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Sammanfattning

REPLICA är en grupp av konfigurerbara multiprocessorer som med hjälp utav
ett emulerat delat minne realiserar PRAM modellen.

Syftet med denna avhandling är att genom benchmarking av olika beräkningspro-
blem på REPLICA, liknande (SB-PRAM och XMT) och mindre lika (Xeon X5660
och Tesla M2050) parallella arkitekturer, utvärdera hur REPLICA står sig mot
andra befintliga arkitekturer. Både prestandamässigt och hur enkel arkitekturen
är att programmera effektiv, men även försöka ta reda på om REPLICA är speci-
ellt lämpad för några särskilda typer av beräkningsproblem.

Genom att använda välkända Berkeley dwarfs applikationer och opartisk indata
från bland annat The University of Florida Sparse Matrix Collection och Rodinia
benchmark suite, säkerställer vi att det är relevanta beräkningsproblem som utförs
och mäts.

Vi visar att dagens parallella arkitekturer har problem med prestandan för appli-
kationer med oregelbundna minnesaccessmönster, vilken REPLICA arkitekturen
kan vara en lösning på. Till exempel, så behöver REPLICA endast vara klockad
med några få MHz för att matcha både Xeon X5660 och Tesla M2050 för algorit-
men breadth first search, vilken lider av just oregelbunden minnesåtkomst. Genom
att jämföra effektiviteten för REPLICA gentemot en CPU (Xeon X5660), visar vi
att det är lättare att programmera REPLICA effektivt än dagens multiprocessorer.
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Abstract

REPLICA is a family of novel scalable chip multiprocessors with configurable
emulated shared memory architecture, whose computation model is based on
the PRAM (Parallel Random Access Machine) model.

The purpose of this thesis is to, by benchmarking different types of computa-
tion problems on REPLICA, similar parallel architectures (SB-PRAM and XMT)
and more diverse ones (Xeon X5660 and Tesla M2050), evaluate how REPLICA
is positioned among other existing architectures, both in performance and pro-
gramming effort. But it should also examine if REPLICA is more suited for any
special kinds of computational problems.

By using some of the well known Berkeley dwarfs, and input from unbiased sources,
such as The University of Florida Sparse Matrix Collection and Rodinia benchmark
suite, we have made sure that the benchmarks measure relevant computation
problems.

We show that today’s parallel architectures have some performance issues for
applications with irregular memory access patterns, which the REPLICA archi-
tecture can solve. For example, REPLICA only need to be clocked with a few
MHz to match both Xeon X5660 and Tesla M2050 for the irregular memory ac-
cess benchmark breadth first search. By comparing the efficiency of REPLICA to a
CPU (Xeon X5660), we show that it is easier to program REPLICA efficiently than
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1
Introduction

Previously, old software applications could gain performance by processor manu-
facturers continuously increasing clock frequency. Instead of using valuable time
optimizing applications, developers could just wait for the next CPU (Central Pro-
cessing Unit) release. This phenomenon is also referred to as the free lunch [71]. A
few years ago the processor manufacturers found it much harder to keep up an in-
creasing clock frequency, primarily because of the so-called power wall1, and they
were forced into today’s multi-core era [68]. Since the clock frequency stopped
increasing, most old applications also stopped gaining performance by the new
chip multiprocessors (CMP), because they were not programmed to scale with the
number of processors on the chips. Herb Sutter wrote in 2005 that concurrency
(parallel programming) is the biggest revolution in software development since
Object-Oriented Programming (OOP) [71]. He also stated that the free lunch is
over. Applications now have to be programmed to scale with the number of pro-
cessors on the chip to gain performance from future CMPs and many-core proces-
sors (MCP). This has been proved to be hard to accomplish for many reasons. Not
all problems are possible to solve in parallel, and those that are might need more
or less communication between processors, which will lower the performance.
Programming in parallel also involves a lot more synchronization pitfalls, which
do not exist in traditional sequential programming.

The performance difference between naively written C/C++ code and best-optimi-
zed code is called the Ninja gap [68]. This gap seems to grow with the number of
processors, and without actions it can become a great performance bottleneck.

Due to these problems, there is clearly a need for research on alternative pro-
gramming models which can simplify software development, and maximize the

1Power wall is the upper limit of power density in a circuit, due to keep the cooling costs low.
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2 1 Introduction

performance on chips with increasing number of processors, to lower the soft-
ware development costs.

1.1 Purpose

The purpose of this thesis is to, by benchmarking evaluate the REPLICA architec-
ture, a family of novel scalable CMPs with configurable emulated shared memory
architecture, whose computation model is based on the PRAM model. By bench-
marking different types of computation problems on REPLICA, similar parallel
architectures and more diverse ones, we try to show how REPLICA is positioned
among other existing architectures, both in performance and programming ef-
fort. Also, we try to find out if REPLICA is more suited for any special kind of
computational problems.

1.2 Thesis Outline

This chapter gives the reader an introduction into the PRAM model, performance
metrics and the used Berkeley dwarfs.

Chapter 2 gives an overview of the differently architectures and their program-
ming languages that is used for the benchmark suite. The benchmark kernels are
outlined in Chapter 3. The same chapter also describes how measurements are
performed.

Evaluation and results are presented in Chapter 4. Conclusions and some propos-
als of future work are outlined in Chapter 5.

1.3 The PRAM Model

The parallel random access machine (PRAM) model can be seen as an extension of
the random access machine (RAM) model which is used when describing sequen-
tial algorithms’ time complexity [49]. While the RAM only has one processor, the
PRAM consist of an arbitrary number of processors. This is naturally not a realis-
tic assumption, but can be convenient when reasoning about parallel algorithms
in general. Every processor in the PRAM shares the very same clock and memory.
Sometimes the PRAM is described with one instruction memory for each processor,
but in Figure 1.1 the instructions are stored in a shared memory because of simplic-
ity. As in a RAM, one instruction takes exact one time step to execute in one of the
processors of the PRAM [49]. It is important to distinguish between time step and
clock cycles. Each time step consists of at least one clock cycle, further, all time
steps do not need to be of the same time length. This means that the execution
time for an instruction can vary in time, but instructions executed in parallel will
always be in sync since all instructions always take exactly one time step. This
applies even if there are different instructions executed in parallel. Since the pro-
cessors execute instructions in sync, the programmer always know the state of
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Figure 1.1: An abstract parallel random access machine [49].

all processors in the PRAM, unlike in other CMPs where parallel execution is not
synchronous [37].

In this thesis the PRAM is a multiple instructions multiple data (MIMD) machine,
which means that the processors do not need to execute the same instruction
in the same time step, nor on the same data. This opens up the possibility that
several processors within the same time step may try to access the same cell of the
shared memory. It should however be clarified that read and write instructions do
not access the memory simultaneously, even if they are executed within the same
time step. Each time step is divided into three phases: a read phase, a compute
phase and a write phase [49]. This implies that the read instructions always access
the memory before write instructions do. If, and to what degree, concurrent
memory accesses should be allowed, categorises the PRAM into these types [49]:

• EREW: exclusive read, exclusive write - every memory cell can only be read
or written by one processor within the same time step.

• CREW: concurrent read, exclusive write - every memory cell can be read by
multiple processors, but only one can write to it within the same time step.

• CRCW: concurrent read, concurrent write - multiple processors can read or
write to the same memory cell concurrently. A convention is used to deter-
mine what will happen when more than one processor write to the same
memory cell. There exist many suggested conventions, but this thesis will
only bring up the ones mentioned in [49]:

– Weak: multiple write accesses to the same cell are only allowed when
writing a special value, for instance the value 0.

– Common: multiple writing to the same cell is allowed when every
writing processors tries to write the same value.

– Arbitrary: if multiple processors write to the same memory cell, only
one of processors will successfully write its value into the memory, and
all the other processors’ values will be lost.

– Priority: the processors are assigned unique priorities, and when mul-
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tiple processors write to the same cell, only the processor with highest
priority will successfully write its value, and all the other processors’
values will be lost.

– Combining: when multiple processors write to the same cell, the val-
ues are combined into a single value by some arithmetic function, such
as addition.

As said before, the PRAM model has an arbitrary number of processors, and a
such machine is not possible to manufacture. However any PRAM with a fixed
number q of processors can be simulated by a PRAM with p processors in O(dq/pe)
time steps [49].

1.4 Performance Metrics

In parallel computing speedup is a metric for the performance gained by execut-
ing an algorithm in parallel compared to serial [41]. The absolute speedup is de-
fined as:

Sp =
Ts
Tp

(1.1)

Where Ts is time for the best known sequential algorithm executing on a sin-
gle processor, and Tp the time for a parallel algorithm executing with P pro-
cessors [41]. Optimal speedup is obtained when Sp = P , which is called linear
speedup [41]. Linear speedup is the theoretically maximum speedup that can be
achieved, but in reality, there exist anomalies when the speedup exceeds the lin-
ear speedup, know as superlinear speedup [41].

This can, for example, occur if the available cache grows as the number of pro-
cessors increases, resulting in that the single processor might need to do more
expensive memory access [41]. Another example could be a string search algo-
rithm which simply steps through the text until it finds the string it searches for.
When the algorithm is executed in parallel, a second thread could search back-
wards. If the string that is searched for is placed at the end of the text, the second
will find it and exit directly, which will lead to superlinear speedup, since it will
execute faster than Ts/2.

Sometimes it is more convenient to use the parallel algorithm executed with a
single processor, instead of the best known sequential algorithm when defining
speedup. This is called relative speedup [49].

Sp =
T1

Tp
(1.2)

Where T1 is the time for executing the parallel algorithm with a single processor.
The relative speedup definition will mainly be used in this thesis.

Efficiency is a metric that describes how well an algorithm utilizes the proces-
sors [41]. An algorithm’s efficiency is typically between zero and one, and defined
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as:

Ep =
Sp
p

(1.3)

Optimal efficiency is obtained when Ep = 1, which occurs when the speedup is
linear [41].

1.4.1 Amdahl’s Law

For an algorithm that executes in serial and has an execution time of Ts, the frac-
tion of Ts that can be executed in parallel is defined as α, and the fraction that
has to be executed in serial is defined as β. The time for executing this algorithm
in parallel with P processors can be defined as:

β + α = 1⇒ α = 1 − β (1.4)

Tp = βTs +
αTs
P

= βTs +
(1 − β)Ts

P
(1.5)

Then the speedup can be described as [42, 46]:

Sp =
Ts
Tp

=
Ts

βTs + (1−β)Ts
P

=
1

β + (1−β)
P

(1.6)

If the number of processors now goes to infinity we get an upper bound for the
speedup that can be extracted by parallelism:

lim
P→∞

1

β + (1−β)
P

=
1
β

(1.7)

The upper bound of the speedup for different parallel fractions of an algorithm
is shown in Figure 1.2.

Figure 1.2: The amount of speedup that can be extracted according to Am-
dahl’s Law, based on the fraction of parallel work.

It is important to point out that Amdahl’s Law is a very pessimistic upper bound
for speedup. The serial fraction of many algorithms is not constant, but depends
on the problem size [46]. In many algorithms is the serial part heavily reduced
when the problem size increases.
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1.5 The Dwarfs from Berkeley

The technical report [18] from University of California, Berkeley suggest a num-
ber of application classes, called dwarfs, which should be used when evaluating
parallel programming models and architectures.

A dwarf is an application class that captures a type of computation and com-
munication pattern, which exist, and are likely to exist in many future applica-
tions [18].

Our benchmark suite will use the following dwarfs from the report:

• Dense Linear Algebra: This dwarf consist of dense vector and matrix op-
erations, such as in BLAS [18]. These applications have often strided mem-
ory accesses, due to that matrices are represented as two-dimensional ar-
rays [18]. The performance is typically limited by the computation capacity
of the executing architecture [18].

• Sparse Linear Algebra: Due to a large number of zero values, the data sets
are stored in some compressed format in order to reduce storage space and
memory bandwidth required due to only accessing the nonzero values [18].
These applications have often irregular memory accesses, due to indirect
addressing [18]. More about this in Section 3.4. The performance is limited
by both memory bandwidth and computation capacity of the executing ar-
chitecture [18].

• Graph Traversal: Applications that traverse graphs by visiting nodes and
follow their edges [18]. These applications have irregular memory accesses,
and do typically involve little computation [18]. The performance is limited
by memory latency [18].

1.6 Related Work

The performance for regular and irregular work loads on the PRAM like archi-
tecture XMT [72] have been compared against the GTX280 graphics card from
NVIDIA [27]. The comparison showed that XMT had an average speedup of 6.05
over GTX280 for applications with irregular work loads, and 2.07 times slow-
down for the regular ones [27]. The XMT architecture has also been shown to
outperform an Opteron processor from AMD [76]. The comparison was done by
benchmarking a number of well known application algorithms.

The SB-PRAM architecture, a realization of the CRCW PRAM model, has been
evaluated [66]. Its speedup for four application of the SPLASH and SPLASH-2
benchmark suite was compared against a cache based DASH [55] machine and
the MIT Alewife machine [16, 66]. Overhead of the interconnection network was
evaluated by comparing the execution time of the physical SB-PRAM against a
simulated perfect shared memory [66]. The results showed a maximum overhead
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of 1.37 %, and better speedup than the reference architectures for at least two of
the SPLASH applications [66].

Past claims that GPUs have extensive speedups (between 10 and 1000 times) over
CPUs for many important throughput computing kernels have been investigated
by benchmarking a number of carefully selected kernels on an Intel Core i7 960
CPU and a Nvidia GTX280 GPU [54]. Optimization techniques and hardware
features that can explain performance differences are discussed and analyzed for
both architectures [54]. The investigation disputes the previous claims that GPUs
have extensive speedups over CPUs, and claims that a GPU’s speedup over a CPU
is closer to 2.5 on average, according to their benchmark suite [54].

1.7 Some Available Parallel Benchmarks

NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB) are developed and maintained by NASA Ad-
vanced Supercomputer Division, previously known as Numerical Aerodynamic Simu-
lation (NAS) Program [5, 19]. Its purpose is to study and evaluate the performance
of parallel supercomputers. The first version of NPB was released in a technical
document in 1991, which only describes the problems that had to be solved al-
gorithmically. Unoptimized sequential sample codes in Fortran were supplied,
but were only to be considered as guidelines for implementations [19]. This gives
the benchmarkers freedom to choose an implementation technique that best suits
their architecture. The first version (NPB 1.0) consists of five smaller kernels, and
three simulated applications, which derive from computational fluid dynamics
applications.

When NPB 2.0 was released it was thought as a supplement, rather than replace-
ment to the NPB 1.0. Unlike the first version, NPB 2.0 was specified with parallel
source code using Fortran (and C later on) and MPI [4, 20].

Since then more benchmarks have been added, and also programming languages
and models, such as OpenMP, High Performance Fortran and Java. The current
version of NPB is 3.3 [5].

The High-Performance Linpack (HPL) Benchmark

The HPL benchmark is a portable software package for distributed-memory com-
puters that solves a (double precision) dense linear system (Ax = b) which is ran-
domly generated [67]. It requires a message passing interface (MPI) for commu-
nication, and an implementation of either basic linear algebra subprograms (BLAS)
or vector signal image processing library (VSIPL) [67]. The HPL benchmark is used
by the famous TOP500 site which ranks the fastest high performance computer
systems in the world [57].
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SPEC

The Standard Performance Evaluation Corporation (SPEC) is non-profit corpora-
tion that develops and sells standardized benchmarks, which measure the per-
formance of different computer systems [7]. It was founded in 1988 by worksta-
tion vendors due to the need of a standardized performance tests [7]. SPEC also
publishes vendors-submitted results on their site [7].

Rodinia

Rodinia is a heterogeneous benchmark suite which targets general purpose com-
puting on multi-core CPUs and GPUs [70]. The choice of kernels have been
greatly inspired by the Berkeley dwarfs [70]. All benchmarks are written with
support for OpenMP, CUDA and OpenCL as parallel model [11].

1.8 Publications

Results of this thesis have also been partly published in [43] and [44].



2
The Architectures

This chapter gives an overview of the different architectures and their program-
ming language that is used in this benchmark suite.

2.1 REPLICA

REPLICA (Removing Performance and Programmability Limitations of Chip Multi-
processor Architectures [32]) is a successor of the TOTAL ECLIPSE architecture [37],
which is developed at VTT Oulu, Finland. It is a hybrid realization between the
arbitrary multioperation CRCW PRAM and Non-Uniform Memory Access (NUMA)
model [58]. With multioperation one has hardware support for operations that
takes operands sent from more than one hardware thread, which are combined
into a single result, like in the combined PRAM. From now on, when the text men-
tions thread, it is referring to hardware thread. Software threads are not considered
unless it explicitly says so.

REPLICA has multiple MBTAC (multibunched/threaded architecture with Chaining)
processors [37]. The number of MBTAC processors (P) in a REPLICA architecture
are configurable, and so are the number of threads (Tprocessor), functional units,
registers (for each thread), and memory units within each processor [37]. This
thesis will consider configurations with 4, 16 and 64 MBTAC processors. These
processors have three different configurations named T5, T7 and T11. The con-
figuration name of a MBTAC processor refers to the number of functional units
within the processor, where T5 has least units of the three, and T11 the most.
For the different REPLICA configurations used in this thesis see Table 2.1. In the
REPLICA project a FPGA prototype of the REPLICA architecture is currently un-
der development, including an I/O and storage system [32]. Since no prototype is

9
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REPLICA configuration name Processor configuration name P Tprocessor
REPLICA-T5-4-512 T5 4 512
REPLICA-T5-16-512 T5 16 512
REPLICA-T5-64-512 T5 64 512
REPLICA-T7-4-512 T7 4 512
REPLICA-T7-16-512 T7 16 512
REPLICA-T7-64-512 T7 64 512
REPLICA-T11-4-512 T11 4 512
REPLICA-T11-16-512 T11 16 512
REPLICA-T11-64-512 T11 64 512

Table 2.1: Considered REPLICA configurations. Number of processors (P),
Threads per processors (Tprocessor). The REPLICA configurations are named
according to following pattern:
REPLICA-<PROCESSOR>-<P>-<Tprocessor>

available today, the benchmark will instead run on the cycle-accurate simulator
IPSMSimX86, see Section 2.1.6.

2.1.1 Emulated Shared Memory

REPLICA is an emulated shared memory (ESM) machine [36, 32]. The shared
memory of a PRAM is emulated with a cacheless distributed shared memory us-
ing a synchronous high-bandwidth communication network [37]. Memory mod-
ules are organized on-chip as a double acyclic two-dimensional multi mesh net-
work [37], see Figure 2.1b. The data is routed through switches, and to avoid
congestion each shared memory address is pseudo randomly placed among the
memory modules by a polynomial hash function [37].

Instead of trying to remove high memory latency with caches, REPLICA hides
the latency using multi-threaded processors. In short, while a thread is waiting
for data from the shared memory, the processor executes other threads.

The cacheless solution makes memory accessing very time-consuming compared
to cache-based systems, but since no caches are used, there is no need for a co-
herency protocol, which reduces communication over the network.

Figure 2.1 illustrates the communication network that emulates the much sim-
pler PRAM model as it is viewed by the programmer.

2.1.2 Memory Modules

REPLICA has three different on-chip memory modules for each processor: Shared
data memory module, local data memory module and instruction memory modules [37].
The shared data memory modules from all processors build together up the ESM,
which stores all data that is shared between processors. The local data memory
contains data that is private for a processor’s threads [37]. An instruction mem-
ory stores the program code for each processor [37]. Instruction and local data
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(a) The programmer’s view of
the system.

(b) The physical system emulating the shared
memory.

Figure 2.1: A comparison between the programmers view and the physi-
cal communication network that emulates the PRAM model (P=processor,
M=shared memory, L=local memory, i=instruction memory, a=active mem-
ory unit, t=scratchpad, c=step cache, s=switch) [37].

memory are accessed in one clock cycle [37]. To support multioperations and
multiprefix operations the shared memory module has an active memory unit at-
tached to its memory, which consists of a simple ALU and fetcher [37].

2.1.3 The MBTAC Processor

The MBTAC (Multibunched/threaded Architecture with Chaining) processor is a
dual-mode Very Long Instruction Word (VLIW) processor that allows chaining [37].
The processor uses multi-threading, which is implemented with a Tprocessor-stage
pipeline to hide shared memory access latency [37], see Figure 2.2.

PRAM and NUMA mode

Each thread can either run in PRAM mode, or together with one or more threads
in NUMA mode [37, 39, 40]. As default, threads run in PRAM mode, but can
under execution time be configured to NUMA mode [37]. NUMA threads can join
with one or more NUMA threads into a thread bunch [37]. Threads on separate
processors can not join [37].

Programs with low amount of thread-level parallelism (TLP) do not benefit from
multi-threading, simply because they do not have enough parallel work to make
use of all thread-slots/stages in the pipeline. By joining unused threads into
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Figure 2.2: The multi-threaded pipeline in a MBTAC processor [37].

a thread bunch that executes the same code, one can make use of these empty
thread-slots and execute sequential parts faster [37]. One time step in the PRAM
model corresponds to that all threads have passed through the pipeline [37]. Re-
sulting in that threads in PRAM mode execute one VLIW instruction per time
step, while a thread bunch of n threads will execute n VLIW instructions. How-
ever, when a thread runs in NUMA mode, only local memory can be accessed
efficiently, because of the high latency of the shared memory.

NUMA mode is out of scope for this evaluation.

Virtual Instruction Level Parallelism

One VLIW instruction consist of sub-instructions. Thanks to that the MBTAC
processor has organized its functional units in a chain-like manner, these sub-
instructions can have dependencies between each other [37]. This is called virtual
instruction level parallelism (VILP) [37, 53]. It is however only possible to use VILP
when the thread runs in PRAM mode. When a thread is running in NUMA mode,
the functional units are organized as in a traditional VLIW processor [37].
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Step Caches and Scratchpads

To speedup and reduce the number of memory accesses to the ESM, REPLICA
uses step caches [37, 34]. This should not be confused with common caches, even
if they work similarly. The main difference is that the step cache data is only valid
within a single PRAM time step, and therefore coherency issues are avoided [37].

The step cache and scratchpad together form a filter that unburden the commu-
nication network.

When a thread wants to access data from the shared memory, it first searches
through the step cache attached to its processor. A hit for a read access to means
that another thread on the processor within the same PRAM time step already
has received the requested data [37]. Now the read instruction can be completed
by fetching the data from the step cache. Because REPLICA is an arbitrary CRCW
PRAM, a write instruction can be ignored if a write access already has occurred
within the same time step. If the search fails when trying to read, a request is
sent to the ESM which is noted by the step cache [37].

Due to limited associativity of the step cache, it does not support multiopera-
tions or multiprefix operations, thus a scratchpad [35] is connected to the step
cache which is used to store memory access data [37]. There exist two types of
multioperations. The first type is a single instruction, Mx, where the symbol "x"
should be replaced with any of following operations: ADD, SUB (for subtraction),
AND, OR, MAX or MIN, which does not use the step cache or scratchpad. Instead the
operation is performed by the active memory unit at the shared memory module
which holds the operand’s address [37].

The second type consist of two instructions, BMx and EMx. With help from the
scratchpad, BMx performs a reduction of the multioperation among the threads
at the local processor without accessing the shared memory [37]. Instead, the
step cache is used as a temporary target [37]. EMx finishes the multioperation by
performing a reduction between the processors against the shared memory [37].
The two-step multioperations are to prefer over the single step ones when at least√
Ttotal threads, where Ttotal is the total number of threads, are performing the

same multioperation, due to better performance [37].

The multiprefix operations work similar to multioperations, besides that a thread
that executes the multiprefix operation also receives the value of the memory
location that it had before the thread’s operation was applied on it [37]. Both the
single and two multiprefix instructions types are arbitrary ordered, meaning that
there exists no specified order in which the threads are executing their operation
on the memory location [37].

REPLICA does also have hardware support for ordered multiprefix operations,
which is a sequence of three instructions: BMPx, SMPx and OMPx [38]. The threads
then receive their values as if the operations were executed ordered based on the
thread ID. The different multioperations and multiprefix operations are summa-
rized in Table 2.2.
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Operation Number of instructions:
1 2 3

Multioperations Mx
BMx
EMx -

Arbitrary ordered
multiprefix operations MPx

BMPx
EMPx -

Ordered
multiprefix operations - -

BMPx
SMPx
OMPx

Table 2.2: Multioperation and multiprefix operation types. Multioperations
and arbitrary ordered multiprefix operations can be executed with one or
two instructions, depending on if the scratchpad should be used. Ordered
multiprefix operations have to execute three instructions [37].

2.1.4 The Baseline Language

REPLICA architectures can be programmed using a baseline language, which is
a low level language with the parallel concepts of E1 and Fork [32]. The baseline
language is based on the ANSI C standard with assembler inlining and macros
to support multioperations [58, 81]. A program written in REPLICA baseline is
executed by all hardware threads from beginning to end according to the com-
mon single program multiple data (SPMD) style, and no software threads can be
spawned.

The language has a simple convention to distinguish between private and shared
variables. If a variable name ends with the character "_" it is a shared variable,
else it is private [81]. This way it is possible to declare shared and private vari-
ables and still keep the syntax of C. In contrast to shared variables, built-in
macros and variable names begin with "_". For built-in macros and variables
see Tables 2.3 and 2.4.

Macro name Description
_start_timer Starts the simulator’s timer.
_stop_timer Stops the simulator’s timer.
_synchronize Synchronize the threads within a group.
_exit Halts the simulator.
_prefix() Macro for multiprefix operations.
_aprefix() Macro for arbitrary multiprefix operations.
_multi() Macro for multioperations.

Table 2.3: Built-in macros for the baseline language [81].

1The E language was developed for REPLICA’s predecessor TOTAL ECLIPSE [33].
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Variable name Description
_thread_id The thread’s current ID number within

its group.
_absolute_thread_id The thread’s absolute ID number.
_group_id The thread’s current group ID number.

This is actually a pointer to the group’s
synchronization variable [81].

_number_of_threads The number of threads within the
thread’s current group.

_absolute_number_of_threads The total number of threads.
_private_space_start Pointer to the start of the thread’s pri-

vate memory space.
_shared_heap Pointer to the shared heap.
_shared_stack Pointer to the shared stack.
_video_buffer_ An array allocating shared space for

pixels of the screen.

Table 2.4: Built-in variables for the baseline language [81].

1 #include <replica.h>
2 #define N 10000
3
4 int a_[N];
5 int sum_ = 0;
6
7 int main()
8 {
9 int i;

10 for (i=_thread_id; i<N i+=_number_of_threads)
11 {
12 a_[i] = i;
13 }
14 _synchronize;
15
16 _start_timer;
17 for (i=_thread_id; i<N i+=_number_of_threads)
18 {
19 _multi(ADD, &sum_, a_[i]);
20 }
21 _synchronize;
22 _stop_timer;
23 _exit;
24 return 0;
25 }

Listing 2.1: Baseline language example program.

Listing 2.1 contains a simple baseline program which shows how these built-in
macros and variables can be used.

The program first assigns values to the shared array a_ in parallel. Then the sum
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of all values in the array is calculated and stored in the variable sum_ using the
multioperation macro _multi().

Code written in the baseline language can be compiled using REPLICA’s back-
end compiler, which is based on LLVM [81]. The REPLICA benchmark suite is
developed in the baseline language.

2.1.5 The REPLICA Language

To improve productivity a new easy-to-use high-level parallel programming lan-
guage called REPLICA language is being developed [58]. Among many things,
the new language will have a runtime library with support for handling threads,
groups and tasks [58]. It will also provide standard parallel algorithms and
generic data structures through the library [58].

Basic synchronous and asynchronous control constructs, such as for, if, while,
do and switch will be built into the language [58]. Programmers will also be
able to declare their own synchronous and asynchronous functions [58].

It will be possible to declare sequential blocks where threads join into a bunch
which executes in NUMA mode in order to utilize the whole processor pipeline [58].
After the sequential block, the thread bunch can split back into separate threads,
executing in PRAM mode.

The REPLICA language will not be used in this evaluation

2.1.6 IPSMSimX86

IPSMSimX86 is a cycle-accurate simulator originally developed for REPLICA’s
predecessor ECLIPSE, but it has been updated to simulate different REPLICA
configurations as well. The simulator allows the user to execute each instruction
step by step, or run through a whole program. It is also possible to step mul-
tiple instructions and halt a running program. After simulating, IPSMSimX86
can generate a lot of statistics. Such as, execution time, frequency of different
instructions, ratio of taken branches and total number of executed instructions.

In Figure 2.3 some of the simulator’s windows are displayed. The command win-
dow shows the command history [81]. Messages and errors from the simulation
are printed out in the output window. The window in Figure 2.3c displays the
content of the registers. The memory content window displays the content of the
whole memory [81]. The current executing instruction is marked in the code win-
dow, and the numbers in its far left tells how many threads are currently execut-
ing the instructions [81].

There also exist windows that display the value of global variables, statistics,
and the screen. The screen is mapped to a specific address space (through the
_video_buffer_ array), which makes the pixels easy to modify.
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(a) Command window. (b) Output window.

(c) Register content window. (d) Memory content window.

(e) Code window.

Figure 2.3: Some of IPSMSimX86’s windows.

2.1.7 Limitations

The current REPLICA configurations do not support floating point operations,
but these could be included as easily as for any other architecture [37]. Mass
storage is currently not supported, however, the simulator has support for read-
ing and writing from the host’s (the computer running the simulator) file system
using UNIX-like system calls.

2.1.8 Previous REPLICA Works

Andreas Lööw’s master thesis [56] describes the need for a new simulator for the
REPLICA architecture, issues with simulating PRAM architectures, and how it
could be implemented. The resulting simulator was tested, evaluated, and com-
pared against the current simulator. The main goal was to speedup simulation
time rather than be user friendly.
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Daniel Åkesson implemented the first version of the REPLICA compiler back-
end using the LLVM [3] compiler framework, which will be a part of REPLICA’s
future tool-chain used to developing programs for REPLICA with a high-level
and easy-to-use programming language [81]. The compiler takes code written
in REPLICA’s baseline language and generates assembler code for REPLICA. It
also has the ability to do some optimizations and makes better use of REPLICA’s
instruction level parallelism by using a greedy scheduling algorithm [81].

There exists a source-to-source compiler, from the Fork language to REPLICA’s
baseline language, that is described, verified, and tested in the master thesis by
Cheng Zhou [80]. Results also show that the execution overhead that is intro-
duced by the Fork language compared to REPLICA’s baseline language is little.

2.2 Xeon X5660

Xeon X5660 is a 64-bit server/workstation multi-core CPU from Intel [15]. It is
a symmetric multiprocessing (SMP) microarchitecture with a shared 12 MB level
3 cache [15]. The chip has 6 hyper-threaded processors (cores) with a clock rate
of 2.8 GHz [14]. Hyper-threading is Intel’s trademark for its simultaneous multi-
threading (SMT) technology [14]. A SMT processor has execution units that can
execute instructions from more than one hardware thread within the same clock
cycle. Xeon X5660 has 2 hardware threads per processor due to hyper-threading,
and 12 threads in total [14]. When the processor is operating under its power and
temperature limits due to low utilization, it can automatically speed up the clock
rate over the normal frequency, up to 3.2 GHz [14, 15]. Intel calls this for turbo
boost, and it can be used to increase performance for both single and multi-thread
execution [15].

Each processor has its own level 1 and level 2 cache that can hold 32 kB and 256
kB, respectively [15].

Xeon also has support for SIMD instructions which can speed up vectorized com-
putations [15].

There are significant differences between Xeon and REPLICA. When Xeon relies
on caches to overlap the gap between its own and the main memory’s clock rate,
REPLICA tries to hide the latency with multi-threading. To some extent, Xeon
also hides memory latency using hyper-threading, but not in the same degree as
REPLICA. Since Xeon is cache-based, it needs a coherence mechanism to keep
its cache coherence. This mechanism adds not only overhead, but also perfor-
mance issues, such as cache misses and false sharing [41]. REPLICA, which does
not use caches, does not have to deal with this issues. Xeon is an architecture
with its main focus on ILP hardware, compared to REPLICA that concentrates on
TLP using thousands of hardware threads. Neither is Xeon executing its threads
synchronously.
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2.2.1 Xeon Machine Setup

The Xeon machine did run Debian squeeze with Linux kernel 2.6.32-5-amd64
(x86_64), and GCC version 4.4.5 installed. All kernels were compiled with O2
optimizations.

2.2.2 OpenMP

OpenMP (open multi-processing) is a popular application program interface (API)
standard, which provides a parallel programming model for shared memory ar-
chitectures [65]. It uses the SPMD style, together with a fork-join model [65].
An OpenMP program starts executing in a sequential mode, from which it can
spawn a desired number of software threads. The OpenMP specification ver-
sions are defined by the non-profit corporation OpenMP architecture review board
(OpenMP ARB) which owns the OpenMP brand [6]. They do not implement the
OpenMP API, but rather provide the specifications. The OpenMP ARB members
consist of hardware and software vendors/organizations that produce products
for OpenMP, or have great interests of the OpenMP standard [6]. The GCC ver-
sion that we used supports the OpenMP 3.0 specification.

Sequential C, C++ and Fortran code can, with relative little effort, be parallelized
using the OpenMP API. This is done by adding OpenMP directives, which spec-
ifies the OpenMP behavior. In C and C++ OpenMP directives are based on the
#pragma compiler directives, and in Fortran comments are used instead [41, 65].

OpenMP directive in C/C++:

#pragma omp directive-name [clause list]

The intention with OpenMP directives is that is should be possible to write code
that can be compiled for both serial and parallel architectures, though it is up to
the programmer to make sure that both versions produce the same result [65].

Listing 2.2 shows an OpenMP program that sets the values of an array, calcu-
lates, and prints out the sum of the array. It can be compiled both with and
without OpenMP support, and still produces the same result. The program starts
executing sequentially until it reaches the first parallel directive, which will
spawn a team of software threads. The region/scope/block after the parallel
OpenMP directive will be executed in parallel by the team. The thread that ex-
ecutes the parallel directive becomes the master thread of the team, and will
get thread ID 0 [65]. The number of threads that will be created, including the
master thread, can be set by the num_threads clause in the directive’s clause list,
the environment variable OMP_NUM_THREADS, or at runtime using the runtime
library routine omp_set_num_threads(int num_threads) [41]. However, the
behavior of the program is implementation specific if the requested number of
threads is higher than what the implementation supports [65]. The first directive
in Listing 2.2 is directly followed by a for (or loop) directive, which specifies
that the team inside the parallel region will cooperate by executing the for-loop’s
iterations in parallel. Iterations are distributed to threads in the team according
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to default scheduling, or by a schedule specified through the directive’s clause
list. The default scheduling method is implementation specific and can not be
changed [65]. At the end of the loop, there is an implicit barrier where all threads
within the team wait until all iterations are executed [65]. This barrier is however
optional, and can be removed by the nowait clause [65]. In this example the par-
allel region ends directly after the loop, so this barrier will have no effect. The
parallel region also has an implicit barrier at its end, and only the master thread
will continue executing thereafter [65].

1 #include <stdio.h>
2 #include <omp.h>
3 #define N 10000
4
5 int main()
6 {
7 int i;
8 int a[N];
9 int sum = 0;

10
11 #pragma omp parallel
12 { // Parallel region
13 #pragma omp for
14 for(i=0; i<N; ++i)
15 {
16 a[i] = i;
17 }
18 }
19
20 #pragma omp parallel for default(none) \
21 private(i) \
22 shared(a) \
23 reduction(+:sum)\
24 schedule(static)
25 for(i=0; i<N; ++i)
26 {
27 sum += a[i];
28 }
29 printf("Sum: %d\n", sum);
30 return 0;
31 }

Listing 2.2: OpenMP example program.

The next directive in Listing 2.2 is the parallel for (or parallel loop), which
is a shorthand for a parallel directive that only contains a for directive in its
parallel region [65]. The first parallel region could also be specified in the same
way by replacing the two pragmas with #pragma omp parallel for. It is
also possible to place both for directives inside the first parallel directive’s
parallel region.

In the parallel for directive we have a few clauses. The default(shared|none)
clause lets the user decide whether the data-sharing attribute of variables inside
the parallel region should be implicitly set to shared, or if they have to be explic-
itly specified [65]. For a shared variable their exists only one instance of the vari-
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able which all threads within the team share. If a variable is private, all threads
in the team have their own instance of it. When the default clause is not used,
or is set to shared, all variables are implicitly shared except for loop counter vari-
ables which are private [65].

The private(variable-list) clause sets the data-sharing attribute of variables in
its list to private, and shared(variable-list) sets its variables to shared [65].

reduction(operator:variable-list) specifies that the variables in its list should
be reduced using the given operator. Each thread in a team will get a private
copy of the variables in the list. The private variables will be initialized to an
appropriate value, and at the end of the parallel region be reduced back to a
single variable using the specified operator. For legal operations and their initial
values see Table 2.5.

Operator Initialized value
+ 0
* 1
- 0
& ~0
| 0
^ 0
&& 1
|| 0

Table 2.5: Reduction operators and initialized values for the variable [65].

The clause schedule(kind[, chunk-size]) specifies how the loop iterations are
mapped to the threads [65]. There exist five different kinds of scheduling that
can be set:

• static: Iterations are divided into chunks of size chunk-size, which are
statically mapped to the threads in a round-robin fashion [65]. If no chunk-
size is specified, the iterations are divided into at most as many chunks as
there are threads inside the team [65].

• dynamic: Iterations are divided into chunks of chunk-size, and distributed
to the threads as they become idling [65]. As default, chunk-size is set to 1.

• guided: Works similar to dynamic, except that the size of each chunk is
proportional to the number of unassigned iterations divided by the number
of threads in the team [65]. Here chunk-size specifies the minimum size of a
chunk, which is set to 1 as default [65].

• auto: The scheduling technique is implementation specific [65]. The com-
piler is free to choose any mapping of iterations to threads.

• runtime: The scheduling technique is determined at runtime, rather than
during compilation. This is done by the environment variable OMP_SCHEDULE,
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or RTL routine omp_set_schedule(omp_sched_t kind, int modifier)-
[65]. The second parameter, modifier, can be used to set the chunk-size [65].

In a parallel region it is possible to define sections that can be executed in paral-
lel. This is done using the sections and section directives [65]. Inside the
sections directive are a number of code blocks defined, which are assigned to
threads in the team [65]. The code blocks are specified with the section direc-
tive. Each section is only executed once. Here is a short syntax example of how
these directive can be used:

#pragma omp sections [clause list]
{

#pragma omp section
{/* Code block 1 */}
#pragma omp section
{/* Code block 2 */}

...
#pragma omp section
{/* Code block N */}

}

Synchronization and Memory Consistency in OpenMP

To synchronize a team of threads inside a parallel region, the barrier directive
can be used. No thread within the team can continue to execute beyond the
barrier directive before all the threads in the team have reached it [65]. Some
directives have an implicit barrier at its beginning or end [65].

If the programmer wants to have some code executed in serial inside a parallel
region, either the single or master directive can be used. The thread that first
reaches the single directive will execute the serial region [41]. After the serial
region there is an implicit barrier, but it can be removed by specifying the
nowait clause [41]. The master directive works similarly but is always executed
by the master thread, and has no implicit barrier [41].

OpenMP uses a relaxed memory consistency model where all OpenMP threads
have their own temporary view of the shared memory [65]. This allows the com-
piler to store shared variables in registers instead of always loading them from
the shared memory [65].

The flush[variable-list] directive enforces consistency between the thread’s tem-
porary view and the shared memory [65]. The programmer can specify which
shared variables should be flushed in the optional variables list. If no variables
are specified, all shared variables are flushed. The flush directive is also used
implicitly by other directives, such as, barrier, critical, parallel, parallel
for and parallel sections [41]. In combination with the nowait clause,
flush is not implied [41].

Sometimes the programmer wants to make sure that a certain block of code only
is executed by one thread at time. This is often done using mutexes. OpenMP
provides the critical directive, which only lets one thread at a time execute its
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content [65]. To avoid race conditions for a single shared variable, the atomic di-
rective can be used. It ensures that the following variable assignment is updated
atomically, and protects it from simultaneous writing [65].

For more details see the OpenMP specification [65]. Note that this is not a com-
plete documentation of the OpenMP API and a lot of its content has not been
mentioned.

2.3 XMT

The XMT (Explicit Multi-Threading) project started at the University of Mary-
land in 1997 [72]. Its goal is to build an easy-to-program parallel processor, by
supporting a PRAM-like programming model [75].

The architecture runs in either serial or parallel mode [75], see Figure 2.4. Since
the speedup that can be achieved by TLP is limited by the serial fraction of the
program, the XMT project has proposed a relatively fat processor, called master
thread control unit (MTCU), to execute the serial parts of programs [75]. The
MTCU is very similar to a normal cache-based serial processor. The main differ-
ence is that the MTCU can go from serial mode to parallel mode by spawning an
arbitrary number of threads, which is executed by lightweight thread control units
(TCUs) [75]. During parallel mode the MTCU is inactivated [75].

Figure 2.4: The serial and parallel execution modes of XMT [75].

The project is slightly more mature than the REPLICA project, and a 75 MHz
prototype with 64 TCUs has already been synthesized on 3 Xilinx FPGAs [76].
Their next step is to build a 800 MHz ASIC prototype with 1024 TCUs [75], see
the block diagram in Figure 2.5.

This thesis will look at the ASIC prototype, and the default configuration for the
architecture will be used when simulating.

Each TCU executes independently in its own speed, and the instructions are not
executed synchronously as in a REPLICA architecture [75]. This means that a
TCU can execute a thread from its start to its end without ever needing to wait
for any other thread. Since accesses memory through the interconnection net-
work are very time consuming, each TCU has a private prefetching buffer which
can prefetch values in advance [75]. The compiler is responsible for inserting
prefetching instructions [75].
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Figure 2.5: Block digram of XMT [75].

The 1024 TCUs are grouped into 64 clusters with 16 TCUs in each [75]. Larger
functional units, such as multiplication and division, are shared among the TCUs
within the same cluster, while smaller functional units and registers are private
for each TCU [75]. Each cluster can therefore be seen as a SMT processor [75]. To
speedup memory accesses and still avoid cache coherency problems, each cluster
has a read only buffer which is used to store values that will not change during the
current parallel execution [75]. The compiler is responsible for storing read safe
data into the read only buffer [75].

The interconnection network that connects clusters with the memory cache mod-
ules is a mesh of trees network [75, 22]. Memory accesses from multiple clusters
to a single cache module are queued and handled serially [75]. The memory ad-
dress space is divided evenly among the memory modules, and is hashed in order
to reduce congestions [75]. Each memory module also has support for the psm()
(prefix sum to memory) operation which is an atomic fetch-and-add [75].

The clusters share a prefix sum unit, which enables the ps() (prefix sum) opera-
tion to perform a fast atomic fetch-and-add on any of the 8 global registers [75].
The prefix sum is first computed locally on each cluster before begin summed
up in the prefix sum unit [75]. The ps() operation only allows TCUs to add
0 or 1 to the global register [75]. The programmer can use global registers by
declaring variables as psBaseReg [75]. Since 2 global registers are used for man-
aging the lower and upper ID boundary for spawned threads, the programmer is
limited to only declare 6 psBaseReg variables [75]. The psBaseReg has to be
declared as global, and can be accessed as a regular variable by the MTCU during
serial mode execution [75]. During execution in parallel mode by the TCUs, the
psBaseReg can only be accessed through the ps() operation [75]. Therefore is
it only possible to set the psBaseReg variables in serial mode.
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2.3.1 XMTC

XMT can be programmed using the SPMD-style language XMTC, which is an
extension of C [21]. Code written in XMTC can then be compiled by XMT’s GCC
(v 4.0) based compiler [48].

The spawning statement spawn(), see Figure 2.4, carries the two parameters low
and high which specify the lower and upper bound ID for the spawned threads [75].
As mentioned earlier, low and high are stored in the global register file [75]. When
entering a parallel region each TCU will execute a thread at a time, starting with
the thread which has the same ID as the TCU [75]. The thread ID within a paral-
lel region can be accessed through the built-in variable $ [21]. If the number of
spawned threads exceeds the total number of TCUs, then the remaining threads
will be executed as TCUs finish their threads and become idling [75]. A TCU
is assigned a new thread by increasing the lower bound register using the ps()
operation, which will receive a new thread ID for the TCU to execute [75]. This
is repeated until all spawned threads are executed. The flowchart in Figure 2.6
illustrates the assignments of threads to TCUs. This hardware implementation
provides an efficient dynamic scheduling of the spawned threads [75].

Figure 2.6: The flowchart illustrates how N threads are assigned to a
TCU [76].

The spawning statement also makes the MTCU to broadcast the instructions
within the parallel region to all clusters where they are stored [75]. Since the in-
structions are stored locally for each cluster, the number of instructions within a
parallel region is limited [75, 21]. This can however by solved by letting the TCUs
load instructions from the shared memory through the interconnection network,
for larger parallel regions [75]. Nested spawn() statements are serialized using
a loop and will not be executed in parallel [21].

The sspawn() statement makes it possible to spawn a single thread from within
a parallel region, by simply incrementing the upper bound ID using the ps()
operation [75]. The sspawn() statement takes one parameter which will receive
the ID of the newly spawned thread, which can be accessed inside the initial-
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ization block of the sspawn() statement [75, 21]. The new thread will start
its execution at the beginning of the parallel region [75]. As soon as the upper
bound ID is incremented, any idling TCU can start executing the new thread. The
flowchart in Figure 2.6 does not describe this feature. If data have to be initial-
ized for the new thread, some kind of synchronization mechanism between the
parent and child thread has to be implemented by the programmer, so that the
child thread waits for its parent to initialize the child’s data [75]. This invalidates
the restriction of independently executing TCUs to some degree [75].

Listing 2.3 displays an XMTC example program. The first spawn() statement
spawns N threads which initialize the values in array all. The next spawn state-
ment spawns N threads which copy all values greater than N/2 in array all to
array smaller.

1 #include <xmtc.h>
2 #define N 10
3
4 psBaseReg smaller_count;
5
6 int main()
7 {
8 int all[N];
9 int smaller[N];

10 smaller_count = 0;
11
12 spawn(0, N-1)
13 {
14 all[$] = $;
15 }
16
17 spawn(0, N-1)
18 {
19 if(all[$] < N/2)
20 {
21 int index = 1;
22 ps(index, smaller_count);
23 smaller[index] = all[$];
24 }
25 }
26
27 return 0;
28 }

Listing 2.3: XMTC example program.

The XMTC compiler currently does not support any function calls within parallel
regions, but will be supported in the future [21]. This restricts the programmer
from using programming paradigms such as recursion.

Currently the TCU’s can only store local variables and temporary values inside
their registers [21]. This means that XMT can not deal with register spilling
inside spawn blocks. Therefore special care has to be taken when declaring vari-
ables.
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For more details of the XMTC language, see XMT’s toolchain manual [21].

2.3.2 XMTSim

XMTSim is a cycle-accurate simulator for the XMT architecture [48]. The DRAM
is however not simulated, but rather modeled as latency components [48]. The
simulator can be used to simulate different XMT configurations [48]. As men-
tioned earlier, the default XMT configuration with 1024 TCUs will be used for
our simulations. The simulated DRAM clock frequency is 1

4 of the frequency for
the XMT chip, and the latency of the DRAM is 20 DRAM clock cycles [47].

XMTSim does not simulate all features of the MTCU accurately, which will make
it serial execution less efficient [47]. But since the serial fractions of the bench-
mark kernels are small, it will have not have any significant effects on the number
of executed clock cycles [47].

2.4 Tesla M2050

Tesla M2050 is a GPU based on the Fermi architecture and manufactured by
NVIDIA [13]. Tesla is in this case the class name for NVIDIA’s server boards,
and should not be confused with the architecture family name Tesla [77]. Ever
since 2003 have shading languages, such as OpenGL and DirectX, been used for
general purpose computing on graphics processing units (GPGPU) [12]. But since
the APIs were designed for graphical computations, the programs needed to be
translated into a graphical problem, which led to extensive programming effort
and restrictions for the programmer [12].

In 2006 NVIDIA released the compute unified device architecture (CUDA) Tesla to-
gether with the CUDA Toolkit, in order to facilitate the general purpose GPU pro-
gramming [12, 77]. The CUDA Toolkit made it possible to program the massively
parallel GPU architecture using the C extended CUDA language [12]. NVIDIA
shipped their second CUDA capable architecture Fermi with double precision
support in 2010, and later the Kepler architecture [77].

As mentioned earlier, Tesla M2050 is a Fermi architecture with compute capabil-
ity 2.0 [62, 13]. The compute capability is specified by the major and a minor
revision number of a CUDA device [62]. It has 14 multi-threaded streaming multi-
processors (SM) with a clock rate of 1.15 GHz, see Figure 2.7, and 3 GB dedicated
global device memory [13]. The memory is clocked at 1.55 GHz [13]. Each SM
has a 64 kB on-chip memory which is used both as shared memory and level 1
cache [62]. The on-chip memory can be configured to either a 48 kB shared mem-
ory and a 16 kB level 1 cache, or to a 16 kB shared memory and a 48 kB level 1
cache [62]. The shared memory is manged explicit by the programmer [62]. Tesla
also has a unified level 2 cache of 786 kB, which is shared by all SMs [12].

The SM is a single instruction multiple thread (SIMT) processor designed to execute
hundreds of threads [62]. The instructions for each executing thread is pipelined
in order to exploit ILP [62]. A SM executes a single instruction for a group of 32
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Figure 2.7: The streaming multiprocessor [12].

threads simultaneously [62]. The group is called a warp [62]. It works similarly
to a SIMD architecture [62]. If the control flow for threads within the same warp
diverges due to branches, the different control flows are serialized and executed
one by one [62]. This means that all branches that any of the threads within a
warp will take, have to be taken for all threads in the warp. Threads which should
not execute the current instruction are disabled. Programs should therefore be
written so that the control flow within a warp does not diverge, or it can have
significant impact on performance.

Warps are executed independently and scheduled by warp schedulers [12]. Each
SM has two warp schedulers which enable a SM to execute two warps concur-
rently [12]. The warp scheduler selects one warp each and its instruction is exe-
cuted by 16 CUDA cores and four special functional units [12]. No dependency
checks have to be issued since warps execute independently [12].

Each SM has 32 CUDA cores, which gives Tesla 448 CUDA cores in total [13].

2.4.1 CUDA C

CUDA C makes it possible to write CUDA kernels in C and execute them on a
CUDA device [12]. A CUDA kernel is executed by a grid of thread-blocks, see
Figure 2.8. The number of thread-blocks and threads within each thread-block
is configurable, but the maximum number of threads in each thread-block for
the Fermi architecture is 1024 threads [62]. To decide the optimal size of the
thread-blocks for performance is not trivial, and is often determined by testing.
The threads and thread-blocks can be indexed in one, two or three dimensions.
Threads are locally indexed within each thread-block. The indices of a thread
or thread-block are stored in the three-dimensional built-in vectors threadIdx
and blockIdx [62]. The size of each dimension for the grid and thread-blocks
can be accessed by the built-in vectors gridDim and blockDim [62].
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Each thread-block is mapped and executed by a SM independently [62]. A SM
can hold multiple thread-blocks concurrently, which is useful since a single thread-
block normally does not contain enough threads to hide the memory and instruc-
tion latency [77].

The number of thread-blocks that can be executed in parallel depends on the
number of available SMs on the chip [62]. The threads within the thread-blocks
are divided into warps which are executed by the SM’s CUDA cores [62]. Threads
within the same thread-block can be synchronized by the __syncthreads()
function, which works as a barrier for the threads in a thread-block [62]. To syn-
chronize between thread-blocks the CUDA kernel has to be split into two CUDA
kernels, where the synchronization is desired.

1 __global__ void cuda_kernel(int *matrix, int N)
2 {
3 int i = blockIdx.y*blockDim.y + threadIdx.y;
4 int j = blockIdx.x*blockDim.x + threadIdx.x;
5 if(i < N && j < N)
6 {
7 int index = i*N +j;
8 if (i == j)
9 matrix[index] = 1;

10 else
11 matrix[index] = 0;
12 }
13 }
14
15 int main()
16 {
17 int host_matrix[N*N];
18 int *device_matrix;
19
20 // Allocated memory on device
21 cudaMalloc(&device_matrix, N*N*sizeof(int));
22
23 // Setup grid and thread-block sizes
24 dim3 dimBlock(32, 32);
25 dim3 dimGrid(1+(N-1)/dimBlock.x, 1+(N-1)/dimBlock.y);
26
27 // Invoke cuda kernel
28 cuda_kernel<<<dimGrid, dimBlock>>>(device_matrix, N);
29 cudaDeviceSynchronize();
30
31 // Copy the result from device to host memory
32 cudaMemcpy(host_matrix, device_matrix, N*N*sizeof(int),

cudaMemcpyDeviceToHost);
33
34 // Free allocated memory on device
35 cudaFree(device_matrix);
36
37 return 0;
38 }

Listing 2.4: CUDA-kernel example.
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Figure 2.8: A two-dimensional 3×3 grid with its 2×4 thread-blocks [62].

The shared memory is visible among threads within the same thread-block, and
the global memory can be accessed by all threads [62].

Listing 2.4 displays how a CUDA kernel is invoked by its host. The CUDA kernel
creates a N×N identity matrix by mapping each index of the matrix to a thread,
which sets their values. The keyword __global__ defines a function as a CUDA
kernel, and the grid of thread-blocks executing the CUDA kernel is specified by
the <<<...>>> grid configuration syntax [62]. In Listing 2.4 a two-dimensional
grid containing 32×32 thread-blocks is configured to compute the identity ma-
trix.

CUDA kernels are non-blocking, and the host continues executing its program
after the invocation. The cudaDeviceSynchronize() function can be used to
make the host wait until the CUDA kernel has finished its execution [62].

For more details about CUDA C, see the programming guide [62].

2.4.2 Tesla’s Host Setup

In our experiments, the Tesla’s host machine had two Intel Xeon E5520 running
Arch Linux, kernel 3.10.10-1ARCH (x86_64), together with CUDA toolkit 5.0
installed.

2.5 SB-PRAM

SB-PRAM was developed during a research project in the nineties at the Uni-
versity of Saarbrücken and is, as REPLICA, an emulated shared memory archi-
tecture, which realizes the CRCW PRAM model [49, 50]. SB-PRAM does how-
ever follow the slightly stronger priority CRCW PRAM model mentioned in Sec-
tion 1.3. The thread with the highest ID will win a concurrent write conflict,
and successfully write its value [49]. The last SB-PRAM prototype machine had
64 cacheless multi-threaded processors, with 32 hardware threads each, to hide
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memory access latency [49]. The shared memory is emulated by a butterfly in-
terconnection network which supports concurrent read, writes and multiprefix
operations [49]. The butterfly construction of the network also makes the mem-
ory access time uniform for all processors [49]. The address space is hashed in
order to avoid congestions in the interconnection network [49]. The SB-PRAM
was realized on separate chips, FPGAs and boards [49].

The processors are clocked at 8 MHz, and the interconnection network at 32
MHz [49]. The clock rate for the processors could however be higher if the
number of hardware threads, which hide the memory access latency, is increased.
More about this in Section 3.1.

2.5.1 Fork

Fork [52] is a high-level PRAM language which is based on ANSI C, and it has
been implemented for SB-PRAM [49, 50]. It uses the SPMD style, and as for
REPLICA baseline there are no software threads used [49]. Fork has an elegant
way of handling thread groups through control flow constructs, and supports for
synchronous and asynchronous execution mode [49].

During execution in synchronous mode all threads within the same group are
always executing the same instruction within the same PRAM step [49]. This is
called strictly synchronous execution, and means that all threads within the same
group have to follow the same control flow path, and that their program counters
stay equal for each PRAM step [49]. If threads within the same synchronous ex-
ecuting group take different branches due to a conditional statement, the group
automatically splits into new groups [49]. Within the new groups threads are
executing synchronously, but not among separate groups. When all the new
groups have finished their branch, the new groups are merged back to the par-
ent group [49]. A section of code can be declared as synchronous e.g. by the
start statement [49]:

start {/* Synchronous mode */}

In asynchronous mode threads within the same group are not necessarily execut-
ing the same instruction, or control flow [49]. If threads within the same group
take different branches no new groups are created [49]. The asynchronous mode
can therefore be used to reduce overhead of group managing [49]. The term asyn-
chronous can be misleading since all threads still execute instructions (PRAM
steps) synchronously, just like the PRAM mode of REPLICA [49]. A section of
code can be declared as asynchronous e.g. by the farm statement [49]:

farm {/* Asynchronous mode */}

After each farm statement’s code section follows an implicit barrier for the threads [49].
The main() function is asynchronous by default [49]. Threads within the same
group that execute asynchronously can be synchronized explicitly by the barrier
statement [49]. To avoid deadlocks, each thread within the same group has to ex-
ecute the same number of barriers before leaving an asynchronous region [49].
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A section of code that should be executed by a single thread can be declared by
the seq statement [49]:

seq {/* Sequential code */}

The section is executed in asynchronous mode by any thread in a group [49]. The
seq statement should only be used inside synchronous or straight sections [49].

Functions can be declared to be executed in synchronous or asynchronous mode
using the qualifier sync or async [49]:

sync int foo(){return 0;}
async int bar(){return 1;}

Synchronize function should be called from synchronous regions, and asynchronous
functions from asynchronous regions [49]. Asynchronous functions can be called
from synchronous regions using the start or join2 statement, and synchronous
functions from asynchronous regions using the farm or seq statement [49]:

farm bar();
start foo();

There is also a qualifier named straight which makes it possible to declare
functions which can be called from both synchronous and asynchronous regions [49].
Since both regions should be able to call such a function, it must not contain any
statements that makes the control flow of the group to diverge [49]. Therefore
are control flow statements, such as if, for and switch, only allowed inside
a straight function if all threads within the same group will follow the same
control flow path [49]. By declare a function as straight, the programmer does
not need to duplicate the function in order to make it executable for both syn-
chronous and asynchronous mode [49]. The start or join statement should be
used when calling synchronous functions from a function declared as straight,
and the farm or seq statement when calling asynchronous functions [49].

Variables can be declared as either shared or private using the qualifier sh or
pr [49]:

sh int a = 1;
pr float b = 2.0;

Variables without qualifier are by default private [49]. Shared variables that are
declared globally are shared by all threads, and shared variables that are declared
locally in a code section or as parameters of a function are only shared within the
groups that executes that section or function [49].

There exist some built-in variables, macros and functions in Fork. The built-in
variables are displayed and described in Table 2.6. As mentioned earlier, SB-
PRAM has support for multiprefix operations which can by accessed through the
intrinsic functions mpadd(), mpmax(), mpor() or mpand() [49]. The functions
correspond to multiprefix add, max, or and and.

2The join statement is out of scope for the thesis. For more details see [49].
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Variable name Description
__STARTED_PROCS__ Total number of threads.
__PROC_NR__ The thread’s absolute ID number.
@ The thread’s current group ID number.
$ The thread’s absolute ID number, but

can also be set to any desired value by
the programmer.

$$ The thread’s current ID number within
its group.

# The number of threads within the
thread’s current group.

Table 2.6: Built-in variables in Fork [49].

Besides the implicit group splits due to control flow statements inside a syn-
chronous region, there is a statement which can split a group into any desired
number of new groups [49]. The statement is named fork() and has given the
name of the language [49]:

fork(e1; @=e2; $=e3) {/* ... */}

Expressions e1,e2 and e3 define the number of new groups that should be created,
the new group ID for the thread, and the value for the $ variable respectively [49].
The new groups are indexed 0, ..., e1 − 1, and if no thread evaluates e2 to a group’s
ID, then the group will be empty [49]. Threads that evaluate e2 to a value outside
the range 0, ..., e1 − 1 will skip the code section of the fork statement [49]. The
assignment of $ is optional and can be skipped. After all groups have executed
the fork statement and its code section, the groups are merged back to the parent
group [49].

The Fork program in Listing 2.5 executed by the simulator for a machine with 4
hardware threads will produce the following output:

#0000# Start: $$=0, @=0, #=4
#0001# Start: $$=1, @=0, #=4
#0002# Start: $$=2, @=0, #=4
#0003# Start: $$=3, @=0, #=4

#0000# Branch 1: $$=0, @=0, #=2
#0001# Branch 1: $$=1, @=0, #=2
#0002# Branch 2: $$=0, @=0, #=1
#0003# Branch 3: $$=0, @=1, #=1

The pprintf() function is a variant of printf(), which can be called by mul-
tiple number of threads simultaneously, without having the different outputs
mixed up when printing to the screen [49]. Figure 2.9 shows a tree, which il-
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lustrates the groups that will be created during the execution of the program.

Figure 2.9: A tree illustration of how the groups are created during execu-
tion of a Fork program [49].

1 #include <fork.h>
2 #include <io.h>
3
4 void main(void)
5 {
6 pprintf("$$=%d, @=%d, #=%d\n", $$, @, #);
7 start {
8 seq printf("\n");
9 if($$ < 2)

10 farm pprintf("Branch 3: $$=%d, @=%d, #=%d\n", $$, @, #);
11 else
12 {
13 if($$ < 1)
14 farm pprintf("Branch 1: $$=%d, @=%d, #=%d\n", $$, @, #);
15 else
16 farm pprintf("Branch 2: $$=%d, @=%d, #=%d\n", $$, @, #);
17 }
18 }
19 }

Listing 2.5: Example program in Fork.

Programs written in Fork can be compiled with the fcc [50] compiler. fcc (version
2.0) has been used for compiling the SB-PRAM benchmarks.

For more details and features of Fork and its libraries, see [49].

2.5.2 pramsim

The pramsim (version 2.0) [50] simulator has been used to simulate the SB-PRAM
benchmarks. When simulating, the number of processors and threads can be
configured [49]. pramsim simulates at the instruction level of the processors,
and does not simulate the interconnection network [49]. Previous work [66] has
however shown that the wallclock execution times on the physical hardware and
the simulator differ with less than 1.37 % in execution time for all the observed
tests.
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The Benchmark Suite

This chapter describes the benchmark suite, its benchmarks and their kernels,
and how measuring is performed. The suite consists of five benchmarks, with
at least one kernel for each benchmark. See Table 3.1 for an overview of the
benchmark suite.

Benchmark name Dwarf Memory access
PS - Regular
DeMM Dense Linear Algebra Regular
SpMV Sparse Linear Algebra Irregular
QS Graph Traversal (Sorting) Irregular
BFS Graph Traversal Irregular

Table 3.1: An overview of the benchmark suite: Prefix Sum (PS), Dense
Matrix-Matrix multiplication (DeMM), Sparse Matrix-Vector multiplication
(SpMV), Quicksort (QS) and Breadth First Search (BFS)

3.1 Measuring

This section describes how the different architectures performance are measured.

Measuring on REPLICA

The amount of executed cycles on REPLICA was measured using the _start_timer
and _end_timer macros around the benchmark’s kernel. The macros expand to
an inline assembler statement containing a trap instruction, which the simulator

35
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recognizes and automatically measures the elapsed clock cycles between these
two trap instructions.

Measuring on XMT

The manual for the XMT toolchain [21] does not describe any way to define timers
for specific parts of the code. Therefore the total number of cycles is measured
using the flag -cycle when starting xmtsim. To avoid measuring initializing
of data, the input data is initialized at compile time, and output is received by
the flag -bindump when simulating with xmtsim. However, there does exist
a readtimer64() macro in previous work [31] by the XMT project. But due
to lack of documentation, this macro was only used to check that the -cycle
flag produced about the same result. The difference between these was small.
Sometimes the readtime64() macro gave less performance, probably due to
the printf() function that prints out the elapsed cycles.

Measuring on Xeon

The execution times for Xeon are measured by calculating the difference between
a time stamp before the kernel is executed, and one after. Each kernel is exe-
cuted and measured one thousand times from which an average is calculated.
This reduces the overhead and nondeterministic effects of the operating system.
An alternative way could have been to measure one thousand executions and
from that calculate the average. This solution would add less overhead to the
measured time since the time stamp functions only had to be called twice. The
problem with this solution is that if the kernel destroys the input data it has to be
reset before the next execution. For some kernels, only the size of the input data
affects execution time, while the content of the data is irrelevant (e.g., matrix-
matrix multiplication). But this is not true for all kernels. The execution time
for a sorting algorithm normally depends on the content of the input and its size.
However to ensure that a correct result is computed, and to measure all kernels
in the same manner, the alternative solution is not used. The chip is warmed up
by doing some dummy work before any measuring starts, to make sure it runs on
its maximum clock frequency.

The time stamps are produced using the int clock_gettime(clockid_t
clk_id, struct timespec *tp) function from the GNU C library (glibc) [9].
CLOCK_MONOTONIC has been used as clock. The clock resolution is according
to int clock_getres(clockid_t clk_id, struct timespec *res) 1
ns. However, the average time between two time stamps called directly after each
other one thousand times without warming up the chip is 58.186 ns. When the
chip is warmed up this overhead decreases. See A.1 for the implementation of
timer functions.

After the kernel has been launched, some data will remain in Xeon’s cache. Be-
cause of this side effect of how the measuring is done, the remaining launches
are likely to execute faster than the first one. This should be remembered when
looking on the results.
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Measuring on Tesla

For Tesla, the time spent in the kernel and the time used for copying data between
the device and host (both ways) are measured separately. This makes it possible
to compare the computation time, transmit time, and their ratio to the total time.
When the input data consists of more than one array, the asynchronous function
cudaMemcpyAsync() has been used. After the asynchronous function calls, a
single sync makes sure that all transmissions are finished. If transmit time is
much greater than the computation there is less use to optimize the kernel further
since it will not affect the overall time significantly. The chip is warmed up before
measuring by executing the kernel once, a so-called flying start. Benchmarks for
Tesla uses the same timer functions as used for Xeon. Also both computation and
transmit code blocks are measured one thousand times, from which an average is
calculated in order to reduce the nondeterministic effects. The resolution of the
CLOCK_MONOTONIC clock on the host which the Tesla chip is installed on, is 1 ns,
and the average overhead for the clock is 43.584 ns.

As Xeon, Tesla might run faster after the first launch.

Measuring on SB-PRAM

getct() is a function in SB-PRAM’s Fork library which returns a time stamp
that can be used in a similar manner as done for Xeon and Tesla. However, there
is a difference. The time stamp is not based on the system clock, but on how many
clock cycles each thread has consumed. To get the total number of clock cycles
between two time stamps, the elapsed cycles between them have to be multiplied
with the number of threads per processor (Tprocessor). SB-PRAM has 32-threaded
processors and the elapsed cycles should therefore be multiplied with 32. But if
SB-PRAM should be clocked with a frequency comparable to REPLICA’s, it would
need more threads to hide the increased frequency gap between memory and pro-
cessor. The final SB-PRAM machine had 64 processors with 32 threads each. But
to make it comparable with REPLICA, we measure as if it had 4 processors with
512 threads. It should be a realistic assumption since the SB-PRAM’s simulator
does not simulate the network in any case. Now the simulated SB-PRAM has
as many processors and threads as REPLICA-T5-4-512, REPLICA-T7-4-512 and
REPLICA-T11-4-512 (see Table 2.1).

3.2 Prefix Sum (PS)

The prefix sum does not belong to any dwarf class, but is a fundamental building
block in many PRAM algorithms [49, 77]. There exist two forms of prefix sums,
inclusive and exclusive [77]. The inclusive version takes an array of size n, and
computes for each entry the sum of all elements with lower or equal index to its
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own [77].

Input: [a0, a1, a2, ... an−1]

Inclusive output: [a0,
1∑
i=0

ai ,
2∑
i=0

ai , ...
n−1∑
i=0

ai]

For exclusive prefix sum the output is shifted to the right, so that the last element
is excluded, and the first index will always be set to zero.

Exclusive output: [0, a0,
1∑
i=0

ai , ...
n−2∑
i=0

ai]

A native sequential implementation of the inclusive prefix sum can be seen in
Listing 3.1.

1 // Input array
2 int a[] = {...};
3
4 for(i=1; i<N; ++i)
5 a[i] += a[i-1];

Listing 3.1: Native implementation of the PS kernel.

It should be pointed out that the prefix sums problem is a general problem where
the "summing"-operation not necessarily has to be the addition, but could be any
binary associative operation [49, 77].

3.2.1 PS for REPLICA

Since prefix sum is very common in PRAM algorithms, REPLICA has hardware
support for this type of operation, which works similarly to an atomic fetch-and-
add operation. It is performed by calling three multiprefix assembler instructions
in a series. REPLICA baseline has the built-in macro _prefix(p, o, m, c), which
handles the inline assembler. The difference compared to a normal fetch-and-add
operation is that if the operation is executed by multiple threads simultaneously
(within the same PRAM step), REPLICA will order the operations by their thread
ID. It is therefore called ordered multiprefix operation.

The parameter o is the operation that will be applied on the target of address m
with the operand c. p is a variable that will receive the value of address m after
(but within the same PRAM step) all threads with lower ID than its own have
performed their operations.

So if the (exclusive) prefix sum of array a_[n] should be computed in-place by
n threads, the threads can be mapped based on their ID to a value in the array,
which they shall compute the result of, simultaneously. This can be done by the
following multiprefix operation:

_prefixsum(a_[_thread_id], ADD, &sum_, a_[_thread_id])
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Where sum_ is a shared variable that is initialized to zero.

To support problems that are greater than the number of threads, all that has to
be done is to insert a loop:

for(i=_thread_id; i<N; i+=_number_of_threads)
_prefixsum(a_[i], ADD, &sum_, a_[i]);

Since the shared variable sum_ is not set back to zero after each iteration, the
next iteration will continue where the previous left off.

See Listing A.2 for the benchmark code. The built-in variable _number_of_threads
is declared as global, and will therefore not be put into a register, which decreases
the performance since it is used frequently [69]. Therefore it was copied into a
local variable declared as temp, see Listing A.2. By doing this, we got a speedup
between 1.2 and 1.4.

If the inclusive prefix sum is desired, it can be obtained by the sequence:

a_[1], a_[2], a_[3], ... a_[n − 1], sum_

_prefix(p, o, m, c) is a general macro and works not only for sums, but also
for SUB (for subtraction), AND, OR, MAX and MIN. The _aprefix() macro works
similarly to _prefix(), but does not ensure the ordering by ID as _prefix, and
is therefore an arbitrary multiprefix operation. Because _aprefix() does not have
to care about the execution order among the threads it only need perform two
assembler instructions. So if the order is irrelevant this kernel could be executed
even faster using _aprefix() instead.

3.2.2 PS for Xeon

An inclusive prefix sum kernel was implemented using OpenMP. It first divides
the input into Ttotal chunks, and spawns a thread for each chunk (including the
master thread). The threads are mapped to a chunk based on its thread ID. Then
the threads compute the prefix sum of its chunk, and copy the last element into
a shared array at index TID . The shared array’s prefix sum is then computed
by a single thread. Now each thread can finish its work by coping the value from
index TID −1 in the shared array, and adding it to each element in its chunk. Note
that the master thread’s chunk already contains the correct result. Figure 3.1
illustrates the implementation using 4 threads. The mentioned method is based
on the technical report: Prefix sums and their applications [24].

The prefix sums of the chunks and of the shared array are computed by a similar
method as the native one in Listing 3.1. However, the native version makes an
unnecessary load from a[i-1]. It is more efficient to store the current sum in a
temporary variable. See Listing A.3 for the complete kernel.

The GNU C++ library has a parallel version of the std::partial_sum() function
which was compared against the implemented version:

__gnu_parallel::partial_sum(a , a+N, a);
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Figure 3.1: Illustration of the prefix sum implementation [60].

a is an array with N elements. The first argument of partial_sum() is the input
array, and the third is the output array.

Both GNU’s and the implemented version showed best performance when using
6 threads, which means that hyper-threading should not be used. The imple-
mented version was almost twice as fast as GNU’s, and therefore chosen to be
Xeon’s PS kernel.

3.2.3 PS for XMT

The psm() function can not be used to compute the prefix sum since XMT’s
threads do not execute synchronously. Instead we have used the function prefix_sum_int()
from earlier work by the XMT project [31] as kernel, see Listing 3.2.

1 prefix_sum_int(a, a, N);

Listing 3.2: The PS kernel for XMT.

a is an array with N elements. The first argument is the input, and the second is
the output.

3.2.4 PS for Tesla

Tesla’s prefix sum benchmark uses the inclusive_scan() function from the
Thrust library as kernel. Thrust comes with the CUDA toolkit and is a C++ tem-
plate library, which has a similar interface as the C++ STL (standard template
library) [64]. It is called to compute the prefix sum in-place, see Listing 3.3

1 thrust::inclusive_scan(a, a+N, a);
2 cudaError_t err = cudaThreadSynchronize();

Listing 3.3: The PS kernel for Tesla.

a is a Thrust device pointer for the input data of size N. A Thrust device pointer
(thrust::device_ptr<T>) is a data structure template that stores a pointer
to an object allocated at the device memory [64]. It helps functions to distinguish
between device memory pointers and host memory pointers.
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inclusive_scan() takes the beginning of input, end of input and beginning
of output as its first, second and third argument.

3.2.5 PS for SB-PRAM

The prefix sum can easily be computed on the SB-PRAM in the same way as on
REPLICA, using only a loop and the multiprefix operation mpadd(), see List-
ing 3.4.

1 sh int sum = 0;
2 pr int i;
3 for (i=$; i<N; i+=#)
4 {
5 a[i] = mpadd(&sum, a[i]);
6 }

Listing 3.4: The PS kernel for SB-PRAM.

a is a shared array of size N that stores the input data. sum is a shared integer
which works as an accumulator for the prefix sum. The symbols $ and # holds
the thread ID and group size respectively. The above kernel is executed in a
synchronous region, to ensure the iterations to be executed in order.

Since SB-PRAM uses priority among threads to solve writing conflict there exist
no arbitrary ordered multiprefix operations.

3.3 Dense Matrix-Matrix Multiplication (DeMM)

Dense matrix-matrix multiplication (DeMM) is a fundamental linear algebra dwarf.
The benchmark kernels assume that the result matrix has been set to zero for sim-
plicity. So the correct description of the problem is Y = AB + Y , where Y , A
and B are square matrices. Listing 3.5 shows the conventional implementation of
the matrix-matrix multiplication, on which the implementations for the different
architectures are based.

1 // Matrices
2 int A[N][N] = {...};
3 int B[N][N] = {...};
4 int Y[N][N] = {...};
5
6 // Y = AB + Y
7 for(i=0; i<N; ++i)
8 for(j=0; j<N; ++j)
9 for(k=0; k<N; ++k)

10 Y[i][j] += A[i][k] * B[k][j];

Listing 3.5: The conventional implementation of the DeMM kernel [41].

There exist however matrix-matrix multiplication algorithms with lower asymp-
totic complexity, such as Strassen’s algorithm [41]. But for simplicity the conven-
tional algorithm has been chosen. Table 3.2 shows the dimensions of input ma-
trices for the DeMM kernels. It also shows the number of elements and integer
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multiplication operations needed to perform the matrix-matrix multiplication.

Dimensions Elements Multiplication operations
128×128 16384 2097152
256×256 65536 16777216
384×384 147456 56623104
512×512 262144 134217728

1024×1024 1048576 1073741824

Table 3.2: Input matrices for the DeMM kernel.

3.3.1 DeMM for REPLICA

The first thing to do when converting the algorithm to REPLICA, is to divide the
problem into at least as many subtasks as there are threads. It is not enough to
parallelize the outermost loop since it only consists of up to 1024 iterations for
our input. For the largest configuration of REPLICA we need 32 768 subtasks,
which is more than the number of elements within the smallest input matrices.
There are however enough multiplication operations for every thread.

Figure 3.2: An illustration of the group hierarchy.

To map the multiplication operations to threads we expand REPLICA’s single
level group concept into 3 levels (one level for each loop) using subgroups. The
group hierarchy is illustrated in Figure 3.2. Each loop can now be mapped to a
group level:

for(i=group_id; i<N; i+=main_group_size)
for(j=subgroup_id; j<N; j+=group_size)

for(k=_thread_id; k<N; k+=subgroup_size)
multi(ADD, &y_[i][j], a_[i][k]*b_[k][j]);

If we wish to compute a multiplication between two matrices of dimension N×N ,
and create N groups containing N subgroups, with N threads, each thread would
only need to compute a single integer multiplication:
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i=group_id;
j=subgroup_id;
k=_thread_id;
multi(ADD, &y_[i][j], a_[i][k]*b_[k][j]);

Unfortunately, there are not N3 threads available, so we have to decide how to
divide the threads into groups as efficient as possible. Since multioperations be-
comes more efficient as more threads cooperates, we want as many threads as
possible to cooperate. With cooperation we mean that they write to the same
address. This is done by letting the groups that accumulate variable k, which is
subgroups, be as large as the number of rows. To balance work among the threads,
it is important that all subgroups are of equal size, and since all REPLICA config-
urations have a power of two number of threads, the subgroups have to contain a
power of two number of threads as well. So if the number of rows not is a power
of two, it is rounded down to the next power of two number.

When the size of the subgroups is decided, the subgroups are put together into
groups. The optimal group size is equal to the number of rows, but all groups
have to be of equal size, which means that they have to be a power of two. When
the size of the groups and their subgroups are determined, we can compute how
many groups there are in the main group.

The next step is to reorder the loops so that the loop with the most iterations is
the innermost one. Since the i-loop is mapped to the group level with the small-
est accumulation variable (main_group_size), it should be the innermost loop.
The k-loop is mapped to the group level with the largest accumulator variable
(subgroup_size), and should therefore be the outermost loop. By reordering
the loops this way, the conditional checks are reduced. This can be proved by the
mathematical expression, which describes the total number of conditional checks
for the three loops:

No + NoNm + NoNmNi (3.1)

WhereNo, Nm andNi are the numbers of iterations for the outermost, middle and
innermost loop respectively. The innermost loop does only affect one of the three
terms, and has therefore less effect on the total number of conditional checks,
compared to the outermost and middle loop.

The innermost loop’s basic block1 consists only of 3 VLIWs, which limits the com-
piler to do ILP and VILP optimizations. It is possible to create a larger basic block
by unrolling the loops. If the k- and i-loop are unrolled by four, the innermost
basic block grows to 25 VLIWs which computes 4 · 4=16 integer multiplications.
We can then calculate the number of needed instructions per integer multiplica-
tion and compare the different versions. The original version needs 3

1 =3 VLIWs
per integer multiplication, compared to 25

16≈1.56 VLIWs for the unrolled version.
This is a speedup of 1.92 for the unrolled version, and since the unrolled version
does not need to iterate as many times as the original version, it also reduces

1A basic block is a block of code which does not contain any branches except for the last instruction,
nor any entry points except for the first instruction.



44 3 The Benchmark Suite

some overhead of the loops. But some extra checks that take care of the last iter-
ations have to be added, if the number of rows is not a multiple of four. Also, the
comparison is not entirely fair because the number of clock cycles can vary for
different VLIWs.

By testing, it was observed that the kernel showed better performance when stor-
ing the matrix in an one-dimensional array instead of in a two-dimensional one.
When using an one-dimensional array, the row offsets have to be computed ex-
plicit. By placing the j-loop as the innermost, the row offset (i*N and k*N) can
be reused, and since one of the operands only depends on i and k, it can be
reused as well. This is shown in the benchmark source code, see Listing A.4.

If the number of rows is not a multiple of the group size, then the groups and
threads with lower ID will have more work than these with higher ID. To avoid
this we let the threads shift their group and thread ID after each loop, see List-
ing A.4.

Some issues were observed when implementing this kernel. The compilation
aborts during register allocation due to an assertion failure. This could be solved
by marking the variable causing the abortion as volatile. Unfortunately, this
variable is used in the innermost loop, which most likely affects the performance
negatively.

Since REPLICA has hardware support for computing the integer binary loga-
rithm, we wanted to use it for calculating the group sizes. Here is an example:

unsigned max = _number_of_threads<N ? _number_of_threads:N;
unsigned exp;
asm("LOGD0 %1 WB%0 A0": "=r"(exp): "r"(max) :);
unsigned sub_group_size = 1<<exp;

For unknown reasons this technique produced the wrong results. It was solved
by implementing a much slower software solution, using a loop:

unsigned max = _number_of_threads<N ? _number_of_threads:N;
unsigned sub_group_size;
for(subgroup_size=1; subgroup_size<=max; subgroup_size<<=1)

;
sub_group_size >>= 1;

The software solution is of course much slower than using the assembler instruc-
tion, especially for large matrices. This however only affects the initial part of the
kernel, and is just a small fraction of the total amount of work.

3.3.2 DeMM for Xeon

The main issue when implementing a matrix-matrix multiplication for Xeon is
cache locality. For the conventional implementation in the innermost loop, see
Listing 3.5, matrix B is accessed column-wise. The cache will store the elements
in B as they are requested, and since the size of an integer is not enough to fill
an entire cache line, the cache line will be filled with extra elements with higher
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address next to the requested element. The extra elements are marked with hash-
ing in Figure 3.3a. If the level 1 cache is large enough, the extra cached elements
can be used in the next round for the innermost loop. This is unfortunately not
the case for larger matrices. The extra elements will then likely be overwritten by
other elements before the next round, which leads to cache misses and reduced
performance [30].

A possible solution is to transpose B before computation, so that it can be accessed
row-wise, but to transpose B adds extra work. A better solution is to use loop tiling
in order to increase cache locality [30]. Loop tiling splits the matrices into subma-
trices, so that a submatrix row fits into a single cache line [30]. Listing 3.6 shows
the conventional matrix-matrix multiplication from Listing 3.5 with loop tiling
using DIM×DIM submatrices. It computes the contribution of each submatrix one
at a time, so that the extra cached elements are accessed before being overwritten.
Figure 3.3b shows how the kk-loop in Listing 3.6 iterates over the submatrices in
A and B, in order to compute the result submatrix in Y. It can be compared with
Figure 3.3a which shows how the k-loop in Listing 3.5 iterates over A and B while
computing a single element in Y.

1 #define DIM (chache-line-size/size-of-int)
2 for(ii=0; ii<N; ii+=DIM)
3 for(jj=0; jj<N; jj+=DIM)
4 for(kk=0; kk<N; kk+=DIM)
5 for(i=ii; i<ii+DIM; ++i)
6 for(j=jj; j<jj+DIM; ++j)
7 for(k=kk; k<kk+DIM; ++k)
8 Y[i][j] += A[i][k] * B[k][j];

Listing 3.6: The conventional matrix-matrix multiplication using loop tiling.

The cache line size of Xeon’s level 1 cache is 64 bytes, and can therefore hold 16
integers. This means that 16×16 submatrices should be used. Unlike REPLICA,
Xeon’s DeMM kernel does assume that the number of rows for the matrices is a
multiple of 16.

The matrix-matrix multiplication in Listing 3.6 can be executed in parallel by par-
allelizing the outermost loop using OpenMP, see Listing 3.7. The threads should
be static-scheduled, since each loop iteration consists of an equal amount of
work. The kernel will be measured using 6 threads, because tests showed that
the Xeon then performed best. This means that hyper-threading should not be ex-
ploited. However, a parallelized conventional version did execute slightly faster
using 12 threads (hyper-threading), compared to using 6 threads.

Further optimizations can be found in the Xeon final DeMM kernel in Listing 3.7.
The second innermost loop (the j-loop) has been unrolled once, and row offset
calculations are reused as in REPLICA’s DeMM kernel. The innermost loop uses
two temporary variables (sum0 and sum1) which store the accumulating results.
These results are stored in matrix y after each round of the innermost loop (the
k-loop).
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(a) Without loop tiling

(b) With loop tiling

Figure 3.3: A comparison of how an entry in the result matrix is computed
with, and without loop tiling. For simplicity the cache line size in (a) and (b)
is 8 bytes, and therefore 2×2 submatrices are used for tiling.

1 #define DIM 16
2 #pragma omp parallel default(none) shared(a, b, y)
3 {
4 unsigned i, j, k, ii, kk, jj;
5 #pragma omp for schedule(static)
6 for(ii=0; ii < N; ii+=DIM)
7 {
8 for(jj=0; jj < N; jj+=DIM)
9 {

10 for(kk=0; kk<N; kk+=DIM)
11 {
12 for(i=ii; i < ii+DIM; ++i)
13 {
14 unsigned iN = i*N;
15 for(j=jj; j < jj+DIM; j+=2)
16 {
17 int sum0 = y[iN+j];
18 int sum1 = y[iN+j+1];
19 for(k=kk; k<kk+DIM; ++k)
20 {
21 sum0 += a[iN+k]*b[k*N+j];
22 sum1 += a[iN+k]*b[k*N+j+1];
23 }
24 y[iN+j] = sum0;
25 y[iN+j+1] = sum1;
26 }
27 }
28 }
29 }
30 }
31 }

Listing 3.7: The DeMM kernel for Xeon.
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Xeon’s SIMD-instructions only support floating points, and therefore these have
not been used. But since matrix-matrix multiplication normally is computed us-
ing floating point, an alternative kernel called DeMM-BLAS will also be com-
pared against REPLICA DeMM. DeMM-BLAS uses the OpenBLAS’ cblas_sgemm()
function to compute single precision floating point matrix-matrix multiplication.
OpenBLAS is a highly tuned and hand-optimized third-party BLAS library, based
on GotoBLAS2 [78]. It was compiled to target NEHALEM which is the name of
our Xeon’s micro-architecture [78]. OpenBLAS detects Xeon’s hyper-threading,
and avoids to schedule threads on the same processor, which implies that only
6 threads will be used [78]. The DeMM-BLAS kernel is displayed in Listing 3.8,
where CblasNoTrans tells that matrix a and b are not transposed. CblasRowMajor
tells that the matrices are stored in row major.

1 // y = a*b + y
2 cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
3 N, N, N, 1.0, a, N, b, N, 0.0, y, N);

Listing 3.8: The DeMM-BLAS kernel for Xeon.

3.3.3 DeMM for XMT

The conventional matrix-matrix multiplication in Listing 3.5 can easily be paral-
lelized by replacing the outermost loop (the i-loop) with a spawn(0, N) state-
ment, and setting variable i to $. But since XMT has more threads than some
input matrices have rows, it will not make use of all its threads. A better solu-
tion can be obtained using loop collapsing. Loop collapsing takes a set of nested
loops and merges them into a single loop [49]. In our case, we want to take the
two outermost loops in Listing 3.5, and merge them into a single loop, which can
replaced with a spawn(0, N*N) statement:

for(ij=0; i<N*N; ++ij)

The original loop variables then have to be reconstructed in order to be used:

i = ij / N;
j = ij % N;

Even if XMT is designed to have low overhead for fine grained parallelism, spawn-
ing N*N threads, which is one thread for each element in the result matrix, will
have a noticeable overhead. Also, because each iteration of the innermost loop
contains the same amount of work, there is no need for the dynamic hardware
scheduling that XMT provides. Therefore, we only want to spawn one thread per
TCU, and map them to equally large chunks of the merged outermost loop. This
technique is used in earlier work by the XMT project [59].

The complete DeMM kernel for XMT is displayed in Listing 3.9, which also has
some further optimizations. The innermost loop has been unrolled and uses the
temporary variable sum to hold the accumulated result, which is stored inside
matrix y after each round. The row offsets are also reused by the variables rN
and kN.
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1 #define NB_THREADS 1024
2 const int NN = N*N;
3 spawn(0, NB_THREADS)
4 {
5 int start_chunk = NN*$/NB_THREADS;
6 int end_chunk= NN*($+1)/NB_THREADS;
7 end_chunk = end_chunk<NN ? end_chunk : NN;
8 int ij;
9 for (ij = start_chunk; ij<end_chunk; ++ij)

10 {
11 int sum = y[ij];
12 int i = ij/N;
13 int j = ij%N;
14 int rN = i*N;
15 int kN = 0;
16 int k;
17 for(k=0; k<N-1; k+=2, kN+=N+N)
18 {
19 sum += a[rN+k]*b[kN+j] + a[rN+k+1]*b[kN+N+j];
20 }
21 y[ij] = k<N ? sum+a[rN+k]*b[kN+j] : sum;
22 }
23 }

Listing 3.9: The DeMM kernel for XMT.

When implementing the DeMM kernel for XMT some problems due to register
spilling was observed. For example, when trying to increase the unrolling degree
of the innermost loop to four, the compiler aborted due to register spilling. This is
because XMT currently cannot deal with register spills inside a spawn block [21].

3.3.4 DeMM for Tesla

The DeMM kernel for Tesla is based on the matrix-matrix multiplication example
in the CUDA C Programming Guide [62]. The host set up a (N/32)×(N/32) grid
of 32×32 thread-blocks, see Listing 3.10. The matrices are divided into 32×32
submatrix. Each thread-block is mapped to a submatrices in y for whose result
it is responsible to compute. A thread-block is only responsible for one subma-
trix result in y. The result for a submatrix is obtained by letting a thread-block
perform the needed submatrix-submatrix multiplications. The result from each
submatrix-submatrix multiplication is accumulated and stored in the thread-block’s
result submatrix.

1 dim3 dimBlock(32, 32);
2 dim3 dimGrid(N/dimBlock.x, N/dimBlock.y);
3 DeMM<<<dimGrid, dimBlock>>>(a, b, y, N);
4 cudaError_t err = cudaThreadSynchronize();

Listing 3.10: The DeMM kernel for Tesla.

Since the thread-blocks and submatrices have the same dimensions, each thread
can be mapped by its local index to compute an element in the thread-block’s
result submatrix.
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To summarize: a thread-block computes the result for a single submatrix in y,
and a thread computes the result for a single element in y. Figure 3.4a shows how
the thread-blocks iterates over their submatrices in order to calculate the results
for their submatrix in matrix y. How the threads iterate within a submatrix is
displayed in Figure 3.4b.

Before a thread-block performs a submatrix-submatrix multiplication, it stores
the submatrices that are being multiplied inside its shared memory in order to
speed up memory accesses.

(a) How a 2×2 thread-block iterates over its submatrices. Indices for the thread-block
are (blockIdx.x,blockIdx.y)=(1,2).

(b) How the threads of a 2×2 thread-block iterate within their submatrices.

Figure 3.4: Figure (a) shows how a thread-block iterates over its subma-
trices, and (b) how the same thread-block’s threads iterate within the sub-
matrices. Before each submatrix-submatrix multiplication is performed, the
submatrices of A and B are stored inside the shared memory.

For simplicity, this kernel assumes that the matrix rows are multiples of 32, due
to the submatrix sizes. The thread-block size is limited to 32×32 since 32 · 32 =
1024, which is the maximum number of threads a thread-block for Tesla M2050
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can consist of. We observed that smaller thread-blocks have less performance,
and therefore the thread-block size 32×32 was chosen.

Tesla has also a floating point kernel for matrix-matrix multiplication called DeMM-
BLAS. The BLAS kernel uses the cublasSgemm() function from the CUBLAS
library [61]. The CUBLAS library is an optimized implementation of BLAS, pro-
vided by the vendor NVIDIA [61]. The kernel is displayed in Listing 3.11, where
CUBLAS_OP_N tells that matrices a and b are not transposed. The matrices a, b
and y are located at the device memory.

1 const float alpha = 1.0;
2 const float beta = 1.0;
3 cublasHandle_t handle;
4 cublasStatus_t ret = cublasCreate(&handle);
5 // Kernel begins
6 // y = a*b + y
7 ret = cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N,
8 N, N, N, &alpha, b, N, a, N, &beta, y, N);
9 cudaError_t err = cudaThreadSynchronize();

10 // Kernel ends

Listing 3.11: The DeMM-BLAS kernel for Tesla.

3.3.5 DeMM for SB-PRAM

The matrix-matrix multiplication kernel for SB-PRAM is very similar to XMT’s
kernel, see Listing 3.12. It uses loop collapsing as. The main difference is that the
innermost loop has been unrolled by a factor of eight. All loops in the kernel are
executed asynchronously due to the farm statement. A similar implementation
is outlined in [49].

1 unsigned ij;
2 unsigned NN = N*N;
3 farm for(ij=$; ij<NN; ij+=__STARTED_PROCS__)
4 {
5 const unsigned i=ij/N;
6 const unsigned iN=i*N;
7 const unsigned i=ij%N;
8 int sum=y[ij];
9 unsigned k, kN_j;

10 for(k=0,kN_j=i; k<N-7; k+=8,kN_j+=8*N)
11 {
12 sum += a[iN+k]*b[kN_j] + a[iN+k+1]*b[kN_j+N]
13 + a[iN+k+2]*b[kN_j+2*N] + a[iN+k+3]*b[kN_j+3*N]
14 + a[iN+k+4]*b[kN_j+4*N] + a[iN+k+5]*b[kN_j+5*N]
15 + a[iN+k+6]*b[kN_j+6*N] + a[iN+k+7]*b[kN_j+7*N];
16 }
17 for(; k<N; ++k,kN_j+=N)
18 {
19 sum += a[iN+k]*b[kN_j];
20 }
21 y[ij] = sum;
22 }

Listing 3.12: The DeMM kernel for SB-PRAM.
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3.4 Sparse Matrix-Vector Multiplication (SpMV)

Sparse matrix-vector multiplication (SpMV) is a sparse linear algebra dwarf and
is a fundamental part of many popular iterative methods, such as the conjugate
gradient method. There exists a great number of formats to compress sparse matri-
ces. Some are specialized for matrices with certain patterns, and some for more
general matrices. This benchmark use symmetric matrices from The University of
Florida Sparse Matrix Collection [1], and is mainly using the compressed sparse row
format to store the matrices inside the kernel. The coordinate format is also used
to see if this format is better suited for the REPLICA architecture since it is much
easier to balanced the computational work among the threads, as will be shown
in this chapter.

The used sparse matrices that have been used are displayed in Table 3.3.

Matrix name Rows Values Values per row
Internet 124651 207214 1.7
Lugn2 109460 492564 4.5
ASIC_680ks 682712 2329176 3.4
t2em 921632 4590832 5.0

Table 3.3: The matrices that have been used for the SpMV kernel [1].

Coordinate Format

The coordinate (COO) format, which also can be called IJV or triplet format, is
probably the simplest of all sparse matrix storage formats. Three arrays store
the value, row index and column index of each nonzero value [25]. The required
storage when using the COO format depends only on the number of nonzero
values. The matrix’s shape or value pattern does not affect the required space.
This makes it a very general format for sparse matrices. Each scalar operation in
a matrix-vector product needs two indirect addressings which makes it a quite
inefficient format. It is often used when storing matrices on files, or when con-
verting between two different formats. Sometimes the values are sorted by row
or column index. The matrix market exchange format for sparse matrices is one
example where it is used. Figure 3.5 shows a symmetric matrix stored in the COO
format.

Compressed Sparse Row

Compressed sparse row (CSR), also called compressed row storage (CRS) [23], is a
well-known and commonly used sparse matrix format [25]. It makes no assump-
tion about the sparsity structure of the stored matrix, and like the COO format
it stores only nonzero values [23]. A drawback is that every scalar operation
in a matrix-vector product needs indirect addressing which makes it a not very
time-efficient format [23]. The CSR format is similar to the COO format. The
difference is that the array storing the row indices is replaced with a compressed
array that points out the start index for each row in the other two arrays. Also the
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Matrix =



1 0 8 0 0

0 7 0 0 0

0 0 9 0 0

0 0 3 2 0

0 0 0 0 5


−→


nonzero value = [1, 8, 7, 9, 3, 2, 5]

row index = [0, 0, 1, 2, 3, 3, 4]

column index = [0, 2, 1, 2, 2, 3, 4]

Figure 3.5: An example of how a 5×5 matrix with 7 nonzero values is stored
with the COO format using zero-based indexing [23].

nonzero values have to be stored row-wise. The new array’s length is equal to the
matrix’s number of rows plus one. Since the start index for a row implicitly is the
end of the previous one it is only necessary to store the end of the last row. That
is why the ”plus one” is needed. The end of the last row will however always be
equal to the number of nonzero values, when using zero-based indexing.

In contrast to the COO format, the shape of the matrix affecting the required
storage. Matrices with fewer rows require less space than matrices with the same
number of nonzero values that have more rows.

A symmetric n × n matrix with nnz nonzero values is stored using 2nnz + n + 1
elements instead of n2 [23].

Figure 3.6 shows how the same matrix as in Figure 3.5 is stored using the CSR
format.

Matrix =



1 0 8 0 0

0 7 0 0 0

0 0 9 0 0

0 0 3 2 0

0 0 0 0 5


−→


nonzero value = [1, 8, 7, 9, 3, 2, 5]

column index = [0, 2, 1, 2, 2, 3, 4]

row start = [0, 2, 3, 4, 6, 7]

Figure 3.6: An example of how a 5×5 matrix with 7 nonzero values is stored
with the CSR format using zero-based indexing [23].

Listing 3.13 describes a native implementation of a sparse matrix-vector multipli-
cation. The outer loop iterates over the number of rows in the result vector y. In
the inner loop all nonzero values from one row are multiplied with the column
in vector x that correspond to that row, and the result is stored in the temporary
variable sum. Then the temporary variable is stored in the result vector y .

The CSR format is almost equivalent to the Compressed sparse column (CSC) which
is also called Compressed Column Storage (CCS), except that the values are stored
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column-wise, column indices are replaced with row indices, and the beginning
of each column is stored instead of the beginning of each row [23].

Other Sparse Matrix Formats

Some sparse matrix formats take advantage of the sparsity structure, or try to
speed up computation by storing it more computation-efficiently. The Diagonal
format takes advantage of matrices that are, or almost are diagonal [25]. The ELL-
PACK format on the other hand exploits matrices where each row has nearly the
same number of nonzero values [25]. A common way to improve the performance
of the CSR format is to use the block compressed sparse row format, which stores
blocks of values instead of nonzero values [25]. This decreases the amount of in-
direct addressing, but might store unnecessary zero values. To gain performance
it is important to use a good block size, which depends on the nonzero pattern
and the hardware [25].

1 // Matrix stored in the CSR format
2 int value[NNZ] = {...};
3 unsigned col_index[NNZ] = {...};
4 unsigned row_start[ROWS+1] = {...};
5
6 // Vectors
7 int x[ROWS] = {...};
8 int y[ROWS] = {...};
9

10 // y = Ax
11 for(row=0; row<ROWS; ++row)
12 {
13 int sum = 0;
14 for(i=row_start[row]; i<row_start[row+1]; ++i)
15 sum += value[i] * x[col_index[i]];
16 y[row] = sum;
17 }

Listing 3.13: Native implementation of the SpMV kernel.

3.4.1 SpMV for REPLICA

The native implementation in Listing 3.13 can be parallelized by replacing the
outermost loop with:

for(row=_thread_id; row<ROWS; row+=_number_of_threads)

But since the threads then are statically mapped to the loop’s iterations, it will
result in unbalanced workload if each row does not have the same amount of
nonzero values. A better solution is to use a dynamic mapping at runtime. This
can be implemented by having a variable that corresponds to the next iteration
that has not yet been mapped to a thread. When a thread has finished an iteration
it accumulates this variable using the _aprefix macro, and receives a new row to
compute. For REPLICA’s SpMV benchmark see Listing A.5.

Since REPLICA has efficient multioperations it can be interesting to see if the
COO format gives better performance compared to the CSR format. Therefore
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there is a sparse matrix-vector multiplication benchmark called SpMV-COO, which
uses the COO format instead of CSR, implemented for REPLICA. The biggest
advantage of using the COO format is that the nonzero elements can easily be
mapped evenly over the threads. Its disadvantage is that multiple threads will
need to be able to write their results into the same row of the y vector simulta-
neously. Most architectures have some atomic operations that makes this possi-
ble, but these operations are normally very slow, and that is why we only imple-
mented SpMV-COO for REPLICA. The SpMV-COO benchmark is displayed in
Listing A.6. The SpMV-COO kernel assumes that the result vectors are initial-
ized to zero.

3.4.2 SpMV for Xeon

The native implementation (see Listing 3.13) can easily be parallelized by adding
the OpenMP pragma before the outer loop. The scheduling should not be static
since the number of nonzero values at each row can vary a lot. A better choice is
to use the guided clause.

The irregular memory accesses caused by the sparse matrices format is the main
issue for cache-based architectures such as Xeon.

The parallel optimized sparse kernel interface (pOSKI) is an autotuned library for
sparse matrix kernels, developed by the Berkeley benchmarking and Optimization
group at the University of California, Berkeley [26]. pOSKI is based on the former
optimized sparse kernel interface (OSKI) library [26]. pOSKI does currently only
support double-precision [26], which would be quite unfair to compare with a
kernel using integers values. Still it would be interesting to compare results from
this highly tuned library with REPLICA’s results. Unfortunately we were unsuc-
cessful in compiling pOSKI on the target machine.

The sparse library (version 1.5.2) by Yzelman at Katholieke Universiteit Leuven,
provides basic operations for a wide range of sparse matrix formats [79]. The
McCRS::zax() function has been used as a kernel for Xeon. McCRS::zax()
uses OpenMP to parallelize each vector product. The main difference to the par-
allelized native implementation is that the sparse library uses pointer-arithmetic
instead of array-style indexing. The pointers are declared with the restrict [2]
keyword, which tells the compiler that no other pointer within its scope will
point to the same address. This is true even if the pointers are used with an offset.
By knowing this, the compiler might be able to make further optimizations. But
GCC generated identical code even when the restrict keyword was removed. The
benchmark was compiled using the -fstrict-aliasing flag. The nonzero val-
ues were of integer type.

Tests showed that the McCRS::zax() was significantly slower than the paral-
lelized native implementation. It turned out to be the choice of dynamic schedul-
ing instead of guided, that had a huge impact. Therefore McCRS::zax()’s
scheduling has been replaced with guided. The data type long unsigned
integer was originally used for indexing, but was replaced with unsigned
integer to make it more fair, since REPLICA does not support the former type.
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3.4.3 SpMV for XMT

There exist sparse matrix-vector multiplication implementations in earlier work
by the XMT project [74]. One of these uses nested spawn statements, which XMT
currently is not supporting. Another ”embarrassingly parallel” implementation
where each row of the matrix is processed in parallel is also shortly described,
which seems to work like the SpMV kernels for Xeon and REPLICA. For our
implementation the outermost loop has been replaced with a spawn(0, N-1)
statement, see Listing 3.14. Here the dynamic thread scheduler of XMT becomes
very handy for matrices with unevenly distributed nonzero values between rows.

1 spawn(0, ROWS-1)
2 {
3 int row = $;
4 int start = row_start[row];
5 int end = row_start[row+1];
6 int sum = 0;
7 int i;
8 for(i=start; i<end; ++i)
9 {

10 sum += val[i] * x[col_index[i]];
11 }
12 y[row] = sum;
13 }

Listing 3.14: The DeMM kernel for XMT.

3.4.4 SpMV for Tesla

For the Tesla benchmark the spmv_csr_vector_kernel() CUDA template
kernel from the CUSP library [29] has been used, see Listing 3.15. CUSP is a
CUDA template library for sparse linear algebra and graph computation [29]. If
the constant UseCache in Listing 3.15 is set to true, it is possible to map vector
x to Tesla’s texture memory, and use it as a cache. This part does not support
integer values, which is needed to compile the CUSP library for integer values,
even if UseCache is set to false. Therefore a few modifications of the CUSP
library’s source code were done, in order to compile it for integer values support.
Tests showed however that Tesla performed better without the cache, and it was
therefore not used. Since the modifications were not used they should not affect
the results, and are therefore not outlined here.

The constants in Listing 3.15 are based on the __spmv_csr_vector() template
function in the CUSP library, in order to make sure that the kernel is set up
correctly.
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1 const bool UseCache = false;
2 const unsigned THREADS_PER_BLOCK = 128;
3 const unsigned VECTORS_PER_BLOCK = THREADS_PER_BLOCK/THREADS_PER_VECTOR;
4 const unsigned MAX_BLOCKS = 14*1024;
5 const unsigned NUM_BLOCKS = std::min(MAX_BLOCKS,
6 static_cast<unsigned>((ROWS+(VECTORS_PER_BLOCK-1))/VECTORS_PER_BLOCK));
7
8 // Kernel begins
9 cusp::detail::device::spmv_csr_vector_kernel

10 <unsigned,int,VECTORS_PER_BLOCK,THREADS_PER_VECTOR,UseCache>
11 <<<NUM_BLOCKS,THREADS_PER_BLOCK>>>(ROWS,row_start,col_index,val,x,y);
12
13 cudaError_t err = cudaThreadSynchronize();
14 // Kernel ends

Listing 3.15: The SpMV kernel for Tesla.

The value of the constant THREADS_PER_VECTOR depends on the average num-
ber of nonzero values per row. Since THREADS_PER_VECTOR has to be known
at compile time, the code in Listing 3.15 was embedded into a template function
called SpMV():

template <unsigned THREADS_PER_VECTOR>
void SpMV(unsigned* row_start, unsigned* col_index, int* val, int* x, int* y);

The value for THREADS_PER_VECTOR can then be set by calling this template
function:

const unsigned NNZ_PER_ROW = NNZ/ROWS;
if (NNZ_PER_ROW <= 2) SpMV<2>(row_start, col_index, val, x, y);
else if (NNZ_PER_ROW <= 4) SpMV<4>(row_start, col_index, val, x, y);
else if (NNZ_PER_ROW <= 8) SpMV<8>(row_start, col_index, val, x, y);
else if (NNZ_PER_ROW <= 16) SpMV<16>(row_start, col_index, val, x, y);
else SpMV<32>(row_start, col_index, val, x, y);

This method and the used values for THREADS_PER_VECTOR comes from the
spmv_csr_vector() template function in the CUSP library.

In the CUDA template kernel spmv_csr_vector_kernel() each row in the
sparse matrix is computed by THREADS_PER_VECTOR threads in parallel [29].
Threads that cooperate by processing the same row rely on the implicit synchro-
nization among threads with the same warp [29]. Therefore the maximum value
for THREADS_PER_VECTOR is limited to Tesla’s warp size, which is 32 threads.

3.4.5 SpMV for SB-PRAM

The sparse matrix-vector multiplication for SB-PRAM is almost identical to REPLI-
CA’s kernel, even if Fork makes the code slightly simpler to write compared to
REPLICA baseline. The main difference between them is that Fork allows SB-
PRAM to execute its kernel asynchronously. This is achieved by the farm state-
ment.
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1 sh unsigned counter = 0;
2 unsigned row;
3 farm for(row=$; row<ROWS; row=mpadd(&counter,1))
4 {
5 int sum = 0;
6 unsigned start = row_start[row];
7 unsigned end = row_start[row+1];
8 unsigned i;
9 for(i=start; i<end; ++i)

10 {
11 sum += val[i] * x[col_index[i]];
12 }
13 y[row] = sum;
14 }

Listing 3.16: The DeMM kernel for SB-PRAM.

3.5 Breadth First Search (BFS)

The graph algorithm breadth first search (BFS) is a widely used technique for
traversing graphs which can be applied on many problems.

In these benchmark implementations of the BFS the minimum number of steps
it takes to go from a root to any other of the nodes is computed. The number of
steps for each node is stored as a result.

The graphs (see Table 3.4) to be traversed comes from the benchmark suite Ro-
dinia 2.4 [11]. The BFS kernels also use the same storage format that Rodinia
uses. The format consist of two arrays. The first array contains the nodes, and a
second array contain the edges that connect the nodes to each other.

A node is represented as a struct which holds the number of edges that belong
to the node, and an offset to its edges in the second array:

typedef struct Node_t
{

int offset;
int num_edges;

} Node;

The edges are directed and belong to the node from which they come. An edge is
simply represented by the index of the node it points to.

Graph name Number of nodes Number of nodes
graph4096 4096 24576
graph65536 65536 393216
graph1MW_6 1000000 5999970

Table 3.4: The graphs that have been traversed by the BFS kernel [11].
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1 typedef struct Node_t
2 {
3 int offset;
4 int num_edges;
5 } Node;
6
7 Node node[NODES] = {...};
8 int edge[EDGES] = {...};
9 int cost[NODES] = {...};

10 int visited[NODES] = {...};
11 int queueA[NODES];
12 int queueB[NODES];
13 int queue_end;
14 int next_queue_end;
15
16 int* queue = queueA;
17 int* next_queue = queueB;
18
19 // Put root in queue
20 queue[0] = root_id;
21 queue_end = 1;
22 cost_[root_id] = 0;
23 visited[root_id] = 1;
24
25 while(queue_end)
26 {
27 next_queue_end = 0;
28 // Visit all nodes in the queue
29 for(n=0; n<queue_end; ++n)
30 {
31 // Look up the visiting node in queue
32 int node_id = queue[n];
33 // Iterate over its neighbors
34 for(v=node[node_id].offset; v<node[node_id].offset+

node[node_id].num_edges; ++v)
35 {
36 int neighbor_id = edge_[v];
37 // Check if neighbor is visited
38 if (!visited[neighbor_id])
39 {
40 // if not put it in next queue and set cost
41 next_queue[next_queue_end] = neighbor_id;
42 cost[neighbor_id] = cost[node_id]+1;
43 }
44 }
45 // Update current queue
46 swap(queue, next_queue);
47 }
48 }

Listing 3.17: A native implementation of the BFS kernel.

Listing 3.17 shows a native implementation of BFS, which is based on Algorithm 1
in [17]. The root node is placed in a shared queue data structure queue. Then all
nodes in queue are visited. For the first round queue only contains the root node.
When a node is visited, all its not yet visited neighbors are added to next_queue
and have their cost set. After all neighbors have been added the two queues are
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swapped, and the algorithm starts over to visit the nodes in queue. The algo-
rithm stops when queue after a round is empty, that is, if no unvisited neighbors
were found after a round. The cost for a node is equal to the number of rounds
needed before being visited.

Figure 3.7 shows how a small graph is traversed by the algorithm. In Figure 3.7a
the root node A is placed in the queue of nodes to be visited. The edges to node
A’s neighbors are marked with black. The next figure (3.7b) shows the next round,
followed by round 3 and 4 in Figures 3.7c and 3.7d.

(a) Round 1 (b) Round 2 (c) Round 3 (d) Round 4

Figure 3.7: An illustration of how REPLICA’s BFS kernel traverses a small
graph with node A as root. The nodes are labeled Xy, where X is the node
name and y is its cost. Yellow marks nodes placed in the queue, red already
visited nodes and blue not yet visited nodes.

3.5.1 BFS for REPLICA

REPLICA’s BFS benchmark, see Listing A.7, is based on the native implementa-
tion in Listing 3.17. The middle loop (n-loop) in Listing 3.17 which iterates over
the queue can easily be parallelized for REPLICA. It will however need a synchro-
nization among all threads after each round since the amount of work per thread
will vary. For the first round there will not be enough nodes in the queue to uti-
lize all threads, therefore should also the innermost loop should be parallelized.
This has been done in Listing A.7 by using groups of threads. Before each round
the threads are divided into as many groups as there are nodes in the queue. If
the number of nodes is greater than the number of threads, then each thread will
become its own group. The middle loop (n-loop) will then be processed in paral-
lel by the groups. This means that a thread will only be mapped to one iteration
in the middle loop, if the number of groups is equal to or less than the number of
nodes in the queue. Otherwise the number of groups is equal to the number of
threads, which is why the variable _number_of_threads is used as increment
value for loop variable n.

The innermost loop is processed in parallel by one group. Since nodes can be
reached from multiple edges, more than one thread might try to set the same
unvisited node to visited during the same time step, which can lead to a node
being visited more than once. Therefore the _aprefix() macro is used to read
and set the address that tells if a node is visited.



60 3 The Benchmark Suite

The same macro is used in order to avoid race conditions when multiple threads
write nodes to next_queue.

In the native implementation the cost of a node’s neighbor is set by:

cost[neighbor_id] = cost[node_id]+1;

But since the cost of a node is equal to the round number (variable k in List-
ing A.7) it is found that it is cheaper to just set it to its round number:

cost_[neighbor_id] = k;

The built-in variables _group_id and _thread_id are not used to manage
groups, since we want to synchronize all threads in all groups using the _synchronize
macro at the end of each round. Instead new group and thread ID variables have
been defined: group_id and thread_id.

3.5.2 BFS for Xeon

For Xeon the OpenMP version of BFS in Rodinia has been used [11]. The na-
tive implementation is suffering from an irregular memory access pattern, which
probably is why Rodinia’s BFS kernel uses another technique, see Algorithm 3.1.
Instead of putting nodes into a queue, nodes that are to be visited are marked.
For each round are marked nodes are visited, the cost of their neighbors is set
and these are marked to be visited in the next round. Note that there are two
marking variables for each node. The first one tells if a node is to be visited in
this round, and the second one tells if it should be visited in the next round.

Before the next round, each node found unvisited has to update its marking vari-
ables from to be visited next round to visit this round. This is the analogous opera-
tion to swapping queue and next_queue in the native implementation.

To visit the marked nodes of single round, all nodes have to be checked if they
are marked, and to update the marking variables, all nodes have to be checked
once again. This results in two loops over all nodes for every round. At the first
look this seems very inefficient, but since the nodes are accessed consecutively,
the cache can be used more efficiently compared to the native implementation.
Only the first loop that iterates over the marked loops is parallelized, probably
due to that the second loop’s body, which updates the marking variables, consists
of very little work, and parallelizing it adds too much overhead. Tests showed
that it was executed faster in sequential than in parallel.

A parallelized version of the native implementation in Listing 3.17 was also im-
plemented (see Listing A.8) which was compared to the Rodinia BFS kernel. In or-
der to avoid race conditions the __sync_fetch_and_add() function was used
in the same manner as the _aprefix() macro was used for REPLICA’s BFS ker-
nel.

By comparing Rodinia’s kernel to the parallelized native implementation we can
make sure that Rodinia’s kernel does perform well.
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Tests showed that both Rodinia’s kernel and the parallelized native implemen-
tation executed best with 6 threads, which means that hyper-threading should
not be used. One could expect that at least the parallelized native implementa-
tion would perform better with hyper-threading, due to high latency for irregu-
lar memory accesses, but this was clearly not the case. The Rodinia kernel was
roughly twice as fast as the parallelized native implementation and was therefore
chosen to be compared against REPLICA.

We have only compared the two versions using the input graphs in Table 3.4. If
Rodinia’s kernel will keep being faster than the parallel native implementation
for larger graphs or for graphs with few edges per node is not tested.

markc[root]← true
stop← f alse
while stop = f alse do

stop← true

for all n ∈ node[ ] in parallel do
if markc[n] = true then

markc[n]← f alse
for all edge v held by n do

neighbor ← edge[v]
if visited[neighbor] = f alse then

cost[neighbor]← cost[n] + 1
markn[neighbor]← true

end if
end for

end if
end for

for all n ∈ node[ ] do
if markn[n] then

visited[n]← true
markn[n]← f alse
markc[n]← true
stop← f alse

end if
end for

end while

Algorithm 3.1: Pseudocode of Rodinia’s BFS kernel for
Xeon.



62 3 The Benchmark Suite

3.5.3 BFS for XMT

The XMT implementation of BFS (see Listing A.9) is also based on the native
implementation in Listing 3.17, and is therefore very similar to REPLICA’s kernel.
An almost identical algorithm for XMT is presented in [74].

The BFS implementation for XMT in Listing A.9 ha nested spawn() statements,
and as mentioned before nested parallelism is currently not supported by XMT.
The XMT compiler supports however nested spawn statements by transforming
them into sequential loops. This results in that only the middle loop is actually
executed in parallel.

It might be possible to parallelize the innermost loop by spawning as many threads
as there are TCUs and dividing them into groups, just like in REPLICA’s imple-
mentation. But since the threads are not executing in a synchronous manner, it
is not possible to use the psm() function to compute the size of a group with-
out using some kind of synchronization mechanism after it. Managing groups is
therefore likely to add a lot of overhead for each round.

Also note that the kernel has to spawn once for each round in order to keep
the threads in the same round and memory coherence. Otherwise it would be
tempting to just spawn all threads once in order to reduce overhead.

3.5.4 BFS for Tesla

For Tesla the CUDA version of BFS in Rodinia has been used [11]. Rodinia’s
CUDA version of BFS is originally from [45]. It uses the marking technique de-
scribed for the Xeon BFS kernel, instead of using a queue. As it is not possible to
synchronize threads over different thread-blocks, the rounds are synchronized by
running a kernel for both the loops which iterate over the nodes. Algorithm 3.2
shows how the CPU invokes the CUDA kernels in Algorithms 3.3 and 3.4. Ker-
nel1() visits all the marked nodes in parallel, and kernel2() updates the stop, vis-
ited and marking variables

The CUDA kernels are invoked with thread-blocks of 512 threads in each, which
makes the number of thread-blocks to be #NODES

512 .

markc[root]← true
stop← f alse
while stop = f alse do

stop← true
Invoke CUDA kernel1(markc, markn, node, edge, cost)
Invoke CUDA kernel2(markc, markn, stop)

end while

Algorithm 3.2: Pseudocode of Rodinia’s BFS kernel for
Tesla. See Algorithm 3.3 for kernel1, and Algorithm 3.4 for
kernel2.
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n← thread_id
if markc[n] = true then

markc[n]← f alse
for all edge v held by n do

neighbor ← edge[v]
if visited[neighbor] = f alse then

cost[neighbor]← cost[n] + 1
markn[neighbor]← true

end if
end for

end if

Algorithm 3.3: Pseudocode of Rodinia’s BFS CUDA kernel1
for Tesla.

n← thread_id
if markn[n] then

visited[n]← true
markn[n]← f alse
markc[n]← true
stop← f alse

end if

Algorithm 3.4: Pseudocode of Rodinia’s BFS CUDA kernel2
for Tesla.

3.5.5 BFS for SB-PRAM

The BFS kernel for SB-PRAM, see Listing A.10, is almost identical to REPLICA’s.
The main difference is that the group managing is a bit simpler done in Fork
compared to REPLICA baseline. Also, the two innermost loops are executed in
asynchronous mode. Group sizes can change during execution in asynchronous
sections as threads leave the asynchronous sections. Therefore the initial group
size is stored in a temporary variable.

3.6 Quicksort (QS)

Quicksort is one of the most popular sorting algorithms, and is based on the well
known divide and conquer paradigm. Listing 3.18 show a native implementation
of quicksort. The quicksort() function will recursively call itself until its array
size is equal to, or smaller than one integer. If its array is larger than one, then the
first element is chosen as pivot. The values inside the array are then reordered
so that values lower than the pivot are placed before the pivot, and values
higher than the pivot are placed after the pivot. We call this partitioning. The
pivot’s position then becomes the point where the array is split into two new
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partitions, which is used as input for the recursive calls. The pivot value is
already sorted and is therefore not part of the new partitions. Since it is the
pivot that defines where the array is split, it is very important to choose a good
pivot.

Figure 3.8: Illustration of the recursive calls for the native implementation
of quicksort. Red denotes pivots, yellow denotes sorted values and blue
denotes unsorted values.

Figure 3.8 illustrates the recursive calls for the native implementation of quick-
sort in Listing 3.18.

1 void quicksort(int* first, int* end)
2 {
3 if(first < end-1)
4 {
5 int pivot = first[0];
6 int* s = first;
7 for(int* i=first+1; i!=end; ++i)
8 {
9 if(*i <= pivot)

10 {
11 s++;
12 swap(s, i);
13 }
14 }
15 swap(first, s);
16 quicksort(first, s);
17 quicksort(s+1, end);
18 }
19 }
20
21 int main()
22 {
23 int a[N] = {...};
24 quicksort(a, a+N);
25 return 0;
26 }

Listing 3.18: The native implementation of quicksort [41].

Three pseudo-random input data sets of different sizes have been generated by
using the rand() function from the GNU C Library [9]. Each data set consists of
ten integer arrays. The array sizes for the first, second and third set are 10 000,
100 000 and 1 000 000. The same data sets have been sorted by all architectures.
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3.6.1 QS for REPLICA

Listing A.12 shows the QS kernel for REPLICA. It consist of three non-recursive
phases, which is displayed in Listing A.12, A.13 and A.14. In the first phase the
partitioning is performed by the threads within the same group using fine grain
parallelism. Each partitioning is done using an input and an output array. The
threads use the _aprefix() macro in order to place their elements in the out-
put array. The arrays are after each partitioning swapped with each other so that
the output becomes the input and vice versa. When partitioning is done, the
group splits into two groups which are mapped to each new partition. The size
of each group is based on the fraction of elements in its partition, which means
that the group with the largest fraction of elements will have the largest fraction
of threads2. The native implementation in Listing 3.18 can only handle one par-
tition at a time, and puts the second one on an implicit stack by the recursive
call. Since we create a group for each partition there is no need to put any of the
partitions on a stack. Values equal to the pivot are stored between the two new
partitions in the original array since they do not need to be sorted any more. If
one of the partitions contains less than two elements, it does not need to be sorted
further, and the group does not have to be divided in order to continue sorting
the larger one.

Each group needs a shared address space for its shared accumulators last_less_p
and first_greater_p, to be able to use the _aprefix() macro for partition-
ing. The address space between _shared_heap and _shared_stack, see Fig-
ure 3.9, is used for this purpose. A group also needs an address space for the
_group_id, which is used by the built-in _synchronize macro to synchronize
threads within the same group. The _group_id will be set to _shared_stack,
see Figure 3.9. Each time a group splits, its shared address space is divided
equally between the two new groups. This is illustrated in Figure 3.9. A bet-
ter solution could be to divide the shared address space based on the fraction
of threads. Because the address space is reduced for each group split, it might
eventually be too small to split further.

The second phase starts, see Listing A.13, when the shared space for a group is
too small to split. Since no shared space is available, the partitioning is processed
sequentially. It is however still possible to split the group and map the two new
groups to the new partitions. Sequential partitioning can easily be performed
in-place, so the temporary array is no longer needed. So if the input is placed
in the temporary array when entering the second phase, it will copied over to
the original array while doing the partitioning, so that the copying time is not
wasted.

When the group only consists of one thread it switches to the third phase. Since
the group no longer can be split, the boundaries of the second array after a parti-
tioning are put on an explicit stack.

2For even better load balancing one might also have chosen a work-proportional subdivision of the
threads, where expected work is O(n · log(n)) for n elements.
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Figure 3.9: An illustration of how the shared memory is divided during a
group split in the QS kernel [81].

Listings A.13 and A.14 have been included into Listing A.12 with the prepro-
cessor directive #include, instead of using function calls, after observing that
nested function calls sometimes fail to pass the correct parameter values, due to
a bug.

The choice of the pivot is very crucial for the performance of a quicksort imple-
mentation, and therefore the pivot is set to the median of three elements in the
partition which shall be sorted.

For simplicity, group and shared data are saved and restored in the main function
since par_quicksort() can return from multiple places.

3.6.2 QS for Xeon

For the Xeon QS kernel the fastest of quicksort(), balanced_quicksort()
and parallel_sort() have been chosen. quicksort() and balanced_quicksort()
come from the parallel mode of the GNU C++ library [10]. parallel_sort()
is a quicksort implementation from Intel’s multi-threaded C++ template library
Threading Building Blocks (TBB) [8] . For all data sets, all three implementations
performed best when using 12 threads, but parallel_sort() was roughly
twice as fast as both quicksort() and balanced_quicksort().
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1 tbb::parallel_sort(a, a+N);

Listing 3.19: The QS kernel for Xeon.

3.6.3 QS for XMT

In [59] a quicksort implementation for XMT is described, and the code can be
found in the file quick2.c among the second generation of XMT empirical work [73].
This implementation was used as the QS kernel for XMT. But because the second
generation of XMT had a slightly different syntax and features it had to be ported.
The changes are outlined in Listing A.11.

The implementation consists of two phases. The first phase begins with partition-
ing the array into two sub-partitions in parallel by spawning a thread for each
element. Each thread is then placing its value at either the begin or end of a tem-
porary output array, depending on if its value is less or greater than the pivot.
Writing conflicts are solved by using the prefix sum operation ps(). The begin
and end locations of the new partitions are stored in an auxiliary array. Then the
temporary array becomes the input and the original array becomes the output.
This is repeated as long as there is less partitions than a certain threshold. The
partitions are processed after each other, but the partitioning itself is done in par-
allel. However, partitions with less elements than three are sorted sequentially.

In the second phase a thread is mapped to each partition, and these are sorted
using quicksort. But instead of recursively calling itself, which is not possible
since XMT currently does not support function calls inside parallel regions, the
thread spawns a new thread for sorting the partition with the higher values than
the pivot. If there is only one higher value than the pivot, there is no need to
spawn a new thread since the value is already sorted. The lower values are sorted
by just reseting its input to the new partition, and therefore there are no function
calls needed. This continues until the thread’s partition consists of less than three
values. The partition with less than three values is easily by a single comparison.

The second phase has an advantage over REPLICA since the work load is dynam-
ically scheduled by its programming model. Similar behavior could be imple-
mented for REPLICA using a task pool.

Since the first phase swaps the data between the original and a temporary array,
its is not certain that the data is in the original array when phase two takes over.
This means that the sorted array might be placed in the temporary when the
kernel finishes. Therefore the implementation was changed so that, if enough
partitions are created to leave the first phase but the array is in the temporary
array, then the first phase will run an extra round in order to place the data back
in the original array. The pseudocode in Algorithm 3.5 describes the two phases
in the QS kernel for XMT.

The threshold for when to leave the first phase was chosen by testing for which
value of 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024 the code had the best
performance.
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For arrays of 10 000 values the best threshold was 64, and for 100 000 and 1 000 000
values 1024 was the best threshold.

It should also be mentioned that there exists a second implementation of quick-
sort among the second generation of XMT empirical work [73] in the file quick_hybrid.c.
The difference between the two implementations is that quick_hybrid.c processes
all partitions in parallel. It did however not perform as well as quick2.c, and was
therefore not chosen for this kernel.

input ← a[ ]
output ← temp[ ]
// Phase 1
while #partitions < T HRESHOLD || input , a do

for all p partition ∈ input[ ] do
spawn a thread for each value ∈ p do

place value→ output[ ]
end spawn

end for
swap(input, output)

end while
// Phase 2
spawn a thread for each p partition ∈ input[ ] do

while #values ∈ p > 2 do
partition p→ plow and phi
if #values ∈ phi > 2 then

sspawn a thread to sort phi
end if
p← plow

end while
if p[0] > p[1] then

swap(p[0], p[1])
end if

end spawn

Algorithm 3.5: Pseudocode of the QS kernel for XMT.

3.6.4 QS for Tesla

NVIDIA provides CUDA implementations of quicksort, but these implementa-
tions need to run at a Kepler architecture, and are not compatible with Fermi [63].
Instead GPU Quicksort [28] has been used as the QS kernel for Tesla. GPU Quick-
sort consists of two phases, where the goal of the first one is to divide the input
array into a large number of sub-arrays which can be sorted independently [28].
Since the number of sub-arrays is low in the first phase, multiple thread-blocks
might be partitioning one the same sub-array [28]. This means that thread-blocks
need to be able to synchronize between each other, which is done by splitting the
first phase into different CUDA kernels [28].



3.7 Summarizing the Benchmarks 69

When the number of sub-arrays is larger than a specified threshold#arrays, the al-
gorithm switches to the second phase [28]. Now there exist enough sub-arrays
so that each thread-block can be assigned to sort its own sub-array, and there
is no need for synchronizations between thread-blocks any more [28]. The sec-
ond phase runs completely on Tesla with a single CUDA kernel call. If the num-
ber of values inside a sub-array is less than a given threshold#values, the quicksort
switches to use a bitonic sort algorithm instead.

The number of threads per thread-block and the different thresholds were chosen
by testing all combinations of:

• Threads per thread-block = {32, 64, 128, 256}

• Threshold#arrays = {32, 64, 128, 256, 512, 1024, 2048}

• Threshold#arrays = {64, 128, 256, 512, 1024, 2048, 4096}

Tests showed that GPU Quicksort performed best with 128 threads per thread-
block for all three array sizes. The best threshold#arrays was 128 for array sizes
10 000 and 100 000. 2048 sub-arrays was best for array size 1 000 000. The best
threshold#values was 2048 for array sizes 10 000 and 100 000; 1024 was best for
array size 1 000 000.

The fairness of the comparison can be questioned since GPU Quicksort switches
to a bitonic sort algorithm for quite large sub-arrays, which probably will benefit
Tesla.

3.6.5 QS for SB-PRAM

The Fork compiler [50] comes with a set of example programs where two are
quicksort implementation for arbitrarily large arrays. The idea was to use one of
those in the comparison, but unfortunately SB-PRAM ran out of memory under
simulating for both of them. Therefore the SB-PRAM quicksort benchmark has
been left out.

3.7 Summarizing the Benchmarks

In Table 3.5 the different kernels’ are origin summarized. The kernels might
differ from the source to fit the problem, or due to optimizations. An × denotes
that it has been implemented by the author.

The lines of code (LOC) for each kernel (not the whole program) are presented
in table 3.6. For some of the kernels the LOC are not known, due to that the
libraries were too complex to easily follow. Empty lines, comments and variable
declarations without assignment are not counted. Curly brackets are counted as
if they are written on separate lines. Code lines that take care of last iterations
due to unrolled loops have not been counted, since not all architectures have
checks for this. For Tesla’s benchmarks, allocation, transfer and kernel calls in the
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host’s code are counted and summed together with the code lines in the CUDA
kernel.

SB-PRAM has least LOC, and CUDA the most. It is however hard to draw any
conclusions about programming effort out of Table 3.6, more than that CUDA
seems to need more LOC than the rest of the architectures.

Benchmark REPLICA Xeon XMT Tesla SB-PRAM

PS × ×
Previous

XMT
work [31]

Thrust
[64] ×

DeMM × ×
Previous

XMT
work [59]

CUDA C
programming

guide [62]
×

DeMM-BLAS -
OpenBLAS

[78] -
CUBLAS

[64] -

SpMV × SL [79] × CUSP [29] ×

SpMV-COO × - - - -

BFS × Rodinia
[11]

Previous
XMT

work [59]

Rodinia
[11] ×

QS × TBB
[8]

Previous
XMT

work [59]

GPU
Quicksort

Library [28]
-

Table 3.5: Summarising the benchmark kernels’ origins.

Benchmark name REPLICA Xeon XMT Tesla SB-PRAM
PS 4 33 47 ? 4
DeMM 34 30 21 36 16
DeMM-BLAS - ? - ? -
SpMV 14 13 12 79 12
SpMV-COO 4 - - - -
BFS 32 36 33 66 32
QS 305 ? 174 483 -

Table 3.6: Lines of code for the different benchmark kernels.
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Evaluation and Results

In this chapter some abbreviations will be used. For instance, REPLICA-4, REPLI-
CA-16 and REPLICA-64 refer to REPLICA’s architecture with 4, 16 and 64 MB-
TAC processors, respectively. Further, Xeon-1, Xeon-4, Xeon-6 refer to the Xeon
chip, using 1, 4 and 6 processors, respectively.

4.1 Efficiency for REPLICA and Xeon

Since there exists no sequential configuration for REPLICA, the efficiency for the
implemented kernels has been obtained by using REPLICA-4 as reference. There-
fore the number of processors should be divided by 4 when calculating the effi-
ciency:

Sp =
T4

Tp
(4.1)

Ep =
Sp
P /4

(4.2)

Efficiency for Xeon’s kernels is obtained by using a single processor as reference,
and calculated by:

Sp =
T1

Tp
(4.3)

Ep =
Sp
P

(4.4)

71
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The charts in Figure 4.1 illustrate the efficiency of REPLICA-16 and REPLICA-64
relative to REPLICA-4, and of Xeon-4 and Xeon-6 relative to Xeon-1.

(a) PS (b) DeMM

(c) SpMV (d) SpMV-COO

(e) BFS (f) QS

Figure 4.1: Efficiency of REPLICA-16 and REPLICA-64 relative to
REPLICA-4, and of Xeon-4 and Xeon-6 processors relative to Xeon-1. Ker-
nels BFS, PS, DeMM, SpMV and SpMV-COO have been measured with
REPLICA’s T11 configuration, and QS with T5.

Due to simulation issues, the QS kernel did not work correctly on the REPLICA’s
T11 configuration for all inputs. The efficiency for the QS kernel displayed in
Figure 4.1f is therefore measured using the T5 configuration. All other kernels
in Figure 4.1 use the T11 configuration. The efficiency measurements for 100 000
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and 1 000 000 elements in the QS kernel are only based on a single input, instead
of an average of 10 inputs. Also the efficiency of REPLICA-16 for 1 000 000 ele-
ments is missing due to the mentioned issue.

Figure 4.1a shows that even if REPLICA-64 has more than 10 times more proces-
sors to utilize, it still has more than the double of Xeon-6 efficiency for the PS
kernel. Also, remember that REPLICA-64 has 32 768 threads (512 threads per
processor) that should be utilized. The hardware support for multiprefix oper-
ations gives REPLICA a huge advantage over Xeon when computing the prefix
sum. The lower efficiency for REPLICA-64 can probably be explained by that the
interconnection network is being stressed by the fetch-and-increment done by all
64 processors for each iteration. The four inputs for the PS kernel require 2.1 MB,
4.2 MB, 8.4 MB and 16.8 MB space. Since Xeon’s level 3 cache only can store 12
MB, cache misses are expected for the 16.8 MB input. The latency due to cache
misses seems to have greater impact when the kernel is executed in parallel. This
can be seen in Figure 4.1a where the biggest input yields lower efficiency com-
pared to the smaller inputs on Xeon. In other words, Xeon uses its cache more
efficiently when executing in sequential.

DeMM executing on REPLICA-64 (see Figure 4.1b) shows very low efficiency for
128×128 matrices as input. Since a matrix-matrix multiplication of 128×128 ma-
trices contains enough work to utilise all threads of REPLICA-64, the conclusion
is that the sequential overhead for dividing the threads into groups are high, rel-
ative to the amount of parallel work. Improvements of the part that divides the
threads could be done. For example, by getting the assembler instruction LOGD
to work properly, as mentioned in Section 3.3.1.
For the greater matrices, REPLICA presents better efficiency than Xeon.

The two smallest inputs for the BFS kernel (see Figure 4.1e) have too little par-
allel work to make use of all REPLICA-64’s processors, but the trend shows an
increased efficiency while the number of nodes grows. This is due to low paral-
lel work at the kernels’ start. When the number of nodes grows, the effect due
to low parallel work at start reduces, since its ratio of the total amount of work
decreases. Even though REPLICA-16 has more threads than the smallest graph
has nodes, it still has better efficiency than Xeon-4. For the greatest input even
REPLICA-64 has better efficiency than Xeon-4.

REPLICA shows very low efficiency for the QS kernel (see Figure 4.1f) on small
inputs. This is not surprising since REPLICA-64 has 3 times more threads than
there are elements to sort. For a sufficient number of elements, REPLICA’s effi-
ciency is even better than Xeon’s.

According to Figures 4.1c and 4.1d the COO format is to be preferred over CSR
for REPLICA’s SpMV kernel, when nonzero values are distributed very unevenly
among the rows. To determine this the actual performance for each configuration
has to be taken into account as well. It can not be done with the efficiency metric
alone. Also, there might exist a better implementation of the SpMV kernel using
the CSR format. A SpMV kernel implementation for Xeon using the COO format
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was not implemented since it would most likely perform very poorly due to high
latency of both adding an extra indirect addressing (see the coordinate format in
Section 3.4), and the use of atomic operations. In order to compare the efficiency
of REPLICA’s SpMV-COO kernel with something, Xeon’s SpMV kernel (using
the CSR format) has been included in the chart. When looking at all the inputs,
REPLICA’s SpMV-COO kernel shows, in general, higher efficiency than Xeon.

Overall, the irregular memory access algorithms in our benchmark suite, com-
pared to regular ones, are harder to implement efficiently, due to irregular work
loads. Algorithms with regular work loads on the other hand, are very easy to im-
plement efficient on REPLICA, as long as the input is sufficiently large. Thanks
to REPLICA’s multioperations, the SpMV kernel can be implemented with regu-
lar work load, which makes it more efficient, by using the storage format COO
instead of CSR. It is also possible that REPLICA’s NUMA mode could increase the
efficiency for kernels with low thread utilization.

The conclusion of this comparison between REPLICA and Xeon’s efficiency is that,
for sufficient large data sets REPLICA is much easier to program efficiently.

4.2 Instruction Level Parallelism Speedup on REPLICA

The charts in Figure 4.2 show the speedup for T7 and T11 relative to T5, using 4
processors. The gained speedup for T7 and T11 comes from exploiting more ILP
and VILP than T5.

That the PS kernel has the least speedups could be expected, since it only consists
of one loop including a multiprefix instruction.

Programs with a lot of control flow statements, for example conditional jumps,
tends to chop the program into small basic blocks. The compilers that is used
will only do ILP and VILP optimizations within these basic blocks, which results
in less ILP for programs with a lot of control flow statements. Unrolling the
innermost loop for the DeMM kernel increased the ILP of the most frequently
executed basic block. This is probably the main reason why it had the best ILP
speedup among the kernels. The observant reader can see that the graph traversal
dwarfs (QS and BFS) have less speedup compared to the linear algebra dwarfs.
The dense linear algebra dwarf, DeMM, have higher speedup compared to the
sparse algebra dwarfs, SpMV and SpMV-COO. This can probably be explained by
that graph traversal codes tend to use a lot of control flow statements compared
to code for linear algebra. There are of course too few kernels representing the
different dwarfs to prove that this is true for all kernels within these dwarfs.

The T7 configuration seems to be a good choice over the fat T11, since the com-
piler fails to find enough ILP to utilize its functional units well (at least for these
kernels). The silicon space could be used for other features instead, such as more
on-chip memory.
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(a) PS (b) DeMM

(c) SpMV (d) SpMV-COO

(e) BFS (f) QS

Figure 4.2: ILP speedup for T7 and T11, relative to T5.

4.3 Frequency Evaluation

This section will evaluating REPLICA by calculating what clock rate REPLICA
needs to run at to be able to execute the benchmarks as fast as Xeon and Tesla.
The needed frequency is calculated by dividing the execution time for Xeon or Tesla
with the number of clock cycles that REPLICA executes for the same benchmark.
The needed frequency is based on REPLICA’s T11 configuration, except for the
QS benchmark where T5 has been used instead.

Estimating the maximum clock rate for REPLICA architectures is out of scope for
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this thesis, but REPLICA’s interconnection network has been estimated to run at
the clock rate of at least 2 GHz with an old 65 nm technology [43].

4.3.1 Needed Frequency for PS

Figure 4.3 shows REPLICA-16 and REPLICA-64’s needed frequency for execut-
ing the PS kernel as fast as Xeon does. REPLICA-16 needs to operate on roughly
a third of Xeon’s clock rate to match Xeon execution time for the four smallest
inputs. As mentioned in Section 4.1, Xeon struggles with cache misses for the
largest input which is clearly visible in the chart. Due to Xeon’s cache misses,
REPLICA-16 needs a clock rate less than 600 MHz, and only 176 MHz for REPLICA-
64.

Figure 4.3: Needed frequency in MHz against Xeon for PS.

According to Figure 4.4a, Tesla performs better while the problems size increases.
When transfer time is included (see Figure 4.4b) this effect seems to flatten out for
larger problems. Also a very low frequency is needed for both REPLICA-16 and
REPLICA-64 to match Tesla. REPLICA-64 shows overall good performance com-
pared to both Xeon and Tesla. The needed frequency for REPLICA-4 is displayed
in Tables B.18, B.19 and B.20,

(a) Excluding transfer time (b) Including transfer time

Figure 4.4: Needed frequency in MHz against Tesla for PS.
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4.3.2 Needed Frequency for DeMM

The very varied results of DeMM made it hard to show them in charts, so the
results are presented in tables. Table 4.1 shows the needed frequency in MHz
for REPLICA with 4, 16 and 64 processors running the DeMM kernel. When
using a 1024×1024 matrix as input, REPLICA-16 and REPLICA-64 only need
to operate on 442.5 MHz and 113.4 MHz respectively to match Xeon’s execution
time. REPLICA seems to have better performance (relative to Xeon) when the
number of rows grows. This is probably due to that REPLICA’s multioperation
gets more effective as more threads cooperate.

When REPLICA’s DeMM kernel is compared to Xeon’s highly optimized and
tuned DeMM-BLAS kernel, the needed frequency is by roughly a factor of 10
larger, see Table 4.2. Although the comparison is a bit unfair since OpenBLAS
is much more optimized than REPLICA’s kernel, REPLICA-64 needs lower fre-
quency than Xeon’s clock rate (see Section 2.2), except for 128×128 matrices.

Rows REPLICA-4 (MHz) REPLICA-16 (MHz) REPLICA-64 (MHz)
128 1 607.3 825.3 835.9
256 2 077.7 526.2 270.0
384 3 095.3 777.9 263.2
512 1 984.0 503.9 126.5

1024 1 764.6 442.5 113.4

Table 4.1: Needed frequency in MHz against Xeon for DeMM.

Rows REPLICA-4 (MHz) REPLICA-16 (MHz) REPLICA-64 (MHz)
128 16 819.6 8 637.1 8 747.8
256 21 328.8 5 401.4 2 772.1
384 34 178.8 8 590.1 2 906.7
512 24 630.3 6 255.0 1 570.3

1024 25 377.7 6 364.4 1 630.6

Table 4.2: Needed frequency in MHz against Xeon for DeMM-BLAS kernel.

Tesla’s transfer time (see Table B.13) is 99 % of the total execution time for both
DeMM and DeMM-BLAS kernels. Since the kernel spend almost all the execut-
ing time on transferring data between host and device, it does not matter if the
DeMM or DeMM-BLAS kernel is executed, because there is no point to optimize
code whose execution time is less than 1 % of the total time. The long transfer
time leads to a serialisation of the kernel, which leads to very poor results for
Tesla when transfer time is included. With transfer time included REPLICA’s
needed frequency is just few MHz, see Table 4.3

When the transfer time is excluded REPLICA’s needed frequency is very high, for
both DeMM (see Table 4.4) and DeMM-BLAS (see Table 4.5).
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Rows REPLICA-4 (MHz) REPLICA-16 (MHz) REPLICA-64 (MHz)
128 2.7 1.4 1.4
256 24.3 6.2 3.2
384 38.2 9.6 3.3
512 31.9 8.1 2.0

1024 41.6 10.4 2.7

Table 4.3: Needed frequency in MHz against Tesla for DeMM-BLAS kernel
including transfer time.

Rows REPLICA-4 (MHz) REPLICA-16 (MHz) REPLICA-64 (MHz)
128 16 905.3 8 681.1 8 792.4
256 32 504.1 8 231.4 4 224.6
384 46 566.6 11 703.5 3 960.2
512 36 580.9 9 289.9 2 332.2

1024 36 483.0 9 149.5 2 344.2

Table 4.4: Needed frequency in MHz against Tesla for DeMM excluding
transfer time.

Rows REPLICA-4 (MHz) REPLICA-16 (MHz) REPLICA-64 (MHz)
128 20 276.5 10 412.3 10 545.7
256 44 062.8 11 158.6 5 726.9
384 121 499.6 30 536.3 10 332.9
512 86 050.5 21 852.9 5 486.0

1024 131 939.9 33 089.0 8 477.6

Table 4.5: Needed frequency in MHz against Tesla for DeMM-BLAS kernel
excluding transfer time.

The DeMM and DeMM-BLAS benchmarks show that dense matrix-matrix multi-
plication suits both Xeon and Tesla. This is because the memory access pattern is
known at compile time, and data can easily be stored in Xeon’s cache and Tesla’s
shared memory before its needed. But when Tesla’s transfer time is included it
perform very poorly. The DeMM kernel is too small to be beneficial for Tesla.

4.3.3 Needed Frequency for SpMV

Figure 4.5 shows again that REPLICA’s performance is highly reduced for the
Internet matrix when using the CSR format. This is because the nonzero values
are very unevenly distributed among the matrix’s rows. The number of nonzero
values for a row is between 0 and 138 values. 41 % of the 124651 rows are empty,
but will still have to be visited by a thread. This results in unbalanced work load,
which has a greater impact on REPLICA than on Xeon and Tesla, since the idling
threads still keep their slots in the MBTAC processor’s pipeline. Idling threads
which block working threads can hopefully be solved in the future by merging
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thread slots using NUMA-mode.

(a) Xeon: SpMV (b) Xeon: SpMV-COO

(c) Tesla: SpMV including transfer time. (d) Tesla: SpMV-COO including transfer
time.

(e) Tesla: SpMV excluding transfer time. (f) Tesla: SpMV-COO excluding transfer
time.

Figure 4.5: Needed frequency in MHz against Xeon and Tesla, for SpMV
and SpMV-COO kernels.

However, the alternative kernel SpMV-COO solves the issue with unevenly dis-
tributed nonzero values, thanks to REPLICA’s multioperations. Since the SpMV-
COO kernel only exists for REPLICA, it has been compared against Xeon and
Tesla’s SpMV kernels.

REPLICA needs much lower clock rate than Xeon, except for the Internet ma-
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trix, for the SpMV kernel. When the COO format is used, the needed frequency
for REPLICA-64 is reduced even more for all matrices, except for the t2em ma-
trix. For REPLICA-16 the needed frequency is only reduced for the Internet
and ASIC_680ks matrix. The highest needed frequency for REPLICA-16 and
REPLICA-64 for SpMV-COO are 611 MHz and 108 MHz, respectively.

REPLICA’s needed frequency against Tesla, with transfer time included, looks
much like the needed frequency against Xeon. But the needed frequency is much
lower when comparing against Tesla than against Xeon. REPLICA-16 needs less
than 200 MHz for both the SpMV and the SpMV-COO kernel, if the Internet ma-
trix is excluded.

If Tesla’s transfer time is excluded, the maximum needed frequency for REPLICA-
64 executing SpMV-COO is 512 MHz.

The SpMV and SpMV-COO kernels show that REPLICA performs well against
both Xeon and Tesla, if the work is balanced.

4.3.4 Needed Frequency for BFS

While looking at the REPLICA’s needed frequency for BFS against both Xeon
(Figure 4.6) and Tesla (Figure 4.7), it is clear that an important algorithm such
as BFS suits today’s architectures badly, compared to REPLICA. The needed fre-
quency for REPLICA-4, REPLICA-16 and REPLICA-64 against Xeon are 257 MHz,
76 MHz and 27 MHz, for the largest graph.

REPLICA needs a bit higher frequency to match Tesla, but the needed frequency
is still low, both when including and excluding the transfer time. If the trans-
fer time is excluded, the needed frequency for REPLICA-4, REPLICA-16 and
REPLICA-64 are 618 MHz 182 MHz and 64 MHz, respectively, for traversing the
largest graph.

Figure 4.6: Needed frequency in MHz against Xeon for BFS.

The lack of parallel work for the smallest graph leads to idling thread-slots in
the MBTAC processor’s pipeline, which results in decreased performance for
REPLICA. But when the graph grows, more node neighbors are queued for each
iteration, which means more parallel work and less idling thread-slots.
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(a) Excluding transfer time (b) Including transfer time

Figure 4.7: Needed frequency in MHz against Tesla for BFS.

The results of the BFS kernels show that the REPLICA architecture fills a gap in
today’s spectrum of parallel computing architectures.

4.3.5 Needed Frequency for QS

Due to problems with simulator or compiler the T7 and T11 configuration did
not run the QS benchmark correctly. Therefore the lightweight configuration T5
has been used instead.

REPLICA-4’s needed frequency against Xeon for executing the QS kernel is very
high, see Figure 4.8. It needs to run at roughly 8.7 GHz to match Xeon for the
smallest input. For the middle size input REPLICA-16 and REPLICA-64’s needed
frequency are 2.4 GHz and 1.5 GHz respectively, which both are lower than the
frequency that Xeon operates on. As mentioned earlier REPLICA-16 is missing
results for the largest input, but REPLICA-64 has a needed frequency of 720 MHz
which is roughly one quarter of Xeon’s clock rate. The needed frequency also
decreases for REPLICA-16 and REPLICA-64 as the input size grows.

Figure 4.8: Needed frequency in MHz against Xeon for QS.

The needed frequency against Tesla for small input sizes is not as high as com-
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pared to Xeon, see Figure 4.9. This might be due to communication overhead
between host and device, since the kernel is executing on both host and device.
The transfer time at the start and end is however not the reason, since the needed
frequencies for when the transfer time is included and when not are about the
same frequency. The needed frequency for REPLICA-16 and REPLICA-64 against
Tesla, including transfer time, are 1.6 GHz and 1.1 GHz respectively for the mid-
dle input size. For the largest input size REPLICA-64 needs a clock rate of
708 MHz to match Tesla, including transfer time.

Only for REPLICA-64 the needed frequency decreases as the input size grows.

(a) Excluding transfer time (b) Including transfer time

Figure 4.9: Needed frequency in MHz against Tesla for QS.

Tests have shown that it might be possible to reduce REPLICA’s execution time
for sorting the largest array with around 40 % by getting the T11 configuration
to work, and not treating values equal to the pivot separately during partitioning.
The pivots shall instead be treated as either larger or smaller than the pivot. But
it can lead to reduced performance if the input contains a lot of repeated values.

4.4 Clock Cycles Evaluation

This section will compare REPLICA’s performance against SB-PRAM and XMT by
comparing executed clock cycles within each benchmark kernel. REPLICA-4 will
be compared against SB-PRAM since they have the same number of processors
and threads. A TCU cluster can be seen as a processor with 16 threads, and
since XMT has 64 clusters it is natural to compare it with REPLICA-64. But it
can also be of interest to see how the smaller configuration REPLICA-16 stands
against XMT. Therefore REPLICA-16 is also compared against XMT. Again the
T11 configuration is used for REPLICA except for the QS kernel where T5 will be
used.
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4.4.1 Clock Cycles Evaluation for PS

REPLICA-4 has a speedup of 9.6 over SB-PRAM for all input sizes, see Figure 4.10a.
That the speedup stays almost constant for all input sizes is natural since both
kernels iterate over a multiprefix operation the same number of times. The multi-
prefix operation seems to execute roughly 9 times faster on REPLICA compared
to SB-PRAM, when all threads on the chip are cooperating. The high speedup
can probably be due to that REPLICA is a VLIW architecture and has a more
powerful instruction set. REPLICA’s scratchpad and step cache also make the
multioperations and multiprefix operations more effective when executed by a
large number of threads.

(a) Speedup over SB-PRAM (b) Speedup over XMT

Figure 4.10: REPLICA’s speedup over SB-PRAM and XMT for PS.

Also REPLICA-64 shows speedup over XMT for all inputs in Figure 4.10b. For the
three smallest inputs REPLICA-64’s speedup over XMT is around 1.4, which is
quite modest. But for the two largest inputs sizes the speedups are much higher.
REPLICA-64 has a speedup of 3.5 over XMT for the largest input. REPLICA-16
executes slower than XMT for all input sizes, except for the largest one which has
a small speedup of 1.05 over XMT. XMT’s performance against both REPLICA-16
and REPLICA-64 seems to decrease as the number of elements grows.

4.4.2 Clock Cycles Evaluation for DeMM

REPLICA-4 has a speedup over SB-PRAM of around 12.5 for all input matrices,
except for the 384×384 matrix where the speedup is 10.0, which is shown in
Figure 4.11a. The lower speedup for the 384×384 matrix is due to that 384

4 (= 96)
is not a power of two. The reason why 384 is divided by 4 is that the loops are
unrolled 4 times. Because the number of threads on REPLICA-4 is a power of
two (2048), also the group sizes have to be a power of two, if they shall be of
equal sizes. But since 96 is not, the group sizes are set to the nearest power of
two rounded downwards from 96, which is 64. This results in a less efficient
use of the multioperation than if the group sizes would have been #ROWS

4 . SB-
PRAM does not use groups in its kernel and is not affected by the this. The high
speedup over SB-PRAM is probably due to REPLICA’s multioperation and a more
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optimized compiler.

(a) Speedup over SB-PRAM (b) Speedup over XMT

Figure 4.11: REPLICA’s speedup over SB-PRAM and XMT for DeMM.

According to the chart in Figure 4.11b XMT executes with less clock cycles than
REPLICA-16 for all matrices, although XMT’s performance over REPLICA-16
seems to shrink for larger matrices. REPLICA-64 presents speedup over XMT
for all matrices except the smallest one. The increasing speedup for REPLICA-
64 over XMT can be due to an increased advantage of the multioperations when
larger groups are cooperating. If this is the case, REPLICA-64’s speedup over
XMT will probably grow until the matrices are beyond 2048×2048, since the
group then will fully utilize the scratchpad and step cache. Another possible
explanation is that REPLICA’s kernel has more initial overhead when threads are
divided into groups. The initial overheads will be more and more insignificant
as the matrices grows.

REPLICA-64 has speedup of 3.5 over XMT for the largest matrices.

4.4.3 Clock Cycles Evaluation for SpMV

For the SpMV kernel, REPLICA again shows a stable speedup over SB-PRAM, see
chart in Figure 4.12a. The speedup is close to 13 for all matrices. The reason for
the high speedup is again probably due to better optimizing by the compiler, and
maybe more efficient multiprefix operations.

Since the SpMV-COO kernel only exists for REPLICA, it has been compared
against SB-PRAM and XMT’s SpMV kernels. The chart in Figure 4.13a shows
REPLICA-4’s speedup over SB-PRAM when REPLICA runs SpMV-COO instead
of SpMV. It shows an increased speedup for REPLICA over SB-PRAM for the In-
ternet matrix, which has unevenly distributed nonzero values. A small increased
speedup for the ASIC_680ks matrix can also be observed, but the speedup for
both Lugn2 and t2em decreases to roughly 11.

The speedup in Figure 4.12b shows that XMT has better performance than REPLI-
CA-16 for all matrices. But XMT also performs better than REPLICA-64 for un-
evenly distributed nonzero values in the matrix, such as the Internet matrix. For
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(a) Speedup over SB-PRAM (b) Speedup over XMT

Figure 4.12: REPLICA’s speedup over SB-PRAM and XMT for SpMV.

the other matrices REPLICA-64 has a speedup of 2.1, 1.1 and 2.4 over XMT.

When comparing the SpMV-COO to XMT’s SpMV in Figure 4.13b, REPLICA-64
presents speedups between 2.2 and 3.0 over XMT. REPLICA-16, on the other
hand, only has a very small speedup over XMT for the Internet matrix.

(a) Speedup over SB-PRAM (b) Speedup over XMT

Figure 4.13: REPLICA’s speedup over SB-PRAM and XMT for SpMV-COO.

4.4.4 Clock Cycles Evaluation for BFS

The chart in Figure 4.14a shows again a very high speedup for REPLICA over
SB-PRAM. As for the other kernels this might be due to that REPLICA’s compiler
makes better optimizations, and that its multiprefix operations are more efficient
than SB-PRAM’s implementation. It is also possible that the Fork language in-
troduces more overhead than the REPLICA baseline language, since Fork is a
high-level language compared to REPLICA baseline.

XMT outperforms both REPLICA-16 and REPLICA-64 for small graphs. But for
the largest graph it is the opposite. REPLICA-16 and REPLICA-64 have a speedup
of 1.7 and 4.9 over XMT for the largest graph. Small graphs have much less par-
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allel work than larger graphs. The result of little parallel work is idling threads.
Since an idling TCU in XMT does not block active threads from accessing the
shared resources, it can perform better than REPLICA when the amount of paral-
lel work is low. REPLICA can probably solve this by grouping idling threads into
one thread bunch, using NUMA mode.

(a) Speedup over SB-PRAM (b) Speedup over XMT

Figure 4.14: REPLICA’s speedup over SB-PRAM and XMT for BFS.

4.4.5 Clock Cycles Evaluation for QS

Although the results have been obtained using the lightweight T5 configuration,
REPLICA-64 shows speedup over XMT for the two largest inputs. The speedup
is however not that high, roughly 1.3, but it will grow if the issues with T7 and
T11 are solved.

As mentioned in Section 3.6.5 the SB-PRAM ran out of memory when simulating
the QS benchmark, therefore, there are no results for it.

Figure 4.15: REPLICA’s speedup over XMT for QS.
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Conclusions and Future Work

5.1 Conclusions

In this thesis we have, by benchmarking different types of algorithms on REPLICA,
Xeon, XMT, Tesla and SB-PRAM, tried to show how REPLICA is positioned among
similar parallel architectures and more diverse ones. The selected reference con-
sist of both commercially-off-the-shelf and in-house research oriented architec-
tures. By using well-known Berkeley dwarfs and input from unbiased sources,
such as The University of Florida Sparse Matrix Collection [1] and Rodinia bench-
mark suite [11], we have made sure that the benchmarks measure relevant com-
putation problems. When possible, the benchmarks have used highly optimized
state-of-the-art vendor-provided or third-party libraries, to make the reference
implementations more objective.

We have shown that it is easier to program REPLICA efficiently than Xeon, con-
sidering that REPLICA has thousands of threads more than Xeon to utilize, see
Section 4.1. It is very easy to assign extremely fine grained computation tasks
efficiently on REPLICA, even if a low-level language such as REPLICA baseline
was used. The lines of code (LOC) metric indicates that it is more time-consuming
to develop programs for Tesla, and not very surprisingly our results show that in
order to gain any performance out of Tesla as a computational accelerator, the ker-
nel has to be relatively large, due to high data transfer times. When the transfer
time was included, only the quicksort (QS) kernel showed good results for Tesla.
But this kernel is actually executing on both the CPU and Tesla. Further, this ker-
nel also switched from using the quicksort algorithm to a bitonic sort algorithm
at relatively large thresholds.

Based on its speedup over the T5 MBTAC configuration for our benchmarks, T7 is

87
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probably the most cost-efficient configuration among the three evaluated MBTAC
configurations. The T7 configuration obtains between 1.2 and 2.2 speedup over
the T5 configuration, by exploiting more ILP and VILP. The T11 configuration
offers little more speedup than T7, but the extra silicon space can be used for
more useful features, such as more on-chip memory.

Overall REPLICA performed well against the reference architectures. Best results
were obtained for the breadth first search (BFS) kernel with the largest graph,
where REPLICA only needed a few MHz to match Xeon and Tesla. REPLICA
also had almost 5 times speedup over XMT for this kernel. In general REPLICA
performed better for larger inputs. The kernel for which REPLICA needed the
highest clock rate to match Xeon and Tesla was the BLAS dense matrix-matrix
multiplication kernel (DeMM-BLAS). This was no surprise since both Xeon and
Tesla used highly optimized BLAS libraries. Regular memory access algorithms
are also easy to implement efficiently on cache-based architectures such as Xeon,
and matrix multiplication is a regular dataparallel operation that GPUs such as
Tesla are optimized for.

Thanks to REPLICA’s multioperations, sparse matrix-vector multiplication for
the COO format can be implemented efficiently with very little effort. Since
REPLICA can compute sparse matrix-vector multiplication efficiently, there is no
need for wasting valuable time on converting matrices to (for other architectures)
more efficient formats. The benefits for the COO format over CSR had been even
greater if we had included the time it took to convert the matrices to CSR.

Some issues regarding the different architectures have also been observed. Code
with unbalanced or low amount of parallel work leads to idling threads. Idling
threads can have a great performance impact, especially on REPLICA since its
idling threads, if running in PRAM mode, still occupy their thread-slots in the
MBTAC processor’s pipeline, which results in bad utilization and performance.
It can most likely be solved by grouping idling threads into one or several thread-
bunches, which execute as a single thread in NUMA mode. This was not tested.
Also, some codes produce small basic blocks which make it difficult for the com-
piler to optimize for ILP and VILP. In some cases, this can be solved by unrolling
loops, so that the loop iterates over a larger basic block, which makes it easier for
the compiler to optimize for ILP and VILP. XMT does, in contrast to REPLICA,
have problems with register spills for large basic blocks within parallel regions. If
the compiler fails to store local variables and temporary values in the TCU’s regis-
ter file, it will halt the compilation. This was observed when trying to unroll the
innermost loop for dense matrix-matrix multiplication (DeMM). XMT also limits
the programmer by not supporting nested parallel regions, or function calls in-
side parallel regions. The XMT project is planning to support this and solve the
register spill issue in a future XMT version [21].

It is noticeable that REPLICA’s tool-chain is in an early stage. A few bugs with
nesting functions, register allocation and the simulator IPSMSimX86 have been
observed. Also managing shared data among groups in REPLICA baseline is a
bit tedious, but will be solved by the REPLICA language, which is under develop-
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ment.

The XMT programming model does not allow execution of code beyond a par-
allel region before all software threads have been executed, due to an implicit
barrier after each parallel region. This means that a single TCU which executes a
software thread can block all other TCU’s on the chip from execution.

Both Tesla and XMT can not support global synchronization between software
threads, since all threads on XMT, and blocks on Tesla, must be able to execute
independently and sequentially. A global synchronization behavior can however
be implemented by splitting the parallel region, or CUDA kernel, into two parts
where the global synchronization is desired.

If one compares the thread synchronization and memory consistency between
the architectures, then REPLICA and SB-PRAM have the strongest programming
models. They do however not spawn software threads, but a similar behavior can
be implemented by using a task pool [51].

We conclude that today’s parallel architectures have some performance issues for
applications with irregular memory access patterns, which the REPLICA archi-
tecture can solve.

5.2 Future Work

The benchmark suite can be expanded further so that more dwarfs are repre-
sented within it, and existing kernels can always use more optimizations. REPLI-
CA could use a BLAS implementation of the dense matrix-matrix multiplication
with lower complexity than O(n3), for a more fair comparison against the Open-
BLAS and CUBLAS implementations, preferably using floating point. Also one
could implement a shared task queue for REPLICAs quicksort, so that idling
threads can unburden threads under heavy workload. It would also be interest-
ing to evaluate if there is a sorting algorithm that is better suited for the REPLICA
architecture, such as merge sort.

Some of the benchmarks kernels have low thread utilization for small input sizes.
It should be tested if it is possible to increase the efficiency of these kernels by
using NUMA mode.

In REPLICA baseline, all the built-in variables are globals. Since global variables
are never placed in registers, this can lead to unnecessary loss of performance,
if these variables are used frequently [69]. It is of course possible for the pro-
grammer to copy any built-in variable into a local variable, but this has at least
two draw backs. One is that the programmer then has to ensure the consistency
of the local copy and the built-in variable. Secondly, the built-in routines will
not benefit from local variables, since they only know about the built-in ones. It
should be considered to make it possible for the compiler to store the built-in
variables in registers.
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In future the benchmark suite could be ported to the REPLICA language, and
compared against the existing REPLICA baseline implementation.
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A
Code

1 #include <unistd.h>
2 #include <time.h>
3
4 struct timespec startTime, endTime;
5 double total_time = 0.0;
6
7 inline int getRealTime(struct timespec *ts)
8 {
9 const clockid_t id = CLOCK_MONOTONIC;

10
11 if(id != (clockid_t)-1 && clock_gettime(id, ts) != -1)
12 return 0;
13 return 1;
14 }
15
16 double elapsedTime(struct timespec *start, struct timespec *stop)
17 {
18 return ((double)(stop->tv_sec - start->tv_sec)) +
19 ((double)(stop->tv_nsec - start->tv_nsec) / (double)1e9);
20 }

Listing A.1: timer.h
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1 #include "replica.h"
2
3 int source_[N];
4 int sum_;
5
6 int main()
7 {
8 unsigned i;
9 unsigned temp =_number_of_threads;

10 sum_ = 0;
11
12 // Kernel starts
13 _start_timer;
14
15 for (i=_thread_id; i<N; i+=temp)
16 {
17 _prefix(source_[i], ADD, &sum_, source_[i]);
18 }
19
20 // Kernel ends
21 _stop_timer;
22 _synchronize;
23
24 _exit;
25 return 0;
26 }

Listing A.2: The PS kernel for REPLICA.
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1 #define NUMBER_OF_THREADS 1024
2
3 inline int prefix_sum_sequential(int* front, int* end)
4 {
5 int sum = *front;
6 ++front;
7 while (front != end)
8 {
9 *front = sum = sum + *front;

10 ++front;
11 }
12 return sum;
13 }
14
15 int main()
16 {
17 const unsigned N = // Problem size
18 int* front = // Points to the array
19 int* end = front + N;
20
21 // Initial work...
22
23 // Kernel begins
24 int sum[NUMBER_OF_THREADS];
25 int chunk_size = (N+NUMBER_OF_THREADS-1)/NUMBER_OF_THREADS;
26
27 #pragma omp parallel default(none) shared(front, end, sum, chunk_size)
28 {
29 int t_id = omp_get_thread_num();
30 int offset = t_id * chunk_size;
31
32 // Calculate chunk sizes
33 int* t_front = (offset<N ? front+offset : end);
34 int* t_end = (offset+chunk_size<N ? t_front+chunk_size : end);
35
36 // Calculate prefix sum on local chunk
37 sum[t_id] = (t_front==t_end ? 0 : prefix_sum_sequential(t_front,

t_end) );
38
39 # if NUMBER_OF_THREADS != 1
40 #pragma omp barrier
41 #pragma omp single
42 {
43 // Calculate prefix sum on sums
44 prefix_sum_sequential(sum, sum + NUMBER_OF_THREADS);
45 }
46
47 if (t_id != 0)
48 {
49 int value = sum[t_id - 1];
50 while (t_front != t_end)
51 *t_front++ += value;
52 }
53 # endif
54 }
55 // Kernel ends
56
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57 return 0;
58 }

Listing A.3: The PS kernel for Xeon.
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1 #include "replica.h"
2
3 int a_[N*N];
4 int b_[N*N];
5 int y_[N*N];
6
7 int main()
8 {
9 unsigned i;

10 unsigned NN = N*N;
11
12 // Kernel starts
13 _synchronize;
14 _start_timer;
15
16 // Calculate the subgroup sizes
17 // The subgroup sizes should be:
18 // - ilog2(size)==0, since equal large subgroups is desired
19 // - size<=N/4, since its loop are unrolled by four
20 unsigned max = N>>2 < _number_of_threads ? N>>2 : _number_of_threads;
21 unsigned subgroup_size;
22 for(subgroup_size=1; subgroup_size<=max; subgroup_size<<=1)
23 ;
24 subgroup_size>>=1;
25
26 // Calculate #subgroups
27 unsigned number_of_subgroups = _number_of_threads / subgroup_size;
28
29 // Calculate the group sizes
30 // The subgroup sizes should be:
31 // - ilog2(size)==0, since equal large groups is desired
32 // - size<=N, since its loop are NOT unrolled
33 max = N < number_of_subgroups ? N : number_of_subgroups ;
34 unsigned group_size;
35 for(group_size=1; group_size<=max; group_size<<=1)
36 ;
37 group_size>>=1;
38
39 // Calculate #groups
40 unsigned number_of_groups = number_of_subgroups / group_size;
41 // Unrolled accumulator variable, marked as volatile due to register

allocation bug
42 volatile unsigned volatile_4_number_of_groups= 4*number_of_groups;
43
44 // Divide the threads into groups
45 unsigned group_id = _thread_id / (group_size*subgroup_size);
46 unsigned subgroup_id = (_thread_id-(group_id*group_size*subgroup_size)

) / subgroup_size;
47 _thread_id = _thread_id % subgroup_size;
48
49 // Compute Y = AB+Y
50 unsigned r,c,k;
51 // Unrolled by 4
52 for(k=_thread_id<<2; k<N-3; k+=subgroup_size<<2)
53 {
54 // Reuse row offsets
55 unsigned kN=k*N;
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56 unsigned k1N=kN+N;
57 unsigned k2N=k1N+N;
58 unsigned k3N=k2N+N;
59
60 // Each row is calculated by one group
61 for(r=subgroup_id; r<N; r+=group_size)
62 {
63 // Reuse row offsets
64 unsigned rN=r*N;
65
66 // Reuse operands
67 int a=a_[rN+k];
68 int a1=a_[rN+k+1];
69 int a2=a_[rN+k+2];
70 int a3=a_[rN+k+3];
71
72 // Unrolled by 4
73 for(c=group_id*4; c<N-3; c+=volatile_4_number_of_groups)
74 {
75 _multi(ADD,&y_[rN+c],a*b_[kN+c]+a1*b_[k1N+c]+a2*b_[k2N+c]+

a3*b_[k3N+c]);
76 _multi(ADD,&y_[rN+c+1],a*b_[kN+c+1]+a1*b_[k1N+c+1]+a2*b_[

k2N+c+1]+a3*b_[k3N+c+1]);
77 _multi(ADD,&y_[rN+c+2],a*b_[kN+c+2]+a1*b_[k1N+c+2]+a2*b_[

k2N+c+2]+a3*b_[k3N+c+2]);
78 _multi(ADD,&y_[rN+c+3],a*b_[kN+c+3]+a1*b_[k1N+c+3]+a2*b_[

k2N+c+3]+a3*b_[k3N+c+3]);
79 }
80
81 // Take care of the rest if: (N/4)%number_of_groups!= 0
82 for(; c<N; ++c)
83 {
84 _multi(ADD,&y_[rN+c],a*b_[kN+c]+a1*b_[k1N+c]+a2*b_[k2N+c]+

a3*b_[k3N+c]);
85 }
86 // Balance work among groups
87 group_id=(group_id+1)%number_of_groups;
88 }
89 // Balance work among subgroups
90 subgroup_id=(subgroup_id+1)%group_size;
91 }
92 // Balance work among threads
93 //_thread_id=(_thread_id+1)%group_size;
94
95 // Take care of the rest if: (N/4)%subgroup_size != 0
96 for(; k<N; ++k)
97 {
98 // Reuse row offset
99 unsigned kN=k*N;

100
101 for(r=subgroup_id; r<N; r+=group_size)
102 {
103 // Reuse row offset
104 unsigned rN=r*N;
105
106 // Reuse row operand
107 int a=a_[rN+k];
108
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109 // Unrolled by 4
110 for(c=4*group_id; c<N-3; c+=4*number_of_groups)
111 {
112 _multi(ADD,&y_[rN+c],a*b_[kN+c]);
113 _multi(ADD,&y_[rN+c+1],a*b_[kN+c+1]);
114 _multi(ADD,&y_[rN+c+2],a*b_[kN+c+2]);
115 _multi(ADD,&y_[rN+c+3],a*b_[kN+c+3]);
116 }
117 // Take care of the rest if: (N/4)%number_of_groups!= 0
118 for(; c<N; ++c)
119 {
120 _multi(ADD, &y_[rN+c], a*b_[kN+c]);
121 }
122 // Balance work among groups
123 group_id=(group_id+1)%number_of_groups;
124 }
125 // Balance work among subgroups
126 subgroup_id=(subgroup_id+1)%group_size;
127 }
128 // Balance work among threads
129 //_thread_id=(_thread_id+1)%group_size;
130
131 // Restore built-in variables
132 _thread_id = _absolute_thread_id;
133 _number_of_threads = _absolute_number_of_threads;
134
135 // Kernel ends
136 _synchronize;
137 _stop_timer;
138
139 _exit;
140 return 0;
141 }

Listing A.4: The DeMM kernel for REPLICA.
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1 #include "replica.h"
2
3 // Sparse matrix
4 int value_[NNZ];
5 unsigned col_index_[NNZ];
6 unsigned row_start_[ROWS+1];
7
8 // Vectors
9 int x_[ROWS];

10 int y_[ROWS];
11
12 unsigned counter_;
13
14 int main()
15 {
16 // Kernel starts
17 _start_timer;
18
19 counter_ = _number_of_threads;
20 unsigned row = _thread_id;
21 while(row<ROWS)
22 {
23 int sum = 0;
24 unsigned start = row_start_[row];
25 unsigned end = row_start_[row+1];
26 unsigned i;
27 for(i=start; i<end; ++i)
28 {
29 sum += value_[i] * x_[col_index_[i]];
30 }
31 y_[row] = sum;
32 _aprefix(row, ADD, &counter_, 1);
33 }
34
35 // Kernel ends
36 _synchronize;
37 _stop_timer;
38
39 _exit;
40 return 0;
41 }

Listing A.5: The SpMV kernel for REPLICA.
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1 #include "replica.h"
2
3 // Sparse matrix
4 int row_[NNZ];
5 int col_[NNZ];
6 int val_[NNZ];
7
8 // Vectors
9 int x_[ROWS];

10 int y_[ROWS];
11
12 int main()
13 {
14 unsigned temp = _number_of_threads;
15
16 // Kernel starts
17 _start_timer;
18
19 unsigned i;
20 for(i=_thread_id; i<NNZ; i+=temp)
21 {
22 _multi(ADD, &y_[row_[i]], val_[i] * x_[col_[i]]);
23 }
24
25 // Kernel ends
26 _synchronize;
27 _stop_timer;
28
29 _exit;
30 return 0;
31 }

Listing A.6: The SpMV-COO kernel for REPLICA.
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1 #include "replica.h"
2
3 typedef struct Node_t
4 {
5 int offset;
6 int num_edges;
7 } Node;
8
9 Node node_[NODES];

10 int edge_[EDGES];
11 int cost_[NODES];
12 int visited_[NODES];
13
14 int queueA_[NODES];
15 int queueB_[NODES];
16
17 int group_size_[NUMBER_OF_THREADS];
18
19 int queue_end_;
20 int next_queue_end_;
21
22 int main()
23 {
24 _start_timer;
25 // Kernel starts
26
27 int* queue = queueA_;
28 int* next_queue = queueB_;
29
30 // Put root in queue
31 queue[0] = 0;
32 queue_end_ = 1;
33 cost_[0] = 0;
34 visited_[0] = 1;
35
36 int k = 1;
37 do
38 {
39 // Reset next queue
40 next_queue_end_ = 0;
41
42 // Setup groups
43 int group_id = _thread_id % queue_end_;
44 group_size_[group_id] = 0;
45 int thread_id;
46 _aprefix(thread_id,ADD,&group_size_[group_id],1);
47
48 // Spawn over queue (active nodes)
49 for(int n=group_id; n<queue_end_; n+=_number_of_threads)
50 {
51 // Look up the visiting node in queue
52 int node_id = queue[n];
53
54 // Spawn (iterate) over its neighbors
55 for(int v=node_[node_id].offset+thread_id; v<node_[node_id].

offset+node_[node_id].num_edges; v+=group_size_[group_id
])
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56 {
57 int neighbor_id = edge_[v];
58
59 // Check if neighbor is visited
60 int is_visited;
61 _aprefix(is_visited,ADD,&visited_[neighbor_id],1);
62 if (!is_visited)
63 {
64 // if not put it in next queue and set cost
65 int index;
66 _aprefix(index,ADD,&next_queue_end_,1);
67 next_queue[index] = neighbor_id;
68 cost_[neighbor_id] = k;
69 }
70 }
71 }
72
73 _synchronize;
74
75 // Update current queue
76 int* tmp = queue;
77 queue = next_queue;
78 next_queue = tmp;
79
80 queue_end_ = next_queue_end_;
81
82 ++k;
83 }
84 while(queue_end_);
85
86 // Kernel ends
87 _synchronize;
88 _stop_timer;
89
90 _exit;
91 return 0;
92 }

Listing A.7: The BFS kernel for REPLICA.
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1 psBaseReg next_queue_end; // define as global
2
3 int* queue = queueA;
4 int* next_queue = queueB;
5
6 // Put root in queue
7 queue[0] = 0;
8 int queue_end = 1;
9 cost[0] = 0;

10 visited[0] = 1;
11
12 int k=1;
13 do
14 {
15 // Reset next queue
16 next_queue_end = 0;
17
18 // Spawn over queue
19 spawn(0, queue_end-1)
20 {
21 // Look up the visiting node in queue
22 int id = queue[$];
23
24 // Spawn (iterate) over its neighbors
25 spawn(node[id][0], node[id][0]+node[id][1]-1)
26 {
27 int neighbor_id = edges[$];
28
29 // Check if neighbor is visited
30 int is_visited = 1;
31 psm(is_visited, visited[neighbor_id]);
32 if (!is_visited)
33 {
34 // if not put it in next queue and set cost
35 int index = 1;
36 ps(index, next_queue_end);
37 next_queue[index] = neighbor_id;
38 cost[neighbor_id] = k;
39 }
40 }
41 }
42
43 // Update current queue
44 int* tmp = queue;
45 queue = next_queue;
46 next_queue = tmp;
47 queue_end = next_queue_end;
48
49 ++k;
50 }
51 while(queue_end);

Listing A.8: The parallelized native implementation of BFS for Xeon.
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1 psBaseReg next_queue_end; // define as global
2
3 int* queue = queueA;
4 int* next_queue = queueB;
5
6 // Put root in queue
7 queue[0] = 0;
8 int queue_end = 1;
9 cost[0] = 0;

10 visited[0] = 1;
11
12 int k=1;
13 do
14 {
15 // Reset next queue
16 next_queue_end = 0;
17
18 // Spawn over queue
19 spawn(0, queue_end-1)
20 {
21 // Look up the visiting node in queue
22 int id = queue[$];
23
24 // Spawn (iterate) over its neighbors
25 spawn(node[id][0], node[id][0]+node[id][1]-1)
26 {
27 int neighbor_id = edges[$];
28
29 // Check if neighbor is visited
30 int is_visited = 1;
31 psm(is_visited, visited[neighbor_id]);
32 if (!is_visited)
33 {
34 // if not put it in next queue and set cost
35 int index = 1;
36 ps(index, next_queue_end);
37 next_queue[index] = neighbor_id;
38 cost[neighbor_id] = k;
39 }
40 }
41 }
42
43 // Update current queue
44 int* tmp = queue;
45 queue = next_queue;
46 next_queue = tmp;
47 queue_end = next_queue_end;
48
49 ++k;
50 }
51 while(queue_end);

Listing A.9: The BFS kernel for XMT.
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1 sh int queue_space[NUM_NODES];
2 sh int queue_size;
3 sh int next_queue_size;
4
5 pr int* queue = queue_space;
6 pr int* next_queue = &queue_space[1];
7
8 // kernel begins
9

10 // Put root in queue
11 queue[0] = 0;
12 queue_size = 1;
13 cost[0] = 0;
14 visited[0] = 1;
15 int k=1;
16
17 do
18 {
19 // Reset next queue
20 next_queue_size = 0;
21
22 // Setup groups
23 fork(queue_size; @=$%queue_size;)
24 {
25 // Spawn over queue (active nodes)
26 int n;
27 int group_size = #; // # can change value in asynchronous mode
28 farm for(n=@; n<queue_size; n+=__STARTED_PROCS__)
29 {
30 // Look up the visiting node in queue
31 int node_id = queue[n];
32
33 // Spawn (iterate) over its neighbors
34 int v;
35 for(v=nodes[node_id].offset+$$; v<nodes[node_id].offset+nodes[

node_id].num_edges; v+=group_size)
36 {
37 int neighbor_id = edges[v];
38
39 // Check if neighbor is visited
40 if(!mpmax(&visited[neighbor_id], 1))
41 {
42 // if not put it in next queue and set cost
43 int index = mpadd(&next_queue_size, 1);
44 next_queue[index] = neighbor_id;
45 cost[neighbor_id] = k;
46 }
47 }
48 }
49 }
50
51 // Update current queue
52 queue = next_queue;
53 next_queue = &next_queue[next_queue_size];
54 queue_size = next_queue_size;
55 ++k;
56 }
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57 while(queue_size);
58 // kernel ends

Listing A.10: The BFS kernel for SB-PRAM.
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1 diff --git a/quick2.c.org b/quick2.c.new
2 index 4f66ceb..1c34adc 100644
3 --- a/quick2.c.org
4 +++ b/quick2.c.new
5 @@ -2,21 +2,30 @@
6
7 /* quick.c
8 */
9 -#include <xmt.h>

10 -#include <stdio.h>
11 +#include <xmtc.h>
12 +#include "data.h"
13
14 -#define PROBLEM_SIZE 131072
15 #define SORT_THRESHOLD 2
16 #define FORK_THRESHOLD 1
17 -#define PHASE_SWITCH_THRESHOLD 0
18 +
19 +#if PROBLEM_SIZE == 10000
20 +# define PHASE_SWITCH_THRESHOLD 64
21 +
22 +#elif PROBLEM_SIZE >= 100000
23 +# define PHASE_SWITCH_THRESHOLD 1024
24 +
25 +#endif
26
27 #define TWO_ELEMENTS -3
28 #define ONE_ELEMENT -2
29 #define ZERO_ELEMENTS -1
30 +psBaseReg global_count;
31 +psBaseReg low;
32 +psBaseReg hi;
33
34 int do_quicksort(int *input, int start, int end, int *scratch)
35 {
36 - int hi, low, pivot, pivotval,temp;
37 + int pivot, pivotval,temp;
38 int i;
39
40 if( end - start < 0) {
41 @@ -53,24 +62,25 @@ int do_quicksort(int *input, int start, int end, int *

scratch)
42 low = 0;
43 hi = 1;
44
45 - spawn(end - start + 1, start);
46 + spawn(start, end)
47 {
48 - int TID;
49 + int TID=$;
50 int index;
51 int curval = input[TID];
52
53 if(TID != (start + pivot)){
54 if(curval <= pivotval){
55 - index = ps(&low,1);
56 + index = 1;
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57 + ps(index,low);
58 scratch[index + start] = curval;
59 }
60 else{
61 - index = ps(&hi,1);
62 + index = 1;
63 + ps(index,hi);
64 scratch[end + 1 - index] = curval;
65 }
66 }
67 }
68 - join();
69
70 scratch[start + low] = pivotval;
71
72 @@ -84,14 +94,11 @@ int do_quicksort(int *input, int start, int end, int *

scratch)
73 }
74
75
76 -void main(int argc, char *argv[])
77 +int main()
78 {
79 int start[PROBLEM_SIZE*2], end[PROBLEM_SIZE*2];
80 - int global_count = 0;
81 + global_count = 0;
82
83 - int input[PROBLEM_SIZE] =
84 -#include "input.65536.i"
85 -;
86
87 int scratch[PROBLEM_SIZE];
88 int i;
89 @@ -105,22 +112,20 @@ void main(int argc, char *argv[])
90 end[0] = PROBLEM_SIZE - 1;
91 start[0] = 0;
92
93 - spawn(PROBLEM_SIZE*2-1, 1);
94 + spawn(1,PROBLEM_SIZE*2-1)
95 {
96 - int TID;
97 + int TID=$;
98 start[TID] = -1;
99 end[TID] = -1;

100 }
101 - join();
102
103
104 input_p = &input[0];
105 output_p = &scratch[0];
106
107
108 - begin();
109 /* phase 1 */
110 - while (number_of_partitions < PHASE_SWITCH_THRESHOLD)
111 + while (input_p != input || number_of_partitions <

PHASE_SWITCH_THRESHOLD)
112 {
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113 if(number_of_partitions == 0)
114 break;
115 @@ -150,15 +155,18 @@ void main(int argc, char *argv[])
116 {
117 if(n > 0)
118 {
119 - start[++global_count] = start[i];
120 + global_count += 1;
121 + start[global_count] = start[i];
122 end[global_count] = start[i]+n-1;
123 }
124 else
125 {
126 - start[++global_count] = start[i];
127 + global_count += 1;
128 + start[global_count] = start[i];
129 end[global_count] = start[i];
130 }
131 - start[++global_count] = start[i]+n+1;
132 + global_count += 1;
133 + start[global_count] = start[i]+n+1;
134 end[global_count] = end[i];
135 }
136 }
137 @@ -192,19 +200,20 @@ void main(int argc, char *argv[])
138 global_count = last;
139
140 /* phase 2 */
141 - fspawn(number_of_partitions, first);
142 + spawn(first, last-1)
143 {
144 - int TID;
145 + int newTID;
146 + int TID=$;
147 int pivot, pivotval;
148 - int my_end, my_start;
149 + int my_end=0;
150 + int my_start=0;
151 int low, hi, temp;
152
153 - print_fork_spin_start();
154 - while ((my_end = end[TID]) < 0 ||
155 - (my_start = start[TID]) < 0)
156 - refresh();
157 - ;
158 - print_fork_spin_end();
159 + do{
160 + psm(my_end, end[TID]);
161 + psm(my_start, start[TID]);
162 + }
163 + while (my_start < 0 || my_end < 0);
164
165 while(my_end - my_start + 1 > SORT_THRESHOLD)
166 {
167 @@ -241,10 +250,11 @@ void main(int argc, char *argv[])
168 /* continue with low-partition, fork for hi-partition */
169 if(my_end - low + 1 > FORK_THRESHOLD)
170 {
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171 - int next_index = ps(&global_count, 1);
172 + int next_index = 1;
173 + ps(next_index, global_count);
174 start[next_index] = low;
175 end[next_index] = my_end;
176 - xfork();
177 + sspawn(newTID){}
178 }
179
180 //my_end = hi + 1;
181 @@ -259,8 +269,6 @@ void main(int argc, char *argv[])
182 }
183 }
184 }
185 - join();
186 - stop();
187
188 /*
189 for(i=0; i<PROBLEM_SIZE; i++){

Listing A.11: The diff of quick2.h for XMT.
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1 #define SWAP_P(a, b) {int *p=(a); (a)=(b); (b)=p;}
2 #define SWAP(a, b) {int p=(a); (a)=(b); (b)=p;}
3
4 struct stack_t{
5 int lo;
6 int hi;
7 };
8
9 int a_[SIZE];

10 int t_[SIZE];
11
12 struct stack_t stack[128];
13
14 void par_quicksort(int lo, int hi)
15 {
16 int *input;
17 int *output;
18 int pivot;
19 int j;
20 int *last_less_p; // Shared value to index less-than-pivot-elements

in temp array
21 int *first_greater_p;// Shared value to index greater-than-pivot-

elements in temp array
22 int last_less;
23 int first_greater;
24
25 // Return if #elements <= 1 than
26 if (lo >= hi)
27 return;
28
29 input = a_;
30 output = t_;
31
32 // The first phase
33 par_quicksort_start:
34
35 // Trivial sequential sort if #elements == 2
36 if (lo == hi-1)
37 {
38 if (input[lo] > input[hi])
39 {
40 pivot = input[lo];
41 a_[lo] = input[hi];
42 a_[hi] = pivot;
43 }
44 else if(input != a_)
45 {
46 a_[lo]=input[lo];
47 a_[hi]=input[hi];
48 }
49 return;
50 }
51
52 // If the group only consist of a single thread or if the shared space

is to small, than switch to next phase.
53 if(_number_of_threads == 1 || (unsigned)_shared_stack-(unsigned)

_shared_heap < 16)
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54 {
55 // Include the second phase
56 # include "inline_par_quicksort.c"
57 return;
58 }
59
60 // Choose median of three elements as pivot
61 pivot = input[(hi+lo)>>1];
62 last_less = input[lo];
63 first_greater = input[hi];
64 if (pivot < last_less)
65 SWAP(pivot, last_less)
66 if (first_greater < pivot)
67 {
68 pivot = first_greater;
69 if (pivot < last_less)
70 pivot = last_less;
71 }
72
73 // Set shared addresses for prefix sum operation
74 last_less_p = (int*)(_shared_stack - 4);
75 first_greater_p = (int*)(_shared_stack - 8);
76
77 // Set start index in temp array for less-than-elements
78 *last_less_p = lo;
79 // Set start index in temp array for greater-than-elements
80 *first_greater_p = hi;
81
82 // Partitioning in parallel using prefix sum operation
83 for (j=_thread_id+lo; j<=hi; j+=_number_of_threads)
84 {
85 int index;
86 int value = input[j];
87 if (value < pivot)
88 {
89 _aprefix(index, ADD, last_less_p, 1);
90 output[index] = value;
91 }
92 else if (value > pivot)
93 {
94 _aprefix(index, ADD, first_greater_p, -1);
95 output[index] = value;
96 }
97 // else equal to pivot
98 }
99 _synchronize;

100
101 // The last less-than-number
102 last_less = (*last_less_p) - 1;
103 // The first greater-than-number
104 first_greater = (*first_greater_p) + 1;
105
106 // Write pivots to original array
107 // If there only is one pivot element we want to skip the

synchronization.
108 if(first_greater - last_less - 1 > 1)
109 {
110 for (j=_thread_id+last_less+1; j<first_greater; j+=
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_number_of_threads)
111 a_[j] = pivot;
112 _synchronize;
113 }
114 else
115 a_[last_less+1] = pivot;
116
117 // Partitioning is done
118
119 // Both arrays are greater than 1 element (the usual case)
120 if (last_less-lo > 0 && hi-first_greater > 0)
121 {
122 // Divide the group based on the two partitions sizes
123 // Check at compile time if overflow might occur.
124 // If it might, than lower the precision for the group sizes

computation
125 # if (SIZE-1)*(512*NUMBER_OF_PROCESSORS-1) < 0xFFFFFFFF
126 int number_of_threads_for_less = (int)(((unsigned)(last_less-

lo+1)*(unsigned)_number_of_threads)/(unsigned)(last_less-
lo+1+hi-first_greater+1));

127 # else
128 int number_of_threads_for_less = (int)((unsigned)

_number_of_threads*(((unsigned)(last_less-lo+1)*(unsigned
)4000)/(unsigned)(last_less-lo+1+hi-first_greater+1)))
/4000;

129 # endif
130
131 // Correction of the new group size
132 if (!number_of_threads_for_less)
133 number_of_threads_for_less = 1;
134 if (number_of_threads_for_less == _number_of_threads)
135 number_of_threads_for_less -= 1;
136
137 if (_thread_id < number_of_threads_for_less)
138 {
139 // Set shared space for new group
140 _shared_stack = (_shared_heap + _shared_stack) >> 1;
141 _shared_stack &= 0xfffffffc;
142 _shared_stack -= 4;
143
144 // Set group variables
145 _group_id = _shared_stack;
146 _number_of_threads = number_of_threads_for_less;
147 *((int*)_group_id) = number_of_threads_for_less;
148
149 // Set sort data and start sorting
150 hi = last_less;
151 SWAP_P(input,output)
152 goto par_quicksort_start;
153 }
154 else
155 {
156 // Set shared space for new group
157 _shared_heap = (_shared_heap + _shared_stack) >> 1;
158 _shared_heap &= 0xfffffffc;
159
160 // Set group variables
161 _group_id = _shared_stack;
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162 _number_of_threads -= number_of_threads_for_less;
163 _thread_id -= number_of_threads_for_less;
164 *((int*)_group_id) = _number_of_threads;
165
166 // Set sort data and start sorting
167 lo = first_greater;
168 SWAP_P(input,output)
169 goto par_quicksort_start;
170 }
171 }
172 // Only left side is greater than 1 element
173 else if (last_less - lo > 0)
174 {
175 // Store the right side’s element (if exist) in original array
176 if (hi == first_greater)
177 a_[hi] = output[hi];
178
179 // Set sort data and start sorting
180 hi = last_less;
181 SWAP_P(input,output)
182 goto par_quicksort_start;
183 }
184 // Only right side is greater than 1 element
185 else if ((hi - first_greater) > 0)
186 {
187 // Store the left side’s element (if exist) in original array
188 if (lo == last_less)
189 a_[lo] = output[lo];
190
191 // Set sort data and start sorting
192 lo = first_greater;
193 SWAP_P(input,output)
194 goto par_quicksort_start;
195 }
196 // Both left and right side are less than 2 element
197 else
198 {
199 // Store the left and right side’s element (if exist) in original

array
200 if (lo == last_less)
201 a_[lo] = output[lo];
202 if (hi == first_greater)
203 a_[hi] = output[hi];
204 }
205 }
206
207 int main()
208 {
209 // Kernel starts
210 _start_timer;
211
212 // Save group and shared data variables
213 int _old_thread_id = _thread_id;
214 int _old_number_of_threads = _number_of_threads;
215 int _old_group_id = _group_id;
216 int _old_shared_stack = _shared_stack;
217 int _old_shared_heap = _shared_heap;
218 _shared_stack -= 4;
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219
220 par_quicksort(0, SIZE-1);
221
222 // Restore group and shared data variables
223 _thread_id = _old_thread_id;
224 _number_of_threads = _old_number_of_threads;
225 _group_id = _old_group_id;
226 _shared_stack = _old_shared_stack;
227 _shared_heap = _old_shared_heap;
228
229 // Kernel ends
230 _stop_timer;
231 _synchronize;
232
233 _exit;
234 return 0;
235 }

Listing A.12: The QS kernel for REPLICA.
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1 {
2 int top=0;
3 int i;
4 // If the input data is not in the original array it has to copied

back when partitioning
5 if(input != a_)
6 {
7 // Choose median of three elements as pivot
8 pivot = (hi+lo)>>1;
9 if (input[lo] < input[pivot])

10 SWAP(input[pivot], input[lo])
11 if (input[hi] < input[lo])
12 {
13 SWAP(input[lo],input[hi])
14 if (input[lo] < input[pivot])
15 SWAP(input[pivot],input[lo])
16 }
17 pivot = input[lo];
18 last_less = lo-1;
19 first_greater = hi+1;
20
21 // Partitioning can not be done in parallel since the group has

run out of shared space
22 for(j=lo+1; j<=hi; ++j)
23 {
24 int value = input[j];
25 if (value <= pivot)
26 a_[++last_less] = value;
27 else if (value > pivot)
28 a_[--first_greater] = value;
29 }
30 i = last_less+1;
31 a_[i] = pivot;
32
33 // Fork if group size is > 2, otherwise keep sorting sequential
34 if(_number_of_threads > 1)
35 goto fork_group;// Goto the second phase
36 else
37 goto seq_split;// Goto the third phase
38 }
39
40 // Second phase
41 // Sort until done or the group consist of one thread
42 while(lo < hi && _number_of_threads > 1)
43 {
44 // Trivial sequential sort if #elements <= 3
45 if (hi-lo <= 2)
46 {
47 if (a_[lo+1] < a_[lo])
48 SWAP(a_[lo+1],a_[lo])
49 if (a_[hi] < a_[lo+1]) // OBS hi and lo+1 can be the same

element
50 {
51 SWAP(a_[hi],a_[lo+1])
52 if (a_[lo+1] < a_[lo])
53 SWAP(a_[lo+1],a_[lo])
54 }
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55 return;
56 }
57
58 // Choose median of three elements as pivot
59 pivot = a_[hi];
60 if (pivot < a_[lo])
61 SWAP(pivot, a_[lo])
62 if (a_[hi-1] < pivot)
63 {
64 SWAP(a_[hi-1],pivot)
65 if (pivot < a_[lo])
66 SWAP(pivot,a_[lo])
67 }
68 a_[hi]=pivot;
69
70 i = lo;
71 j = hi-1;
72
73 // Sequential partitioning
74 while (i < j)
75 {
76 while (i < hi && a_[i] <= pivot)
77 ++i;
78 while (j > lo && a_[j] >= pivot)
79 --j;
80 if (i < j)
81 SWAP(a_[i],a_[j])
82 }
83 if (a_[i] > pivot)
84 SWAP(a_[i],a_[hi])
85
86 fork_group:
87 // Both arrays are greater than 1 element (the usual case)
88 if(lo < i-1 && i+1 < hi)
89 {
90 // Divide the group based on the two partitions sizes
91 int number_of_threads_for_less = ((i-lo)*_number_of_threads)/(

hi-lo);
92
93 // Correction of the new group size
94 if (!number_of_threads_for_less)
95 number_of_threads_for_less = 1;
96 if (number_of_threads_for_less == _number_of_threads)
97 number_of_threads_for_less = _number_of_threads-1;
98
99 // The group split

100 if (_thread_id < number_of_threads_for_less)
101 {
102 // Set new input data and group size
103 hi=i-1;
104 _number_of_threads = number_of_threads_for_less;
105 }
106 else
107 {
108 // Set new input data, thread id and group size
109 lo=i+1;
110 _number_of_threads -= number_of_threads_for_less;
111 _thread_id -= number_of_threads_for_less;
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112 }
113 }
114 else
115 {
116 if (lo < i-1)
117 {
118 hi=i-1;
119 }
120 else if (i+1 < hi)
121 {
122 lo=i+1;
123 }
124 else
125 return;
126 }
127 }
128
129 // If not done, start sorting sequential (without forking)
130 if(lo < hi)
131 {
132 // Include the third phase
133 # include "inline_seq_quicksort.c"
134 }
135 return;
136 }

Listing A.13: inline_par_quicksort.c included in Listing A.12.
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1 // The third phase
2 {
3 // Push array into an explicit stack
4 stack[top].lo=lo;
5 stack[top++].hi=hi;
6
7 // Run until the stack is empty
8 while(0 < top)
9 {

10 // Pop array from stack
11 hi=stack[--top].hi;
12 lo=stack[top].lo;
13 seq_quicksort_start:
14
15 // Trivial sequential sort if #elements <= 3
16 if (hi-lo <= 2)
17 {
18 if (a_[lo+1] < a_[lo])
19 SWAP(a_[lo+1],a_[lo])
20 if (a_[hi] < a_[lo+1]) // OBS hi and lo+1 can be the same

element
21 {
22 SWAP(a_[hi],a_[lo+1])
23 if (a_[lo+1] < a_[lo])
24 SWAP(a_[lo+1],a_[lo])
25 }
26 continue;
27 }
28
29 // Choose median of three elements as pivot
30 pivot = a_[hi];
31 if (pivot < a_[lo])
32 SWAP(pivot, a_[lo])
33 if (a_[hi-1] < pivot)
34 {
35 SWAP(a_[hi-1],pivot)
36 if (pivot < a_[lo])
37 SWAP(pivot,a_[lo])
38 }
39 a_[hi]=pivot;
40
41 i = lo;
42 j = hi-1;
43
44 // Sequential partitioning
45 while (i < j)
46 {
47 while (i < hi && a_[i] <= pivot)
48 ++i;
49 while (j > lo && a_[j] >= pivot)
50 --j;
51 if (i < j)
52 SWAP(a_[i],a_[j])
53 }
54 if (a_[i] > pivot)
55 SWAP(a_[i],a_[hi])
56
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57 seq_split:
58 // Put the smallest array on the stack, and continue with the

largest
59 if(i-1-lo < hi-i+1)
60 {
61 if (lo < i-1)
62 {
63 stack[top].lo=lo;
64 stack[top++].hi=i-1;
65 }
66 if (i+1 < hi)
67 {
68 lo=i+1;
69 goto seq_quicksort_start;
70 }
71 }
72 else
73 {
74 if (i+1 < hi)
75 {
76 stack[top].lo=i+1;
77 stack[top++].hi=hi;
78 }
79 if (lo < i-1)
80 {
81 hi=i-1;
82 goto seq_quicksort_start;
83 }
84 }
85 }
86 }

Listing A.14: inline_seq_quicksort.c included in Listing A.12.
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Elements XMT (cc) SB-PRAM (cc)
262144 38571 3176448
524288 71675 6322176

1048576 134729 12613632
2097152 561833 25196544
4194304 1383573 50362368

Table B.7: XMT and SB-PRAM’s results for PS.

Rows XMT (cc) SB-PRAM (cc)
128 146992 11299840
256 1109574 87060480
384 3625069 307842048
512 8720495 683700224

1024 97328445 5419069440

Table B.8: XMT and SB-PRAM’s results for DeMM.

Matrix XMT (cc) SB-PRAM (cc)
Internet 88221 7005184
Lugn2 123625 8482816
ASIC_680ks 699705 47050752
t2em 1049901 74182656

Table B.9: XMT and SB-PRAM’s results for SpMV.

Graph XMT (cc) SB-PRAM (cc)
graph4096 18216 4654080

graph65536 85769 17054720
graph1MW_6 4653889 154180608

Table B.10: XMT and SB-PRAM’s results for BFS.

Elements XMT (cc) SB-PRAM (cc)
10000 374496

100000 2900783
1000000 13958950

Table B.11: XMT and SB-PRAM’s results for QS.
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Elements Xeon (sec) Tesla transfer time (sec) Tesla kernel time (sec)
262144 7.54E-05 8.44E-04 3.15E-04
524288 1.56E-04 1.39E-03 3.63E-04

1048576 3.28E-04 2.46E-03 4.55E-04
2097152 6.78E-04 4.61E-03 6.45E-04
4194304 2.26E-03 8.85E-03 1.04E-03

Table B.12: XMT and SB-PRAM’s results for PS.

Rows Xeon (sec) Tesla transfer time (sec) Tesla kernel time (sec)
128 5.52E-04 3.31E-01 5.24E-05
256 3.32E-03 2.83E-01 2.12E-04
384 9.98E-03 8.08E-01 6.63E-04
512 2.76E-02 1.72E+00 1.50E-03

1024 2.48E-01 1.05E+01 1.20E-02

Table B.13: Xeon and Tesla’s results for DeMM.

Rows Xeon (sec) Tesla transfer time (sec) Tesla kernel time (sec)
128 5.27E-05 3.31E-01 4.37E-05
256 3.23E-04 2.83E-01 1.56E-04
384 9.04E-04 8.08E-01 2.54E-04
512 2.23E-03 1.72E+00 6.37E-04

1024 1.73E-02 1.05E+01 3.32E-03

Table B.14: Xeon and Tesla’s results for DeMM-BLAS.

Matrix Xeon (sec) Tesla transfer time (sec) Tesla kernel time (sec)
Internet 2.33E-04 8.74E-04 1.32E-04
Lugn2 3.19E-04 1.61E-03 1.30E-04
ASIC_680ks 1.88E-03 6.81E-03 7.87E-04
t2em 3.26E-03 1.14E-02 8.78E-04

Table B.15: Xeon and Tesla’s results for SpMV.

Graph Xeon (sec) Tesla transfer time (sec) Tesla kernel time (sec)
graph4096 1.47E-04 1.15E-04 2.47E-04

graph65536 1.96E-03 1.10E-03 9.46E-04
graph1MW_6 3.59E-02 1.13E-02 1.49E-02

Table B.16: Xeon and Tesla’s results for BFS.
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Elements Xeon (sec) Tesla transfer time (sec) Tesla kernel time (sec)
10000 1.64E-04 4.67E-05 6.40E-04

100000 1.43E-03 3.44E-04 1.72E-03
1000000 1.48E-02 9.34E-04 1.41E-02

Table B.17: Xeon and Tesla’s results for QS.

Elements REPLICA-4 (MHz) REPLICA-16 (MHz) REPLICA-64 (MHz)
262144 4374.2 1107.5 345.7
524288 4228.7 1065.7 324.9

1048576 4018.5 1010.4 306.0
2097152 3882.1 974.9 294.0
4194304 2333.2 585.6 176.2

Table B.18: Needed frequency in MHz against Xeon for PS kernel.

Elements REPLICA-4 (MHz) REPLICA-16 (MHz) REPLICA-64 (MHz)
262144 1046.2 264.9 82.7
524288 1814.8 457.4 139.4

1048576 2893.9 727.6 220.3
2097152 4079.9 1024.6 309.0
4194304 5044.9 1266.2 381.0

Table B.19: Needed frequency in MHz against Tesla for PS kernel excluding
transfer time.

Elements REPLICA-4 (MHz) REPLICA-16 (MHz) REPLICA-64
262144 284.5 72.0 22.5
524288 376.8 95.0 28.9

1048576 450.9 113.4 34.3
2097152 501.2 125.9 38.0
4194304 531.7 133.5 40.2

Table B.20: Needed frequency in MHz against Tesla for PS kernel including
transfer time.
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