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ABSTRACT

The exponential growth of raw, i.e. unstructured, data collected by various methods 
has  forced  companies  to  change  their  business  strategies  and  operational 
approaches. The revenue strategies of a growing number of companies are solely 
based on the information gained from data and the utilization of it. Managing and 
processing large-scale data sets, also know as Big Data, requires new methods and 
techniques,  but  storing  and  transporting  the  ever-growing  amount  of  data  also 
creates new technological challenges. Wireless sensor networks monitor their clients 
and track their behavior. A client on a wireless sensor network can be anything from 
a  random  object  to  a  living  being.  The  Internet  of  Things  binds  these  clients 
together,  forming a single,  massive network. Data is  progressively produced and 
collected by, for example, research projects, commercial products, and governments 
for different means.

This thesis comprises theory for managing large-scale data sets, introduces existing 
techniques  and  technologies,  and  analyzes  the  situation  vis-a-vis  the  growing 
amount of data. As an implementation, a Hadoop cluster running R and Matlab is 
built and sample data sets collected from different sources are stored and analyzed 
by using the cluster. Datasets include the cellular band of the long-term spectral 
occupancy findings from the observatory of IIT (Illinois Institute of Technology) 
and open weather data from weatherunderground.com. An R software environment 
running on the master node is used as the main tool for calculations and controlling 
the  data  flow  between  different  software.  These  include  Hadoop's  HDFS  and 
MapReduce  for storage  and analysis,  as  well  as  a  Matlab server for processing 
sample data and pipelining it to R. The hypothesis that the cold weather front and 
snowing  in  the  Chicago  (IL,  US)  area  should  be  shown  on  the  cellular  band 
occupancy is set.

As a result of the implementation, thorough, step-by-step guides for setting up and 
managing a Hadoop cluster and using it via an R environment are produced, along 
with examples and calculations being done. Analysis of datasets and a comparison 
of  performance  between  R  and  MapReduce  is  produced  and  speculated  upon. 
Results of the analysis correlate somewhat with the weather, but the dataset used 
for performance comparison should clearly have been larger  in order to produce 
viable results through distributed computing.

Key  words:  Big  data,  distributed  computing,  MapReduce,  Hadoop,  HDFS,  R, 
RHadoop, Matlab
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TIIVISTELMÄ 

Raakadatan eli eri menetelmillä kerätyn strukturoimattoman datan määrän huikea 
kasvu  viime  vuosina  on  ajanut  yrityksiä  muuttamaan  strategioitaan  ja 
toimintamallejaan.  Monien uusien yritysten tuottostrategiat pohjautuvat puhtaasti 
datasta saatavaan informaation ja sen hyväksikäyttöön. Suuret datamäärat ja niin 
kutsuttu Big Data vaativat uusia menetelmiä ja sovelluksia niin datan prosessoinin 
kuin  analysoinninkin  suhteen,  mutta  myös  suurien  datamäärien  fyysinen 
tallettaminen  ja  datan  siirtäminen  tietokannoista  käyttäjille  ovat  luoneet  uusia 
teknologisia  haasteita.  Langattomat  sensoriverkot  seuraavat  käyttäjiään,  joita 
voivat  periaatteessa olla kaikki  fyysiset  objektit  ja elävät olennot,  ja valvovat ja 
tallentavat niiden käyttäytymistä. Niin kutsuttu  Internet of Things yhdistää nämä 
objektit, tai asiat, yhteen massiiviseen verkostoon. Dataa ja informaatiota kerätään 
yhä  kasvavalla  vauhdilla  esimerkiksi  tutkimusprojekteissa,  kaupalliseen 
tarkoitukseen ja valtioiden turvallisuuden takaamiseen. 

Diplomityössä  käsitellään  teoriaa  suurten  datamäärien  hallinnasta,  esitellään 
uusien ja olemassa olevien tekniikoiden ja teknologioiden käyttöä sekä analysoidaan 
tilannetta datan ja tiedon kannalta. Työosuudessa käydään vaiheittain läpi Hadoop-
klusterin rakentaminen ja yleisimpien analysointityökalujen käyttö. Käytettävänä 
oleva  testidata  analysoidaan  rakennettua  klusteria  hyväksi  käyttäen, 
analysointitulokset ja klusterin laskentatehokkuus kirjataan ylös ja saatuja tuloksia 
analysoidaan  olemassa  olevien  ratkaisujen  ja  tarpeiden  näkökulmasta.  Työssä 
käytetyt tietoaineistot ovat IIT (Illinois Institute of Technology) havaintoasemalla 
kerätty mobiilikaistan käyttöaste sekä avoin säädata weatherunderground.com:ista. 
Analysointituloksena mobiilikaistan käyttöasteen oletetaan korreloivan kylmään ja 
lumiseen aikaväliin Chigagon alueella Amerikassa.

Työn  tuloksena  ovat  tarkat  asennus-  ja  käyttöohjeet  Hadoop-klusterille  ja 
käytetyille  ohjelmistoille,  aineistojen  analysointitulokset  sekä  analysoinnin 
suorituskykyvertailu  käyttäen  R-ohjelmistoympäristöä  ja  MapReducea. 
Lopputuloksena voidaan esittää,  että mobiilikaistan käyttöasteen voidaan jossain 
määrin  todeta  korreloivan  sääolosuhteiden  kanssa.  Suorituskykymittauksessa 
käytetty tietoaineisto oli selvästi liian pieni, että hajautetusta laskennasta voitaisiin 
hyötyä.

Avainsanat: Big data, hajautettu tiedostojärjestelmä, MapReduce, Hadoop, HDFS, 
R, RHadoop, Matlab
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FOREWORD

The aim of this thesis is to give the reader a clear picture of what large-scale data is, how 
data is collected, managed and analyzed, and how the field has evolved. The thesis also 
introduces some of the most commonly used solutions and applications. At the end, the 
implementation of a Hadoop cluster is set up to virtual machines. Both R and Matlab are 
set up and external R libraries1 are used to set up communication between R, HDFS and 
Matlab. Data samples are stored, analyzed and plotted using the system that is set up. All 
the steps from setting up the system to analyzing the data are documented. As the thesis 
and its outcome are part of a broader international research project, the University of 
Oulu granted funding to support the process.

I  would  like  to  thank  Prof.  Juha  Röning  and  Dr.  Jaakko  Suutala  for  the  challenge, 
guidance  and  supervision,  and  Maritta  Juvani  and  Varpu  Pitkänen  for  their  help  in 
general.  In  addition,  I  would  like  to  thank  my  wife  and  my  parents  for  their 
immeasurable support over the years of studying that led to this thesis.

Oulu, Finland, May 28th, 2014

Jaakko Lampi

1 Most importantly rmr2  and rhdfs by Revolution Analytics and R.matlab. Full list can be found in the 
thesis. 
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LIST OF SYMBOLS AND ABBREVIATIONS

3V Velocity, Volume and Variety

4V Value, Velocity, Volume and Variety

AI Artificial Intelligence

API Application Programing Interface

BI Business Intelligence

CDN Content Delivery Network

CRUD Create, Read, Update, Delete functionality in RDBMS

DBMS Database Management System

DFS Distributed File System

EB Exabyte, 1018 bytes

exaFLOPS million million Floating Operations Per Second

GB Gigabyte, 109 bytes

GFS Google File System

GUI Graphical User Interface

HDFS Hadoop Distributed File System

HDP Hortonworks Data Platform

IDE Integrated Development Environment

IIT Illinois Institute of Technology

IoT Intenet of Things

ITU International Telecommunications Union

KB Kilobyte, 103 bytes

LAN Local Area Network

MB Megabyte, 106 bytes

MRv2 MapReduce v2

NAS Networked Storage

NDFS Nutch Distributed File System

NFS Network File System'

NLP Natural Language Processing
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PB Petabyte, 1015 bytes

petaFLOPS thousand million Floating Operations Per Second

RDBMS Relational Database Management System

SAN Storage-Area Network

SQL Structured Query Language

TB Terabyte, 1012 bytes

UDF User Defined Functions (Pig)

WSN Wireless Sensor Networks

ZB Zettabyte, 1021 bytes 
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1. INTRODUCTION

Long gone are the days when global enterprises, reseach organizations and governments 
were  able  to  handle  all  the  data  they  produced  and  managed  in  a  logical,  mostly 
structured form and use relational databases and structured query languages (SQL) or 
similar techniques to query it. Companies, programs and network sensors produce huge 
amount of fresh data, around 2.5 EBs (exabytes)[2] every single day, and it is estimated 
that over 90% of existing data has been generated during the last two years [1]. Some 
predictions say the annual global data production in 2020 will be about 30 times faster 
than it was in 2010 - 35 Zettabytes (ZB)2 per year [49].

So how much is this aforementioned huge amount of data? One good example that could 
make  the  relation  more  tangible  is  the  large  hadron collider  (LHC),  the  27-km-long 
particle collider built by CERN in Switzerland. When working on full power, its 150 

2 1ZB  = 1,024EB = 1,048,576PB = 1,073,741,824TB = 1,099,511,627,776GB
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million  sensors  produce  data  40  million  times per  second,  resulting  approximately  a 
petabyte (PB) per second. Before the raw data gets stored, it is analyzed and screened, 
and only a  fraction of the initially  produced data gets through for  the final  stage of 
analyzation.  "Only"  about  25PBs  of  essential  information  is  stored  annually,  which 
would be equal to about 35 million compact discs (CD). To put it simply, the (numbers 
of) large-scale datasets, or big data as it  is also called,  are big enough to be beyond 
normal human comprehension.

Even though this thesis is not referring to or citing LHC later on, it  provides a good 
example of  the requirements for modern data management and storage. Single-computer 
systems, centralized storages, and undistributed data processing is simply too slow and 
inefficient for today's needs, which connects the LHC example to the newer large-scale 
data-related techniques and frameworks this thesis is all about. 

Even though SQL and database normalization were some of the biggest innovations of 
the previous century, both have been pushed to their limits thanks to the sheer amount of 
new data and the complexity restrictions they hold. A new way of managing and storing 
data was needed and new techniques evolved. The collecting and storing of data started 
moving  from  structured  to  unstructured,  data  storage  centers  and  "data  marts"  kept 
popping up, and programs and frameworks, such as Hadoop, were introduced to deal 
with the ever-growing amount of information.

This  thesis  introduces  the  most  common programs,  frameworks  and techniques  used 
when managing, storing and analyzing large-scale data sets. It is assumed that the reader 
has at  least basic knowledge and understanding of information technology, databases, 
most common programming languages and internet (and its protocols). The purpose of 
the thesis is to study and set up a functional Hadoop cluster and high-level data analysis 
tools  that  will  serve  as  a  base  for  later  development  for  analyzing  purposes.  The 
implementation  consists  of  setting  up  a  Hadoop cluster  along with  R and  necessary 
external  libraries,  analyzing  two  sample  datasets,  and  drawing  conclusions  on  the 
performance of MapReduce compared to R. The environment is configured so that the 
HDFS,  MapReduce  and  Matlab  server  can  be  controlled  via  R's  interface.  Sample 
datasets include 2 months' worth of cellular band long-term spectral occupancy findings 
from  the  observatory  of  IIT  (Illinois  Institute  of  Technology)  and  open  data  from 
weatherunderground.com. 
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2. LARGE-SCALE DATA

As briefly  mentioned  in  the  previous  chapter,  large-scale  data  refers  to  datasets  big 
enough to be out of the scope of the traditional (relational) database programs and tools 
[8]. There are no actual size guidelines that determine when a dataset is considered “big”. 
As  technology  evolves  day  by  day,  the  size  of  a  dataset  remains  more  and  more 
subjective. This varies from field to field - for example, a dataset used for governmental  
purposes can vary a lot from one used in the medical field. A rough guideline is that if a  
dataset is bigger than few TB (terabyte), it is most likely considered to be large-scale. 

2.1. The concept 

Today large datasets are a part of every field that somehow involves digital information. 
To give a few examples, datasets and their purposes and end goals vary among the fields 
of  healthcare  (e.g.  diagnosing  a  patient  according  to  the  symptoms,  genomics  etc.), 
human behaviour (e.g. preventing crime, boost sales etc.), weather (e.g. forecasts), and 
finance (e.g. risk analysis and portfolio evaluation).

When comparing large-scale datasets  to more traditional data,  the biggest  differences 
come  from scalability,  distribution,  and  the  structure  of  the  data.  Whereas  RDBMS 
(relational database management system) database tables are created in advance for data 
that has a known and structured format, big data systems and databases tend to be either  
unstructured or a combination of structured and unstructured data. Large-scale data sets 
are  usually  broken into  pieces  among multiple  commodity  servers  that  do  not  share 
memory or processing power, and the software knows the location of different pieces of 
data.  RDBMS usually  resides  on one  server3,  sharing  one  bigger  storage  component 
between multiple processors. Storing, processing and managing a huge amount of data 
with structured tables and centralized storing and processing components would be too 
slow and expensive for a company to gain any signicant results.

Dealing with large data sets, the usage of a distributed storage system is the key. In a 
distributed envinronment, one node acts as a master node and other nodes act as slaves. 
One data  entity  is  usually  split  into  smaller  pieces  and  divided  between  nodes.  For 
countering  a  server  breakdown  or  network  problems,  every  piece  of  split  data  is 
replicated among different servers and among different server racks. This ensures the 
accessibility of data if a whole rack of servers goes down for any reason. Replication and 
distribution also has its downside. The updating of existing data is slow, and generally 
not suggested. If a single entry is changed for any reason, it has to be changed globally. 

3 Distributed SQL solutions exist also, for example Google's F1. It combines the scalability of NoSQL 
systems and usability of traditional SQL systems
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2.2. Open big data

Open data is data that is free for everyone to use without any restrictions. It can be reused 
and  redistributed  and  it  should  be  accessible  at  little  to  no  cost,  and  preferably 
downloadable from the internet [48].  Open data can be produced by anyone, on any 
subject imaginable, which has partially contributed to the exponential growth of data. 
Open data is also produced by devices and sensors for and from any field and purpose 
imaginable, from farming to astronomy. A lot of the produced data is uploaded to the 
internet, and while the uploading process has to date been mostly a manual process, new 
techniques and solutions have been developed. Devices and sensors have progressively 
evolved to act more as autonomous units, taking care of gathering the data,  processing 
the information, and then uploading it to the internet. Even though not all of this data is 
necessarily open, the so-called Internet of Things has and will change the everyday lives 
all over the world.

Internet of Things (IoT) as a concept was first proposed in 1999 and finally published as 
a report in 2005 by International Telecommunications Union (ITU). The name refers to 
an  internet-based  network  that  covers  technologies  such  as  nanotechnology,  sensor 
technology and intelligent embedded technology and RFID technology [8].  It has grown 
and gained more understanding conceptually, and today IoT has been incorporated into 
many companies' development strategies. IoT is widely agreed to be  a part of future's 
Internet:  some  scenarios  foresee IoT  having  its  own,  independent  global  network, 
protocols and standards [9]. Some researchers see IoT as a combination of physical and 
cyber things, being ubiquitous with everything being connected. The table 1 illustrates 
the previous statement a bit further.

Table 1: Things classification

Things

Cyber Physical

Entities (software) Objects (fridge)

Actions (data about X is created) Behaviour (walking)

Events (Bitcoin transaction) Tendency (average temperature raises)

Services (Amazon EC2 cloud storage) Physical events (eclipse)

Basically everything a person sees or interacts with during a day can be connected to IoT. 
From  cell  phones,  personal  computers  and  cars  to  light  bulbs,  livestock  and  your 
doorbell, everything receives and sends information and interacts with each other, with or 
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without  human  intervention  [10].  This  means  the  amount  of  sensors  and  the  data 
produced is growing exponentially. Most likely the majority of collected and processed 
data will be unstructured, and this puts a huge strain on existing systems. The newest 
frameworks and tools can handle the load and the sheer amount of data today, but very 
quickly even they will be outdated. It is estimated that by 20154 everything we own will 
be wirelessly connected, producing torrents of terabytes of data. That is, if the technology 
can collect, process and analyze all the information [11]. Even though this study is a bit 
outdated, more like a visionary prediction, the general direction is very accurate. 

In the core of IoT are wireless sensor networks (WSN). Sensor networks have been used 
for  quite  some  time  already  in  different  fields,  such  as  healthcare,  environmental 
monitoring, and military [12]. Tremendous progress in both the hardware and software 
fields have enabled sensor nodes and the networks themselves to function more and more 
independently. There are many ways that a WSN can be implemented. In the example 
below, sensors (slaves) report to the central node (master), which processes the raw data 
from the sensors and forwards it to the internet and further along to the parties who are 
collecting the information from the WSN. It could be a home security system, the heart 
monitor  of  an  elderly  person,  or  a  collection  of  different  types  of  sensors  that  a 
government uses for tracking its citizens. Figure 2 illustrates a high-level WSN data flow.

4 Since the study is a bit outdated, this will most likely happen during few coming years.

Figure 2: Example of an WSN application.
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The point of this chapter is to emphasize the importance of big data-related technologies. 
As the amount of data grows greater, large-scale data frameworks, such as Hadoop, will 
gain  more  integration  into  existing  solutions,  and  hybrid  systems  with  easy-to-use 
interfaces will obfuscate the underlying techniques from the end user.  The management, 
storage and processing of the data will trend towards cloud-based solutions and parallel 
execution.

2.3. Structured vs unstructured data

Structured data usually consists of data that is of known format, such as numbers, dates 
and strings (names, addresses, clusters of words), i.e. it refers to data with a high level of 
organization [13]. Structured data is defined and (mostly) machine-readable, it's stored in 
well-defined mathematical structure and it  has rules and standards. Structured data  is 
usually used in systems that use RDBMS and SQL for storing and querying the data.

Essentially all the data that is not stored following a pre-defined rules or structures can be  
classified as unstructured data.  This could be for example any binary data  or textual 
information, that a computer program could not use. Even data that has some level of 
structure is treated as unstructured, if the structure does not reflect a useful schema [15].

There is an area, however, where structured and unstructured data overlap. For example 
unstructured  data  can  be  stored  in  a  column of  a  table  within  a  relational  database. 
Structured data can be saved to file and stored in HDFS. This gray area is called "semi-
structured  data"  and many times  the  data  falls  within  this  category  instead of  being 
clearly well defined or not defined at all. As an example, video is usually thought to be 
unstructured data but an image is structured. What about an animated image, such as a 
GIF? It is still an image, but it serves as a very low quality (and very short) audio-less 
video. A date stored as char? The list goes on.
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Table 2: Examples of structured, unstructured and semi-structured data

Structured data Unstructured data

Digital images Social media

Names, URLs, C++ Semantics

DNA Behavior

Radio frequency spectrum Weather

XML

Natural languages

Large-scale  data  is  by  default  unstructured.  It  is  collected  from  different  events 
automatically and usually stored as-is. Most of the large-scale frameworks have high-
level interfaces and underlying techniques to deal with structured data as well, but in 
comparison  to  RDBMS batch-type  systems  they lose  in  terms  of  performance  when 
dealing  with  smaller  structured-data  datasets.  This  fact  is  demonstrated  in  the 
implementation, where the used datasets are relatively small and quite well structured.
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3. DATA MANAGEMENT FOR BIG DATA

Computer systems have been moving towards decentralization quite a while, thanks to 
the lowered costs of networking, high transfer speeds, and cloud-based solutions. New 
cloud-based  services,  known  as  'Anything  as  a  Service'  (XaaS,  word  'anything' 
collectively referring to the whole cluster of different services) have been introduced 
with a growing pace, which lowers the costs and complexity of entering the market. This 
chapter discusses  everyday differences and challenges the large-scale data management 
addresses,  as  well  as  main  elements  and  use  cases  of  different  system architectures 
(centralized,  distributed  and  cloud-based),  continues  onto  distributed  approach,  and 
wraps up with cloud-based solutions.

Different  software,  platforms  and frameworks exist  for  managing  big data.  Different 
versions of the same frameworks have been forked and some companies have built and 
optimized their own versions of existing software for more task-specific functionality. 
This thesis will focus mostly on Hadoop, since it was also used in the implementation,  
and will only briefly introduce a few other widely-used frameworks.

3.1. Keeping it all together

Traditional approaches to information management have mostly focused on dealing with 
structured data. However,  the majority of data produced today is in unstructured format; 
it is estimated that around 85-90% of all the data today is unstructured [17]. Adding this 
to the sheer amount of information companies are dealing with today, the management of 
an information system can become a pretty demanding task. Issues such as performance, 
scalability, replication and consistency introduce challenges that certainly already existed 
earlier, but previously the scope has been different. 
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Data on a large scale is not a new thing. Fields such as physics, meteorology, genomics 
and banking have been dealing with heaps of data and information for decades. It is only 
quite recently, though, that new techniques and software frameworks have made big data 
conceivable for the  masses.  Connected  networks  of  cheap commodity computers  can 
easily outperform high-cost supercomputers. For example, as of late 2013, the network of  
Bitcoin mining computers produced a hashrate of 64 exaFLOPS (EFLOPS), which is 256 
times  more  than  the  top  500  supercomputers'  hashrate  combined  (250  petaFLOPS 
(PFLOPS)) [20]. Big data can be characterized with the following 4 'V's: [39]

✔ Volume - the vast amount of data

✔ Variety - different forms and types of data

✔ Velocity - the pace the new data is generated

✔ Veracity - the quality and uncertainty of produced data

The first "V", volume, is the most obvious and commonly the best understood aspect of 
big data: there's a lot of it. The nature of how the data is produced and gathered adds the 
second "V", variety, to the list. Data can be structured or unstructured, binary or textual,  
generated by and for scientific research and social media and so forth. Velocity is the 
growing speed of the date being generated. Sensors, laboratories, observatories, software 
and devices produce and stream a vast amount of new data every second. Veracity - a  
feature that was added later to the list of big data characteristics - describes the uncertain 

Figure 3: Different stages of data.
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nature of the generated data. Data quality can be bad or noisy and its content can be 
lacking the necessary accuracy for decision-making. All these aforementioned traits on 
top of issues that traditional data management poses can easily turn a project dealing with 
big data into a cumbersome task. 

3.2. Centralized vs distributed vs cloud-based approach

In a purely centralized model, all computing resources reside at the primary datacenter 
[19]. A centralized system consists of a single computer or a cluster of computers in one 
location. Not only the computers, but most of the management, data processing and data 
itself is in the same location, including personnel and support. Remote sites usually use 
thin  clients  to  access  the  resources  of  the  datacenter.  The  benefits  of  a  centralized 
systems  include  lower  costs,  better  security,  and  less  complexity  and  administrative 
overhead. It has a few drawbacks, though. For example, if the network connection, e.g. 
Wide  Area  Network  (WAN)  to  the  datacenter  fails,  the  whole  datacenter  would  be 
unreachable to a remote client.  In centralized database systems the data is duplicated 
clearly less (or not at all), so the access to the data might get competitive. Processing the 
data in a centralized system can be executed in parallel, sharing memory and / or disks,  
but this approach is scalable only to certain limits. 

In a distributed system, a network connects different sites. This can be a Local Area 
Network  (LAN)  connecting  a  few  servers  and  client  machines  in  a  building,  or  a 
continent-wide system architecture connecting thousands of machines via the internet. 
Distributed systems offer more scalability and flexibility than centralized systems: in a 
purely distributed model, every site is self-sustained for the most part. Communication 
with the main datacenter is needed, but some of the services, such as email server, could 
be found on each site, and access management and shared file hosting would be handled 
locally as well. This means that every site would be independent and if one site would 
fail, it would not affect the others. Costs are higher than for a centralized system. Since 
additional hardware and software costs start stacking up, its administration and even the 
rent of the physical sites will add up pretty quickly. It is part of a company's strategy to  
decide what approach would suit  them the best,  how big the budget  is,  what are the 
possible points of failure, and its needs for the future. 

Cloud computing can be defined as a large-scale distributed computing paradigm based 
on virtualized computing, storage resources, and modern web technologies [18]. Cloud 
computing  services  can  be  divided  to  three  main  categories,  depending  on  their 
functionality. The first one on the list is IaaS (Infrastructure as a Service). Using IaaS, 
companies and enterprises can upload their own programs and applications into the cloud 
and manage them via the Internet in a distributed fashion. IaaS is followed by Platform as 
a Service (PaaS), which gives users the possibility to program their  own applications 
using the platform in the cloud. The last one on the list is Software as a Service (SaaS),  
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by which clients can choose what existing applications and programs they want to use. 
More  cloud-based  services  exist,  but  they  are  beyond  the  scope  of  this  thesis.  This 
distributed model offers clients very dynamic and versatile ground for setting up and 
managing large-scale  data  solutions.  Some of  the  most  widely used  frameworks and 
applications are open-source (such as Hadoop and its submodules), and most of the XaaS 
services are based on a month-by-month subscription, keeping the entry level to cloud-
based services low.

3.3. Hadoop framework

In the world of RDBMS and centralized web servers, the division between components 
and their role in a system was straightforward and logical. When handling unstructured 
datasets that are possibly many thousand or million times bigger than what we are used 
to when dealing with traditional, structured data, lines get a bit more blurred. Hadoop and  
its modules and tools take care of every step of the process, from analyzing to storing5 
and processing and management. For some it is a data management tool and for others, it 
is a framework for parallel execution in a distibuted system that enables the calculation 
power of supercomputers [4].

Hadoop is an open source platform that makes the processing of very large sets of data 
relatively easy and simple. It does not care whether the data is structured, unstructed or 
hybrid. It evolved from the sole need to store, process and manage massive amounts of 
data that previous systems were not able to handle. It includes a lot of different sub-
projects,  or  modules,  of  which  the  most  common  and  important  ones  are  briefly 
explained below. All of the projects and different modules are open-source.

Hadoop is based on Apache Lucene6 and Apache Nutch7, both of which are created by 
Doug Cutting, also the creator of Hadoop. It started as a sub-project of Lucene as an open 
source  web  search  engine  (Nutch).  Soon  after  Google  released  Google  File  System 
(GFS) and MapReduce, Hadoop added both of them to its implentation8, giving the base 
for  the  Hadoop  Distributed  File  System  (HDFS)  and  Hadoop's  implementation  of 
MapReduce. 

5 Hadoop and its HDFS is structurally a file system, not DBMS.
6 An open source information retrieval library, http://lucene.apache.org/
7 A web search engine based on Lucene, http://nutch.apache.org/
8 They were included initially to Nutch, which itself evolved to Hadoop in 2008.
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3.3.1. HDFS

HDFS is a distributed filesystem that runs on large clusters of commodity9 machines. It is 
based on the design of the Google File  System (GFS),  which was originally  part  of 
Nutch.  HDFS is  able  to  store very large amounts of  data  and is  designed to run on 
numerous  machines  in  parallel,  supporting  clearly  larger  files  than  other  distributed 
filesystems [4]. For better integration with MapReduce and to minimize latencies, HDFS 
data can also be processed locally10 in a cluster. Latency-wise this is a significant step 
from networked storage (NAS) and storage-area network (SAN)-type storage, which do 
not allow such locality at all. 

Hadoop's cluster structure is sometimes referred to as "shared nothing". This means that 
the only shared part is the network of clusters; storage and processing, i.e. the computing 
nodes, can be seen as individual units. This helps to bring down the latency compared to 
a  network  file  system (NFS).  HDFS is  mainly architectured  and optimized for  large 
datasets and high streaming speeds, and that introduces a few drawbacks if used with a 
more general implementation. For example, HDFS assumes that the data is written only 
once and then only read after that, i.e. written data can't be updated (the only operations 
are write, delete, append and read). The way the data is stored, sequential reading should 
be used instead of parallel, which once again does not serve the purposes of a system that 
would need random access to the data for smaller latency. There is also no local caching 
of the read data.

HDFS breaks a file into pieces of a fixed size and stores them to the cluster, possibly on 
different  nodes  within  the  cluster.  The support  for  multiple  nodes,  i.e.  machines and 
disks, enables the use of far larger file sizes than single-disk systems. In order to be able 
to manage the stored data in such a way, HDFS needs to have reliable access to the file  
metadata. Metadata can be read and written simultaneously by multiple clients, which 
means that the reliable metadata synchronization is crucial for filesystem functioning. To 
be able to keep the metadata synchronized, HDFS implements a dedicated master-slave 
architectured (single) NameNode machine, which regulates and manages all the HDFS 
clients' access to the metadata. Usually a cluster is limited to one NameNode, but on 
larger  datasets  throughput  can  be  raised  by  adding  more  NameNodes.  Multiple 
NameNodes also enable user and category isolation in different namespaces.

9 Off-the-shelf, i.e. normal PCs and servers that are widely sold everywhere
10 Data Locality (DAS)
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As seen in figure 4, the implementation of HDFS is structured as fixed size blocks of 
data. When storing data, files are broken down into multiple blocks and stored in several 
DataNodes11 in  the  Hadoop  cluster.  To  access  a  file,  HDFS has  to  address  multiple 
DataNodes, which means the file sizes can be much bigger than those stored in a system 
that supports only one machine, or a disk.

On the local filesystem of a DataNode, every data block is stored in a separate file. A 
DataNode  doesn't  have  any  other  information  about  the  HDFS  file  structure.  For 
improved throughput, a DataNode decides, based on heuristics, what kind of local file 
structure would serve the purpose best and creates the directories accordingly.

Metadata has a very important role in HDFS; it stores the information about the different 
data blocks and the DataNodes they reside in. To be able to access and manage metadata  
reliably and as fast as possible, is crucial for the system to function smoothly. Even while 
the HDFS files are practically write-once / read-many, metadata can be read and written 
simultaneously by many clients, which makes the synchronization of the information a 
high priority. For keeping the sync up-to-date 100% of the time, HDFS has a dedicated 
machine - the NameNode - created only for this purpose. It stores the metadata of the 
entire cluster. For each block, metadata tracks permissions, location and filenames. Since 
the amount of actual metadata per file is very low, the metadata is stored in the main 
memory of the NameNode - a NameNode with only 4GB RAM can already store great 

11 Data nodes are individual machines within the cluster

Figure 4: HDFS architecture [4].
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number of files in the memory. 

A Hadoop cluster uses master-slave architecture. As a master, the NameNode controls the 
access of clients to files within the cluster and manages the namespace. Since there is 
only one NameNode in a cluster, the architecture of the system stays relatively simple, 
but the downside of this is that if the NameNode goes down, the whole cluster goes down 
with it. 

When a client writes data in a HDFS file, it gets replicated as a part of the write operation  
in a form of data pipeline. Data is first written in a local file, which eventually grows to a 
full block of data. When the block is ready, or full, the client gets the list of assigned 
DataNodes for replicas of the block from the NameNode. The first DataNode on the list 
receives  the  client's  data  blocks  and  saves  them  to  its  local  filesystem.  Then  the 
DataNode sends the blocks to the next DataNode on the list and this goes on for as long 
as there are receiving DataNodes on the list. The last DataNode saves the data, but does 
not forward it anymore. HDFS is also aware of how different machines are distributed 
between the computer racks. This ensures good performance, since performance among 
machines within a rack tend to be better than the performance among the machines on 
separate racks due to network latency. Also, it guarantees that the data is not lost in case a  
whole rack gets destroyed. HDFS has to be fine-tuned to work fluently. Some of the 
settings,  such  as  block  size  and  the  replication  factor,  can  be  specified  for  a  file 
separately during its creation. Otherwise values specified in Hadoop configuration are 
used.

NameNode  decides  how  the  blocks  are  replicated.  As  seen  in  Figure  1,  it  receives 
periodical information (heartbeat and block report) from each DataNode - this ensures 
that DataNodes stay synchronized all the time. Upon startup, the first thing a DataNode 
does is send the block report to the NameNode, so that the whole distribution within the 
cluster of DataNodes becomes clear. Also, a missing heartbeat informs the NameNode of 
a DataNode failure. A missing DataNode is marked as dead and no more requests are 
made  to  the  one  that  is  down.  Since  some  of  the  replicas  have  now gone  missing, 
NameNode has to reorganize replication for some of the blocks. The replication factor of 
blocks is constantly monitored. If it falls behind, a new replication process is triggered 
immediately. To protect the data from a single machine breakdown or malfuction, data is 
replicated over the clusters to multiple addresses; both NAS and SAN are mostly used as 
secondary storage for data protection. 

On top of the normal data files, Hadoop has other files that help HDFS functioning and 
simplifies  processing.  SequenceFile provides  data  structure  for  key-value  pairs  and 
simplifies storing the data tremendously, since data storage itself is not aware of the key-
value layout.  MapFile, which is actually a directory, contains the sequence file and an 
index file that has the information of the key offsets of the sequence file.  SetFile and 
arrayFile are mapFiles that deal with more specialized key-value pairs, such as keys with 
null-value.  BloomMapFile  is  an implementation  of  a  mapFile  that  provides  a  fast 
membership testing of keys. These files together form very fast and flexible access to the 
data, and they are well suited for supporting MapReduce implementation.
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3.3.2. MapReduce

The MapReduce framework was first built by Google in 2004 to be able to handle the 
ever-growing amount of indexed data from the internet. After that, as-is and with some 
alterations it has been adopted by many other companies. The working model of mapping 
and reducing originates from the earlier functional programming languages, where the 
problem was divided into smaller chunks, solved, and then brought back together (divide 
and conquer-principle)[4].  MapReduce can be seen as  a  complement  to  an RDBMS. 
Whereas RDBMS has its strength in point queries of an indexed data set and the constant 
updating  of  already existing  data,  MapReduce is  clearly  a  better  fit  when the  whole 
dataset has to be analyzed for a reasonable outcome. Applications that need to write data 
once and read it multiple times or constantly will get the most use out of MapReduce.  
Fundamental differences between RDBMS and MapReduce can be seen in table 3.

Table 3: RDBMS and MapReduce main differences [5]

RDBMS MapReduce

Data Gigabytes Petabytes

Access Interactive and batch Batch

Updates Read + write many Write once, read many

Structure Static schema Dynamic schema

Integrity High Low

Scaling Nonlinear Linear

MapReduce is a programming model for data processing [5]. It is used for querying large 
sets  of  distributed  data  as  a  MapReduce job.  Used together  with  Hadoop's  HDFS12, 
Hive13 and other additional software,  MapReduce can be used to query huge datasets 
without  problems.  Inside  Hadoop,  MapReduce  can  be  run  in  multiple  different 
languages, such as Java, Ruby and Python. A MapReduce job works in two phases – the 
mapping phase and the reducing phase.  Each phase has key-value pairs as input and 
output  and  together  mappers  and  reducers  make  Hadoop  jobs.  To  solve  a  specific 
problem, the user has to implement classes for both mappers and reducers and build the 
main application to control the execution of jobs. The Map function takes in raw data as 
an input (value) - the key points to the offset where that part of data is found in the file. A 
key can also be null and structured on the mapper.

12 Or other similar distributed file systems
13 Apache Hive helps querying and managing large datasets by defining structure
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The main classes that form the MapReduce execution pipeline are shown in figure 5. 
While there are also some optional classes used with MapReduce, the ones listed below 
are non-optional [5]. 

Table 4: MapReduce classes

Driver Main program, initializes MapReduce job. Defines 
configuration, specifies components, formats and how different 
parts, e.g. mappers and reducers work.

InputData Initial storage of MapReduce task data.

InputFormat Rules for reading and splitting input data to smaller pieces. A 
lot of different variations exist.

InputSplit A unit of work for a single map task in MapReduce program 
(can consist of hundreds of tasks).

RecordReader Reads the data inside a mapper task, converts to key-value 
pairs for the mapper.

Mapper User-defined initial phase for a MapReduce program. Takes in 
key-value pairs (k1, v1) and transforms to output pair (k2, v2) for 

Figure 5: MapReduce high level architecure [5].
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shuffle and sort.

Partition Inputs to the reduce tasks. Determines which reducer the key-
value pairs are given to (one reducer for one key, multiple key-
value pairs with the same key might exist).

Shuffle When key-space for a map task is partitioned, intermediate 
outputs are moved to reducers. 

Sort The set of intermediate key-value pairs is sorted to (k2, {v2, … , 
v2}) before introducing to the reducer. 

Reducer User-defined second phase of a a MapReduce program. 
Receives a key and all the values, each key gets reduced once, 
output now transforms to (k3 v3). 

OutputFormat How the output is produced (by either mapper or reducer). 
Defines location for output data and points the RecordWriter 
for the output.

RecordWriter Defines how output records are written.

3.3.3. YARN

YARN, also called MapReduce 2.0 (MRv2), is a newer version of MapReduce that was 
introduced  in  Hadoop-0.23.  It  separates  the  major  functionalities  of  the  job  tracker, 
resource management and job scheduling to a separate daemon. The idea is to have a 
global  resource  management  and  per-application  ApplicationMaster  [5].  The  data 
computation network is formed by a ResourceManager and a NodeManager slave in each 
node. The ApplicationMaster negotiates resources from the ResourceManager and works 
with the NodeManager to execute and monitor tasks. 

The  ResourceManager  has  two  separated  components,  Scheduler  and 
ApplicationsManager.  Scheduler  allocates  resources  to  the  running  applications  - 
scheduling  is  based  on  the  resource  requirements  of  the  applications.   The 
ApplicationsManager  handles  the  job-applications,  chooses  the  container  for 
ApplicationMaster execution, and restarts the ApplicationMaster container on failure. All 
the previous MapReduce version jobs run unchanged on YARN. 
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3.4. Windows Azure

Windows Azure is a cloud-based platform that lets its users build applications with a 
wide range of programming languages and tools of their choosing. Building, deploying 
and managing applications on the platform is made flexible and efficient [40]. Windows 
Azure services can be divided into 4 main categories: computing, networking, data, and 
app services. These services provide a diverse stack of applications and solutions that 
enable cloud-based management, data processing, storing and analysis. Below is a brief 
list of features: 

Figure 6: YARN communication flow [5].
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✔ Virtual machines, web sites and mobile services

✔ Networking services

✔ Recovery, analytics, distributed data processing, variety of databases

✔ HDInsight - Microsoft's cloud-based Hadoop service

✔ Applications, caching and a Content Delivery Network (CDN)  

Running along the operating system14, Windows Azure also provides its own relational 
query  language,  SQL Azure.  SQL Azure  can  be  used  to  query  both  structured  and 
unstructured data. Since the query language is relational, it has mechanics to convert a 
query  to  make it  work with  an  unstructured  dataset  as  well.  The  third entity  of  the  
platform is AppFabric, the middleware component that includes services such as Access 
Control and Service Bus [41].  

HDInsight is Microsoft's cloud-based version of Hadoop15. It's a scalable PaaS -service 
within the Azure platform that lets the user control Hadoop and all its components via 
Windows Azure's interface. HDInsight combines Hadoop with enterprise-level security 
and manageability, integrating some of the Microsoft's well-known tools, such as Excel. 
It also fully supports some of the common software used in the Hadoop ecosystem, such 
as Pig and Hive. Compared to administrating and managing a Hadoop cluster locally, 
HDInsight eases the task significantly.

3.5. Amazon AWS 

Amazon Web Services (AWS) is also a cloud-based computing platform, which offers a 
range  of  easily  scalable  services  on  the  cloud  [42].  AWS  has  different  setups  and 
configurations for startups, enterprises and governments, with pricing starting from free. 
AWS is a whole family of services and applications that cover everything from storage to 
analysis. Listed below are a few of the most well known products:

✔ Elastic Compute Cloud, EC2

Scalable cloud computing 

✔ Simple Storage Service, S3

Online storage service

14 Microsoft brands the Windows Azure as the operating system in the cloud [41]
15 As of writing, Hadoop version 2.2 had just been added to HDInsight
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✔ Cloudfront

Content delivery network

✔ DynamoDB

NoSQL database services

✔ Elastic MapReduce, EMR

Hadoop cluster -based processing service

Same  as  with  Windows  Azure,  the  initial  setup  of  software  and  services  takes  only 
minutes. Platforms take care of administration and configuration, providing the user with 
a neat interface to control the services. Amazon guarantees reliability for their services 
and products, e.g. if the monthly down time of EC2 exceeds 1%, a client is reimbursed 
30% of the monthly fees.

Amazon EMR is a very easily scalable Hadoop-powered processing service. A Hadoop 
cluster can be resized with a few clicks and new clusters can be added just as easily.  
EMR can used in conjuction with EC2 and S3, Hadoop's HDFS and its other tools, such 
as Mahout16, Pig and Hive. EMR supports a variety of programming languages, such as 
Ruby, Java, C++. R can be used via Hadoop streaming [44].

3.6. Other platforms

A variety of other platforms and services for managing and analyzing big data exist. 
Whereas Microsoft's Windows Azure and Amazon's Web Services provide a full-scale 
cloud-based platform so that the client does not necessarily even have to worry about the 
version or configuration of Hadoop, some companies have forked their own versions of 
the framework or integrated it with other software. The two most notable distributions 
are made by Cloudera and Hortonworks. As of this writing Doug Cutting, who initially 
created  Hadoop,  works  as  a  Chief  Architect  at  Cloudera;  Hortonworks  is  a  major 
contributors to Hadoop [45]. Cloudera's Hadoop distribution CDH4 comes with Hadoop 
2.0,  a  user  interface  and  additional  security  features  suited  for  enterprises.  Project 
packages include e.g. Flume, Hbase, Mahout, Oozie17, Sqoop and Zookeeper. HDP-2 is 
Hortonworks' distribution, includes Hadoop 2.2 with a user interface and an enterprise 
suite  of  tools.  Additional  software  include  e.g.  Hive,  Hbase,  Sqoop,  Flume,  Knox, 
Ambari and Zookeeper [46].

16 Apache Mahout, a scalable machine learning library [43]
17 Apache Oozie, a workflow scheduler [47] 



29

4. DATA STORING

RDBMS, relational databases and structured data have been dominating the field for over 
40 years [49]. Now, when the clear majority of produced data is in unstructured form, 
new solutions are needed for both storing and querying it. This section introduces some 
of the existing solutions for both structured and unstructured data.

4.1. Hyperscale storage and scalability

Today, data is everything. Data equals more money and power (and in some cases other 
assets, such as safety) than ever before. The core strategy for the success of many new 
and young startups  hovers  around data,  and data  only.  Companies,  governments  and 
research facilities are focusing on how to squeeze every piece of data from the subjects 
that are studied, tracked and reseached. Business intelligence (BI) is pushed to its limits, 
mining and analyzing data to ensure a juicy annual turnover. All the new data that is 
produced has to be physically kept somewhere and the system that takes care of storing it 
has to be very flexible, has to run impeccably and, most of all, has to be effortlessly 
scalable.  Data-intensive  solutions  and  applications  are  built  on  a  very  scalable 
architecture.  For  most,  a  distributed  storage  or  cloud-based  service  is  enough,  but 
companies  with  colossal  amounts  of  data  in  their  possession  and  whose  daily  data 
production is measured in hundreds of PBs need something else.  Some of the bigger 
players, such as Google, Amazon, Yahoo! and Facebook, set their own datacenters across 
the world at strategically sound spots. Their data is centralized in multiple datacenters all 
over  the  world  and for  preventing  the  loss  of  data,  it  gets  duplicated  over  multiple 
datacenters [16]. As of writing, Google for example has 12 datacenters, located in Asia, 
the Americas and Europe.

Hyperscale  data  centers  have  an  architecture  that  is  designed  to  provide  a  single, 
massively  scalable  computer  architecture  [38].  Data  centers  have  a  large  amount  of 
commodity  servers  (more  simple  and  cheap  machines  is  better  than  fewer  high-end 
machines [16]) that are bundled to clusters and managed as singles systems. Most startup 
companies begin with smaller setups but (can) grow extremely fast, creating a need for 
flexible  architecture  for  storage.  On  a  (local)  Hadoop  cluster,  scaling  is  pretty 
straightforward.  A new  DataNode  can  be  set  up  by  installing  Hadoop  to  a  server, 
configuring it and adding the new node to NameNode's (master node) slaves-list. Now 
both  storage  capacity  and  processing  power  have  been added  to  the  cluster.  Data  is 
evenly spread throughout the cluster and replicated to multiple servers and stacks.

Both Windows Azure and Amazon AWS, mentioned in the previous section, would meet 
the needs of a fast-paced, growing young company with their  affordable  pricing and 
painless scalability.  Cloud-based storage is  getting more and more popular and some 
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predictions state that by 2020 one third of all data will either pass through or live in a 
cloud [49]. For a relatively small amount of money a company will have the maintenance 
of their  databases - which in many case are the most valuable asset of a company - 
covered,  with  security  and  backups  ensured,  at  least  mediocre  interface  to  the  data, 
scalability with a few clicks, and very good server up-time. 

4.2. RDBMS and SQL

Relational databases and database management systems have been the dominant storage 
choice for decades. The relational model was created by E. F. Codd in 1970 [50] and was 
quickly adopted by database researchers and companies. In the relative model, all data is 
stored in tuples that follow the same pattern and have the same amount of components. 
Tuples are linked to others by a primary key and foreign keys and each attribute has to be 
atomic. A database is made up of tables, where each tuple makes a row. Data can now be 
accessed and queried by SQL using their primary and foreign keys and attribute names. 

Table 5: An example of SQL table contents

table 'employee_details'

id first_name last_name age weight_kg height_cm

1 John Doe 34 68 186

2 Jane Doe 33 124 151

If the height of Ms. Jane Doe in table 5 should now be queried, the SQL query would be 
formed as:

SELECT height_cm 

FROM employee_details 

WHERE first_name ="Jane" 

AND last_name ="Doe";

Today a vast variety of different open-source and commercial RDBMS and SQL software 
exists. Open solutions are very popular and are widely used across different-sized IT 
companies. According to a website that tracks database usage, as of writing the top three 
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most used database engines in order are Oracle, MySQL and Microsoft SQL Server. Of 
this list, MySQL is open source, while Oracle and Microsoft SQL Server are commercial 
software  and  mostly  used  in  enterprises.  SQL in  general  is  very  fast,  thanks  to  its 
structured form. Data in the database can be written, read and updated unlimited times 
very  efficiently.  RDBMS  and  applications  that  use  it  are  usually  focusing  'ACID' 
-transactions [51]:

✔ Atomicity: If any part of a transactions fails, it's cancelled

✔ Consistency: Database has to remain in a consistent state

✔ Isolation: Transactions should not interfere

✔ Durability: Persistence of completed transactions

On the minus side, SQL does not scale that well, which can be crucial for companies that 
rely on a rapidly growing database. As a solution, NoSQL (storing and querying massive 
unstructured datasets) was created.

4.3. NoSQL

NoSQL was created to meet the needs of the maturing internet and the services bound to 
it  -  in  short,  scalability.  Even  its  name  includes  SQL18.  NoSQL doesn't  follow  the 
relational  database  model  -  it  more  like  filters  the  databases  that  are  not  using  the 
relational model. As mentioned earlier, the ACID-bound transactions wouldn't work on 
large datasets and in distributed systems consistency is simply not possible. The NoSQL 
system follows  the BASE -transaction model, which can be listed as [51]:

✔ Basic availability: Successful or failed response is guaranteed 

✔ Soft state: State of the system can change without any input

✔ Eventual consistency: System can be temporarily in an inconsistent state

With ACID changed to BASE, on top of learning new technologies, additional hardship 
might arise from changing how one thinks of the data, of querying and storing it. For 
programmers that have worked with SQL databases for a long time, the new paradigm 
can be  confusing. In a NoSQL system, storage types, features and attributes differ from 
each other. Below is a short introduction of each and a few examples of products that use  

18 Different meanings of the name exist



32

it [52]:

✔ Document databases

Loosely structured set of key - value pairs in (usually JSON) documents

Simple and efficient model

MongoDB, CouchDB

✔ Graph databases

Data nodes and their relationships 

ACID / RDBMS compliant, complex

Neo4J, FlockDB

✔ Key-value stores

A hash table of (unique) key - value pairs

Easily scalable

Oracle Berkeley DB, Amazon Dynamo, Redis,

✔ Column-oriented stores

Set of key - value pairs in columns, no empty values stored

Semi-structured data

Google Big Table, HBase

4.4. Apache Hive

Apache Hive is a distributed data warehouse built on top of Hadoop. It provides an SQL-
like interface for querying and managing data in distributed storage, such as HDFS or 
HBase; queries are then translated to MapReduce jobs on the run. Hive is not built for 
real-time  queries,  so  underlying  Hadoop's  infrastructure  and  MapReduce  can  cause 
substantial latency. It's best used as a batch-oriented tool for bigger data sets, since for 
smaller data sets traditional RDBMS easily outperforms Hive [7]. Since Hive is meant to 
be used with larger data sets, it performs on par with Hadoop and MapReduce.

Hive's query language is called QL. QL enables both an SQL-like approach and custom 
mappers and reducers from the MapReduce framework. As shown in table 6, Hive data is 
divided into 4 different organizational mechanisms:
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Table 6: Hive data mechanisms

Databases Namespaces that separate tables and other data units.

Tables Units of data with alike schema (similar to RDBMS table 
structure)

Partitions 1 or more partition keys on each table for determining how the 
data is stored. Allows user to identify rows that satisfy certain 
criteria. 

Buckets Partitions can be divided into buckets based on the hash function 
of a table column.

Hive metadata is stored in MetaStore, which is a relational database containing the Hive 
schema.  MetaStore  synchronizes  itself  with  the  rest  of  the  metadata  componenst  of 
Hadoop framework.

4.5. Apache HBase and ZooKeeper

As we learnt on earlier pages, HDFS's architecture supports only the "write once – read 
multiple" type of data access. To overcome the constraints of HDFS's sequential data 
access, HBase adds an additional layer of data accessibility to Hadoop. HBase runs on 
top of Hadoop, providing near-realtime, table-organized read-write access  to both the 
structured and unstructured data it holds. 

HBase is  an implementation of Google's  BigTable,  a  version that is  better  suited for 
Hadoop. Like HDFS, HBase uses master-slave architecture and the data management is 
distributed and controlled by HBase master (HMaster). HBase implementations generally 
use mostly denormalized data so they can take advantage of HDFS's features, such as 
replication and failover. However, it doesn't support secondary indexing nor transactions 
-  its strength lies in Create, Read, Update and Delete (CRUD) operations.

When storing a table, HBase partitions the table into regions depending on size. Every 
region gets sorted and randomly distributed among the region servers. When creating a 
new table entry, HBase chooses the region server and writes it there. If, however, the size 
does not correlate  with the previously set  size limits,  the table  is  split  automatically. 
When a read or update happens, HBase directs the client to the correct region server and 
the region server manages the actual read / update operation.  

Distributed HBase relies on a Zookeeper cluster. The cluster is managed by HBase and it  



34

starts  and  shuts  down  with  HBase.  Zookeeper  is  a  synchronization  service,  where 
multiple  nodes  of  Zookeeper  units19 connects  the  client  to  the  HMaster.  The  Master 
Zookeeper  unit  is  chosen  by  the  consensus  of  the  Zookeeper  units.  If  any  of  the 
Zookeeper units should fail, a new master unit is chosen by the consesus of the rest of the  
units. When a client writes to the ensemble, every unit within the ensemble receives the 
data and the master unit is responsible for writing the data to the file system. In this way 
every write synchronizes the master Zookeeper unit and the (region) server.

19 A cluster of Zookeepers is called an 'ensemble', where a Zookeeper unit is a separated 
machine / server. An ensemble has to comprise at least 1 unit.

Figure 7: High-level architecture of HBase [4].
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The high-level architecture of HBase can be seen in figure 7. A few components that 
have  not  yet  been  mentioned  are  Memstore  (key-value  data  cache  for  improved 
performance),  WAL (Write-Ahead-Log;  keeps track of data changes to ensure correct 
functionality during possible server failures) and HFile (reads and writes to and from 
HDFS).
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5. PROCESSING THE  DATA

Data processing and analysis consists of numerous methods and paradigms. This chapter 
goes through some of the common ones and outlines applications and tools that have 
been globally used in data processing and analysis for years.

5.1. Data processing, analysis, and visualization

Traditional data analysis consists of mostly statistical methods, and they vary quite a lot 
from the methods used with big data analyzation. However, depending on data and the 
task, traditional data analysis methods can be used to analyze larger datasets as well. The 
most common traditional data analysis methods are listed in table 7 [23]. Cluster analysis 
is a statistical method for grouping objects. Factor, correlation and regression analysis 
focus on the relations of the elements, A/B testing compares two elements, statistical 
analysis  uses  statistics  and  probability,  and  data  mining  uses  different  algorithm  for 
gaining new information from random and fuzzy data.

Table 7: Description of some of the most widely used traditional data analysis methods

Cluster analysis Method for differentiating objects with particular 
features and grouping them into clusters according to the 
features. No training data.

Factor analysis Grouping closely related variables into a factor and then 
using the factor to reveal the information from the data.

Correlation analysis Analytical method for determining relations, such as 
correlation and mutual restriction on sampled data and 
conducting forecast accordingly.

Regression analysis Tool for finding correlations between variables, 
identifies dependance relationships among variables.

A/B testing Methods for comparing target variables against test 
variables.

Statistical analysis Analysis based on statistical theory, randomness and 
uncertainty are modeled with probability theory.

Data mining Process for extracting previously unknown information 
from datasets.
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Methods for processing larger data sets differ quite a lot from traditional data analysis 
methods. Some of them are listed in table 8 [23].

Table 8: Description of techniques used to analyze large data sets

Bloom filter Tests whether an element belong to a set comparing hash 
values of data other than self in a bit array.

Hashing Transforms data into fixed-length numerical or index 
values.

Index Data structure for indexing some of the data, can be used 
for both structured and unstructured data.

Triel Variant of a hash tree that utilizes common prefixes of 
character strings to reduce comparison.

Parallel computing Utilizes multiple computing units instead of one. 
Problem is divided to multiple pieces and solved 
independently in parallel.

As mentioned before, in some cases traditional methods can be used for big data analysis 
as well.  By default,  however,  large and unstructured datasets  are best analyzed using 
methods that are solely created for that purpose. Bloom filters store hash values about 
other entities of data. Hashing is a simple and efficient method that reshapes the data into 
index or numerical values. Indexing comes with the price of extra storage load, but is 
very efficient.  Triel  focuses  on word frequency statistics and rapid retrieval.  Parallel 
computing divides a task among processing units.
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Data analysis research can be divided into different technical fields. The division tries to 
separate the  data  (and the research)  into  different  characteristic  entities  and keep the 
research focused on a narrower subset of the whole field. Even some of the methods 
overlap. The basic separation of fields can done as seen in table 9.

Table 9: Fields of research in the field of data analysis

Structured data analysis Business and research -produced structured data; 
analysis mainly based on data mining and statistical 
analysis.

Text data analysis Includes emails, logs, social media and web pages, 
making the textual information the most common 
format of stored information. Extracts useful 
information from unstructured text. Involved 
techniques and processes include machine learning, 
data mining, statistics and computational linquistics. 
Most text analyzing systems are based on natural 
language processing (NLP).

Web data analysis Automatizes information retrieval, extraction and 
evaluation from web documents and services for 
knowledge discovery.  Closely related to other 
research fields, such as database, NLP and text 
mining. Web data analysis consists of three main 
sub-fields - content, structure and usage mining.

Multimedia data analysis Mainly analysis of images, videos and audio. Due to 
the rich character of information, multimedia data 
analysis is very challenging. Uses metadata for 
syntax and context. Elements such as words, 
sequences and texts are used to extract information.

Network data analysis Extracts and analyzes internet-produced networking 
information, e.g. from websites / companies such as 
Twitter, Facebook and LinkedIn. Massive amounts 
of data mostly in describing connection between two 
peers. Predicting new connections and communities, 
the evolution of the network and social influences 
are the main fields of analysis. 

Mobile data analysis Analyzes the mobile application produced data, such  
geographical information, mobile communities with 
similar interests.
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5.2. Data mining

Data mining is a major part of data analysis. It is a process in which previously unknown 
patterns and actionable information are extracted from raw data [21]. The data mining 
process has  been progressively gaining interest  for over  a  decade,  and companies  of 
various sizes are giving the field more attention. The foundation of data mining lies in a 
few different fields, such as data reduction, probabability theory, and microeconomics. 
Most of the time, data is pre-processed before the actual mining starts and, if needed, 
transformed to more suitable format, e.g. via normalization. Data pre-processing is the 
most crucial part of the process, since the data that gets stored is usually very distorted 
and noisy. There are a lot of different techniques to achieve this goal. A mathematical 
approach,  such as  histograms,  maximums and minimums or  using human logic  (e.g. 
sex=male, pregnant=yes), filling in the missing values, and so forth.

Figure 8: Different entities of a mining system.

Different  steps  for  making  the  raw  data  useful,  i.e.  gaining  insight  and  actionable 
information from the dataset, are shown in table 10. One example goes from building a 
model with existing data to comparing it with new data and finally using the discovered 
information to predict future events [21].

Table 10: Different steps of mining

1. Model Building a model for a solved problem → using the model to 
solve an unsolved problem

2. Discover Discovering previously unknown patterns / gaining information 
about something seemingly unrelated

3. Predict Predict the forthcoming using the previously found information
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Data mining can be divided into different sub-categories and directions depending on the 
approach to modeling and the field. The most common directions for modeling today are 
statistical  data mining, machine learning data  mining, and computational data mining 
[22]. Statisticians were the first ones to model the data, calling it "data mining". The term 
data mining was first used in a derogatory way  to talk about extracting data that wasn't  
present in the dataset. Today statisticians see data mining as an underlying distribution of 
data that the visible data is based on. Some see data mining as a synonym for machine 
learning, where the dataset is used to train the algorithm, e.g. through Bayes nets and 
hidden Markov models. The newest approach to the field is computational data mining, 
which sees data mining as an algorithmic problem. In general, data mining consists of 5 
major elements:

✔ Transform and load the data into a system (warehouse, datacenter, DFS etc)

✔ Store and manage the data

✔ Provide access to the data for business analysts and other professionals

✔ Analyze the data

✔ Present the data in a useful format

Architecturally a typical data mining system consists of the components shown in the 
following  figure.  Different  setups,  programs  and  systems  can  be  built  somewhat 
differently and they can be programmed for more specific tasks. Some Hadoop modules, 
such as Hive and Mahout, are suitable tools for data mining. Hive can ease mining tasks 
by providing its own SQL-like language, QL, which fully supports MapReduce. Mahout 
adds  machine  learning  capabilities  with  clustering  and  classification  to  the  mining 
process.
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Figure 9: Example architecture of a data mining system.

Table 11: Responsibilities of the components of a data mining system

User interface User-specified queries and data mining tasks.

Pattern evaluation Employs interestingness measures of a pattern and 
interacts with data mining engine and knowledge base. 

Knowledge base Interestingness of different patterns, concept 
hierarchies, user beliefs etc.

Data mining engine Consists of different functional modules for tasks, such 
as association, characterization and cluster analysis.

Data server Fetches relevant data according to the user requests.

Data repository One or more databases, a data warehouse, datacenter, 
cloud-based service etc.
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5.3. Analytical tools and applications

Some commonly used data processing and analytical tools are described below. In the 
implementation part of this thesis, R played the main role in analysis.

5.3.1. R

R is a high-level statistical language and a computing environment that was derived from 
the language S (most of the system-supplied functions are written in S [37]). R has grown 
to be one of the most used statistics and analysis softwares, partially due to the fact that it  
is  open source,  has a big active community,  and includes thousands of custom-made 
packages. According to the survey “What Analytics, Data mining, Big Data software did  
you use  in  the  past  12 months  for  a real  project?”20,  R was  the  most  used  tool  for 
analyzing and visualizing big data among the survey participants in 2012 [23]. Tiobe.com 
(Programming community index) has also steadily ranked R as one of the most popular 
programs in the field, even surpassing  commercial softwares such as Matlab and SAS.

The most important tool for using R is the console. GUI has very limited set of features  
and functionality, which means all the real work is done via console. Using the console is 
very straightforward: the user types the command and hits enter, R prints the result to the 
screen.  Mathematical  operations,  setting  variables,  declaring  functions  and  data 
structures, etc. can be done quickly and easily. Technically, everything the user types is 
an expression [32]. Below is a short example of how R takes the expression and what it  
prints as an output.

20 By KDNuggets
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Table 12: Few examples of R console commands

Expression Output

Calculations 1+1*2 3

Sequences 1:5 1,2,3,4,5

Vectors c(1,2) + c(3,4)  4,6

Functions cos(3.141593) -1

Variables x <- 4 [user types x and enter] 
4

Data structures a <- array(c(1,2,3,4,5,6) [user types a and enter]
1  3  5
2  4  6

Objects o <- list(item="bike", 
price="80") 

[user types o$item and enter]
bike

R can be run in batch mode,  which means a sequence of commands can be saved into a 
file  and used  later  for  more  complex processing,  dramatically  hastening the  process 
compared to typing every command one by one. R can also be run as a web application21, 
a server22 or inside Emacs23. R includes several default  packages for visualizing data. 
With these packages, the user can e.g. draw all the Microsoft Excel / Apache Open Office 
Spreadsheet -type charts and plots [31]. The default packages are usually everything the 
user needs - they are very feature-rich. New packages can be installed via the Graphical 
User  Interface  (GUI)  or  console.  RStudio24 introduces  an  integrated  development 
environment (IDE) for R, which grants the user a whole new world of visual information, 
usability, and performance.

Using R with large datasets involves a few additional steps. R alone is not very well  
suited  for  handling  huge loads of  data,  but  combining  R with  custom packages  and 
additional  software makes it  a very efficient analytics tool for big data.  PbdR, which 
stands for 'programming with big data in R', is a set of packages that extends R's core 
functionality to parallel execution on multiple cores by introducing external libraries to 
R. R can be also bundled with Hadoop. RHadoop is a collection of four R packages that 
allow users to manage and analyze data with Hadoop [34, 35, 36]. 

21 RApache, http://rapache.net/
22 RServe, http://rforge.net/Rserve/
23 ESS, http://ess.r-project.org/
24 RStudio, http://www.rstudio.com/
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5.3.2. Apache Pig

Apache Pig is an execution platform and high-level scripting language (Pig Latin) for 
analyzing large datasets. Pig scripts run on HDFS and MapReduce clusters, or locally on 
a single machine where HDFS or MapReduce are not required. Pig's compiler translates 
Pig  Latin  into  sequences  of  MapReduce  programs.  Pig  Latin's  high  level  of 
parallelization and ease of use makes it very popular among Hadoop users.

PigLatin allows users to describe the dataflow, i.e. how data from one or more inputs 
should  be  read,  processed  and stored  to  one or  more  outputs  [24].  Dataflow can be 
everything from a simple linear word count to a more complex set of joined inputs and 
split streams of data sent to different operators. The presence of typical programming 
language elements, such as conditionals, are missing. Pig Latin focuses on data flow, not 
control. 

Instead of using MapReduce directly, using it through Pig provides many advantages. Pig 
Latin scripts manage MapReduce jobs and the three main tasks involved: map, shuffle, 
and reduce automatically. It also provides all the necessary data operations, such as join, 
order by, and union. Using MapReduce e.g. for grouping is possible (that's what shuffling 
and  reducing basically  do),  but  more  complex  tasks,  such  as  join,  must  be  custom-
programmed by the user. Table 13 quotes the 'Pig Philosophy' [25] directly, pointing out 
a few of the most important aspects of Pig.

Pig comes with its own shell, Grunt, which enables the user to communicate with HDFS 
straight  from the shell25.  In addition, Pig itself and MapReduce can be controlled via 
Grunt.  For the most part,  Pig is a strongly typed language - this is,  if the schema is 
defined. Without defined schema, adaption to the actual type will happen in runtime. Pig 
Latin is  case sensitive.  One of the most  powerful  features of Pig is  the user-defined 
functions (UDF). UDFs can be written in Java or Python (executed in Jython26). User-
created UDFs are stored and collected in Piggybank. They are not included in PigJAR by 
default,  so  they  need to  be  registered  manually.  There  is  also  a  Pig  Eclipse  plugin, 
PigPen, that provides a powerful IDE [26].

25 After version 0.5, all the Hadoop's fs shell commands are available
26 Python for the Java Platform, http://www.jython.org/
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Table 13: Pig's features [25] 

Pigs eat anything Pig can operate on data whether it has metadata 
or not. It can operate on data that is relational, 
nested, or unstructured. And it can easily be 
extended to operate on data beyond files, 
including key/value stores, databases, etc. 

Pigs live anywhere Pig is intended to be a language for parallel data 
processing. It is not tied to one particular parallel 
framework. It has been implemented first on 
Hadoop, but we do not intend that to be only on 
Hadoop. 

Pigs are domestic animals Pig is designed to be easily controlled and 
modified by its users. 

Pig allows integration of user code wherever 
possible, so it currently supports user-defined 
field transformation functions, user-defined 
aggregates, and user-defined conditionals. These 
functions can be written in Java or in scripting 
languages that can compile down to Java (e.g., 
Jython). Pig supports user-provided load and 
store functions. It supports external executables 
via its stream command and MapRe- duce JARs 
via its mapreduce command. It allows users to 
provide a custom partitioner for their jobs in some 
circumstances, and to set the level of reduce 
parallelism for their jobs. 

Pig has an optimizer that rearranges some 
operations in Pig Latin scripts to give better 
performance, combines MapReduce jobs 
together, etc. However, users can easily turn this 
optimizer off to prevent it from making changes 
that do not make sense in their situation. 

Pigs fly Pig processes data quickly. We want to 
consistently improve performance, and not 
implement features in ways that weigh Pig down 
so it can’t fly. 
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5.3.3. Splunk

Splunk started as a text analyzer for logs but has grown out to be a whole platform. Its  
main functionalies are [27]:

Table 14: Functional entities of Splunk

Data collection Both static data collection and monitoring and adding 
changes to files and / or structure real-time. Data can 
be collected from network ports, programs or scripts 
and relational databases. Other RDBMS functions are 
also possible.

Data indexing Collected data is broken down into events; it's 
processed and the high-speed index is updated.

Search and analysis The Splunk Processing Language lets the user search 
and manipulate data for the desired results. Results 
can be presented as events, tables and charts.

Splunk can be used via browser-based user interface or directly by using the command 
line  client.  Splunk  can  be  configured  and  used  very  easily  through  graphical  user 
interface. It can handle most of the different data types that are thrown to it, including 
different kinds of log files, network feeds, system metrics, structured RDBMS data, and 
social data. Initially Splunk has to be configured with the different types of data, each 
type becoming its own data input. Data can be local or remote and the data can be loaded 
in  as  files  and  directories,  network  sources,  windows data,  or  other.  Splunk  can  be 
enabled to  accept  input  from a TCP or UDP port.  When enabled,  Splunk will  index 
incoming network data, such as syslog information that is generated on remote machines. 
Splunk is also designed as an infrastructure where third party apps and users can write  
their own scripts on top of the default mechanism, to get data from sources that are not 
included in the initial setup.

To get the data from all the instances and machines e.g. in an enterprise, Splunk has a  
special setup called forwarders. Forwarders include only the essential components, and 
their main responsibility is to send data from the parent machine to the main Splunk 
indexer. Using forwarders is the best practice for using Splunk. Using forwarders users 
gain many benefits, such as:
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✔ Automated buffering of remote data 

✔ Support of add-ons

✔ Remote adminstration

✔ Secure data transfering

✔ Well suited for scalability 

Splunk also has an additional platform, Hunk, that runs on top of Hadoop. It's built to 
rapidly explore, analyze, and visualize the data in Hadoop [28]. Hunk works seamlessly 
with YARN and MapReduce. It focuses on making the analysis of data smooth and user 
experience-oriented. Features such as integrated analytics, fast deploy and deep analysis, 
interactive search, and results preview make Hunk a full-featured platform for Hadoop.

5.3.4. D3.js

D3 is a Javascript-heavy client-side visualization tool for manipulating documents based 
on data [29]. Compared to other (actual) analysis tools, D3 is clearly a lighter solution 
and is meant solely for visualizing the data on the web browser. D3 greatly helps the user 
analyze the data; a dynamic and interactive library with hundreds of pre-built functions 
enable the user to inspect and modify the object document model (DOM) of the HTML 
page containing the loaded data [30]. Since the presentation happens on a web page, 
HTML 5 techniques and CSS are widely used to create the highly visualized models. D3 
includes following visual presentation tools:

Table 15: D3 visualization tools

Transitions Interpolation of e.g. color, size, location etc.

Mathematical functions 2D transformation, different distributions.

Arrays 3D operations.

Geometry Polygons, convex hull, marching squares etc.

Color Manipulation of tones, brightness etc.
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5.3.5. Google Prediction API

Google  Prediction  API  is  a  cloud-based  analysis  tool  that  uses  machine  learning  to 
estimate and predict results according to the data uploaded to Google's RESTful API. The 
user  does  not  need  to  know  anything  about  artificial  intelligence  (AI)  or  machine 
learning to  be  able  to  use  the  tools.  They are very easy to  use  and straightforward. 
However,  the simplicity and the cloud-based approach limits Google Prediction API's 
usefulness for bigger and more complex queries. 

A user first needs to upload the training data to the Goole Prediction API (the user must 
have  a  Google  account  and  Google  developer's  console  with  Google  Prediction  and 
Google Cloud Storage activated) and train the system according to the uploaded data. 
The format of the training data is a comma-separated two- or more column and multiple-
row text file, where the first column is the correct answer and latter columns are features 
the  system gets trained with.  When the  system is  trained,  the  user  can start  sending 
queries with similar content as the ones the system was trained with,  minus the first 
column.

5.3.6. Google BigQuery

Google  BigQuery  is  an  online  query  service  for  massive  datasets.  It  is  an  external 
implementation  of  one  of  Google's  core  methodologies,  Dremel,  and  according  to 
Google, it  can scan 35 billion rows of unindexed data in some tens of seconds [53]. 
BigQuery lets the user do SQL-like queries of the data, which has been uploaded to the 
Google  servers  beforehand.  Synchronous  query  requests  are  stored  for  24  hours. 
BigQuery  is  accessible  via  Google's  bundled  internet-based tools  user  interface  or  a 
command-line tool. BigQuery also has a REST API that supports variety of languages, 
such as Java, Python and Ruby.   
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6. IMPLEMENTATION

The implementation part of this thesis consists of a Hadoop cluster used together with R 
and Matlab. R is used to control and command both Hadoop (HDFS and MapReduce) for 
storing  and  analyzing  the  data  and  Matlab  acts  as  a  server  for  processing  Matlab 
functions, reading .mat -files, and embedding the functionality and power of Matlab to R 
via R's external libraries. The cluster built was used to analyze two datasets - 2 months'  
worth of cellular (840 - 902MHz) data band findings from long-term spectral occupancy 
data used by Global RF Spectrum Opportunity Assessment and open weather data from 
weatherunderground.com.
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6.1. Goals of the implementation

The goal of this implementation was to set up a Hadoop cluster in the network of Oulu 
University, gather data and analyze it by using the cluster, and draw conclusions based on 
the outcome. The implementation serves as a test platform and initial setup for Global RF  
Spectrum  Opportunity  Assessment  for  their  forthcoming  research,  and  the  analysis 
results should give ideas and directions regarding what kind of solutions would best meet 
their needs. Secondly, using the results from the analysed data that was processed during 
the  implementation,  the  author  of  this  thesis  tries  to  prove  whether  the  initially  set 
hypothesis is right or wrong.

6.2. The implementation

The initial test version, a single-node Hadoop 2.2.0 installation, was set up on a local 
Ubuntu-powered PC. As soon as that version was up and running with R and Matlab, the 
setting up of the real implementation cluster started. The cluster was set up on the Virtues 
network, which serves as a testbed for research and study projects in the information 
processing and computer engineering laboratories in Oulu University. Th network uses 
virtual servers with CentOS 6.5 and the implementation project was granted 3 of them. 
Initially the servers had only 2GB of RAM each, but during the implementation phase 
the amount of memory was first doubled to 4GBs, then finally to 8GB on every server 
due to problems with Hadoop. SSH connection via terminal (both on Ubuntu and OS X) 
was used as the only interface to the network.

Hadoop installation itself is quite a straightforward task (all the installation steps and 
commands are attached as appendices). As Hadoop was installed and configured, R was 
set up and tested (every server). Then Matlab was installed to the server, which acted as 
the NameNode / master node of the cluster, by the administrators due to licensing issues 
(Matlab is commercial software). When Matlab was tested and working, all the necessary 
R  packages  for  both  Hadoop  and  Matlab  were  installed  on  the  master  node.  These 
packages included: 

✔ Rcpp

✔ RJSONIO

✔ Digest

✔ Functional

✔ Stringr

✔ Plyr
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✔ Bitops

✔ Reshape2

✔ rJava

✔ caTools

✔ Lattice

✔ zoo

✔ xts

✔ R.methodsS3

✔ R.oo

✔ R.utils

✔ R.matlab

✔ rmr2

✔ rhdfs

✔ rhbase

Figure 11: Main components of the nodes in the cluster.
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Now R was capable of controlling the Matlab server and communicating with it (this had 
to be done in separate terminal windows, one running the Matlab server and another 
running R). R was also ready to control HDFS (rhdfs) and MapReduce (rmr2).

The spectral occupancy data was gathered and stored in files on a file-per-day basis in 
HDF5-format.  Matlab functions for extracting necessary information from the HDF-5 
files were provided and the first step of the analysis was to process the HDF-5 files with 
Matlab using R to get the data from the files to the R environment. Initially the R code 
for processing the HDF-5 files was developed and tested by using one HDF-5 file only.  
A loop that reads every file from a folder and combines the results to one R variable was 
developed  but  was  not  taken  into  use,  since  one  HDF-5  file  was  enough  for  the 
development and testing phase (reading all  the HDF-5 files took quite a bit of time). 
When the final variables for plotting were constructed,  an hourly moving average of the 
time  series  (power  and  occupancy)  was  processed  by  R  and  timed  for  the  later 
comparison. When the first part, which was considered to be the reading and extracting 
of information from the HDF-5 files  with Matlab and the calculating  of the moving 
averages with R, was completed and the gained information was plotted (average PSD, 
power and occupancy times, and duty cycle) and stored as R -variables, development 
continued with the weather data. This whole process was also timed.

Matlab functions for weather data were once again provided. Functions could be run 
manually to fetch measurements after the needed arguments had been set. Fetched data 
got stored in .mat -format, meaning it had to be read to R variables once again by using 
the Matlab server with R. The resulting R variables got stored in HDFS using R's HDFS 
package (rhdfs), which doesn't support actual big data and is suitable only for smallish 
files. Since the weather data itself was not massive, it was a good candidate to test R's 
HDFS  capabilities.  Weather  data  was  stored  in  files  with  a  month's  worth  of 
measurement data from a single location per file. Originally there were four files - two 
from Chicago and two from Turku (December 2013 and January 2014), but in the later 
phase of development the data from Turku was dropped, since it did not relate to the final 
resulting analysis. After the weather data got stored as R variables in HDFS, it was read 
once more and plotted - initially as a plot per month, but it was later merged as one plot  
for the whole measured period. 

In the final phase, a MapReduce code for calculating hourly moving averages for two 
months of spectral occupancy data (for power and occupancy) data was built. Making 
MapReduce work on all three nodes of the cluster was very painstaking and took a huge 
amount  of  time  in  total  -  most  likely  over  half  of  all  the  time  spent  on  the 
implementation.  More  details  about  these  issues  will  be  presented  in  later  chapters. 
Theoretically the code is very simple. Before MapReduce the input data is pre-processed 
to  contain  dates  and  hours  as  keys  instead  of  the  timestamps  of  when  a  single 
measurement was taken. On the mapper part, both power and occupancy calculations are 
constructed to value vectors for a unique date-hour key and forwarded to reducer.  A 
reducer gets one unique key with a vector of values mapped to it at a time; it calculates 
the mean value and stores the result. When both mapper and reducer were done, the final 
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resulting data frame with date and hour as a key and mean value of all the measurements 
of that hour were constructed. Both processes got timed, a little bit of post-processing 
was done to the resulting data frame, and the results were plotted. In figure 11 the cluster  
node setup is seen.

6.3. Analyzed datasets

Datasets used in this thesis included the long-term spectral occupancy findings from the 
observatory of IIT (Illinois Institute of Technology) along with open weather-related data 
from weatherunderground.com (data was gathered from Chicago, IL, US). It should be 
noted that from the full spectrum of 30MHz to 3Ghz of the spectral occupancy data only 
the cellular band, 840 - 902MHz, was extracted and used for the analysis. Signals were 
analyzed from December 1, 2013 to January 30, 2014. This time window was chosen 
because of the unusually cold winter and heavy snowfall in the Chicago area around 
Christmastime in 2013. The unusually cold weather front that followed the snow storm 
amplified the already problematic conditions. Since the situation grew somewhat chaotic 
during  the  snowfall,  a  hypothesis  was set  that  it  should  be  reflected  on  the  spectral 
occupancy (cellular band) as well. 

6.4. Details and results of analysis

First the datasets were analyzed using Matlab, R, and a few of its external packages. 
After that the spectral occupancy data was analyzed once more using MapReduce on a 
Hadoop cluster.  Due to the size and simplicity of the weather data, it was only analyzed 
by R. Weather data was in the Matlab .mat -format and had to be converted to R variable 
before processing. All virtual machines used in the analysis were running on the Virtues 
network. The performance of the spectral occupancy data analysis both with R and with 
MapReduce were compared and the resulting data was plotted. Exact instructions and 
code regarding how to replicate the analysis steps and results can be found in  appendix 
5. Complete setup guides for virtual machines and the software used are explained step 
by step in appendices 2, 3 and 4.

From the technical point of view, the sample size of the data used for the analysis was 
clearly too small to gain benefits from HDFS and Hadoop's parallel  execution.  Also, 
when  analyzing  data  with  MapReduce,  it  was  basically  already  in  structured  form. 
Virtual machines and the Virtues network also posed problems for the communication 
between the Hadoop nodes, constantly running out of memory or hitting a blocked port.  
If the amount of data had been 10-50 times bigger (the largest matrix / variable size was 
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around 500MB), the situation would have been different. It should be noted, however, 
that in that case the data would have been in HDFS at the time of analysis and would 
have been written there by a tool meant for writing big data, such as  Flume or  Sqoop. 
That was out of the scope of this thesis, and in this implementation, spectral occupancy 
data was stored as variables in the R environment and passed to HDFS / MapReduce via 
RHadoop's RMR2-library.

The weather dataset had average values calculated along with the hourly measured data; 
the former were used in the analysis. The spectral occupancy data was initially stored on 
a file-per-day basis. To be able to analyze the full time window, separated files and the 
data within were first read and processed one by one using Matlab functions provided by 
Global  RF  Spectrum  Opportunity  Assessment.  After  this,  the  resulting  arrays  and 
matrices were stored as R variables. The time series (occupancy and power) were then 
processed  further  by  calculating  an  hourly  moving  average  (both  with  R  and 
MapReduce) and the process was timed. As a final step the resulting values were plotted.  
The timed results can be seen on the table 16. 

Calculations  of  the  moving averages  went  pretty  much as  expected.  Because  of  the 
extended time spent configuring Hadoop and trying to fix problems, it  became fairly 
obvious  that  the  time  spent  calculating  moving  averages  with  MapReduce  will  be 
multiple times slower than doing the same with R. However, the results were surprising, 
since the time it took for MapReduce to calculate moving averages was excruciatingly 
slow -  nearly  1000 times  slower  on  a  power  time series.  Tens  of  different  kinds  of 
configurations were tried on all 1 to 3 nodes, but nothing seemed to help. Results seem to 
back  up  the  verdicts  of  the  previous  group  who  was  configurating  Hadoop  at  the 
university  and  who  shared  some  insight  with  the  author  -  Hadoop  on  this  kind  of 
environment and servers is slow. At the end of the day, the cluster did not get to work 
with a 100% success rate. Jobs still failed seemingly randomly and the slowness of the 
servers indicate there might be something wrong with Virtues itself. If one has patience 
enough though to wait for nearly ten-minute cycles for MapReduce processing, the jobs 
will eventually succeed. 

Times of the initial Matlab to R calculations can be seen in table 17. Timed results for 
weather-related calculations can be seen in table 18. 
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Table 16: Comparison of processing times

Timed action Time

Moving average with R, time series power 0.42s

Moving average with R, time series occupancy 0.64s

Moving average with MapReduce, time series power 389.63s

Moving average with MapReduce, time series occupancy 388.23s

As the plotted data shows in figure 9,  the occupancy of the cellular band does peak 
around Christmas. Over the time analyzed, band occupancy ranges from around 60% to a 
bit over 70% after Christmas (December 25). On the weather data plot for Chicago, the 
highest  snow depth is recorded in the middle of December.  The average temperature 
fluctuates quite a lot but dips below the average low (-7.2°C in December)27 a few times. 
On top of this, the speed of wind is pretty fast  for such cold weather. Results of the 
analysis  as  a  whole,  however,  are  not  exclusionary  enough  to  state  the  obvious 
correlation  between  cellular  occupancy  and  the  abnormal  weather.  The  peak  in  the 
occupancy time series can at least partially be explainened by the Christmas holidays and 
nature of the family-oriented celebration. Duty Cycle stays on 100% for almost the full 
width  of  the  band,  only  coming  downwards  on  both  ends.  That  should  not  indicate 
anything special or steer the analysis to any particular direction. On the average power 
spectral  density plot, two somewhat  wider waveforms can be spotted on bands 868 - 
880MHz and  882 -  890MHz.  There's  also  waveforms  on 863 -  865MHz and  851  - 
856MHz.

In figure 12 the calculated average hourly occupancy of the cellular band over the time 
window of two months is plotted. Figure 13 shows the integrated power of the band over 
the time window. Figure 14 shows the percentual duty cycle over the cellular band and 
figure 15 shows the average spectral density over the band. Figure 16 combines weather 
findings  from  Chicago.  Table  15  shows  the  processing  time  for  spectral  occupancy 
Matlab file conversion to R variables and finally table 16 shows times for previously 
mentioned  weather-related  processes.  As  a  side  note,  about  a  day's  worth  of 
measurements around January 13-14 seem to be missing.

27 http://www.climate-zone.com/climate/united-states/illinois/chicago/index_centigrade.htm
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On the calculations, a threshold of 10dB (offset, get_integrated_signal_time_series) and 
4dB (tolerance, get_noise_floor) were used. 

Figure 12: Cellular band (840 - 902MHz) occupancy.
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Figure 13: Cellular band (840 - 902MHz) integrated power.
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On the calculations, a threshold of 10dB (offset, get_integrated_signal_time_series) and 
4db (tolerance, get_noise_floor) were used.

Figure 14: Duty cycle of the band.
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Figure 15: Average power spectral density.
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Figure 16: Chicago weather measurements.
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Table 17: Processing the spectral occupancy data

Calculating and converting Matlab files to R variables 867.21s

Table 18: Processing the Chicago weather data

Reading .mat files and converting them to R variables, 
storing variables in HDFS

440.5s

Reading data from HDFS and plotting them 30.5s

Everything altogether 471.056s

6.5. Post-thesis considerations

If  the  university  or  The  Global  RF  Spectrum  Opportunity  Assessment  want  to  use 
Hadoop for their projects, a few things should be considered. First and foremost, the 
amount  of  data  needs to  be big,  with a  minimum starting from a few GBs to make 
Hadoop and MapReduce useful. The system should also be able to store large-scale data 
in HDFS without the medium-layer that was used in this work (manually processing / 
reading the data, putting together files and variables and then storing it in HDFS). Tools 
such as Flume or Sqoop would help a lot with populating HDFS.  

The environment where the cluster runs should be fully manageable. If the administrators 
are  not  the  same  people  who  manage  the  cluster,  they  should  have  relatively  good 
knowledge of the Hadoop cluster running in their domain, its needs and constraints for 
the network. In this implementation, the whole solution was running in a multi-purpose 
network.  That  should  not  be  the  case  for  a  real-world  solution,  which  should  be 
configured only for the cluster.  

Additional tools, such as HBase for random reading and writing, should be considered. 
Most likely there will be a time when the part of the data needs alteration or access and 
MapReduce's capabilities are not very strong in that area. The data that enters the HDFS 
could possible be pre-processed, if it would be logically reasonable due to the volume 
and nature of the data. That would make the later processing quicker and easier. 

If it would be possible, using only either Matlab or R would cut one extra layer off from 
processing the data. In the implementation, the amount of data was relatively small and 
the interoperation of R and Matlab worked incredibly well, but it could become a bottle  
neck with files sizes of e.g. TBs. Also, the cluster consisted of only two slave nodes. 
When moving from a single-machine Hadoop solution to a cluster solution, it should be 
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made bigger from the very beginning, e.g. 10-20 slave nodes. This would nicely add 
some processing power to the cluster compared to the delay and lag introduced by the 
communication between the nodes in the implementation.
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7. DISCUSSION

From the educational point of view, the implementation definitely helped the author gain 
an understanding of large-scale data solutions, setting up a framework to process and 
analyze data, tune it, and solve problems in the cluster. Naturally, in a real world situation  
administrators would have full access and rights to do whatever is necessary to keep the 
cluster  running  as  smooth  as  possible.  A lot  of  the  time  in  this  work  was  spent 
pinpointing configurational problems that were often caused by the virtual machines or 
the network itself, consulting with the administrators, bouncing emails back and forth 
(with some added delay), and finally getting a compromise that worked for both.

Since the field of large-scale data and solutions for analyzing big data were somewhat 
new for  the  department,  the  best  sources  of  information  were  various  internet-based 
forums. The different versions and bundles of Hadoop that are put together by different 
companies  made the  beginning a  bit  confusing.  On top  of  that,  RHadoop's  different 
versions that work only with certain versions of Hadoop made the fixing of errors of a 
seemingly random nature quite a desperate task.

As mentioned before, the system that was set up worked well for the purpose of study 
and giving directions for what would be needed for a real world solution. If  The Global  
RF  Spectrum  Opportunity  Assessment  decides  to  use  Hadoop  for  managing  and 
analyzing the data, their solution should be able to store the data straight to HDFS and 
have  a  bigger toolset  to  work with the  data.  Tools should be able to  deal  with both 
structured and unstructured data. The hard value of the implementation for the university 
and the project remains to be seen. The Global RF Spectrum Opportunity Assessment, 
the project for which this work was done, hopefully gains at least some insights of the 
usability,  features,  and  the  actual  need  for  such  implentation.  If  the  data  would  be 
gathered and stored straight in HDFS, in a favorable format, a Hadoop multi-node cluster 
would most likely help with analyzing the vast amount of data they possess.

If the author would have been able to focus more on the work, possibly by physically 
being at the university, the whole process would have been  many times less laborious. 
Interruptions to the work caused by different factors (e.g. a new job), delays, and a lack 
of  help  close  by  created a  mental  barrier  that  was  quite  difficult  to  cross  on  a  few 
occasions, when it came to continuing or even thinking about the work. It has certainly 
been a good exercise in self-discipline, and while the resulting work may be lacking in 
areas,  the author is absolutely content with the outcome.
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8. SUMMARY

All in all the work was very educational and hopefully gives directions and ideas as to  
what kind of solutions and systems could be used by either one or both the university and 
the Global RF Spectrum Opportunity Assessment. To avoid the contant problems that 
occured during the implementation, a cloud-based, scalable PaaS-service could be a good 
starting point.

The problems in the network (and the delays  fixing them) made the  Hadoop cluster 
configuration  and  RHadoop  as  software  feel  somewhat  unstable  due  to  the  random 
character of the errors. The fact that the author didn't reside at the university while the 
second half of the work was done definitely made finishing the work more complicated. 
Hours and days spent on configurating the cluster, from which about one third was spent 
reading forums, made it quite clear that a Hadoop cluster might be trivial to set up, but 
getting it stable and running without problems involves thorough knowledge of different 
parts of the system, root permissions, and full administrative rights to the cluster. 
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Appendix 1. Pig Schema [24]

Data type Syntax Example

int int as (a:int)

long long as (a:long)

float float as (a:float)

double double as (a:double)

chararray chararray as (a:chararray)

bytearray bytearray as (a:bytearray)

map map[] or map[type], type 
any valid type, declares all 
values to this be type.

as (a:map[], b:map[int])

tuple tuple() or tuple(fields), 
fields is comma-separated 
list of field declarations.

as (a:tuple(), b:tuple(x:int, 
y:int))

bag bag{} or bag{t:fields},t is 
name of a tuple, fields is 
comma-separated list of 
field declarations.

(a:bag{}, b:bag{t: (x:int, 
y:int)}) 
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Appendix 2. Hadoop cluster installation steps in Virtues environment

When following these instructions, a few issues to keep in mind:

✔ version numbers will change over time

✔ file structure, setup folders, and some file names might be vary

✔ depending on possible earlier setup, some steps might be unnecessary

✔ be 100% certain all the necessary ports are open 

✔ warning util.NativeCodeLoader: Unable to... can be ignored (32 / 64 bit 
warning)

✔ Master = NameNode, slave = DataNode

Master node setup

[1] Login to the remote server

ssh [username]@ssh.virtues.fi 

ssh [server name, e.g. vm0086]

[2] Download and install Java

sudo yum install java-1.7.0-openjdk-devel

[3] Create a soft link for Java (or change the folder name)

cd /usr/lib/jvm

sudo ln -s java-1.7.0-openjdk.x86_64 jdk

[4] Open .bashrc and add following variables to the file

nano ~/.bashrc

export JAVA_HOME=/usr/lib/jvm/jdk/

export JRE_HOME=/usr/lib/jvm/jre-1.7.0-openjdk.x86_64

export PATH=$PATH:JRE_HOME/bin
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export HADOOP_INSTALL=$HOME/hadoop

export PATH=$PATH:$HADOOP_INSTALL/bin

export PATH=$PATH:$HADOOP_INSTALL/sbin

export HADOOP_MAPRED_HOME=$HADOOP_INSTALL

export HADOOP_COMMON_HOME=$HADOOP_INSTALL

export HADOOP_YARN_HOME=$HADOOP_INSTALL

export YARN_CONF_DIR=$HADOOP_INSTALL/etc/hadoop

export HADOOP_CONF_DIR=$HADOOP_INSTALL/etc/hadoop

export HADOOP_HDFS_HOME=$HADOOP_INSTALL

export HADOOP_CMD=$HADOOP_INSTALL/bin/hadoop

export HADOOP_STREAMING=$HADOOP_INSTALL/share/hadoop/tools/lib/hadoop-
streaming-2.2.0.jar

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_INSTALL/lib/native

export HADOOP_OPTS="-Djava.library.path=$HADOOP_INSTALL/lib"

 [5] Test Java configuration works

java -version

 [6] Create ssh-keys

ssh-keygen -t rsa 

// save key to ’/home/[username]/.ssh’

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

chmod 0600 ~/.ssh/authorized_keys

[7] Test ssh

ssh localhost

[8] Download and install Hadoop

cd ~

wget http://apache.mesi.com.ar/hadoop/common/hadoop-2.2.0/hadoop-
2.2.0.tar.gz

tar -xzf hadoop-2.2.0.tar.gz

mv hadoop-2.2.0 hadoop

rm hadoop-2.2.0.tar.gz
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[9] Open hadoop-env.sh and add a variable to the end of the file

nano hadoop-env.sh

export HADOOP_OPTS=-Djava.net.preferIPv4Stack=true

[10] Navigate to Hadoop root folder

cd ~/hadoop

[11] Create folder structure for datanode and namenode -related data

mkdir -p data/dfs/name  // master node only

mkdir -p data/dfs/namesecondary  // master node only

mkdir -p data/dfs/node  // slave node only

mkdir -p data/dfs/data // slave nodes only

[12] Navigate to the configuration folder

cd ~/hadoop/etc/hadoop

[13] Open core-site.xml and add following properties between 
<configuration></configuration> -tags

nano core-site.xml

<property>
<name>fs.default.name</name>
<value>hdfs://master:9000</value>

</property>
<property>

<name>hadoop.tmp.dir</name>
<value>/home/lampija/tmp</value>

</property>
<property>

<name>hadoop.http.staticuser.user</name>
<value>hdfs</value>

</property>

[14] Open hdsf-site.xml and add new properties between 
<configuration></configuration> -tags

nano hdfs-site.xml
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 <property>
<name>dfs.namenode.safemode.min.datanodes</name>

                <value>1</value>
</property>
<property>

<name>dfs.namenode.checkpoint.dir</name>
<value>file:///home/[username]/data/dfs/namesecondary</value>

</property>
<property>

<name>dfs.namenode.name.dir</name>
<value>file:///home/[username]/data/dfs/name</value>

</property>
<property>

<name>dfs.datanode.data.dir</name>
<value>file:///home/[username]/data/dfs/data</value>

</property>
<property>

<name>dfs.datanode.address</name>
<value>master:10001</value>

</property>
<property>

<name>dfs.datanode.ipc.address</name>
<value>master:10002</value>

</property>
<property>

<name>dfs.replication</name>
<value>2</value>

</property>
<property>

<name>dfs.permissions</name>
<value>false</value>

</property>

[15] Change the name of mapreduce configuration file

mv mapred-site.xml.template mapred-site.xml

[16] Open mapred-site.xml and add new properties between 
<configuration></configuration> -tags

nano mapred-site.xml

<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>

</property>
<property>

<name>mapreduce.jobtracker.address</name>
<value>localhost:9001</value>

</property>
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<property>
<name>mapreduce.map.memory.mb</name>
<value>2048</value>

</property>
<property>

<name>mapreduce.reduce.memory.mb</name>
<value>4096</value>

</property>
<property>

<name>mapreduce.map.java.opts</name>
<value>-Xmx1024m</value>

</property>
<property>

<name>mapreduce.reduce.java.opts</name>
<value>-Xmx3072m</value>

</property>
<property>

<name>mapreduce.job.maps</name>
<value>2</value>

</property>
<property>

<name>mapreduce.job.reduces</name>
<value>1</value>

</property>
<property>

<name>mapreduce.reduce.maxattempts</name>
<value>10</value>

</property>
<property>

<name>mapreduce.job.ubertask.enable</name>
<value>false</value>

</property>
<property>

<name>mapreduce.task.timeout</name>
<value>0</value>

</property>
<property>

<name>mapreduce.tasktracker.reduce.tasks.maximum</name>
<value>1</value>

</property>

[17] Open yarn-site.xml and add new properties between 
<configuration></configuration> -tags

nano yarn-site.xml

          
<property>

<name>yarn.nodemanager.vmem-pmem-ratio</name>
<value>2</value>
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</property>
<property>

<name>yarn.scheduler.minimum-allocation-mb</name>
<value>2048</value>

</property>
<property>

<name>yarn.nodemanager.resource.memory-mb</name>
<value>8192</value>

</property>
<property>

<name>yarn.nodemanager.local-dirs</name>
<value>file:///home/lampija/mydata/dfs/node</value>

</property>
<property>

<name>yarn.nodemanager.address</name>
<value>0.0.0.0:12000</value>

</property>
<property>

<name>yarn.resourcemanager.address</name>
<value>master:9999</value>

</property>
<property>

<name>yarn.resourcemanager.admin.address</name>
<value>master:10003</value>

</property>
<property>

<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>

</property>
<property>

<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>

</property>
<property>

<name>yarn.resourcemanager.resource-tracker.address</name>
<value>master:10004</value>

</property>
<property>

<name>yarn.resourcemanager.scheduler.address</name>
<value>master:10005</value>

</property>
<property>

<name>yarn.resourcemanager.address</name>
<value>master:10006</value>

</property>
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Set up a slave node and configure the communication between the nodes (open the 
connection on a new tab on shell / terminal)

[18] Install Hadoop to another server by following steps [1 - 17].

[19] Open hosts-file and add following lines to the file (change ip-addresses 
accordingly)

nano ~/etc/hosts

[ip address.of the.master.node] master

[ip address.of a.slave.node] slave1

[20] Open slaves-file and add following line to the file

nano ~/hadoop/etc/hadoop/slaves

slave1

[21] Open master-file and add following line to the file

nano ~/hadoop/etc/hadoop/master

master

[22] Change to master node, open hosts-file and add following lines (change ip-
addresses accordingly)

nano ~/etc/hosts

[ip address.of the.master.node] master

[ip address.of a.slave.node] slave1

[23] Open slaves-file and add following line to the file

nano ~/hadoop/etc/hadoop/slaves

slave1
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[24] Open master-file and add following line to the file

nano ~/hadoop/etc/hadoop/master

master

[25] Add master node’s ssh keys to slave’s authorized keys

ssh-copy-id -i $HOME/.ssh/id_rsa.pub [username]@slave1

[26] Ensure master can connect to the slave1 without a password

ssh slave1

Set up another slave node, reconfigure the communication between master and two 
slave nodes (ssh connection in a new terminal tab once again)

✔ change 'slave1' to 'slave2' where found on [27]

[27] Set up the second slave node by following steps [18], [19 - 21]

[28] Follow steps [22 - 26] to reconfigure master node's settings

[29] Format NameNode

hadoop namenode -format

[30] Start Hadoop

start-dfs.sh

start-yarn.sh

[31] Ensure NameNode, ResourceManager and SecondaryNameNode are running

jps

[32] Check the data nodes are functioning properly

hadoop dfsadmin -report
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[33] Log in to the slave1

ssh slave1

[34] Ensure DataNode and NodeManager are running

jps

[35] Exit back to master and check slave2

exit

ssh slave2

jps

[36] Shut down Hadoop and Yarn

stop-dfs.sh

stop-yarn.sh
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Appendix 3. R + RHadoop installation steps

✔ install R & RHadoop on CentOS 6.5 ( rmr2 has to be set up on every 
node )

[1] Open a browser on page 

http://cran.r-project.org/web/packages/available_packages_by_name.html

[2] Download following packages e.g. to a folder 'R' on a local machine :

Rcpp

RJSONIO

Digest

Functional

Stringr

Plyr

Bitops

Reshape2

rJava

caTools

Lattice

zoo

xts

[3] Open a browser on page 

https://github.com/RevolutionAnalytics/RHadoop/wiki/Downloads

[4] Download following packages to the same folder as R-libraries

- rmr2

- rhdfs

[5] From your local machine, upload the folder containing all the files to Virtues

scp -r R [username]@ssh.virtues.fi:/home/[username]

https://github.com/RevolutionAnalytics/RHadoop/wiki/Downloads
http://cran.r-project.org/web/packages/available_packages_by_name.html
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[6] Login to Virtues

ssh [username]@ssh.virtues.fi

[7] Forward the folder to the nodes you want to install them

scp -r R [machineName]:/home/[username]

scp -r R [machineName2]/[username]

...

[8] Login to the a virtual machine

ssh [machineName]

[9] Install R

sudo yum install R-core R-devel

[10] Navigate to the folder with forwarded R packages

cd R/ 

[11] Install R packages (ensure the correct version)

sudo R CMD INSTALL Rcpp_0.11.0.tar.gz

sudo R CMD INSTALL RJSONIO_1.0-3.tar.gz

sudo R CMD INSTALL digest_0.6.4.tar.gz

sudo R CMD INSTALL functional_0.4.tar.gz

sudo R CMD INSTALL stringr_0.6.2.tar.gz

sudo R CMD INSTALL plyr_1.8.tar.gz

sudo R CMD INSTALL bitops_1.0-6.tar.gz

sudo R CMD INSTALL reshape2_1.2.2.tar.gz

sudo R CMD INSTALL caTools_1.16.tar.gz

sudo R CMD INSTALL lattice_0.20-29.tar.gz

sudo R CMD INSTALL  zoo_1.7-11.tar.gz

sudo R CMD INSTALL  xts_0.9-7.tar.gz
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[12] Configure and install RHadoop packages

sudo R CMD INSTALL rmr rmr2_2.3.0.tar.gz

sudo JAVA_HOME=/usr/lib/jvm/jdk R CMD javareconf

sudo R CMD INSTALL rJava rJava_0.9-6.tar.gz

sudo HADOOP_CMD=$HADOOP_INSTALL/bin/hadoop R CMD INSTALL rhdfs 
rhdfs_1.0.8.tar.gz

[13] By following steps [10 - 13] install R and RHadoop to both slave nodes too

[14] Login to master node

[15] Start Hadoop services

start-dfs.sh

start-yarn.sh

or

hadoop-daemon.sh start [namenode / secondarynamenode / datanode ]

yarn-daemon.sh start [nodemanager / resourcemanager ]

[16] Test R / RHadoop installation, type:

R 

library (rmr2)

library (rhdfs)

hdfs.init()

groups = rbinom(32, n = 50, prob = 0.4)

groups = to.dfs(groups)

from.dfs(
mapreduce(

input = groups,

map = function(., v) keyval(v, 1),

reduce = function(k, vv) keyval(k, length(vv))

)

)
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#should echo:

$key

[1] 8 9 10 11 12 13 14 15 16 17

$val

[1] 3 4 2 9 8 6 13 2 1 2
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Appendix 4 R.matlab installation steps and functionality testing

✔ Install and configure Matlab on CentOS 6.5

✔ make sure Matlab is installed and works

✔ configure R on the machine Matlab is installed

✔ matlab m-files have to reside in the R working directory

[1] Open a browser on page

http://cran.r-project.org/web/packages/available_packages_by_name.html

[2] Download following packages e.g. to a folder 'matlab' on local machine :

R.methodsS3

R.oo

R.utils

R.matlab

[3] Send the folder to the server

scp -r path_to/matlab [username]@ssh.virtues.fi:/home/[username]

scp -r path_to/matlab vm0086:/home/[username]

[4] Install packages (ensure correct versions)

sudo R CMD INSTALL R.methodsS3_1.6.1.tar.gz

sudo R CMD INSTALL R.oo_1.17.0.tar.gz

sudo R CMD INSTALL R.utils_1.29.8.tar.gz

sudo R CMD INSTALL R.matlab_2.2.3.tar.gz

[5] Launch R

R

[6] Load packages

library(R.matlab)

http://cran.r-project.org/web/packages/available_packages_by_name.html
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[7] Launch Matlab server from R

Matlab$startServer()

[8] Open a new tab, log into the same virtual machine as matlab is running

 ssh [username]@ssh.virtues.fi

ssh [machineName]

[9] Launch R

R

[10] Load libraries

library(R.matlab)

[11] Create a Matlab client

matlab <- Matlab() 

[12] Connect to the Matlab server (might take a little while)

open(matlab)

[13] Run an expression on the Matlab server

evaluate(matlab, "A=1+2;",  "B=ones(2,20);")

[14] Get variables from Matlab to R

data <- getVariable(matlab, c("A", "B"))

[15] Print variables out

print(data) 

[16] Set variables in R

abc <- matrix(rnorm(10000), ncol=100)

print(abc)
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[17] Set a variable in Matlab

setVariable(matlab, xyz=abc)

[18] Get earlier set variables from Matlab

fromMatlab <- getVariable(matlab, "xyz")

print(fromMatlab)

[19] Create a Matlab function on R

setFunction(matlab, " \
function [win,aver]=dice(B) \
gains=[-1,2,-3,4,-5,6]; \
plays=unidrnd(6,B,1); \
win=sum(gains(plays)); \
aver=win/B; \

");

evaluate(matlab, "[w,a]=dice(1000);")

result <- getVariable(matlab, c("w", "a"))

print(result) 

[20] Read function from m-file, data from HDF5-file and plot it

evaluate(matlab, 
"[f_array,time_array,spectrum_array]=get_spectrum_ranges('test.hdf5', 840, 902);") 

f_array <- getVariable(matlab, c("f_array"))

time_array <- getVariable(matlab, c("time_array"))

spectrum_array <- getVariable(matlab, c("spectrum_array"))

evaluate(matlab, 
"[PSD]=get_PSDs(f_array,time_array,spectrum_array,'average');")

PSD <- getVariable(matlab, c("PSD"))

x = unlist(f_array)

y = unlist(PSD)

plot(x,y,type="l", col="blue", main="Average PSD", xlab="Frequency (MHz)", 
ylab="Power (dBm)")

[21] Close Matlab client and server

close(matlab)
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Appendix 5: R scripts used in analysis

It should be noted that in the example the 

✔ Matlab function files are stored in the R working directory. 

✔ spectral occupancy data files in this example are placed in /FINALDATA/so_data 
-folder. 

✔ converted weather data files are stored to /weather2 -folder in HDFS.  

✔ exact names of the .mat files used in weather plotting script has to be known

✔ .mat-files have to reside in  /usr/lib64/R/library/R.matlab/mat-files -folder.

SSH connection to the virtual machine and start Matlab server (terminal tab 1)

ssh [username]@ssh.virtues.fi

ssh [machineName]

R

library(R.matlab)

Matlab$startServer()

SSH connection to the virtual machine and paste R functions (terminal tab 2)

ssh [username]@ssh.virtues.fi

ssh [machineName]

R

library(rmr2)

library(rhdfs)

hdfs.init()

library(zoo)

library(xts) 

library(R.matlab)

matlab <- Matlab() 

open(matlab)
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###############PASTE-START################
########SPECTRAL OCCUPANCY DATA#########

begin_time <- proc.time()

f_array = NULL

time_array = NULL

spectrum_array = NULL

noise_floors = NULL

time_series_power = NULL

time_series_occupancy = NULL

PSD = NULL

duty_cycles = NULL

f_mids = NULL

start_freq = 840

stop_freq = 902

loop = 1

setVariable(matlab, start_freq = start_freq)

setVariable(matlab, stop_freq = stop_freq)

files = list.files("FINALDATA/so_data",full.names=TRUE)

read_matlab_variables_time <- proc.time()

for (FILE in files) {

setVariable(matlab, FILE = FILE)

evaluate(matlab, 
"[f_array,time_array,spectrum_array]=get_spectrum_ranges(FILE, start_freq, 
stop_freq);") 

if (loop==1) { 

loop = 0;

f_array <- getVariable(matlab, c("f_array"))

f_array = f_array$f.array

}

time_array_new <- getVariable(matlab, c("time_array"))

time_array_new = time_array_new$time.array

spectrum_array_new <- getVariable(matlab, c("spectrum_array"))

spectrum_array_new = spectrum_array_new$spectrum.array
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setVariable(matlab, time_array_new = time_array_new)

setVariable(matlab, spectrum_array_new = spectrum_array_new)

evaluate(matlab, "[noise_floors, noise_floor]=get_noise_floor(f_array, 
time_array_new, spectrum_array_new, FILE, 4);")

noise_floors_new <- getVariable(matlab, c("noise_floors"))

noise_floors_new = noise_floors_new$noise.floors

setVariable(matlab, noise_floors_new = noise_floors_new)

evaluate(matlab, "[time_series_power, time_series_occupancy, 
binary_time_series, noise_threshold]=get_integrated_signal_time_series(f_array, 
time_array_new, spectrum_array_new, noise_floors_new, start_freq, stop_freq, 
10);")

time_series_power_new <- getVariable(matlab, c("time_series_power"))

time_series_power_new = time_series_power_new$time.series.power

time_series_occupancy_new <- getVariable(matlab, c("time_series_occupancy"))

time_series_occupancy_new = 
time_series_occupancy_new$time.series.occupancy

time_array = c(time_array, time_array_new)

spectrum_array = rbind(spectrum_array, spectrum_array_new)

noise_floors = c(noise_floors, noise_floors_new)

time_series_power = c(time_series_power, time_series_power_new)

time_series_occupancy = c(time_series_occupancy, 
time_series_occupancy_new)

}

evaluate(matlab, "[PSD]=get_PSDs(f_array, time_array ,spectrum_array, 'average');")

PSD <- getVariable(matlab, c("PSD"))

PSD = PSD$PSD

evaluate(matlab, "[duty_cycles, f_mids]=get_duty_cycle(f_array, time_array, 
spectrum_array, noise_floors, 100);")

duty_cycles <- getVariable(matlab, c("duty_cycles"))

duty_cycles = duty_cycles$duty.cycles

f_mids <- getVariable(matlab, c("f_mids"))

f_mids = f_mids$f.mids

time_read_matlab = read_matlab_variables_time - proc.time()

r_means <- proc.time()
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tsp_mean <- xts(x = time_series_power,as.POSIXct(time_array, origin="1970-01-01"))

ep <- endpoints(tsp_mean,'hours')

tsp_mean = period.apply(tsp_mean,ep,mean)

tso_mean <- xts(x = time_series_occupancy,as.POSIXct(time_array, origin="1970-01-
01"))

ep <- endpoints(tso_mean,'hours')

tso_mean = period.apply(tso_mean,ep,mean)

calculating_means_R_time =  r_means - proc.time()

# FILES READ:

length(files)

#TIME FOR BUILDING VARIABLES

time_read_matlab

#TIME FOR CALCULATING TIME SERIES MEANS WITH R

calculating_means_R_time

#BUILT VARIABLE LENGTHS AND SIZES:

length(f_array)

length(time_array)

length(noise_floors)

dim(spectrum_array)

length(time_series_power)

length(time_series_occupancy)

length(PSD)

length(f_mids)

length(duty_cycles)

x11()

plot(f_array, PSD, type="l", col="blue", main="Average PSD", xlab="Frequency (MHz)", 
ylab="Power (dBm)")

x11()

plot(index(tsp_mean), coredata(tsp_mean), type="l", col="blue", main="Time series of 
power", xlab="Time (H)", ylab=" Power (dBm)", xaxt = "n"); axis(1, index(tsp_mean), 
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format(index(tsp_mean), "%d %b"), cex.axis = 0.6)  

x11()

plot(index(tso_mean), coredata(tso_mean), type="l", col="blue", main="Time series 
occupancy", xlab="Time (H)", ylab=" Occupancy %", xaxt = "n");axis(1, index(tso_mean), 
format(index(tso_mean), "%d %b"), cex.axis = 0.6)

x11()

plot(f_mids, duty_cycles*100, type="h", col="blue", main="Duty cycle", xlab="Frequency 
(MHz)", ylab="Percentage (%)")

##############PASTE END###################

##############PASTE START#################

##############MAPREDUCE###############

timeMapReduceAll <- proc.time()

hours = strftime(as.POSIXct(time_array, origin="1970-01-01"), format='%Y-%m-%d 
%H:00:00')

data = data.frame(hours, time_series_power)

data = to.dfs(data)

mapper = function(., data) {

hours = data['hours']

power = data['time_series_power']

hours = hours$hours

power = power$time_series_power

uhours = unique(hours)

a = numeric()

for(i in 1:length(uhours)) {

j = 1

x = uhours[i]

value_vector = numeric()
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while(hours[j] == x) {

value_vector = c(value_vector, power[j])

if(length(hours) > j) j = j+1

else break

}

hours = hours[-1 : -j]

power = power[-1 : -j]

if(length(a) == 0) { a = value_vector }

else { a = rbind(a, value_vector) }

}

keyval(uhours, a)

}

reducer = function(hour, power_list){

power = mean(power_list)

keyval(hour, power)

}

mr_pow = from.dfs(

mapreduce(

input = data,

map = mapper,

reduce = reducer

)

)

key = mr_pow[1]

value = mr_pow[2]

key = levels(droplevels(key$key))

mr_pow_key = as.POSIXct(key)

mr_pow_value = value$val

data = data.frame(hours, time_series_occupancy)

data = to.dfs(data)

mapper = function(., data) {
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hours = data['hours']

power = data['time_series_occupancy']

hours = hours$hours

power = power$time_series_occupancy

uhours = unique(hours)

a = numeric()

for(i in 1:length(uhours)) {

j = 1

x = uhours[i]

value_vector = numeric()

while(hours[j] == x) {

value_vector = c(value_vector, power[j])

if(length(hours) > j) j = j+1

else break

}

hours = hours[-1 : -j]

power = power[-1 : -j]

if(length(a) == 0) { a = value_vector }

else { a = rbind(a, value_vector) }

}

keyval(uhours, a)

}

mr_occ = from.dfs(

mapreduce(

input = data,

map = mapper,

reduce = reducer

)

)

key = mr_occ[1]

value = mr_occ[2]

key = levels(droplevels(key$key))

mr_occ_key = as.POSIXct(key)

mr_occ_value = value$val
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mapreduce_time_all = proc.time() -  timeMapReduceAll

x11()

plot(mr_pow_key, mr_pow_value, type="l", col="blue", main="Time series of power 
(MapReduce)", xlab="Time", ylab=" Power (dBm)", xaxt = "n"); axis(1, mr_pow_key, 
format(mr_pow_key, "%d %b"), cex.axis = 0.6) 

x11()

plot(mr_occ_key, mr_occ_value, type="l", col="blue", main="Time series of occupancy 
(MapReduce)", xlab="Time", ylab=" Power (dBm)", xaxt = "n"); axis(1, mr_occ_key, 
format(mr_occ_key, "%d %b"), cex.axis = 0.6) 

##############PASTE END###################

##############PASTE START#################

#############WEATHER DATA###############

time_weather <- proc.time()

convertTime <- proc.time()

filelist = c("chicago_dec_2013", "chicago_jan_2014")

for(j in 1:length(filelist)) {

file = filelist[j] 

path <- system.file("mat-files", package="R.matlab")

pathname <- file.path(path, paste(file,".mat", sep=""))

data <- readMat(pathname)

date <- numeric(0)

temp <- numeric(0)

snow_depth <- numeric(0)

wind_speed <- numeric(0)

name = gsub("_", ".", file)

data = data[[name]]

date[] = list()
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for (i in 1:length(data)) { 

y = data[[i]][[4]][[1]][[1]][[2]]

m = data[[i]][[4]][[1]][[1]][[3]]

d = data[[i]][[4]][[1]][[1]][[4]]

h = data[[i]][[4]][[1]][[1]][[5]]

date[i] = paste(paste(paste(y, m, d, sep="-"), h, sep=" "),":00:00", sep="")

temp[i] = data[[i]][[4]][[1]][[16]]

snow_depth[i] = data[[i]][[4]][[1]][[11]]

if(snow_depth[i] =="") { snow_depth[i] = 0 } else {} 

wind_speed[i] = data[[i]][[4]][[1]][[22]]

}

var = list (date=date, temp=temp, snow_depth = snow_depth, wind_speed = 
wind_speed)

fullpath = paste("/weather2/",file, sep="")

filehandler <- hdfs.file(fullpath, "w")

hdfs.write(var, filehandler)

hdfs.close(filehandler)

}

time1 = proc.time() - convertTime

plotTime <- proc.time()

results = numeric()

for(j in 1:length(filelist)) { 

str = paste("/weather2/",filelist[j], sep="")

filehandler = hdfs.file(str, "r")

file <- hdfs.read(filehandler)

file <- unserialize(file)

if(length(results) == 0) results = file

else {

results$temp = c(results$temp, file$temp)

results$wind_speed = c(results$wind_speed, file$wind_speed)

results$snow_depth = c(results$snow_depth, file$snow_depth)

results$date = c(results$date, file$date)
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}

hdfs.close(filehandler)

}

dates = results[1]$date

as.POSIXct(dates)

x11()

par(pch=11, col="red")

par(mfrow=c(2,2))

par(oma=c(0,0,3,0))

plot(as.POSIXct(dates), results[2]$temp, main="Temperature", type="l",xlab="Day", ylab 
= "Celcius")

plot(as.POSIXct(dates), results[3]$snow_depth, main="Snow depth", 
type="l",xlab="Day", ylab = "Centimeters")

plot(as.POSIXct(dates), results[4]$wind_speed, main="Wind speed", 
type="l",xlab="Day", ylab = "Kilometers / hour")

title(main=("Chicago weather measurements"), outer="T")

#READ, CONVERT AND STORE

time1

#PLOTTING

proc.time() - plotTime

#WHOLE PROCESS

proc.time() - time_weather

##############PASTE END###################



98

Appendix 6: Troubleshoot

Clearly a majority of the time spent finishing this thesis was due to the problems with the 
communication between the nodes  within  the Hadoop cluster,  failing jobs,  and other 
seemingly random problems that weren't reflected very well (or at all) on the logs. The 
previous team that worked with a similar Hadoop setup in the same network at Oulu 
University  had  problems  very  similar  to  what  were  encountered  with  this 
implementation. However, since this Hadoop setup was controlled via R and its libraries,  
the extra layer of complexity made finding the reason for an error quite an unpleasant 
and very time-consuming process.

This is a short collection of to-dos that should be ensured for a well-working cluster.

✔  Hadoop,  its  components  and  other  programs  it  uses  use  ports  that  are  not 
configurable by  the configuration files. If problems occur even with a single-
node setup,  try opening all the ports (or ensure the network administrator has 
done so)

✔ Hadoop  uses  a  lot  of  memory,  but  even  more  so  it  needs  good  memory 
configuration to  work smoothly.  Ensure the mapred-site.xml and yarn-site.xml 
have all the necessary configurations.

✔ R and Rmr2 -package has to be installed on every node to make the streaming 
work properly.

✔ Give  local  files  and  folders  755 permissions  that  seem to  be  "not  found"  or 
"missing"  (even  if  the  configuration  hasn't  changed  or  can  be  trusted  to  be 
correct).

✔ Ensure all  the  environment  variables and their  paths are  correct  and they are 
loaded.

✔ When  formatting  HDFS,  remember  to  remove  old  data  from the  data  folder 
pointed in hdfs-site.xml. Also add the /tmp -folder to HDFS with rights 755.
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