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Abstract

Nowadays almost all motorized vehicles use eleatroontrol units (ECUSs) to control parts of

a vehicle’s function. A good way to understand hiscle’s behaviour is to analyse logging data
containing ECU internal variables. Data must thertransferred from the ECU to a computer
in order to study such data. Today, Keyword Prdt@d€@/P) requests are used to read data
from the ECUs at Scania. The method is not suitifini@ny signals should be logged with a
higher transfer rate than the one used today.idrthiesis, communication protocols, that allow
an ECU to communicate with a computer, are studibd.purpose of this master’s thesis is to
examine how the transfer rate of variables fronn&a ECUs to a computer can become faster
compared to the method used today in order to gatra frequent logging of the variables. The
method that was chosen was implemented, evaluatedlao compared to the method used
today. The busload, total CPU load and CPU loadherfrequency used during the
experiments, 100 Hz, was also examined and evaluate

The experiments performed show that the methodechatata acquisition (DAQ) with CAN
Calibration Protocol (CCP), increased the transdts of the internal ECU variables
significantly compared to the method using KWP e=is. The results also show that the
number of signals have a major impact on the bddioaDAQ. The busload is the parameter
that limits the number of signals that can be lagdée total CPU load and the CPU load for
100 Hz are not affected significantly compared tewno transmissions are performed. Even
though the busload can become high if many varsadsle used in DAQ, DAQ with CCP is
preferable over KWP requests. This is due to teatgncrease in transfer rate of the ECU
internal variables and thus a great increase itotging frequency.

Keywords: Electronic Control Unit (ECU), CAN Caldiron Protocol (CCP), data acquisition
(DAQ), communication protocols.



Utvardering av protokoll for 6verforing av
fordonsdata fran en styrenhet

Sammanfattning

Nufortiden anvands styrenheter (ECUer) for attastyelar av ett fordons funktion i sd gott som
alla motoriserade fordon. Ett bra sétt att forstdoedons beteende ar att analysera
loggningsdata som innehaller interna styrenhetalbtei. Data maste da overforas fran
styrenheten till en dator for att data ska kunndestas. Idag anvands Keyword Protocol-
forfragningar (KWP-forfragningar) for att lasa détan Scanias styrenheter. Metoden ar inte
lamplig om man vill logga manga variabler med egre@verforingshastighet an den som
anvands idag. | detta examensarbete studeras koikationsprotokoll som tillater en styrenhet
att kommunicera med en dator. Examensarbetetsdyttedersdka hur dverféringshastigheten
av variablerna, frAn Scanias styrenheter till eori&an ckas jamfért med den metod som
anvands idag for att fa en mer frekvent loggningavablerna. Metoden som valdes
implementerades, utvarderades och jamfordes mesteesom anvands idag. Busslasten,
totala CPU-lasten och CPU-lasten for den frekvens gnvandes under experimenten 100 Hz
har ocksa undersokts och evaluerats.

De utférda experimenten visar att den valda metodata acquisition (DAQ) med CAN
Calibration Protocol (CCP), 6kade 6verféringshdsttgn av de interna styrenhetsvariablerna
betydligt jamfort med metoden KWP-forfragningar pximenten visar ocksa att antalet
signaler har stor inverkan pa busslasten for DA@sBasten ar den parameter som begransar
antalet signaler som kan loggas. Den totala CPté#iasch CPU-lasten for 100 Hz paverkas
inte betydligt jamfort med nér inga dverforingargdAQ med CCP &r att foredra framfor
KWP-forfragningar aven om busslasten blir hog f&Q@da den stora 6kningen i
overforingshastighet av de interna styrenhetsvesind medfér en mer frekvent loggning av
variablerna.

Nyckelord: Styrenhet (ECU), CAN Calibration Protb@@CP), data acquisition (DAQ),
kommunikationsprotokoll.
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Chapter |

Introduction

Scania is a leading manufacturer of heavy truckssés and industrial engines and marine
engines. This thesis was performed at Scania’sdResand Development department at the
group ECU System Test that is working with tesfumgctionality forelectronic control units
(ECUs) in trucks and busses. An ECU consists alvare and software and is used to control
a part of a vehicle’s function. The ECUs read digieantinuously from sensors and these input
signals, with information from the vehicle, are dise calculate output signals to actuators. The
ECUs use the standa@bntroller Area Network (CAN) in order to communicate with each
other.

A vehicle’s behaviour can be analysed by studyogging data containing ECU internal
variables and this is a good way to understanchichees behaviour. The logging data
containing ECU internal variables must be trangditb a computer in order to log it.

1.1 Background

An emulator is hardware or software used to imitagsfunctionality of other hardware or
software. Scania is using a software emulatorsbE€U software. Variables, or signals, can be
read directly in an emulator which allows many sigrto be logged without using any
communication protocol. Scania also performs EQitktan vehicles and in lab environment
with hardware-in-the-loop (HIL)igs that simulates the environment of an ECU. Sigoatsot

be read directly in rigs or in vehicles. Todayjgnal is read in a rig via the protocol Keyword
Protocol 2000 (KWP2000). The method of readingalags via KWP is ineffective due to the
fact that the computer must first request a vagiathlen the ECU shall process the request and
send a response. A more effective method to trarsgmnials, from an ECU, would be of great
importance.

1.2 Purpose and goal

The purpose of this master’s thesis is to examawve the transfer rate of variables from
Scania’s electronic control units (ECUs) to a cotapaan become faster compared to the
method used today in order to get a more frequegihg of the variables. The method that is
chosen will be implemented, evaluated and also emetpto the method used today. The
busload, total CPU load and CPU load for the frequaised during the experiments 100 Hz,
will also be examined and evaluated.



1.3 Delimitations

This study is delimited to communication protoased in the automotive industry and more
precise protocols that are compatible with CAN.



Chapter 2
Theory

This chapter describes the theory of this mastheésis and contains information about what a
bus system is and in particular the CAN bus whichised in this project. The chapter also
presents what a communication protocol is and itiquéar the protocols Keyword Protocol
2000 (KWP2000), CAN Calibration Protocol (CCP) dhd Universal Measurement and
Calibration Protocol (XCP).

2.1 Bus system

A busis a transmission path that connects differentpmmants in a network. Messages are
picked up at every device attached to the bus. Hagite can recognise the messages intended
for it [1]. Bus systems used in the automotive sidpare for instance Controller Area Network
(CAN), FlexRay, Local Interconnect Network (LIN)dMedia Oriented Systems Transport
(MOST). The bus system of interest in this masténesis is the Controller Area Network

(CAN) that is described in the next section.

2.2 Controller Area Network (CAN)

Controller Area Network (CAN) is an asynchronous, multimaster, broadaastal bus protocol
for real time control applications with data ratgsto 1 Mbit/s in twisted-pair cabling. CAN is
primarily used in embedded systems to allow fadtratiable communication between
processors. CAN was developed in the 1980s by #gren@ company Robert Bosch GmbH for
in-vehicle networks. The primary purpose was tdodmenore functionality in automobiles.
Another reason for developing CAN was to reduceéngirBefore CAN was developed,
electronic devices in automotives were connectegdayt-to-point wiring. This caused more
and more wires as more functionality were addedrasdited in heavier vehicles, higher wiring
costs and harder for manufacturers to troublesheluitles. The wiring cost, the complexity of
the system and the wiring weight was reduced wh&N @as introduced. A CAN system also
has better flexibility since new subsystems caadmied to an existing system without
modification [2, 3]. CAN is now an internationahetard (ISO 11898) and a de-facto standard
in today’s vehicles. CAN has other applicationdgthan in the automotive industry such as in
trains, aeroplanes, factory automation, escalanoeslical equipment, household applications
such as coffee machines and washers [2, 4].

CAN is apeer-to-peer network which means that the network is a nonanafical network and
communication is not performed according to thertlserver model. Instead all nodes are
equally privileged, different nodes are not assibgiéferent roles and a node can function as
both a client and a server [5]. CANmgltimaster since many nodes can function as the master
on the bus. Since CAN isbaoadcast protocol all nodes in the CAN network will receiak
messages sent on the CAN bus. Each node deciilsbdfll take care of the message or not
depending on a message identifier that uniquelyndsfthe content and the priority of the



message [6]. In order to determine which messaak st allowed access to the bus when two
or more messages want to access the buss simulsineaitwise arbitration is performed
based on the messages identifier. This will beritest in subsection 2.2.1. The different
frames are described in subsection 2.2.2, thefdatae format in subsection 2.2.3, bit stuffing
is described in subsection 2.2.4 and error handimgscribed in subsection 2.2.5.

2.2.1 Bus arbitration

When a node wants to send a message it checlks @AIN-bus is busy and then writes the data
to the CAN bus. If two or more nodes try to trartsméssages at the same time the conflict is
resolved by usingitwise arbitration. This process is based on the possibility of twi@ieent

bus levels. A bit with value 0 on the CAN bus cepends to @ominant bus level and a bit

with value 1 on the CAN bus corresponds teaessive bus level. The CAN bus level will be
dominant if any of the nodes output a dominantlld¥éwvo or more nodes start to transmit at
the same time each bit in arbitration field in thessages are considered until differences
appear. The message with bit 1 will be withdrawme Pprocess continues until there is only one
message left which wins the bus access. Sincel@ignant over 1, messages with identifiers
with smaller values will be prioritized over messagvith identifiers with bigger values [5, 7].

2.2.2 Frames

CAN have two different message formats. The fegiften referred to as tiseandard format

and has an 11 bit identifier range. The other forimtheextended format that uses an address
range of 29 bits. The frames will thus differ irethumber of bits depending on if the standard
or extended format is used.

A frame is a message that is transmitted betwedaqid here are four different CAN frames:
data frame, remote frame, error frame and overlicade. Thedata frame is used to transmit
data from a transmitting device to a receiving devil he data frame will be described in more
detail in subsection 2.2.3. emote frame is used by a receiver node to request the trasgmis
of a data frame with the same identifier. &nor frame is sent when a unit detects a bus error.
Theoverload frame is used to delay further frames to let the depiceess received data. Data
and remote frames are separated from precedingféma field callethterframe space [7].

2.2.3 Data frame

A data frame, shown in Figure 2.1, consists offtilewing fields: start of frame (SOF),
arbitration field, control field, data field, cyclredundancy check field (CRC field),
acknowledgement field (ACK field) and end of fra(B®F). Thestart of frame bit is a single
dominant bit used to mark the beginning of the fi@ae. The bus must be idle to start the
transmission and will then put the bus low. Aftesittcomes tharbitration field that includes

the identifier. The number of bits in this fieldefothus depend on if the standard or the
extended format is used. The arbitration field @sntains a bit, the remote transmission
request bit (RTR bit), to distinguish between datd remote frames. The extended format also
contains 2 extra bits besides the longer identifiee next field is theontrol field that have the
function to indicate if the frame is a standaréxtended frame and also express the length of
the data field. Thereafter comes tlaa field that can contain 0 — 8 bytes data and thereddeer t
CRC field which is a checksum used for error checks in thBl Communication. The next field
is theACK field that is used to acknowledge the reception of ssagesand assures that at least



one node has received the message correct. Thebéstin a data frame are taed of frame
bits that are recessive and used to mark the eticeafata frame [7, 8].

1

;i Interframe
| Space or
overload
frame

/N VRN

Start of frameArbitration field Control field Data field CRC field ACK field End of frame

1

Interframe 1

space < Data frame
1

Figure 2.1 CAN data frame format.

2.2.4 Bit stuffing

CAN uses a method calldit stuffing in order to keep the receiving nodes synchronizée.
method is applied for the fields SOF to the CR@Iffer data and remote frames. When more
than 5 consecutive bits of the same polarity iectet] by a transmitter one extra bit of inverted
polarity is added after the fifth bit of equal patya. The receiversle-stuff the received data and
remote frames to retrieve the original contentsTiidone by removing the bit that follows a
sequence of five bits of the same polarity witlia frame sequence coded by bit stuffing [4, 9].

2.2.5 Error detection and error management

The CAN standard defines five error detection matdms. These contribute to CANs high
level of error resistance and reliability. CAN at¥efines three error states. These are used by
the CAN nodes and allow nodes to distinguish betwemanent failures and sporadic
disturbances. The error states represent the megdthof the nodes in the network [2]. The error
detection mechanisms will be described first amchtthe different error states.

CAN uses the error detection mechanisms bit cretak, rule check, cyclic redundancy check,
frame check and acknowledgement check. The ertectien mechanisrit check is used by
the transmitter when it is sending a message. rEmsimitter monitors the bus to check that the
value monitored does not differ from the sent vallia bit error is detected, an error frame is
sent and the original frame is resent. The bit klnale has an exception which is when a
recessive bit is sent during the arbitration fietdhe acknowledgement slot. The error detection
mechanisnstuff rule check is used by each node that check that there anestt5 consecutive
bits of same polarity for the SOF to CRC field fodata or remote frame. If a node detects 6
consecutive bits of same polarity, an error frasnganerated and the message is resent. The
cyclic redundancy check (CRC) is a mechanism that detects errors withra ligh probability.
The transmitter calculates the CRC value that @éeddo a message in the CRC field. The
receivers calculate the CRC value in the same wdlgatransmitter and each node compares
the calculated CRC value with the CRC value inGRC field. If the CRC values do not match
for one or more nodes, the message is resent. dtbetibn mechanisifname check is used by
every node to detect illegal bits in the fixed-faoihfields. The fixed-form bit fields are the
recessive delimiter bits. A receiver that moni@rominant bit for the last end of frame bit is
not considered as a form error. The last detectieahanism is thacknowl edgement check that

is used by the transmitters to check if the ACK,gdart of the ACK field, contains a dominant
bit. The dominant bit is sent by a receiving nogeanfirmation that the CRC check was
successful. There is an acknowledgement error dforoinant bit is monitored during the ACK



slot which means that no nodes have retrievedid nassage correctly. The original message
is resent for all possible errors detected by #teation mechanisms described above [4, 7, 9].

The different error states a CAN node can haveaor active, error passive and bus off. The
error state is determined by two counters. Theomécounter for errors occurred for
transmitting frames, thigansmit error counter (TEC), and one counter for errors occurred for
receiving frames, thieeceive error counter (REC). An error detected by the transmitter will
increase the TEC and an error detected by thevezoeill increase the REC. The TEC is
decreased if no error is detected when sendingnafland analogously the REC is decreased if
no error is detected when receiving a frame. Thtars usually increment faster compared to
when they decrement. A node is in the error siatar active if both counters have values less
than 128. A node in error active state can normalyicipate in the bus communication. A
node enters the stateror passive when one of the error counters exceeds 127. Tte can

then still participate in the bus communication Wil have to wait a certain time before further
transmissions can take place when an error is tdetethe third state tsus off which occurs
when the TEC is greater than 255. The node isltoved to participate in the bus
communication in bus off state. A node in the bifistate can re-enter the error active state
which is accomplished by resetting the error casntie zero, reconfiguration and then wait for
128 sequences of eleven consecutive recessiva hidsieason for waiting is to ensure that the
node cannot disturb the bus communication immelgiaféer the reset [2, 7].

2.3 Communication protocols

Communication protocols are formal descriptions of message formats arebihiat allow
exchange of messages in or between computing sysfecommunication protocol may e.g.
cover authentication, connection establishmenor etetection and error correction [10, 11].
The protocols of interest in this project are tha&qcols Keyword Protocol 2000 (KWP2000),
CAN Calibration Protocol (CCP) and the Universaldderement and Calibration Protocol
(XCP) which are described in the following subsmtsi

2.3.1 Keyword Protocol 2000 (KWP2000)

Keyword Protocol 2000, or KWP2000, is a diagnostic communication protocol that is
standardized in ISO 14230. The standard is dividteddifferent parts that define the physical
layer, the data link layer and the application tajide communication between a client (the
diagnostic device) and a server (e.g. an ECU)risechout over e.g. a CAN network. The client
performs request to the slave to either request @ato let the slave perform certain operations.
KWP2000 can be used for e.g. reading or clearimgple codes, reading signals, transfer data
to the server and set server parameters. A requesstfage containssarvice identifier and
parameters related to that service. The servigaift® is used in the server to identify which
action to perform. The response message also osritee service identifier but is used to
inform the client if the operation was successfuhat. The ternpositive response is used for a
successful operation and the tamegative response is used for an unsuccessful operation or an
operation not completed in time. For each sentesniine corresponding response message
must arrive before the next request can be senéxample of a service is
readDataByCommonldentifier that is used to requests data record values fnerslave by
specifying the parameteommon identifier (CID) that corresponds to a signal in the slag [1
13].



2.3.2 CAN Cadlibration Protocol (CCP)

CAN Calibration Protocol (CCP) is a software interface for communicatiotwaen a
development tool and an ECU. The protocol is CASdokand can be used for measurement,
calibration and flash programming. It is developgdhe ASAP task force (Arbeitskreis zur
Standardisierung von Applikationssystemen; Engliahslation: Standardization of
Application/Calibration Systems task force) thasv@unded by the automotive companies
Audi, BMW, Volkswagen, Mercedes-Benz and Porsche drganisation was renamed and is
now called ASAM (Association for Standardizationfaftomation and Measuring Systems).
The purpose of the task force is to standardizeesysfor calibration, measurement and
diagnostic purposes to provide compatibility betwseftware and hardware [14].

The CCP protocol is described in detail in thedwihg subsections starting with the CCP
dialogue in subsection 2.3.2.1 that portrays haaohand an ECU can communicate with each
other. The next subsection 2.3.2.2 describes sekgjein which is a process containing certain
CCP commands that shall be performed in a certaierdefore any other CCP commands are
used. The two subsections thereafter 2.3.2.3-2.8&scribe CCP commands used to perform
data acquisition (DAQ) from an ECU to a tool. The first subsection afs two portrays how

to initialize and start the DAQ and the second hostop it.

2.3.21 CCP dialog

CCP dialog is master-slave based. The mastertastihe dialog by sending information,
commands and parameters, to the slave via the G&NTHe slave is then responsible to
answer the master with data or an acknowledgenoeotr@ing to the CCP standard [15]. The
master is often a development tool and the slaga ECU. There are only two different types
of messages for CCP, each identified by their umigentifiers (addresses). Since CCP is a
CAN based protocol each message is 8 bytes lomgegsage sent from the tool to the ECU is
called aCommand Receive Object (CRO) message that contains a command code CMD, a
command counter CTR and parameters as shown ime=RjR.

byte 0 1 2 3 4 5 6 7

CMD CTR

Parameter area
CMD = Command code
CTR = Command counter

Figure 2.2 Sructure for the CRO message.

The command code is used in the ECU to inform @& Evhich command to perform. The
command counter is used to keep track of the sB@ ffom the master’s point of view and the
parameters are specific for each command. The coghiwade and the commands’
corresponding parameters are defined in the ASaRdsird for CCP. When the ECU has
performed the actions, requested by the tool,litsend a reply message to the tool. A message
sent from the ECU to the tool is calledData Transmission Object (DTO) message. There are 3
types of DTOs, Command Return message (CRM), Ewvessage and Data Acquisition (DAQ)
message, which will be described in the 3 nextectizns. Thereafter there is a short
subsection about tHeCP driver, a piece of code in the ECU that receives commanmdsesses
them and gives appropriate answers and after thabsection that constitutes a CCP command
example.



Command Return Object (CRO) message (Command)
Tool ECU

Data Transmission Object (DTO) message (Response)

A

Figure 2.3 Basic CCP dialog.

A basic CCP dialogue is shown in Figure 2.3. CORroands are generic which means that
they are not node specific. This implies that EClstrbe specified, which is done by
specifying thestation address for the ECU. The address is unique for the ECUianted as an
argument for the CCP command CONNECT. This isitist €CP command that can be
performed. All other commands are ignored until@@NNECT command is sent to the ECU.
The connection persists until a DISCONNECT commiarsnt from the master to the ECU or
if the master connects to another ECU [16, 17].

Command Return message (CRM)

A Command Return Message (CRM) is an answer to a CRO message. It contaiiasmation

that indicates if the command succeeded and carcatgain requested data, specified in the
CRO message. More specifically, a CRM message iceraigpacket identifier (PID) with value
OxFF. The packet identifier is the first byte ie thnessage and has different values for different
DTO messages. It is used to identify which DTO rageds sent from the ECU. The second
byte for the CRM message is an error code (ERRgmimdicates if the performed action was
successful or if it failed. The third byte is thmmmand counter from the CRO message which is
used by the master to identify which CRO messaigenths an answer to. The remaining 5
bytes constitute a data area that contains diffénéormation depending on the command sent
from the tool. The structure of the CRM messagebmaseen in Figure 2.4 [16, 17].

byte 0 1 2 3 4 5 6 7

PID ERR CTR

N Data area
PID = Packet identifier

ERR=E g CRM message: PID=0xFF
= Error code

Event message: PID=0xFE
CTR = Command counter

Figure 2.4 Sructure for the CRM and for the event message.

Event message

Theevent message is used to notify the master of ECU internal cremd his can e.g. be used to
detect errors in the ECU which can inform the maab®ut the error and thus allow the master

to take necessary actions such as error recovhgysifucture is the same as for CRM message
but the packet identifier is OxFE [16, 17].

Data Acquisition (DAQ) message
Thedata acquisition (DAQ) messages are used to send measurementaiatéhe ECU to the

master. The data can be sent periodically or amsetjuence of a particular event. Synchronous
DAQ is shown in Figure 2.5.
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Figure 2.5 Synchronous DAQ-DTO transmission.

Before any data can be transmitted with DAQ fronE&u, the DAQ process must be
initialized. In this process information is serdrfr the master to the ECU about which data in
the ECU shall be included in the data acquisitiidre initialization will be described in more
detail in section 2.4.3. When the initializatiordisne, data can be sent synchronously to the tool
from the ECU. This assumes that the ECU has sufgprospecific DAQ commands and that the
ECU has manpAQ lists. A DAQ list contains all measurement data for ec#ic time period

or for a specific event. A list consists of up @1 2bject Descriptor Tables (ODTs), each
containing 7 pointers that are used to point ounory addresses, in the ECU memory, for
signals to be sent via DAQ. When information istderthe master, it is packed in CAN
messages called DAQ-DTOs.AQ-DTO message contains a Packet Identifier (PID), byte O,
and the remaining bytes can be packed with datahwkishown in Figure 2.6. The organization
of DAQ-lists and ODTs are shown in Figure 2.7. PHDs used to identify the data in the DAQ-
DTO messages, since a DAQ-DTO message correspo@osertain ODT [16, 17].

byte 0 1 2 3 4 5 6 7

PID

Data area
PID = Packet identifier

Figure 2.6 Sructure for the DAQ-DTO message.



ECU memory

0x43c5aeb[L Byte 1

I
0 Ox43c5aeb3

0x43c5ae5p Byte 2

0x43c5ae5B Byte 3 1 0x43c5aeb54

0x43c5ae5¢ Byte 4 2 0x43c5ae55

0x43c5ae5h Byte 5 3 0x43c5ae56

0x43c5ae5p Byte 6 4 0x43cb5aebl

AN WANAN
||

0x43c5ae5( Byte 7 5 0x43c5ae58

6 0x43c5ae6b ODT n

DT DAQ list k
ODT 1
IAQ list 1

0x43c5ae5B Byte 8

0x43c5aebp Byte 26

S N N N -

0x43c5aebp Byte 27

0x43c5ae6r Byte 28

DAQ-DTQ n n-1

= =il

The first DAQ-DTO will contain bytes 3, 4, 5, 6,8 and 27 from the ECU memory.

DAQ-
DAQ-DTO 1

Figure 2.7 ECU memory, DAQ list- and ODT-organization.

CCP driver

A CCP driver, a piece of software in the ECU, is used to pretles requests from the master
and respond to the master with the correct ansiter CCP implementation is divided into two
parts: acommand processor that processes the CROs and answer with apprefZlRMs and a
DAQ processor that is responsible to send measurement datgpet@ate time [14, 18]. The
CCP driver implementation is not described in tegort.

Example of CCP command: CONNECT

Table 2.1 describes the CRO message and Tablee&c?ildes the CRM message for the
CONNECT command which establishes a logical partdint connection with a specified
slave station. The tables specify what parametersxpected for the command and how to
interpret the answer from the ECU.
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Table 2.1 Structure of CRO message for the CONNECT command.

Position Type Description

0 byte CMD = 0x01

1 byte CTR

2-3 word Station address (Intel format; Little-Ezal
4-7 bytes Don't care

Table 2.2 Sructure of CRM message for the CONNECT command.

Position Type Description

0 byte PID = OxFF

1 byte Command Return Code (Error code, ERR)
2 byte CTR

3-7 bytes Don't care

Figure 2.8 shows an example usage of the CRO &€CBNNECT command. Byte 0 with
value 0x01 indicates that this is a CONNECT commadine command counter is 0x46 and the
station address is 0x2236 and due to the statidreas shall be on Intel format 0x36 is the
value of byte 2 and 0x22 is the value of byte XeBi+7 can be ignored.

byte 0 1 2 3 4 5 6 7

0x01 0x46 0x36 0x22

Parameter area
Figure 2.8 Example of CRO message for the CONNECT command.
Figure 2.9 shows the CRM message for the CRO mesdzaye. Byte 0 indicates that it is a
CRM message (0OxFF), byte 1 (0x00) that it is amaskedgement (command successfully

performed), byte 2, the command counter, thatishasanswer to the CRO message with
CTR=0x46 [17].

byte 0 1 2 3 4 5 6 7

OxFF 0x00 0x46

Data area

Figure 2.9 Example of CRM message for the CONNECT command.

2.3.2.2 Session log-in (Cold start)

Session log-in or cold start is done to createvalogical point-to-point connection between the
master and the slave and also to perform initisbrecommands. The procedure is shown in
Figure 2.10. Each command represents both a CR@agesnd a CRM message. In more
detail, session log-in starts with the connect caminCONNECT. The parameters for the
CONNECT CRO message are the CMD, the CTR and #tiestaddress. The CMD and CTR
are used for all CRO commands. The station addpessfies which ECU to establish a
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connection with. Thereafter the GET_CCP_VERSION e@md is used where the desired CCP
version is specified. The slave will answer with tinplemented version and if this matches the
desired CCP version the communication will proc@éak next command is EXCHANGE_ID
which performs automatic session configurationsTddmmand returns a resource protection
mask that indicates which resources are protectddvhiich are not. A resource with protection
status locked must be unlocked in order to uskhis is done by first getting a key for the
resource by passing the information of which resewhould be used to GET_SEED. The
answer from the ECU contains a ‘key’ or ‘seed d#tat is used to unlock the protection by
using the UNLOCK command. An example of a resoisd@AQ. The GET_SEED and the
UNLOCK command shall be performed for each progketsource that is going to be used.
The next command is SET_S_STATUS that is usedtttheesession status. It is recommended
to include this command in the login session tbdlize the status bits [15, 17].

Session log-in(R)
1 CONNECT Establish a logical point-to-point conti@t with a slave station
2 GET_CCP_VERSION Check CCP version used in slavicd

3 EXCHANGE_ID Automatic session configuration

4 for requested resourcan R

5 if resource is locked

6 k. = GET_SEED(r) Get kel

7 UNLOCK (r, k) Unlock resource with keyk.

8 SET_S STATUS Initialize the status bits

Figure 2.10 Pseudo code showing the CCP commands used for session log-in. R contains
information of which resources that the user wants to use.

2.3.2.3 DAQ list initialization

The DAQ list initialisation process is done to tgr the variables in the ECU that shall be sent
using data acquisition and also to start this ec€his process, shown in Figure 2.11, assumes
that the session log-in has been performed omat tee connect command. The figure does not
show the answers from the ECU.

DAQ list initialisation starts with setting the DASatus bit to 0 with the command
SET_S_STATUS. Thereafter the GET_DAQ_SIZE commanased with the CRO message
parameter®AQ list number and theCAN identifier for the specified DAQ list number. The
command is used to clear the specified DAQ listigllize it and stop DAQ for this list. The
command returns the number of available ODTs aeditst PID for that DAQ list. The
command SET_DAQ_PTR is then used to initialize &DAt pointer by specifying the DAQ
list, ODT number and an element number in the ODnis information will later be used when
interpreting the DAQ-DTOs sent to the master. TIRET@umber corresponds to the PID for a
received message, the element number within an €@IDFEsponds to the element in a DAQ-
DTO. After a DAQ list, ODT number and an elementdbeen specified the command
WRITE_DAQ is used to specify the address and addertension in ECU memory for the
signal (variable) to be used in DAQ. The sizehef signal is also specified. For each signal to
be used for DAQ the SET_DAQ_PTR must first be penkd and then the WRITE_DAQ
command to set the ODT pointers and to definedhmdt for the contents in the DAQ-DTOs.
The session status bit for DAQ is then setto h8ET_S_STATUS and finally the data
acquisition is started with the START_STOP comm&iBART_STOP is used both for
starting, stopping and to prepare a synchronousdta specified DAQ list. A parametaode

is used to specify which of these actions to penfdx00 to stop, 0x01 to start and 0x02 to
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prepare for a synchronous start. A synchronousistased to start all configured DAQ lists.

An ECU might not support a synchronous start whithht lead to start of data acquisition.
START_STOP also takes a param@&Q list number that is used to specify which DAQ list
should be used if there exist more than one DAQAIparametelast ODT number is used to
know which ODTs shall be present in DAQ (from Oast ODT number). A parametevent

channel number is used to specify th@mple period, also calleatycle time, that specifies how
frequently the DAQ list shall be transmitted. A gaetertransmission rate prescaler is used to
reduce the desired transmission rate, where leid fas no reduction and higher values are used
for higher reduction [17].

DAQListlnitialization(S)

1 SET_S_STATUS Set session status with DAQ bit =0

2 GET_DAQ_SIZE Stop, clear and initialize DAQ li&et first PID and number of
ODTs

3 for signalin S

4 SET_DAQ_PTR Set pointer

5 WRITE_DAQ Set memory address for signal and digiza

6 SET_S_STATUS Set session status with DAQ bit =1

7 START_STOP Start data acquisition

Figure 2.11 Pseudo code showing the CCP commands used for DAQ list initialisation that first
register the variables used for DAQ and then start the DAQ. S contains information of which
signals (variables) that the user wants to get transmitted.

2.3.2.4 Stop the data acquisition

Data acquisition is stopped by using the START_STOfmand again but this time with other
value for the parametenode. If one wants to end the CCP session one shalluale the
DISCONNECT command that is used to disconnectlthaeglevice [17].

2.3.2.5 Upload data

There are two ways to retrieve data from an ECW WICP, other than DAQ. The first is by
using the CCP commands SET_MTA and UPLOAD and ¢eersd method is by using
SHORT_UP. The first method uses the SET_MTA comniarst the memory transfer address
for abase pointer for all following memory transfers. UPLOAD is thesed to read the data on
the address that was specified with SET_MTA. Theelgointer will for each UPLOAD
command be post-incremented by the size of thetddia uploaded. The second method is to
use the SHORT_UP command, that is used to retdateefrom the ECU by specifying the
address of the data of interest and its size [17].

2.3.3 Universal Measurement and Calibration Protocol (XCP)

TheUniversal Measurement and Calibration Protocol (XCP) is based on CCP version 2.1 but
does not limit users to use CAN as transport metizR support many transport media and the
Xin XCP is used to express this fact, that stdodghe “various” transport layers that can be
used by the users. Examples of transport medi€al, FlexRay, Ethernet (TCP/IP and
UDP/IP) etc. The main purpose of XCP is to acqthieecurrent values of internal variables and
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adjust internal variables of an ECU [19, 20]. XGRuisoftware interface to interconnect a
development tool with an ECU or a measuring insaaim

The XCP dialog is, like CCP, master/slave basedbX(E€P message allows 8 to 255 data bytes.
A Receive message is sent from the master to the slave aigponse message is sent in the
opposite direction. The tern@mmand Receive Object (CRO) andData Transmission Object
(DTO) are also used for XCP but the structure eséhobjects differ from the way they are
defined for CCP [21].

2.3.3.1 The Command Receive Object (CRO) for XCP

The CRO is used for executing commands accorditigggGommand Message (CMD). The
CRO is also used for transmittisgnchronous data stimulation (STIM) to the slave. The CRO
messages are categorized according to their funetto the groupstandard commands (STD),
calibration commands (CAL), data acquisition and stimulation commands (DAQ), page
switching commands (PAQ) and non-volatile memogrogramming commands (PGM) [21].

2.3.3.2 The Data Transmission Object (DTO) for XCP

The DTO is used to send data back to the masties.the CRO messages, the DTO messages
are also categorized according to their functido groups. They areommand response

message (CRM), data acquisition message (DAQ), error or event message (ERR_EV) and the
service request message (SRM) [21].

2.3.3.3 Synchronous Data Transmission

Like CCP, XCP also defines a method to transfeat dghchronous from the slave to the master.
One difference compared to CCP is that data ad¢uigiDAQ) with XCP allows dynamically
configurations of DAQ lists. DAQ with XCP also als the DAQ to start on power-up and

DAQ messages can be sent without PID. Timestamyes dlao been defined. DAQ lists can
also be prioritised over other DAQ lists. The featudescribed here are benefits of using DAQ
via XCP instead of DAQ via CCP. There are also olemefits of using XCP over CCP but
these are not described in this report [21].
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Chapter 3
Method

This chapter will describe the different choiceddman this project, the experimental setup and
the implementation.

3.1 Choice of protocol

CAN Calibration Protocol (CCP) was chosen to reridata from the ECUs. One reason for
this is that CCP is especially intended for reaugdneasurement data from control units and
for calibration [22]. CCP is also standardized aad been used in the automotive industry for
many years. There is a hewer version of CCP stdimtat as the Universal Measurement and
Calibration Protocol (XCP). The reason for choosB@P instead of XCP is that Scania’'s ECUs
already have support for CCP in the ECUs, but oioK{CP. If XCP had been chosen, code had
to be implemented for both the ECU- and the todésKCP was thus excluded because of the
limited time of a master’s thesis.

More specifically data acquisition (DAQ) is the tmed chosen to retrieve data from an ECU.
The method using SHORT_UP commands will be an imthdit method to be evaluated but the
focus will be on DAQ. The reason for choosing SHORP over the commands SET_MTA
followed by UPLOAD is that the first method will baster. This is due to the second method
requires two commands and the first requires ongy@mmand. In the general case the
addresses for the signals to be logged are assootéd be in consecutive order. An advantage
with DAQ, compared to a request method, is thay onke message is needed for each data
transfer while 2 messages are needed for the reouetisod. The request method will therefore
contribute to a higher busload. If assuming tludhlmethods use the same one-way
propagation time, DAQ will be a faster method fansmitting variables. The request method
also needs some time to process the request WkilBAQ method is preconfigured via the
DAQ initialisation. DAQ also have the advantaget a®AQ message can contain more than 1
signal while the message for a request methodaanycontain 1 signal. Another advantage
using DAQ is that all measurements are register#éteasame time in the ECU, i.e. originate
from the same ECU computing cycle, while this carreoensured for the request method.

3.2 Experimental setup

The experimental setup contains six parts; an EECédmputer, a power supply, a Vehicle
Communication Interface (VCI), the CAN network arables and resistor used for termination.
The VCl is used to allow communication betweenB#J) and the computer. The VCl is
connected to the computer via a USB cord and t&@®d via CAN wires. The CAN wires are
terminated via cables and the resistor. The ECUlam® CI are both connected to the power
supply. The ECU has 1 additional cable to providegr for ignition. The experimental setup is
shown in Figure 3.1.
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Computer

Power supply
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Figure 3.1 Experimental setup.

3.3 Choice of programming language

A CAN library was needed to communicate with thd .B@a the VCI since CCP was chosen as
protocol. The VCI contains hardware from the Swedsmpany Kvaser. They provide

CANLIB which is a library to communicate over CAN. CANLIave support for the
programming languages C/C++, C#, Python, Visuai®Basd Delphi [23]. An advantage with
Python is that it is faster to write code in, siltyghon almost always requires less code than
programming languages like C. Python code is iméegl at runtime and needs no compilation
[24]. This means that errors are found at runtirhictvis a disadvantage. Since Python code is
interpreted and not compiled, a program writteRython will in most cases be slower than
programs written in other languages as C/C++ tbatgile the code before the code can be run.
For these reasons Python was excluded. The CANbtBighentation code was written in C#
and Delphi, but most examples were written in GerEfore C was chosen as programming
language. Later the language was changed to C€# gicontains functionality that would
facilitate the code writing. Most of that functidimawas provided by the C++ Standard

Library, such as strings, vectors and functiondtityinput from file.

3.4 Implementation

This section describes the implementation of DAQe Subsections will then describe some
parts in closer detail.

As described in the previous section, Kvaser CANWi&s used to communicate over CAN
with the ECU via the VCI. There are some CANLIB ¢tions that must be called and some
functions that are optional to communicate over CANe CANLIB functions used in the code
implementation are described in Appendix A. Aftee hecessary CAN commands have been
called information about the internal variableshia ECU, necessary addresses, identifiers and
parameters must be loaded from a file. There aoadifferent file formats this information can
be retrieved from: the ati-format and the a2l-forndoe first file format is developed by the
company ATI and the second is a standard develop@&®SAM. The file format ati was used
and the information loaded from these files is dbsd in subsection 3.4.1. The signals that
shall be logged are represented by a list (C++ovgutith text strings, e.g.
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RTDB_VEHICLE_SPEED_E_val_S32 which is the signahedor the vehicle speed. A signal
struct object is then created for each signal ttobged and added to another list. These struct
objects contain information used to perform DAQ #malr properties are described in
subsection 3.4.1. The signals in the signal strsic{C++ vector) are sorted according to the
algorithm that is described in subsection 3.4.2 3brting function also creates a list of ODT
(Object Descriptor Table) struct objects that aldbbe described in subsection 3.4.2. The next
thing performed is the CCP session log-in describ&thapter 2. For each received CRM
message error checking is done which is descritbedhbisection 3.4.3. Thereafter a function is
called that checks if DAQ is active and if thathie case the DAQ is stopped. DAQ is now
started for the signals in the signal struct listhlling the DAQ list initialization method,

which also is described in the theory section. Drata the ECU is transmitted to the tool in
DAQ-DTO messages that are read by the tool usingtimnality for reading CAN data
described in Appendix A. The received data needi®timterpreted according to information
stored for each signal in the signal struct ohbljsttThe interpreted values are written to a file
with the corresponding time when the values wegestered in the ECU. The interpretation of
the signals transmitted and the log file strucaneedescribed in subsection 3.4.4. During data
acquisition, checks are performed to inform the a$digh busloads (higher than 80 %), errors
and overloads. Busload is a measure of how mucB & bus is utilized, measured in %.
DAQ is ended by pressing any key during the DAGises The CCP command for this is also
described in Chapter 2. The organisation of thegotb different files can be found in
Appendix B.

3.4.1 The dti file and the signal objects

The ati file contains both information about eadeinal variable in the ECU but also ECU
specific variables and addresses. Each ECU typarhas file with its own signals, identifiers,
addresses etc. A signal is described by commaaepavalues and/or text on one row in the ati
file. Example on such information is: a number espinting the data type of the signal, the
minimum and maximum value for the signal, the cspoading ECU address, the signal name,
the unit the signal is measured in, a formula fow lthe values from the ECU shall be
interpreted, number of decimal places, a descrigtiche signal etc. The information stored in
my signal struct objects are: the signal nameutiig the ECU address, an factor, number of
decimal places, the signal size and a boolearigtiate if negative values for the signal is
allowed and otherwise false. The formulas for ighals for the ECUs used in this thesis have
always been on the form ‘X’ or ‘x/some number’ d@nhds only a factor is needed. In the general
case the formula can be a polynomial of secondralideded by another polynomial of second
order. A general formula parser can be implemeiftétirns out necessary.

There are also some CCP specific addresses neegedarm DAQ: the CRO identifier, the
DTO identifier and the station address and some Dé&l@ted parameters. The DAQ related
parameters are: the event channel number, thentrssisn rate prescaler and the CAN
identifier of DTO dedicated to DAQ list number. Téeent channel number and the
transmission rate prescaler are both used as ptanfier the CCP command START_STOP
and the CAN identifier of DTO dedicated to DAQ listmber is used for the CCP command
GET_DAQ_SIZE. These parameters are described ipt€ha.
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3.4.2 The sorting algorithm and the signal organisation in ODTs

The order of the signals that shall be logged l@wveffect on how many signals that can
transmit via DAQ if using signals bigger than 1y CAN message has the size 8 bytes and
for a DAQ-DTO message 1 byte is reserved for threketaid (PID) which means that there are 7
bytes for the payload. For DAQ with CCP only orterg- and four-byte signals are allowed.
The goal is to use as few ODTs as possible, inrdadavoid using excessive resources. A more
general case is the well known problem in compsitégnce called thiein packing problem.

The goal is to pachk objects {3, &, -.., $} that satisfy 0 <s< 1 into bins of size 1 so that the
number of bins are minimal [25]. One idea is tetfplace the objects greater than the half the
capacity of a bin into separate bins due to thatetlis no choice for these objects. This means
that the objects placed in superfluous bins aesaltr of the packing of objects less than or
equal to the half bin capacity. In the special adhsgour-byte signals are the only signals that
require an ODT each and thus the four-byte sigmadirst packed into separate bins. Signals
left have either size 1 or 2 bytes. Thereaftetw®byte signals are packed. The one-byte
signals are then used when no other signals casdmeor no other signals with other signal
sizes than 1 are left. This is also the way to pewiore ODTs are needed for one-byte and/or
two-byte signals. The one-byte signals will alwéiymto an ODT unless the ODT is full and
this is the reason why the one-byte signals arkquhafter signals of other sizes. An optimal
packing is, according to the reasoning above, &elidy first adding as many four-byte signals
as possible (at most 1), then add as many twodigtels as possible and then add as many
one-byte signals as possible . When an ODT igHellprocedure is started for a new ODT.

Four-byte signals and two-byte signals can be spitparts so that the parts are in different
ODTs. More of the total ODT space may be utilizethis way. The sorting algorithm
implemented does not split signals. The reasondosplitting signals is that the master will
only receive part of the value if a message wisiplé signal is lost.

The function that sorts the signals also createst eontaining information about how the
signals are organized in the ODTSs for each signdledso calculates the last ODT number.
Each description of a signal in an ODT is describgdsignalInodT struct object that

contains ODT numbep@TNumber), an element number in the ODT (0, 1, ...)
(elementNumberInoDT) and a index of the first byte for the signal witthe ODT {ndexInoDT).
The last ODT number is later used in the CCP conth&ART_STOP to know which ODTs
are present in DAQ. The ODT number and the elememtber in the ODT are both used (later)
in the CCP command SET_DAQ_PTR. The index of tte kiyte in the ODT for each signal is
used when data shall be interpreted from the DA@Diessages.

The pseudo code for the sorting and creatingibealinopT list is shown in Figure 3.2. The
function indexOfFirstSignalSpecifiedSize() takes #ignal struct objects as the first parameter,
an index as the second parameter and a desiredssiast parameter. The function returns the
index of the first signal in the signal struct hgth size specified by the third parameter with
the search started at the index specified by tbenseparameter. The function swap() is used to
exchange the values of the two parameters.

OrderSignals_CreateSignallnODTList(&S, &SignallnQBT, &LastODTNumber)

1 numdbyte = num2byte = numlbyte = usedSpace =esidnmberWithinODT =0
2 LastODTNumber =0

3 ODTcapacity =7

4 for signalsin S

5 if s.size ==
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6 num4byte += 1
7 if s.size ==
8 num2byte += 1
9 if s.size ==
10 numlbyte +=1

11lfor i=0toS.size()- 1
12  if num4byte > 0 and ODTcapacity — usedSpade

13 ] = indexOfFirstSignalSpecifiedSize(S, i, 4)

14 swap(S[i], S[i])

15 CreatesignalInoDT struct object signalinodt

16 signalinodt. ODTNumber = LastODTNumber

17 signalinodt.elementNumberinODT = elementNumb&miODT
18 signalinodt.indexInODT = usedSpace

19 SignallinODTlist.push_back(signalinodt)

20 elementNumberWithinODT +=1

21 usedSpace +=4

22 num4byte -= 1

23 eseif num2byte > 0 and ODTcapacity — usedSpage
24 ] = indexOfFirstSignalSpecifiedSize(S, i, 2)

25 swap(SJi], S[iD

26 CreatesignalInoDT struct object signalinodt

27 signalinodt. ODTNumber = LastODTNumber

28 signalinodt.elementNumberinODT = elementNumb&nNODT
29 signalinodt.indexInODT = usedSpace

30 SignallnODTlist.push_back(signalinodt)

31 elementNumberWithinODT +=1

32 usedSpace += 2

33 num2byte -= 1

34 eseif numlbyte > 0 and ODTcapacity — usedSpate
35 j = indexOfFirstSignalSpecifiedSize(S, i, 1)

36 swap(SJi], S[il)

37 CreatesignalInoDT struct object signalinodt

38 signalinodt. ODTNumber = LastODTNumber

39 signalinodt.elementNumberinODT = elementNumb&nNODT
40 signalinodt.indexInODT = usedSpace

41 SignallnODTlist.push_back(signalinodt)

42 elementNumberWithinODT +=1

43 usedSpace += 1

44 numlbyte -= 1

45 dse

46 usedSpace = elementNumberWithinODT = 0

a7 LastODTNumber += 1

48 i-=1
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Figure 3.2 Pseudo code showing how the signals are ordered before DAQ is started and how
the ligt, containing information about how signals are organized in the ODTSs, is created. Sis
passed by reference and contains information of which signals (variables) that the user wants to
get transmitted via DAQ. Thislist will be sorted when the function isrun. SgnalInODTlist isa
empty list that is passed by reference and created in the function. LastODTNumber is an integer
representing the last ODT that shall be present in DAQ and is also calculated in the pseudo
code. The character & is used to denote a pass by reference, += isused to increment a variable
by the number to the right of the operator and -= is used in the same way but for decrementing
the variable.

The algorithm shown in Figure 3.2 starts by iniziglg some of the variables on lines 1-3. On
lines 4-10 the number of one-, two- and four-bygmals are counted and stored in the variables
numlbyte, num2byte and num4byte. The actual wopleiformed on the lines 11-48. On line

11 there is a loop, over the variabl¢hat loops as many times as elements in the Issgnzt
object list S. Line 12 checks if there are any foyte signals the user wants to get via DAQ and
if there is space left in the current ODT for arfbyte signal. If this is the case the first four-
byte signal is found in S and is exchanged withviédae on index. A SignalInoDT Struct

object is created and its members are assignedes15-18. The object is added to the
SignalInoDT list on line 19. The element number within the O@Tcounter) is added by 1, the
used space variable is added by 4 and the vanaipigbyte is decreased by 1. If there were no
four-byte signals or there was not enough spaténlé¢ie current ODT when line 12 was
evaluated, the condition on line 23 is evaluatdee dondition is similar as on line 12 but now
for 2 bytes. The code in lines 24-33 is also simakathe code in lines 13-22 but now for 2
bytes. If there are no two-byte signals or themoispace left in the current ODT similar code is
run for one-byte on lines 34-44. If there are ne-byte signals left or there are no space left in
the current ODT (the ODT is full) the code on lids48 is run. It selects a new ODT by
adding 1 to the variable LastODTNumber and setsitleel space variable to 0 for the new ODT
and also sets the element number within the ODO. #the loop index is decremented to adjust
for the increment aof when no signal was sorted.

The algorithm assumes that there only exists dwe- and four-byte signals. If the CCP
document is updated in the future and then allavsrcsignal sizes, this algorithm will not
work.

3.4.3 Error checking for CCP commands

In Appendix A error checks are described for tlaust code when performing a CANLIB CAN
command. If the command was a CRO command, the D also be checked: the first byte
shall have value OxFF (DTO), the second byte dteale value 0x00 (acknowledgement) and
the third parameter shall have the value of themand counter used for the CRO message. If
this is not the case an error message is printétetaser and the program will exit.

3.4.4 The interpretation of the signals transmitted and the log file format

When a DAQ-DTO message is read, from the receitielyuhe packet id (PID) is used to
know which ODT the message corresponds to. Theliyte in the DAQ-DTO message is the
PID and the rest of the bytes containing data aseribed by the sorted signal struct object list
S and the signals in ODT list SignalinODTlist tha¢ both described in subsection 3.4.2. S
contains the size of the signals which is neededt¢opret the data in the DAQ-DTOs and
SignallnODTlist contains the ODT number and thesindf the first byte within the ODT that
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also is used to interpret the data in the DAQ-DTI® first byte in the ODT corresponds to the
second byte in the DAQ-DTO since the first byt¢hia DAQ-DTO is reserved for the PID.
Therefore, the index in the ODT that contain tinst foyte for a signal have to be added by 1 to
get the start byte in the DAQ-DTO, which is donemlthe correct ODT number is found in
SignallnODTlist. When this is found all the valdesthe DAQ-DTO can be interpreted. This is
done by knowing the first byte of the signal in ®BT, the size of the signal, the conversion
formula and the value representing if the signaigeed or unsigned. If it turns out that a DAQ-
DTO is missing, the program will then break. Thigppens if the PID is not one more than the
PID of the previously sent DAQ-DTO (or 0 in the ead the previous PID was the last PID).

The values transferred from the ECU to the progaegriogged according to the format shown
in Figure 3.3 whera signals are used. The format first starts witkeading containing

Time (s), followed by the signal names for eaclmaigised in the DAQ. After each signal name
the signal unit is present in parenthesis and #fienea comma. The lines thereafter contain the
time when then signals were registered in the ECU from the stBRAQ followed by the

values for the signals in the heading. The timethadignal values are comma separated. The
time values are the result of a counter that iner#mby the time specified by the event channel
number in the ati file. The alternative would berteasure when the DAQ-DTO messages
arrive to the tool but this is not the same adithe when the signals were registered in the
ECU. This is why the counter is used; it incremdaytshe DAQ sample period, i.e. when the
signals are registered in the ECU. An examplelwéginning of a logging file, that contains 2
signals, is shown in Figure 3.4.

Time (s),Signal name 1 (unit 1),Signal name 2 (@jit.,Signal name n (unit n),

Time 1,Signal value 1 for signal 1,Signal valuef dignal 2, ...,Signal value 1 for signal n,
Time 2,Signal value 2 for signal 1,Signal value@dignal 2, ...,Signal value 2 for signal n,
Time 3,Signal value 3 for signal 1,Signal valuemBdignal 2, ...,Signal value 3 for signal n,
Time 4,Signal value 4 for signal 1,Signal valueddignal 2, ...,Signal value 4 for signal n,

Figure 3.3 Thelog file format for n signals.

Time (s),RTDB_VEHICLE_SPEED_E_val_S32 (km/h),RTDBJR_CPU_LOAD_E_val_S32 (%),
0.000000,83.647,23.2,
0.010000,83.647,23.2,
0.020000,83.647,23.0,

Figure 3.4 The beginning of a log file for 2 signals with sample period 10 ms.
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Chapter 4

Results

This chapter contains both results for only DAQWXICP, comparison between DAQ with

CCP and the KWP service readDataByCommonldenginer also a brief section for results of
CCP SHORT_UP. The parameters of interest usecineult are time, busload, the CPU load
for 100 Hz and the total CPU load. TGBU load or CPU usage is a measure of how much the
ECU is utilized and is measured as a ratio of tR&J@me to the CPU capacity. TI#U time

is the amount of time the CPU is executing instams. The reason for measuring the CPU load
for 100 Hz is that all measurements for DAQ withFC&e performed with 10 ms sample
period. The reason why the DAQ sample period was@hto of 10 ms is that it is the only
sample period for DAQ with CCP supported for thd sQised at Scania and this is also the
wanted logging frequency. All measurements are @onleench with the experimental setup
described in Chapter 3 and with the same ECU fdests. The busload on bench when no CCP
or KWP measurements were performed was 0.03 %)aaly no busload at all. The reason for
not performing the tests in a truck was to avotdriierence from possible events. The bit rate is
500 kbit/s for all measurements.

Section 4.1 contains graphs for only DAQ with C@Rphs comparing DAQ with CCP and the
KWP service readDataByCommonldentifier that isfyidescribed in the theory section.
Section 4.2 contains measurements for how long itinaées to perform a KWP request. In
section 4.3 the CPU load for 100 Hz and the toRlUQoad are presented for both the normal
load when not affecting the ECU and for CCP withCHDTs. Section 4.4 presents
measurements for the CCP SHORT_UP command. Irosetth theoretical busload
calculations for DAQ with CCP are presented. Tls¢ $&ction, section 4.6 contains measured
busload for one DAQ-DTO.

4.1 CCP and KWP measurements

All DAQ measurements were carried out with samgeqal 10 ms during 12 seconds. The
duration of 12 seconds was chosen to allow enofigbhsload measurements. The
measurements for only CCP were done for 4 signAIRADTO or at most 4 signals/DAQ-
DTO. The first signal in a DAQ-DTO when using 4reads/DAQ-DTO or at most 4
signals/DAQ-DTO will always be a four-byte sign@he rest of the signals for 4 signals/DAQ-
DTO are three one-byte signals and the rest aoith@als with at most 4 signals/DAQ-DTO are
between zero to three one-byte signals. The measumts for only CCP are presented in the
subsections 4.1.1 and 4.1.2. The difference isthgaieasurements performed in subsection
4.1.1 are performed when adding 1 ODT per measunewigle the measurements in
subsection 4.1.2 are performed when adding 1 sjggraneasurement. When comparing CCP
with KWP 1, 4 and 7 signals/DAQ-DTO are used forRCOnly four-byte signals are used for 1
signal/DAQ-DTO. For 4 signal/DAQ-DTO one 4 bytersadjand three one-byte signals are
used. Only one-byte signals are used for 7 sigpAl®-DTO. When using 4 signal/DAQ-DTO
4 signals are added for each measurement and Sohilarly 7 signals are added for each
measurement when using 7 signals/DAQ-DTO. For €R measurement made, a
corresponding KWP measurement was performed. Whiaig CCP the number of values
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transmitted to the master was counted and the sameer of requests was performed when
using KWP. The measurements comparing CCP with KiWéRpresented in subsection 4.1.3.

The interesting variables to measure for CCP adtisload, the CPU load for 100 Hz (since
the DAQ sample period is 10 ms) and the total Gddd | The interesting variables for CCP are
also interesting for KWP but also the time betwdenfirst request to the last response. This is
not needed for CCP since the DAQ time is predefiBertload was measured, every second for
both CCP and KWP, by using functionality in KvaseCANLIB described in Appendix A. The
CPU load for 100 Hz and the total CPU load are fouw-byte signals that can be retrieved
from the ECU via CCP or KWP. This is possible didymeasurements containing four-byte
signals. If using 7 signals/DAQ-DTO, where only dnge signals are present, CPU load for
100 Hz and the total CPU load cannot be measuiade 8vo four-byte signals are needed, to
measure the CPU load for 100 Hz and the total Gfad,lat least 2 ODTs are needed. This
means that there will be at least 8 signals fagaads/DAQ-DTO, at least 2 signals for 1
signal/DAQ-DTO and at least 5 signals for at mosighals/DAQ-DTO. The CCP command
GET_DAQ_SIZE can be used to retrieve the numb@&@Ts in a DAQ list. The ECUs used
had 30 ODTs which means that if using 4 signals/EIATD there can be 30 four-byte signals
and 90 one-byte signals and 120 signals in tdtahly using one-byte signals 210 signals can
be transmitted from the ECU. Both one- and fouelsignals are normally used when logging
variables and thus 4 bytes/DAQ-DTO are used irtaghts for only CCP. Two-byte signals are
not used since they are unusual and do not exétiatmany ECUs. For both the busload, the
CPU load for 100 Hz and the total CPU load manyeslare retrieved for each measurement;
each point in the diagrams. The graphs are bas#teanean values for these variables.

4.1.1 CCP measurements when adding 1 ODT per measurement

Figures 4.1 a-c show the busload, the CPU loattéguency 100 Hz and the total CPU load as
a function of number of signals for CCP. 4 sigria#sD-DTO (signal sizes 4, 1, 1 and 1 byte)
are used and 4 signals are added for each measureme
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Figure 4.1 a) Busload as a function of number of signals for CCP. 4 signalDAQ-DTO with
sizes4,1, 1, and 1 bytesare used and 4 signals are added for each measurement.
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Figure4.1 b) CPU load for frequency 100 Hz as a function of number of signalsfor CCP. 4
signalDAQ-DTO with sizes 4, 1, 1, and 1 bytes are used and 4 signals are added for each
measurement.
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Figure 4.1 c) Total CPU load as a function of number of signalsfor CCP. 4 signalsyDAQ-DTO
withsizes4, 1, 1, and 1 bytes are used and 4 signals are added for each measurement.

4.1.2 CCP measurements when adding 1 signal per measurement

Figures 4.2 a-d show the busload, an enlargecopéne busload, the CPU load for frequency
100 Hz and the total CPU load as a function of nema signals for CCP. 4 signals/DAQ-DTO
(signal sizes 4, 1, 1 and 1 byte) are used angnhkis added for each measurement.
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Figure 4.2 a) Busoad as a function of number of signals for CCP. At most 4 signalyDAQ-DTO
withsizes4, 1, 1, and 1 bytes are used and 1 signal is added for each measurement.
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Figure 4.2 b) An enlarged part of Figure 4.2 a; busload as a function of humber of signals for

CCP. At most 4 signals'DAQ-DTO withsizes 4, 1, 1, and 1 bytesare used and 1 signal is added
for each measurement.
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Figure 4.2 ¢) CPU load for frequency 100 Hz as a function of number of signals for CCP. At
most 4 signals/DAQ-DTO with sizes4, 1, 1, and 1 bytes are used and 1 signal is added for each
measur ement.
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Figure 4.2 d) Total CPU load as a function of number of signalsfor CCP. At most 4
signalDAQ-DTO with sizes 4, 1, 1, and 1 bytesare used and 1 signal is added for each
measurement.

4.1.3 Comparison between CCP and KWP when adding 1 ODT per
measurement

Figures 4.3 a-d show the comparison between CCHK®fH, first the time from the first
request to the last response for KWP and from 8iestop for DAQ, the busload for both CCP
and KWP, the CPU load for frequency 100 Hz for lo@P and KWP and the total CPU load
for both CCP and KWP as a function of number ofialg. When 1 signal/DAQ-DTO (signal
size 4 byte) is used 1 signal is added for eactsmmement. When 4 signals/DAQ-DTO (signal
sizes 4, 1, 1 and 1 byte) are used 4 signal aredaidd each measurement and when 7
signals/DAQ-DTO (signal sizes 1, 1, 1, 1, 1, 1, &rwte) are used 7 signal are added for each
measurement. The x-axis in the diagrams spechiestmber of signals used with CCP and
each CCP measurement is done during 12 ms. Eachid®@Burement is performed until the
number of KWP requests is equal to the numbergrfads transmitted via DAQ for the
specified number of signals used with DAQ. The isa@oes thus not specify the number of the
requests for KWP.
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Figure 4.3 a) Time fromthe first request to the last response as a function of number of signals
for KWP and the time from start of DAQ to stop of DAQ as a function of number of signals for
CCP. All KWP graphs coincide. All CCP graphs coincide. The graphs corresponding 1
signal/DAQ-DTO" with sizes 4 bytes, starts with 2 signals and ends with 30 signals. 1 signal is
added for each measurement. The graphs corresponding 4 signal'DAQ-DTO with sizes 4, 1, 1

! No DAQ-DTOs are present for KWP. The word DAQ-D&GIso used to refer to the KWP
measurements that correspond to CCP measuremeéhta specific number of signals/DAQ-DTO.
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and 1 bytes starts with 8 signals and ends with 56 signals. 4 signals are added for each
measurement. The graph corresponding 7 signals'DAQ-DTO withsizes1,1,1,1,1, 1and 1
byte starts with 7 signals and ends with 56 signals. 7 signals are added for each measurement.
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Figure 4.3 b) Budoad as a function of number of signals for CCP and KWP. The graphs for
KWP coincide. The graph corresponding 1 signal/DAQ-DTO? with sizes 4 bytes starts with 2
signals and ends with 30 signals. 1 signal is added for each measurement. The graph
corresponding 4 signals'DAQ-DTO with sizes 4, 1, 1 and 1 bytes starts with 8 signals and ends
with 56 signals. 4 signals are added for each measurement. The graph corresponding 7
signalDAQ-DTO with sizes 1, 1, 1, 1, 1, 1 and 1 byte starts with 7 signals and ends with 56
signals. 7 signals are added for each measurement.

2 No DAQ-DTOs are present for KWP. The word DAQ-D®Glso used to refer to the KWP
measurements that correspond to CCP measuremeéhta specific number of signals/DAQ-DTO.
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Figure 4.3 ¢) CPU load for frequency 100 Hz as a function of number of signals for CCP and

KWP. The graph for 1 signal/DAQ-DTO? with sizes 4 bytes starts with 2 signals and ends with
30 signals. 1 signal is added for each measurement. The graph with 4 signalDAQ-DTO with

sizes4, 1, 1 and 1 bytes starts with 8 signals and ends with 56 signals. 4 signals are added for

each measurement.

¥ No DAQ-DTOs are present for KWP. The word DAQ-D®Glso used to refer to the KWP
measurements that correspond to CCP measuremehta specific number of signals/DAQ-DTO.
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Figure 4.3 d) Thetotal CPU load as a function of number of signals for CCP and KWP. The
graph for 1 signal/DAQ-DTO" with sizes 4 bytes starts with 2 signals and ends with 30 signals.
1 signal isadded for each measurement. The graph with 4 signals'DAQ-DTO with sizes 4, 1, 1
and 1 bytes starts with 8 signals and ends with 56 signals. 4 signals are added for each
measurement.

4.2 Time to perform a KWP request

Some other measurements were also done besidesramaasts for producing the diagrams in
previous section. To find out how long time 1 K\Wdguest would take 67236 requests were
performed. The time was measured to 1344688 mshaisdl KWP request takes 20 ms.

4.3 CPU load for CCP

In Table 4.1 results from other measurements aregpted. The idea is to show the effect DAQ
has on the CPU load for frequency 100 Hz and fertotal CPU load. This is done by
comparing the CPU loads for DAQ with 120 signalsimum number of ODTs for the ECU
that was used) with the CPU loads when no DAQ inpesformed. The values for the CPU
loads without DAQ were measured by performing KV@fhmands and calculating the average
for those values.

* No DAQ-DTOs are present for KWP. The word DAQ-D®&Glso used to refer to the KWP
measurements that correspond to CCP measuremeéhta specific number of signals/DAQ-DTO.
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Table 4.1 CPU load for frequency 100 Hz and the total CPU load for the cases DAQ with 120
signal's (maximum number of ODTs for the ECU that was used) and when no DAQ is
performed.

CPU load for frequency 100 | Total CPU load (%)
Hz (%)

DAQ 120 signals (30 ODTs)| 20.81 25.89

Without DAQ 18.42 22.97

The difference in CPU load for frequency 100 HzB&Q when using 120 signals (30 ODTs)
compared to when not using DAQ is 2.4 percentagegdl he corresponding difference for
the total CPU load is 2.9 percentage points.

4.4 The CCP SHORT UP command

As described in Chapter 2 the CCP command SHORTcdobe used to read data from the
ECU. Tests were also performed for SHORT_UP arnlersame way as for the KWP requests.
The time for a SHORT_UP command varied betweerdifft executions from

1.39 ms to 2.03 ms. The busload was higher foteh8HORT_UP time and lower for higher
SHORT_UP time with mean busload values betweemg&ia %. The values for the CPU load
and the CPU load for 100 Hz for SHORT_UP does differ in decimals compared to the
values for the background CPU loads.

4.5 Theoretical calculation of the busload for
DAQ with CCP

This section presents how many ODTs can be usédDAQ for a CAN bus with bit rate 500
kbit/s and CCP for a DAQ sample period of 10 msd®dhis the normal busload that is present
in the truck without DAQ with CCP must be takeragtount for. This is not necessary if a sub
bus is used where no background busload is preBeatheoretical worst case busload is given

by

Busload (%) = number of bits/frame * 1002?:1%_ (4.2)

bit rate
where the number of bits per frame is the numbditsfin a CAN messagg,is the sample
period for messagethat is periodically sent out on the CAN bus ansd the number of
messages that are periodically sent out on the 84g\ The formula does not take into account
for event messages and thus the formula does alt give the worst case busload.

4.5.1 Example of the busload on a bus

In this subsection the busload is calculated fertihs that was connected to the ECU used in
this thesis. The busload was calculated using (drimessages that are periodically sent out on
the CAN bus. The number of bits used for a CAN da¢ssage on the CAN bus varies between
131 to 154 bits depending on the number of stuffiitg) (see Appendix C) that are needed.
There were 100 messages for the bus connected #Qb that was used. The sample periods
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for these messages are not presented here bueckBul8.16 — 33.10 % busload depending on
the number of stuffing bits. This means that threse66.90 — 71.84 % busload that are not being
used.

4.5.2 Busload for 1 DAQ-DTO

Formula (4.1) can also be used to calculate ther¢tieal busload used to transmit 1 DAQ-
DTO message. The sample period is 10 ms which gi\mssload of 2.62 — 3.08 % depending
on how many stuffing bits are present.

4.5.3 Number of DAQ-DTO messages that can be used for DAQ

If assuming that all the remaining busload, caledan subsection 4.5.1, can be used for DAQ
21 — 27 (66.90/3.08 — 71.84/2.62) DAQ-DTOs can $eduat most. The DTO messages for
DAQ must have very low priority if all remaining $load is used. This is due to that if the
busload is high no essential messages shall bednimcause of a DAQ-DTO message. It does
not matter if DAQ-DTO messages are missed. Care$slis nhecessary if the DTO identifier
does not have the highest value compared to thes mantifiers so that no important messages
are lost. DAQ should not be used for busloads hé@r% in this case. If using DAQ on a sub
bus with almost 100 % busload 32 — 38 DAQ-DTO mgasaan be used at most.

There are cases where 100 % busload cannot be@sedtase is if the CAN circuit’'s send
buffer does not sort the messages according to @antifier with highest priority first. There
might also be a good idea to have some marginviemteand error messages.

4.6 Measured busload for 1 DAQ-DTO

The busload for 1 DAQ-DTO was also calculated basetheasurements. The background
busload was first measured during a minute witecbsed intervals on bench. The mean value
for the background busload on bench was 0.03 %r&dmon why this value differs from the
theoretical value is that there are only a few mgss sent out on the bus for the ECU on the
test bench. For an ECU in a truck many more siga@sent out on the bus. Thereafter the
busload was measured for DAQ with CCP for 30 OCBsfour-byte signals and 90 one-byte
signals) to 87.46 %. The busload for 1 DAQ-DTOiiseg by (87.46 — 0.03)/30 2.91 %.
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Chapter 5

Discussion

The discussion will evaluate the chosen method aagaisition (DAQ) with CCP and also
compare it with the method using KWP-requests. gila¢ocol XCP is also discussed.

The diagrams in subsection 4.1.1 only for DAQ vi¥@P are first commented. The busload
increases linearly with the number of ODTs addeiQRvith CCP have significant influence
on the busload. The CPU load for 100 Hz and thad @PU load are strictly increasing
functions. DAQ with CCP has no major impact neittveithe CPU load for 100 Hz nor on the
total CPU load as seen in the diagrams. This sstiewn by the measurements in section 4.3
where the background CPU loads are compared tGRteloads with the maximum number of
ODTs for the ECU used. In the diagrams in subseectit.1, four signals (corresponding 1
ODT) are added per measurement. In the diagrasisiisection 4.1.2 one signal is added per
measurement and this result in functions that asmeonly when a new ODT is needed. The
added signals, that do not affect the number of @® not increase the bus traffic and thus
there is no increase in the busload. The CPU loadG0 Hz and the total CPU load are not
affected when no ODTs are added. The diagramsisestion 4.1.2 are more correct than the
diagrams in subsection 4.1.1 since the diagramsatisection 4.1.2 are produced by
measurements with a higher resolution for everyeiase in number of signals. The reason for
also having the diagrams in subsection 4.1.1 shta the difference between the two ways the
measurements are performed. The method with loggeiution is used for the comparison of
DAQ with CCP and KWP request due to that the KWRsneements take a lot of time.

The diagrams in subsection 4.1.3 that compares WARCCP and KWP requests, will now be
discussed. The first variable is time. For DAQ tihee is not dependent on the number of
signals used while the time increases for each K&¥gBest. Figure 4.3 a) shows only the time
for KWP and all of these values are greater thartithe period of 12 seconds for DAQ. As
more signals are added for DAQ, more ODTs will beded and the frequency of the number
of packets needed increase on the CAN bus. Ther#ierbusload will increase. For the KWP
requests on the other hand the frequency of CANsages remains the same independent on
number of signals and the busload is thus moressr ¢onstant. The busload for DAQ is larger
than for KWP. In the same way the CPU load for B@Gand the total CPU load also increase
with the number of signals for DAQ when more ODTe aeeded. The CPU load for 100 Hz
and the total CPU load are more or less constam\\éP, independent of the number of the
signals used. The CPU load for 100 Hz and the @®d) load are generally greater for DAQ
via CCP compared to KWP for CCP with 10 ms samphiod. The diagrams in subsection
4.1.3 also show differences in slope for e.g. lagloetween DAQ with CCP depending on the
number of signals/DAQ-DTO. The 1 signal/DAQ-DTO wei(only four-byte signals) has the
highest slope which can be explained by the ODThasing utilized as much as for the other
cases since no more four-byte signals fit into ©DF . The 4 signal/DAQ-DTO curve

(one four-byte signal and three one-byte signalsJi&T) has the next highest slope which is
explained with the same reasoning.

KWP is not an alternative for logging many variableom the ECU. Not even 1 signal can be
requested with KWP within 10 ms. A KWP request £a8R8 ms according to measurements
described in section 4.2. CCP SHORT_UP is a bettprest method from a time perspective.

34



One SHORT_UP request takes 1.39 ms to 2.03 ms wgignificantly faster than for KWP
requests. This means that within 10 ms 4 to 7 f&gran be transmitted with SHORT_UP. On
the other hand the busload is significantly higioetCCP SHORT_UP (28 to 45 %) than for
KWP (23 to 23.25 %). However, like KWP, CCP SHORP _id no alternative to DAQ with
CCP. The main reason for this is that too few dgynan be transferred with CCP SHORT_UP
during 10 ms. The transmission times for KWP retpies CCP SHORT_UP requests can be
compared with DAQ with CCP where 210 one-byte dgpa 30 four-byte signals and 90 one-
byte signals can be fetched during 10 ms. If 180ads (30 four-byte signals and 90 one-byte
signals) are transmitted during 10 ms the corredipgrtime for 1 signal would be 10/120 ms.
A KWP request takes 240 times more time than DAQ WICP, in the case with 30 four-byte
signals and 90 one-byte signals with a sample geioms for DAQ. This is a huge
improvement in time for transferring ECU variablesm the ECU compared to using KWP
requests. The limitation of using DAQ with CCPhattthe busload becomes high when using
DAQ for many signals.

If using a CAN bus that is intended for not only QAvith CCP, the number of ODTs that can
be used will depend on the background busload.rAsguthat the background busload (28.16
— 33.10 %) calculated in subsection 4.5.1 is inethy®1 — 27 ODTs can be used in DAQ with
CCP. If the number of ODTs is not enough, a wantoease the number of ODTs is to use a
sub bus with no other bus traffic than DAQ-DTOsa Kub bus is used for only DAQ 32 - 38
ODTs can be used, depending on the number of miufiits. In section 4.6 a practical
measurement showed that a DAQ-DTO with sample geilioms yielded a busload of 2.91 %.
This corresponds t100/2.91] = 34 ODTs if using all busload capacity for DAQ with €C
The number of ODTs that can be used is enougloétayts need. DAQ can be used with a
longer sample period to reduce the busload if lugeunt of data shall be logged. As stated in
the results there are cases where 100 % busloaodtda@ used and there might also be a good
idea to have some margin for event and error messag

The busload becomes significantly higher for DAQGWEZCP compared with using KWP
requests. The busload might become an issue for DAQCCP. It is important that the DTO
identifier has a higher value than identifiers armimportant messages to decrease the risk
that important messages are lost if a bus withra@#eN traffic than DAQ is used. A sub bus
with no background busload would allow a shortenga time or more signals to be logged or
both. No important CAN messages can be lost iftabsts with only DAQ traffic is used.
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Chapter 6

Conclusion and future work

6.1 Conclusion

DAQ with CCP is an excellent method for loggingiabtes from ECUs since it may allow 240
times faster transfer rate of the ECU internalalales compared to the use of KWP requests.
Consequently, DAQ with CCP increase the loggingdency of the ECU internal variables
compared to the method using KWP requests.

6.2 Future work

In this thesis, the transmissions are done via N 6As. CCP is based on CAN and CCP does
not support other bus systems. In the future amdhe system might be used and in that case
another communication protocol has to be usedtlegJniversal Measurement and Calibration
Protocol (XCP) that support many different transpayers.

DAQ with XCP also have some benefits compared t@)with CCP as described in Chapter 2.
The benefits are as follows:

« DAQ with XCP allows use of 1 byte extra per ODT.

« Time stamping ability is available.

e The slave can configure DAQ lists dynamically.

« DAQ lists can be prioritized over other DAQ lists.

* Functionality that allows DAQ to start at powerigmlso provided for DAQ with XCP.

The fact that DAQ with XCP allows use of 1 byteraxter ODT is a big benefit if many four-
byte signals are logged since this allows two foyte signals to fit in one DAQ-DTO instead
of one.

In the future, more data than the data that canapsmitted today might be desirable. One
solution is to implement XCP that allows 1 extraebyer ODT as already described. Another
solution is to use a longer sample period. In therg, the bit rate might be higher which will
allow faster transmissions and thus less busload. Will allow more data to be transmitted.
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Appendix A

Kvaser CANLIB functionality
used in the code
implementation

The CANLIB functions used in the code implementatidgll be described here. First the
essential CANLIB code and functions are describbitkvare shown in Figure A.1. To use the
library, canlib.h must be included which is done on line 1. The didkary is then initialized
on line 4 with the functiomanInitializeLibrary() which is the first CANLIB function that
shall be used. On line 5 CAN channel 0 is opened@&N circuit with thecanOpenChannel()
function. The channel number is hardware deperaightan be found in the Kvaser Hardware
Configuration application. The first channel numisealways 0 [26]. The second argument
canOPEN_ACCEPT_VIRTUAL is used to allow virtual channels [27]. This featis not needed but
canOPEN_ACCEPT_VIRTUAL also allows the circuit to be shared with othepligations, such as
XCOM, that can be used simultaneoustynopenchannel() returns a handle to the CAN
circuit which will be used for subsequent call<#&NLIB functions [28]. Lines 6-12 handle a
canOpencChannel() failure (hnd < @) and will be described later in this subsectioaxtN
function call iscansetBusParams () where the bus parameters are set such as thadiirr this
case to 500 kbit/s by using the constamBITRATE_500K defined in CANLIB. On line 14 a
check is done for the status of the previous CAMmand which will be described later. The
canSetBusOutputControl() function is performed on line 15 to set the busgeadrtype and on
line 16 the check function is called again. Thetrfierction call is tacanBuson() on line 17 and
when this is performed tH@AN controller, the chip that for instance handles the CAN prattoc
and message buffers, can participate in the bffctaad is said to bbus on or on the bus [29].
CAN functions can now be used to e.g. send or veaeessages. When done with the CAN
communication some circuit cleanup is done by timetion call tocanclose() on line 21. The
call tocanBusoff() on line 19 is used to temporarily get off the hund is actually not needed,
but is there for completeness [28].

1 #include <canlib.h>

2 canHandle hnd; // typedef int canHandle
3 int stat, channel = @, bitrate = canBITRATE_500K;

4 canInitializelLibrary();

5 hnd = canOpenChannel(channel, canOPEN_ACCEPT_VIRTUAL);
6 if (hnd < @) {

7 char errText[100];

8 errText[0] = "\0';

9 canGetErrorText((canStatus)hnd, errText, sizeof(errText));
10 fprintf(stderr, "canOpenChannel failed (%s)\n", errText);
11 exit(1);

12 }

13 stat = canSetBusParams(hnd, bitrate, 0, 0, 0, 0, 0);
14 Check("canSetBusParams", (canStatus)stat, EXIT);

15 stat = canSetBusOutputControl(hnd, canDRIVER_NORMAL);
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16 Check("canSetBusOutputControl", (canStatus)stat, EXIT);

17 stat = canBusOn(hnd);
18 Check("canBusOn", (canStatus)stat, EXIT);

// Send and receive CAN-messages here

19 stat = canBusOff(hnd);
20 Check("canBusOff", (canStatus)stat, EXIT);

21 stat = canClose(hnd);
22 Check("canClose", (canStatus)stat, EXIT);

Figure A.1 Essential code to be able to participate in the bus traffic and code to get off the bus.

The check function will now be described in moréadeand the code can be seen in Figure A.2.
It is a modification of the check function in the@d&er CANLIB documentation [30¢heck()
takes 3 arguments. The first argument containsdnee of the CANLIB function that was
called. The second argument is the status codetfiernalled CANLIB function. The last
argument shall contain a nonzero value if the @ogshall exit in case there was an error and
zero to not exit. On line 3 the check is done ®itéhe status from the called CANLIB
function was successfutdnok) or not. If the call was not successful the funrcti
canGetErrorText() is called on line 6 to retrieve a error text whieli be printed on line 8 if
canGetErrorText() was successful and otherwise on line 10. The fandthally ends by
exiting the program iéxitNow is set to a nonzero value. The code on line Ggure A.1 is
similar tocheck () with the differences that no check is done fordir&etErrorText()

function, the error condition differs and the pramgrwill always exit if there is a failure.

/* Check
*
* Checks if the CAN status code stat is not OK and if that is the case a error
* message, starting with msg failed, is printed and the program might exit
* depending on the value of exitNow
*
* [IN] msg: Function name of the function that you want to see if it failed
* [IN] stat: The status code returned by the function used that you want to see
* if it failed
* [IN] exitNow: Set to 1 if you want to exit the program if failure, otherwise
* set it to ©
*/
1 void Check(char * msg, canStatus stat, int exitNow) {
2 char errText[100];
3 if (stat != canOK) {
4 int stat2;
5 errText[@0] = '\0@"';
6 stat2 = canGetErrorText(stat, errText, sizeof(errText));
7 if (stat2 == 0)
8 fprintf(stderr, "%s failed: error code=%d (%s)\n", msg, (int)stat,
errText);
9 else
10 fprintf(stderr, "%s failed: error code=%d (not a valid error
code)\n", msg, (int)stat);
11 if (exitNow) {
12 exit(1);
13 }
14 }
15 }

Figure A.2 Error checking for the status code from CANLIB call.
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The functioncanwrite() is used to send CAN messages and a functionscsitiawn in Figure
A.3. canWrite() takes first a handle to a open CAN circuit as trs¢ parameter, a CAN
identifier as the second parameter, the data iAld @essage as the third parameter, the length
of the data field as the forth parameter and fintle parameter flags [26]. The CAN identifier
used for sending data to the ECU with CCP is th®©@entifier.msg will contain data
corresponding to a CCP command. The flag paramélidrave the valueanMsG_exT, defined
in CANLIB, which is the identifier for the extend@® bit CAN formatcanwrite() queues the
CAN message in a transmit queue that is emptiedrdet to the principle first-in, first-out
(FIFO), i.e. the messages are sent in the same threlearrived to the queueanwrite()

returns immediately after the message is queuek wie similar functiortanwriteSync() is
used to wait until the message has been sent [31].

canHandle hnd; // typedef int canHandle
unsigned long CROIdentifier;

BYTE msg[8]; // typedef unsigned char BYTE
unsigned int flags;

A WN R

5 stat = canWrite(hnd, CROIdentifier, msg, 8, flags);
6 Check("canWrite", (canStatus)stat, EXIT);

Figure A3 Acall to canwrite() that is used to send can messages.

There are numerous variants of functions to usegfading CAN messages. The function used
in my implementation igsanReadWait() which is called in Figure A.4. This function retrés

the first message in a receive buffer. If the reediuffer is emptyanReadwait () will wait

until a CAN message appears in the buffer or eimiéout occurs. If timeout occurs the error
codecanERR_NOMSG is returnedcanReadWait() takes a handle to a open CAN circuit as the first
parameter, a CAN identifier as the second paramateointer to a buffer for the data to be
received as the third parameter, a pointer to bfifiethe message length as the forth parameter,
a pointer to a buffer for the message flags asittth parameter, a pointer for the message time
stamp as the seventh parameter and the timeomil{iseconds) as the last parameter [26].
When callingcanrReadwait() after a CCP command is performed the timeout pat@mwill

have value specified in [17] for that command. TP specification contains a table that
specifies timeout to acknowledgement for each Ca&Rneand [17]. The identifier used when
reading messages from the receive buffer is the E6tifier for DAQ with CCP. Thus
canReadwait() is putin a loop that loops until a message with O identifier is found.
Another way of reading CAN messages with a speifatifier is to use

canReadSyncSpecific() andcanReadSpecificSkip(). canReadSyncSpecific() waits until a
message with a certain identifier is availablehia teceive buffercanrReadSpecificSkip()

reads the first message in the receive buffer aitkrtain identifier and throws away the
messages before that message. The reason forimgtasReadSyncSpecific() and
canReadSpecificSkip() is that errors and overloads are not caught with
canReadSpecificSkip() if an identifier is used that is not the identiffer a errors and

overload frames. The advantage of usiatrReadwait() is that the identifier of each CAN
message can be compared to different identifieishwimeans that errors and overloads can be
found. For that reasafanReadwait() was chosen.

1 canHandle hnd; // typedef int canHandle

2 long id;

3 BYTE msg[8]; // typedef unsigned char BYTE

4 unsigned int dlc, flags;

5 unsigned long time, timeout;

6 stat = canReadWait(hnd, &id, msg, &dlc, &flags, &time, timeout);
7 Check("canReadWait", (canStatus)stat, exitNow);
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Figure A.4 Coderetrieves the first message in the receive buffer. If no messageis available,
canReadwait() waitsfor a CAN message to appear in the receive buffer or returnsan error
code if timeout occurs.

The flag parameter ieenReadwait () would normally contain flags corresponding a dedene
which is eitheranMsG_STD or canMsG_EXT. The flag parameter might contain overrun flags
(canMSGERR_OVERRUN) or an error flagdanMsc_ERROR_FRAME) and if that is the case special
actions can be performed. An overload conditioruced the driver or the CAN interface runs
out of buffer space or the busload is so high tietcontroller cannot keep up with the traffic
[32]. An error frame containing an error flag iartsmitted when the CAN controller detects an
error [33]. These frames should occur rarely adécates often a fatal error such as some node
transmitting at wrong bit rate, bad cable etc. [33]e error frames and overruns can be found
by usingbitwise and between the flag parameter for a message fetechedthe receive buffer
and the e.g. overrun flagsagMSGERR_OVERRUN) and compare this to 0. If the result is O then
there were no overrun but if the result was a remme value then there was a overrun and
appropriate actions can be performed. This is shavaigure A.5. In the example code an error
message is printed to the user, the data acquisstistopped and finally the program exits. The
functionstopbAQ DTOTransmission() is not a CANLIB function and will not be described
more detalil.

1 if ((flags & canMSGERR_OVERRUN) != @) { // Overrun

2 fprintf(stderr, "Driver ran out of buffer space or the busload is so high
that the CAN controller can't keep up with the traffic.\n");

3 stopDAQ_DTOTransmission(CTR, CROId, DTOId, DAQListNum, EventChNo);

4 exit(1);

51}

Figure A5 Code that checks if any of the two possible overrun errors have occurred, by
comparing the overrun flags (canMSGERR_OVERRUN) with the flags for the received message from
the receive buffer, and if overrun(s) have occurred actions are performed.

Kvaser's CANLIB also provides functionality for rigtving statistics about busload, number of
error frames, number of received extended datadsastandard data frames, number of
overruns etc. [34]. This statistics must first bgquested from hardware by calling
canRequestBusStatistics() and can thereafter be retrieved iteaBusStatistics_s object
usingcanGetBusStatistics() [26]. The first functioncanRequestBusStatistics() takes only

a handle as parameter and the second funeii@etBusStatistics() takes a handle as first
parameter, a pointer tocanBusStatistics_s struct as second parameter and the size of the
struct buffer in bytes as third parameter [26].c8I€CP can have big influence on the busload,
depending on how many ODTSs that are needed, busloezks are perform every second in the
DAQ application developed. This is achieved byiogltanRequestBusStatistics() and
canGetBusStatistics() periodically with 500 ms intervals. The time beénehe call to
canRequestBusStatistics() and the time when the statistics actually is eg&d via
canGetBusStatistics() is not defined [26]. Therefore busload checksnatedone more
frequently. Figure A.6 shows how this is achiewdtere that code part is run every 500 ms.
The busload variable is number between 0 and 10@@¢h represents 0.00 - 100.00 %
busload. The statistics are cleared when the quoreing channel goes on the bus [34].

1 if (!getBusload) { // Requests bus statistics from the hardware

2 stat = canRequestBusStatistics(hnd);

3 Check("canRequestBusStatistics", (canStatus)stat, DONT_EXIT);

4 getBusload = true;

5}

6 else { // Retrieve statistics

7 canBusStatistics_s canBusStat;

8 stat = canGetBusStatistics(hnd, &canBusStat, sizeof(canBusStatistics_s));
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9 Check("canGetBusStatistics", (canStatus)stat, DONT_EXIT);

10 if (canBusStat.busLoad > 8000)

11 fprintf(stderr, "Note that the busload (%f %%) exceeds the recommended
busload limit (80 %%).\n", canBusStat.busLoad/100.90);

12 getBusload = false;

13 }

Figure A.6 Code that shows how CAN statistics are requested from hardware and then retrieved
the next time this codeis visited. A busload check is done and a warning text is printed if the
busload is high.
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Appendix B

Organisation of the code into
different files

The implementation is divided into several fileddoilitate the reading of the code. Two files (a
.cpp and a .h file) are used for the main progtaam performs the CANLIB and CCP
commands to accomplish DAQ. The pure CCP functwesmplemented in a separate (.cpp)
file (with a corresponding .h file). The functiorglfor reading data from the ati file is also
separated to an own (.cpp) file (with a correspogdh file). A separate (.h) file is used for the
signal struct and this is also the case for theadign ODT struct.
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Appendix C

Number of bits for an extended
CAN data frame on the CAN
bus

Here the number of bits in an extended (29-bittifien) CAN data frame on the CAN bus,
including interframe space, is calculated. A CANeexied data frame consists of a start of
frame (SOF) bit (1 bit), an arbitration field (32d), a control field (6 bits), a data field (0G4

bits with 8 bits increment), a CRC field (16 bitah ACK field (2 bits) and an end of frame (7
bits). In the calculations used for the busloadGA&l messages used have a 64 bit data field
which yields in total 128 bits. If a CAN data fratmas been sent on the CAN bus there must be
3 bits interframe space before the next data freemebe sent. When sending the CAN data
frame on the CAN bus stuffing bits might be addethe data frame. The worst theoretical case
would be if every bit is the same which would yialdtuffing bit for every 5:th bit for the bits

start of frame to the CRC delimiter. This resutt$i—>2+ 65+ o4t 16)] = 23 stuffing bits. Thus
there are 131 to 154 bits needed for each CANfdatae sent on the bus.
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