in analysis

It should be noted that in the example the

✔ Matlab function files are stored in the R working directory.

✔ spectral occupancy data files in this example are placed in /FINALDATA/so_data
-folder.

✔ converted weather data files are stored to /weather2 -folder in HDFS.

✔ exact names of the .mat files used in weather plotting script has to be known

✔ .mat-files have to reside in /usr/lib64/R/library/R.matlab/mat-files -folder.

SSH connection to the virtual machine and start Matlab server (terminal tab 1)

ssh [username]@ssh.virtues.fi

ssh [machineName]

R

library(R.matlab)

Matlab$startServer()

SSH connection to the virtual machine and paste R functions (terminal tab 2)

ssh [username]@ssh.virtues.fi

ssh [machineName]

R

library(rmr2)

library(rhdfs)

hdfs.init()

library(zoo)

library(xts)

library(R.matlab)

matlab <- Matlab()

open(matlab)

89

###############PASTE-START################
########SPECTRAL OCCUPANCY DATA#########

begin_time <- proc.time()

f_array = NULL

time_array = NULL

spectrum_array = NULL

noise_floors = NULL

time_series_power = NULL

time_series_occupancy = NULL

PSD = NULL

duty_cycles = NULL

f_mids = NULL

start_freq = 840

stop_freq = 902

loop = 1

setVariable(matlab, start_freq = start_freq)

setVariable(matlab, stop_freq = stop_freq)

files = list.files("FINALDATA/so_data",full.names=TRUE)

read_matlab_variables_time <- proc.time()

for (FILE in files) {

setVariable(matlab, FILE = FILE)

evaluate(matlab,
"[f_array,time_array,spectrum_array]=get_spectrum_ranges(FILE, start_freq,
stop_freq);")

if (loop==1) {

loop = 0;

f_array <- getVariable(matlab, c("f_array"))

f_array = f_array$f.array

}

time_array_new <- getVariable(matlab, c("time_array"))

time_array_new = time_array_new$time.array

spectrum_array_new <- getVariable(matlab, c("spectrum_array"))

spectrum_array_new = spectrum_array_new$spectrum.array

90

setVariable(matlab, time_array_new = time_array_new)

setVariable(matlab, spectrum_array_new = spectrum_array_new)

evaluate(matlab, "[noise_floors, noise_floor]=get_noise_floor(f_array,
time_array_new, spectrum_array_new, FILE, 4);")

noise_floors_new <- getVariable(matlab, c("noise_floors"))

noise_floors_new = noise_floors_new$noise.floors

setVariable(matlab, noise_floors_new = noise_floors_new)

evaluate(matlab, "[time_series_power, time_series_occupancy,
binary_time_series, noise_threshold]=get_integrated_signal_time_series(f_array,
time_array_new, spectrum_array_new, noise_floors_new, start_freq, stop_freq,
10);")

time_series_power_new <- getVariable(matlab, c("time_series_power"))

time_series_power_new = time_series_power_new$time.series.power

time_series_occupancy_new <- getVariable(matlab, c("time_series_occupancy"))

time_series_occupancy_new =
time_series_occupancy_new$time.series.occupancy

time_array = c(time_array, time_array_new)

spectrum_array = rbind(spectrum_array, spectrum_array_new)

noise_floors = c(noise_floors, noise_floors_new)

time_series_power = c(time_series_power, time_series_power_new)

time_series_occupancy = c(time_series_occupancy,
time_series_occupancy_new)

}

evaluate(matlab, "[PSD]=get_PSDs(f_array, time_array ,spectrum_array, 'average');")

PSD <- getVariable(matlab, c("PSD"))

PSD = PSD$PSD

evaluate(matlab, "[duty_cycles, f_mids]=get_duty_cycle(f_array, time_array,
spectrum_array, noise_floors, 100);")

duty_cycles <- getVariable(matlab, c("duty_cycles"))

duty_cycles = duty_cycles$duty.cycles

f_mids <- getVariable(matlab, c("f_mids"))

f_mids = f_mids$f.mids

time_read_matlab = read_matlab_variables_time - proc.time()

r_means <- proc.time()

91

tsp_mean <- xts(x = time_series_power,as.POSIXct(time_array, origin="1970-01-01"))

ep <- endpoints(tsp_mean,'hours')

tsp_mean = period.apply(tsp_mean,ep,mean)

tso_mean <- xts(x = time_series_occupancy,as.POSIXct(time_array, origin="1970-01-
01"))

ep <- endpoints(tso_mean,'hours')

tso_mean = period.apply(tso_mean,ep,mean)

calculating_means_R_time = r_means - proc.time()

FILES READ:

length(files)

#TIME FOR BUILDING VARIABLES

time_read_matlab

#TIME FOR CALCULATING TIME SERIES MEANS WITH R

calculating_means_R_time

#BUILT VARIABLE LENGTHS AND SIZES:

length(f_array)

length(time_array)

length(noise_floors)

dim(spectrum_array)

length(time_series_power)

length(time_series_occupancy)

length(PSD)

length(f_mids)

length(duty_cycles)

x11()

plot(f_array, PSD, type="l", col="blue", main="Average PSD", xlab="Frequency (MHz)",
ylab="Power (dBm)")

x11()

plot(index(tsp_mean), coredata(tsp_mean), type="l", col="blue", main="Time series of
power", xlab="Time (H)", ylab=" Power (dBm)", xaxt = "n"); axis(1, index(tsp_mean),

92

format(index(tsp_mean), "%d %b"), cex.axis = 0.6)

x11()

plot(index(tso_mean), coredata(tso_mean), type="l", col="blue", main="Time series
occupancy", xlab="Time (H)", ylab=" Occupancy %", xaxt = "n");axis(1, index(tso_mean),
format(index(tso_mean), "%d %b"), cex.axis = 0.6)

x11()

plot(f_mids, duty_cycles*100, type="h", col="blue", main="Duty cycle", xlab="Frequency
(MHz)", ylab="Percentage (%)")

##############PASTE END###################

##############PASTE START#################

##############MAPREDUCE###############

timeMapReduceAll <- proc.time()

hours = strftime(as.POSIXct(time_array, origin="1970-01-01"), format='%Y-%m-%d
%H:00:00')

data = data.frame(hours, time_series_power)

data = to.dfs(data)

mapper = function(., data) {

hours = data['hours']

power = data['time_series_power']

hours = hours$hours

power = power$time_series_power

uhours = unique(hours)

a = numeric()

for(i in 1:length(uhours)) {

j = 1

x = uhours[i]

value_vector = numeric()

93

while(hours[j] == x) {

value_vector = c(value_vector, power[j])

if(length(hours) > j) j = j+1

else break

}

hours = hours[-1 : -j]

power = power[-1 : -j]

if(length(a) == 0) { a = value_vector }

else { a = rbind(a, value_vector) }

}

keyval(uhours, a)

}

reducer = function(hour, power_list){

power = mean(power_list)

keyval(hour, power)

}

mr_pow = from.dfs(

mapreduce(

input = data,

map = mapper,

reduce = reducer

)

)

key = mr_pow[1]

value = mr_pow[2]

key = levels(droplevels(key$key))

mr_pow_key = as.POSIXct(key)

mr_pow_value = value$val

data = data.frame(hours, time_series_occupancy)

data = to.dfs(data)

mapper = function(., data) {

94

hours = data['hours']

power = data['time_series_occupancy']

hours = hours$hours

power = power$time_series_occupancy

uhours = unique(hours)

a = numeric()

for(i in 1:length(uhours)) {

j = 1

x = uhours[i]

value_vector = numeric()

while(hours[j] == x) {

value_vector = c(value_vector, power[j])

if(length(hours) > j) j = j+1

else break

}

hours = hours[-1 : -j]

power = power[-1 : -j]

if(length(a) == 0) { a = value_vector }

else { a = rbind(a, value_vector) }

}

keyval(uhours, a)

}

mr_occ = from.dfs(

mapreduce(

input = data,

map = mapper,

reduce = reducer

)

)

key = mr_occ[1]

value = mr_occ[2]

key = levels(droplevels(key$key))

mr_occ_key = as.POSIXct(key)

mr_occ_value = value$val

95

mapreduce_time_all = proc.time() - timeMapReduceAll

x11()

plot(mr_pow_key, mr_pow_value, type="l", col="blue", main="Time series of power
(MapReduce)", xlab="Time", ylab=" Power (dBm)", xaxt = "n"); axis(1, mr_pow_key,
format(mr_pow_key, "%d %b"), cex.axis = 0.6)

x11()

plot(mr_occ_key, mr_occ_value, type="l", col="blue", main="Time series of occupancy
(MapReduce)", xlab="Time", ylab=" Power (dBm)", xaxt = "n"); axis(1, mr_occ_key,
format(mr_occ_key, "%d %b"), cex.axis = 0.6)

##############PASTE END###################

##############PASTE START#################

#############WEATHER DATA###############

time_weather <- proc.time()

convertTime <- proc.time()

filelist = c("chicago_dec_2013", "chicago_jan_2014")

for(j in 1:length(filelist)) {

file = filelist[j]

path <- system.file("mat-files", package="R.matlab")

pathname <- file.path(path, paste(file,".mat", sep=""))

data <- readMat(pathname)

date <- numeric(0)

temp <- numeric(0)

snow_depth <- numeric(0)

wind_speed <- numeric(0)

name = gsub("_", ".", file)

data = data[[name]]

date[] = list()

96

for (i in 1:length(data)) {

y = data[[i]][[4]][[1]][[1]][[2]]

m = data[[i]][[4]][[1]][[1]][[3]]

d = data[[i]][[4]][[1]][[1]][[4]]

h = data[[i]][[4]][[1]][[1]][[5]]

date[i] = paste(paste(paste(y, m, d, sep="-"), h, sep=" "),":00:00", sep="")

temp[i] = data[[i]][[4]][[1]][[16]]

snow_depth[i] = data[[i]][[4]][[1]][[11]]

if(snow_depth[i] =="") { snow_depth[i] = 0 } else {}

wind_speed[i] = data[[i]][[4]][[1]][[22]]

}

var = list (date=date, temp=temp, snow_depth = snow_depth, wind_speed =
wind_speed)

fullpath = paste("/weather2/",file, sep="")

filehandler <- hdfs.file(fullpath, "w")

hdfs.write(var, filehandler)

hdfs.close(filehandler)

}

time1 = proc.time() - convertTime

plotTime <- proc.time()

results = numeric()

for(j in 1:length(filelist)) {

str = paste("/weather2/",filelist[j], sep="")

filehandler = hdfs.file(str, "r")

file <- hdfs.read(filehandler)

file <- unserialize(file)

if(length(results) == 0) results = file

else {

results$temp = c(results$temp, file$temp)

results$wind_speed = c(results$wind_speed, file$wind_speed)

results$snow_depth = c(results$snow_depth, file$snow_depth)

results$date = c(results$date, file$date)

97

}

hdfs.close(filehandler)

}

dates = results[1]$date

as.POSIXct(dates)

x11()

par(pch=11, col="red")

par(mfrow=c(2,2))

par(oma=c(0,0,3,0))

plot(as.POSIXct(dates), results[2]$temp, main="Temperature", type="l",xlab="Day", ylab
= "Celcius")

plot(as.POSIXct(dates), results[3]$snow_depth, main="Snow depth",
type="l",xlab="Day", ylab = "Centimeters")

plot(as.POSIXct(dates), results[4]$wind_speed, main="Wind speed",
type="l",xlab="Day", ylab = "Kilometers / hour")

title(main=("Chicago weather measurements"), outer="T")

#READ, CONVERT AND STORE

time1

#PLOTTING

proc.time() - plotTime

#WHOLE PROCESS

proc.time() - time_weather

##############PASTE END###################

98

Appendix 6: Troubleshoot

Clearly a majority of the time spent finishing this thesis was due to the problems with the
communication between the nodes within the Hadoop cluster, failing jobs, and other
seemingly random problems that weren't reflected very well (or at all) on the logs. The
previous team that worked with a similar Hadoop setup in the same network at Oulu
University had problems very similar to what were encountered with this
implementation. However, since this Hadoop setup was controlled via R and its libraries,
the extra layer of complexity made finding the reason for an error quite an unpleasant
and very time-consuming process.

This is a short collection of to-dos that should be ensured for a well-working cluster.

✔ Hadoop, its components and other programs it uses use ports that are not
configurable by the configuration files. If problems occur even with a single-
node setup, try opening all the ports (or ensure the network administrator has
done so)

✔ Hadoop uses a lot of memory, but even more so it needs good memory
configuration to work smoothly. Ensure the mapred-site.xml and yarn-site.xml
have all the necessary configurations.

✔ R and Rmr2 -package has to be installed on every node to make the streaming
work properly.

✔ Give local files and folders 755 permissions that seem to be "not found" or
"missing" (even if the configuration hasn't changed or can be trusted to be
correct).

✔ Ensure all the environment variables and their paths are correct and they are
loaded.

✔ When formatting HDFS, remember to remove old data from the data folder
pointed in hdfs-site.xml. Also add the /tmp -folder to HDFS with rights 755.

	1. INTRODUCTION
	2. LARGE-SCALE DATA
	2.1. The concept
	2.2. Open big data
	2.3. Structured vs unstructured data

	3. DATA MANAGEMENT FOR BIG DATA
	3.1. Keeping it all together
	3.2. Centralized vs distributed vs cloud-based approach
	3.3. Hadoop framework
	3.3.1. HDFS
	3.3.2. MapReduce
	3.3.3. YARN

	3.4. Windows Azure
	3.5. Amazon AWS
	3.6. Other platforms

	4. DATA STORING
	4.1. Hyperscale storage and scalability
	4.2. RDBMS and SQL
	4.3. NoSQL
	4.4. Apache Hive
	4.5. Apache HBase and ZooKeeper

	5. PROCESSING THE DATA
	5.1. Data processing, analysis, and visualization
	5.2. Data mining
	5.3. Analytical tools and applications
	5.3.1. R
	5.3.2. Apache Pig
	5.3.3. Splunk
	5.3.4. D3.js
	5.3.5. Google Prediction API
	5.3.6. Google BigQuery

	6. IMPLEMENTATION
	6.1. Goals of the implementation
	6.2. The implementation
	6.3. Analyzed datasets
	6.4. Details and results of analysis
	6.5. Post-thesis considerations

	7. DISCUSSION
	8. SUMMARY
	9. REFERENCES
	10. APPENDICES

