
DEGREE PROJECT, IN , SECOND LEVELMASTER'S THESIS AT NADA
STOCKHOLM, SWEDEN 2015

Training a Multilayer Perceptron to
predict the final selling price of an
apartment in co-operative housing
society sold in Stockholm city with
features stemming from open data.
MASTER'S PROJECT IN COMPUTER SCIENCE

RASMUS TIBELL

KTH ROYAL INSTITUTE OF TECHNOLOGY

COMPUTER SCIENCE & COMMUNICATION

Training a Multilayer Perceptron to predict the
final selling price of an apartment in co-operative

housing society sold in Stockholm city with
features stemming from open data.

Master’s Project in Computer Science

RASMUS TIBELL

Master’s Thesis at NADA

Supervisor: Professor Stefan Arnborg

Examiner: Professor Stefan Arnborg

Abstract

The need for a robust model for predicting the value of
condominiums and houses are becoming more apparent as
further evidence of systematic errors in existing models are
presented. Traditional valuation methods fail to produce
good predictions of condominium sales prices and system-
atic patterns in the errors linked to for example the repeat
sales methodology and the hedonic pricing model have been
pointed out by papers referenced in this thesis. This in-
ability can lead to monetary problems for individuals and
in worst-case economic crises for whole societies.
In this master thesis paper we present how a predictive
model constructed from a multilayer perceptron can predict
the price of a condominium in the centre of Stockholm using
objective data from sources publicly available. The value
produced by the model is enriched with a predictive interval
using the Inductive Conformal Prediction algorithm to give
a clear view of the quality of the prediction. In addition,
the Multilayer Perceptron is compared with the commonly
used Support Vector Regression algorithm to underline the
hallmark of neural networks handling of a broad spectrum
of features.
The features used to construct the Multilayer Perceptron
model are gathered from multiple “Open Data” sources and
includes data as: 5,990 apartment sales prices from 2011-
2013, interest rates for condominium loans from two major
banks, national election results from 2010, geographic in-
formation and nineteen local features. Several well-known
techniques of improving performance of Multilayer Percep-
trons are applied and evaluated. A Genetic Algorithm is
deployed to facilitate the process of determine appropriate
parameters used by the backpropagation algorithm.
Finally, we conclude that the model created as a Multi-
layer Perceptron using backpropagation can produce good
predictions and outperforms the results from the Support
Vector Regression models and the studies in the referenced
papers.

Referat

Träning av en “Multilayer Perceptron” att

förutsäga försäljningspriset för en

bostadsrättslägenhet till försäljning i

Stockholm city med egenskaper från öppna

datakällor

Behovet av en robust modell för att förutsäga värdet på bo-
stadsrättslägenheter och hus blir allt mer uppenbart alt ef-
tersom ytterligare bevis på systematiska fel i befintliga mo-
deller läggs fram. I artiklar refererade i denna avhandling
påvisas systematiska fel i de estimat som görs av metoder
som bygger på priser från repetitiv försäljning och hedo-
niska prismodeller. Detta tillkortakommandet kan leda till
monetära problem för individer och i värsta fall ekonomisk
kris för hela samhällen.
I detta examensarbete påvisar vi att en prediktiv modell
konstruerad utifrån en “Multilayer Perceptron” kan esti-
mera priset på en bostadsrättslägenhet i centrala Stock-
holm baserad på allmänt tillgängligt data (“Öppen Da-
ta”). Modellens resultat har utökats med ett prediktivt in-
tervall beräknat utifrån “Inductive Conformal Prediction”-
algoritmen som ger en klar bild över estimatets tillförlitlig-
het. Utöver detta jämförs “Multilayer Perceptron”-algoritmen
med en annan vanlig algoritm för maskinlärande, den så
kallade “Support Vector Regression” för att påvisa neura-
la nätverks kvalité och förmåga att hantera dataset med
många variabler.
De variabler som används för att konstruera “Multilay-
er Perceptron”-modellen är sammanställda utifrån allmänt
tillgängliga öppna datakällor och innehåller information så
som: priser från 5990 sålda lägenheter under perioden 2011-
2013, ränteläget för bostadsrättslån från två av de stora
bankerna, valresultat från riksdagsvalet 2010, geografisk in-
formation och nitton lokala särdrag. Ett flertal välkända
förbättringar för “Multilayer Perceptron”-algoritmen har
applicerats och evaluerats. En genetisk algoritm har an-
vänts för att stödja processen att hitta lämpliga paramet-
rar till “Backpropagation”-algoritmen.
I detta arbete drar vi slutsatsen att modellen kan produce-
ra goda förutsägelser med en modell konstruerad utifrån ett
neuralt nätverk av typen “Multilayer Perceptron” beräknad
med “backpropagation”, och därmed utklassar de resultat
som levereras av Support Vector Regression modellen och
de studier som refererats i denna avhandling.

Acknowledgement

Firstly, I would like to thank my supervisor Professor Stefan Arnborg for his useful
guidance and discussions throughout the process. Moreover, for his help with

suggestions and comments during the writing of this thesis. In addition, I would
like to thank my four boys: Linus, Julius, Marcus and Cornelius for their patience.

Finally, my appreciation to Susanne for all her support and encouragement.

Contents

Contents

1 Introduction 1

1.1 Background . 1
1.1.1 Problem description . 2
1.1.2 Traditional pricing model . 2
1.1.3 Objective . 3
1.1.4 Restrictions . 3

2 Literature Review 5

2.1 Literature covering apartment and housing markets 5
2.1.1 A prominent role in society 5
2.1.2 Crimes impact on apartment prices 6
2.1.3 Features used in study of crimes impact on apartment prices 6
2.1.4 Traditional real estate valuation 7
2.1.5 Shortcomings with contemporary real estate valuation 8
2.1.6 Real estate valuation using neural networks 9
2.1.7 Condominium price estimation using open data 10

2.2 Literature in the field perceptrons and machine learning 11
2.2.1 Di�culties training neural networks 11
2.2.2 Using dropout on hidden nodes 11
2.2.3 Inductive Conformal Prediction 11

3 Method 15

3.1 Data collection . 16
3.1.1 Streets searched for sales . 16
3.1.2 Apartment sale statistic . 17
3.1.3 Street information . 18
3.1.4 Historic inflation figures . 18
3.1.5 Interest rates for apartment loans 18
3.1.6 National election result . 18
3.1.7 Local features . 19

3.2 Features . 19

3.2.1 Feature aggregation . 19
3.2.2 Cleansing data . 19
3.2.3 Partitioning data . 20

3.3 Construction of the Multilayer Perceptron 20
3.3.1 Activation function . 22
3.3.2 Weight and bias initialization 23
3.3.3 Weight update regime . 24
3.3.4 Dropout regime . 25

3.4 Optimization with Genetic Algorithm 25
3.4.1 Genome . 25
3.4.2 Objective function . 25
3.4.3 Crossover and mutation . 25
3.4.4 The search process . 26

3.5 Conformal Prediction . 27

4 The mathematics of Backpropagation 29

4.1 Layout of the neural network . 29
4.2 Error function . 29
4.3 Activation functions in the nodes . 31

4.3.1 Output neuron (Linear) . 31
4.3.2 Logistic neuron (Sigmoid) . 31
4.3.3 Hyperbolic tangent neuron 31

4.4 Finding the gradients for the error function 32
4.4.1 Single hidden layer with hyperbolic activation function 32
4.4.2 Dual hidden layers with hyperbolic activation function 33

4.5 Matrix calculations for the MLP . 34
4.5.1 Single hidden layer with hyperbolic activation function 34
4.5.2 Dual hidden layers with hyperbolic activation function 34

5 Experiments and Results 37

5.1 Performance of support vector regression (SVR) 37
5.1.1 Radial Kernel . 38
5.1.2 Sigmoid Kernel . 39
5.1.3 Polynomial Kernel . 39

5.2 Tuning parameters for the Multilayer Perceptron 40
5.2.1 Finding values for learning rate and momentum 41
5.2.2 Searching for appropriate MLP configuration 42

5.3 Boosting multilayer perceptron performance 43
5.3.1 Early stopping . 43
5.3.2 Mini-batch . 45
5.3.3 Random initialization of weights and dropout 47
5.3.4 Conformal Prediction . 48

5.4 Fine tuning of parameters with Genetic Algorithm 49
5.4.1 Tuning of SVR parameters 49

5.4.2 Tuning of Multilayer Perceptron 50
5.5 Summation of results . 52

6 Conclusion 53

6.1 Proceedings to improve quality and speed of backpropagation algorithm 53
6.2 Benefits of using GA to find appropriate parameter settings 53
6.3 Performance of MLP model in general 54

7 Discussion 55

7.1 Improving the feature space . 55
7.2 Algorithmic improvements . 55

References to articles 57

Data sources 59

Appendices 59

A Features 61

Chapter 1

Introduction

Research on neural networks in general and multilayer perceptrons in particular has
lead to many novel ideas that enhance the quality of the predictions and reduces
the running time of the algorithm. That in combination with the gained knowledge
in using multilayer perceptrons has opened new fields for their use. The question at
hand is if a multilayer perceptron can predict the final selling price of an apartment
in co-operative housing society sold in Stockholm city with reasonable accuracy.
Further, can it outperform a more commonly used machine learning system like the
support vector regression (SVR)?

1.1 Background
The predicting power of the machine learning system has steadily increased over
the years mainly due to intensive research that has refined and improved the un-
derlying algorithms. The same development holds for the Multilayer Perceptrons
but the path to the current abilities and performance has had its di�culties. In the
early 1960’s the perceptrons became popular and the expectations were high but
in 1969 Minsky and Papert analysed their limitations in non-linear problems and
dampened the enthusiasm. Adding hidden layers (multilayer) does not help to break
these limitations as long as they are linear. The power comes from the combination
of multiple layers of hidden units using non-linear activation functions. One major
restriction is that the perceptron-learning algorithm is ill suited for neural networks
with multiple layers of non-linear units. The solution came with the backpropa-
gation algorithm that generalizes well with multilayer perceptrons with linear and
non-linear units. However, it is a bit misleading that they still are called multilayer
perceptrons despite the fact that the original perceptron algorithm is seldom used
these days.
Predicting the price of a house or an apartment is a classic and commonly used
example within the machine learning community. This in combination with the au-
thor being a resident in Stockholm makes the market interesting to study. Even as
a resident it is often hard to understand this, which factors are a�ecting the prices

1

CHAPTER 1. INTRODUCTION

of apartments and is the motivation for this project. The notion is that it probably
is more complex to analyse the market of apartments in Stockholm than determine
the housing price in other parts of Sweden. The idea was born to try to predict the
prices of apartments for sale and to find some of the major factors a�ecting the final
price. All data used in the project stems from numerous public available sources,
so called “Open Data” sources. This hopefully makes it easy for those who want
to look into this machine learning example domain and experiment and draw their
own conclusions from this work.
There is a belief amongst some of the experts that the price for which the apartments
are sold does not reflect the true value of the object. Prices have been constantly
rising since the mid nineties and the proportion of the salary spent on living has in-
creased for the habitants in the Stockholm area. The driving forces behind this are
increasing GDP, low production of new apartments, the constant influx of people to
Stockholm and a low rate of interest for apartment loans. All these factors together
makes the market of apartment quite complicated and increases the complexity of
predicting an accurate price. It is also a concern for politicians and their economy
advisors that a price drop can result in a crisis.

1.1.1 Problem description
This paper explores the feasibility of creating a machine learning model that can
predict the price of a apartment sold in central Stockholm with a fair precision
and based on a neural network of type Multilayer Perceptron with a handful of
contemporary techniques applied. The Multilayer Perceptron is henceforth often
shortened to MLP.

1.1.2 Traditional pricing model
One of the most widespread model used to analyse property values is the hedo-
nic price model, which is often used by condominium brokers, banks and lending
institutions. This model is based on the assumption that apartments are not ho-
mogeneous but di�er in their attributes and that this is reflected in the selling price
where the buyer implicitly pays for these favourable attributes. The hedonic price
equation can be written as:

y
i

= —
j

X
j,i

+ ‘
i

(1.1)

In the above equation (1.1) y
i

is the i-th observed sales price where i œ 1 . . . N , N
are the number of sales. The implicit prices of the attributes mentioned above is
found in — where j œ 1 . . . F , X is the sales data and F is the number of attributes.
Errors are captured by the error term ‘. Attributes often encapsulate the charac-
teristics of the apartment, location and features of the neighbourhood.
Another methodology often used in USA is the so called repeat sales methodology
that tries to solve the heterogeneity problem by assuming that houses and apart-
ments do not change attributes over time and that the prices from repeated sales

2

1.1. BACKGROUND

can be used to estimate the price. The model is as follows:

P
it1

P
it0

= B
t1

B
t0

U
it0t1 (1.2)

where P
it

is the price of house i sold at time t, B
t

is the price index at time t and
U

it

n

t

n+1 is the error term. An assumption is that the same house is sold frequently.

1.1.3 Objective
As mentioned before the goal was to find a machine learning model that can predict
the selling price of an apartment situated in the centre of Stockholm. This has to
be done with a good quality to be meaningful for the end user. This kind of model
can be use by apartment agencies to predict the future selling price or by financial
institutions (loan givers) to find out the value of the pledge. To construct the model
a neural network of the type multilayer perceptron was used in combination with
some novel techniques to increase the precision of the predictions. Below is a list of
the techniques use:

• Gradient descent

• MiniBatch

• Early stopping

• Adjustable learning rate and momentum

• Random initialization of weights

• Conformal Prediction

The performance of the produced model is compared with support vector regression
(SVR) to verify that the multilayer perceptron can outperforms a regular SVR.

1.1.4 Restrictions
This paper will not describe the whole process of how to construct a complete ap-
plication. Nor will it result in any deployable software solution. However, all the
code snippets that were developed during this research will be made available as
Open Source at github.com. The purpose of this thesis was to study the prospects
of constructing a predictive model that can produce results usable in practical situ-
ations and that can be interpreted by the general audience. Information gathering
for this work was treated as a necessity rather than as a feature. This work does
not claim to use or collect a complete set of data relevant to the domain. The goal
was to gather as much information needed to indicate that a good predictive model
could be constructed using only “Open Data”. Further this work does not intend
to include all novel methods used to improve the construction of neural networks,

3

CHAPTER 1. INTRODUCTION

improvement opportunities are discussed in chapter 7.2. A number of interesting
articles and techniques have been put forward the recent years. However, we have
incorporated some of the most obvious improvements that are common ground to
contemporary work.

4

Chapter 2

Literature Review

The literature review is divided into two parts since the nature of the reviewed
papers naturally falls into two categories: research in the apartment and housing
market domain and theory and techniques applicable to machine learning.
In the first part of this chapter, studies regarding pricing structure and factors af-
fecting the final pricing are reviewed. This part of the review is structured on a
per article basis; the main reason for selecting this strategy is the diversity of the
perspectives in the reviewed papers. The goal is to identify the main factors af-
fecting the pricing of apartments and explore the relevant knowledge in the field
accumulated in previous research.
The second part considers articles discussing novel techniques to improve predic-
tions and performance of neural networks, common practices used when evaluating
models and recommendations concerning tuning and parameter adjustments for
multilayer perceptrons. For these topics the reviews were performed on a per sub-
ject basis and each subject is covered in a separate section.

2.1 Literature covering apartment and housing markets
All papers reviewed in this section share the common opinion that real estate assets
and apartments are heterogeneous to their nature. The price may be a�ected by
hundreds of factors and that many di�erent outcomes are possible due to buyer’s
preferences, available information and circumstances of sale. This gives rise to the
fact that the price of a property in a given point in time can be modelled as a
random variable and a random error.

2.1.1 A prominent role in society

As predictive models used to estimate values of apartments and real estate get more
exact they are more likely to play a more prominent role in society and politics.
In the article [1] the authors argue for the importance of a firm pricing model.
The situation on the Swedish market has many similarities with the UK market

5

CHAPTER 2. LITERATURE REVIEW

discussed in the paper. Residential properties are mortgaged in about sixty-five per
cent in the UK market. Lenders use the current market price as the key metric
for determining the lending ceiling which fuels the risk of overheating the market.
This can inflict socio-economic damages and big losses for credit institutions. These
problems have been observed in vulnerable countries in Europe and are a big concern
for many politicians and researchers in the field. A metric with a more sustainable
value could reduce the risk of over heating and would be preferable. One possible
source for such a metric could be a predictive model generated from a MLP. For this
scenario to be plausible the predictive model has to be refined and give a prudent
price estimate of the property.
The predictive model evolved in the paper [1] can predict the UK Average House
Price (House Price Index - HPI) from the Nationwide Building Society. The results
obtained in the paper are a range of 3 per cent and an average of 1.1 per cent for
the index from the second quarter 1999 until the first quarter 2001.

2.1.2 Crimes impact on apartment prices

In the study of crimes impact on apartment prices in Stockholm [2], Caccato and
Wilhelmsson conclude from their findings that the apartment price is expected to fall
by 0.04 per cent for each per cent in increased crime rate. The decrease in prices rose
to 0.21 per cent for each per cent increase in crime rate if only residential burglary
is considered. Although the e�ect is not homogeneous over space, apartment prices
are often a�ected to a lower degree in the central part of Stockholm compared to
the outskirts. Taking this knowledge into concern in combination with the fact that
this report is targeted against apartment in the central part of the city instigated
the decision to exclude crime rate and resembling data from this work. Although
several feature related approaches referred to by Caccato and Wilhelmsson are used
in the model or have inspired feature selection in our work.

2.1.3 Features used in study of crimes impact on apartment prices

The study [2] previously mentioned is based on 9,622 sale transactions of condo-
miniums in Stockholm during 2008; Mäklarstatistik AB supplied data. To enrich
the dataset with supplementary features cross-sectional data from the Stockholm
Police, Stockholm Statistics and Stockholm City was merged together with the sales
transactions. The information was then used to form features like proximity to wa-
ter, underground stations, crimes per 10,000 citizens and other characteristics of the
neighbourhood. Geographical data was used to divide the region into four quadrants
with the central business district (CBD) as a centre point, the distance between the
given apartment and the centre point is also used as a feature. Due to the fact that
e�ects of crime can spill-over to neighbouring areas Caccato and Wilhelmsson has
incorporated so called smoothed (lagged) variables, these are weighted averages of
values for neighbouring locations. This type of feature is not used in this paper;

6

2.1. LITERATURE COVERING APARTMENT AND HOUSING MARKETS

this follows from the fact that no crime statistics are used. Table 2.1 contains a
condensed list of the attributes used.

Table 2.1. List of features used by Caccato and Wilhelmsson

Feature group
Transaction price Living area
Number of rooms Monthly fee
Age of building Newly built
Elevator in house Balcony belonging to apartment
Apartment at top floor Apartment at first floor
Distance to CBD North-east quadrant
North-west quadrant South-west quadrant
Distance to water Distance to underground station
Distance to highway Distance to main street
Crime rate Rate of robbery
Vandalism Outdoor violence
Residential burglary Shoplifting
Drug related crime Theft
Theft of cars Theft from cars
Assaults

2.1.4 Traditional real estate valuation
Max Kummerow at Curtin University describes the real estate market and their
valuation methods in the article [3]. In this paper he elucidates the theory behind
the methods used by the real estate market in USA. Valuation methods can be
divided into two main categories: objective and subjective, where the objective
method stems from the rational paradigms of science in contrast to the subjective
method that can be viewed as more of an “art”. The fundamental property of the
objective method is that conclusions are based on evidence such that when viewed
by others the same result should be derived. Often the property price is perceived
as a random variable, this induces the notion that there are no “true value” of
the properties price, rather there are multiple prices that are possible with varying
probability.
The heterogeneity in the market gives rise to models based on price di�erences. This
model uses selected sets of previous sales with similar characteristics, those that
a�ect the price are identified and their values are estimated in order to calculate
the price implication. This model is based on the notion that for a complex product
the customer pays for the utility and the price paid is the sum of the utility of the
characteristics. Two types of errors arise in this model: random variation in sales
price and estimation errors for the value implication, the total error is the sum of
the two. Let ‡ be the standard deviation of the price distribution and n the sample
size of sales. So the standard deviation of the mean is ‡Ô

n

and decreases as the

7

CHAPTER 2. LITERATURE REVIEW

sample size increases. Due to the heterogeneity of the properties the variance ‡2

increases when the sample size increases. This leads to an error trade-o�, when
increasing the sample size the variance ‡2 of the sample increases while the mean
of the sampling distribution decreases.
One commonly used model is the hedonic price model described in chapter 1.1.2,
hedonic stems from Greek and means pleasure. The equation is written as: y

i

=
—

j

X
j,i

+ ‘
i

where y
i

is the i’th observed sales price i œ 1 . . . N , N is the number of
sales, — is the implicit prices, X contains the sales information, F is the number of
attributes and j œ 1 . . . F . Errors are captured by ‘ the error term. The fundamental
principle in the hedonic price model is that buyer acquires a bundle of characteristics
for which she is willing to pay a certain amount for each of them.
In the article [3] by Kummerow, he refers to economic theory that states that the
long running cost relates to the value and that the supply will be adjusted until
price and cost is at equilibrium. Though the adjustment is protracted due to the
time required for exploration and construction of housing, which causes the market
to seldom be at equilibrium, hence the cost does not equal price for a lengthy period
of time. The driving factor of the short-term price is the supply and demand and
the actual sales transaction is a necessity to disclose the price and cost relationship.

2.1.5 Shortcomings with contemporary real estate valuation
Shortcomings in contemporary methods are studied in the work [4] where several
examples and test results gives rise to a somewhat harsh critique to the methods
used in the US market. Similar critique is put forward in the article [1] where a
study was performed on the UK market; this paper is discussed in section 2.1.1. The
critique put forward in the paper [4] is mainly targeting the fact that systematic
patterns can be found in the errors made by the repeat sales methodology which
is the base of the most common methods used and foremost Case-Shiller (CS).
Patterns for three types of errors can be found, these are as follows:

• Cheaper homes are predicted to have a lower value than the actual value. The
opposite holds true for expensive homes.

• Systematic over-prediction is done on homes where transaction has not oc-
curred recently. As the time between transactions increases the performance
gets worse.

• In the period July to December 2007 the prices dropped significantly but CS
systematically over-priced the objects.

These shortcomings of the models can be harmful to the business and society; one
example of this is the sub-prime crisis.
The evaluation of the methods was performed on a data set with 367,973 single
transactions and 591,239 repeat sales, all in the Los Angeles county. Some of the
significant findings in this paper was that for the period 2000 to 2005 the median

8

2.1. LITERATURE COVERING APARTMENT AND HOUSING MARKETS

actual error changed from -3.96 per cent to 3.2 per cent, a change of over 7 per cent.
From 2005 to 2008 it fell by more than 8 per cent. Looking at the median error of
prediction done with di�erent period between transactions gives that transactions
performed within one year has an error of 5.86 per cent. That increases for trans-
actions within one to two years where the median error is 7.88 per cent. For the
transaction interval of 15-20 years the error is staggering 17.12 per cent. Accounting
for geographic information eliminates the patterns in the error with respect to the
turnover time. For the authors spatio-temporal model the median error is stable
between -1.5 and -2.5 per cent for the whole range of turnover time.

2.1.6 Real estate valuation using neural networks
Artificial Neural Networks (ANN) is well suited to construct models used to predict
real estate values. The networks ability to catch non-linear behaviours is one of
its aptitudes to predict prices of apartments and houses. Many factors a�ecting
the housing market like inflation, social concerns and interest rates are non-linear.
Another beneficial feature of the neural networks are their ability to cope with
noisy data sets. In a study [5] performed on the Malaysian housing market based
on data from a time period of three years (1994-1996) in total 300 sales (45 used
for validation and 15 for testing), a MLP was used to predict the prices of terrace
houses using nine features (sample year, land area, type of house, ownership type,
build area, age of house, distance from city, environment and building quality). The
network was configured with nine input nodes corresponding to the input features,
a hidden layer comprising of 3 to 7 nodes and a single predicting output node.
Using this method a root mean square error of 0.061717 was obtained for a MLP
with five hidden units and a linear activation function. Both the hyperbolic tangent
function and the sigmoid function produced results with higher error rate, though
this outcome is somewhat unexpected. The results obtained in the study indicates
that the MLP is well suited for the task of predicting house prices and that it can
outperform a multiple regression based algorithm.
A more elaborate approach is discussed in the paper [1] where a Gamma Test 1 (GT)
is used to drive a Genetic Algorithm (GA) in the process of selecting useful features
from a data set. This data was then used to train a ANN on the root mean squared
error produced by the GT. Without any prior knowledge of the system the Gamma
Test is able to estimate the noise level in the data, a quality measure that indicates
whether a smooth model exists or not. This approach has the advantage of being
able to handle a dataset with large numbers of useful inputs but with high levels
of noise or sparse data. Finding a good combination of features is an optimization
problem and here a Genetic Algorithm is used to search for the optimal feature set.
To find the optimum the GA uses a population of individual’s who each has their own
genome describing their characteristics. An objective function is used to estimate

1
The Gamma Test is a data analysis routine that pursues to estimate the best Mean Squared

Error that can be achieved by an continuous data model. Further discussions regarding the Gamma

Test can be found in the paper [6]

9

CHAPTER 2. LITERATURE REVIEW

the individual’s quality with respect to the problem at hand. The algorithm evolves
as the generation’s progresses. For every generation the population is adjusted
where lower ranking individuals are excluded and new created by a mating process
where genome parts are exchanged (crossover) between spouses and with a small
probability a mutation is performed. To be able to mate the individual has to
succeed in a tournament. Genetic Algorithms are further described in section 3.4.
Here the genome is a Boolean mask indicating whether the column of the data
should be in the feature set or not. The objective function is quite complex in
this paper but in essence it calculates the Gamma statistics for the given genome,
hence the included columns weighted Gamma value in combination with weighted
measures of: the amount of noise, complexity of underlying relationships between
output and input date and finally the complexity of the ANN layout.
The data sets were not pre-processed before put to use in the Gamma test, thus
using the data without a priori knowledge of its characteristics. Eight economic
indicators where converted to a time series of length 6, adding 48 inputs to the
feature set. The results from the Gamma test shows that the more recent figures
for average earnings have more significance than older and that the top ranking
features: retail price index and bank rates are consistently very significant. After
the selection of features from the data set done by the GA using the GT in its
objective function, the resulting data set was fed into an ANN with two layers of
hidden nodes with four nodes in each layer. Weight updating was performed with
a learning rate of 0.25 and momentum at 0.1. The model predicted the change in
the house price index with a root mean square error of 9.6 per cent.

2.1.7 Condominium price estimation using open data

Price estimation using support vector regression (SVR) and Open Data from the
New York condominium market is explored by [7] Arul and Morales in their paper.
Initially they use a 10 dimensional data set with features related to the price con-
taining 4,950 data points from 2011 and 2012. Their principal components analysis
yielded 7 features that could account for 98.3% of the data, high-ranking features
were: building classification, construction year, the building’s gross income and
expense per square foot. The SVR model based on the 10 open data features pre-
dicted prices with an average error of 38.2 per cent, further 36.11 per cent of the
predictions where within 15 per cent of the actual price. In order to improve the
predictions GPS based location data was included in to the data set as a distance
to an origin point. This in combination with a feature selection gave an average
error of 21.8 per cent where 49.1 per cent of the predictions fell into the 15 per cent
range of the actual price. In the conclusion the authors suggest inclusion of features
regarding: crime data, school district data and socio-economic data.

10

2.2. LITERATURE IN THE FIELD PERCEPTRONS AND MACHINE LEARNING

2.2 Literature in the field perceptrons and machine
learning

In this section, we discuss several improvements and known techniques to enhance
the performance of the Multilayer Perceptron and the backpropagation algorithm.
The improvements in performance are reflected in the precision of the model and
the running time of the backpropagation algorithm.

2.2.1 Di�culties training neural networks
One of the pitfalls when training Neural Networks is to select a good regime for
weight and bias initialization in combination with the activation function. These
issues are covered by X. Glorot and Y. Bengio in their paper [8] where they study the
e�ect of random initialization of weights and how they e�ect the gradient descent
algorithm. The Sigmoid activation function (see subsection 3.3.1) has a non-zero
mean and this is known to cause singular values in the Hessian matrix. They
further discovered that the weights associated with the last hidden layer rapidly
obtains their saturation value of 0 and that this situation can last very long. This
makes the Sigmoid activation function less suitable for MLP:s and especially used in
combination with the traditional initialization schema described by equation 3.1 in
chapter 3.3.2. The recommendation is to use the hyperbolic tangent (see subsection
3.3.1) or softsign activation function in combination with the so-called normalized
initialization, see equation 3.2 in chapter 3.3.2. E�ects of changing the schema
for weight initialization are explored in chapter 5.3.3. Further Glorot and Bengio
conclude that the normalized initialization is well suited for the hyperbolic tangent
activation function.

2.2.2 Using dropout on hidden nodes
In the paper [9] Improving neural networks by preventing co-adaptation of feature
detectors G. Hinton et al. describes the regime of using “dropout” to avoid “over-
fitting”. This is achieved by randomly omitting 50 per cent of the training data on
the hidden nodes for each training case. When the model is used to predict e.g.
verification or test data the outgoing weights has to be compensated by dividing
them by 2, this because when predicting all the nodes are on unlike in the training
phase. Additional improvement can be obtained by randomly dropping out 20 per
cent of the inputs as shown in their paper. This regime can also be viewed as a
method of averaging di�erent models. Significant improvement is shown for this
method on e.g. the MNIST data set.

2.2.3 Inductive Conformal Prediction
Presenting results from a predictive model without mentioning anything about the
reliability of the data gives the receiver low confidence in the figures and therefore

11

CHAPTER 2. LITERATURE REVIEW

no usable information in the worst case. We would like to combine the result with
some confidence values to give the consumer the ability to assess the validity of the
prediction. In 1999 a new approach called Conformal Prediction (CP) was proposed
which are built on top of traditional machine learning algorithms, in the context of
CP called underlying algorithms. The underlying algorithms are used to calculate a
measure of confidence and credibility. Though the CP has one big disadvantage and
that is its computational ine�ciency, which in the case of Neural Networks render
it almost infeasible to use.
The shortcoming of the original conformal prediction algorithm is its transductive
inference property, which requires that the calculations have to be restarted from
the beginning for each test case. A solution to this problem was presented in the
article [10] where the authors propose a shift to inductive inference, henceforth
called ICP. This algorithm lifts this restriction and adds moderate overhead to the
total computation making it usable for practical applications. The idea behind
this regime is as follows, given a training set TS = (x1, y1), . . . , (x

l

, y
l

) of size l
where x

i

are attributes and y
i

the labels, partition it into two subsets: proper
training set PT = (x1, y1), . . . , (x

m

, y
m

) of size m where m < l and a calibration set
CS = (x

m+1, y
m+1), . . . , (x

l

, y
l

) of size k = l ≠m. Employ the underlying algorithm
to the proper training set PT and for each example (x

i

, y
i

) œ CS calculate the
non-conformity score –

i

:

–
i

=| y
m+i

≠ o
m+i

|, i = 1, . . . , k (2.1)

for the unlabelled example y this becomes

–
k+1 =| y ≠ o

l+1 | (2.2)

Thus the prediction o
i

for the example x
i

has to be computed using the underlying
algorithm and than together with the label y

i

and using 2.2 to finally compute
the non-conformal score –

i

. The concept of the non-conformity score is further
discussed in subsection 2.2.3. The p-value of the potential label y is defined as:

p(y) = #{i = 1, . . . , k + 1 : –
i

Ø –
k+1}

k + 1 (2.3)

Here #A is the cardinality of the set. The predictive region constructed by the ICP
is {y : p(y) > ”} where 1 ≠ ” is the confidence level and ” the significance level. We
construct the sorted set �kú

–

= –(1), . . . , –(kú), sorted in descending order from the
–

i

values corresponding to the calibration set CS. Let

j
s

= #{–
i

: –
i

Ø –(s)}, s = 1, . . . , kú (2.4)

be the number of –
i

s larger or equal to the elements in �kú
–

. Henceforth the s will
be denoted ICP

index

. The predictive region is defined as

(o
l+1 ≠ –(ICP

index

), o
l+1 + –(ICP

index

)) (2.5)

12

2.2. LITERATURE IN THE FIELD PERCEPTRONS AND MACHINE LEARNING

so we need to find the ICP
index

. This can be derived from the equation

” ≠ ‘ = j
s

k + 1 , s = 1, . . . , kú (2.6)

where ICP
index

= s for the s yielding the smallest ‘.
The above algorithm can be used in two di�erent modes:

• Find a predictive region for a given significance level ” with the property that
we can be 1 ≠ ” confident that the true result is within the region.

• Find the maximum level at which we can be confident that the true result is
within a given fixed region.

The first case corresponds to the regression ICP described above. For the later case
we have a given interval [a, b] so –(s) Ø max(| o

i

≠ a |, | o
i

≠ b |) for the largest s.
This gives the maximum confidence interval that is given by 1 ≠ j

s

k+1 .
The authors conclude the paper [10] by examining the performance of the ICP
versus two di�erent TCP algorithms. Here the ICP outperform the first variant
but for the second it performs worse but looses with a small marginal. One of
the explanations for this is that the training data set presented to the underlying
algorithm is smaller for the ICP due to the fact that some of the data has to be put
aside for the calibration set and those gives the underlying algorithm a disadvantage
for the ICP.

Non-conformity Measure

The non-conformity measure makes an assessment of the strangeness of every pair
(x

i

, y
i

) in the calibration set. In the paper [10] two equations for how to calculate
the non-conformity measure are presented, these equations 2.7 and 2.8 stated below.

–
i

=| y
m+i

≠ o
m+i

|, i = 1, . . . , k (2.7)

–
i

=| y
m+i

≠ o
m+i

‡
i

|, i = 1, . . . , k (2.8)

where ‡
i

= eµ

i and µ
i

= �(log(| y
i

≠ f(x
i

) |)
here � is the Ridge Regression and f(x

i

) is the predictive function trained from the
proper training set PT . Experiments presented in the paper demonstrate that the
second equation 2.8 produces tighter intervals than the former 2.7.
Even more interesting non-conformal measurements with experiments relating to
this work is found in [11] where six novel measurements are proposed and experi-
ments performed on the Boston Housing benchmark are presented. These measure-
ments can be divided into two groups; one based on the distance to the k nearest
neighbours and the second is using the standard deviation to its neighbours. Below
are two of the non-conformal measurements presented, one from each group whom

13

CHAPTER 2. LITERATURE REVIEW

performed well on the Boston Housing benchmark.
The first group is based on the measurement of distance between neighbours.

–
i

=| y
m+i

≠ o
m+i

exp(“⁄k

i

)
|, i = 1, . . . , k (2.9)

where dk

i

=
q

k

j=1 distance(x
i

, x
i

j

) is the distance to the k nearest neighbours and

⁄k

i

= dk

i

median({dk

j

: x
j

œ PT})

which compares the distance dk

i

with the median of the distance from their nearest
neighbour for all training examples. Here “ is used to control the sensitivity of the
measure, increasing “ gives a more sensitive measure.
Equations in the second group utilize the standard deviation between neighbours
to give a measure of the strangeness.

–
i

=| y
m+i

≠ o
m+i

exp(“›ik) |, i = 1, . . . , k (2.10)

where
sk

i

=
Ò

1
k

q
k

j=1(y
i

j

≠ �) and � = 1
k

q
k

j=1 y
i

j

for a given example measures the
standard deviation to its k nearest neighbours. Similar to equation 2.9 the standard
deviation is divided by the median standard deviation, which gives

›ik = sk

i

median({sk

j

: x
j

œ PT})
.
The result from the Boston Housing benchmark are quite interesting and gives
a indication on what non-conformity measurement to chose and the benefits of
selecting the right one. Results of these tests are presented in table 2.2 where the
di�erences between the di�erent measurements are striking. It should also be noted
that the ICP algorithm is slightly better on doing predictions inside the region.

Table 2.2. Results from Boston Housing benchmark

Median Width per cent outside pre-
dictive region

Method Measure 90% 95% 99% 90% 95% 99%

TCP 2.1 12.143 17.842 33.205 10.24 5.06 0.97
2.9 10.897 14.468 24.585 9.92 4.92 0.91

ICP 2.1 13.710 19.442 38.808 9.47 4.88 0.91
2.9 11.531 16.702 30.912 10.08 4.72 0.69
2.10 10.211 14.228 34.679 9.68 4.60 0.65

The width of the predictive region is narrower for the TCP algorithm than for the
ICP but the di�erence is not significant compared to the gain in computational

14

2.2. LITERATURE IN THE FIELD PERCEPTRONS AND MACHINE LEARNING

e�ort. The narrowest predictive region is produced by measurement 2.10 except for
the 90 per cent confidence level where measurement 2.9 produces a narrower region.

15

Chapter 3

Method

In this chapter the methodology that was used to facilitate the making of this mas-
ter thesis is described. Finding appropriate feature candidates was one of the first
challenges faced in this work. There is a significant amount of papers discussing
potential candidates to bring in to the model, those with similar conditions has
inspired the selection of features and they are reviewed in chapter 2. When the
selection of features was completed, a search for appropriate data sources begun.
All the required information was found from open data sources. To facilitate the
data capture and transformation a toolbox of shell- and Python scripts was created.
Generation of the feature space was performed by a Scala application that rendered
the features to the database and for future processing by Weka. In this stage the
features were normalised and abnormal records where dismissed. For a detailed de-
scription of this process see chapter 3.2.2. The built in PCA and MLP functionality
of Weka was used to select the features that contributed most to the solution of the
model. Weka was enriched with a hyperbolic tangent activation function to promote
the ability to capture the non-linearity in the model. Early testing indicated that
hyperbolic tangent outperformed the traditional sigmoid activation function, both
with respect to the performance of the model and the speed of convergence of the
gradient descent algorithm. Finally the selected features were exported to Weka’s
native file format “ar�”.
Comparison with a more traditional machine learning algorithm is one of the pre-
requisites of this paper. To stage this a commonly used Python library named
LibSVM was used. A Python script reads the Weka data file (ar�), partitions it
into three parts, builds the model and validates it. Tuning of the SVR was done by
iterating over a separate interval for each parameter searching for the appropriate
values by evaluating the model against the test data set. As the icing on the cake
some additional traits were added to the multilayer perceptron calculations like:
conformal predictions, random initialization of weights, adjustable learning rates
and momentum. Finally the parameters for the MLP algorithm were fine-tuned
and the definitive result is presented in chapter 5.

17

CHAPTER 3. METHOD

The main features of the work flow were as follows:

• Identify potentially useful features to include in the model

• Find data sources for features

• Capture data from selected sources

• Generate feature space

• Select features for model

• Compare performance between multilayer perceptron (MLP) and support vec-
tor regression (SVR)

• Incorporate additional functionality to multilayer perceptron

• Fine tune multilayer perceptron parameters

• Evaluate result

3.1 Data collection
All data sources used in this research are publicly available, so called “Open Data”.
The Swedish parliament has issued a directive that requires all government depart-
ments and municipalities to make their data publicly available. This is one of the
major reasons behind the rich variety of information available from Stockholm City
which is one of the major information sources.
The information gathering was performed incrementally starting with the retrieval
of a list containing the streets of central Stockholm from the website svenskagator.se
[1]. This list were read into the MySQL database handling the persistent data, see
chapter 3.1.1. The list of streets were then used to fetch the final prices of sold
apartments for the given time period, one a per street basis from slutpris.se [2]. For
details see chapter 3.1.2.

3.1.1 Streets searched for sales

Street names from svenskagator.se [1] was read from the site using the Unix com-
mand line tool curl and processed by a Bourne shell script that produces a SQL file
which contains insertion statements. This file was then used to load the MySQL
database with the street names. In total 1.341 street names were read into the
database.

18

3.1. DATA COLLECTION

3.1.2 Apartment sale statistic

Information from the REST API at slutpris.se [2] is structured according to the
Json standard. A program written in Scala was used to retrieve the information
from slutpris.se. For each street in the list specified in chapter 3.1.1 a separate
HTTP request had to be performed, the response was retrieved, parsed and trans-
formed into class instances that were stored in the database. The request URL and
parameters for the REST call is as specified in table 3.1. Features collected from
slutpris.se are described in table 3.2.

Table 3.1. Request to slutpris.se

http://slutpris.se/main_application/get_search_result/
dateLimit order minrum maxrum
minarea maxarea minpris maxpris
minavg maxavg area

Table 3.2. Attributes in response from slutpris.se

Feature
Construction year of building Building has elevator
Fireplace in apartment Apartment has a duplex
Apartment is a penthouse Apartment has balcony
Date of transaction Price per square meter
Area in square meters Number of rooms, kitchen ex-

cluded
Stores from the street level Monthly fee payed to association
Selling price Latitude and longitude coordi-

nates
Street address of apartment Name of realtor
Realtor identification

Apartment statistics were gathered for transactions finalized in the time frame 2011-
08-01 until 2013-06-08. In total about 8,900 transactions were retained from slut-
pris.se, they were then filtered and only apartments in the bounding box defined in
table 3.3 were included. For more information regarding the generation and cleaning
of the data, se chapter 3.2.2 and 3.2.1 respectively.

Table 3.3. Bounding box of centre of Stockholm

Type Min Max
Latitude 59.298149 59.356296
Longitude 18.021784 18.115082

19

CHAPTER 3. METHOD

3.1.3 Street information
Information retrieved from slutpris.se was enhanced with the zip code and latitude
and longitude were replaced with more accurate information retrieved from the open
data portal of Stockholm City, openstreetws.stockholm.se [3]. Sales statistics were
sparse compared to the number of unique street addresses in the surveyed area. In
this situation a lazy evaluating solution was more e�cient than pre loading all the
adequate data prior to the substitution. The solution was based on a caching schema
that used the database to persist the retrieved information. When a street address
was searched a lookup in the cache was done, if the information was available in the
cache it was returned to the requester. If the street address was not in the cache it
was retrieved from Stockholm’s open data portal. Enhancement of the sales statistic
was achieved by looping through all entries of the sales statistic and for each entry
lookup the street information from the cache.

3.1.4 Historic inflation figures
Statistics over the apartments sales was derived from a two year period and therefore
inflation has an impact on the sales price over time, closed sales from 2011 would
appear to have an actual lower price than more resent deals. To avoid this bias on
the price feature the final sales price was adjusted according to the monthly inflation
up to the last date of the examined time interval. Inflation statistics was retrieved
from the Statistics Sweden (SCB) who is responsible for the o�cial inflation figures.
Information regarding the inflation rate and underlying inflation rate can be fund
at [4] and [5] respectively. The retrieved information was pre processed by a Python
script and then read into the database.

3.1.5 Interest rates for apartment loans
There is an on-going debate regarding the interest rates influence on the sales price
of apartments in Stockholm. The prerequisite for being able to examine whether the
interest rate has an impact on the sales price, historical interest rates were fetched
from Skandinaviska Enskilda Banken (SEB) [6] and Swebank [7]. This information
was temporarily stored as CSV-files, preprocessed by a Python script and inserted
into the database.

3.1.6 National election result
Political preferences of buyers, neighbours and policies of governing parties is a po-
tential feature that a�ects the market. Statistics from the previous Swedish election
in 2010 and geographic information of the layout of the constituency’s are available
from the Swedish authority Valmyndigheten [8]. This statistics were downloaded
as Excel files and loaded into the database via a Python script. Geographic in-
formation regarding the constituency’s layout is supplied as so called shape files.
The coordinates were transformed and the GeoTool Java library is used to find out

20

3.2. FEATURES

which constituency a given apartment belongs to and its unique id. Finally this id
was used to find the election figures from the database.

3.1.7 Local features
Stockholm City [9] provides data about over eighty local feature types. Fourteen
of those were selected as candidates for the models feature space. Each feature has
a unique identifier that has to be fetched from a catalogue using REST-calls. This
catalogue was retrieved whit the Unix tool curl and stored in XML-format, a Python
script reads the file en inserts the unit types into the database. A second Python
script reads the entries of the selected feature types from the REST-service and
stores them into the database. Each feature entry was associated with a geographic
coordinate (latitude and longitude), this information was used when the feature
space was generated to calculate the distance to the nearest feature of each type.

Table 3.4. REST services at api.stochlolm.se

http //api.stockholm.se
Type URL
unit types /ServiceGuideService/ServiceUnitTypes
unit entry /ServiceGuideService/ServiceUnitTypes/{id}/ServiceUnits

3.2 Features
The features can be classified into six major groups depending on their data do-
main and origin. The groups are in order taken from table A.1: sales information
regarding the apartment, geographical reference information and from table A.2:
distance to local feature units, geographic position and from table A.3: interest
rates, election result from 2010. A complete listing of all the features used to create
the model can be found in appendix A.

3.2.1 Feature aggregation
When the generation of the feature space was performed, all the required data had
already been loaded into the database. A special export table was created where
the features were gathered into a feature set with one attribute for each feature and
one for the label. This table was populated with data from the previous collected
information by joining rows in the adequate tables and inserting them into the flat
export table. This table was then read by the machine learning tool Weka and
saved as a so-called “ar�” file.

3.2.2 Cleansing data
When the data had been imported to Weka it was inspected and validated. The ocu-
lar inspection of the data revealed several outlying apartment transactions. Several

21

CHAPTER 3. METHOD

transactions had exceptionally low selling price compared to the area and number
of rooms in the apartment, those records were deleted in view of the fact that this
implied that other means of compensation had been involved in the transaction,
creating a unfavourable bias of the price. This lead to the removal of apartments
with a price per square meter less than 35,000 SEK, because this is a highly un-
likely selling price in central Stockholm. Records where the number of rooms was
missing were left out together with apartments with missing construction year. Fi-
nally records with a selling price higher than 100,000 SEK per square meter were
removed due to the fact that these objects were not regular apartments but rather
small houses or other special accommodations.

3.2.3 Partitioning data
The data set was finally partitioned into three distinct datasets used for: training,
validation and testing. Prior to the partitioning, the rows in the data set were
scrambled (randomly rearranged) to avoid uneven distribution of similar data and
thereby distorting the result. After studying the literature referenced in this thesis
and observing commonly used data petitioning schemas, a 70%/15%/15% split ratio
was selected. On our complete data set with 5,991 entries this resulted in the
following partitioning.

Table 3.5. Final partitioning of data

Partition Relative size Number of entries
Training set 70% 4000
Validation set 15% 996
Test set 15% 995

3.3 Construction of the Multilayer Perceptron
Multilayer Perceptrons are a powerful tool used to build predictive models from a
set of input data containing a given number of features and as result predict one
or more target variables. The topology of a MLP is simple and straightforward,
see figure 3.1. The network is divided into layers, which comes in three flavours:
input layer, hidden layers and output layers. For each feature in the input data a
separate node is created in the input layer. One or more hidden layers that can
contain di�erent number of nodes each and finally an output layer with one or more
nodes follow this layer. In this paper a single output node was used to produce the
estimation of the apartment price (regression). When the MLP model is used for
classification a ‘Soft Max’ is created which consists of one node for each expected
class.
Each node in the lower layer is connected to all nodes in the layer above, thus
forming a complete bipartite graph. A weight is associated with the connection, for
example w

hi

in figure 3.1. The output of a node in the network is calculated with an

22

3.3. CONSTRUCTION OF THE MULTILAYER PERCEPTRON

Figure 3.1. Layout of Multilayer Perceptron.

activation function which input is the weighted sum of the incoming connections.
Activation functions are covered in section 3.3.1. An error function is used to
calculate the di�erence between the output from the network and the target (desire)
value, this is typically the mean square error function E = 1

2(t ≠ y)2 but other
functions are also used. In this paper the supervised training algorithm called back-
propagation was used to create the statistical model. This algorithm can briefly be
described as follows:

1. Sample from the training set is presented (input data to input nodes).

2. Inputs are propagated forward in the network by calculating output values for
the nodes in each layer by applying the activation function from input nodes
towards output node. Forward propagation

23

CHAPTER 3. METHOD

3. Output error is calculated by the error function E = 1
2(t ≠ y)2. Here t is the

target value and y is the output of the network.

4. Calculate the gradient, momentum (M(t) = M(t ≠ 1) ú ⁄ ≠ gradient) and
update weights (W (t) = –úM(t)), here ⁄ = velocity decay, – = learning rate.
Backward propagation

The algorithm described above is applied on the whole test data set and repeated for
the desired number of iterations. At this point all weights are adjusted to represent
a good model of the problem. Initialization of the weights is discussed in section
3.3.2. Three di�erent regimes of weight updates are often used:

• Online. Weights are updated after every sample in the test dataset.

• Batch. Weights are updated after passing all training data.

• Mini-batch. Divide the training data set into chunks of equal size and update
the weights after passing a chunk.

The selected regime of weight update foremost a�ects the speed of the learning.
In section 5.3.2 the speed gain of using the mini-batch versus batch regime is ex-
plored. In some situations the learning algorithm can give rise to so called overfitting
which leads to less favourable predictions for the verification set. Overfitting can
be avoided by adding noise to the weights, this is future elaborated in section 3.3.4.
The first assessment was to use Weka as the major platform for testing and build-
ing models. However it was soon obvious that the performance of the platform was
too poor to o�er a workable environment. Though Weka was used to get a feel of
the dataset, test out MLP configurations and perform a principal component anal-
yse. Several MLP configurations were tested and evaluated to gather basic data.
The sigmoid activation function was not able to create good models so Weka was
supplemented with a hyperbolic tangent function, which outperformed the sigmoid
networks and produced good models.
To address the problem Weka was substituted for the Open Source package Octave
that is more suited for the task and o�ering a broad repertoire of constructions and
modules usable in the construction of a MLP. The resulting program far outper-
formed Weka and lent itself to almost e�ortless modification and extension of its
functionality.

3.3.1 Activation function
In the early work of this thesis the problem was studied using the machine learn-
ing tool Weka to find the best path for the work at hand and what restrictions
to be aware o�. Ample e�orts were used trying out di�erent activation functions,
assorted features sets and di�erent parameter settings. It was obvious early on in
this work that it was not feasible to use linear activation functions and that the
sigmoid activation function was unable to produce good models using the features

24

3.3. CONSTRUCTION OF THE MULTILAYER PERCEPTRON

Figure 3.2. Activation functions

available in this study. To overcome this problem Weka was enriched with a hy-
perbolic tangent activation function in order to study its behaviour on the feature
set at hand. This initiative rewarded itself by producing good predictive models
far outperforming previously used activation functions. Knowledge from this early
work has influenced the subsequent work by giving it a greater focus on the us-
age of the hyperbolic tangent activation function. The hyperbolic tangent function
defined by equation 4.10 is described in subsection 4.3.3. One of the features of
the hyperbolic tangent function is that it is symmetric around 0 in contrast to the
sigmoid function, see figure 3.2. The equation 4.7 describing the sigmoid function
can be found in subsection 4.3.2.

3.3.2 Weight and bias initialization
The most commonly used weight initialization scheme used is often referred to as
regular initialization presented in equation 3.1 below.

W
ij

≥ U [≠ 1
Ô

n
i≠1

,
1

Ô
n

i≠1
] (3.1)

Inadequate initialization of the weight can lead to saturation problems for the
weights and give negative e�ects upon the gradient descent algorithm used to build

25

CHAPTER 3. METHOD

the model. This can render an inexpert model that is unable to do adequate pre-
diction. These problems are studied in the paper [8] and discussed in subsection
2.2.1. To explore this potential shortcoming the normalized initialization schema
was introduced and evaluated in subsection 5.3.3. The normalized initialization is
presented in equation 3.2.

W
ij

≥ U [≠
Ô

6Ô
n

i≠1 + n
i

,

Ô
6Ô

n
i≠1 + n

i

] (3.2)

where U[-x,x] is the uniform distribution in the interval ≠x < a < x and n
i

is the
number of nodes in layer i. This holds for both equation 3.1 and 3.2.

3.3.3 Weight update regime

Multilayer perceptron models can with advantage be built with use of the Backprop-
agation algorithm and have Gradient Descent as one of its corner stones. Choosing
a good regime of weight updating is therefore crucial. It is more rewarding to follow
small but consistent gradients when updating the weights than bigger and more
inconsistent ones. In this paper we used two mechanisms to refine the process of
updating the weight: learning rate and momentum. The concept of adding learning
rate can be viewed, as a way to control how fast the weights should be learned in
an update. For data sets with redundant data the learning rate can be low though
too low learning rate will slow down the learning considerable, too high rate can
make the learning overshoot. It is often favourable to keep the learning rate high
in the beginning and to turn it down further along in the update process.
The method of using momentum stems from the idea of adding a momentum to the
current gradient in the gradient descent algorithm rather than following steepest
descent. Adding a momentum based on the previous weight updates to the current
gradient makes it keep going in the previous direction, a momentum, see equation
3.3.

v

t

= –v

t≠1 ≠ ‘
ˆE

t

ˆw

t

(3.3)

�w

t

= v

t

(3.4)

�w

t

= –�w

t≠1 ≠ ‘
ˆE

t

ˆw

t

(3.5)

Weight update can be expressed in terms of the velocity, see equation 3.4. Express-
ing the update in terms of previous weight update gives the equation 3.5. This
combined with the learning rate gives the final update function ⁄�w

t

where ⁄ is
the learning rate and – the momentum multiplier.

26

3.4. OPTIMIZATION WITH GENETIC ALGORITHM

3.3.4 Dropout regime
The regime of dropout is described in subsection 2.2.2 and steams from the work in
the paper [9]. Dropout is used to avoid overfitting the network and is accomplished
by leaving out some of the weight updates performed by the backpropagation al-
gorithm. The results of applying dropout to our model are further discussed in
subsection 5.3.3 where the impact is explored.

3.4 Optimization with Genetic Algorithm
Genetic Algorithms henceforth called GA for short are suited for solving optimiza-
tion problems by an adaptive search method mimicking the evolutionary process
used by nature. The idea is to let a population evolve over many generations, im-
proving every generation by selecting the best individuals and let them mate, the
individuals that performs the worst are taken out of the population. The perfor-
mance of an individual is measured by the objective function. To be given the
opportunity to mate the individual has to participate in a tournament and outper-
form its competitors. Mating means that the two parties participating split their
DNA at a randomly selected crossover point and the parts are interchanged. The
process is repeated for a predetermined amount of generations.

3.4.1 Genome
The genome is the heart of the GA algorithm and is the principal information
carrier. It is a coded form of the parameter space that is to be searched. Each
parameter has to be transformed to a sequence of bits that is transferred to its
specific position within the genome. A parameter can be viewed as a chromosome
making out the parts of the genome. When the GA is initiated, genomes of the
population are generated from randomly generated bit arrays. Three operations
are possible on a genome: partitioning, composition and mutation, these operations
are further described in subsection 3.4.3. The mapping of the genome used in this
paper is described in table 5.11.

3.4.2 Objective function
The objective function determines the fitness of the individual; it evaluates the
result of the underlying algorithm. First the genome has to be transformed from
the bit-patterns representation into parameters used by the underlying algorithm.
When the parameters are transformed, the underlying function is called and the
result processed to give a fitness value that is returned to the GA.

3.4.3 Crossover and mutation
Crossover is mimicking natures reproduction process, genome material from two
spouses are mixed to form a new individual that hopefully has new improved qual-

27

CHAPTER 3. METHOD

ities. Mutation is nature’s way to alter the course of evolution, adding some ran-
domness to the process, leading the new generations into an unexpected path. The
crossover and mutation functions need three operations to perform their task. These
operations are:

• Split the genome at a specific split point.

• Compose two genome parts to a complete genome.

• Mutation of a genome, changing random bits in the genome. A parameter
controls how often a permutation occurs.

In the mating process the two spouses genomes are split at a so called split point,
then one part from each partitioned genome is interchanged and then composed to
a new complete genome. In this way two new o�spring’s are created in the mating
process. Mutation is rarely applied to a child and is determined by a GA-parameter.

3.4.4 The search process
The Genetic search algorithm first initiates the environment and then enters a
loop performing six steps for each generation, this continues for a given number of
generations.

• Measure the fitness of all individuals in the population. This involves evalu-
ating the objective function for those individuals (children) that have not yet
been evaluated.

• Institute a tournament to find out which individuals are empowered to mate,
controlled by parameter.

• Remove unfit individuals, controlled by parameter.

• Perform crossover and possibly mutations.

• Add o�spring to the generation.

• Start a new generation.

After the final generation the optimal solution is the highest ranking individual and
the genome is the optimal parameter setting.
In this paper we used a Genetic Algorithm developed in Python by Google named
Deap. The objective function calls an Octave program that runs the MLP with
the given parameters and returns the RMS error or a linear combination of RMS
error and the width of the confidence interval. In the final generation the best MLP
configuration can be extracted from the highest ranking individuals genome.
The Genetic Algorithm was used to find appropriate parameter settings for the
backpropagation algorithm used to build the MLP model and to find parameters
for the SVR algorithms. Throughout the process the same basic GA was used with

28

3.5. CONFORMAL PREDICTION

the modification of the genome and objective function that needed to be adopted
to the di�erent parameter sets. Results from the trials performed with the GA are
discussed in section 5.4.

3.5 Conformal Prediction
References to theoretical work on conformal production can be found in subsection
2.2.3 where the process is outlined. Generating the ICP interval was done via
the underlying algorithm, in this case this was the well known backpropagation
algorithm. The phase generating the ICP interval was performed as a regular model
build with the exception that the training data for the ICP model, here 3 per cent
or 120 examples was set aside from the initial training set resulting in a calibration
set of 120 examples and a proper training set with 3,880 examples. When building
the ICP model the backpropagation algorithm was allowed to use half of the regular
model’s iterations or a maximum of 2,000, whatever occurs first. In the final test
with the genetic algorithm the parameters used to build the ICP model was given
its own genome space so the parameters for the ICP model was totally decoupled
from the regular model build.

29

Chapter 4

The mathematics of Backpropagation

The model consists of L feature variables, this is the same number as input neurons,
figure 4.1 shows the configuration of the network. Each record in the training data
is comprised of the feature variables x = {x(1), x(2), . . . , x(L)} and a target variable
y. The training set consists of M tuples as follows:
T = {(x(1), y(1)), (x(2), y(2)), . . . , (x(M), y(M))}

4.1 Layout of the neural network
This paper will mainly cover multilayer perceptrons with input nodes, one or two
hidden layers and a regression output node. Note that only regression output will
be used so the output unit is linear and no Softmax will be included.
Let I denote the number of output neurons and H,G the number of hidden units,
see figure 4.1. Finally the number of input neurons is given by L.

4.2 Error function
The error function is used to measure the error between the actual value and the
prediction. Define the error function E (equation 4.1) as the sum of the squared
di�erence between the expected and calculated output , n œ trainingset. Nota
bene that the error function for the regression case is di�erent from the function
used with classification.

E = 1
2

ÿ

n

(t(n) ≠ y(n))2 (4.1)

Taking the derivative of E (equation 4.1) with respect to the weights gives us the
following function:

ˆE

ˆw
i

= 1
2

ÿ

n

ˆy(n)

ˆw
i

ˆE

ˆy(n) = ≠
ÿ

n

ˆy(n)

ˆw
i

(t(n) ≠ y(n)) (4.2)

31

CHAPTER 4. THE MATHEMATICS OF BACKPROPAGATION

Figure 4.1. Layout of neural network. Note that the hidden layer in the lower

part of the figure are optional, both network with one and two hidden layers will be

discussed.

We can now form the batch delta rule �w
i

as

�w
i

= ≠‘
ˆE

ˆw
i

=
ÿ

n

‘
ˆy(n)

ˆw
i

(t(n) ≠ y(n)) (4.3)

32

4.3. ACTIVATION FUNCTIONS IN THE NODES

4.3 Activation functions in the nodes
In this paper we are using three di�erent activation functions. In the hidden nodes
we use either a sigmoid or hyperbolic activation function. The output regression
node is linear. Here we present the equations for the activation functions used and
their derivatives.

4.3.1 Output neuron (Linear)
The linear neurons activation function is defined as

y =
ÿ

i

x
i

w
i

(4.4)

The partial derivatives of the linear activation function are

ˆy

ˆw
i

= x
i

(4.5)

and
ˆy

ˆx
i

= w
i

(4.6)

4.3.2 Logistic neuron (Sigmoid)
Define the activation function for the logistic neuron as

y = 1
1 + e≠z

(4.7)

where
z = b +

ÿ

i

x
i

w
i

(4.8)

The derivative of y is dy

dz

= y(1 ≠ y)
Partial derivatives for z are ˆz

ˆw

i

= x
i

and ˆz

ˆx

i

= w
i

. Now can the partial derivative
of y with respect to w

i

be defined

ˆy

ˆw
i

= ˆy

ˆz

ˆz

ˆw
i

= y(1 ≠ y)x
i

(4.9)

4.3.3 Hyperbolic tangent neuron
Hyperbolic neuron is defined as

y = ez ≠ e≠z

ez + e≠z

(4.10)

where
z = b +

ÿ

i

x
i

w
i

(4.11)

33

CHAPTER 4. THE MATHEMATICS OF BACKPROPAGATION

The derivative of y is dy

dz

= (1 + y)(1 ≠ y)
Partial derivatives for z are ˆz

ˆw

i

= x
i

and ˆz

ˆx

i

= w
i

. From this follows the partial
derivative of y with respect to w

i

is

ˆy

ˆw
i

= ˆy

ˆz

ˆz

ˆw
i

= (1 + y)(1 ≠ y)x
i

(4.12)

and that the partial derivative of y with respect to x
i

is

ˆy

ˆx
i

= ˆy

ˆz

ˆz

ˆx
i

= (1 + y)(1 ≠ y)w
i

(4.13)

4.4 Finding the gradients for the error function
In this section the gradient for the error function both for multilayer perceptrons
with singe and dual layers of hidden units is defined. The notation is based on the
network configuration shown in figure 4.1.

4.4.1 Single hidden layer with hyperbolic activation function
We need to find ˆE

ˆw

oh

and ˆE

ˆw

hi

in order to perform the calculations required by
the back propagation algorithm. As before ‘ is the learning of the gradient decent.
We use �w

oh

and �w
hi

to update the weights w
oh

and w
hi

respectively. N is the
number of observations in a minibatch and n œ minibatch.
For the first weight between the output node and the hidden unit we need to cal-
culate �w

oh

.

�w
oh

= ‘
ˆE

ˆw
oh

= ‘
ˆE

ˆy(n)
o

ˆy(n)
o

ˆw
oh

(4.14)

From equation (4.2) we get ˆE

ˆy

and from equation (4.5) we get ˆy

ˆw

oh

. This gives us
the solution for equation (4.14) as

�w
oh

= ‘
ÿ

n

(t(n)
o ≠ y(n)

o

)z(n)
h

(4.15)

The delta for the weights between the input node and the hidden layer is given by
�w

hi

.

�w
hi

= ‘
ˆE

ˆw
hi

= ‘
ˆE

ˆy(n)
o

ˆy(n)
o

ˆz(n)
h

ˆz(n)
h

ˆw
hi

(4.16)

From equation (4.2) we get ˆE

ˆy

and from equation (4.6) we get ˆy

ˆz

h

. The final part
ˆz

h

ˆw

hi

can we obtain from equation (4.12). This gives us a solution for equation (4.16)

34

4.4. FINDING THE GRADIENTS FOR THE ERROR FUNCTION

as

�w
hi

= ‘
ˆE

ˆy(n)
o

ˆy(n)
o

ˆz(n)
h

ˆz(n)
h

ˆw
hi

=

‘
ÿ

n

ÿ

o

(t(n)
o

≠ y(n)
o

)w
oh

(1 + z(n)
h

)(1 ≠ z(n)
h

)x(n)
i

(4.17)

4.4.2 Dual hidden layers with hyperbolic activation function

For the dual hidden layer configuration we are going to use the two delta weights
ˆE

ˆw

og

(previously named ˆE

ˆw

oh

) and ˆE

ˆw

gh

(previously named ˆE

ˆw

hi

) from previous
section 4.4.1 and one additional weight between the input nodes and lower hidden
layer ˆE

ˆw

hi

, for the notations see figure 4.1.
The delta for the weights between the output units and the upper hidden layer,
�w

og

is given by equation (4.14) but with the indexes renamed.

�w
og

= ‘
ˆE

ˆw
og

= ‘
ˆE

ˆy(n)
o

ˆy(n)
o

ˆw
og

= ‘
ÿ

n

(t(n)
o

≠ y(n)
o

)z(n)
g

(4.18)

The same holds for the delta weights between the two hidden layers �w
gh

that can
be obtained by rewriting the indexes of equation (4.16) with the indexes renamed.

�w
gh

= ‘
ˆE

ˆw
gh

= ‘
ˆE

ˆy(n)
o

ˆy(n)
o

ˆz(n)
g

ˆz(n)
g

ˆw
gh

=

‘
ÿ

n

ÿ

o

(t(n)
o

≠ y(n)
o

)w
og

(1 + z(n)
g

)(1 ≠ z(n)
g

)z(n)
h

(4.19)

For the final delta weight �w
hi

we have to perform some additional work to solve
the equation. We need to find the partial derivative ˆz

(n)
g

ˆz

(n)
h

. Using the equation (4.13)
we can get

ˆz(n)
g

ˆz(n)
h

= (1 + z(n)
g

)(1 ≠ z(n)
g

)w
gh

Now we can find the equation for �w
hi

using the above partial derivative

�w
hi

= ‘
ˆE

ˆw
hi

= ‘
ˆE

ˆy(n)
o

ˆy(n)
o

ˆz(n)
g

ˆz(n)
g

ˆz(n)
h

ˆz(n)
h

ˆw
hi

=

‘
ÿ

n

ÿ

o

ÿ

g

(t(n)
o

≠ y(n)
o

)w
og

(1 + z(n)
g

)(1 ≠ z(n)
g

)w
gh

(1 + z(n)
h

)(1 ≠ z(n)
h

)x(n)
i

(4.20)

35

CHAPTER 4. THE MATHEMATICS OF BACKPROPAGATION

4.5 Matrix calculations for the MLP
Let H1 and H2 be the number of hidden units for layer 1 and 2. The number of
inputs are represented by I and the number of observation in a minibatch is N . For
regression output, as in this paper the number of output units is equal to one and
is denoted by O.
Let X be a I ◊N matrix of the input features in a minibatch, Y and T are matrices
of size O ◊ N and denotes the predicted value and target value respectively.

4.5.1 Single hidden layer with hyperbolic activation function
Let � be the O ◊ H1 matrix of weights on the connection from hidden units to
output units and W is the I ◊ H1 matrix with weights on the connections from
input units to the hidden units. The output of the hidden unit is represented as a
H1 ◊ N matrix � for a single minibatch.
Now we can represent the equation (4.15) in vectored form as

1
N

(Y ≠ T)�T

and for equation (4.17) we get

1
N

(�T(Y ≠ T)) ¶ (1 ≠ �) ¶ (1 ≠ �)XT

4.5.2 Dual hidden layers with hyperbolic activation function
Now let � be the O ◊ H2 matrix of weights on the connection from the second
layer of hidden units to output units and W is the I ◊ H1 matrix with weights on
the connections from input units to the first layer of hidden units. The output of
the first hidden unit is represented as a H1 ◊ N matrix � and a H2 ◊ N matrix �

for the second layer. Let � be the H1 ◊ H2 matrix of weights on the connections
between the hidden layers.
Now we can represent the equation (4.18) in vectored form as

1
N

(Y ≠ T)�T

and for equation (4.19) we get

1
N

(�T(Y ≠ T)) ¶ (1 ≠ �) ¶ (1 ≠ �)�T

and finally for equation (4.20) we get

1
N

�((�T(Y ≠ T)) ¶ (1 ≠ �) ¶ (1 + �)) ¶ (1 ≠ �) ¶ (1 + �)XT

36

4.5. MATRIX CALCULATIONS FOR THE MLP

If we take the weight decay into account the final matrix representation for equations
(4.18, 4.19, 4.20) becomes

1
N

(Y ≠ T)�T + ⁄�

1
N

(�T(Y ≠ T)) ¶ (1 ≠ �) ¶ (1 ≠ �)�T + ⁄�

1
N

�((�T(Y ≠ T)) ¶ (1 ≠ �) ¶ (1 + �)) ¶ (1 ≠ �) ¶ (1 + �)XT ≠ ⁄W

Where ¶ is the element-wise multiplication operator for two equal sized matrices.

37

Chapter 5

Experiments and Results

In this chapter we present the results obtained during the experiments done for this
thesis. In the first section 5.1 of this chapter the Support Vector Regression trials are
discussed. Three di�erent kernels have been tested and manually tuned, these are:
radial, sigmoid and polynomial kernels. In the presentation of the results findings
from the trials with parameters determined by the GA is included for comparison.
The evaluation of the results obtained by the GA is discussed in subsection 5.4.1.
Experiments with the Multilayer Perceptron are divided into two sections where
the first discuss the tuning of the general backpropagation parameters. In the
second section the findings regarding the improvements are discussed. Results from
the experiments with: early stopping, mini-batch, random initialization of weights
and construction of conformal prediction regions are presented. Findings from the
experiment with the Genetic Algorithm used to tune parameters for the SVR and
MLP are discussed in section 5.4 where the two paradigms are discussed in separate
subsections. This chapter is concluded with a section summing up the important
findings from the experiments.

5.1 Performance of support vector regression (SVR)
Performance of the Multilayer Perceptron is compared against a more commonly
used machine learning algorithm, the support vector regression algorithm was cho-
sen as a basis for this comparisons. Henceforth the Support Vector Machine and
Support Vector Regression will be shortened to SVM and SVR respectively. Tests
of the SVR performance are based on the open source library Libsvm using the
Python implementation. Calculations are done using the epsilon-SVM, which uses
the epsilon intensive loss function. Common parameters used by the SVR are: ‘
(epsilon) used in the loss function and the cost parameter C. To give the SVR
model a fair chance three di�erent kernels were evaluated: Radial, Sigmoid and
Polynomial. These test runs are described in the tables 5.1, 5.2 and 5.3 of the
following sections. Two di�erent methods of finding the parameters were used, one
with manually selected parameters and the other using a genetic algorithm. In the

39

CHAPTER 5. EXPERIMENTS AND RESULTS

first approach parameter ranges were selected manually in an initial run and with
knowledge from that stage a second run was performed with narrowed parameter
intervals. Each parameter where tested with about 4-5 points in the interval. The
second approach was to let a genetic algorithm select the best parameter set; this
procedure is described in details in section 5.4.

5.1.1 Radial Kernel

The Radial kernel is calculated using the radial basis function (RBF) e≠“|u≠v|2 . One
kernel parameter “ is used.

Table 5.1. Finding parameters for Radial SVR

Kernel Run Param Low Hi Best

Radial

Course

Cost param 2 512 256
Kernel gamma 3.051758e-05 1.0 0.015625
Loss epsilon 0.000244 1.0 0.015625

Verify Error in % 0.040715
RMS error 0.055867

Test Error in % 0.054865
RMS error 0.073860

Fine

Cost param 2.853117 4.594973 3.797498
Kernel gamma 0.016600 0.751315 0.111678
Loss epsilon 0.002039 0.092296 0.005289

Verify Error in % 0.040370
RMS error 0.055633

Test Error in % 0.056366
RMS error 0.075934

GA

Cost param 0.25 64 5.75
Kernel gamma 0.031250 0.156250 0.085449
Loss epsilon 0.003906 0.019531 0.008057

Verify Error in % 0.040241
RMS error 0.055460

Test Error in % 0.056041
RMS error 0.075436

Radial: e≠“|u≠v|2 , GA: population=200, generations=100, selection=50% X-
over=50%, mutation=5%

From the table 5.1 it follows that the lowest verification error is produced by the
GA selected parameters, giving a RMS error of 0.055460. Applying the test data
on this model gives a RMS error of 0.075436 that actually is higher than what the
manually selected parameters would have produced.

40

5.1. PERFORMANCE OF SUPPORT VECTOR REGRESSION (SVR)

5.1.2 Sigmoid Kernel
The Sigmoid kernel is calculated using the equation tanh(“uT v + c0). Parameters
for this kernel are “ and the coe�cient c0.

Table 5.2. Finding parameters for Sigmoid SVR

Kernel Run Param Low Hi Best

Sigmoid

Course

Cost param 789.75 1024 1024
Kernel gamma 0.000188 8 0.000244
coef0 0.001266 1 0.001953
Loss epsilon 0.013719 1 0.015625

Verify Error in % 0.0466276
RMS error 0.063818

Test Error in % 0.062559
RMS error 0.084042

Fine

Cost param 955.59 1692.89 1692.89
Kernel gamma 0.000367 0.000590 0.000537
coef0 0.000865 0.001532 0.001266
Loss epsilon 0.022095 0.032349 0.022095

Verify Error in % 0.045878
RMS error 0.062007

Test Error in % 0.062063
RMS error 0.082555

GA

Cost param 0.03125 7.9688 7.8750
Kernel gamma 0.01562 1.01562 0.01562
coef0 -0.5 0.5 -0.50000
Loss epsilon 0.00098 1.0010 0.02344

Verify Error in % 0.044256
RMS error 0.060323

Test Error in % 0.058019
RMS error 0.078112

Sigmoid: tanh(“uT v + c0), GA: population=200, generations=100, selec-
tion=50% X-over=50%, mutation=5%

Results from the Sigmoid kernel are presented in the table 5.2. For this kernel the
best results, based on the RMS error, are obtained for the model with parameters
picked by the GA, with an RMS error of 0.060323 for the verification set and
0.078112 for the test set. This is also the over all lowest error rate for the verification
sets.

5.1.3 Polynomial Kernel
For the polynomial kernel the kernel function are; (“uT v + c0)d. This kernel uses
three parameters: “ and the coe�cient c0 as for the Sigmoid kernel in section 5.1.2

41

CHAPTER 5. EXPERIMENTS AND RESULTS

and with an additional parameter determining the polynomial degree.

Table 5.3. Finding parameters for Polygon SVR

Kernel Run Param Low Hi Best

Poly

Course

Cost param 0.015625 16 0.5
Kernel gamma 0.003906 0.25 0.03125
Kernel degree 2 8 8
Loss epsilon 0.007812 0.125 0.007812

Verify Error in % 0.0411920
RMS error 0.0560074

Test Error in % 0.0579445
RMS error 0.077401

Fine

Cost param 0.31863 1.0 0.683013
Kernel gamma 0.022095 0.385543 0.057309
Kernel degree 2 8 5
Loss epsilon 0.003284 0.239392 0.003284

Verify Error in % 0.040356
RMS error 0.055638

Test Error in % 0.056168
RMS error 0.075729

GA

Cost param 0.001 4.984375 4.140625
Kernel gamma 0.003906 1.0 0.09375
Kernel degree 1 5 3
Loss epsilon 0.001953 0.017578 0.010986

Verify Error in % 0.040886
RMS error 0.055898

Test Error in % 0.058598
RMS error 0.078522

Poly: (“uT v + c0)d, GA: population=200, generations=100, selection=50%
X-over=50%, mutation=5%

Results from the tests are in the table 5.3 where it can be seen that the preferred
model based on the RMS error of the verification set originates from the manually
fine tuned parameter setting. This selection gives a model that generates a RMS
error of 0.075729 when applying the test set.

5.2 Tuning parameters for the Multilayer Perceptron

In this section the process of finding appropriate values for the parameters con-
trolling the calculations generating the prediction model are explored. The process
of finding good parameters is iterative and requires several round trips. This fact
is though not reflected in this section but we have chosen to present the results

42

5.2. TUNING PARAMETERS FOR THE MULTILAYER PERCEPTRON

grouped by the di�erent parameter classes. For each table presenting the result the
conditions under which it has been performed is clearly stated.

5.2.1 Finding values for learning rate and momentum

The importance of how the weights are updated is stressed in section 3.3.3 where we
introduce the concepts: learning rate and momentum. Here we study the e�ect of
these parameters on the model and determines favourable values for these. During
this process the MLP configuration was fixed to use two hidden layers with 10 nods
each, weight decay was set to 10≠6. In the initial trial the algorithm was allowed to
run for 500 iterations. The parameter space for the two parameters were initially
tested with the values 0.1 0.3 0.6 0.9 corresponding to the first row of table 5.4.

Table 5.4. Searching for learning rate and momentum using 500 iterations, averages

over 5 runs

Test interval Best test result Validation error Test error
L-rate Moment L-rate Moment RMS RMS
0.10 - 0.90 0.10 - 0.90 0.60 0.90 0.04537 0.04840
0.10 - 0.70 0.90 - 0.90 0.70 0.90 0.04551 0.04843
0.60 - 0.70 0.85 - 0.95 0.675 0.95 0.04417 0.04738
0.65 - 0.70 0.92 - 0.98 0.675 0.94 0.04440 0.04735
0.66 - 0.68 0.94 - 0.96 0.68 0.95 0.04360 0.04686

Average over 5 runs, weight decay = 1e-6, Nodes = [10,10], Iterations = 500, Mini-
batch = 194, no noise added

This test indicates that the best parameter setting is located near a momentum
of 0.9 and a learning rate near 0.6. After further testing with parameters in the
neighbourhood of the favourable values found in the initial test, the best values for
the learning rate is 0.68 and for the momentum it is 0.95. The best results for each
test are presented in table 5.4 and are given as the mean of the results from five
runs.
The previous procedure was repeated using 4,000 iterations in order to study the
e�ect on the studied parameters. From these tests it is clear that the learning rate
has to be reduced to about 0.30 and with the momentum kept fixed. Increasing
the number of iterations favours a lower learning rate that avoids “overfitting” the
model. Results from these tests are gathered in table 5.5.

43

CHAPTER 5. EXPERIMENTS AND RESULTS

Table 5.5. Searching for learning rate and momentum using 4000 iterations, averages

over 5 runs

Test interval Best test result Validation error Test error
L-rate Moment L-rate Moment RMS RMS
0.10 - 0.90 0.10 - 0.90 0.30 0.90 0.04227 0.04577
0.10 - 0.70 0.90 - 0.90 0.30 0.90 0.04227 0.04579
0.10 - 0.30 0.85 - 0.95 0.30 0.95 0.04185 0.04561
0.28 - 0.32 0.93 - 0.97 0.32 0.95 0.04190 0.04576
0.31 - 0.33 0.96 - 0.98 0.32 0.98 0.04204 0.04567
0.30 - 0.50 0.90 - 0.99 0.30 0.95 0.04181 0.04561

Average over 5 runs, weight decay = 1e-6, Nodes = [10,10], Iterations = 4000,
Mini-batch = 194, no noise added

To close up this section we found that the best parameters for a long running
algorithm are in the neighbourhood of 0.30 for the learning rate and 0.95 for the
momentum. For configurations that use fever iterations to find a suitable model
should use values in the vicinity of 0.68 and 0.95 respectively.

5.2.2 Searching for appropriate MLP configuration
Configuration of the network has a profound impact on the models performance. In
this work the basic configuration of the network was fixed to four layers: input layer
with 54 nodes, one for each feature, two hidden layers with configurable number of
nodes for each layer and a single output node producing the regression result. In
this section the challenge was to find an apposite number of nodes for the internal
layers of the network. The initial trials were restricted to sixteen nodes for each
of the internal layers, see figure 4.1. For this configuration the best result was
obtained for the configuration with 14 nodes in the first hidden layer and 8 in the
second. As shown in table 5.6 the results are quite unvarying with small di�erence
between the best and worst results for the RMS error for the verification set. The
low value for the standard deviation for the best configuration is also a sign of a
better consistency among those models.

Table 5.6. Searching for node configuration for L1 and L2, averages over 5 runs

Test interval Result Validation error Test error
Type L1 L2 L1 L2 RMS S-dev RMS S-dev
Best 4 - 16 4 - 16 14 8 0.04167 0.19e-3 0.04554 0.20e-3
Worst 4 - 16 4 - 16 4 14 0.04315 1.25e-3 0.04638 0.79e-3

Average over 5 runs, weight decay = 1e-6, learning rate = 0.30, momentum = 0.95,
Iterations = 4000, Mini-batch = 194, no noise added, regular init

The ability to create a high quality model depends on the number of nodes in the
network and number of iterations of the algorithm. Results of this investigation are

44

5.3. BOOSTING MULTILAYER PERCEPTRON PERFORMANCE

presented in table 5.7 where the search for best node configuration from table 5.6
has been performed with five di�erent values for the iteration count. As expected
increasing the number of iteration generates models, which have lower error rate
and produces more homogeneous results.

Table 5.7. Impact of iteration length on node configuration for L1 and L2, averages

over 5 runs

Best result Validation error Test error
Iterations L1 L2 RMS S-dev RMS S-dev
125 4 4 0.05745 3.92e-3 0.05937 3.71e-3
250 4 16 0.04930 1.47e-3 0.05191 1.37e-3
500 12 8 0.04437 0.29e-3 0.04772 0.39e-3
750 12 16 0.04327 0.55e-3 0.04673 0.24e-3
1000 12 8 0.04281 0.16e-3 0.04609 0.49e-3

Average over 5 runs, weight decay = 1e-6, Nodes[4-16,4-16], learning rate
= 0.30, momentum = 0.95, Mini-batch = 194, no noise added, regular init

Further conclusions can be drawn from the results in table 5.7 where it shows that
models with fewer nodes performs better when the number of iterations is low and
contrary for models that are permitted more iterations. This is due to the fact that
a more complex MLP requires additional iterations to find a good solution. Each
new node contributes to the total dimension of the n-dimensional space to search
with gradient descent.

5.3 Boosting multilayer perceptron performance
There are several techniques that can improve the results and speed up the running
time of the backpropagation algorithm. In this section we discuss early stopping
that can prevent overfitting of the model, running time can be improved by the
weight update regime called mini-batch. Random initialization of the weights and
selection of interval can impact which solution is found by the gradient descent
algorithm and in the end a�ect the quality of the models prediction. Finally the
concept of conformal prediction is explored, this algorithm predicts an interval in
which the result will stay within with a parameterised likelihood.

5.3.1 Early stopping
Early stopping is a regime intended to reduce the problem of overfitting of the
model especially if the network has more nodes than actually required to represent
the learning problem. One symptom of this is that the weights start to move away
from 0 particularly for the most important nodes. As the training progresses less
important weights are also moving away from 0 the training error decreases but the
models ability to generalize is reduced.

45

CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.1. Early stopping

The idea behind early stopping is to verify the error rate on a hold out set, in
this case the validation set, and stops the backpropagation when it increases. This
is achieved by monitoring the output of the loss function for the validation data
during training. Behaviour of the loss for training and validation sets can be seen
in diagram 5.1. As long as the loss value decreases the current model are saved
and the back propagation continues. If the error on the validation set increases
the model is not saved. When the algorithm reaches the predetermined number of
iteration the saved model (taken at the lowest seen error rate) is returned as result.
So if the error rate decreases asymptotically during the whole backpropagation the
final model will be returned if not the intermediary model is used.

Table 5.8. Early stopping, averages over 5 runs

Testing Validation set error Test set error
Percent RMS Percent RMS

No early stopping 0.03066 0.04484 0.03306 0.04780
Early stopping 0.02940 0.04154 0.03246 0.04586

Average over 5 runs, weight decay = 1e-6, Nodes = [10,10], learning
rate = 0.30, momentum = 0.95, Iterations = 50000, Mini-batch =
194, no noise added

46

5.3. BOOSTING MULTILAYER PERCEPTRON PERFORMANCE

The result of applying early stopping can be seen in table 5.8. Here the best result is
obtained after about 7.000 iterations on average. The favourable e�ect is significant
for both the test and validation set.

5.3.2 Mini-batch

Multilayer Perceptrons can be trained using one of three di�erent schemas discussed
in section 3.3. The size of the mini-batch chunks a�ects the speed of the algorithm,
in table 5.9 the algorithm is applied with mini-batch chunks of size 97, 194, 388,
970 and 1940.

Table 5.9. Mini batch performance, averages over 5 runs

Testing Validation error Runtime
Batch size Percent RMS error Running time Speed up percent
None 0.02944 0.04191 159.6 s
1940 0.02952 0.04180 129.2 s 19.0
970 0.02958 0.04208 91.6 s 42.6
388 0.02970 0.04236 81.3 s 49.0
194 0.02936 0.04187 78.1 s 51.0
97 0.02987 0.04228 75.5 s 52.7

Weight decay = 1e-7, Nodes = [10,10], learning rate = 0.30, momentum = 0.95,
Iterations = 10000, Early stopping = on, no noise added

The rightmost column holds the speed increase of the mini-batch regime over batch
processing. As the chunk size of the mini-batch is decreased the root mean square
error of the prediction slightly increases due to the fact that fewer samples are used
in the calculation that a�ects the weight update.
The results of the tests shows that with a sensible selection of mini-batch chunk
size, in this case 970, a good model can be produced in about half the time with a
minor increase for the root mean square error. Studying figure 5.2 shows that the
RMS error is relatively una�ected by the change of mini-batch size, this behaviour
is the same for both the test and verification set.
If the ICP interval is taken into account the conditions changes somewhat. We can
see from the figure 5.3 that a good choice of mini-batch size is 1940 with respect to
the performance of the ICP-interval. This gives a speed gain of about 20 per cent
without increasing the width of the ICP-interval or a�ects the RMS error signifi-
cantly. More about the conformal prediction findings in section 5.3.4.
In some applications of the MLP processing time is limited due to hardware re-
strictions or business rules and those gives rise to the mini-batch approach where a
good model can be built in a fair amount of time. The total runtime of the model
construction can be regulated via the mini-batch size.

47

CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.2. Impact of mini-batch size on RMS error

Figure 5.3. Impact of mini-batch size on ICP-interval

48

5.3. BOOSTING MULTILAYER PERCEPTRON PERFORMANCE

Figure 5.4. Normalized vs regular initialization

5.3.3 Random initialization of weights and dropout

In this section two di�erent schemas for weight initialization are evaluated and the
paradigm of “dropout” is investigated.
Initialization of weights is discussed in chapter 2.2.1 and steams from the work
done by Glorot and Bengio in their paper [8]. The initialization of the weights is
important and can have significant e�ect on the resulting model especial for deep
networks. In this work the e�ect can only be elicited when the noise is added to
the weights. When all weights are updated in each iteration the e�ect of not using
the normalized weight initialization is masked by the gradient descent, which is still
able to find a good solution. This topic is future discussed in chapter 3.3.2.
The regime of “dropout” is discussed in chapter 2.2.2 where the paper [9] by Hinton
et al. is explored. To investigate the e�ect five levels of “dropout” were tested
�

M

: M = 0.0 ≠ 0.4 (M = proportion of weights left out in weight update), where
�0.0 corresponds to no “dropout”. In diagram 5.4 the �0.0, �0.3 values are presented
in conjunction with two weight initialization regimes presented above. From this
diagram it can be deduced that “dropout” gives an advantage when fewer iteration
are used, when the amount of iterations is increased the e�ect fades out but has
clearly a favourable e�ect for situations where few iteration are used. Further
discussions on this topic can be found in chapter 2.2.2.

49

CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.5. E�ect of dropout on ICP interval

5.3.4 Conformal Prediction

The regime of dropout a�ects the calculations of the ICP interval negatively and
creates a wider region compared to the calculations not using dropout, see figure
5.5. This e�ect is not surprising due to the fact that the calibrating set used to train
the ICP model is quite small; in this context we use 120 examples. As expected the
widening of the predictive region increases the amount of predictions made within
the region, see figure 5.6.
After about 3,000 iterations the ICP model is able to generate tight predictive
regions, about ± 0.0855 wide and with 96 per cent of the predictions within the
interval. The best result is obtained after 10,000 iterations with a region about ±
0.0832 wide and predictions still within 96 per cent of the time. Note that these are
average values taken over 5 runs. The single best result is a width of 0.0749 and
with 94 per cent predictions within the region.
These results are promising and shows that the apparatus has the ability to find tight
predictive regions and where it can make predictions within that region meeting the
given confidence level.

50

5.4. FINE TUNING OF PARAMETERS WITH GENETIC ALGORITHM

Figure 5.6. E�ect of dropout on ICP confidence

5.4 Fine tuning of parameters with Genetic Algorithm

Finding appropriate parameters for the Support Vector Regression and the Multi-
layer Perceptron is a challenge in it self. In article [1] referred to in subsection 2.1.6
discusses the usage of genetic algorithms to find good parameters. Genetic Algo-
rithms will henceforth often be shortened to GA. The result of the parameter search
using a genetic algorithm is presented in the section below. An open source package
called DEAP (Distributed Evolutionary Algorithms in Python) was used to drive
the genetic algorithm in Python. The following parameter configuration was used
by the algorithm: a population of 200 individuals running for 100 generations with
a selection of 50%, crossover of 50%, mutation rate at 5% and a tournament size
of 16. More about how the genetic algorithm was structured can be found under
section 3.4 and related work using genetic algorithms are referenced in subsection
2.1.6.

5.4.1 Tuning of SVR parameters

The SVR parameters were tuned using a GA previously described. Data from these
runs are presented in the tables 5.1, 5.2 and 5.3 of chapter 5.1 and summarised in
table 5.10 below.

51

CHAPTER 5. EXPERIMENTS AND RESULTS

Table 5.10. Tuning of SVR Perceptron using Genetic Algorithm

GA tuned Manually tuned
SVR- type Test error Test RMS error Test error Test RMS error
Radial 0.056041 0.075436 0.056366 0.075934
Sigmoid 0.058019 0.078112 0.062063 0.082555
Polynomial 0.058598 0.078522 0.056168 0.075729

From the results in table 5.10 it can be seen that no exceptional improvement is
gained with the parameters generated using the GA. Performance for the SVR based
on a Radial kernel was somewhat better, for the Sigmoid kernel the improvement
was the highest in this trial, but the Polynomial kernel performed slightly worse for
the model that used GA generated parameters. This vouches for that reasonably
good parameters are found and that this results can serve as a good comparison
with the results from the MLP. This gives that the MLP has to predict the outcome
with a RMS error below 0.075436 in order to outperform the SVR model.

5.4.2 Tuning of Multilayer Perceptron
In this paper we present two di�erent schemas where the optimization is done on
two di�erent criterions. Initially we constructed a GA which goal was to optimize
the error in the model. The genome was constructed out of seven parameters used
to drive the MLP algorithm, this are presented in table 5.11 together with their
range and segment of the genome.

Table 5.11. Translation of genome to parameter space

Genome size Interval
Parameter # bits Lower Upper Winner
Nodes Layer 1 6 1 16 16
Nodes Layer 2 6 1 16 16
Weight decay 2 1e-5 1e-8 1e-5
Learning rate 7 0.0078125 0.9921875 0.15625
Momentum 7 0.0078125 0.9921875 0.984375
Add noise 1 false true false
Regular initialization 1 false true false

The first unpretentious approach to the task of using a GA to optimize the MLP
parameters used the negative RMS error as objective function. Several trials where
conducted to find appropriate parameter boundaries for the GA to work with. The
results of the MLP models produced by the GA are presented in table 5.12. Here
the best and second best results are shown for the three di�erent approaches to
MLP optimization. Studying the results from the unsophisticated trial to optimize
the RMS errors shows that the model produces predictions with a low error but the
conformal prediction interval is exceptionally wide, for the best result it is about

52

5.4. FINE TUNING OF PARAMETERS WITH GENETIC ALGORITHM

0.23 that is almost ± one quarter of the predicted result. This renders a vain
conformal prediction that contributes very little confidence for the model, same
situation holds for the second best result.

Table 5.12. Result from MLP model selected by GA

GA goal Position Set RMS error ICP interval Confidence

RMS error first Validation 0.040941 0.245985 0.969880
Test 0.044461 0.231206 0.972864

second Validation 0.041765 0.180229 0.955823
Test 0.046044 0.194983 0.965829

ICP first Validation 0.042136 0.073344 0.945783
Test 0.045737 0.074467 0.928643

second Validation 0.042575 0.074479 0.941767
Test 0.046370 0.075442 0.922613

ICP and RMS first Validation 0.041491 0.069185 0.929719
Test 0.045339 0.069497 0.910553

second Validation 0.041454 0.071395 0.935743
Test 0.045476 0.071886 0.930653

GA configuration: population=200, generations=100, selection=50% X-over=70%, muta-
tion=5%

The discouraging results from the first GA trial were tackled by changing the ob-
jective function to return the ICP for the MLP model. As shown in the table 5.12,
this gives more confidence to the model by giving a conformal prediction interval of
0.0754 and meats the 95 per cent confidence at 92.26 per cent, still with a low RMS
error of 0.04637. This result is quite useful but the fact that it only can predict the
result within the conformal prediction interval 92.26 per cent of the time is still a
bit disappointing.
Actually we want to find a good balance between the RMS error and the ICP inter-
val to raise the belief for the model. This was achieved by modifying the objective
function to weight the result of the conformal prediction interval (ICP) and RMS
error (ERMS) with their expected values. The resulting objective function becomes

f
obj

= 1
2

ICP

ICP
Expected

+ 1
2

ERMS

ERMS
Expected

. In the previous experiments the MLP used to build the model for the conformal
prediction used the same parameters as the MLP for the predicting model. Here
the GA was used to select independent parameters for the MLP building the ICP
model. We expanded the genome from 24 to 48 bits and used the same parameter
transformation described in table 5.11 for the second MLP calculating the results for
the ICP. This constellation of perceptrons performed well and constructed a model
that could predict the price with a RMS error of 0.0455 and conformal prediction
interval of ±0.0719. Though note that the goal of a 95 per cent confidence was not

53

CHAPTER 5. EXPERIMENTS AND RESULTS

reached, the model could only predict results for 93 per cent of the test set within
the conformal prediction interval.

5.5 Summation of results
The thesis in this paper is that apartment prices on the Stockholm market can be
predicted with a Multilayer Perceptron. Results from this paper can be compared
with the findings from article [5] discussed in section 2.1.6 where prediction of the
real estate values in the Malaysian housing market was studied and where they as
result obtained a root mean square error of 0.061717 for their MLP based model.
This should be compared to the root mean square error of 0.0455 shown in this
paper. To evaluate the performance of the models the result has to be translated
to actual denormalised apartment prices, this is presented in table 5.13 below.

Table 5.13. Result from above experiments

Approach Error RMS error ICP interval Confidence
SVR Radial 481,000 SEK 647,931 SEK
MLP 273,000 SEK 356,000 SEK 613,000 SEK 93.6 %

From table 5.13 we can see that the Multilayer Perceptron outperforms the Support
Vector Regression and the result from the latter is too deficient to be used in many
commercial applications. The results from the MLP are more promising and can
predict the price with a root mean square error of about 356,000 SEK and estimate
the price within an interval of ± 613,000 SEK 93.6 per cent of the time. This
precision should be su�cient to be used as a tool or indicator for realtors and
consumers. Note that this estimate should be compared with a realtor estimating
a price without the ability to visit the apartment or get any description of it apart
from the address. In this context the estimate produced by the MLP can probably
compete with an experienced estate agents appraise.

54

Chapter 6

Conclusion

In this thesis we have shown that a predictive model estimating the price of an
apartment in the central part of Stockholm using a Multi Layer Perceptron facili-
tated by the backpropagation algorithm can be constructed. All data used comes
from “Open Data” sources available to the general public. Several enhancement
techniques have been applied to the solution in order to increase the quality of the
prediction and speed up the computations. Finally the result is compared with
previous studies in the field using di�erent approaches and performed on varied
geographical locations.

6.1 Proceedings to improve quality and speed of
backpropagation algorithm

In section 5.3.1 we show how early stopping can hinder the model from overfitting
and result in a better prediction both for the test and validation set. The running
speed can be cut considerably by applying the mini-batch regime of weight update.
In section 5.3.2 a performance gain of 50 per cent with respect to running time is pre-
sented and with a marginal increase of the RMS error. The investigations regarding
the e�ects of implementing normalized weight initialization and dropout could only
show improvements for dropout when the number of iterations was low. For the
normalized weight initialization no significant improvements could be concluded.

6.2 Benefits of using GA to find appropriate parameter
settings

Tuning a MLP configuration is a challenging task and requires both skill and e�ort.
Initial trials adjusting the parameters were performed manually to get a sense of
the models behaviour. Parameters selected by the GA did outperform the manually
selected ones. The improvement is not strikingly significant for the RMS error but
was e�ective in shrinking the predictive region from 0.0832 to 0.0719 per cent.

55

CHAPTER 6. CONCLUSION

6.3 Performance of MLP model in general
From the results established via experiments documented in chapter 5 and sum-
marised in section 5.5 it is clear that a well performing model can be built. In this
thesis paper we have established the following:

• Enriched the prediction from the MLP model with a predictive region pro-
duced by the Inductive Conformal Prediction algorithm.

• Fabricated a Multilayer Perceptron model that can predict the price of a
condominium with a root mean square error of 0.0455 per cent and conformal
prediction region of ±0.0719 at the 95 per cent level. Predicting 93.6 per cent
within the region. This corresponds to root mean square error of 356,000 kr
and prediction interval of 613,000 kr.

• Show that the MLP can perform better than a SVR with a root mean square
error of 0.0453 and 0.0759 respectively.

• Enhance the results by applying a Genetic Algorithm selecting the parameters
driving the backpropagation algorithm. Improving the RMS error result from
0.0458 to 0.0455 per cent and shrinking the predictive region from 0.0832 to
0.0719.

• Demonstrated how the mini-batch regime of weight updates can improve the
running time of the backpropagation algorithm with 50 per cent.

56

Chapter 7

Discussion

During the work on this master thesis a number of new insights and ideas regarding
improvements has been born and scrutinized. This gives rise to continued e�orts
on improving the apparatus devised in this work. They can be divided into two
groups: enrichment of the data set by adding new features and improvements on
algorithms. Some of these ideas are discussed here in the final section of the paper.

7.1 Improving the feature space
A variety of information sources were used to create the feature set but no Internet
based realtor’s were willing to share their textual descriptions of the apartments
sold. This source of information is probably the single most important piece of
information needed to make a leap in the quality of the model. Studying the textual
descriptions of apartment sales advertising indicates that the realtor’s use a common
jargon when writing these descriptions. Hence the textual description would be
partitioned into tokens, from these so called N-grams (the N nearest neighbouring
tokens are clustered together) can be constructed. From this list of N-grams the
most frequent are selected, each N-gram becomes a feature and is added to the
feature set fed into the NLP. This arrangement would hopefully be able to detect
some of the more soft (non metric) qualities of the apartment.
Transportation to and from workplaces and social activities can be time consuming
in Stockholm, especially to areas with spares local bus tra�c. Adding features,
which hold the commuting time from the apartment to a handful of carefully selected
destinations. This information could be facilitated using “Resguiden” an application
maintained by Stockholm Lokaltrafik.

7.2 Algorithmic improvements
The regime described in [1] of using a GT to compute a objective function used by
a GA to select a preferred feature set that is fed into the MLP constructing the
predictive model is probably a good extension of this work that probably can raise

57

CHAPTER 7. DISCUSSION

the quality of this work. Combining the GT feature selection with the extended
feature set discussed in previous section 7.1 is a natural extension of this work. The
GT feature selection could be viewed as a pre processing of the feature set and the
MLP and GA parameter optimization would take place as mentioned in this paper.
There are probably good prospects of reducing the predictive region by investigating
di�erent non-conformity measures. In the paper [11] the authors present a improve-
ment of the predictive region from 19.442 for the algorithm used in this paper to
14.228 using algorithm 2.10 at the 95 per cent level.

58

References to articles

[1] I. D. Wilson, Antonia. J. Jones, D. H. Jenkins, and J. A. Ware. Predict-
ing housing value: Attribute selection and dependence modelling utilising the
gamma test. In Advances in Econometrics, pages 243–275, 2004.

[2] Vânia. Ceccato and Mats Wilhelmsson. The impact of crime on apartment
prices: Evidence from Stockholm, Sweden. Geografiska Annaler: Series B,
Human Geography, 93(1):81–103, March 2011.

[3] Max Kummerow. Theory for real estate valuation: An alterna-
tive way to teach real estate price estimation methods. White
paper, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.12&rep=
rep1&type=pdf Last visited: 2014-11-14.

[4] Andrew Caplin, Sumit Chopra, John Leahy, Yann Lecun, and Trivikrmaman
Thampy. Machine learning and the spatial structure of house prices and
housing returns. White paper, http://cess.nyu.edu/caplin/wp-content/
uploads/2010/02/Machine-Learning-and-the-Spatial-Structure-of-House-
Prices-and-Housing-Returns.pdf Last visited: 2014-11-14, December 14 2008.

[5] Ku. Ruhana. Ku. Mahamud, Azuraliza. Abu. Baker, and Norita. Md. Norwawi.
Multi layer perceptron modelling in the housing market. Malaysian Manage-
ment Journal, 3(1):61–69, 1999.

[6] A. Stefánsson, N. Konc̆ar, and Antonia J. Jones. A note on the gamma test.
Neural Computing and Applications, volume 5:131–133, 1997.

[7] Hari. Arul and Andres. Morales. NYC condo price estimation using NYC
open data. White paper, http://cs229.stanford.edu/proj2011/ArulMorales-
NYCCondoPriceEstimationUsingNYCOpenData.pdf Last visited: 2014-11-14.

[8] X. Glorot and Y. Bengio. Understanding the di�culty of training deep feed-
forward neural networks. Journal of Machine Learning Research, Proceedings
Track 01:249–256, 2010.

[9] Geo�rey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Improving neural networks by preventing co-adaptation
of feature detectors. CoRR, abs/1207.0580, 2012.

59

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.12&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.12&rep=rep1&type=pdf
http://cess.nyu.edu/caplin/wp-content/uploads/2010/02/Machine-Learning-and-the-Spatial-Structure-of-House-Prices-and-Housing-Returns.pdf
http://cess.nyu.edu/caplin/wp-content/uploads/2010/02/Machine-Learning-and-the-Spatial-Structure-of-House-Prices-and-Housing-Returns.pdf
http://cess.nyu.edu/caplin/wp-content/uploads/2010/02/Machine-Learning-and-the-Spatial-Structure-of-House-Prices-and-Housing-Returns.pdf
http://cs229.stanford.edu/proj2011/ArulMorales-NYCCondoPriceEstimationUsingNYCOpenData.pdf
http://cs229.stanford.edu/proj2011/ArulMorales-NYCCondoPriceEstimationUsingNYCOpenData.pdf

REFERENCES TO ARTICLES

[10] Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alex Gammerman.
Inductive confidence machines for regression. ECML, volume 2430:345–356,
Springer, 2002.

[11] Harris Papadopoulos, Vladimir Vovk, and Alex Gammerman. Regression con-
formal prediction with nearest neighbours. Journal of Artificial Intelligence
Research, 40:815–840, April 2011.

60

Data sources

[1] Svenskagator. Lista över alla gator i Stockholm - svenskagator.se. Website,
http://www.svenskagator.se/Stockholm/ Last visited: 2014-11-14.

[2] Slutpris. Slutpris.se. Website, http://slutpris.se/ Last visited: 2014-11-14.

[3] Openstreetgs - street informaton from Stockholm Municipal. Website, http:
//openstreetws.stockholm.se Last visited: 2014-11-14.

[4] SCB. KPIF, 12-månadersförändring. Website, http://www.scb.se/
sv_/Hitta-statistik/Statistik-efter-amne/Priser-och-konsumtion/
Konsumentprisindex/Konsumentprisindex-KPI/33772/33779/Underliggande-
inflation-KPIX-och-KPIF/KPIF-12-manadersforandring/ Last visited: 2014-11-
14.

[5] SCB. KPI, 12-månadersförändring (inflationstakten). Website,
http://www.scb.se/sv_/Hitta-statistik/Statistik-efter-amne/Priser-
och-konsumtion/Konsumentprisindex/Konsumentprisindex-KPI/33772/33779/
Konsumentprisindex-KPI/KPI-12-manadersforandring-Inflationstakten Last
visited: 2014-11-14.

[6] SEB. Räntehistorik - villa. Website, http://www.seb.se/pow/apps/
HistoriskaBorantor/villaframe.aspx Last visited: 2014-11-14.

[7] Swebank. Historik bostadsräntor 2008-2013. Website, http:
//hypotek.swedbank.se/rantor/historiska-rantor Last visited: 2014-11-14.

[8] Valmyndigheten. Övergripande statistik om valet 2010. Website, http://
www.val.se/val/val2010/statistik/index.html#slutligt Last visited: 2014-11-
14.

[9] Stockholms Municipal. Open Data Stockholm. Website, http://
api.stockholm.se/ Last visited: 2014-11-14.

61

http://www.svenskagator.se/Stockholm/
http://slutpris.se/
http://openstreetws.stockholm.se
http://openstreetws.stockholm.se
http://www.scb.se/sv_/Hitta-statistik/Statistik-efter-amne/Priser-och-konsumtion/Konsumentprisindex/Konsumentprisindex-KPI/33772/33779/Underliggande-inflation-KPIX-och-KPIF/KPIF-12-manadersforandring/
http://www.scb.se/sv_/Hitta-statistik/Statistik-efter-amne/Priser-och-konsumtion/Konsumentprisindex/Konsumentprisindex-KPI/33772/33779/Underliggande-inflation-KPIX-och-KPIF/KPIF-12-manadersforandring/
http://www.scb.se/sv_/Hitta-statistik/Statistik-efter-amne/Priser-och-konsumtion/Konsumentprisindex/Konsumentprisindex-KPI/33772/33779/Underliggande-inflation-KPIX-och-KPIF/KPIF-12-manadersforandring/
http://www.scb.se/sv_/Hitta-statistik/Statistik-efter-amne/Priser-och-konsumtion/Konsumentprisindex/Konsumentprisindex-KPI/33772/33779/Underliggande-inflation-KPIX-och-KPIF/KPIF-12-manadersforandring/
http://www.scb.se/sv_/Hitta-statistik/Statistik-efter-amne/Priser-och-konsumtion/Konsumentprisindex/Konsumentprisindex-KPI/33772/33779/Konsumentprisindex-KPI/KPI-12-manadersforandring-Inflationstakten
http://www.scb.se/sv_/Hitta-statistik/Statistik-efter-amne/Priser-och-konsumtion/Konsumentprisindex/Konsumentprisindex-KPI/33772/33779/Konsumentprisindex-KPI/KPI-12-manadersforandring-Inflationstakten
http://www.scb.se/sv_/Hitta-statistik/Statistik-efter-amne/Priser-och-konsumtion/Konsumentprisindex/Konsumentprisindex-KPI/33772/33779/Konsumentprisindex-KPI/KPI-12-manadersforandring-Inflationstakten
http://www.seb.se/pow/apps/HistoriskaBorantor/villaframe.aspx
http://www.seb.se/pow/apps/HistoriskaBorantor/villaframe.aspx
http://hypotek.swedbank.se/rantor/historiska-rantor
http://hypotek.swedbank.se/rantor/historiska-rantor
http://www.val.se/val/val2010/statistik/index.html#slutligt
http://www.val.se/val/val2010/statistik/index.html#slutligt
http://api.stockholm.se/
http://api.stockholm.se/

Appendix A

Features

Table A.1. List of features part 1

Nr Feature Description
1 construction_year Year when constructed
2 elevator Building has elevator installed
3 fireplace Fireplace available in apartment
4 duplex Apartment has a duplex
5 penthouse Apartment is a penthouse
6 balcony Apartment has balcony
7 squares Area of apartment in square meters
8 rooms Total number of rooms, kitchen excluded
9 floor Apartments floor (from the street level)
10 fee Annual fee payed to the housing association
11 agencyid Realtor identification
12 postal_code Zip code
13 fix_point_1 Distance to KTH Royal Institute of Technology
14 fix_point_2 Distance to The Royal Palace of Stockholm
15 fix_point_3 Distance to Sergels Torg (CBD)

63

APPENDIX A. FEATURES

Table A.2. List of features part 2

Nr Feature Description
16 jog_track_dist Distance to nearest jogging track
17 pad_pool_dist Distance to nearest wading pool
18 daycare_dist Distance to nearest daycare center
19 pool_dist Distance to nearest pool facility
20 open_daycare_dist Distance to nearest daycare center
21 sports_hall_dist Distance to nearest sports hall
22 outdoor_gym_dist Distance to nearest outdoor gymnasium
23 sports_field_dist Distance to nearest sports field
24 playing_field_dist Distance to nearest paying field
25 library_dist Distance to nearest common library
26 env_station_dist Distance to nearest environment station
27 preschool_dist Distance to nearest preschool
28 bath_dist Distance to nearest bath facility
29 playground_dist Distance to nearest play ground
30 subway_dist Distance to nearest subway station
31 station_dist Distance to nearest train/commuter station.
32 park_dist Distance to nearest park
33 forest_dist Distance to nearest forest
34 water_dist Distance to nearest watercourse
35 lat Latitude coded in WGS84
36 lng Longitude coded in WGS84
37 zone1 Id of grid square for apartment, from a 7x7 grid.
38 zone2 Id of grid square for apartment, from a 9x9 grid.

64

Table A.3. List of features part 3

Nr Feature Description
39 seb_interest_3m SEB’s interest rate for a 3 month loan from sell

date
40 seb_interest_2y SEB’s interest rate for a 2 year loan from sell

date
41 seb_interest_5y SEB’s interest rate for a 5 year loan from sell

date
42 seb_interest_10y SEB’s interest rate for a 10 year loan from sell

date
43 swebank_interest_3m Swebank’s interest rate for a 3 month loan from

sell date
44 swebank_interest_2y Swebank’s interest rate for a 2 year loan from

sell date
45 swebank_interest_5y Swebank’s interest rate for a 5 year loan from

sell date
46 swebank_interest_10y Swebank’s interest rate for a 10 year loan from

sell date
47 proc_M Per cent of votes won by Moderata samlings-

partiet
48 proc_C Per cent of votes won by Centerpartiet
49 proc_FP Per cent of votes won by Folkpartiet Liberalerna
50 proc_KD Per cent of votes won by Kristdemokraterna
51 proc_S Per cent of votes won by Socialdemokratiska

arbetareparti
52 proc_V Per cent of votes won by Vänsterpartiet
53 proc_MP Per cent of votes won by Milj�partiet de Gr�na
54 proc_SD Per cent of votes won by Sverigedemokraterna
55 proc_Alians Majority for the Alliance parties
56 proc_RodGron Majority for the opposition parties
57 majority_Alians Per cent of votes to the majority

65

www.kth.se

	Contents
	Introduction
	Background
	Problem description
	Traditional pricing model
	Objective
	Restrictions

	Literature Review
	Literature covering apartment and housing markets
	A prominent role in society
	Crimes impact on apartment prices
	Features used in study of crimes impact on apartment prices
	Traditional real estate valuation
	Shortcomings with contemporary real estate valuation
	Real estate valuation using neural networks
	Condominium price estimation using open data

	Literature in the field perceptrons and machine learning
	Difficulties training neural networks
	Using dropout on hidden nodes
	Inductive Conformal Prediction

	Method
	Data collection
	Streets searched for sales
	Apartment sale statistic
	Street information
	Historic inflation figures
	Interest rates for apartment loans
	National election result
	Local features

	Features
	Feature aggregation
	Cleansing data
	Partitioning data

	Construction of the Multilayer Perceptron
	Activation function
	Weight and bias initialization
	Weight update regime
	Dropout regime

	Optimization with Genetic Algorithm
	Genome
	Objective function
	Crossover and mutation
	The search process

	Conformal Prediction

	The mathematics of Backpropagation
	Layout of the neural network
	Error function
	Activation functions in the nodes
	Output neuron (Linear)
	Logistic neuron (Sigmoid)
	Hyperbolic tangent neuron

	Finding the gradients for the error function
	Single hidden layer with hyperbolic activation function
	Dual hidden layers with hyperbolic activation function

	Matrix calculations for the MLP
	Single hidden layer with hyperbolic activation function
	Dual hidden layers with hyperbolic activation function

	Experiments and Results
	Performance of support vector regression (SVR)
	Radial Kernel
	Sigmoid Kernel
	Polynomial Kernel

	Tuning parameters for the Multilayer Perceptron
	Finding values for learning rate and momentum
	Searching for appropriate MLP configuration

	Boosting multilayer perceptron performance
	Early stopping
	Mini-batch
	Random initialization of weights and dropout
	Conformal Prediction

	Fine tuning of parameters with Genetic Algorithm
	Tuning of SVR parameters
	Tuning of Multilayer Perceptron

	Summation of results

	Conclusion
	Proceedings to improve quality and speed of backpropagation algorithm
	Benefits of using GA to find appropriate parameter settings
	Performance of MLP model in general

	Discussion
	Improving the feature space
	Algorithmic improvements

	References to articles
	Data sources
	Appendices
	Features

