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Abstract

Connected vehicles is a growing market. There are currently several such services available, but many
of them are constrained in the sense that they are bound to recently produced cars and either expensive
or strongly limited in the services that they provide. In this master thesis we investigate the possibility
to implement a generic platform that is of low cost and simple to install in any vehicle, but that still
has the ability to provide a wide range of services. It is proposed that a crucial step in such a system
is to reconstruct the vehicle’s kinematics, as this enables the possiblity to developed a wide range of
services by feature extraction and interpret the result from a dynamics perspective. A mathematical
model that describes how the kinematics can be reconstructed is proposed, and a filter that performs
such reconstruction is implemented. Based on this reconstruction, two filters that interpret the output
are implemented as a proof of concept for the proposed mathematical model. The complete implemented
filter solution is tested on measurement data from actual driving scenarios and it is seen that we can
identify when the vehicle makes a hard turn, and find where the surrounding road conditions are poor.

Keywords: sensor fusion, connected car, real time filtering





Sammanfattning

Uppkopplade fordon är en växande marknad. I dagsläget finns flera sådana tjänster, men ofta är dessa
begränsade i den meningen att de antingen endast finns tillgängliga för nyproducerade fordon eller bara
erbjuder ett smalt utbud av tjänster. I detta examensarbete undersöker vi möjligheten att utveckla en
generisk plattform för uppkopplade fordon som är billig och enkel att installera, men som också kan
erbjuda ett stort urval av tjänster. Det föreslås att ett viktigt steg i en sådan lösning är att rekonstruera
fordonets kinematik, då detta möjliggör utvecklandet av ett brett urval av tjänster genom att identifiera
karakteristiska egenskaper i kinematiken, samt göra tolkningar utifrån dynamikbetraktelser. En matema-
tisk modell för att beskriva hur kinematiken kan rekonstrueras från givna indata presenteras, och ett filter
som utför denna rekonstruktion implementeras. Ytterligare två filter implementeras för att påvisa att den
rekonstruerade kinematiken samt den föreslagna matematiska modellen kan användas till att identifiera
olika scenarion ur verkligheten. Den kompletta filterlösningen testas på mätdata från faktiska körningar
och vi ser att vi kan identifiera när fordonet gör skarpa svängar, samt när vägförhållandena är dåliga.

Nyckelord: sensorfusion, uppkopplade fordon, realtidsfiltrering
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1. Introduction

Many everyday objects contain one or several, usally quite capable, embedded computers. It is also
common that they are programmed to act intelligently on their environment in some way. Most such
devices are only acting locally, requiring a human to interact with the device in order to make use of
its capabilities. As components become smaller and more capable, the possibilities increase. One trend
is to enable connectivity for such everyday objects to a network. It is only a matter of time before the
functionality is further extended so that they will be able to communicate and interact with each other,
even without the need of human intervention [1]. This prediction suggests that we are entering a new
era where everything will or could be connected, thus being able to provide services that are even more
intelligent. The vision as a whole is sometimes called the internet of things. There is a distinction between
devices sharing information from machine to human (M2H), and devices communicating without human
intervention but from machine to machine (M2M). In practice these concepts overlap in the sense that
devices usually provide both M2M and M2H services. For simplicity we will use M2M when talking about
connected services, but it is understood that this is not meant in an exclusive way.

A necessity to provide an M2M solution is of course that there is a means of communication, a network.
The cellullar network provides a good network infrastructure for connectivity, and an end point of an
M2M solution using this type of network is called a telematic unit (TEM). TEMs can come in various
formats and shapes, the shared property is that they can send and receive data over cellullar network. It
is common that a TEM device also is equipped with a set of sensors, either internal or external, as well
as several input and output connections.

One particular domain where there is an interest of connecting devices is within the car industry. There
is a lot of information that could be obtained by a M2M solution, in order to provide usefull services. At
a micro level, information about a particular car could be provided to the owner. This could be used to
provide sercies such as reading the current status of the car, "pay as you drive" insurance, positioning,
etc. At a macro level, information from a large set of cars can be provided to relevant stakeholders.
This could be used to provide services on current road conditions, traffic conditions, fleet management
etc. There are several existing M2M solutions for connected cars, but they are either bound to a specific
brand or have a very limited fuctionality. In this report we will investigate the possibilities to collect and
interpret data obtained by a TEM unit installed in a car. This is an important building block to provide
a generic, widely functional, connected car solution.

page 1
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2. Background and Problem
Formulation

2.1 The Principal

The thesis is conducted at Springworks AB. Springworks is a technology partner located in Stockholm that
specializes in advanced mobile solutions, focusing on business value and usability. They are experienced
in working with the automotive industry within the domain of connecting vehicles. The company has
developed an M2M platform solution that enables the possibility to connect a large set of TEMs and
distribute the obtained data to a relevant end user. The platform is generic and is thus not dependent
on the particular TEM chosen, although for this particular study the hardware is fixed.

2.2 The Software Platform Provided

One of the main features of the M2M platform provided by Springworks is the generic nature of their
solution. Any car can be connected with the current setup, without an extensive installation procedure.
A simplified visual representation of the platform is provided in figure 2.1. A TEM is installed in a car,
collecting relevant sensor data. The obtained sensor data can be processed locally on the TEM and the
resulting data is sent to a server over the GSM protocol provided by a telecom company. The server
then provides an authorized end user with the relevant information. The current platform provides the
infrastructure necessary in order to deliver M2M services to an end user. More specifically, it provides
the formalism on how to collect and transmit data. It does not determine what data to collect and how
to interpret it. The context of this thesis is to investigate these questions and to further extend the
information available for service development.

As one of the main features of the current platform is the possibility to install it in any type of car, the
services must be built on something that is common for all vehicles. The general problem is thus really
to indentify such quantities and investigate if they can be measured accurately enough to develop a wide
suite of services. Our hypothesis is that the kinematics and the dynamics of the car are such phenomena.
With a sufficient knowledge of the kinematics and dynamics of the car, we can analyze patterns and
interpret irregularities. Many interesting services are in various ways related to the position, velocity and
acceleration of the car.

page 2 Background and Problem Formulation
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Figure 2.1: M2M plattform provided by Springworks

2.3 Problem Formulation

The main topic of this report is to investigate if we can reconstruct the kinematics from available sensor
data and draw any conclusions based on the obtained results, as this would be an important part of the
complete system solution. Hence we will investigate the possibility of solving two well defined special
cases by interpreting the sensor data provided by the TEM. The problem formulation of this report is
thus:

Investigate the possibility to implement a software that can

- identify where road conditions are bad

- give an indication on where the driver has made a hard turn.

If we can find solutions to these special cases, then evidently there are some micro and macro events that
can be solved with the current setup. We also note that the problem formulation, as it stands, is not
necessarily bound to be implemented locally on the TEM.

2.3. Problem Formulation page 3
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3. Hardware Capabilities and
Acquisition of Data

The recieved indata is constrained by the technical limitations of the hardware. In this section we will
thus present and discuss the capabilities of the TEM unit. A conclusion is that the available positional
measurements are considered planar, due to inaccuray in height data. We also present how a data set of
specific test scenarios have been acquired.

3.1 Hardware Capabilities

3.1.1 Technical Specifications for the TEM Unit Used

The TEM used in this project is provided by an external OEM company, and is called CX1 pro-c [2]. It
is equipped with an external GPS reciever and an internal three axis accelerometer. The specifications
provided by the manufacturer is given in table 3.1 1.

Gps Accelerometer Computational
Sampling frequency 1Hz Sampling frequency 100 Hz CPU frequency 48 MHz
Accuracy <2,5 m Resolution 1 · 10−3 m/s2 Storage capacity 8 GB
Datum WGS84 Range ±16 m/s2 RAM 1088kB

Table 3.1: Technical specifications for CX1 pro-c

To put the given sample rates in a context, consider an emergency brake situation; a car moving at
a velocity of 14 m/s (approximately 50 km/h) stops abruptly by decelerating until standing still over
2 seconds ( approximately 7m/s2 deceleration on average). When comparing sample rates of the hardware
with changes in the measured physical quantities over time, it is motivated to say that the GPS is a
low frequency sensor and the accelerometer is a high frequency sensor.

3.1.2 Constraints Inherent to the Hardware

To develop software on the TEM there is a standard library of functions provided by the manufacturer.
The functionality provided by this library was deemed to be limited in order to develop a sufficient soft-
ware within the given time frame of this report. Instead it was decided to collect measurement data
from a set of test scenarios and store this into logfiles. With this approach each scenario could be played
offline in MATLAB, simulating the sampling procedure. The benefit of this procedure is twofold; firstly,
MATLAB provides a more extensive library of functionality which simplifies development of software.
Secondly, different software implementations can be tested several times and compared on the exact same
indata.

1The manufacturer uses non standard units, these are here standardized to SI-units.

page 4 Hardware Capabilities and Acquisition of Data
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Usually hardware sensors need to be calibrated in order to yield a precise measurement (see, e.g. [3]).
However, calibration is a large topic in its own right and out of scope for this report. We will thus
assume that the hardware is calibrated and that the obtained measurements can be trusted. There is one
exception to this assumption, namely the height data obtained from the GPS. The obtained test data was
verfied for feasibility by a comparison with google maps. This comparison revealed a severe difference in
the height data. The anomality was irregular and the height data obtained by the TEM is thus considered
unreliable. As a consequence we will only use the planar longitude and latitude coordinates.

3.2 Acquisition of Data

A TEM unit was installed in a car to collect data from different driving scenarios. Each scenario was
driven six times in total, three times at an average velocity of 30 km/h and three times at an average
velocity of 50 km/h. The test scenarios were chosen so that the complete test data set would contain
a wide variety of features, ranging from normal driving to aggressive driving. Each scenario is briefly
described below:

Figure 3.1: Definition of markings for scenarios 1-5

Figure 3.2: Map of test scenario 1

Scenario 1 consists of a fairly straight road section. The
purpose of this scenario is to specifically investigate how the
system behaves when the driver suddenly hit the brakes. In
this scenario the vehicle is accelerated quickly to the pre-
determined velocity. Once the desired velocity has been
reached, the driver hit the brakes hard until the car stops.
The road conditions are good and the road has a downhill
slope.

Figure 3.3: Map of test scenario 2

Scenario 2 consists of a straight road with good road con-
ditions and a speedbump. The purpose of this scenario is
primarily to investigate how the system reacts when a speed-
bump is encountered.

3.2. Acquisition of Data page 5
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Figure 3.4: Map of test scenario 3

Scenario 3 consists of a relatively long drive with a wide
range of possible events. The purpose of this scenario is to
illustrate events that may occur when driving normally, thus
it contains both good and bad road conditions, potholes, a
speedbump, one particularily sharp turn and several normal
turns.

Figure 3.5: Map of test scenario 4

Scenario 4 consists of several hard turns. The purpose of
this scenario is to explicitly investigate how the system reacts
on hard turns. The road conditions are mostly good, appart
from a small section with a road construction site.

Figure 3.6: Map of test scenario 5

Scenario 5 consists of a long road section with very bad
road conditions. The purpose of this scenario is to investigate
if the system still behaves properly when there are strong dis-
turbances. The road is a gravelled road, with several potholes
and a combination of sharp and normal turns.

page 6 Hardware Capabilities and Acquisition of Data



Sensor Fusion of GPS and Accelerometer Data to Estimate Vehicle Dynamics

4. Mathematical Model of Sensor Data

As mentioned in the previous section, the positional measurements of the car are planar. The consequence
of this is that we are restricted to a planar model of the car’s trajectory. There will still be information
in the vertical direction, as the accelerometer has three axes. In this section we will formulate a model
of the car and define some necessary concepts related to this model.

4.1 Rigid Body Model of a Car

A car is a suitable system to model with rigid body dynamics. An extensive description on how to apply
such theory is provided in [4] and [5] , here we will assume that the reader is somewhat familiar with the
concepts and thus present the main results without derivation.

Figure 4.1: Standard coordinate frames in rigid body dynamics

In rigid body dynamics there are two coordinate systems defined. We have a fixed coordinate system,
called the reference frame (RF) and we have a coordinate system attached to the rigid body called the
body frame (BF). In general the rigid body is free to move and rotate in space. For any particular point s̄

in BF, the acceleration from the kinematics of the body is a combination of the translational acceleration
of the origin in BF and the rotation of the body. This is described by the rigid body equations of motion:

r̄ = r̄o + s̄

˙̄r = ˙̄ro + ω̄ × s̄

¨̄r = ¨̄ro + 2ω̄ × ˙̄s + ˙̄ω × s̄ + ω̄ × (ω̄ × s̄)

(4.1)

Where r̄o is the vector to the origin of BF, s̄ is a local vector to the point s expressed in BF and ω̄ is
the angular velocity vector, as seen in figure 4.1. Since we only have planar positions available, we will
restrict the rigid body’s center of mass to planar motion.

page 7
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The accelerometer installed in the TEM unit measures the net acceleration in a particular point. This is
not just the pure accelerations given in equation 4.1, but also gravity and any other external disturbances
may be present. We will model the car as a rigid body moving directly above the ground, but with no
direct contact. The vibrations resulting from the suspension’s interaction with the ground will thus be
contained in a noise term. We adopt the following model for the acceleration:

āmeasured(t) = ācenter(t) + ārotation(t) + āgravity(t) + ξ̄(t). (4.2)

Where each term represents

āmeasured(t) the acceleration measured by the TEM
ācenter(t) = ¨̄ro the center of mass acceleration, from eq. 4.1
ārotation(t) = 2ω̄ × ˙̄s + ˙̄ω × s̄ + ω̄ × (ω̄ × s̄) the rotational acceleration, from eq. 4.1
āgravity(t) = [0, 0,−9.82] the gravitational acceleration, assumed constant
ξ̄(t) disturbances such as vibrations and measurement noise

(4.3)
The purpose of this model is that each of these terms can be interpreted to provide interesting information
on the car dynamics. The term ācenter(t) gives us the necessary information to find the trajectory of the
car and the velocity. In general, the term āgravity(t) is not necessarily constant in relation to the car and
can be used to find the orientation of the car, as it represents a static reference in RF. The term ξ̄(t) can
give indications on the current road conditions, as the interactions between the suspension and the road
will be disturbances in the proposed rigid body model.

Figure 4.2: The body frame attached to a car

4.2 Defining the Coordinate Systems RF and BF

We will now define the coordinate systems that are used to analyze our rigid body model. The body
frame BF is straight forward. It is a carteesian system with its origin at the car’s center of mass, as seen in
figure 4.2. In general there is also a third coordinate system defined by the axes of the accelerometer. We
will assume, without loss of generality, that the accelerometer is aligned with BF. This is no restriction
as the alignment is a constant rotation matrix that can be determined when installating the TEM.

Our reference frame RF is constructed based on the standard GPS coordinate system called WGS84 [6].
The foundation of the WGS84 coordinate system is the reference ellipsoid, which is an earth centered
earth fixed (ECEF) approximation of the earth’s surface. Any point p on the reference ellipsoid is given
by its coordinates longitude θ and latitude φ. The RF coordinate system is obtained by mapping the
ellipsoid surface to a plane, as illustrated in figure 4.3.

page 8 Mathematical Model of Sensor Data
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Figure 4.3: The reference frame coordinate system’s relation to earth

4.2.1 Longitude and Latitude Coordinates

The reference ellipsoid in WGS84 is defined by its semi and major axis a and b, centered about an ECEF
carteesian coordinate system, as illustrated in figure 4.4.

Figure 4.4: Visual representation of the WGS84 reference ellipsoid and coordinates

Let RN be a line that is normal to the ellipsoid surface and extend this line until it intersects the vertical
axis. The angle between the equatorial plane and RN is the latitude coordinate φ. The angle between
RN and the prime meridian axis is the longitude coordinate θ. We emphasize that with this definition,
the coordinates are not defined to emanate from the origin.

A consequence of how the coordinates are defined is that in order to analyze distance changes on the
surface, we will need to define two radii of curvature. An infinitesimal change in distance in the north
and east direction respectively is given by

dN = RMdφ

dE = RNdθ
(4.4)

In these equations RN is as previously defined, and is called the radius of the prime vertical. The radius
RM is called the radius of the prime meridian and is the radius of the sphere that is tangent to the
ellipsoid at the particular point of interest. We emphasize that both radii will change as a function of
the latitude φ, and will thus not be constant.

4.2. Defining the Coordinate Systems RF and BF page 9
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5. Function Definitions

In this section we will present the formal mathematical definitions of how the received input variables r̄(t)
and āmeasured(t), representing the measured GPS position and the measured acceleration respectively,
are processed in order to provide the sought filter solution. The main idea of the proposed filter is to
isolate and identify the quantities describing the dynamics of the car. If this can be done with sufficient
precision, many interesting micro and macro event filters can be constructed by identifying features within
the kinematics.

5.1 Notation on Different Sample Rates

Both input variables are functions of time, but the sample rates are different. We will use different time
variables to clarify and make a distiction between sample rates. So, for an arbitrary function f we define
the arguments t, tm and τn to be used in the following way:

f(t) - indicates that the function f is time dependent
f(tm) - indicates that the function is sampled at 1Hz
f(τn) - indicates that the function is sampled at 100Hz

It is assumed that the sampling is synchronized, i.e. that t0 = τ0. The indices of the samples are related
by the following equation:

n = 100 ·m+ k k ∈ N99 n,m ∈ N (5.1)

Thus the time variable τn (of a higher sample rate) is defined for each time sample tm (of a lower sample
rate), but the converse is not true.

5.2 Calculating the Radii of Curvature

An ellipsoid is determined by its semi and major axis. The WGS84 reference ellipsoid is defined in [6],
where numerical values of the semi and major axis a and b are given. Formulas to calculate the radius of
curvature for the prime vertical and prime meridean respectively are found in [7], these are presented in
equations 5.2 - 5.4:

e =

√
1− a

b
(5.2)

RN (φ(tm)) =
a√

1− e2sin2(φ(tm)))
(5.3)

RM (φ(tm)) =
a(1− e2)

(1− (a
b sin(φ(tm)))3/2)

= RN
1− e2

1− e2sin2(φ(tm)))
(5.4)

page 10 Function Definitions
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5.3 Functions Used to Filter the Data

5.3.1 Kalman Observer Estimate, r̄(tm)→ [p̄(tm), ˙̄p(tm)]T

To refine the input signal r̄(t) and to obtain its time derivatives we apply a Kalman filter observer. In
the following text we assume that the reader is familiar with the concepts of state space representations
of systems and some elementary Kalman filter theory.

The states contained in the state vector x̄ consists of the longitude and latitude coordinates as well as
their first time derivatives. The vector ū is the second time derivative of the angular coordinates. Letting
ω̄ denote the measurement noise on the output ȳ, the discrete state space model is given by:

x̄m+1 =


1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1


︸ ︷︷ ︸

A

x̄m +


0.5 0

0 0.5

1 0

0 1


︸ ︷︷ ︸

B

ūm

ȳm =

[
1 0 0 0

0 1 0 0

]
︸ ︷︷ ︸

C

x̄m +

[
1 0

0 1

]
︸ ︷︷ ︸

D

ω̄m

(5.5)

This system is observable, hence we can apply a Kalman filter observer to obtain refined observations of
the states. Furthermore, the system matrices are time invariant the Kalman gain K is constant and can
be precalculated. Since the vectors ū and ω̄ are unknown, we interpret them as disturbances and let R
and Q respectively denote their covariance matrices. The Kalman gain is found by solving the equation:

K = APCT [CPCT +DRDT ]−1, (5.6)

where P is the unique positive definite solution to the discrete algebraic Riccati equation

P = APAT −APCT [CPCT +DRDT ]−1CPAT +BQBT . (5.7)

Letting x̂ denote the Kalman estimate of the state vector x̄, the estimates at each sample is given by the
recursion

x̂(tm+1) = Ax̂(tm) +K(r̄(tm)− Cx̂(tm)), x̂(t0) = [r̄(t0), 0]T . (5.8)

The position output p̄(tm) and its first time derivative ˙̄p(tm) are defined to be components of the Kalman
state estimates

[p̄(tm), ˙̄p(tm)]T = x̂T (tm). (5.9)

5.3.2 Solving ¨̄p(tm) from the Kalman Estimates, [p̄(tm), ˙̄p(tm)]T → ¨̄p(tm)

We note that the acceleration ¨̄p(t) is equal to the vector ū, in equation 5.5. When the recursion given in
equation 5.8 is solved, we can thus find ¨̄p(tm) = ūm by rearranging equation 5.5 and solving for ūm:

Bū(tm) = x̂(tm+1)−Ax̂(tm), ¨̄p(tm) = ū(tm). (5.10)

.
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5.3.3 Constructing the Velocity, ˙̄p(tm)→ v̄(τn)

To find the velocity from the angular velocity ˙̄p(tm), we first apply a moving median filter. This reduces
the amount of outliers in the low frequency input:

˙̄p′(tm) = median( ˙̄p(tm−r), ˙̄p(tm−r+1), ..., ˙̄p(tm+r−1), ˙̄p(tm+r)). (5.11)

Next, we use a linear interpolation to assign ˙̄p′(τn) a value for each τn:

˙̄p′(τn) = ˙̄p′(tm) + k
˙̄p′(tm+1)− ˙̄p′(tm)

100
(5.12)

where the n, m and k have the same meaning as in equation 5.1. When we have found ˙̄p′(τn), the final
step is to scale into the appropriate unit km/h. Here it is important to use the correct radius of curvature,
given by equation 5.3 and 5.4. We arrive at the desired result by the following scaling:

v̄(τn) =

[
3.6 ·RN (φ(tm)) 0

0 3.6 ·RM (φ(tm))

]
˙̄p′(τn). (5.13)

5.3.4 Constructing the Center of Mass Acceleration, (¨̄p(tm), v̄(τn))→ ācenter(τn)

By applying equation 5.11 and 5.12 with ¨̄p(tm) instead of ˙̄p(tm), we obtain ¨̄p′(τn). We scale with the
appropriate radii:

ā′center(τn) =

[
RN (φ(tm)) 0

0 RM (φ(tm))

]
¨̄p′(τm). (5.14)

This gives us the center of mass acceleration, in RF coordinates. We want to transform this into BF
coordinates. Hence we must find an appropriate transformation matrix T for each time instance τn. This
matrix is found by a passive transformation from RF to BF (a rotation matrix rotating clockwise):

T (τn) =

 cos(αn) − sin(αn) 0

sin(αn) cos(αn) 0

0 0 1


−1

, αn = arctan

(
vy(τn)

vx(τn)

)
. (5.15)

Finally, we obtain the center of mass acceleration ācenter(τn) by:

ācenter(τn) = T ā′center(τn). (5.16)

5.3.5 Identifying Noise and Net Acceleration, āmeasured(τn)→ (ξ̄(τn), ānet(τn))

Using the acceleration model formulated in section 4.1, we define the net acceleration ānet(t) to be:

ānet = ācenter + ārotation + āgravity. (5.17)

It is evident that we will find ānet if we eliminate the noise from āmeasured. A common assumption on
noise is that ξ̄ ∈ N(0, σ2) and that ξ̄ has a higher frequency content than the measured quantity. Hence
it makes sense to apply a low pass filter. A simple but effective implementation of a low pass filter is the
moving average filter, as mentioned in [8]. By our assumption E(ξ̄) = 0 it follows that

n+s∑
i=n−s

ξ̄(τi)

2s+ 1
→ 0.

Assuming that the acceleration components varies slowly, compared to the noise, we thus have that
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ānet(τn) ≈
n+s∑

i=n−s

āmeasure(τi)

2s+ 1
=

n+s∑
i=n−s

ācenter(τi) + āgravity(τi) + ārotation(τi)

2s+ 1
+

n+s∑
i=n−s

ξ̄(τi)

2s+ 1
(5.18)

⇒ ānet(τn) ≈ ācenter(τn) + āgravity(τn) + ārotation(τn). (5.19)

And also, as a result we can find the noise ξ̄ by

ξ̄(τn) = āmeasured(τn)− ānet(τn) (5.20)

5.3.6 Identifying the Rotational Acceleration,
(ānet(τn), ācenter(τn), āgravity(τn))→ ārotation(τn)

When all acceleration terms in our acceleration model except ārotation(τn) are known, the final term is
found by a simple subtraction:

ārotation(τn) = ānet(τn)− āgravity(τn)− ācenter(τn). (5.21)
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6. Proposed Solution

In this section we will describe how the functions presented in the previous chapter are combined to
produce the desired result. The main idea of the proposed solution is to isolate and identify each term in
the model with the kinematics filter, so that the output data can be analyzed for events. The proposed
filter solution is thus a composition of three filters; the kinematics filter, the micro event filter and the
macro event filter. The kinematics filter is the core of the proposed filter solution. Its purpose is to
reconstruct the kinematics based on the indata obtained by sensors. The micro and macro event filters
act on the output from the kinematics filter and analyze if a particular event has occured. This setup can
easily be expanded by letting other feature detecting filters act on the output provided by the kinematics
filter. The performance of the cascaded filters will however strongly depend on the accuracy of the
kinematics filter.

6.1 Filter Components

6.1.1 The Kinematics Filter

The kinematics filter separates the measured data into components and identifies their reading according
to the model proposed in section 4.1. The resulting output currently contains more data than we will
use in the application at hand. The reason for this redundancy is that we may wish to expand the filter
solution, and identify other events. In such future applications we may need to interpret other features
than the ones presented in section 6.1.2 and 6.1.3.

The filter operates at approximately a two second lag, as a consequence of the low sample rate on the
position. In the following filter description we let tm denote time instance of the currently handled sample,
considered by the filter to be present time, and similarily for the high frequency τn. At each sample tm
the filter improves the reading of the position, constructs the velocity and acceleration and interpolates
these into a high frequency data set in the following way:

1. Obtain the position p̄(tm+1) and its time derivative ˙̄p(tm+1) by applying a Kalman observer on the
input r̄(tm), given by equations 5.8 and 5.9.

2. Obtain the second time derivative by solving equation 5.10.

3. Refine time derivatives and construct the high frequency interpolations of velocity and center of
mass acceleration, by applying equation 5.11-5.13
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Simultaneously, the high frequency data āmeasured is being processed on the interval τn ∈ [τn−50, τn+50]

in the following way:

1. Separate and identify the noise and the net acceleration, contained in the sensor data, by applying
equation 5.19 and 5.20

2. Find the linear transformation from RF to BF by applying equation 5.15

3. Find the rotational acceleration term by applying equation 5.21

The resulting output from the kinematics filter is a set of vectors {p̄(tm),v̄(τn), ācenter(τn),āgravity(τn),
ārotation(τn), ānet(τn), ξ̄(τn)} and a matrix T (τn)}.

6.1.2 The Micro Event Filter

The micro event filter should identify when the features of a hard turn is found in the output data set
from the kinematics filter. The feature that we look for is when the amplitude in the lateral acceleration
of the car is larger than a certain threshold α. The acceleration of interest for this is ācenter, but features
could also be found in ānet since ācenter gives the main contribution. A hard turn also typically has a
duration that is longer than one second. The features that characterize hard turns are thus found by the
following function:

fmicro(tm) =


1 if ∃τr, τs ∈ (tm−1, tm] such that |ācenter(τr)| > α and |ānet(τs)| > α

1 if ∃τr ∈ (tm−2, tm−1],∃τs ∈ (tm−1, tm] such that |ānet(τr)| > α and |ānet(τs)| > α

1 if ∃τr ∈ (tm−1, tm],∃τs ∈ (tm, tm+1] such that |ānet(τr)| > α and |ānet(τs)| > α

0 otherwise
(6.1)

Informally, what this says is that if both ācenter and ānet agree that the lateral acceleration is above the
threshold within the time interval then this is to be interpreted as a hard turn. This condition is not
sufficient due to inaccuracy in the ācenter variable. Hence we also investigate if the duration of the breach
stretches over more than one second in ānet .

6.1.3 The Macro Event Filter

The macro event filter should identify when the features of bad road conditions are found in the output
data set from the kinematics filter. It is proposed that a road can be considered bad in two different ways
(or a combination of both); either the ground is irregular on a road section, or there are local obstacles
such as potholes.

Features that characterize the first type of bad road condition is proposed to be an increased variation
on the amplitude. Hence this is identified by variations in noise ξ̄ larger than a certain threshold β. We
will use the following function to find irregular road features:

fmacro(τn) =

{
1 if V ar(ξ̄(τn)) > β, τi ∈ [τn−w, τn+w]

0 otherwise
(6.2)

As the quality of the road decrease, the vibrational noise will increase and at some point it will be visible
on all three axes. Hence the certainty that a particular alarm is true will increase if features are found
on several axes simultaneous. When collecting data from several cars to find sections where the road is
bad, not only the frequency of warnings but also the certainty of each warnings will be useful information.
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Features that characterize the second type of bad road conditions is proposed to be sharp peaks that are
large in amplitude in relation to neighboring measurements. By investigating the vibrational acceleration
data, it is evident that all occuring peaks have an amplitude larger than one. Based on this observation
we argue that an inherent feature of peaks representing potholes is that they have an amplitude larger
than one. To further enhance this characteristic we square the signal and apply a threshold filter:

gmacro(tm) =

{
1 if ∃τn ∈ (tm−1, tm] such that ξ̄(τn)2 > γ

0 otherwise
(6.3)

6.2 Setting Filter Parameters

6.2.1 Threshold α for Micro Events

We need to determine at what amplitude the threshold α should be set. Hence we must quantify what
is meant by a hard turn. To this end we consider a ninety degree turn found within scenario 3. By
measuring, we find that the radius of curvature for the turn is approximately 30m. Considering the ideal
case of planar motion with no other acceleration than the one turning the vehicle, as seen in figure 6.1,
the following accelerations are found for different velocities.

Velocity [km/h] 30 40 50
Acceleration [m/s2] 2.3 4.1 6.4

At the particular road section the speed limit is 30 km/h. In order to allow for some measurement
latitude, we set the threshold for a hard turn to be at α = 4 m/s2.

Figure 6.1: Picture illustrating the physical example considered to the determine threshold α

6.2.2 Setting the Thresholds β and γ for Macro Events

To find the normal deviation we investigate the measurement data when the car is at rest with the engine
turned on, or driving on road sections where the conditions are known to be good. By such an evaluation
on a data set ranging over a total of 7 minutes we find that a normal deviation of noise is σ2 ≈ 0.3902.
To allow some latitude we set the deviation threshold to β = 0.4.

The threshold γ was found by tuning parameters. If a too low value is used the filter returns false
positives, whereas a too high value results in false negatives. An appropriate value was found to be
γ ≈ 6.
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7. Results

Measurement data was collected from five different scenarios. Each scenario is described in section 3.2.
All scenarios were driven and measured at 30 km/h and 50 km/h, three times for each velocity. We will
only present a selection of results from scenario 3 and 4, as the features found within these scenarios are
considered to be representative and sufficient to illustrate the relevant conclusions for this report.

As mentioned in section 6, the purpose of the kinematics filter is to isolate and identify the components
according the the model given in section 4. We will present the results from scenario 3 for two different
velocities, as this is considered to contain most of the features that are relevant for our conclusions.
Since there is an inifinite set of feasible kinematic curves, nothing can be said about the true correctness
based on the presented data. Instead we will comment on reliabilitiy, based on feasibility and the driver’s
perception.

7.1 The Kinematics Filter

In figure 7.1 we see a trajectory plot of the position output p̄(t), with v̄(t) and ācenter(t) attached to
each position as vectors. By comparison, the trajectory is in accordance with the map given in figure 3.4.
Relating the positional samples between figure 7.1(a) and figure 7.1(b), we see that they are more sparse
when the velocity is increased. We conclude that the positional samples behave as expected.

We observe that the velocity vectors are approximately tangent to the trajectory and that changes are in
accordance with the direction of the corresponding acceleration vector. When the velocity is increased, as
seen in figure 7.1(b), the difference between consecutive velocity vectors become more apparent. Overall
the kinematic quantities presented in figure 7.1 are considered to be physically feasible.
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Figure 7.1: Trajectory of scenario 3 with filter estimates of acceleration and velocity attached to each
position sample as vectors.
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Figure 7.2: Absolute velocity over time for scenario 3 at two different target velocities.

In figure 7.2 we see two plots of the velocity over time, with reference lines at 30 km/h and 50 km/h.
The curves are slightly larger in amplitude than the corresponding reference line at both velocities. Both
curves have a similar shape in the sense that they are mainly centered at some average velocity but there
are three outliers of relatively large amplitude. Comparing the time of the outliers with the corresponding
position samples we observe that they occur at road sections where the trajectory contains a sharp turn.
These outliers are erroneous and will be commented further in section 8.1.1

In figure 7.3 the vibrational noise ξ̄(t) is represented component wise in the BF coordinate system. All
curves are centered about zero, which is to be expected as we assumed that ξ̄(t) ∈ N(0, σ2). The curves
are similar in their overall appearance, though the time scale is different. This is as expected, as the
measurements are taken on the same road section but at different velocities. Furthermore, one can see
the features of the bad road section as an increased amplitude of noise at the later part of the data set.
Sharp peaks present in the data are restricted to time instances where the surrounding noise amplitudes
are relatively large. Interpreting the peaks as potholes or similar obstacles, this is what we would expect
as it implies that the potholes are present in road sections of poor quality.
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Figure 7.3: Vibrational acceleration in BF coordinate frame, filtered out from scenario 3 at two different
target velocities. The scenario consists of normal driving on a road section with varying road conditions.
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In figure 7.4 we see the acceleration output, presented component wise in the BF coordinate system.
Overall the curves corresponds well to what we would expect. The x-axis corresponds to the heading
direction of the vehicle. A large deviation in the x-direction corresponds to a fast change in velocity, small
deviations thus corresponds to smooth car handling. In the x-direction the measured acceleration does
not show any large deviations. This is in accordance with what we would expect as it was intended to
maintain a constant velocity throughout the scenario. The y-axis corresponds to the lateral acceleration
of the vehicle. Deviations in the y-direction corresponds to events that a passenger would percieve as
being drawn sideways, examples of such events are fluttering of the car as a result of obstacles or making
a turn. Turns can be seen in the lateral data y-axis as relatively smooth deviations that stretch over
a longer duration, typically a few seconds. An example of a sharp left turn is seen in figure 7.4(b) at
70 ≤ t ≤ 80, and a more subtle right turn is seen in the same figure at 50 ≤ t ≤ 60.

In the map for scenario 3 (figure 3.4) we see that there are a total of seven turns, out of which four are
considered sharp turns from a geometrical perspective. Considering the y-axis of the measured acceler-
ation in figure 7.4(a), we see features from turns at time instances t ≈ 130 and t ≈ 190. In the same
manner we see turn features in figure 7.4(a) at time instances t ≈ 15, 25, 55, 75, 105, 120 . Comparing
this with the corresponding positional samples, this is what we would expect.

The main contribution to the acceleration of the car should be the acceleration of the center of mass. The
curve representing ācenter(t) is observed to differ from the measured acceleration more than we would
expect. The acceleration curve for ācenter(t) has several outliers compared to the measured acceleration,
especially in the x-direction. The similarity between ācenter(t) and the measurements is better in the
y-direction than in the x-direction. The curve representing the rotational acceleration ārot(t) is consid-
ered to be unfeasible. The rotational accelerations should either be of very short duration, very small
amplitude or both.
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Figure 7.4: Selection of acceleration curves in BF coordinate system, filtered out at two different target
velocities from scenario 3. The scenario consists of normal driving on a road section with varying road
conditions.
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7.2 The Micro Event Filter

In figure 7.5 and 7.6 we see the positions where sharp turn events have been recognized by the micro
event filter in scenario 3 and 4 respectively. For scenario 3, it is seen in figure 7.5(a) that when the
average velocity is 30 km/h only two events occur. Both of these events are at positions where road
actually makes a sharp turn. In figure 7.5(b), the velocity is increased and the same sharp turns are still
recognized but several additional hard turns are recognized. Some of the new warnings are at relatively
smooth road sections. In figure 7.5(b) we also see two false positive warnings at a straight road section.
We note that this particular road section is of poor quality, which may result in disturbances.
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Figure 7.5: Sharp turn events detected by the micro event filter in scenario 3 at different target velocities.
The sharp turn events are marked on the trajectory measured by the GPS.
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Figure 7.6: Sharp turn events detected by the micro event filter in scenario 4 at different target velocities.
The sharp turn events are marked on the trajectory measured by the GPS.

The events that are obtained for scenario 4 by the micro event filter are seen in figure 7.6(a) and 7.6(b).
In figure 7.6(b) there are some events marked on a road section that at first glance seems to be a straight
road section. A closer look on the map reveals that this road section really is "s-shaped". We conclude
that all of these events are considered to be relevant based on the perception of the driver.
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7.3 The Macro Event Filter

In figure 7.7 and 7.8 we see the results obtained from the macro event filter in scenario 3 and 4 re-
spectively. Comparing these results with the scenario descriptions in figure 3.4 and 3.5, we see that the
features found are in accordance with what we should expect. In figure 7.7(b) all sections of poor road
quality are found, whereas in figure 7.7(a) only the second section is marked.
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Figure 7.7: Features of bad road sections found by the macro event filter in scenario 3 at different target
velocities. Potholes are marked by squares and poor road quality is marked by a bold line. The thin blue
line represents the trajectory measured by the GPS.
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Figure 7.8: Features of bad road sections found by the macro event filter in scenario 4 at different target
velocities. Potholes are marked by squares and poor road quality is marked by a bold line. The thin blue
line represents the trajectory measured by the GPS.

We note that in figure 7.8(b) the macro filter marks almost the full trajectory with a deviation on the
y-axis and z-axis. This was not expected, and the interpretation of this will be discussed in section 8.1.3.
Apart from this, the filter finds the relevant sections, as marked in figure 3.5.
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8. Discussion

In this section we will discuss the interpretations and implications of the results observed in the previous
section. First we will discuss each filter in its own aspect and finally we will discuss the overall filter
solution.

8.1 Evaluating Filter Components

8.1.1 The Kinematics Filter

The velocity v̄ and the acceleration ācenter are both based on the kalman estimates obtained by the GPS
input r̄. The outliers that are seen in the velocity and the acceleration curve of ācenter are suggested to be
a result from estimating a high frequency quantity from a low frequency data set. As is seen in the vector
plot (figure 7.1), the estimates are feasible. However, they do not align with their true quantities suffi-
ciently well. The outliers in the velocity curve (figure 7.2) were found to occur when the vehicle changes
direction significantly. When the sample rate is too low there may be a significant difference in heading
between two sample points, in particular when a sharp turn is made. Instead of a smooth gradual change
of heading, the system models the kinematics by a small set of points implying great changes. These
outliers are thus suggested to be a consequence from the system compensating a too low sample rate
on the input. Furthermore the deviation from the intended average velocity is seen to be greater when
the velocity is large, which also may be interpreted as a defect caused by a too low sample rate. These
observations suggest that the sample rate of the input is insufficient for the statespace model used in the
Kalman observer, which renders the model inaccurate. Our conclusion is that the results could be im-
proved in two fundamentally different ways; either by adjusting the algorithms or by enhancing the indata.

One possible way of improving the algorithm is to increase the order of the interpolation. This would
demand a larger delay on the overall system as more data points need to be considered when making
a higher order interpolation. Another possible way would be to investigate a more sophisticated state
space model for the Kalman observer, which most likely would turn out to introduce more lag or even
a non-linear model. Considering Nyquists sampling theorem, such improvements on the algorithms may
still be limited in their capabilities due to the low sample rate on r̄. Furthermore, it is likely that these
alternatives would increase the complexity of the algorithm. This is undesirable if the system is intended
to run online locally on the TEM, as the hardware is limited in its computational capabilities.

In the currently implemented system, we obtain eight output quantities by measuring only two quanti-
ties. A consequence of this is that the output terms are strongly dependent on each other, and errors
will propagate between terms in the model. In particular, errors within estimates based on the position
measurements will propagate into terms derived from them. For example, the quantity ārotation is ex-
pected to have a very small amplitude, as the main dynamics of the car is not of rotational nature. It
is suggested that the unfeasible results of ārotation is a consequence of errors within the term ācenter.
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These errors are likely to have an amplitude which is in orders of magnitude greater than ārotation itself.
The outliers present in the velocity (as seen in figure 7.2) are also probable to be a consequence of errors
arrising from estimates based on a too low sample rate in the position measurement.

Thus we suggest that the best way to improve the results from the kinematics filter is to improve the
hardware. By providing high frequency measurements of relevant quantities so that he outputs can be
identified more or less independently from each other, the system is likely to perform better. One such
extension would be to add a high frequency gyroscope sensor, measuring rotations. This setup would
make it possible to implement a dead reckoning system. In a dead reckoning system relative changes of
the system are calculated based on high frequency measurements, so that the current state of the vehicle
can be determined. The accumuated errors of the calculated current state can be corrected by sensor
fusion of absolute measurements at a lower sample rate whenever these are available.

8.1.2 The Micro Event Filter

The micro event filter is considered to perform well, in spite of the poor performance of the kinematics
filter. Invalid warnings are rare and only encountered when the external disturbances are considerable.
Considerable in the sense that the magnitude of the random disturbances approaches that of the feature
we are trying to identify. Since the behaviour of the vehicle is strongly irregular when affected by such
disturbances, these invalid warnings are considered to be particularily hard to fully elimininate. It is
suggested that the most effective way to improve the micro filter is to improve the estimate of ācenter.
The motivation for this is that ideally ācenter should contain only the center of mass acceleration, which
is precisely the physical quantity that we are interested in.

8.1.3 The Macro Event Filter

The macro event filter is considered to perform sufficiently well. We note that the macro filter currently
only provides decisional support for analysis on road conditions. For a final product, an external software
that can collect, merge and interpret the obtained warnings from several cars is required. Such a software
is likely to be running on a server and hence considered out of scope for this report.

An unexpected behaviour of the filter was found in figure 7.8(b), showing the result of scenario 4 at a
target velocity of 50 km/h. Here we observed that the filter found large vibrations on the y-axis and
z-axis. As the scenario contained several sharp turns, the car had to be driven at a low gear and high rpm
in order to maintain the intended average velocity. It is proposed that this driving behaviour induced
strong vibrations from the car engine to the car chassi. Thus setting off macro filter events, even though
the road conditions were good. Interpreting high rpm of the engine as aggressive driving behaviour, this
may be an interesting observation for future work.

8.2 Evaluating the Overall Solution

The current system is strongly dependent on the position measurement r̄, as two of the most important
estimates v̄ and ācenter are obtained through this sensor data. This is considered to be a major flaw in
the current system for several reasons. It is likely that the GPS signal will be lost from time to time, for
instance in tunnels. If the GPS signal is lost, the kinematic system cannot construct the intended output
and as a consequence the filter collapses. Furthermore, it is concluded that the sample frequency of the
GPS is too low for the proposed analysis.
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9. Conclusions and Future Work

In this thesis we extended an existing generic M2M platform by implementing a filter software to interpret
sensor data. The main purpose of the proposed kinematics filter is that it should model the kinematics
of the vehicle, as this is considered to maintain the generic nature of the system solution. It is proposed
that a wide variety of services can be developed based upon this output. As a proof of concept two filters
that can interpret the output are implemented.

A model on how the kinematics of the car is related to the measured acceleration is formulated. By
analyzing the acquired measurement data, it is found that the proposed model is suitable for the intended
use. All filter implementations are tested and evaluated by applying them on measurement data obtained
from actual scenarios. The conclusion from this is that services performing sufficiently well can be
developed, even though the kinematics filter is considered to perform poorly.

9.1 Setting up Hardware

When analyzing data it is of utmost importance that the recieved input data is well defined. In section
3.1.2 we assumed that the hardware was calibrated and in section 4.2 we assumed that the reference frame
of the TEM was perfectly aligned with the BF. These assumptions were necessary in order to interpret
and analyze the acceleration within the scope of this thesis. In general those assumptions may not be
valid. During the data acquisition phase of this thesis there were a lot of confusion and problems due
to shortcomings of the hardware. A notable amount of time was consumed before it was discovered that
the hardware units did not conform with their specifications. In particular a non uniform orientation of
the accelerometer sensors was discovered, some units were not aligned with the markings on the hardware.

If the deviations and shortcomings of the hardware are known, most such problems can be handled by
software. In this thesis project the particular problems was solved by using only one well known and
tested unit. In future applications it is suggested that one should demand some guarantee of uniformity
between units, for instance by a suitable ISO certification of the manufacturer. This will not necessarily
eliminate errors, but it will ensure that potential errors are uniform in their appearance.

Problems related to the physical installation of the TEM may also provide problems, even when the
hardware is uniform. To analyze the data as described in this thesis it may be necessary to know the
rotation matrix transforming the acceleration data to the BF. It is suggested that the most robust way
to handle this is to implement an automatic calibration software. In its simplest form it should identify
the orientation of the TEM relative to the car. A more sophisticated version should also ensure that the
sensor data is orthonormal.
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9.2 Improving the Results

9.2.1 Current Shortcomings

A robust system should be able to handle data loss to some extent. If some sensor data is crucial for the
system, it must provide a reliable stream of data at all times and never fail. This is certainly not the
case with a GPS, as it may lose contact with satellites. Furthermore the precision depends not only on
the hardware but also on the current spatial configuration of the satellites. High frequency micro sensors
such as accelerometers, assuming that they are properly calibrated, is a more reliable source of data. As
described in [9], the dynamics of a rigid body such as a car is determined by the acceleration and angular
rates of the body. It is found in [10] that the angular rates can be determined by a set of at least six, but
prefereably nine linear accelerometers. Though it is also concluded by [10] that a more suitable setup is
to combine the sensor data of an accelerometer and a gyroscope to determine the angular rate.

9.2.2 Dead Reckoning and Sensor Fusion

Using the GPS to reconstruct the kinematics of the vehicle was found to be problematic for several rea-
sons. As discussed in section 8.1.1, this GPS data is sampled at a very low frequency. As a consequence
of the low sampled data the reconstruction filter performed poorly. In this section we will describe an
alternative concept on how to reconstruct the kinematics.

Sensors can be said to be either relative or absolute. An accelerometer and a gyroscope are relative in the
sense that they cannot determine the initial position of a body, but they can be used to determine how
a body’s position and orientation varies over time relative to the initial state. In the same way, a GPS is
absolute in the sense that it can determine the bodys position independently of the intitial state. A dead
reckoning system uses a suitable model to calculate the current state of a system, based on information
from relative sensors. No model is perfect, of course, so there will be an accumulated drift in accuracy
over time. To handle this drift in accuracy, the state of the dead reckoning system could be corrected
by sensor fusion from absolute sensors. A navigation system of this type is proposed to have several
advantages over the currently implemented filter solution.

Relative sensors are often reliable and accurate in their performance, and usually samples at a high
frequency. Provided that the accumulated drift is corrected by absolute sensor data when necessary, the
kinematics may be reconstructed with a high resolution and accuracy. Since the state estimation of a
dead reckoning system is based upon relative sensors, the system may operate even when the GPS signal
is lost. The current system would fail completely if the GPS signal is lost, whereas a dead reckoning
fusion system would be able to maintain functionality although at a decreased accuracy. Furthermore,
it is proposed that under normal conditions when all sensor data is available, a dead reckoning fusion
system is likely to provide more accurate results.

9.2.3 Suggested Improvements on the Hardware

In order to implement a dead reckoning fusion system, the hardware must be extended with a suitable set
of sensors. Even if the TEM is computationally capable of analyzing data locally, it must be extended with
more sensor data in order to provide the information necessary for an accurate model of the kinematics.
The relative quantities that we would like to measure is the acceleration and the angular rate of the body.
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The hardware should thus be equipped with the following relative sensors:

• high frequency three axis accelerometer

• high frequency three axis gyroscope

Furthermore the hardware should be equipped with the following absolute sensors:

• high resolution clock

• GPS

With this sensor setup the physically relevant data could be sampled at a high frequency, and the low
frequency position samples may be used to adjust and correct the calculated values. This is proposed to
provide a sufficient range of sensor data to reconstruct the dynamics with a dead reckoning system.
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