

Parameter optimization of linear
ordinary differential equations with

application in gene regulatory network
inference problems

Y U E D E N G

 Master of Science Thesis
 Stockholm, Sweden 2014

Parameter optimization of linear ordinary

differential equations with application in gene
regulatory network inference problems

 Y U E D E N G

 Master’s Thesis in Scientific Computing (30 ECTS credits)

Master Programme in Computer simulation for Science and Engineering
(120 credits)

 Royal Institute of Technology year 2014
 Supervisors at Unit of Computational Medicine,

 Karolinska Institutet, Sweden, were Narsis Kiani and Hector Zenil
 Examiner was Michael Hanke

 TRITA-MAT-E 2014:60
 ISRN-KTH/MAT/E--14/60--SE

 Royal Institute of Technology
 School of Engineering Sciences

 KTH SCI
 SE-100 44 Stockholm, Sweden

 URL: www.kth.se/sci

Abstract
In this thesis we analyze parameter optimization problems
governed by linear ordinary differential equations (ODEs)
and develop computationally efficient numerical methods
for their solution. In addition, a series of noise-robust fi-
nite difference formulas are given for the estimation of the
derivatives in the ODEs. The suggested methods have been
employed to identify Gene Regulatory Networks (GRNs).

GRNs are responsible for the expression of thousands of
genes in any given developmental process. Network infer-
ence deals with deciphering the complex interplay of genes
in order to characterize the cellular state directly from ex-
perimental data. Even though a plethora of methods us-
ing diverse conceptual ideas has been developed, a reliable
network reconstruction remains challenging. This is due
to several reasons, including the huge number of possible
topologies, high level of noise, and the complexity of gene
regulation at different levels. A promising approach is dy-
namic modeling using differential equations. In this the-
sis we present such an approach to infer quantitative dy-
namic models from biological data which addresses inher-
ent weaknesses in the current state-of-the-art methods for
data-driven reconstruction of GRNs. The method is com-
putationally cheap such that the size of the network (model
complexity) is no longer a main concern with respect to the
computational cost but due to data limitations; the chal-
lenge is a huge number of possible topologies. Therefore
we embed a filtration step into the method to reduce the
number of free parameters before simulating dynamical be-
havior. The latter is used to produce more information
about the network’s structure.

We evaluate our method on simulated data, and study its
performance with respect to data set size and levels of noise
on a 1565-gene E.coli gene regulatory network. We show
the computation time over various network sizes and esti-
mate the order of computational complexity. Results on five
networks in the benchmark collection DREAM4 Challenge
are also presented. Results on five networks in the bench-
mark collection DREAM4 Challenge are also presented and
show our method to outperform the current state of the art
methods on synthetic data and allows the reconstruction of
bio-physically accurate dynamic models from noisy data.

Keywords— ordinary differential equations, parameter op-
timization, gene regulatory network inference, DREAM4
project

Referat
Parameteroptimering av linjära ordinära
differentialekvationer med tillämpningar
inom interferensproblem i regulatoriska

gennätverk

I detta examensarbete analyserar vi parameteroptimerings-
problem som är beskrivna med ordinära differentialekva-
tioner (ODEer) och utvecklar beräkningstekniskt effektiva
numeriska metoder för att beräkna lösningen. Dessutom
härleder vi brusrobusta finita-differens approximationer för
uppskattning av derivator i ODEn. De föreslagna metoder-
na har tillämpats för regulatoriska gennätverk (RGN).

RGNer är ansvariga för uttrycket av tusentals gener. Nät-
verksinferens handlar om att identifiera den komplicerad
interaktionen mellan gener för att kunna karaktärisera cel-
lernas tillstånd direkt från experimentella data. Tillförlitlig
nätverksrekonstruktion är ett utmanande problem, trots att
många metoder som använder många olika typer av koncep-
tuella idéer har utvecklats. Detta beror på flera olika saker,
inklusive att det finns ett enormt antal topologier, mycket
brus, och komplexiteten av genregulering på olika nivåer.
Ett lovande angreppssätt är dynamisk modellering från bi-
ologiska data som angriper en underliggande svaghet i den
för tillfället ledande metoden för data-driven rekonstruk-
tion. Metoden är beräkningstekniskt billig så att storleken
på nätverket inte längre är huvudproblemet för beräkning-
en men ligger fortfarande i databegränsningar. Utmaningen
är ett enormt antal av topologier. Därför bygger vi in ett
filtreringssteg i metoder för att reducera antalet fria pa-
rameterar och simulerar sedan det dynamiska beteendet.
Anledningen är att producera mer information om nätver-
kets struktur.

Vi utvärderar metoden på simulerat data, och studierar
dess prestanda med avseende på datastorlek och brusni-
vå genom att tillämpa den på ett regulartoriskt gennätverk
med 1565-gen E.coli. Vi illustrerar beräkningstiden över oli-
ka nätverksstorlekar och uppskattar beräkningskomplexite-
ten. Resultat på fem nätverk från DREAM4 är också pre-
senterade och visar att vår metod har bättre prestanda än
nuvarande metoder när de tillämpas på syntetiska data och
tillåter rekonstruktion av bio-fysikaliskt noggranna dyna-
miska modeller från data med brus.

Contents

1 Introduction 1
1.1 Background . 1

1.1.1 Examples in general cases . 1
1.1.2 Gene Regulatory Network . 2

1.2 Organization of this thesis . 5

2 Identification of parameters in linear ODEs 7
2.1 Introduction . 7

2.1.1 Linear ODEs system . 7
2.1.2 Matrices of time-series data 8
2.1.3 Frobenius Norm . 9

2.2 Parameter optimization . 10
2.2.1 Unconstrained optimization in Frobenius norm 10
2.2.2 Constrained optimization in Frobenius norm 14

2.3 Numerical Differentiation of Noisy Data 18
2.3.1 Two examples . 18
2.3.2 More Central-Difference Formulas 19

3 Application to large scale GRN inference problem 23
3.1 The Data . 23
3.2 Evaluation metrics . 23
3.3 Application of Parameter Optimization Solver 27
3.4 Results . 27

3.4.1 Reconstruction of 1565-node E.coli GRN 28
3.4.2 Computation Time . 31

4 Pipeline: pre-filtration and post-modelling 35
4.1 The Data . 37
4.2 Filtration . 37

4.2.1 Outlier Detection . 37
4.2.2 Generalized ESD test . 38
4.2.3 Modified Z-scores . 39
4.2.4 Application of Outlier Detection and Z-scores 40

4.3 Simulation of Knock-out Experiment 42

5 Application to DREAM project 45
5.1 The DREAM project . 45
5.2 Performance on DREAM4 Network Challenge 45
5.3 More about the DREAM4 Challenge 46

6 Conclusions 53

Acknowledgement 55

Bibliography 57

Chapter 1

Introduction

1.1 Background

1.1.1 Examples in general cases

Differential equations can appear in physical, chemical or biological models rang-
ing from as simple as pendulum to as complex as Navier-Stokes equations in fluid
dynamics. These differential equations often involve unknown parameters such as
those shown in the Exanples. These parameters may have no physical meanings
or are unlikely to be measured directly, so that the estimation of parameters in
differential equations is crucial for simulation of the underlying physical, chemical
or biological processes.

Examples

• Diffusion-reaction equation[1] with unknown diffusion coefficient D:

−D∆u+ u = f

• FitzHugh-Nagumo model[2] characterizing neural spike potentials with
parameters a, b, c unknown:

V̇ = c(V − V 3

3 +R) + u(t)

Ṙ = −1
c

(V − a+ bR)

Identification of parameters is often achieved by solving an optimization problem
which minimizes the errors between the predictions of certain physical quantities

1

CHAPTER 1. INTRODUCTION

Figure 1.1: A gene network governed by ODEs (Figure Source: [3])

by differential equations and the observations of these quantities in experiments.

Many works have been done in this subject, J.O.Ramsay [2] applied the ideology of
Finite Element Method (FEM) to identify the parameters in Ordinary Differential
Equations (ODEs) and Vexler[1] analyzed an adaptive Finite Element Method to
identify parameters in Partial Differential Equations (PDEs). These methods are
widely applicable to all kinds of ODEs or PDEs, while they are so sophisticated that
a long computation time would be taken if the amount of parameters are enormous.

Figure 1.1 (Source:[3]) illustrates a Gene Regulatory Network (GRN) with three
genes modelled by an Ordinary Differential Equations (ODEs) system with 10 pa-
rameters. The size of GRNs can be remarkably large and thus the number of
parameters to be identified increase quadratically. For instance, even in the sim-
plest linear ODEs model, there are over 10,000 parameters for a 100-gene network.
It took Kevin Y. Yip etc.[4] about 2 minutes, 13 hours, and 78 hours for prediction
of the networks of size 10, 50 and 100, respectively. Therefore, the computation
efficiency becomes a concern.

1.1.2 Gene Regulatory Network

A Gene Regulatory Network (GRN) is a network indicating the interactions be-
tween genes. The genes in a cell interact with each other by controlling expression
level of RNA and proteins (Figure 1.2) and can be visualized as a directed graph

2

1.1. BACKGROUND

mRNA

Protein X
(Transcription

Factor)

Transcription
Translation

Protein A
(Transcription

Factor)

Gene B Transcription

Translation

Protein B

Gene A

mRNA

Figure 1.2: Interaction of genes in a cell. Gene A is transcribed to mRNA in nucleus
and mRNA is translated into Protein A in cytoplasm. Certain proteins can induce
or repress transcription of genes, which are called transcription factors. Gene B is
regulated by the protein (transcription factor) controlled by Gene A

with genes as nodes and interactions as arcs (directed edges) as shown in Figure 1.3.

How genes regulate each other can be of great interest in biomedicine, bioinformatics
and many other fields, and there have been many methods dealing with reconstruc-
tion of the gene regulatory network from experimental data. The mathematical
models of gene regulation network (GRN) models range from logical models[5] with
only Boolean values to continuous ones including detailed biochemical interactions[6].
Logical models require less biological details and computation complexity but also
display limited dynamic behavior; on the contrast, concrete models describe more
details of network dynamics while computational cost to determine parameters goes
high.

Median-Corrected Z-Scores [7], Context Likelihood of Relatedness(CLR)[8] etc. can
be applied to extract information of the network topology from steady-state data.
The methods based on steady-state data face the inherent weaknesses that it is
hard for them to distinguish between the direct interactions and indirect interac-
tions, since the initial perturbation has spread into the network when the steady
state is established. The linear ODE model[9], nonlinear ODE model[4] and non-

3

CHAPTER 1. INTRODUCTION

Figure 1.3: Network representation; produced by the software GNW. 10-node gene
regulatory network extracted from a 4441-node GRN of Yeast.

parametric additive ODE model[10] have been developed to cope with time-series
(dynamic) data. These methods have the ability to detect the transient perturba-
tions in the network but with large amount parameters to be determined. There
are also other methods based on machine learning[11], singular value decomposition
(SVD)[12], Bayesian networks[13] and so forth.

Madar etc.[9] published a linear ODEs based method with filtration by CLR. In-
spired by Madar, in this work, the linaer ODEs model is also applied and further-
more a computationally cheap algorithm will be proposed and a filtration based on
a hypothesis test will be introduced. We choose the linear ODEs model describing
the dynamics of the GRN and apply the proposed method in Chapter 2 to deter-
mine the parameters in the ODEs model, and thus reconstruct the topology of the
network.

In this work, we present a method to identify extremely large amount of parameters
in linear ODEs system. The change rates in expression level of a set of genes can

4

1.2. ORGANIZATION OF THIS THESIS

be described by a system of ODEs:

dx
dt

= a0 + Ax

where x ∈ Rn×1,a0 ∈ Rn×1,A ∈ Rn×n with a0 the basal expression rates, aii the
self-decay rate and aij how the expression rate of gene-i is affected by other genes
in the network.

For instance, the linear ODEs model of the network in Figure 1.1 can be written as

dx1
dt

= a01 + a11x1 + a12x2 + a13x3;

dx2
dt

= a02 + a21x1 + a22x2 + a23x3;

dx3
dt

= a03 + a31x1 + a32x2 + a33x3.

Since the ODEs are linear, it allows us to solve the optimization problem quite
cheaply and thus enable us to determine large amount of parameters; moreover,
the linear ODEs model is often not that bad for simulation of the real dynamics.
It would be a good trade-off between the computation complexity and the model
accuracy.

1.2 Organization of this thesis
The rest of this thesis is organized as follows.

Chapter 2 describes the optimization method. After a brief introduction of lin-
ear ODEs model and Frobenius norm in Section 2.1, two optimization problems for
fitting the ODE parameters are discussed and solved in Section 2.2. A approach to
estimate derivatives from noisy data is presented in Section 2.3.

In Chapter 3, we explain the application of the suggested method in reconstruc-
tion of the Gene Regulatory Networks (GRNs) and show the results of inferring a
large E.coli gene regulatory network and estimate the computation time.

Chapter 4 provides a filtration method to reduce the model size of the ODEs model.

Chapter 5 shows the results on the DREAM project.

In Chapter 6, conclusions drawn from our methods are discussed.

5

Chapter 2

Identification of parameters in linear
ODEs

2.1 Introduction

In this chapter, we describe the identification of the parameters in the linear Or-
dinary Differential Equations (linear ODEs) and give the theoretical solution by
solving an optimization problem.

Generally speaking, we have a system of linear ODEs with unknown parameters
and the goal is to find those parameters in a way that the modeled dynamics is
consistent with given data. In section 2.1.1, we present the linear ODEs and the
formulation of the problem. Section 2.1.2 gives the matrix notation of the given
data. Section 2.2 is devoted to the theoretical solutions of both unconstrained
and constrained optimization problems. In Section 2.3, we propose some numerical
difference schemes for estimation of the derivatives in the ODEs.

2.1.1 Linear ODEs system

In general, a system of ODEs with parameters to be identified can be written as:

dx
dt

= f(t,x;p),

where x ∈ Rn is a vector of state variables, n is the number of state variables;
f : [T ×Rn]→ Rn, characterizes how the components in x interact with each other;
p ∈ Rnp contains parameters to be fitted from experimental data.

In the linear case, this ODE system can be simply written as:

dx
dt

= a0
T + xAT =

[
1 x

] [a0
T

AT

]
, (2.1)

7

CHAPTER 2. IDENTIFICATION OF PARAMETERS IN LINEAR ODES

where x ∈ R1×n, a0 ∈ Rn×1, A ∈ Rn×n, a0 and A are parameters.

The problem is to find proper a0 and A such that the dynamic behavior of x(t)
consists with observations in experiment.
Remark 1.

• Although x would be written in column vector x̃ = xT ∈ Rn×1 in usual case
as

dx̃
dt

= a0 + Ax̃, (2.2)

the row vector x ∈ R1×n is used in this thesis for convenience of notations in
the following sections.

2.1.2 Matrices of time-series data
In order to identify the parameters, experimental data have to be provided. The
time-series data of the observed subject can be obtained by beginning with perturba-
tions from the steady state, and then a time course of changes xti ∈ Rn, i = 1, ..., T
can be observed until the steady state has been rebuilt. The data of this single
experiment can be recorded in a matrix:

X =

 xti
...

xtT

 ∈ RT×n

Applying different perturbations, more experiments can be conducted in the same
way and we call a series of repeated experiments conducted in the same way as time
course replicate experiments or simply replicates, of which the r-th replicate can be
denoted with a matrix form as:

Xr ∈ RT×n.

Therefore, all R replicates can be recorded in a series of matrices:

X1,X2, ...,Xr, ...,XR.

Furthermore, the observations of dx
dt in one experiment can be recorded following

the same notation:

Y =


dx
dt

∣∣∣
t1...

dx
dt

∣∣∣
tT

 ∈ RT×n;

as well as R replicates:
Y1, ...,Yr, ...,YR.

These notations will enable us to form an optimization problem in the following
section.

8

2.1. INTRODUCTION

2.1.3 Frobenius Norm

We first introduce a matrix norm, the Frobenius norm, and its first order derivative
and one property which will be employed later.

Definition 2.1.1 (Frobenius norm). Let A ∈ Rm×n, then the Frobenius norm can
be defined as:

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

a2
ij

Definition 2.1.2 (Frobenius norm). Let A ∈ Rm×n, then the Frobenius norm can
be also defined as:

‖A‖F =
√
trace(ATA)

One can easily show the two definitions are equivalent.

Lemma 2.1.1. Let A ∈ Rm×n, then the derivative of squared Frobenius norm of
A with respect to A is:

d‖A‖2F
dA = 2A.

Proof. It can be easily proved by following the Definition 2.1.1.

‖∂A‖2F
∂aij

=
∂(
∑m
i=1

∑n
j=1 a

2
ij)

∂aij
=

m∑
i=1

n∑
j=1

∂(a2
ij)

∂aij
= 2aij .

or in matrix form:
d‖A‖2F
dA = 2A.

Lemma 2.1.2. Let there be some s matrices with the same column size A1 ∈

Rm1×n, ..., As ∈ Rms×n and B =

 A1
...

As

 , then

s∑
i=1
‖Ai‖2F = ‖B‖2F .

9

CHAPTER 2. IDENTIFICATION OF PARAMETERS IN LINEAR ODES

Proof. From the Definition 2.1.2, we have

‖B‖2F = trace(BTB)

= trace(
[
AT

1 . . .AT
s

]  A1
...

As

)

= trace(
s∑
i=1

AT
i Ai)

=
s∑
i=1

trace(AT
i Ai) =

s∑
i=1
‖Ai‖2F .

2.2 Parameter optimization

2.2.1 Unconstrained optimization in Frobenius norm
With the properties in Section 2.1.3 , we can deduce the parameter identification
problem into a minimization problem in Frobenius norm.

The distance between the experimental observations of dx/dt recorded in

Yr ∈ RT×n

and the hypothesis in the linear ODEs system (Equation (2.1))

h(Ã; Xr) = a0
T + XrAT = [1 Xr]

[
a0

T

AT

]

can be written in the sense of Frobenius norm

ε2r = ‖Yr − h(Ã; Xr)‖2F (2.3)

where Ã = [a0 A] ∈ Rn×(n+1) and 1 ∈ Rn×1 with all elements are ones.

Thus, the objective function to be minimized can be written as a summation of
ε2r over all replicate experiments:

J(Ã) = 1
2R

R∑
i=1
‖Yr − h(Ã; Xr)‖2F . (2.4)

where R is the number of replicate experiments.

10

2.2. PARAMETER OPTIMIZATION

Theorem 2.2.1. The objective function in equation (2.4) can be written in a single
Frobenius norm as:

J(Ã) = 1
2R |Dy −DxÃT ‖2F . (2.5)

where

Dy =



Y1
...

Yr
...

YR


and Dx =



1 X1
...

...
1 Xr
...

...
1 XR


.

Proof. From the Lemma 2.1.2, we have :

J(Ã) = 1
2R

R∑
i=1
‖Yr − h(Ã; Xr)‖2F

= 1
2R

∥∥∥∥∥∥∥∥


Y1 − h(Ã; X1)
...

YR − h(Ã; XR)


∥∥∥∥∥∥∥∥

2

F

= 1
2R

∥∥∥∥∥∥∥∥
 Y1

...
YR

−

h(Ã; X1)

...
h(Ã; XR)


∥∥∥∥∥∥∥∥

2

F

= 1
2R

∥∥∥∥∥∥∥
 Y1

...
YR

−
 1 X1

...
...

1 XR

 ÃT

∥∥∥∥∥∥∥
2

F

= 1
2R‖Dy −DxÃT ‖2F .

Therefore, the minimization problem can be written as:

Find Ã ∈ Rn×(n+1), such that

J(Ã) = 1
2R‖Dy −DxÃT ‖2F is minimized.

(2.6)

Remark 2.

• Since Yr records the data of dx/dt, we call Dy =

 Y1
...

YR

 ∈ RR·T×n the

Derivative matrix and Dx =

 1 X1
...

...
1 XR

 ∈ RR·T×(n+1) the Design matrix,

11

CHAPTER 2. IDENTIFICATION OF PARAMETERS IN LINEAR ODES

which can be re-designed into higher order such as Dx =

 1 X1 X2
1 . . .

...
...

...
...

1 XR X2
R . . .


without altering the linearity of the objective function J(Ã).

• The hypothesis h(Ã; Xr) is always linear with respect to Ã so that J(Ã)
is quadratic and convex; hence the global minimum can be easily found by
solving a normal equation, usually via QR factorization.

• A regularization term can be applied:

J(Ã) = 1
2R‖Dy −DxÃT ‖2F + α

2R‖A‖
2
F ; (2.7)

in which α can be determined via cross validation.

It has been well known that a zero gradient gives the solution of the problem in
equation (2.6):

dJ(Ã)
dÃT

= 0

Theorem 2.2.2. The solution of

arg min
Ã

J(Ã) = 1
2R‖Dy −DxÃT ‖2F + α

2R‖A‖
2
F

is
Ã = Dy

TDx(Dx
TDx + αÊ)−T .

where

Ê =


0

1
. . .

1

 ∈ R(n+1)×(n+1).

Proof. Firstly, by applying Lemma 2.1.1 and chain rule to the first term of J(Ã),
we have:

1
2R

d

dÃT
‖Dy −DxÃT ‖2F = 1

2R

(
d(−Dx)ÃT)

dÃT

)T
2(Dy −DxÃT)

= 1
2R (−Dx)T 2(Dy −DxÃT)

= 1
R

Dx
TDxÃT − 1

R
Dx

TDy

Then, we re-write the second term on the right hand side into:

‖A‖2F = ‖AT ‖2F =
∥∥∥∥∥
[

0
AT

]∥∥∥∥∥
2

F

:= ‖ÂT ‖2F

12

2.2. PARAMETER OPTIMIZATION

and as mentioned in Equation 2.3:

ÃT =
[

a0
T

AT

]
So, we have [

d‖A‖2F
dÃT

]
ij

= d‖A‖2F
dãji

= d‖ÂT ‖2F
dãji

=
{

0 if i = 1
ãji if i 6= 1

or in matrix form
d‖A‖2F
dãij

= 2ÊÃT

where

Ê =


0

1
. . .

1

 ∈ R(n+1)×(n+1).

Combine the two terms above, we have:

0 = dJ(Ã)
dÃT

= 1
R

Dx
TDxÃT − 1

R
Dx

TDy + α

R
ÊÃT

or
(Dx

TDx + αÊ)ÃT = Dx
TDy (2.8)

Therefore, the solution can be written as:

Ã = Dy
TDx(Dx

TDx + αÊ)−T .

Remark 3.

• The solution above is theoretically accurate; however, DT
x Dx is usually ill-

conditioned, since its condition number is amplified to

κ(DT
x Dx) = κ(Dx)2

which may lead to an unacceptably large error when numerical methods are
applied.

• The approach of QR factorization is more stable and recommended[14]. The
normal equation 2.8 can be rewritten into the following form:[

Dx√
αÊ

]T [Dx√
αÊ

]
ÃT =

[
Dx√
αÊ

]T [
Dy
0

]
and the approach of QR factorization can be applied to solve:[

Dx√
αÊ

]
ÃT =

[
Dy
0

]
.

13

CHAPTER 2. IDENTIFICATION OF PARAMETERS IN LINEAR ODES

2.2.2 Constrained optimization in Frobenius norm
Sometimes people have already obtained prior knowledge about the ODE system
that some parameters are zero; or before the fitting of ODEs, other methods have
been applied and some unlikely nonzero parameters have been filtered out; we will
discuss one method to do the filtration in Section 4.2.1.

In these situations, certain parameters in the ODE model have to be restricted to
zero and mathematically it becomes an equality constrained optimization problem:

min
Ã∈Rn×(n+1)

J(Ã) := 1
2R‖Dy −DxÃT ‖2F + α

2R‖A‖
2
F subject to

akl = 0, ∀(k, l) ∈ C
(2.9)

where akl is an element in A and C ⊂ {(i, j)|i, j ∈ {1, .., n}} contains all zero con-
straints.

The most popular approach to solve equality constrained optimization problem
is the method of Lagrange multipliers (λ). We introduce this new variable λ into
the objective function 2.9 which is then called a Lagrange function (or Lagrangian):

L(Ã, λ) = 1
2R‖Dy −DxÃT ‖2F + α

2R‖A‖
2
F + 1

R

∑
(k,l)∈C

λklakl (2.10)

and the solution of the linear system gives out the globle minimum point
∂L(Ã,λ)
∂ÃT = 0

∂L(Ã,λ)
∂λkl

= 0, ∀(k, l) ∈ C
. (2.11)

In order to solve this linear system, we first introduce a vectorization operator and
one of its properties used later.

Definition 2.2.1 (vectorization operator). Let A = [a1, ...,ai, ...,an] ∈ Rm×n and
ai ∈ Rm×1 be the i-th column of A, the vectorization operator vec : Rm×n → Rmn×1

maps A into a column vector by queuing the column vectors of A to the rear of the
queue one by another:

vec(A) =


a1
a2
...

an

 ∈ Rmn×1.

Lemma 2.2.3. Let A ∈ Rm×l,B ∈ Rl×n, then

vec(AB) = (In ⊗A)vec(B),

where ⊗ is Kronecker product or tensor product.

14

2.2. PARAMETER OPTIMIZATION

Proof. Let B be partitioned by columns

B = [b1, ...bi, ...,bn], bi ∈ Rl×1.

We have
AB = [Ab1, ...,Abn]

From the Definition 2.2.1,

vec(AB) =


Ab1
Ab2
...

Abn

 =


A

A
. . .

A




b1
b2
...

bn

 = (In ⊗A)vec(B).

With the vectorization operator, the linear system (2.2.2) can be written into a
matrix form and solved at once.

Theorem 2.2.4. To solve the linear system (2.2.2) is equivalent to solve the fol-
lowing linear system:[

P EC
ET
C 0

] [
vec(ÃT)
λ

]
=
[
vec(Dx

TDy)
0

]

where

P = In+1 ⊗
(
Dx

TDx + αÊ
)
∈ R(n+1)2×(n+1)2

,

EC = [..., vec(Ekl), ...] ∈ R(n+1)2×|C|,

λ = [..., λkl, ...]T ∈ R|C|×1,

Ekl = [eij] ∈ R(n+1)×n with eij = δki δ
l
j , i = 0, 1, .., n, j = 1, ..., n.

in which (k, l) ∈ C, |C| is the number of elements or cardinality of set C and δji is
the Kronecker delta.

Proof. To solve the linear system (2.2.2):
∂L(Ã,λ)
∂ÃT = 0

∂L(Ã,λ)
∂λkl

= 0, ∀(k, l) ∈ C

we first have to calculate the partial direvative of the Lagrange function (2.10):

L(Ã, λ) = 1
2R‖Dy −DxÃT ‖2F + α

2R‖A‖
2
F + 1

R

∑
(k,l)∈C

λklakl

15

CHAPTER 2. IDENTIFICATION OF PARAMETERS IN LINEAR ODES

For the first two terms of ∂L(Ã,λ)
∂ÃT , we have already known from the proof of Theorem

2.2.2
d

dÃT

(1
2R‖Dy −DxÃT ‖2F + α

2R‖A‖
2
F

)

= 1
R

Dx
TDxÃT − 1

R
Dx

TDy + α

R
ÊÃT

where

Ê =


0

1
. . .

1

 ∈ R(n+1)×(n+1).

Differentiating the third term, we have d

dÃT

 1
R

∑
(k,l)∈C

λklakl


ij

= 1
R

∑
(k,l)∈C

(
λkl

dakl
daij

)

= 1
R

∑
(k,l)∈C

(
λklδ

k
i δ
l
j

)
, i = 0, 1, .., n, j = 1, ..., n

or in matrix form:

d

dÃT

 1
R

∑
(k,l)∈C

λklakl

 = 1
R

∑
(k,l)∈C

λklEkl

where

Ekl = [eij] ∈ R(n+1)×n with eij = δki δ
l
j , i = 0, 1, .., n, j = 1, ..., n.

Therefore, we have:

0 = ∂L(Ã, λ)
∂ÃT

= 1
R

Dx
TDxÃT − 1

R
Dx

TDy + α

R
ÊÃT + 1

R

∑
(k,l)∈C

λklEkl

or (
Dx

TDx + αÊ
)

ÃT +
∑

(k,l)∈C
λklEkl = Dx

TDy (2.12)

By applying the vectorization operator to equation (2.12), and from Lemma 2.2.3,
we have:

In+1 ⊗
(
Dx

TDx + αÊ
)
vec(ÃT) +

∑
(k,l)∈C

λklvec(Ekl) = vec(Dx
TDy) (2.13)

16

2.2. PARAMETER OPTIMIZATION

Note that vec(Ekl) is a column vector and
∑

(k,l)∈C λklvec(Ekl) is a linear combina-
tion of vec(Ekl), then it can be written into a matrix form:

[..., vec(Ekl), ...]


...
λkl
...

 := ECλ, with (k, l) ∈ C

Therefore, the equation (2.13) can be written as:(
Dx

TDx + αÊ
)

ÃT + ECλ = Dx
TDy (2.14)

For the second equation in equation (2.2.2): ∂L(Ã,λ)
∂λkl

= 0, ∀(k, l) ∈ C,we have:

∂L(Ã, λ)
∂λkl

= 1
R

∑
(k,l)∈C

d

dλkl
λklakl = 1

R
akl = 0, ∀(k, l) ∈ C

Note that
vec(Ekl)T vec(ÃT) = akl

Then, we have:

∂L(Ã, λ)
∂λkl

= vec(Ekl)T vec(ÃT) = 0, ∀(k, l) ∈ C

or in matrix form:
...

vec(Ekl)T
...

 vec(ÃT) =


...
0
...

 = ET
Cvec(ÃT) (2.15)

Assembling equation (2.14) and equation (2.15) into a martix form, we have:[
In+1 ⊗

(
Dx

TDx + αÊ
)

EC
ET
C 0

] [
vec(ÃT)
λ

]
=
[
vec(Dx

TDy)
0

]
.

Remark 4.

• The coefficient matrix [
P EC

ET
C 0

]
is called Karush-Kuhn-Tucker (KKT) matrix, and it is nonsingular if and only
if P + ECET

C is positive definite.

17

CHAPTER 2. IDENTIFICATION OF PARAMETERS IN LINEAR ODES

2.3 Numerical Differentiation of Noisy Data
In the above sections, we stated that the derivative dx/dt could be measured di-
rectly from the experiments, for instance the Doppler radar extracts the velocities
(the derivative of the position) of the targets. However, it is not always the case,
and then the derivatives need to be estimated from the observed x which can be
noisy due to measurement errors.

There have been many works dealing with numerical differentiation of noisy data[15][16][17],
and here we focus on finite difference formulas. We first take the explicit Euler
scheme and 3-point central difference scheme as examples and show why the former
is not a good choice; thereafter, a series of better schemes will be proposed.

2.3.1 Two examples
In many articles[12][9] , the explicit Euler’s scheme

dx
dt

= x(t+ h)− x(t)
h

+O(h)

was applied which though easy to implement, has limitation on step size h due to
numerical stability concerns[18] and drawback of amplifying noise level.

Example 2.3.1 (noise amplification by Euler’s scheme).
Let the measurement errors ε of x be independent and identically distributed (i.i.d)
Gaussian noises with mean µ = 0 and unknown variance σ2:

x = x̄ + ε
ε ∼ i.i.d. N (0, σ2)

then, we have
x(t+ h)− x(t)

h
= x̄(t+ h)− x̄(t)

h
+ ε1 − ε0

h
.

Since ε1, ε0 are i.i.d N (0, σ2), the variance of the noise of estimated differentiation
becomes:

σ2
D = V ar

(
ε1 − ε0
h

)
= V ar(ε1)

h2 + V ar(ε0)
h2 = 2σ

2

h2 .

For comparison, we take one more well-known scheme as another example.

Example 2.3.2 (noise amplification by 3-point central difference scheme).
3-point central difference scheme:

dx
dt

= x(t+ h)− x(t− h)
2h +O(h2),

with the variance of the noise of estimated differentiation

σ2
D = V ar

(
ε1 − ε−1

2h

)
= V ar(ε1)

4h2 + V ar(ε−1)
4h2 = 1

2
σ2

h2 .

18

2.3. NUMERICAL DIFFERENTIATION OF NOISY DATA

These two examples show that the Euler’s formula will amplify the noise level as
four times as that of 3-point central difference formula, given the same noisy data.

2.3.2 More Central-Difference Formulas

Finite difference schemes can be deduced from Taylor expansion, polynomial inter-
polation or polynomial fitting etc.. Since we are dealing with noisy data, in this sub-
section we will concentrate on polynomial fitting rather than interpolation. More-
over, we only discuss central difference schemes which yield higher accuracy[19].

The main idea is to fit a polynomial locally with a few neighbor points and then
differentiate the fitted polynomial theoretically.

Theorem 2.3.1 (Fitted Central Derivative Scheme). Let Pn(t) be a polynomial of
order n:

Pn(t) = a0 + a1(t− t0) + ...+ an(t− t0)n,

fitted into (t0, x(t0)) and its m = 2k neighbor nodes:

t0 − kh ... t0 − h t0 t0 + h ... t0 + kh
x(t0 − kh) ... x(t0 − h) x(t0) x(t0 + h) ... x(t0 + kh)

then the derivative of x at the point t = t0 can be approximated by a1, which can be
solved from the following linear system:

(V TV + λI)


a0
a1
...
an

 = V T



x(t0 − kh)
...

x(t0)
...

x(t0 + kh)


(2.16)

where V is the Vandermonde matrix

V =


...

...
...

...
...

1 −ih (−ih)2 . . . (−ih)n
...

...
...

...
...

 ∈ R(m+1)×(n+1), i = −k, ..., 0, ..., k

Proof. The parameters in the polynomial can be fitted by the classical linear least
squares regression:

min
a0,a1,...,an∈R

1
2

k∑
i=−k

|x(t− ik)− Pn(t− ih)|2 + λ

2

n∑
i=0

a2
i

19

CHAPTER 2. IDENTIFICATION OF PARAMETERS IN LINEAR ODES

of which the solution has been well known as shown in equation (2.16) in the this
theorem. Furthermore, the estimation of dx/dt is:

dx
dt

∣∣∣∣
t=t0
≈ Pn(t)

dt

∣∣∣∣
t=t0

= a1

Remark 5.

• The regularization term λ > 0 is usually called smoothing parameter, with
larger λ indicating a smoother fitted curve but less fidelity to the data.

• If m ≥ n, the solution is unique. If m = n and λ = 0, then the polynomial
fitting collapses to Lagrange interpolation, which yields the calssical (m+ 1)-
point central difference scheme. As the fitted curve goes exactly through data
points in interpolation, it will not be a good choice when data is noisy.

• m is the window length of the moving fitting, indicating how many nodes are
involved; n is the order of fitted polynomial and shows the accuracy of the dif-
ference scheme. Oncem and n are given, the scheme can be determined, which
can be called Fitted Central Derivative Scheme, denoted as FCDS(m,n)

We calculate FCDS(2, 2) as an example.

Example 2.3.3 (FCDS(2,2)). Since m = 2k = 2, n = 2, follwing the Theorem
2.3.1, one can write down the Vandermonde matrix:

V =

 1 −h h2

1 0 0
1 h h2


and the normal equation:

(V TV + λI)

 a0
a1
a2

 = V T

 x(t0 − h)
x(t0)

x(t0 + h)


After solving this equation, we have:

dx
dt

∣∣∣∣
t=t0
≈ Pn(t)

dt

∣∣∣∣
t=t0

= a1 = x(t0 + h)− x(t0 − h)
2h+ λ/h

.

If λ = 0, since m = n = 2, it becomes a Lagrange interpolation and the scheme is
the classical 3-point central-difference formula as shown in Example 2.3.2:

dx
dt

∣∣∣∣
t=t0
≈ x(t0 + h)− x(t0 − h)

2h .

20

2.3. NUMERICAL DIFFERENTIATION OF NOISY DATA

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

y

y = sin(t)

y = sin(t) + noise

point (t0, y0)

points for fitting

estimated derivative by Euler’s scheme

fitted curve by polynomial of 2nd order

estimated derivative by FCDS(8,2)

theoretical derivative ẏ = cos(t)
t0

moving window for fitting

Figure 2.1: An example of derivative estimated by polynomial fitting. The curve to
be differentiated is y = sin(t), with theoretical derivative ẏ = cos(t) (blue dash line).
The derivative at time point t = t0 is estimated from the noisy data with σ0 = 0.1
by fitting a 2-nd order polynomial locally around 8 neighbors, i.e. by FCDS(8,2)
(red dash line) and by Euler’s scheme (green dash line)

One can calculate the truncation error of this scheme by Taylor expansion, which
is O(h2).
By checking the variance of the noise, we can show that λ > 0 makes the finite
difference smoother.

V ar

(
ε1 − ε−1
2h+ λ/h

)
= 1

2h2 + λ2

2h2 + 2λ
σ2 <

1
2
σ2

h2

More examples of Fitted Central Derivative Schemes (FCDS) can be found in Table
2.1. It shows that decreasing the order of polynomial n ≤ m will smoothen the
noise while lose some accuracy, and when n = m, the schemes are the classical
central difference schemes which however have worst performance of noise control.
The reason is that those schemes are deduced from Lagrange interpolation under
the assumption that the curve goes exactly through those points, which is not the
case for noisy data.

Figure 2.1 is an example illustrating the derivative estimated by polynomial fit-
ting is more robust than the Euler’s scheme.

21

CHAPTER 2. IDENTIFICATION OF PARAMETERS IN LINEAR ODES

FCDS schemes σ2
D

(m,n) (λ = 0)
(σ0
h

)2
(2,2) f+1−f−1

2h +O(1
6h

2) 0.50

(4,2) 2f+2+f+1−f−1−2f−2
10h +O(17

30h
2) 0.10

(4,4) −f+2+8f+1−8f−1+f−2
12h +O(1

30h
4) 0.90

(6,2) 3f+3+2f+2+f+1−f−1−2f−2−3f−3
28h +O(7

6h
2) 0.04

(6,4) −22f+3+67f+2+58f+1−58f−1−67f−2+22f−3
252h +O(131

630h
4) 0.26

(6,6) f+3−9f+2+45f+1−45f−1+9f−2−f−3
60h +O(1

140h
6) 1.17

(8,2) 4f+4+3f+3+2f+2+f+1−f−1−2f−2−3f−3−4f−4
60h +O(59

30h
2) 0.02

(8,4)
−86f+4+142f+3+193f+2+126f+1−126f−1−193f−2−142f−3+86f−4

1188h

+O(179
270h

4)
0.11

(8,6)
254f+4−1381f+3+2269f+2+2879f+1−2879f−1−2269f−2+1381f−3+−254f−4

8580h

+O(797
12012h

6)
0.42

(8,8) −3f+4+32f+3−168f+2+672f+1−672f−1+168f−2−32f−3+3f−4
840h +O(1

630h
8) 1.36

Table 2.1: Fitted Central Derivative Schemes (FCDS) upto m=8,n=8

22

Chapter 3

Application to large scale GRN
inference problem

3.1 The Data
Time-series data of gene expression datasets will be put in use:

The time-series dataset can be recorded in a bunch of matrices Xr ∈ RT×n, r =
1, ..., R. In each time-series matrix, each row is the gene expression level at different
time and each column represents a given gene; different time-series matrices are the
time-course data under different initial values or initial perturbations. Figure 3.1
illustrates a time-series dataset.

The open source software GeneNetWeaver (GNW) [6, 20] is an In silico (numeri-
cal) simulator, containing sophisticated dynamic models of gene regulatory networks
of E.coli[21] and S.cerevisiae[22], including a thermodynamical model of transcrip-
tional regulation, mRNA and protein dynamics, being able to generate gene expres-
sion data with the same noise level as those In Vivo (in real biological experiments).
One can also find real experimental data in online databases such as GenExpDB.

In this chapter, all data are generated from GeneNetWeaver (GNW).

3.2 Evaluation metrics
We introduce some basic evaluation metrics used in this work. A prediction of the
existence of an arc in the network can lie in four categories as shown in the table
3.1.

23

CHAPTER 3. APPLICATION TO LARGE SCALE GRN INFERENCE PROBLEM

time gene1 gene2 gene3 gene4 gene5 gene6 gene7 gene8
0 0.209 0.018 0.135 0.425 0.117 0.759 0.664 0.153

50min 0.490 0.590 0.784 0.810 0.933 0.037 0.520 0.763
100min 0.030 0.346 0.331 0.741 0.655 0.925 0.066 0.111
150min 0.130 0.845 0.356 0.532 0.275 0.148 0.724 0.860
200min 0.243 0.221 0.167 0.481 0.731 0.665 0.758 0.404
250min 0.120 0.928 0.578 0.829 0.271 0.256 0.781 0.816
300min 0.575 0.527 0.390 0.429 0.595 0.844 0.404 0.062
350min 0.003 0.553 0.365 0.053 0.375 0.857 0.010 0.835
400min 0.569 0.629 0.128 0.318 0.890 0.271 0.428 0.286
450min 0.611 0.583 0.120 0.367 0.508 0.933 0.064 0.065
500min 0.244 0.434 0.745 0.102 0.067 0.019 0.332 0.475
550min 0.151 0.488 0.241 0.225 0.519 0.352 0.600 0.714
600min 0.462 0.203 0.668 0.137 0.003 0.592 0.111 0.100
650min 0.259 0.371 0.016 0.322 0.557 0.509 0.765 0.395
700min 0.723 0.389 0.663 0.849 0.386 0.037 0.216 0.413
750min 0.891 0.064 0.573 0.303 0.065 0.475 0.109 0.135
800min 0.858 0.589 0.551 0.691 0.540 0.171 0.592 0.946
850min 0.032 0.422 0.557 0.018 0.574 0.257 0.838 0.699
900min 0.118 0.976 0.485 0.966 0.794 0.456 0.034 0.698
950min 0.246 0.375 0.189 0.204 0.463 0.850 0.842 0.224
1000min 0.268 0.209 0.480 0.826 0.289 0.297 0.773 0.428
1050min 0.879 0.355 0.902 0.652 0.587 0.197 0.864 0.613
1100min 0.254 0.136 0.565 0.073 0.406 0.731 0.610 0.951

time gene1 gene2 gene3 gene4 gene5 gene6 gene7 gene8
0 0.886 0.224 0.253 0.484 0.990 0.869 0.675 0.715

50min 0.669 0.176 0.449 0.701 0.235 0.860 0.171 0.181
100min 0.566 0.221 0.962 0.416 0.614 0.069 0.645 0.487
150min 0.141 0.374 0.649 0.868 0.502 0.979 0.898 0.675
200min 0.899 0.140 0.092 0.201 0.008 0.090 0.102 0.848
250min 0.832 0.425 0.150 0.542 0.731 0.207 0.606 0.651
300min 0.889 0.698 0.912 0.430 0.622 0.749 0.153 0.576
350min 0.757 0.201 0.863 0.770 0.398 0.917 0.546 0.341
400min 0.379 0.281 0.566 0.541 0.485 0.200 0.896 0.192
450min 0.419 0.802 0.520 0.965 0.935 0.344 0.042 0.970
500min 0.648 0.185 0.827 0.981 0.688 0.116 0.160 0.055
550min 0.603 0.608 0.216 0.328 0.210 0.148 0.788 0.383
600min 0.252 0.359 0.084 0.217 0.214 0.151 0.222 0.588
650min 0.819 0.727 0.273 0.873 0.467 0.451 0.735 0.129
700min 0.435 0.858 0.307 0.448 0.955 0.709 0.397 0.792
750min 0.039 0.209 0.305 0.562 0.717 0.574 0.010 0.709
800min 0.432 0.011 0.164 0.971 0.348 0.543 0.740 0.608
850min 0.245 0.762 0.073 0.563 0.388 0.951 0.733 0.181
900min 0.474 0.273 0.094 0.702 0.501 0.078 0.710 0.878
950min 0.759 0.975 0.374 0.198 0.275 0.126 0.425 0.832
1000min 0.350 0.795 0.455 0.690 0.730 0.881 0.292 0.504
1050min 0.226 0.148 0.208 0.482 0.430 0.948 0.874 0.237
1100min 0.061 0.080 0.257 0.643 0.770 0.270 0.343 0.801

⁞

⁞

replicate 1

replicate 2

Figure 3.1: Example. A series of replicates of time-series data

24

3.2. EVALUATION METRICS

`````````````̀in prediction
in reality existence of an arc non-existence of an arc

existence of an arc True Positive False Positive
non-existence of an arc False Negative True Negative

Table 3.1: Four situations a prediction could be in

True Positive (TP): the existence of an arc is predicted as positive and the pre-
diction is correct;
False Positive (FP): the existence of an arc is predicted as positive and the pre-
diction is incorrect;
True Negative (TN): the existence of an arc is predicted as negative and the
prediction is correct;
False Negative (FN): the existence of an arc is predicted as negative and the
prediction is incorrect.

Precision:
Precision = TP

TP + FP

Accuracy:
Accuracy = TP + TN

TP + FP + TN + FN

Recall (True Positive Rate):

Recall = TPR = TP

TP + FN

False Positive Rate:
FPR = FP

FP + TN

Prediction list:
An example is shown in Figure 3.2. An arc is presented by its source and target and
the list is ranked by the scores or probability calculated in the process of prediction.

Precision-Recall Curve:
Taking first k edges in the prediction list, the pair (Recall, Precision)k, k = 1, 2, ....
can be calculated and plotted as a curve. The Precision-Recall Curve in Figure 3.3a
shows that as k increases, Recall increases, yet Precision decreases. In such a way,
it tells us up to what point we should trust the prediction. The area under the
Precision-Recall Curve can be written as AUPR; a larger AUPR indicates a better

25



CHAPTER 3. APPLICATION TO LARGE SCALE GRN INFERENCE PROBLEM

source target score
gene3 gene1 0.860
gene4 gene3 0.666
gene1 gene2 0.639
gene2 gene1 0.474
gene3 gene4 0.469
gene2 gene3 0.449
gene1 gene3 0.361
gene4 gene1 0.315
gene4 gene2 0.283
gene1 gene4 0.240
gene3 gene2 0.196
gene2 gene4 0.077

prediction of arcs in a network
(ranked by probability)

Figure 3.2: An example of prediction of arcs in a network. The probability or scores
of existence of arcs are ranked in descending order.

prediction.

Receiver-Operating Characteristic (ROC) Curve:
Taking first k edges in the ranked list of predictions, the pair (FPR, TPR)k, k =
1, 2, .... can be calculated and plotted as a curve. The area under the Receiver-
Operating Characteristic (ROC) Curve is written as AUROC; a more upwards con-
vex ROC curve means a better performance and a 0.5 AUROC (a diagonal line )
indicates the prediction is no better than random guessing; Figure 3.3b.

p-value
The p-value is calculated under the null hypothesis that the obtained results (AU-
ROC, AUPR etc.) are merely random.

p-value = P (RESULT ≥ obtained results | prediction is random)

26



3.3. APPLICATION OF PARAMETER OPTIMIZATION SOLVER

Ecoli1565_FCDS88_1000 - 03050

A1 Ecoli

1

0.5

0.5 10

AUPR = 0.286
Pr

ec
isi

on

Recall

1

0.5

0.5 10

AUROC = 0.832

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

ID Goldstandard Prediction file
A1 Ecoli Ecoli1565_FCDS8_8_1000.txt

2 / 2Sun Aug 03 14:04:47 CEST 2014

Precision-recall and receiver operating characteristic
InferenceMethod1

Files
InferenceMethod1 (1 networks)

tschaffter.ch/projects/gnw

(a) AUPR example

Ecoli1565_FCDS88_1000 - 03050

A1 Ecoli

1

0.5

0.5 10

AUPR = 0.286

Pr
ec

isi
on

Recall

1

0.5

0.5 10

AUROC = 0.832

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

ID Goldstandard Prediction file
A1 Ecoli Ecoli1565_FCDS8_8_1000.txt

2 / 2Sun Aug 03 14:04:47 CEST 2014

Precision-recall and receiver operating characteristic
InferenceMethod1

Files
InferenceMethod1 (1 networks)

tschaffter.ch/projects/gnw

(b) AUROC example

Figure 3.3: examples of Precision-Recall Curve and Receiver-Operating Character-
istic (ROC) Curve

3.3 Application of Parameter Optimization Solver

The time-series data Xr of gene expression level can be directly used for parameter
optimization described in Section 2.2.1 and Section 2.2.2. The estimation of deriva-
tives in the ODEs model follows Section 2.3.

The absolute value of the parameters can be used as scores ranking the confidence
of the prediction of arcs; a larger aij indicated a stronger influence from gene-j to
gene-i. The sign of the parameters tells whether the interaction is an inhibition or
an activation.

3.4 Results

In this section, we show the performance of the parameters identification method
proposed in this thesis. The metrics for evaluating the performance are Area Under
the Precision-Recall Curve (AUPR) and Area Under the Receiver-Operating Char-
acteristic (AUROC), which have been introduced above.

The methods were tested on an Escherichia coli(E.coli) transcriptional network
with 1565 genes (nodes) and 3758 interactions (arcs), Figure 3.4. The data for the
test were generated by GeneNetWeaver (GNW) 3.1.1 Beta. In total, 3600 time-
course replicates were generated and each time-course replicate experiment contains
21 time points ranging from 0 to 1000 with time step 50. In the last section in this
chapter, we show the computation time of identification of large networks up to
10,000 nodes.

27



CHAPTER 3. APPLICATION TO LARGE SCALE GRN INFERENCE PROBLEM

Figure 3.4: Escherichia coli(E.coli) transcriptional network with 1565 genes and
3758 interactions; produce by the software GWN

3.4.1 Reconstruction of 1565-node E.coli GRN

Impact of data size

We tested the impact of data size on the performance with the 1565-node E.coli
network. In Figure 3.5, it shows that increase of replicates of experiment leads an
S-shape curve of both AUPR and AUROC. It indicates the fitting problem always
requires enough data; with more data, one can expect better performance.

However, the performance has an upper limitation despite the fact that surplus data
are supplied. In this test, the upper limitation of AUPR and AUROC for FCDS(8,8)
scheme are 0.6241 and 0.9500 respectively. Figure 3.6b shows the Precision-Recall
Curve and Receiver-Operating Characteristic (ROC) Curve when this limitation
is achieved; Figure 3.6a shows when there is no enough data, the prediction is no
better than merely random guessing.

The Euler’s scheme, 3-point central scheme, FCDS(8,2), FCDS(8,6), and FCDS(8,8)
schemes have truncation errors in the order of O(h), O(h2), O(h2), O(h6), O(h8)
respectively. Figure 3.5 shows that a higher order of truncation error leads to a
better performance. In details, Euler’s scheme (O(h)) had the worst performance.
FCDS(8,2) and 3-point central scheme (both with O(h2)) achieved similar perfor-
mance in some range, but FCDS(8,2) eventually surpassed the latter. The perfor-
mance of FCDS(8,6) and FCDS(8,8) went very closely to each other, which indicates
truncation error of O(h6) is sufficient for this test and an increase of accuracy yields
no improvement.

28



3.4. RESULTS

0 500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of replicates

A
U

P
R

 

 

Euler’s scheme
3−point central scheme
FCDS(8,2)
FCDS(8,6)
FCDS(8,8)

(a) AUPR v.s. data size

0 500 1000 1500 2000 2500 3000 3500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of replicates

A
U

R
O

C

 

 

Euler’s scheme
3−point central scheme
FCDS(8,2)
FCDS(8,6)
FCDS(8,8)

(b) AUROC v.s. data size

Figure 3.5: performance of ODEs model without pipeline on different data size,
with derivatives estimated by Euler’s scheme, 3-point central scheme, FCDS(8,2),
FCDS(8,6), and FCDS(8,8) schemes.

29



CHAPTER 3. APPLICATION TO LARGE SCALE GRN INFERENCE PROBLEM

(a) performance on data size = 300 (b) performance on data size = 3600

Figure 3.6: Precision-Recall Curve and ROC Curve of the prediction of ODEs model
with FCDS(8,8) scheme on data size 3600 and 300 respectively.

Impact of noise level

In this section we still show the test on the 1565-node E.coli network. We examine
how noise level ( i.e. the standard deviation σ0 of the noise ) of the given data
will affect the performance given adequate data and thus show noise robustness of
different finite difference schemes.

As discussed in Section 2.3, the Euler’s scheme, 3-point central scheme, FCDS(8,2),
FCDS(8,6), and FCDS(8,8) schemes amplify the noise of the estimated derivatives
to the extent of 2σ

2
0
h2 , 0.50σ

2
0
h2 , 0.02σ

2
0
h2 , 0.42σ

2
0
h2 , 1.36σ

2
0
h2 respectively. Figure 3.7 shows

the performances of these five schemes on increasing noise level; the AUPR and AU-
ROC of all examined schemes decreased when noise level increased; Euler’s scheme
caused a most rapid decline, while FCDS(8,2) gave out the best robustness if noise

30



3.4. RESULTS

is high and its performance surpassed FCDS(8,6) around σ0 = 0.1.

3.4.2 Computation Time
We tested the computation time with CPU Intel Core i7 on reconstructing the net-
works of size ranging from n = 500 genes to n = 10,000 genes, as shown in Figure
3.8. The time for reconstruction of 500-gene network was 0.6s and for 10,000-gene
network 1766s (about 30min), in which over 100 million parameters were optimized;
the (log10 n, log10 t) was fitted into a straight line which shows the time complexity
of this algorithm is about O(1/107.6 · n2.7).

The distribution of the computation time is shown in Figure 3.9. The linear sys-
tem was solved by the Matlab backslash ( \ ) operator, which is quite efficient and
stable. The cross validation has to solve up to 20 times of the linear system and
to compute the Frobenius norm 20 times to choose a better regularization term α
in equation 2.7. Therefore, the cross validation took much time, but it could have
been parallelized easily to reduce the computation time.

Note that the networks and data for this test were randomly generated, since gen-
erating the dynamic data of large networks is another challenging work and we are
concerning the computation time but rather the performance in this section.

31



CHAPTER 3. APPLICATION TO LARGE SCALE GRN INFERENCE PROBLEM

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Noise level (σ
0
)

A
U

P
R

 

 
Euler’s scheme
3−point central scheme
FCDS(8,2)
FCDS(8,6)
FCDS(8,8)

σ
D

=0.02(σ
0
2/h2)

σ
D

=0.50(σ
0
2/h2)

σ
D

=1.36(σ
0
2/h2)

σ
D

=2.00(σ
0
2/h2)

σ
D

=0.42(σ
0
2/h2)

(a) AUPR v.s. noise level

0 0.05 0.1 0.15 0.2 0.25 0.3

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Noise level (σ
0
)

A
U

R
O

C

 

 
Euler’s scheme
3−point central scheme
FCDS(8,2)
FCDS(8,6)
FCDS(8,8)

σ
D

=0.42(σ
0
2/h2)

σ
D

=0.50(σ
0
2/h2)

σ
D

=2.00(σ
0
2/h2)

σ
D

=0.02(σ
0
2/h2)

σ
D

=1.36(σ
0
2/h2)

(b) AUROC v.s. noise level

Figure 3.7: performance of ODEs model on data with different noise level,
with derivatives estimated by Euler’s scheme, 3-point central scheme, FCDS(8,2),
FCDS(8,6), and FCDS(8,8) schemes.

32



3.4. RESULTS

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Network’s Size

T
im

e 
in

 S
ec

on
ds

 

 

computation time

(a) Computation time v.s. network size

10
3

10
4

10
0

10
1

10
2

10
3

Network’s Size

T
im

e 
in

 S
ec

on
ds

 

 

computation time
fitted line lg(t) = 2.7041*lg(n)−7.5982

(b) Log-Log plot of computation time v.s. network size

Figure 3.8: Computation time v.s. network size.

33



CHAPTER 3. APPLICATION TO LARGE SCALE GRN INFERENCE PROBLEM

Solving linear 
system 

2% 

cross 
validation 

76% 

numerical 
differentiation 

20% 

data reading 
and writing 

2% 

Time Dstribution 

Figure 3.9: Distribution of computation time.

34



Chapter 4

Pipeline: pre-filtration and
post-modelling

Madar etc.[9] have proposed a combination of several methods for GRN inference
and named it a pipeline, which showed an improvement of performance. A combi-
nation of a sequence of algorithms is called a pipeline[23]. Like a line of pipes with
pumps, valves and control devices for conveying liquids and gases, this pipeline of
algorithms feeds the output of the precedent algorithm into the next, controlling
parameters of each algorithm, giving the next algorithm a good starting point, ex-
pecting an improved final outcome.

The GRN inference problem often suffers from shortage of available data. In or-
der to overcome this drawback, in this chapter, we introduce a filtration process
before the parameter optimization step and a modelling process after that. The
workflow of the pipeline proposed in this thesis is shown in Figure 4.1; the outlier
detection firstly filters out unlikely arcs and thus some parameters in the ODEs
are restricted to zero. The constrained optimization solution for identification of
parameters described in Section 2.2.2 can then be applied. Thereafter, the knockout
experiments can be simulated numerically. Unlike the steady-state knockout data,
the ODE model can simulate the effects of knockout in an arbitrarily short time
period. With the simulated transient knock-out data, Z-scores can be computed
and normalized as final scores ranking the possible arcs.

The original method without filtration suffers shortage of data. The filtration re-
duces the requirement of data size and the post-modelling produces more numerical
data, which can both largely complement the shortage of data. The details of each
process in the pipeline will be discussed in the following sections.

35



CHAPTER 4. PIPELINE: PRE-FILTRATION AND POST-MODELLING

Figure
4.1:

Pipeline.
A

com
bination

ofpre-filtration,param
eter

identification
and

post-m
odelling.

36



4.1. THE DATA

4.1 The Data
Three types of gene expression datasets will be put in use: wild-type dataset, time-
series dataset and steady-state knock-out dataset.

• The wild-type dataset records the expression level of each gene in the consid-
ered network under steady state without any perturbation; it can be repre-
sented as a vector xwt ∈ Rn with each element xwti the wild-type expression
level of gene-i.

• The time-series dataset can be recorded in a bunch of matrices Xr ∈ RT×n,
r = 1, ..., R. In each time-series matrix, each row is the gene expression level
at different time and each column represents a given gene; different time-
series matrices are the time-course data under different initial values or initial
perturbations. A gene could be knocked out (made non-functional) by certain
genetic techniques.

• The steady-state knock-out data are obtained by a series of experiments in
each of which one gene is made defective and the corresponding steady states
of all genes in the network are recorded in a vector; by knocking out different
genes, a series of knock-out data vectors are obtained and are put together
into a matrix Xko = [xko1 , ...,xkoi , ...,xkon ], with the entry xkoi

j indicating the
steady state of gene-j given gene-i is knocked out.

Figure 4.2 illustrates wild-type data and steady-state knock-out data; Figure 3.1
shows time-series data.

4.2 Filtration

4.2.1 Outlier Detection

An outlier is a data point that deviates with statistical significance from other ob-
servations [24]. An outlier can be detected graphically by plotting the data points
or by statistical tests[25]. Assuming a normal distribution, Grubbs’ Test[24][26]
detects a single outlier and the Tietjen-Moore Test[27], a generalized Grubbs’ Test,
can find specified number of outliers. The Generalized Extreme Studentized Deviate
(ESD) test[28] detects multiple outliers with no requirement to specify how many
outliers exist, but only a upper bound of the number of outliers. The statistical
tests give out a binary results of a data point to be or not to be an outlier; Z-scores
will rank the outliers from the most likely to the least.

Under the assumption that a network system is typically sparse, when a certain

37



CHAPTER 4. PIPELINE: PRE-FILTRATION AND POST-MODELLING

gene1 gene2 gene3 gene4 gene5 gene6 gene7 gene8
0.069 0.703 0.602 0.076 0.903 0.453 0.319 0.544

gene1 gene2 gene3 gene4 gene5 gene6 gene7 gene8

gene1 0.000 0.014 0.867 0.949 0.718 0.697 0.454 0.694

gene2 0.142 0.000 0.006 0.461 0.938 0.208 0.052 0.576

gene3 0.024 0.498 0.000 0.297 0.534 0.539 0.078 0.158

gene4 0.612 0.357 0.617 0.000 0.395 0.207 0.189 0.406

gene5 0.902 0.477 0.109 0.401 0.000 0.861 0.156 0.299

gene6 0.864 0.056 0.186 0.420 0.919 0.000 0.177 0.180

gene7 0.653 0.460 0.694 0.630 0.532 0.722 0.000 0.981

gene8 0.330 0.835 0.260 0.114 0.068 0.751 0.502 0.000

wild-type data

steady-state knock-out data

Figure 4.2: Three types of data sets used in the proposed method.

state variable xi in x is perturbed, most of the rest are unlikely to be significantly
affected by the perturbation of xi; hence the observed deviations between the per-
turbed data and wild-type data are mostly experimental errors which follow i.i.d
normal distribution. Those state variables that are significantly affected by the
perturbation of xi can be regarded as outliers of this normal distribution, and are
predicted to have interacts with xi, and the parameters a·i could not be zeros.

4.2.2 Generalized ESD test

The Generalized Extreme Studentized Deviate (ESD) test is a hypothesis test to
detect multiple outliers up to a prescribed upper bound r in a data set that follows
an approximately normal distribution, assuming xi ∼ N (µ, σ2).

• Hypothesis:

H0 : There are no ouliers in the data set;
H1 : There are up to r outliers in the data set.

• Test statistics: R1, R2, ..., Rr

38



4.2. FILTRATION

For k from 1 to r, compute:

Rk = maxxi∈Dk
|xi − x̄k|

sk
xm = arg max

xi∈Dk

|xi − x̄k|

Dk+1 = Dk\{xm}

where D1 is the original data set to be tested; x̄k and sk are sample mean
and sample standard deviation of data in Dk, respectively.

• Rejection regions: λ1, λ2, ..., λr; if Rk > λk, reject H0

λk = (nk − k)tpk,nk−k−1√
(nk − k − 1 + t2pk,nk−k−1)(nk − k − 1)

pk = 1− α

2(nk − k − 1)

∀k = 1, ..., r

where nk = |Dk|; tpk,nk−k−1 is the percentile of the t− distribution; α is the
significance level.

• Number of outliers.
The number of outliers no ≤ r is determined by the largest k such that
Rk > λk:

no = max
k=1,...,r

{k |Rk > λk}

There are two parameters to be specified in this method, the upper bound of num-
ber of outliers r and significance level α.

4.2.3 Modified Z-scores

The Z-score method is based on the large sample theory and normal distribution
property that if X ∼ N (µ, σ2), then Z = (X−µ)

σ ∼ N (0, 1). The Z-scores of a series
of data point x1, ..., xn ∈ D can be computed as:

Zi = xi − x̄
s

where x̄ and s are sample mean and sample standard deviation respectively, esti-
mating µ and σ respectively.

39



CHAPTER 4. PIPELINE: PRE-FILTRATION AND POST-MODELLING

However, when considering outliers, the sample mean and sample standard de-
viation are not robust and are sensitive to outliers. Instead of using x̄ and s to
approximate µ and σ, the modified Z-scores choose sample median x̃ and Median
Absolute Deviation (MAD):

MAD = median
xi∈D

(|xi − x̃|),

and the modified Z-scores is computed as

Z̃i = xi − x̃
1.4826 ·MAD

(4.1)

Remark 6.

• There is a constant because σ̂ =
(

1
Φ−1(3/4)

)
MAD ≈ 1.4826MAD is an

unbiased estimation to the normal distribution standard deviation σ, i.e.
E(σ) = E(σ̂). (Φ is the cumulative distribution function of the standard
normal distribution.).

4.2.4 Application of Outlier Detection and Z-scores
We explain how to filter out unlikely arcs in a gene regulatory network by analyzing
wild-type data and knock-out data, so that some parameters in the ODEs can be
restricted to zero, the dimension of the searching space can be reduced and data
size required for fitting is diminished.

Under the assumption that the biological network is typically sparse[8][4], when
a certain gene is knocked out, most of the rest are unlikely to be significantly
affected; hence the observed deviations between steady-state knoc-kout data and
wild-type data are mostly experimental errors which follow i.i.d normal distribution
with mean µ = 0 and variance σ2 unknown. Those genes that are significantly
affected by knocking out of a certain gene can be regarded as outliers of this nor-
mal distribution, and are predicted to have connections with the knocked-out gene.
Meanwhile, the z-scores can be computed from the deviations between steady-state
knock-out data and wild-type data.

If gene-i has an arc (or just a path) leading to gene-j in topology and is knocked out
in the experiment, it would be expected that the knock-out steady-state expression
level of gene-j, denoted as xkoi

j , changes significantly from its wide-type level xwtj
such that the Generalized ESD test is able to detect the deviation xkoi

j − xwtj as an
outlier and the modified Z-score will also be high.

40



4.2. FILTRATION

If gene-i has not so much direct or indirect interaction with gene-j in topology
and is knocked out in the experiment, it would be expected that xkoi

j does not
change significantly besides noisy fluctuation from its wide-type level xwtj such that
the Generalized ESD test is not able to detect the deviation xkoi

j −xwtj as an outlier
and the modified Z-score will not be high.

There are two parameters to be specified in the filtration process as mentioned
in Section 4.2.1, the upper bound of number of outliers r and significance level α.

In the context of network, the upper bound of number of outliers r is the limit
of in-degrees of all gene nodes. Since only up to r outliers will be detected, only up
to r regulators to each gene can be found. One can choose r basing on the size of
the network to be reconstructed, prior knowledge, personal experience or subjective
expectations. One should also consider the amount of the available data sets, since
a larger r yields more non-zero parameters in ODE, which then will require more
data to do fitting.

Significance level α is the probability of type I error that null hypothesis is re-
jected when actually true. Another type of error (type II error) could occur when
null hypothesis is accepted when it is actually false. In the context of our topic,
they can be interpreted as:

α = P (type I error) = P (an arc is detected when there is actually no arc)

β = P (type II error) = P (an arc is not detected but there is actually an arc)

Type I and type II errors are related. A decrease of one will always results in an
increase of the other, given that sample size stays unchanged[29].

It is very important to be aware of those two types of errors. When using the
method alone to detect arcs (outliers), one should chose a small significance level α
so that the type I error is small. However, when applying to filtration, it is more
important to have a small type II error. The reason is that once an arc is falsely
filtered out, which is more likely to happen when β is large, it will never be re-
discovered by following algorithms, because the corresponding parameter in ODE
model will have been set to zero; on the contrary, if type I error is large, the falsely
accepted link may still be detected as negative by following algorithms. Therefore,
one should choose a large significance level α so that the type II error is small.

41



CHAPTER 4. PIPELINE: PRE-FILTRATION AND POST-MODELLING

Tips

• Choose a large significance level α when the outlier detection technique
is applied to filtration.

• Choose a small significance level α when the outlier detection technique
is applied to find possible interactions by itself..

4.3 Simulation of Knock-out Experiment

It has been given the linear ODEs model in equation (1.1.2). The knock-out ex-
periment can be conveniently simulated by setting the corresponding parameters to
zero. For instance, a gene-j knock-out experiment can be done by setting:

aij = 0 ∀i = 1, ..., n and i 6= j;
ajk = 0 ∀k = 1, ..., n and k 6= j.

The new parameter matrix after gene-j has been knocked out can be denoted as
Akoj

, and the ODE becomes:

dx
dt

= a0 + Akoj
x,

of which the theoretical solution is:

xkoj (t) =
(
x(t0) + A−1

koj
a0
)
e

Akoj
(t−t0) −A−1

koj
a0 (4.2)

Remark 7.

• Equation (4.2) gives the expression level of all genes at time t, given gene-j is
knocked out. One can see the steady-states expression level of all genes are

xkoj (t→∞) = −A−1
koj

a0,

given gene-j is knocked out.

• The network inference method based on steady-state knock-out experiment
and any other methods based on steady-state data have a drawback that
they usually have bad performance in distinguishing direct link (an arc) from
indirect link (a path) in the network, because the knock-out perturbation has
been spread far away into the network when the steady state is established.

42



4.3. SIMULATION OF KNOCK-OUT EXPERIMENT

• This drawback of steady-state knock-out data can be overcome by a transient
numerical knock-out experiment with a small ∆t:

xkoj (t0 + ∆t) =
(
x(t0) + A−1

koj
a0
)
e

Akoj
∆t −A−1

koj
a0 (4.3)

With a small ∆t, the knock-out perturbation only could affect its near neigh-
bor nodes so that the indirect link could not be seen.

Thereafter, the Z-scores can be computed from the transient numerical knock-out
data and used for ranking.

43





Chapter 5

Application to DREAM project

5.1 The DREAM project
DREAM is an acronym for for Dialogue for Reverse Engineering Assessments and
Method. The project’s organizers will post a set of challenges especially in net-
work reconstruction problems each year. In the DREAM3(2008), DREAM4(2009),
DREAM5(2010) network inference challenges, the project holder subtracted several
sub-networks from real-world biological networks and generated numerical data with
GeneNetWeaver (GNW). Participant teams competed with their proposed meth-
ods, under the same information, with the same available datasets, not knowing
the structure of the network to be reconstructed. After the challenge closed, the
performance of the participants were scored and ranked, the previously unknown
network (gold standard network) has become accessible and people can analyze and
evaluate their methods with the gold standard network afterwards.

Before the DREAM project, researchers have used many algorithms to recover the
network’s topology and evaluated their performance by various metrics. DREAM
project not only provides the same datasets, but also establishes a set of evaluation
metrics[30], becoming a platform on which all researchers can assess their perfor-
mance under the same standard.

5.2 Performance on DREAM4 Network Challenge
The DREAM4 in silico network challenge was held at the Broad Institute of MIT
and Harvard in 2009. There were 19 teams participated in the InSilico_Size100
sub-challenge,and their ranks of performance have been available online. This sub-

45



CHAPTER 5. APPLICATION TO DREAM PROJECT

challenge contains five networks of size 100 to be reconstructed and the wild-type
data set, knock-out data set and 10 replicates of time-series data set.

Since only 10 replicates of time-series data are provided which is insufficient to de-
termine 10,100 parameters for a 100-node network if ODE model is applied alone,
the pipeline becomes a better choice in which a pre-filtration procedure can reduce
dramatically the searching dimension. The effectiveness of filtration on network-1
in the DREAM4 challenge is shown in Figure 5.1; the original 9900 possible arcs in
a 100-gene network was reduced to a few hundreds, so that the required data size
for fitting was dramatically reduced.

We firstly display the effect of choosing the significance level α in the pre-filtration
procedure, then we compare the performance of the presented pipeline method with
those of participated teams, using the same data provided by the challenge orga-
nizers.

Figure 5.2 shows both the precision TP/(TP + FP ) and the False Negative Rate
FN/(FN + TP ) decreased as α increased in the prediction of Network 1. A pre-
filtration is good if the False Negative Rate is low, while a prediction is bad if the
precision is low; it is consistent with the statement in Section 4.2.4 that a large α is
recommended in the pre-filtration while a small α in separate use. Table 5.2 shows
the performance on the five networks was improved by increasing the significance
level α.

Now, we compare the performance with those of participated teams. The rank
list of the 19 participants is shown in Figure 5.3, in which Team 395 ranked first
with overall score 71.589, and also topped in the sub-ranking of AUPR with score
103.068; Team 548 ranked at top in the AUROC with score 40.962. Table 5.2 shows
the performance of the proposed method on the five 100-gene networks and the
comparison with the top performers in the challenge.

5.3 More about the DREAM4 Challenge

We have stated that the filtration process has errors; Figure 5.2. In this section,
we would like to explore the potential of the linear ODEs model without filtration,
given adequate data are available.

The software GeneNetWeaver (GNW) 3.1.1 Beta can be set to generate the time-
series data for the five networks in DREAM4 Challenge with the same model and
same noise level as those in the challenge, so that it allows us to produce as many
data as we want and show how the performance is improved with more data, as
in Table 5.3. On one hand, the method with filtration has given a quite good re-
sult especially with such little data; one the other hand, if filtration is not applied,

46



5.3. MORE ABOUT THE DREAM4 CHALLENGE

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

number of nonzeros = 197

(a) α = 0.01

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

number of nonzeros = 347

(b) α = 0.5

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

number of nonzeros = 487

(c) α = 1 (d) before filtration

Figure 5.1: Effectiveness of filtration with different α, with upper in-degree bound
r = 20

47



CHAPTER 5. APPLICATION TO DREAM PROJECT

0 0.2 0.4 0.6 0.8 1
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

α

 

 
Precision
False Negative Rate

Figure 5.2: Presicion and False Negative Rate (FNR) on the network 1 in the
DREAM4 challenge v.s. significance level α. The precision goes downward as α
increases, indicating an increasing type I error ; a downwards going FNR indicates
a decreasing type II error.

with sufficient data the method can achieve even a better performance despite the
fact that the amount of data required is so large. One can also see how poor the
performance would be if the method is applied on a small data set without filtration.

48



5.3. MORE ABOUT THE DREAM4 CHALLENGE

Fi
gu

re
5.
3:

R
an

k
lis
to

f1
9
te
am

s
pa

rt
ic
ip
at
ed

in
th
e
In
Si
lic
o_

Si
ze
10

0
su
b-
ch
al
le
ng

e
of

D
R
EA

M
4.

(S
ou

rc
e:
ht
tp
:/
/t
he

-d
re
am

-
pr
oj
ec
t.o

rg
)

49



CHAPTER 5. APPLICATION TO DREAM PROJECT

α = 0.01 α = 0.5 α = 0.9

A
U
PR

Net1 0.571 0.627 0.630
Net2 0.430 0.460 0.448
Net3 0.316 0.407 0.413
Net4 0.389 0.467 0.491
Net5 0.173 0.249 0.251

A
U
R
O
C

Net1 0.878 0.894 0.916
Net2 0.783 0.854 0.868
Net3 0.769 0.813 0.797
Net4 0.807 0.852 0.852
Net5 0.711 0.773 0.803

overall
AUPR Score 106.878 125.042 125.345

overall
AUROC Score 31.969 42.378 44.250

overall Score 69.424 83.710 84.798

Table 5.1: Performance increases as significance level α increases.

50



5.3. MORE ABOUT THE DREAM4 CHALLENGE

Performance AUPR p-value of AUPR
Net1 0.630 (Team395: 0.536) 1.60E-150 (Team395: 1.23E-121 )
Net2 0.448 (Team296: 0.396) 8.31E-206 (Team296: 1.80E-177)
Net3 0.413 (Team395: 0.390) 7.94E-101 (Team395: 5.20E-95)
Net4 0.491 (Team271: 0.403) 6.41E-117 (Team271: 2.93E-95)
Net5 0.251 (Team532: 0.326) 2.78E-56 (Team532: 3.82E-74)

(a) AUPR of pipeline on 5 networks respectively

Performance AUROC p-value of AUROC
Net1 0.916 (Team548: 0.917) 2.94E-41 (Team548: 1.92E-41)
Net2 0.868 (Team395: 0.801) 3.65E-64 (Team395: 4.33E-45)
Net3 0.797 (Team515: 0.844) 5.27E-39 (Team515: 2.84E-51)
Net4 0.852 (Team549: 0.848) 4.20E-45 (Team549: 2.56E-44)
Net5 0.803 (Team548: 0.778) 2.36E-35 (Team548: 1.82E-30)

(b) AUROC of pipeline on 5 networks respectively

Overall AURR score 125.345 (Team395: 103.068)
Overall AUROC score 44.250 (Team548: 40.962)

Overall score 84.798 (Team395: 71.589)

(c) Overall scores on on 5 networks respectively

Table 5.2: Performance of the pipeline on 5 networks in the DREAM4 challenge
respectively. The top teams in each subcategory are in the parentheses with
their scores; the bold item indicates the score has exceeded the top one. The
performance is achieved with these setting: α = 0.9, r = 20 in pre-filtration,
FCDS(8,6) scheme in ODEs model and dt = 0.1 in post-modelling.

51



CHAPTER 5. APPLICATION TO DREAM PROJECT

Data Size R=10 R=110 R=1110 R=2110 R*=10 R**=10

A
U
PR

Net1 0.168 0.496 0.605 0.612 0.630 0.536
Net2 0.100 0.271 0.429 0.438 0.448 0.396
Net3 0.074 0.352 0.487 0.496 0.413 0.390
Net4 0.124 0.409 0.540 0.553 0.491 0.403
Net5 0.046 0.293 0.434 0.441 0.251 0.326

A
U
R
O
C

Net1 0.774 0.863 0.925 0.935 0.916 0.917
Net2 0.654 0.744 0.870 0.881 0.868 0.801
Net3 0.641 0.800 0.851 0.864 0.797 0.844
Net4 0.720 0.820 0.890 0.913 0.852 0.848
Net5 0.644 0.789 0.871 0.881 0.803 0.778

overall
AUPR Score 22.270 94.697 136.954 139.813 125.345 103.068

overall
AUROC Score 14.893 34.335 52.182 55.495 44.250 40.962

overall Score 18.581 64.516 94.568 97.654 84.798 71.589

Table 5.3: Performance on different data size. R is the number of replicates of
time-series data. Columns under ‘R’ are the performances without filtration; R*
represents the performances with filtration and R** represents the performances
of top participants in DREAM4 Challenge, as in Table 5.2. The highest scores
are emboldened.

52



Chapter 6

Conclusions

We focused identification of parameters on the linear ODEs system; a computation-
ally cheap solution of both unconstrained and constrained optimization problems
in Frobenius norm were provided, so that we could determine parameters in large
scale linear ODEs system from experimental data. Since the experimental data are
usually noisy, a series of fitted central difference schemes were provided to handle
with the derivatives in the ODEs system. For sparse ODEs system, we presented
the way of outlier detection to introduce sparsity into the system.

We applied the unconstrained solution to reconstruct gene regulatory networks,
the dynamics of which were simplified into a linear ODEs system. The results
on the 1565-gene E.coli regulatory networks, of which about 2.5 million parameters
have been determined, showed that the proposed methods would have a satisfactory
performance if sufficient data were provided, and that the noise-robust difference
schemes played an important role to improve the performance. In this test, the
schemes that have better noise robustness in theoretical analysis achieved better
performance as the noise level increased. Therefore, the noise analysis can give us
a prior knowledge of choosing a finite difference scheme before actually conducting
a numerical experiment.

The constrained solution with filtration to introduce sparsity was evaluated in the
DREAM4 In Silico 100-gene network Challenge. The filtration process showed pow-
erful ability to reduce the number of parameters in the ODEs system from about
10,000 to about 500. With the given data in the challenge, the performance topped
all participants of this challenge with an appreciable overall score. While the fil-
tration is able to reduce the requirement of data size remarkably, it has errors: the
significance level controls the effectiveness of filtration. A lower significance level
filters out more parameters while has a higher risk of falsely filtering out nonzero
parameters. With more data besides the given ones, the unconstrained solution
without filtration even significantly raised the overall scores. There should be a
trade-off between the filtration and data availability.

53



CHAPTER 6. CONCLUSIONS

The computation time was evaluated by varying the size of ODEs system from
500 to 10,000 variables, which yielded over 0.25 million to 100 million parameters
to be optimized and the time costed ranged from 0.6 seconds to 30 minutes. The
estimated time complexity was O(1/107.6 · n2.7).

54



Acknowledgements

I offer my gratitude to my supervisors Narsis Kiani and Hector Zenil ( Unit of Com-
putational Medicine, Karolinska Institutet, Sweden) for guiding me into the topic
of biological networks, providing me advice and offering me help with their patience
and trust. I give my acknowledgement to the marvelous Erasmus Mundus Program
of European Union: Computer Simulations for Science and Engineering (COSSE),
which has been funding my master’s education during the last two years. In par-
ticular, I thank the coordinators of this program, Michael Hanke at KTH Royal
Institute of Technology, Sweden and Reinhard Nabben at Technische Universität
Berlin (TU Berlin), Germany for taking care of everything during my study. To
my family, I am especially grateful for their emotional supports and inspiring me
to follow my dreams.

55





Bibliography

[1] Boris Vexler. Adaptive finite element methods for parameter identification prob-
lems. Springer, 2013.

[2] Jim O Ramsay, G Hooker, D Campbell, and J Cao. Parameter estimation for
differential equations: a generalized smoothing approach. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 69(5):741–796, 2007.

[3] Guy Karlebach and Ron Shamir. Modelling and analysis of gene regulatory
networks. Nature Reviews Molecular Cell Biology, 9(10):770–780, 2008.

[4] Yan KK Gerstein M Yip KY, Alexander RP. Improved reconstruction of in
silico gene regulatory networks by integrating knockout and perturbation data.
PLos ONE, 2010.

[5] Florian Greil. Dynamics of Boolean networks. PhD thesis, TU Darmstadt,
2009.

[6] Daniel Marbach, Thomas Schaffter, Claudio Mattiussi, and Dario Floreano.
Generating realistic in silico gene networks for performance assessment of re-
verse engineering methods. Journal of Computational Bology, 16(2):229–239,
2009. WingX.

[7] Madar A. Ostrer H. Bonneau R. Greenfield, A. Dream4: Combining genetic
and dynamic information to identify biological networks and dynamical models.
PLos ONE, 2010.

[8] Eric Vanden-Eijnden Richard Bonneau Aviv Madar, Alex Greenfield. Dream3:
Network inference using dynamic context likelihood of relatedness and the in-
ferelator. PLos ONE, 2010.

[9] Ostrer H-Vanden-Eijnden E Bonneau R Madar A, Greenfield A. The inferelator
2.0: A scalable framework for reconstruction of dynamic regulatory network
models. Engineering in Medicine and Biology Society, 2009.

[10] George Michailidis James Henderson. Network reconstruction using nonpara-
metric additive ode models. PLos ONE, 2014.

57



BIBLIOGRAPHY

[11] Christopher Fogelberg and Vasile Palade. Machine learning and genetic reg-
ulatory networks: A review and a roadmap. In Aboul-Ella Hassanien, Ajith
Abraham, AthanasiosV. Vasilakos, and Witold Pedrycz, editors, Foundations
of Computational, Intelligence Volume 1, volume 201 of Studies in Computa-
tional Intelligence, pages 3–34. Springer Berlin Heidelberg, 2009.

[12] M. K. Stephen Yeung, Jesper Tegner, and James J. Collins. Reverse engineer-
ing gene networks using singular value decomposition and robust regression.
Proceedings of the National Academy of Sciences, 99(9):6163–6168, 2002.

[13] Matthieu Vignes, Jimmy Vandel, David Allouche, Nidal Ramadan-Alban,
Christine Cierco-Ayrolles, Thomas Schiex, Brigitte Mangin, and Simon
de Givry. Gene regulatory network reconstruction using bayesian networks, the
dantzig selector, the lasso and their meta-analysis. PLoS ONE, 6(12):e29165,
12 2011.

[14] G. W. Stewart. Matrix Algorithms: Volume 1, Basic Decompositions. Matrix
Algorithms. Society for Industrial and Applied Mathematics, 1998.

[15] Rick Chartrand. Numerical differentiation of noisy, nonsmooth data. ISRN
Applied Mathematics, 2011.

[16] Chein-Shan Liu and Satya N Atluri. A fictitious time integration method for
the numerical solution of the fredholm integral equation and for numerical
differentiation of noisy data, and its relation to the filter theory. Computer
Modeling in Engineering and Sciences (CMES), 41(3):243, 2009.

[17] Herman J Woltring. On optimal smoothing and derivative estimation from
noisy displacement data in biomechanics. Human Movement Science, 4(3):229–
245, 1985.

[18] R.L. Burden and J.D. Faires. Numerical Analysis. Brooks/Cole, Cengage
Learning, 2011.

[19] P. Deuflhard and F. Bornemann. Scientific Computing with Ordinary Differ-
ential Equations. Texts in Applied Mathematics. Springer, 2002.

[20] Thomas Schaffter, Daniel Marbach, and Dario Floreano. Genenetweaver:in
silico benchmark generation and performance profiling of network inference
methods. Bioinformatics, 27(16):2263–2270, 2011. wingx.

[21] Socorro Gama-Castro, Verónica Jiménez-Jacinto, Martín Peralta-Gil, Alberto
Santos-Zavaleta, Mónica I Peñaloza-Spinola, Bruno Contreras-Moreira, Juan
Segura-Salazar, Luis Muñiz-Rascado, Irma Martínez-Flores, Heladia Salgado,
et al. Regulondb (version 6.0): gene regulation model of escherichia coli k-12 be-
yond transcription, active (experimental) annotated promoters and textpresso
navigation. Nucleic acids research, 36(suppl 1):D120–D124, 2008.

58



BIBLIOGRAPHY

[22] S. Balaji, M. Madan Babu, Lakshminarayan M. Iyer, Nicholas M. Luscombe,
and L. Aravind. Comprehensive analysis of combinatorial regulation using
the transcriptional regulatory network of yeast. Journal of Molecular Biology,
360(1):213 – 227, 2006.

[23] J.M. Lingeman and D. Shasha. Network Inference in Molecular Biology: A
Hands-on Framework. SpringerBriefs in Electrical and Computer Engineering.
Springer, 2012.

[24] F. E. Grubbs. Procedures for detecting outlying observations in samples. Tech-
nometrics, 1969.

[25] Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. Outlier detection tech-
niques. In Tutorial at the 13th Pacific-Asia Conference on Knowledge Discovery
and Data Mining, 2009.

[26] Wilhelmine Stefansky. Rejecting outliers in factorial designs. Technometrics,
14(2):469–479, 1972.

[27] Gary L Tietjen and Roger H Moore. Some grubbs-type statistics for the de-
tection of several outliers. Technometrics, 14(3):583–597, 1972.

[28] Bernard Rosner. Percentage points for a generalized esd many-outlier proce-
dure. Technometrics, 1983.

[29] D.C. Montgomery and G.C. Runger. Applied statistics and probability for en-
gineers. John Wiley & Sons, 1994.

[30] Robert J. Prill, Daniel Marbach, Julio Saez-Rodriguez, Peter K. Sorger,
Leonidas G. Alexopoulos, Xiaowei Xue, Neil D. Clarke, Gregoire Altan-Bonnet,
and Gustavo Stolovitzky. Towards a rigorous assessment of systems biology
models: The dream3 challenges. PLoS ONE, 5(2):e9202, 02 2010.

59







TRITA-MAT-E 2014:60 
ISRN-KTH/MAT/E—14/60-SE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

www.kth.se 


	Framsida Deng
	Inlägg Deng
	School of Engineering Sciences  

	Yue_MaterThesis_version3_1
	Backsida Deng
	Blank Page
	Blank Page

