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Abstract
Cancer is a common cause of death worldwide and radio-
therapy is one of the treatments used. Since treatment
planning is a time consuming matter for the radiation ther-
apist, a way to decrease the time spent finding the plan
would be an improvement. This can be achieved by pre-
calculating a number of optimal plans and then choosing
among these in real-time.

In this thesis a dual algorithm for approximation of
the Pareto optimal plans suggested by Bokrantz and Fors-
gren, was adapted to the parameters of the Leksell Gamma
Knife®. A Graphical User Interface was also created, based
on the navigation tool described by Monz et al to enable
choosing among the pre-calculated dose plans.

The computational time of the algorithm was investi-
gated and the dimensionality of the solutions and Pareto
optimal points were looked at to see if it might be possible
to reduce the number of dimensions to speed up computa-
tions.

Although no certain conclusions can be drawn about
dimensionality reduction, I found no reason to rule that
possibility out. It was also confirmed that there is reason
to keep the number of objectives low to get a better ap-
proximation.





Referat
Svenska

Cancer är en allt vanligare dödsorsak i världen och strålte-
rapi är en vanlig behandlingsmetod. Att ta fram en strålbe-
handlingsplan är en tidskrävande process för den ansvarige
sjukhusfysikern eller läkaren.

Ett sätt att korta ner denna tid är att förberäkna ett
antal optimala behandlingsplaner och sedan välja mellan
kombinationer av dessa i realtid. Planerna som tas fram
med hjälp av en dual algoritm föreslagen av Bokrantz och
Forsgren, är anpassade till Leksell Gamma Knife®. Ett gra-
fiskt verktyg har skapats för att navigera mellan de förbe-
räknade planerna, baserat på navigeringsverktyget beskri-
vet av Monz et al.

Beräkningstiden för att ta fram planerna har studerats,
tillsammans med olika faktorer som påverkar den. I an-
knytning till detta gjordes en enklare dimensionsanalys av
lösningarna och de Pareto-optimala punkterna för att se
om det är möjligt att reducera antalet dimensioner för att
snabba upp beräkningstiden.

Inga långtgående slutsatser kan dras angående detta,
men möjligheten går inte att utesluta. Slutsatsen att för-
söka hålla antalet målfunktioner lågt för att få en så bra
approximation som möjligt bekräftades.
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1 Introduction

Cancer is one of the most common causes of death worldwide. Treatment forms
involve surgery, chemotherapy and radiotherapy, often combined. A major advan-
tage of radiotherapy is that it is non-invasive, avoiding a lot of the risks following
surgical procedures.

The goal of this thesis has been to look at an alternative way of producing
treatment plans for radiosurgery of brain disorders. Today, the treatment plan is
largely done manually, by a radiation therapist. The plan is found by adjusting
parameters and letting the computer redetermine a solution for each new set of
parameters until a satisfactory plan is found. To reduce planning time a number of
treatment plans could be pre-computed and a visual tool be provided for finding a
satisfactory solution among these.

Often there are several objectives to consider, apart from getting enough radi-
ation to the tumour, sparing risk organs close to the tumour and keeping delivery
time short. If the different objectives are not in conflict the problem can be solved
quite easily. However, there rarely exists one solution which is optimal in all
aspects, but rather several solutions, corresponding to different ways of prioritizing
the conflicting goals. The difficulty lies in beforehand knowing how to weigh the
importance of the different objectives to achieve a certain dose distribution. This
is why a number of plans which are optimal for different priorities can be pre-
computed. By making trade-offs between the different goals, the planner plays an
important role in choosing a treatment plan among these different optimal plans.

Immediate visual feedback in terms of dose distributions illustrate how different
priorities affect the treatment plan and helps the planner to choose according to
his/her preferences. A part of the project has therefore been to create such a
graphical tool.

This thesis starts with a description of radiotherapy and how Elekta’s Leksell
Gamma Knife® works, continuing with explaining multiobjective optimization and a
description of the implemented algorithm used to approximate the optimal solutions.
The process of navigating between the optimal treatment plans and how the visual
tool works is described and further improvements are discussed. The algorithms
are also analyzed with respect to computational times and the dimensionality of
the bundle of computed plans and corresponding solutions are examined.
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2 Background

2.1 Radiotherapy

Radiotherapy uses high energy radiation to break the DNA of cancer cells, which
results in slower reproduction and eventually killing these cells.

Different forms of radiotherapy may be used; a distinction is made between exter-
nal beam therapy, internal radiotherapy (brachytherapy) and systemic radioisotope
therapy. In external beam therapy the source of radiation, emitting either photons
or particles with high energy, is located outside the body directing beams at the
treatment area. Brachytherapy uses small radioactive sources that are placed within
or next to areas to treat and in systemic radioisotope therapy radioisotopes are
injected into the bloodstream or ingested. External beam therapy is the method
most commonly used.

In external beam therapy, healthy tissue gets a considerable part of the radiation,
which is why doses have to be kept low and delivered at several treatment occasions,
letting healthy tissue recover in between. This is called fractioning and works due
to the fact that tumour cells are not as good at recovering from radiation damage
as healthy cells.

Radiosurgery, which this thesis concerns, is a form of external beam therapy
that usually only requires one treatment occasion, hence the reference to surgery in
the name.

2.2 Radiosurgery and the Leksell Gamma Knife®

Stereotactic radiosurgery is a form of radiotherapy, where the high energy beams are
focused to deliver a higher dose to the tumour area, letting less radiation damage
healthy tissue around the tumour. This means it is often possible to deliver the
treatment at only one occasion. Due to the high doses delivered, high accuracy of
the patient’s position is critical.

This thesis will consider properties associated with Elekta’s Leksell Gamma
Knife® (LGK) Perfexion. The Leksell Gamma Knife® (LGK) consists of a platform,
which can move in three dimensions, on which the patient is fixated, and a stationary
part containing the collimator body that focuses the beams. In the LGK the brain
position is kept still by attaching a stereotactic frame to the patient’s head using

3



Background Variables in the Leksell Gamma Knife®

small screws fastened to the skull. This frame is then attached to the LGK, giving
the coordinate system used in the treatment planning.

(a) The Leksell Gamma Knife® (b) The collimator body which focuses
the beams.

Figure 2.1: The Leksell Gamma Knife® and a close up of the collimator body that
surrounds the head during treatment.

2.3 Treatment plan
In order to make a treatment plan medical images of the area of the patient to be
treated are necessary. MRI (Magnetic Resonance Imaging) images are most common
because of their soft tissue contrast, but CT-scans (Computed Tomography), which
give 3D X-ray information may also be used as a complement. PET (Positron
Emission Tomography) is another technique that may be used to give further
information. Using a number of provided 2D images, the targets are manually
located and delineated along with the Organs At Risk (OARs).

Today treatment plans are found by so called inverse planning, where the desired
dose distribution is known and the optimization aims to find the machine parameters
to achieve this distribution. The planning time may be long due to an iterative
process involving the planner, who has to adjust the objective function used and
rerun the time-consuming optimization until a satisfactory plan is generated.

Since the preferences of the planner are not explicitly known beforehand, the
goal in this thesis is instead to approximate the set of all optimal treatment plans
so that the planner can navigate on this set in real-time, using a visualization tool,
until a favourable plan is found.

2.4 Variables in the Leksell Gamma Knife®

The variables in this thesis relate to the machine parameters of the LGK, which are
briefly described in this section.

4



Background Mathematical background

The collimator body delivers a set of cone shaped beams through eight different
sectors, resulting in a focused spot where they intersect, creating a so called shot.
Each sector can deliver beams of three different sizes or it may be switched off,
resulting in shots of different sizes and shapes. The patient is moved in between
shots to change the focus point, referred to hereinafter as different shot positions.

Figure 2.2: The collimator body contains 8 individually controlled sectors, with 3
possible beam sizes each.

The number of shots N and their positions have been determined beforehand
using a packing algorithm [1] that fills up the target volumes with shots. For each
shot there are eight possible sectors to use, each with three different collimator
sizes. This results in N · 8 · 3 degrees of freedom of our optimization variable, each
component corresponding to the time which the beam is on for that collimator,
sector and shot.

2.5 Mathematical background
The algorithms used in this thesis require mathematical background knowledge on
some concepts that will be explained in this section. The mathematical definitions
and theorems on optimization are taken from [7] if not stated otherwise. Minor
modifications have been made to suit this project.

2.5.1 Multiobjective optimization
Multiobjective optimization is a type of optimization dealing with several objec-
tive functions, f1, f2, . . . , fn, which all should be minimized. All Multiobjective
Optimization Problems (MOPs), can be written on the general form

(MOP)

minimize
x

{f1(x), f2(x), . . . , fn(x)}
subject to x ∈ S,

where x is a solution vector and S is the set of all feasible solution vectors, which can
be expressed as constraint functions and bounds on the variables. Only considering
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Background Mathematical background

minimization is not a limitation since one can easily translate a maximization
problem into a problem of minimization (max f(x)⇐⇒ min−f(x)).

The goal in solving an MOP is to minimize all of the objective functions simulta-
neously, but since it is not generally the case that all objectives achieve an optimal
value simultaneously a new definition of optimality is needed.

Let Z = f(S) be the feasible objective region and z = {f1(x), f2(x), . . . , fn(x)} ∈
Z, such that x ∈ S, be a feasible point in objective space.

Definition 2.1. A decision vector x∗ ∈ S is weakly Pareto optimal if there does
not exist another decision vector x ∈ S such that fi(x) < fi(x∗) for all i = 1, . . . , n.

An objective vector z∗ ∈ Z is weakly Pareto optimal if there does not exist
another objective vector z ∈ Z such that zi < z∗i for all i = 1, . . . , n; or equivalently,
z∗ is weakly Pareto optimal if the decision vector corresponding to it is weakly
Pareto optimal.

Definition 2.2. A decision vector x∗ ∈ S is Pareto optimal if there does not exist
another decision vector x ∈ S such that fi(x) ≤ fi(x∗) for all i = 1, . . . , n and
fj(x) < fj(x∗) for at least one index j.

An objective vector z∗ ∈ Z is Pareto optimal if there does not exist another
objective vector z ∈ Z such that zi ≤ z∗i for all i = 1, . . . , n and zj < z∗j for at least
one index j; or equivalently, z∗ is Pareto optimal if the decision vector corresponding
to it is Pareto optimal.

In other words, for a Pareto optimal solution a function value can only be
decreased if another one is increased.

(a) Non-connected Pareto surface (b) Connected convex Pareto surface

Figure 2.3: Thick line shows the Pareto frontier and the grey line segments in (b)
show weakly Pareto optimal points. The feasible point z in the left figure is not
Pareto optimal since f1(x) can be lowered, keeping f2(x) constant and vice versa.
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Background Mathematical background

There usually exist an infinite number of Pareto optimal points in the objective
space, forming a Pareto surface or sometimes called Pareto frontier, which may be
both non-convex and non-connected, see Figure 2.3a.

However for convex MOPs the Pareto optimal points z∗ are connected and
form a convex set. Convexity is a crucial property in this thesis which both the
approximation and navigation rest on and the concept of convexity will therefore
be explained next.

Convexity

In this project only convex MOPs are considered, since the Pareto optimal set Z∗
can then be approximated by a sandwich algorithm, that computes upper and lower
approximations of the surface, thereby enclosing it, see Figure 2.4.
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Figure 2.4: Inner and outer approximations of the sandwich algorithm for three
Pareto optimal points.

Defining a convex MOP requires the definitions of convex functions and convex
sets.

Definition 2.3. A function f : Rn → R is convex if for all x(1),x(2) ∈ Rn it holds
that f(βx(1) + (1− β)x(2)) ≤ βf(x(1)) + (1− β)f(x(2)) for all 0 ≤ β ≤ 1.

A set S ⊂ Rn is convex if x(1),x(2) ∈ S implies that βx(1) + (1− β)x(2) ∈ S for
all 0 ≤ β ≤ 1.

In other words a function is convex if the line segment between two arbitrary
points on the curve lies above the curve and a set is convex if all points on a line
segment between two arbitrary points in the set lie in the set.

A convex (MOP) can now be defined.

Definition 2.4. A multiobjective optimization problem is convex if all the objective
functions and the feasible region are convex.

The first step to enable us to use a sandwich algorithm is thus to make sure the
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Background Mathematical background

problem is convex. The method of finding Pareto optimal points is described in the
following section.

Scalarization

The way to handle MOP is by scalarization, transforming the vector of objective
functions to a scalar valued function. This makes the problem solvable as an
ordinary single objective optimization problem. Scalarization can be achieved by
assigning positive normalized weights w1, w2, . . . , wn to each objective function and
formulating the dot product, yielding:

(WSP)

minimize
x

∑n
i=1wifi(x)

subject to x ∈ S,

where wi ≥ 0 for all i = 1, . . . , k and
∑n
i=1wi = 1.

The Weighted Sum Problem (WSP) can be solved using regular optimization
methods and as it turns out the solution x is Pareto optimal if certain requirements
are met.

Theorem 2.5. The solution of (WSP) is weakly Pareto optimal.

Theorem 2.6. The solution of (WSP) is Pareto optimal if the weighting coefficients
are positive, that is wi > 0 for all i = 1, . . . , n.

Theorem 2.7. A unique solution of the weighting problem is Pareto optimal.

Theorem 2.8. Let the MOP be convex. If x∗ is Pareto optimal, then there exists
a weighting vector w (wi ≥ 0, i = 1, . . . , n,

∑k
i=1wi = 1) such that x∗ is a solution

of (WSP).

Theorem 2.8 shows that every Pareto optimal point of a convex MOP can be
found by some nonnegative weights w and Figure 2.5 shows why this may not be
possible in the non-convex case. The weights constitute supporting hyperplanes to
the Pareto surface. By making the functions fi strictly convex and thus ensuring
unique solutions, all non-negative weights could guarantee Pareto optimal solutions.
Once positive weights have been chosen the corresponding Pareto optimal solution
x can be determined using regular optimization techniques.

Ideally a huge number of Pareto optimal solutions and corresponding points
in the objective space would be calculated, but since this is prohibitively time
consuming it has to be approximated by a limited amount of points. The difficulty
lies in choosing the weight vectors to get a set of well distributed Pareto optimal
points z∗.

When solving the (WSP) the objective functions are normalized so that no
objective will dominate the others. Two concepts are important in this context,
namely the ideal vector and the nadir vector, which give the lower and upper bounds
on the functions values z∗, see Figure 2.6. The ideal vector is defined as follows:

8



Background Mathematical background

Figure 2.5: The grey curve segment represents Pareto optimal points which cannot
be found by any weight.

Definition 2.9. The components z∗i of the ideal objective vector z∗ ∈ Rn are
obtained by minimizing each of the objective functions individually subject to the
constraints, that is, by solving

minimize
x

fi(x)

subject to x ∈ S,

for all i = 1, . . . , k.

If feasible the ideal point would be a unique Pareto optimal point z∗.

Figure 2.6: Ideal and nadir points of the Pareto surface

9



Background Mathematical background

Similarly the nadir vector contains the worst Pareto optimal function values.
However this problem is a convex maximization problem and cannot be determined,
but has to be approximated. A common way to do this is by using a pay-off table.
This is done by taking the solutions to the problems solved when searching for
the ideal vector and evaluating the other functions for those solutions and then
comparing them component-wise. The maximum value for each component fi(x)
constitutes an approximation of element i of the nadir vector, see Table 2.1.

x∗ f1(x) f2(x) · · · fn(x)
minimize f1(x) x∗(1) f1(x∗(1)) f2(x∗(1)) . . . fn(x∗(1))
minimize f2(x) x∗(2) f1(x∗(2)) f2(x∗(2)) . . . fn(x∗(2))

...
minimize fn(x) x∗(n) f1(x∗(n)) f2(x∗(n)) . . . fn(x∗(n))

Table 2.1: Pay-off table: znadi is approximated by the maximum value in column i.
The diagonal consists of zidi components.

The normalization of the objective functions, which is done prior to searching
for Pareto optimal points, is performed with respect to the values of the ideal and
nadir vectors:

f̃i(x) = fi(x)− zidi
znadi − zidi

, (2.1)

which ideally would mean that the normalized function values will be in the range
[0,1]. However, since the nadir point is only approximated it might be either too
high or too low [5], which is important to keep in mind.

2.5.2 Dual Polytopes
The vertices of the outer approximation play an important role when finding an error
bound in the dual algorithm that is used for approximating the Pareto surface, see
Figure 2.4. They consist of the intersections of the supporting hyperplanes of the
Pareto surface, that are defined by the weights and corresponding Pareto optimal
points. To find these outer vertices an algorithm based on the concept of dual
polytopes is used.

The convex hull of a set of points describes a convex polytope that can be
represented by the hyperplanes enclosing it. A hyperplane can be written as {z :
aT z = b}, where a is the nonzero normal of the hyperplane. If the normals of the
polytope hyperplanes are oriented outwards, all points inside the polytope can be
described as the set {z : AT z ≤ b}, where A is a matrix containing the hyperplane
normals.

In an n-dimensional polytope a 0-dimensional element is called a vertex, a 1-
dimensional element an edge, an element of n− 2 dimensions is called a ridge and
elements of n− 1 dimensions are called a facets.

10
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By inverting the facets of a polytope in the unit sphere a set of points are created
that constitute the vertices of another polytope, called the dual polytope. A dual
vertex point d is given by d = a

b , a reciprocation in the unit sphere, where a is
normalized. For clarity the original polytope is called the primal polytope. A 2D
example can be seen in Figure 2.7.
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Figure 2.7: The primal and dual polytopes. The reciprocation of the thick grey
facet of the primal polytope results in the emphasized dual point.

Dualizing twice gives back the original polytope. This fact is used to find
the outer vertices and explained further in the Vertex enumeration section in the
following Method chapter.
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3 Method

As mentioned in the previous chapter, the Pareto surface for convex MOPs can
be approximated by a sandwich algorithm, which finds an outer and an inner
approximation of the convex surface. Sandwich algorithms have the advantage that
a bound of the approximation error can be determined as the difference between
the outer and the inner approximations, see Figure 3.1a. In this thesis a type of
sandwich algorithm suggested in [2] is used for this purpose. This dual algorithm,
based on vertex enumeration, uses the error bound throughout the algorithm and
thus it is known in each step of the algorithm and may be used as a stopping criteria.

The real-time navigation on the Pareto surface and visualisation tool for the
treatment plan is based on [8]. Here convex combinations of Pareto optimal points
are used as possible plans as they are feasible and easily found, thereby making
real-time navigation possible. Since combinations of plans are used as potential
solutions, the error bound gives a measure of how large the deviation from a Pareto
optimal plan can be. It also ensures that the real solution is at least as good as the
one found by the navigation.

3.1 The Dual algorithm for approximation of the Pareto
surface

Sandwich algorithms in general start off with a few starting points and then itera-
tively add one point at a time to improve the surface approximation.

In the dual algorithm improvement means lowering the bound on the approxi-
mation error, by adding a new point where the approximation error bound is the
largest.

3.1.1 Initial step

Let n be the number of objectives and thus the dimension of objective space
containing the Pareto optimal points. Initially n + 1 Pareto optimal points are
found. The inner approximation consists of the lower hull of these points and the
outer approximation is formed by the supporting hyperplanes of the Pareto surface.
For each outer vertex, arising from the intersections of the supporting hyperplanes,
the distance to the inner approximation is calculated and a new Pareto optimal

13
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(a) The new weight found by solving
(D) for νmax.
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(b) The new point is found by solving
(WSP) for the new weight.

Figure 3.1: A new weight is found at the point where the error bound of the
approximation is the largest. The new weight is used to add a new point, improving
the approximation.

point is determined and added where the approximation error is the largest, see
Figure 3.1.

Finding starting points

The initial step consists of finding n anchor points, where each anchor point z(i) is
found by minimizing the corresponding function fi. This is equivalent to solving
the (WSP) using a weight with wi = 1 and wj = 0 for all j 6= i. One additional
point is used, an inner point found by weighing all functions equally, by using weight
w = 1

n1, where 1 = (1 1 · · · 1)T . The hyperplane through point i has w(i) as
its normal.
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Figure 3.2: Inner and outer approximations.

The dual algorithm presented in [2], uses the outer vertices, marked with circles
in Figure 3.2, when calculating the distances between the approximations, since
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Method The Dual algorithm for approximation of the Pareto surface

those are the points on the outer approximations furthest away from the inner
approximation.

When the starting points are all found, the task is to find these vertices. The
method of finding these outer vertices is based on duality of polytopes.

Vertex enumeration

The set of outer vertices can be seen as corners of the polytope formed by the convex
hull of this set. To include the whole Pareto surface inside this polytope, the set
has to be expanded with n bounds, see Figure 3.3. These bounds are only used
to find the outer vertices and do not have to correspond to upper bounds of the
functions used in the (WSP). However the bounds forming the polytope have to
be large enough to cover values that might occur in the functions as a result of the
weighted sum optimization, to be able to sort them out properly.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

 Auxiliary vertex

 Auxiliary vertex

Added bound 

Added bound 

 Auxiliary vertex

− w (3)

w
aug

w
aug

− w (2)

− w (1)

Figure 3.3: Bounds added to include the hyperplanes through the anchor points.

This expanded set of outer vertices will form our primal polytope, where the
hyperplanes are known and vertices are to be found. The normals of the primal
facet hyperplanes are known as the weights (with opposite signs) that gave the
Pareto optimal points lying on these facets, see Figure 3.4a. To be able to dualize
this polytope, it first has to be translated so that the origin is located in its interior.
The new origin can be chosen as the average of the n+ 1 starting points and added
vertices.

Dualization will give the vertices of a dual polytope, where each of the vertices
corresponds to a facet in the primal polytope. Due to duality between the polytopes,
the facets of the dual polytope will correspond to the vertices of the outer approx-
imation, which is exactly what we are looking for, see Figure 3.4b. Remaining is
to calculate the normals of the dual facets, to dualize them and to translate the
resulting points back to the original coordinate system. Now the auxiliary vertices
lying on the upper boundaries added at the start can be removed so that only the
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true outer vertices remain. Pseudocode for the vertex enumeration algorithm can
be found as Algorithm A.1 in the Appendix.

(a) Finding the dual points correspond-
ing to the primal facets (supporting
hyperplanes).

(b) Finding the primal vertices (ver-
tices of outer approximation) corre-
sponding to the dual facets.

Figure 3.4: Finding the primal vertices using dualization. a refers to the unit normal
of the hyperplane and b is the distance from the origin to the hyperplane.

Calculating an upper limit of the approximation error

For each of the outer vertices the distance to the inner approximation needs to
be determined. The distance measured in [2] is the distance which minimizes the
largest component distance d(ν, z) = max

i
(zi−νi, 0), between an outer vertex ν and

a point z. This can be written as an optimization problem in the following way:

{
minimize η

subject to η ≥ max(zi − νi, 0)

m


minimize η

subject to η ≥ zi − νi ∀i
η ≥ 0

Now let z = PTλ + Iµ, where P contains the Pareto optimal points found so far
and Iµ allows z to lie above the inner approximation. The optimization problem

16



Method The Dual algorithm for approximation of the Pareto surface

giving the sought distance can be rewritten as:

(P)



minimize
η,λ,µ

η

subject to η1 ≥ PTλ+ Iµ− ν
1
Tλ = 1
η,λ,µ ≥ 0.

Since the problem minimizes η the point z will lie on the inner approximation and η
will represent the sought distance. Thus this optimization problem is solved for each
vertex of the outer approximation and the distance η is stored in association with
that vertex. More on this issue in the section about updating the dual polytope.

3.1.2 Iterative algorithm
When all the distances from the outer vertices to the inner approximation are
determined, the largest one is chosen and the corresponding vertex νmax is used to
find the new weight, that can be used to find a new Pareto optimal point.

Adding a new Pareto optimal point

For the outer vertex νmax corresponding to the largest distance from the inner
approximation, the dual to (P) is solved.

(D)



maximize
π,ρ

ρ− νTπ

subject to Pπ ≥ ρ1
1
Tπ ≤ 1
π ≥ 0.

By Proposition A.5 in [2], π will be the normal of the hyperplane that supports the
inner approximation at the point PTλ+ Iµ, see Figure 3.1.

Therefore π is used as the new weight vector, which can be used to solve the
Weighted Sum Problem (WSP) to give the next Pareto optimal point. This results
in “cutting off” νmax from the former outer approximation (primal polytope) and
creating at least n new outer vertices. These new vertices can be found by updating
the dual polytope and dualizing its new facets, see Figure 3.5.

Updating the dual polytope

The new Pareto optimal point is dualized in the same way as before and the new
dual facets yield the new outer vertices. Since the distance of the approximations
only changes in the neighbourhood of the cut off vertex νmax, there is no need to
redetermine all of the vertex distances. Instead it would be convenient to keep track
of neighbouring vertices and their distances. This can be achieved by relating outer
vertices with the dual facets and to update the dual hull for each new added Pareto
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(a) Dualizing the new facet (b) Finding the new outer vertices

Figure 3.5: Updating the dual polytope and finding the new outer vertices.

optimal point. This is done using a beneath and beyond approach, proposed in [2].
The suggested method checks which facets of the dual polytopes that are visible to
the new dual point and finds the border between visible and invisible facets, called
the horizon. A point z is visible to the facet described by the hyperplane aTdualz = b
if it lies in the halfspace aTdualz ≥ b. From the horizon new facets are connected to
the new dual point, see Figure 3.5a.

To find the horizon, saved as the ridges between visible and invisible facets,
one starts with one visible facet and then using depth first search goes through
its neighbours to check visibility. The adjacency of the facets can be represented
by an adjacency matrix, where A(i, j) = 1 if facets i and j are neighbours. The
first visible facet can be found as the facet corresponding to νmax. New facets are
created by connecting horizon ridges with the new dual point. These facets are then
dualized to find the new outer vertices, as seen in Figure 3.5b.

According to Proposition A.6 in [2] the distance from the new outer vertices to
the inner approximation is at most as large as the largest distance from any of its
neighbouring old vertices’ distance to the inner approximation. This is why when
creating a new facet its distance can be approximated by the largest distance of the
two facets incident to the horizon ridge resulting in the new facet.

Using this fact not all vertex distances need to be recalculated. Only approxi-
mated distances larger than the largest known distance need to be determined with
higher accuracy, which saves computations.

When the new outer vertices and new distances are computed the next iteration
can start. As a stopping criterion, a minimum value for the distance between the
approximations may be used. If the normalization of the functions is accurate, the
distance corresponds to percentages of the function values, which is convenient.

The main steps of the dual algorithm can be seen in the flow chart 3.6.
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Find n+ 1 starting points.
(solve (WSP))

Find outer vertices.
(Algorithm A.1)

Determine error bound.
(solve (P) for all vertices)

Small enough?
Done

Find new weight.
(solve (D) for νmax)

Find new point.
(solve (WSP)
for new weight)
Enough points?

Done

Update dual facets.
(Algorithm A.2)

Find new outer vertices.
(Algorithm A.2)

yes

no

yesno

Figure 3.6: Main steps in the dual algorithm

3.2 Interpolation between Pareto optimal solutions

In our case the objectives fi(D(x)) will be functions of the voxel doses D(x),
depending on the solution x implicitly. Voxels are the 3-dimensional analogy of
pixels that is a result of the discretization of the volumes of interest. The dose
calculation can be performed as a matrix multiplication Dx, where the matrix D
has been constructed beforehand based on the fixed shot positions, found by the
packing algorithm used to determine the shots.

When finding a suitable treatment plan only using the precomputed Pareto
optimal plans is not enough since the number of plans is limited, so additional plans
in between have to be approximated for the navigation. Since the Multiobjective
Optimization Problem (MOP) is convex, linear combinations of Pareto optimal
solutions x are also feasible. However, computing these are rather time consuming
since the doses D(x) would first have to be calculated and used to determine the
function values f(D(x)). Instead [8] suggests to use linear combinations of Pareto
optimal points, that is that the Pareto optimal solutions in the function space may
be used instead. Let X = (x(1) x(2) · · · x(m)) denote the matrix containing
all solutions x and the set Xλ, where 1

Tλ = 1 and λ ≥ 0, denote all convex
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combinations of these solutions. Further let f be the bundle of objective functions
and b contain the upper bounds of the function values. Then

f(DXλ) = f(
m∑
i=1

λiDx(i)) ≤
m∑
i=1

λi f(Dx(i))︸ ︷︷ ︸
z(i)

≤
m∑
i=1

λib = b,

where the first inequality holds due to convexity, see the Definition 2.3. This means
that the convex combinations of Pareto optimal points z (middle part of inequality)
are feasible and can be used for faster computations. When a satisfactory plan is
found the convex combination of Pareto optimal solutions x (left hand side in the
inequality) can be calculated, which gives a plan which is at least as good.

3.3 Navigating among the pre-calculated plans
The updates in the current plan in the visualization tool are made according to the
method described in [8].

The navigation starts off with one plan and proceeds by letting the planner
choose a function value to lower. When an objective function value is changed for
one of the functions, the tool will search for a feasible solution with that chosen
function value.

It is also possible to change upper bounds for objective function values, which
will result in changes of the ranges of the other objective functions values.

3.3.1 Finding a new plan
When a target value τ of function j is chosen, the goal is to find a new plan z, by
minimizing the largest component distance to a feasible point.

minimize max
i 6=j
{zi − zcurrenti }

subject to z = f(DXλ) + I s
z ≤ b
zj = τ

1
Tλ = 1
λ, s ≥ 0.

As suggested f(DXλ) is replaced by PTλ =
∑m
i=1 λif(Dx(i)), where PT =

(f(Dx(1)) f(Dx(2)) . . . f(Dx(m))) contains all Pareto optimal points. This is
similar to calculating the distances between the approximations in (P) and is han-
dled in the same way by:

minimize max
i 6=j
{zi − zcurrenti } ⇐⇒

{
minimize y

subject to y ≥ zi − zcurrenti i 6= j
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This results in the following problem to be solved:

minimize y

subject to y = (PTλ)i + si − zcurrenti i 6= j

PTλ ≤ b
(PTλ)j = τ

1
Tλ = 1
λ, y, s ≥ 0.

Obtained from this optimization problem are the optimal convex coefficients λ∗,
which give the new approximately Pareto optimal point by z = PTλ∗. λ∗ may be
used to calculate a better approximation from f(Xλ∗).

Notice that PT only contains points that satisfy the restrictions chosen in the
navigation.
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4 Model

In this thesis both the Pareto surface approximation algorithm [2] and the Graphical
User Interface [8] have been implemented in matlab®.

Each objective function consists of a sum of two convex, piecewise quadratic
functions so that the (WSP) could be solved using ’interior-point-convex’ in quadprog
[4, 6, 3]. When a solution is found the functions are evaluated for that solution to
find coordinates in objective space. That is why the discrepancy between the found
optimal value and the evaluated function value for the corresponding solution has
to be small. To get the difference between the optimal objective function values z∗
and the value from evaluating the functions for the optimal solution f(x∗), to be
less than 10−5, all tolerances were put to 10−12. z∗ is the optimal value given by
the solver when minimizing each function separately and x∗ is the corresponding
optimal solution. The tolerance values were found by solving the (WSP) for the
first n anchor points.

The linear programs used for the distance calculations were solved with the
default ’interior-point’ in matlab®’s linprog [9, 6], with the tolerance 10−5, since
this was the accuracy of the points.

4.1 Data

The test cases used in this thesis are all based on the same patient data with the
tumour and organ volumes discretized into voxels. Coordinates of each voxel are
given, together with the information of which voxels constitute which organ or
tumour. The dose matrix D, that only considers voxels constituting the tumour
and organ volumes, is given and has been determined when the shot positions were
fixed prior to the dual algorithm was used.

All of the test cases contain one tumour, but differ in the number of Organs At
Risk (OARs) in a way such that test case j + 1 contains one more OAR than test
case j, see Figures A.1-A.5 in Appendix. Since each of the organs in the test case is
represented by one objective function, the number of functions increases for each test
case as well as the size of the dose matrix D since the number of voxels increases.
In addition to the objective functions corresponding to the physical organs and
tumours a function corresponding to the total treatment time is used.
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4.2 Optimization
The objective functions have been chosen quadratic and linear so that the (WSP)s
could be expressed as 1

2xTHx + fTx and solved using quadprog’s ’interior-point-
convex’ algorithm. To ensure unique solutions and thus Pareto optimal anchor
points the organ functions were made strictly convex. However this was not possible
for the treatment time function that was added at end of the project and hence the
weighted sum of all functions is not guaranteed to be strictly convex.

4.2.1 Variables
The variables xi,j,k considered are the beam-on times for sector j and collimator
size k of shot i and organized into a vector as follows:

x =



x1,1,1
x1,1,2
x1,1,3
x1,2,1
...

xN,8,3



4.2.2 Objective functions
The functions correspond to penalizations of unwanted voxel doses, such that low
doses for the target and high doses for the Organ At Risks (OARs) are punished.
The total treatment time can be expressed as a convex function and can therefore
be penalized directly.

Target and organ objective functions

The organ objective functions are constructed to mainly penalize the one-sided de-
viation from a threshold level. For a target, mainly deviations for voxel doses below
the minimum target dose lT are penalized and for an OAR mainly deviations above
the maximum OAR dose lR are penalized, such that lR ≤ lT . These penalizations
are then summed up and constitute the corresponding function value. To achieve
strict convexity higher doses in the target are also penalized, but much less, as well
as low doses for OARs, see Figure 4.1.

The organ function expressions are presented next.

Target objective function:

ft = αt(Dtx)T (Dtx) + βt(max(lT1−Dtx, 0))T (max(lT1−Dtx, 0))
= xT (αtDT

t Dt)x + (max(lT1−Dtx, 0))T (βtI)(max(lT1−Dtx, 0))
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Figure 4.1: Voxel dose penalizations

αt and βt are parameters, such that αt < βt and Dt contains the rows of the
dose matrix D corresponding to target voxels. The max function yields a vector
containing the penalizations of each of the voxels in the target.

OAR objective function:

fr = xT (αrDT
r Dr)x + (max(Drx− lr1, 0))T (βrI)(max(Drx− lr1, 0)),

where αr, βr and Dr are parameters belonging to the OARs.
In my project αt = αr = 0.001 and βt = βr = 0.01. Of course either α or β can

be eliminated and the other be modified to reduce the number of parameters. They
can also have different values for different OARs.

The max-functions are dealt with as in the prior cases, namely by minimizing
the help variables yi :

minimize yi

subject to yi ≥
{
max(lt1−Dtx, 0) if i target
max(Drx− lr1, 0) if i OAR

m

minimize yi

subject to yi ≥
{
lt1−Dtx if i target
Drx− lr1 if i OAR

yi ≥ 0,

and yi is the vector of voxel penalizations belonging to volume i. Since the objective
function is minimized it can be written as

fi = xT (αiDT
i Di)x + yTi (βiI)yi

with the constraints above.

25



Model Optimization

Total treatment time

The total treatment time is too penalized, but linearly, and can be expressed as the
sum of the times of each shot. The time of each shot is the largest time of all of
sectors’ times for that shot, and the time of each sector and shot is obtained by
adding the times of each collimator size for that sector and shot. The time of shot
k, tk, is thus given by tk = max

j
{ck,j}, where j = 1, . . . , 8 and corresponds to the

sectors and k = 1, . . . , N corresponds to the shots.


t1
t2
...
tN

 =


max(c1,1, c1,2, . . . , c1,8)
max(c2,1, c2,2, . . . , c2,8)

...
max(cN,1, cN,2, . . . , cN,8)



All sector-shot times ck,j are given by a matrix multiplication:

FT
t x =


x1,1,1 + x1,1,2 + x1,1,3
x1,2,1 + x1,2,2 + x1,2,3

...
xN,8,1 + xN,8,2 + xN,8,3

 =


c1,1
c1,2
...

cN,8

 ,←− time for shot 1 in sector 2

where

Ft =


1 0 · · · 0

0 1
...

... . . . 0
0 · · · 0 1

 , 1 =

1
1
1

 .

Thus tk ≥ ck,j for all j since tk is minimized. We can then write

Att =



t1
...
t1
...
tN
...
tN
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using

At =


1 0 · · · 0

0 1
...

... . . . 0
0 · · · 0 1

 , 1 =



1
1
1
1
1
1
1
1


and the constraint becomes Att ≥ FT

t x. And the sum of these shot times again is
the total treatment time, so now we have a simple expression for the treatment time.

Treatment time objective function:

fT = 1
T t,

where t is a vector of all shot times.

Forming the weighted sum

The functions were scaled by a factor reflecting the number of voxels in the organ
since the amount differed by a factor 1000 between the organs. This scaling factor
is not vital since normalization should take care of this matter, however it might
affect the numerical accuracy of the ideal and nadir vector. The weighted sum to
be minimized becomes

n∑
i=1

wif̃i =
n∑
i=1

wi
fi − zidi
znadi − zidi

=
n∑
i=1

wi
fi

znadi − zidi
−

n∑
i=1

wi
zidi

znadi − zidi︸ ︷︷ ︸
constant := c

=
n−1∑
i=1

wi ·
1

znadi − zidi
· 1
ni

(
xT (αiDT

i Di)x + yTi (βiI)yi
)

+ wn ·
1

znadi − zidi
· 1T t− c,

where n is the number of objective functions and c is a constant. This can now be
written as a (WSP):

(WSP)



minimize
x,t

∑n−1
i=1 wi · 1

znad
i −zid

i

· 1
ni

(
xTαiDT

i Dix + yTi βiyi
)

+wn · 1
znad

n −zid
n
· 1T t

subject to yi ≥ li1−Dix if i target
yi ≥ Dix− li1 if i OAR
yi ≥ 0
Att ≥ FT

t x
x, t ≥ 0.
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4.3 Graphical user interface
The goal now is to make a visualization tool for comparing the different optimal
treatment plans representing the Pareto surface.

Medical images are usually used to display tumours and organs together with
dose distribution. Another representation of the dose distribution that is commonly
used together with the medical images is a Dose Volume Histogram (DVH), where
the x-axis represents the amount of dose and the y-axis corresponds to the fraction
of the organ volume that receives that amount of dose.

The objective functions and their values are represented by sliders, where the
slider thumb represents the value of the current plan and the slider window corre-
sponds to the range of the function values from the approximated points. Ideally
these ranges would be [0,1], but this might not be the case due to the approximation
of the nadir vector, so the values are normalized according to the pre-computed
values found.

Figure 4.2: The navigation tool. On the left are the sliders corresponding to the
objective functions. The upper boxes corresponds to the function value and the lower
boxes the upper restrictions which are shown as tick marks below the sliders. The
check boxes may be checked to keep the function value fixed. On the upper right
hand side there is a figure showing the organs and the dose distribution. On the lower
right hand side the DVH-curves are shown for the different organs and the tumour.

4.3.1 Dose distribution plots
The dose distribution is commonly presented by iso-dose curves in the medical
images, where the area inside each level curve has received the amount of dose
represented by that curve. Since the dose matrix D only contains information
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about the dose of the targets and organs at risk, the dose outside those organs is
unknown. Therefore the dose is illustrated by different colour intensities instead
of iso-dose curves in the navigation tool of this project. A slider beside the image
handles which 2D image in z-direction is shown. This provides an easy way to
represent 3D information in good detail.

DVH curves are also shown for all tumours and organs considered in the opti-
mization.

4.3.2 Function sliders
Each objective function will be represented by a slider handling restriction of the
function value for that specific objective function. By moving the slider thumb the
planner chooses a specific function value that results in searching for a new feasible
point corresponding to that value. This leads to changes in the other sliders as well
as the dose distribution and the dose-volume histogram.

Next to each slider there is a check box enabling the user to fix function values.
This feature was not included in [8], but added since it seemed like a useful feature.
At most n− 2 check boxes can be checked, since there needs to be at least two free
function values, one for which the value can be chosen by moving the slider and the
other to be determined.

There is also a possibility to put upper bounds on the function values, and thus
consider less plans in the navigation. As pointed out in [8], these bounds may have
been hard to foresee, which is why they are not included in the original (WSP).
Restricting upper bounds of the functions filters out Pareto optimal points with
function values larger than that and may result in changes in the upper bounds of
the functions. The upper bounds are represented by tick marks beneath the sliders.

Displayed function values for the organs are normalized with respect to the
maximum values obtained in the pre-calculation. Since the treatment time slider
is normalized as well, the treatment time is displayed separately to the right of the
function slider.
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5 Results

A major cause of concern in the optimization of dose plans is the computational
time and so the effect of different parameters on this matter was examined. The
computational time plays an important role since the longer the algorithm runs, the
better the approximation gets.

All code in this project was written in matlab® and not optimized for speed,
the computational times are mostly interesting for comparative reasons. It should
be said that the concern here only regards the time for pre-computing plans, since
the navigation is done in real-time.

A comparison between the dual algorithm and uniformly distributed random
weights was done with respect to the error bound of the approximations and the
computational time.

Since the degrees of freedom of the problem have an impact on the computational
time the dimensionality of the solutions was studied to see if the degrees of freedom
might be reduced to speed up computations.

The test cases used can be seen in the Appendix. Each test case has one tumour,
which is the same in all cases, and one objective function corresponding to the total
treatment time. Test case 1 represents one tumour and one OAR and is thus
represented by three objective functions and the last test case, number 5, which
contains five OARs is represented by seven functions. The objective functions are
formulated in the Model chapter. The number of shots and their positions in all of
the test cases were the same, since they originate from the same patient data.

5.1 Comparison between the dual algorithm and uniform
weights

In this section the speed and error bound decrease of the dual algorithm was
investigated by comparing it to an algorithm which randomly chooses weights to
find the next Pareto optimal point.

The comparison was made using uniformly distributed random weights on test
case 1 (one tumour, one OAR and one treatment time function, see Figure A.1),
thereby skipping the time consuming calculations related to the dual polytope.
Since this yields more points in the same amount of time, it would be interesting
to see if this might give a comparable result in terms of the approximation error.
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Results Comparison between the dual algorithm and uniform weights

The uniformly distributed weights were generated from the symmetric Dirichlet
distribution, giving evenly distributed normalized weights. Since the error bound
is not known in the uniform weight algorithm, the dualization technique for finding
outer vertices and calculating their distances was used for this purpose, but not
considered in the timekeeping of the algorithm.

The dual algorithm was run until an approximation error bound of 0.01 was
achieved. The goal was to run the uniform weight algorithm until it reached the
same error bound, but this simply was not possible due to the long computational
time, so I had to settle for a disappointing 0.1 bound.

The sets of points are plotted and compared as well as the decrease of the
error bound for both algorithms. If the functions are properly normalized the error
measure represents percent of the function values.

(a) Points from dual algorithm (b) Points from uniform random
weights

Figure 5.1: Pareto optimal points found in test case 1 containing 3 objective
functions.

Figure 5.1 shows the first 39 Pareto optimal points found for both algorithms. As
expected the dual algorithm does a better job in approximating the Pareto surface
with higher accuracy. The difference in the final error bound is about a factor 10.
Interestingly even for 3219 Pareto optimal plans, plotted in Figure 5.2, the uniform
weights algorithm does not come close when it comes to the approximation error,
still differing by about a factor 10. This follows from the fact that most of the time
the uniform weights generated add points where the approximation does not need
improvement.

This can also be seen in the plot of the decrease of the error bound, shown
in Figure 5.3, where the blue solid curve representing the error bound of the dual
algorithm decreases fast, while the black dashed curve corresponding to the random
weights has a tendency to stay constant for several iterations between the sudden
decreases when a ’good’ weight is generated. Two different plots were made, the
first corresponding to the error bound decrease per time unit. However since there
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Results Comparison between the dual algorithm and uniform weights

Figure 5.2: All the points found by uniform weights when reaching an error bound
below 0.1.

might be room for improvement when it comes to running time of the dual code, it
is relevant to see how the error bound decreases for each iteration as well.
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(b) The error bound of each iteration

Figure 5.3: Plots of the error bound decrease for the case with 3 functions. The solid
curves correspond to the error bound of the dual algorithm and the dashed curves
corresponds to the uniform weight algorithm. Note that the x-axis is logarithmic to
give more details in the beginning of the plot.

The conclusion is that either way the dual algorithm is superior to the uniform
weights generating algorithm when it comes to lowering the approximation error.

I should point out that the result of the uniform algorithm might differ between
different runs due to the randomness in generating the new weights. The huge
number of points produced at the end though suggests that the result should not
deviate too much from what one could expect as an average of a number of runs.
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Results Computational time

Further the comparison was only done for the smallest problem and might
yield different results and lead to other conclusions for larger problems as the
computational time of the dual algorithm increases, as seen in the following section.

5.2 Computational time

In this section the influence of different parameters on the computational times is
investigated. The parameters that are expected to matter for the computational
times was the size of the dose matrix, which in turn depends on the number of
machine parameters (3 collimator sizes x 8 sectors = constant), the number of shots
and the number of voxels. Since the number of shots in all of the test cases were
the same, namely 19 shots, the effect of changing the number of shots has not been
looked into. Thus the remaining thing to investigate was the number of voxels.

Another thing that could affect the computations is the number of functions,
since this increases the dimension of the function space and thereby the number
of computations relating to the dual polytope. The effect of the number of dual
facets in each iteration on the computational time was also studied, as in [2], since
updating the dual polytope uses a depth first search among these facets. The dual
facets correspond to the number of outer vertices, which intuitively increase with
the dimension on the function space.

5.2.1 The number of functions

The main goal is to get a good approximation, but since this is highly connected
to the computational time, the decrease of the error bound was studied for the
different test cases. First the decrease per time unit in the test cases was studied
as well as the decrease for each new plan added in the algorithm. The iteration
tolerance for each of the problems was set to: 0.01, 0.02, 0.03, 0.05 and 0.09. The
two latter had to be adjusted due to the otherwise very long computational time.

As seen in Figure 5.4 the initial bound of the approximation error is larger for
higher dimensional problems. The x-axis again is log scaled to show details, but it
can be seen that the decrease in error is slower per time unit for higher dimensional
problems.

The time for finding a new plan in each of the cases is plotted together with
the number of dual facets (outer vertices) to see how they correlate, see Figure
5.5. The plot suggests that there is some sort of correlation, however the last test
case deviates from the others in the sense that the time to find the last handful of
plans skyrockets without the number of facets showing the same kind of behaviour.
This probably needs to be looked into further in case that there are other factors
contributing to the computational time.

The results suggests that it is wise to be cautious when choosing objective
functions to avoid slowing the algorithm down more than necessary.
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(b) The error bound of each iteration

Figure 5.4: The figures show how the error bound decreases as a function of time
and by each iteration for a different number of objective functions.
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Figure 5.5: A plot showing the number of dual facets (dotted) and the computational
times at each iteration.
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5.2.2 The number of voxels

In this section the effect on the computational time of the total number of voxels
was examined.

The brainstem, which is added as an OAR in the fourth test case (Figure A.4)
contains a considerable amount of voxels, which might affect the computational
time, since it impacts the size of the dose matrix D that is used in the optimization.
The relation between the number of voxels and the total computational time for 39
plans is shown in Table 5.1. The computational times for solving the (WSP) for the
solution with w = 1

n1, is also checked. All times were found by using matlab®s
tic and toc and some caution should be taken to the precision of the numbers. The
optimization time in each test case is taken as an average over five different runs
for the same weight.

# functions # voxels optimization time total time
one solution [s] 39 solutions [s]

3 2019 9.63 262
4 2033 9.95 272
5 2048 8.93 276
6 5473 22.2 699
7 5518 22.9 1589

Table 5.1: Table showing for each of the test cases the number of voxels, the
optimization time of one solution and the total computational time for the first 39
points.

It seems that the time of solving the (WSP) for this particular solution is affected
by the amount of voxels (⇔ rows of D) in a linear manner and there is no reason
to think this result would differ for any other weight w. This indicates that the
optimization time depends mostly on the size of the dose matrix D. The pattern is
not the same for the total time, which suggest there is something else affecting the
total computational time, than only the optimization time.

Both Figure 5.5 and Table 5.1 indicate that there is something other than the
number of voxels affecting the total computational times, since the large computa-
tional times should otherwise be reflected in the results of test case 4 as well.

A probable cause is the number of recursions when searching for the dual horizon.
The reason for finding this dual horizon in the first place was to update the dual
polytope that stores information about the vertex distances to the inner approx-
imation, and in that way save computations and thus computational time. For
cases with many objective functions however the matter of handling the adjacency
of outer vertices could dominate the computations and obviously there is a point
where it would be faster to re-calculate each vertex distance in the iterations to
avoid the tedious dual polytope calculations.
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Results Dimensionality analysis

5.3 Dimensionality analysis
If a lot of the variables are correlated they could be reduced to speed up compu-
tations and thus allow reaching higher accuracy of the approximation. Therefore
a dimensionality analysis was done using Principal Component Analysis (PCA) on
the solutions.

The same kind of analysis was done on the Pareto optimal points to see if they
could be represented by fewer dimensions indicating that some objective functions
were correlating.

5.3.1 Principal Component Analysis
PCA looks at eigenvalues of the covariance matrix of the data giving information
about the directions in the data where the variance is the largest. The data point
x can then be reduced by transforming it to a lower dimension, by yk = W kx,
only considering the k directions of largest variance and in that way keep as much
information as possible. X here contains the solutions x of size d, translated to have
zero mean. W k contains the eigenvectors corresponding to the k largest eigenvalues
of the covariance matrix of X , Cov(X), and Y k hence is the data with reduced
dimensionality. The reconstructed solution xk can be given by xk = W T

k yk. If the
number of principal components k is equal to the number of initial dimensions d,
no information is lost.

5.3.2 Dimensionality of solutions
First the dimensionality of the solutions was investigated, since a reduction would
make it possible to transform the original (WSP) using xk = W T

k yk as a new con-
straint. This could then be substituted into the objective functions f k(DW T

k yk) =
f k(Dkyk) to be minimized for the new lower dimensional variable yk.

Since the degrees of freedom are many in this case, 3 x 8 x 19 = 456, all of the
solutions were used, from each of the test cases as well as the ones from the uniform
weight algorithm. This yields a total of 3477 solutions.

The eigenvalues λi of the covariance matrix can be seen in Figure 5.6.
The dimensionality was first reduced by using the smallest k such that

∑k

i=1 λi∑
λ
≥

0.999, which resulted in 218 principal components. The other fraction used was 0.99,
yielding k = 111.

The residuals between the voxel doses Dxk generated by these reduced solutions
and the real voxel doses Dx were compared. The DVH curves of the solutions
corresponding to the largest residuals for the two fractions were plotted. The x-
axis corresponds to the delivered dose and the y-axis corresponds to the fraction of
volume that has received that dose. Both these plots can be seen in Figure 5.7.

Figure 5.7b shows considerable deviations and the search for a proper value of
k was continued manually. One thing that had to be considered was that the PCA
was performed on the solutions x, so the maximum residual ‖x − xk‖ decreases for
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Figure 5.6: The eigenvalues of the covariance matrix of the solutions. The y-axis is
logarithmic to show detail for small numbers.
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(a) The DVH of plan with k = 218.
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(b) The DVH of plan with k = 111.

Figure 5.7: The solid line represents the distribution from the reduced solutions and
the dashed line represents the corresponding real solution. Both plots show the voxel
doses of the plan with largest voxel residuals.

each additional principal component used, however the maximum residual of the
voxel doses ‖Dx−Dxk‖ may not. Both these maximum residuals for an increasing
value of k are plotted and can be seen in Figure 5.8.

The manual search for the number of principal components to consider resulted
in k = 145 with not too large deviations in the voxel doses as seen in Figure 5.9.

A possibility of reducing dimensionality by this amount would have an impact
on the optimization part of the algorithm. However the results of the optimization
performed on reduced variables have not been studied, and whether or not this
would yield similar results is uncertain. My results only suggest that this should be
looked into. To keep in mind also is that my results originate from the same patient
and same shot positions.

However if one wants to have more data and compare different patients a new
problem arises since the solutions x depend on shot positions. Due to the fact
that there are infinitely many possible shot positions the matrix X containing all
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Figure 5.8: The plot shows the connection between the largest residuals of the voxel
doses and the largest residuals of the solutions for different values of k.
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Figure 5.9: The DVH plot of the plan with the largest voxel residual, for k = 145.

solutions can become quite large.
To guarantee positivity of the beam times xk new constraints have to be added

on the form W T
k yk ≥ 0. Since this affects the computational time the overall

performance of this modified problem has to be studied further.
Another possible dimensionality reduction would be based on a smaller number

of shots. The effects however on the optimal solutions from a reduced number of
shots and their fixed positions must also be investigated, since there is no way to
add or adjust shots in the algorithm.

In the pursuit of lower computational times one has to keep in mind that the
main goal is finding a good treatment plan and that low computational times have no
purpose if the plans found are way worse than plans found by the original problem.

5.3.3 Dimensionality of objective functions
Since the computational times highly depend on the number of functions, there is
a strong reason to try to keep it down. To see if there were functions that seemed
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to have the same aim in the optimization, the dimensionality of the Pareto optimal
plans was studied.

The eigenvalues of the covariance matrix for the Pareto optimal points are
plotted in Figure 5.10a and the fractions

∑k

i=1 λi∑
λ

for increasing k are plotted in
Figure 5.10b.
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Figure 5.10: Plots of the eigenvalues of the Pareto optimal points in the different
cases and the fraction of ’information’ that is kept by an increasing number of
eigenvalues.

Figure 5.10a suggests that most of the ’information’ can be represented in three
dimensions, for all of the test cases. Not too surprising since for example OARs lying
in the same direction from the tumour would have similar preferences when it comes
to radiation directions. Also the function controlling treatment time probably has
the same goal as the OAR functions, namely no radiation at all. However the time
function was very convenient in the navigation tool to disregard plans with too high
treatment time and also by being able to adjust it directly.

Another way to perform the PCA, that was not done in this thesis, would be
to consider all points from all test cases at once. For this the dimensionality of
the points would have to be made equal. This can be achieved by evaluating the
functions for the organs which were not considered in each test case to get these
coordinate values.

40



6 Discussion and future work

The aim of this project was to provide a Graphical User Interface to help the planner
find a good treatment plan in real-time and not having to wait for calculations
when exploring different plans. This goal is achieved by the navigation tool that
was created, though more testing needs to be done. An issue which has not been
focused on in this project is usability, even though it is a very important aspect.

6.1 Conclusions

The results of the studied computational times suggest that one should try to keep
the number of objectives in the optimization to a minimum, since the number of
objectives itself adds a lot of computational time. The obvious way is by considering
a minimum number of OARs. But another way could be to consider several OARs
as one in the optimization. The DVH could still be calculated for each of the organs
separately for visualization purposes.

Since the number of voxels affects the optimization time, one might want to
consider the possibility of choosing only critical parts of these organs or larger
voxel sizes for these organs, to be able to take large organs into account in the
optimization.

Sensitivity of the dual algorithm concerning some parameters is further discussed
together with other observations regarding the performance of the dual algorithm.

6.2 Parameter issues and further investigation

Numerical experiments showed that it seemed to matter where the upper bounds to
create the primal polytope where added. This has to be investigated further, since
the dependence was not clear. A possible explanation is the polytopes created and
geometrical problems that might occur when determining the normals of the facets
and checking visibility of the new dual point.

To ensure that the added upper bounds end up being larger than all plans during
the calculations, a better way of approximating the nadir point than using the pay-
off table should be looked into. In this project the bounds were found by trial and
error.

41



Discussion and future work Future work on the Graphical User Interface

The objective functions were quite simple, so investigating other objective func-
tions is a matter that could to be investigated further. Related to this is how
function parameters, which sometimes may be difficult to calibrate, affect the Pareto
surface, so that the surface could be adjusted instead of redetermined for a new set
of parameters. The idea of the Pareto surface and navigation is avoiding these ad
hoc methods of parameter tweaking in the optimization and might be lost if there
are too many uncertain parameters in the functions.

6.3 Future work on the Graphical User Interface
Limited amount of time for this project did not allow to add more useful features
to the Graphical User Interface (GUI). For example a save button, for saving ’best
so far’-solutions, and an undo button to undo moves resulting in undesired plans.
Using the real medical images as background for the organ and dose plots also needs
to be added for better visualization. Further, more testing of the navigation tool is
needed to guarantee proper results.
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A Appendix

Algorithm A.1 Vertex enumeration
for all starting points z(i) do

z(i)
trans ← z(i)

end for
for all hyperplanes (−w(i))T z(i)

trans = b(i) do
d(i) ← −w(i)

b(i)

end for
for all facets in dual convex hull Conv({d(i)}) do

find normal n(j)
dual

find dual point d(j) on facet n(j)
dual

b
(j)
dual = (n(j)

dual)Td(j)

ν
(j)
trans ←

n(j)
dual

b
(j)
dual

end for
for all translated outer vertices ν(j)

trans do
ν(j) ← ν

(j)
trans

if ν(j) 6∈ z(i)
aug then

keep ν(j)

end if
end for
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Appendix

Algorithm A.2 Find new vertices
dualize znew to find dnew
facet ← facet corresponding to νmax
function find horizon(facet)

for all neighbouring facets do
if neighboring facet visible and not visited then

mark facet as visited
find horizon(neighbour)

else
save ridge between facet and neighbor
save neighbour

end if
end for

end function
for all saved ridges do

create new facet by connecting to dnew
dualize new facet to find νnew

end for
for all new facets do

add adjacency to saved neighbours
end for
remove all visible facets
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Appendix Test Cases

A.1 Test Cases

Figure A.1: Tumour and organs in test case 1

Figure A.2: Tumour and organs in test case 2
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Figure A.3: Tumour and organs in test case 3

Figure A.4: Tumour and organs in test case 4
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Figure A.5: Tumour and organs in test case 5
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