
Institutionen för datavetenskap
Department of Computer and Information Science

Master’s Thesis

Automated Measurement and Change Detection of an
Application’s Network Activity for Quality Assistance

by

Robert Nissa Holmgren

LIU-IDA/LITH-EX-A--14/033--SE

 2014-06-16

Linköpings universitet

SE-581 83 Linköping, Sweden
Linköpings universitet

581 83 Linköping

Linköping University
Department of Computer and Information Science Department of Computer and Information Science

Master’s Thesis

Automated Measurement and Change
Detection of an Application’s Network Activity

for Quality Assistance
by

Robert Nissa Holmgren

LIU-IDA/LITH-EX-A--14/033--SE

2014-06-16

Supervisors: Fredrik Stridsman
 Spotify AB

 Professor Nahid Shahmehri
 Department of Computer and Information Science
 Linköping University

Examiner: Associate Professor Niklas Carlsson
 Department of Computer and Information Science
 Linköping University

Avdelning, Institution
Division, Department

Database and Information Techniques (ADIT)
Department of Computer and Information Science
SE-581 83 Linköping

Datum
Date

2014-06-16

Språk
Language

� Svenska/Swedish

� Engelska/English

�

�

Rapporttyp
Report category

� Licentiatavhandling

� Examensarbete

� C-uppsats

� D-uppsats

� Övrig rapport

�

�

URL för elektronisk version

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-107707

ISBN

—

ISRN

LIU-IDA/LITH-EX-A–14/033—SE

Serietitel och serienummer
Title of series, numbering

ISSN

—

Titel
Title

Automatisk mätning och förändringsdetektering av en applikations nätverksaktivitet för
kvalitetsstöd

Automated Measurement and Change Detection of an Application’s Network Activity for
Quality Assistance

Författare
Author

Robert Nissa Holmgren

Sammanfattning
Abstract

Network usage is an important quality metric for mobile apps. Slow networks, low monthly
traffic quotas and high roaming fees restrict mobile users’ amount of usable Internet traffic.
Companies wanting their apps to stay competitive must be aware of their network usage and
changes to it.

Short feedback loops for the impact of code changes are key in agile software development.
To notify stakeholders of changes when they happen without being prohibitively expensive
in terms of manpower the change detection must be fully automated. To further decrease the
manpower overhead cost of implementing network usage change detection the system need
to have low configuration requirements, and keep the false positive rate low while managing
to detect larger changes.

This thesis proposes an automated change detection method for network activity to quickly
notify stakeholders with relevant information to begin a root cause analysis after a change
in the network activity is introduced. With measurements of the Spotify’s iOS app we show
that the tool achieves a low rate of false positives while detecting relevant changes in the
network activity even for apps with dynamic network usage patterns as Spotify.

Nyckelord
Keywords computer networking, software quality assurance, novelty detection, clustering

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-107707

Abstract

Network usage is an important quality metric for mobile apps. Slow networks,
low monthly traffic quotas and high roaming fees restrict mobile users’ amount
of usable Internet traffic. Companies wanting their apps to stay competitive must
be aware of their network usage and changes to it.

Short feedback loops for the impact of code changes are key in agile software de-
velopment. To notify stakeholders of changes when they happen without being
prohibitively expensive in terms of manpower the change detection must be fully
automated. To further decrease the manpower overhead cost of implementing
network usage change detection the system need to have low configuration re-
quirements, and keep the false positive rate low while managing to detect larger
changes.

This thesis proposes an automated change detection method for network activ-
ity to quickly notify stakeholders with relevant information to begin a root cause
analysis after a change in the network activity is introduced. With measurements
of the Spotify’s iOS app we show that the tool achieves a low rate of false posi-
tives while detecting relevant changes in the network activity even for apps with
dynamic network usage patterns as Spotify.

iii

Sammanfattning

Nätverksaktivitet är ett viktigt kvalitetsmått för mobilappar. Mobilanvändare be-
gränsas ofta av långsamma nätverk, låg månatlig trafikkvot och höga roamingav-
gifter. Företag som vill ha konkurrenskraftiga appar behöver vara medveten om
deras nätverksaktivitet och förändringar av den.

Snabb återkoppling för effekten av kodändringar är vitalt för agil programut-
veckling. För att underrätta intressenter om ändringar när de händer utan att
vara avskräckande dyrt med avseende på arbetskraft måste ändringsdetekter-
ingen vara fullständigt automatiserad. För att ytterligare minska arbetskostna-
derna för ändringsdetektering av nätverksaktivitet måste detekteringssystemet
vara snabbt att konfigurera, hålla en låg grad av felaktig detektering samtidigt
som den lyckas identifiera stora ändringar.

Den här uppsatsen föreslår ett automatiserat förändringsdetekteringsverktyg för
nätverksaktivitet för att snabbt meddela stakeholders med relevant information
för påbörjan av grundorsaksanalys när en ändring som påverkar nätverksak-
tiviteten introduceras. Med hjälp av mätningar på Spotifys iOS-app visar vi att
verktyget når en låg grad av felaktiga detekteringar medan den identifierar än-
dringar i nätverksaktiviteten även för appar med så dynamisk nätverksanvänd-
ning som Spotify.

v

Acknowledgments

This thesis was carried out at Spotify in Stockholm and examined at the Depart-
ment of Computer and Information Science, Linköping University.

I would like to thank my supervisor at Spotify, Fredrik Stridsman, for his support
and much appreciated feedback throughout my work. I am also grateful to my
examiner, Niklas Carlsson, for going above and beyond on his mission with great
suggestions and guidance.

The input and support from my supervisor Nahid Shahmehri and my colleagues
at Spotify Erik Junberger and Nils Loodin have been greatly appreciated.

Thanks also to my opponent, Rickard Englund, for his constructive comments.

Last but not least, my fellow thesis student’s and all the extraordinary colleagues
at Spotify that have inspired me and made my stay at Spotify an interesting and
fun experience. Thank you.

Stockholm, June 2014
Robert Nissa Holmgren

vii

Contents

List of Figures xiii

List of Tables xv

List of Listings xvii

Notation xix

1 Introduction 1
1.1 Mobile App’s Network Activity as a Quality Measure 1

1.1.1 Challenges . 2
1.1.2 Types of Network Activity Change 3

1.2 Spotify . 3
1.2.1 Automated Testing at Spotify 4
1.2.2 Spotify Apps’ Network Usage 4

1.3 Problem Statement . 5
1.4 Contributions . 5
1.5 Thesis Structure . 6

I Theory

2 Computer Networks 9
2.1 Internet Protocols . 9

2.1.1 IP and TCP/UDP . 9
2.1.2 Lower Level Protocols . 12
2.1.3 Application Protocols . 12
2.1.4 Encrypted Protocols . 12
2.1.5 Protocol Detection . 12

2.2 Spotify-Specific Protocols . 13
2.2.1 Hermes . 14
2.2.2 Peer-to-Peer . 14

2.3 Content Delivery Networks . 14

ix

x Contents

2.4 Network Intrusion Detection Systems 15

3 Machine Learning 17
3.1 Probability Theory . 17
3.2 Time Series . 18
3.3 Anomaly Detection . 18

3.3.1 Exponentially Weighted Moving Average 19
3.4 k-Means Clustering . 20

3.4.1 Deciding Number of Clusters 21
3.4.2 Feature Extraction . 22

3.5 Novelty Detection . 24
3.6 Evaluation Metrics . 25
3.7 Tools . 26
3.8 Related Work . 27

3.8.1 Computer Networking Measurements 27
3.8.2 Anomaly and Novelty Detection 28

II Implementation and Evaluation

4 Measurement Methodology 33
4.1 Measurements . 33

4.1.1 General Techniques . 34
4.1.2 Mobile Apps . 34
4.1.3 Tapping into Encrypted Data Streams 36

4.2 Processing Captured Data . 38
4.2.1 Extracting Information Using Bro 38
4.2.2 Transforming and Extending the Data 38
4.2.3 DNS Information . 38
4.2.4 Other Network End-Point Information 39

4.3 Data Set Collection . 40
4.3.1 Environment . 40
4.3.2 User Interaction – Test Cases 40
4.3.3 Network Traffic . 40
4.3.4 App and Test Automation Instrumentation Data Sources . 41

4.4 Data Set I - Artificial Defects . 42
4.4.1 Introduced Defects . 42
4.4.2 Normal Behavior . 43
4.4.3 Test Cases . 43
4.4.4 Summary . 44

4.5 Data Set II - Real World Scenario 45
4.5.1 Test Cases . 45
4.5.2 Summary . 46

5 Detecting and Identifying Changes 47
5.1 Anomaly Detection Using EWMA Charts 47

5.1.1 Data Set Transformation . 48

Contents xi

5.1.2 Detecting Changes . 48
5.2 Novelty Detection Using k-Means Clustering 51

5.2.1 Feature Vector . 51
5.2.2 Clustering . 52
5.2.3 Novelty Detection . 53

6 Evaluation 55
6.1 Anomaly Detection Using EWMA Charts 55

6.1.1 First Method ROC Curves 56
6.1.2 Better Conditions for Classifying Defects as Anomalous . . 56
6.1.3 Detected Anomalies . 57

6.2 Novelty Detection Using k-Means Clustering – Data Set I 63
6.2.1 ROC Curves . 63
6.2.2 Detected Novelties . 64

6.3 Novelty Detection Using k-Means Clustering – Data Set II 68
6.3.1 Detected Novelties . 68

7 Discussion and Conclusions 71
7.1 Discussion . 71

7.1.1 Related Work . 72
7.2 Future Work . 73

7.2.1 Updating the Model of Normal 73
7.2.2 Keeping the Model of Normal Relevant 73
7.2.3 Improve Identification of Service End-Points 73
7.2.4 Temporal Features . 74
7.2.5 Network Hardware Energy Usage 74

7.3 Conclusions . 74

A Data Set Features 79

B Data Set Statistics 83
B.1 Data Set I - Artificial Defects . 83
B.2 Data Set II - Real World Scenario 91

Bibliography 97

List of Figures

2.1 UDP encapsulation . 10

3.1 Example EWMA chart. 20
3.2 k-means clustering example . 21
3.3 Clustering silhouette score . 23
3.4 Label binarization of categorical feature 24
3.5 ROC curve example . 26

5.1 EWMA chart of T3, A2, network footprint. 49
5.2 EWMA chart of T1, A4, network footprint. 50

6.1 ROCs of EWMA, network footprint. 56
6.2 ROCs of EWMA, network footprint, better conditions for positive

detection. 57
6.3 ROCs of EWMA, number of packets, better conditions for positive

detection . 58
6.4 ROCs of EWMA, number of distinct network end-points, better

conditions for positive detection . 58
6.5 ROCs of EWMA, number of distinct AS/service pairs, better con-

ditions for positive detection. 59
6.6 EWMA chart of T2, A4, ASN-service pairs 61
6.7 EWMA chart of T2, A4, ASN-service pairs, ad-hoc verification data

set . 61
6.8 ROC curve of k-means clustering novelty detection of stream fam-

ilies. 63
6.9 Identified novelties in data set of defect vs normal. 64

xiii

List of Tables

1.1 Thesis chapter structure. 6

3.1 Confusion matrix of an anomaly/novelty detection system. 25

4.1 Number of collected test case runs for each test case and app ver-
sion for data set I. 44

4.2 Number of collected test case runs for each test case and app ver-
sion for data set II. 46

5.1 Feature vector for k-means novelty detection. 52

6.1 Detection performance numbers for EWMA on the A1 defect. . . . 59
6.2 Detection performance numbers for EWMA on the A2 defect. . . . 60
6.3 Detection performance numbers for EWMA on the A3 defect. . . . 60
6.4 Detection performance numbers for EWMA on the A4 defect. . . . 62
6.5 Detection performance numbers for k-means novelty detection . . 67

A.1 Features extracted with Bro from each network packet of the raw
network data dump. 80

A.2 Features derived from features in Table A.1. 81
A.3 Features extracted from the test automation tool. 81
A.4 Features extracted from the instrumented client. 82

B.1 Data set statistics for test case T1 83
B.2 Data set statistics for test case T2 86
B.3 Data set statistics for test case T3 88
B.4 Data set statistics for test case T4 91
B.5 Data set statistics for test case T5 92
B.6 Data set statistics for test case T6 94

xv

List of Listings

2.1 Bro script for dynamic detection of the Spotify AP protocol. 13
4.1 Starting a Remote Virtual Interface on a Connected iOS Device

(from rvictl documentation). 35
4.2 Algorithm to calculate network hardware active state with simple

model of the network hardware. 39
4.3 Command to start tcpdump to capture the network traffic 41
4.4 Login and Play Song (T1) . 43
4.5 Login and Play Song, Exit The App and Redo (T2) 43
4.6 Login and Create Playlist From Album, Exit The App and Redo (T3) 44
4.7 Spotify iOS 1.1.0 Release Notes . 45
4.8 Artist page biography and related artists (T4) 45
4.9 Display the profile page (T5) . 45
4.10 Add an album to a playlist and play the first track (T6) 46

xvii

Notation

Abbreviations

Abbreviation Meaning

AP Access Point – In Spotify’s case a gateway for Spotify
clients to talk to back-end services.

API Application Programming Interface – Specifies how
one software product can interact with another soft-
ware product.

AS Autonomous System – An autonomous network with
internal routing connected to the Internet.

ASN Autonomous System Number – Identifying number as-
signed to an AS.

CD Continuous Delivery – Software development practice
which requires that the product developed always is in
a releasable state by using continuous integration and
automated testing. May also use continuous deploy-
ment to automatically release a new version for each
change that passes testing [8].

CDN Content Delivery Network – Distributed computer sys-
tem used to quickly deliver content to users.

COTS Commercial off-the-shelf – Refers to products avail-
able for purchase, and therefore do not need to be de-
veloped.

DNS Domain Name System – Distributed lookup system for
key-value mapping, often used to find IP-addresses for
a hostname.

EWMA Exponentially Weighted Moving Average
FPR False Positive Rate – Statistical performance measure

of a binary classification method. Number of correctly
identified negative samples over total number of nega-
tive samples.

xix

xx Notation

Abbreviation Meaning

GUI Graphical User Interface
HTTP HyperText Transfer Protocol – Application level net-

working protocol used to transfer resources on the
World Wide Web.

HTTPS HyperText Transfer Protocol Secure – HTTP inside a
TLS or SSL tunnel.

ICMP Internet Control Message Protocol – The primary pro-
tocol to send control messages, such as error notifica-
tions and request for information, over the Internet.

IEEE Institute of Electrical and Electronics Engineers – A
professional association, which among other things
create IT standards.

IP Internet Protocol – Network protocol used on the In-
ternet to facilitate packet routing, etc.

ISP Internet Service Provider – A company that provides
the service of Internet connections to companies and
individuals.

KDD Knowledge Discovery in Databases – The process of
selecting, preprocess, transform, data mine and inter-
prete databases into higher level knowledge.

MitM Man-in-the-Middle attack – Eavesdropping by insert-
ing oneself between the communicating parties and
relaying the messages.

NIDS Network Intrusion Detection System – A system de-
signed to identify intrusion attempts to computer sys-
tems by observing the network traffic.

NIPS Network Intrusion Prevention System – A Network In-
trusion Detection System capable of taking action to
stop a detected attack.

P2P Peer-to-Peer – Decentralized and distributed commu-
nication network where hosts both request and pro-
vide resources (e.g. files) from and to each other.

PCAP Packet CAPture – Library and file format to capture
and store network traffic.

PCAPNG PCAP Next Generation – New file format to store cap-
tured network traffic. Tools compatible with PCAP
files does not necessarily handle PCAPNG files.

PSK Pre-Shared Key – In cryptology: A secret shared be-
tween parties prior to encryption/decryption.

PTR Pointer – DNS record mapping an IP-address to a host
name.

SDK Software Development Kit – Hardware and software
tools to aid software development for a platform/sys-
tem. May include compilers, libraries, and other tools.

Notation xxi

Abbreviation Meaning

SPAN Switch Port ANalyzer – Cisco’s system for mirroring a
switch port.

SPAP Spotify AP protocol – Notation used in this thesis to
denote Spotify’s proprietary AP protocol.

SPDY (pronounced speedy) – Application level network pro-
tocol the World Wide Web. Developed as an alterna-
tive to HTTP in an effort to reduce latency of the web.
Base for the upcoming HTTP 2.0 standard.

SSH Secure Shell – An encrypted network protocol for data
communication. Often used for remote login and com-
mand line access.

SSL Secure Sockets Layer – An encrypted network protocol
for encapsulating other protocols. Superseded by TLS,
but is still in use.

SUT System Under Test – The system being subjected to the
test(s) and evaluated.

TCP Transmission Control Protocol – Transport layer pro-
tocol used on the Internet, which provides reliable, or-
dered and error-checked streams of data.

TLS Transport Layer Security – An encrypted network pro-
tocol for encapsulating other protocols. Supersedes
SSL.

TPR True Positive Rate – Statistical performance measure
of a binary classification method. Number of correctly
identified positive samples over total number of posi-
tive samples.

UDP User Datagram Protocol – Transport layer protocol
used on the Internet, which provide low overhead,
best effort delivery of messages.

URL Uniform Resource Locator – A string used to locate a
resource by specifying the protocol, a DNS or network
address, port and path.

VPN Virtual Private Network – An encrypted tunnel for
sending private network traffic over a public network.

WiFi Trademark name for WLAN products based on the
IEEE 802.11 standards.

WiP Work in Progress
WLAN Wireless Local Area Network

XP Extreme Programming – An agile software develop-
ment methodology.

xxii Notation

Terminology

Term Definition

Defect An introduced change leading to unwanted impact on
network activity or network footprint.

Network
activity

How much the network hardware is kept alive by net-
work traffic.

Network
end-point

A unique combination of network and transport layer
identifiers, such as IP address and TCP port.

Network
footprint

Total number of bytes sent and received for a specific
test session.

Service
end-point

A service running on any number of networks, phys-
ical or virtual machines, IP-address, port numbers
and protocols, which is providing clients access to the
same functionality and data. Examples: (1) A clus-
ter of web servers serving the same web pages over
HTTP (TCP 80), HTTPS (TCP 443) and SPDY from a
number of IP addresses, connected to different service
providers for redundancy. (2) Spotify’s access points,
running on a number of machines in various locations.
Serving clients with access to Spotify’s back-end ser-
vices over the TCP ports 4070, 443 and 80.

Stream The same definition as Bro uses for connection: “For
UDP and ICMP, ‘connections’ are to be interpreted us-
ing flow semantics (sequence of packets from a source
host/port to a destination host/port). Further, ICMP
‘ports’ are to be interpreted as the source port mean-
ing the ICMP message type and the destination port
being the ICMP message code.”1

Test case A list of user interactions with the SUT.

Test case run A run of a test case, which produces log artifacts of the
network traffic, test driving tool and the client.

1Bro script documentation, official site, http://www.bro.org/sphinx/scripts/base/
protocols/conn/main.html, May 2014.

http://www.bro.org/sphinx/scripts/base/protocols/conn/main.html
http://www.bro.org/sphinx/scripts/base/protocols/conn/main.html

1
Introduction

Smartphones are becoming more and more common. With higher resolution dis-
plays, more media and apps trying to be more engaging the data usage per device
and month is increasing quickly [5]. While mobile service providers are address-
ing the insatiable thirst for more and faster data access with new technologies and
more cell towers, the air is a shared and highly regulated medium and therefore
expensive to grow capacity in. Having realized that data is becoming the majority
load on their networks, the service providers have changed pricing strategies to
make SMS and voice calls cheap or free and started charging a premium for data1

as well as limiting the maximum data packet sizes and moving from unlimited
packets to tiered data [5].

1.1 Mobile App’s Network Activity as a Quality
Measure

As both mobile service providers and users want to minimize network activity
there is a clear incentive for developers to minimize wasted traffic and ensure
that their app’s network usage is essential for the user experience. This can be
done in various ways, but pragmatic developers tend to follow the old words of
wisdom “to measure is to know”2 and find out when, what, why, and with what
their app is communicating.

Explicitly measuring, visualizing and automatically regression test the network
activity gives several advantages to multiple stakeholders:

1Article “Telia: Billigare samtal ger dyrare data”, published July 2012, http://www.mobil.se/
operat-rer/telia-billigare-samtal-ger-dyrare-data (In Swedish), February 2014

2Common paraphrase of Lord Kelvin. Full quote in Chapter 4.

1

http://www.mobil.se/operat-rer/telia-billigare-samtal-ger-dyrare-data
http://www.mobil.se/operat-rer/telia-billigare-samtal-ger-dyrare-data

2 1 Introduction

• Developers can use this information to implement network-active features
with better confidence, knowing the behavior under the tested conditions.

• Testers get tools to test if complex multi-component systems such as caching,
network switching strategies and offline mode are working as intended.

• Product owners know when, how much and why the network traffic con-
sumption of the application changes.

• Researchers and curious users can get some insight into the communica-
tion patterns of apps and may compare the network footprint of different
versions of one app or compare different apps under various configurations
and conditions.

• External communicators have reliable and verifiable data on the network
footprint of the app, which is highly useful when, e.g., having your app
bundled with mobile phone plans and one of the terms is to exclude the
app’s network consumption from the end-users bill.

Effectively measuring, visualizing and automatically test the network activity is
particularly important for larger projects with many developers, stakeholders,
and partners. While the ins and outs of a small app project sometimes easily can
be handled by a single developer, larger projects often spans developers located
across multiple offices, working autonomously on different sub-components. As
new components are added and removed, employees or even entire development
teams come and go, such large app projects need good tools to maintain knowl-
edge and understanding of the system performance under different conditions.

Manual software testing is generally a tedious and labor-intensive process and
therefore costly to use for repeated regression testing. Automated testing can
shorten the feedback loop to developers, reduce testing cost and enable exercising
the app with a larger test suite more often [10]. Agile development practices such
as continuous delivery (CD) and extreme programming (XP) require automated
testing as a part of the delivery pipeline – from unit tests to acceptance tests
[8, 10]. Network activity regression testing can be considered performance and
acceptance tests.

1.1.1 Challenges

Automatically comparing generated network traffic for apps with complex net-
work behavior have some inherit difficulties. Even the traffic for consecutive runs
of the same app build under the same conditions is expected to vary in various
characteristics, including:

• server end-node, due to load balancing;

• destination port numbers, due to load balancing or dynamic fallback strate-
gies for firewall blocks;

• application layer protocol, due to routing by dynamic algorithms such as
A/B testing strategies for providing large quick streaming files; and

1.2 Spotify 3

• size and number of packets, due to resent traffic caused by bad networking
conditions.

There are more characteristics that are expected to vary and more reasons to why
than stated above as the Internet and the modern communication systems run-
ning over it are highly dynamic.

Comparison can be done by manually classifying traffic and writing explicit rules
for what is considered normal. These rules would have to be updated, bug fixed
and maintained as the app’s expected traffic patterns changes. Perhaps a better
strategy would be to construct a self-learning system, which builds a model of
expected traffic by observing test-runs of a version of the app that is considered
“known good”. This thesis will focus on the latter.

1.1.2 Types of Network Activity Change

There are a lot of interesting characteristics in the network traffic of mobile apps,
which stakeholders would like to be able to regression test. To delimit this thesis
we have focused on these characteristics:

• Network footprint: Total number of bytes uploaded and downloaded. Mo-
bile network traffic is expensive, a shared resource and unnecessary traffic
may cause latency or sluggishness in the app.

• End-points: Which service end-points (see definition in Table 2) the app
talks to. In many projects new code may come from a number of sources
and is not always thoroughly inspected before it is shipped. Malicious or
careless developers may introduce features or bugs making the app upload
or download unwanted data. This new traffic may be to previously unseen
service end-points; since it is possible the developer does not control the
original service end-points.

• Network hardware energy usage: Network hardware uses more energy
when kept in an active state by network traffic. Timing network usage well
may reduce an app’s negative battery impact.

• Latency: Round trip time for network requests.

Latency is not directly considered in this thesis as the author think there are bet-
ter ways of monitor network and service latency of the involved back-end services
and (perceived) app latency than network traffic change analysis of app versions.

1.2 Spotify

Spotify is a music streaming service, which was founded in Sweden 2006. The
Spotify desktop application and streaming service was launched for public access
October 2008. The company has grown from a handful of employees at launch
to currently over 1,000 in offices around the world. A large part of the work
force are involved in developing the Spotify software and are working out of

4 1 Introduction

four cities in Sweden and the USA. Spotify is providing over 10 million paying
subscribers and 40 million active users in 56 countries3 with instant access to
over 20 million music tracks4. Spotify builds and maintain clients and libraries
that run on Windows, OS X, Linux, iOS, Android, Windows Phone, regular web
browsers, and on many other platforms, such as receivers and smart TVs. Some
of the clients are built by, or in collaboration with, partners.

Spotify strives to work in a highly agile way with small, autonomous and cross-
functional teams called squads, which are solely responsible for parts of the
Spotify product or service. This lets the squads become experts in their area,
and develop and test solutions quickly. The teams are free to choose their own
flavor of Agile or to create one themselves, but most use some modification of
Scrum or Kanban sprinkled with values and ideas from Extreme Programming
(XP), Lean and Continuous Delivery.

1.2.1 Automated Testing at Spotify

Spotify have a test automation tool used to automate integration and system tests
on all the clients. The test automation tool uses GraphWalker5 to control the
steps of the test that enables deterministic or random walks through a graph
where the nodes are verifiable states of the system under test (SUT) and edges
are actions [15]. The test automation tool then has some means of interacting
with the SUT as a user would: reading text, inputting text, and clicking things.
For the Spotify iOS project this is done using a tool called NuRemoting6, which
opens a network server listening for commands and executing them in the app.
NuRemoting also send the client’s console log to its connected client.

Automatic tests are run continuously and reported to a central system, which
provides feedback to the teams through dashboards with results and graphs.

1.2.2 Spotify Apps’ Network Usage

Spotify’s client apps have always used a multiplexed and encrypted proprietary
protocol connected to one of their access points (APs) in the back-end for all
communication with the back-end systems. Nowadays this is supplemented with
various side-channels to hypertext transfer protocol (HTTP)-based content deliv-
ery networks (CDNs) and third-party application programming interfaces (APIs).
The desktop version of the apps also establish a peer-to-peer (P2P) network with
other running instances of the Spotify desktop client for fetching music data from
nearby computers, which also decreases the load and bandwidth costs of Spotify’s
servers [14, 9]. Spotify’s mobile clients do not participate in this P2P network [13],
so P2P will not be a primary concern in this thesis.

3Spotify Press, “Spotify hits 10 million global subscribers”, http://press.spotify.com/us/
2014/05/21/spotify-hits-10-million-global-subscribers/, May 2014

4Spotify Fast Facts December 2013, https://spotify.box.com/shared/static/
8eteff2q4tjzpaagi49m.pdf, February 2014

5GraphWalker (official website), http://graphwalker.org, February 2014
6NuRemoting (official website), https://github.com/nevyn/NuRemoting, February 2014

http://press.spotify.com/us/2014/05/21/spotify-hits-10-million-global-subscribers/
http://press.spotify.com/us/2014/05/21/spotify-hits-10-million-global-subscribers/
https://spotify.box.com/shared/static/8eteff2q4tjzpaagi49m.pdf
https://spotify.box.com/shared/static/8eteff2q4tjzpaagi49m.pdf
http://graphwalker.org
https://github.com/nevyn/NuRemoting

1.3 Problem Statement 5

Today the total amounts of uploaded and downloaded data as well as the number
of requests are logged for calls routed through the AP. There are ways of having
the HTTP requests of the remaining network communication logged as well, but
there are no measurements on whether this is consistently used by all compo-
nents and therefore not enough confidence in the data. Furthermore the logged
network activity is submitted only periodically, which means chunks of statistics
may be lost because of network or device stability issues.

1.3 Problem Statement

This thesis considers the problem of making the network traffic patterns of an
application available to the various stakeholders in its development to help them
realize the impact of their changes on network traffic. The main problem is how
to compare the collected network traffic produced by test cases to detect changes
without producing too many false positives, which would defeat the tool’s pur-
pose as the it would soon be ignored for “crying wolf”. To construct and evaluate
the performance of the anomaly detection system the thesis will also define a set
of anomalies that the system is expected to detect.

The primary research questions considered in this thesis are the following:

• What machine learning algorithm is most suitable for comparing network
traffic sessions for the purpose of identifying changes in the network foot-
print and service end-points of the app?

• What are the best features to use and how should they be transformed to
suit the selected machine learning algorithm when constructing a network
traffic model that allows for efficient detection of changes in the network
footprint and service end-points?

1.4 Contributions

The contributions of this thesis are:

• A method to compare captured and classified network activity sessions and
detect changes to facilitate automated regression testing and alerting stake-
holders of anomalies.

To deliver these contributions the following tools have been developed:

• A tool for setting up an environment to capture the network traffic of a
smartphone device, integrated into an existing test automation tool.

• A tool to classify and reduce the captured network traffic into statistics such
as bytes/second per protocol and end-point.

• A tool to determine what network streams have changed characteristics us-
ing machine learning to build a model of expected traffic, used to highlight
the changes and notify the interested parties.

6 1 Introduction

Table 1.1: Thesis chapter structure.

Chapter Content

1 Introduces the thesis (this chapter).

2 Gives background on computer networking.

3 Gives background on machine learning and anomaly/novelty de-
tection.

4 Describes the proposed techniques to capture an app’s network
activity and integrating with a test automation tool. It also de-
scribes the collected data sets used to design and evaluate the
change detection methods.

5 Describes the proposed way to compare captured network traffic
to facilitate automated regression analysis.

6 Evaluates the proposed methods for network activity change de-
tection.

7 Wraps up the thesis with a closing discussion and conclusions.

Together these tools form a system to measure network activity for test automa-
tion test cases, compare the test results to find changes, and visualize the results.

1.5 Thesis Structure

In Chapter 1 the thesis is introduced with background and motivations for the
considered problems. Then follows a technical background on computer network-
ing in Chapter 2 and machine learning in Chapter 3. Chapter 4 introduces our
measurement methodology and data sets. The proposed methods and developed
tools are described in Chapter 5. Chapter 6 evaluates the proposed methods on
the data sets. Chapter 7 wraps up the thesis with discussion and conclusions.

A structured outline of the thesis can be found in Table 1.1.

Part I

Theory

2
Computer Networks

This chapter gives an introduction to computer networks and their protocols.

2.1 Internet Protocols

To conform to the standards, be a compatible Internet host and be able to commu-
nicate with other Internet hosts, Internet hosts need to support the protocols in
RFC1122 [3]. RFC1122 primarily mentions the Internet Protocol (IP), the trans-
port protocols Transmission Control Protocol (TCP) and User Datagram Protocol
(UDP), and the Internet Control Message Protocol (ICMP). The multicast support
protocol IGMP and link layer protocols are also mentioned in RFC1122, but will
not be regarded in this thesis since IGMP is optional and the link layer protocols
does not add anything to this thesis (see Section 2.1.2).

When sending data these protocols work by accepting data from the application
in the layer above them, possibly split them up according to their specified needs
and add headers to describe to their counterpart on the receiver where the data
should be routed for further processing. This layering principle can be observed
in Figure 2.1.

2.1.1 IP and TCP/UDP

IP is the protocol that enables the Internet scale routing of datagrams from one
node to another. IP is connectionless and packet-oriented. The first widely used
IP protocol was version 4 and still constitutes a vast majority of the Internet traf-
fic. IPv6 was introduced in 1998 to among other things address IPv4’s quickly
diminishing number of free addresses.

9

10 2 Computer Networks

Data

Data

IP
header

UDP
header

DataUDP
header

Application

Transport

Internet

IP
header DataUDP

header Link
Frame
header

Frame
footer

Figure 2.1: Overview of a data message encapsulated in UDP by adding the
UDP header. Then IP add the IP header. Finally Ethernet adds its frame
header and footer.

IPv4 has a variable header size, ranging from 20 bytes to 60 bytes, which is spec-
ified in its Internet Header Length (IHL). IPv6 opted for a fixed header size of
40 bytes to enable simpler processing in routers, etc. To not lose flexibility IPv6
instead defines a chain of headers linked together with the next header field.

There two major transport protocols on the Internet are TCP and UDP. TCP es-
tablishes and maintains a connection between two hosts and transports streams
of data in both directions. UDP is connection-less and message oriented and
transports messages from a source to a destination. TCP provide flow control,
congestion control, and reliability, which can be convenient and useful in some
applications but come at the price of among other things latency in connection es-
tablishment and overhead of transmitted data. UDP is more lightweight and does
not provide any delivery information, which can make it a good choice when the
application layer protocol want minimize latency and take care of any delivery
monitoring it deems necessary.

TCP has a variable header size of 20 bytes up to 60 bytes, contributing to its
overhead. UDP has a fixed header size of 8 bytes.

Addressing

Addressing on the Internet is done for multiple protocols in different layers, where
each protocol layer’s addressing is used to route the data to the correct recipient.
To be able to communicate over IP, hosts need to be allocated an IP address. IP
address allocation is centrally managed by the Internet Assigned Numbers Au-
thority (IANA), which through regional proxies, allocate blocks of IP addresses
(also known as subnets) to ISPs and large organizations.

To know how to reach a specific IP address at any given time the ISPs keep a
database of which subnets can be reached through which link. This database
is constructed by routing protocol, of which BGP is the dominating on the In-
ternet level. BGP uses Autonomous System Numbers (ASNs) for each network
(Autonomous System) to identify the location of the subnets. A bit simplified
BGP announces, “ASN 64513 is responsible for IP subnets 10.16.0.0/12 and
172.16.14.0/23” to the world. For each IP address endpoint it is therefore pos-

2.1 Internet Protocols 11

sible to say what network it is a part of, which can be useful when analyzing
traffic endpoint similarity: when the destination IP is randomly selected from a
pool of servers it may still be part of the same ASN as the other servers.

Domain Name System (DNS) is a mapping service from hierarchical names,
which often are easy for humans to recall, to IP addresses. DNS is also
used as a distributed database for service resolution and metadata for a do-
main. A common technique to achieve some level of high availability and
load balance is to map a DNS name to several IP addresses, as can be ob-
served for “www.spotify.com” which as of writing resolves to 193.235.232.103,
193.235.232.56 and 193.235.232.89. An IP address may have multiple DNS
names resolving to it and a DNS name may resolve to multiple IPs; DNS name to
IP is a many-to-many relation.

DNS also keep a reverse mapping from IP addresses to a DNS name, called a
pointer (PTR). An IP can only have one PTR record, whereas a DNS name can
have multiple mappings to IP; that is IP to DNS name is a many-to-one relation.
PTR records for servers may contain information indicating the domain (some-
time tied to an organization) they belong to and sometime what service they pro-
vide. The three IP addresses above resolves through reverse DNS to “www.lon2-
webproxy-a3.lon.spotify.com.”, “www.lon2-webproxy-a1.lon.spotify.com.” and
“www.lon2-webproxy-a2.lon.spotify.com.” respectively, indicating that they be-
long to the spotify.com domain, lives in the London data center and perform the
www/web proxy service.

DNS information may, similarly to ASN, contribute to determining traffic end-
point similarity. There are high variations in naming schemes, and advanced
configuration or even errors occur frequently, so DNS ought to be considered a
noisy source for endpoint similarity; even so, it may provide correct association
where other strategies fail.

Transport level protocols (UDP and TCP) use port numbers for addressing to
know which network socket is the destination. Server applications create listen-
ing network sockets to accept incoming requests. Many server application types
use a specific set of port numbers so that clients may know where to reach them
without a separate resolution service. The Internet Assigned Numbers Authority
(IANA) maintains official port number assignments such as 80 for WWW/HTTP,
but there are also a number of widely accepted port number-application associ-
ations that are unofficial, such as 27015 for Half-life and Source engine game
servers. Using the server’s transport protocol port number may be useful in de-
termining the service type for endpoint similarity, but may also be deceitful as
a server may provide the same service over a multitude of ports so that compati-
ble clients have a higher probability of establishing a connection when the client
is behind an egress (outgoing network traffic) filtering firewall. The source port
for traffic from clients to servers is selected in a pseudo random way to thwart
spoofing [29, 16].

12 2 Computer Networks

2.1.2 Lower Level Protocols

There are also underlying layers of protocol that specifies how transmission of
traffic is done on the local network (Link in Figure 2.1) and physically on the
wire. These protocols are not further described here, as they will not be consid-
ered in traffic size and overhead in this thesis, as they varies for wired networks,
WiFi and cellular connections. Including the link layer protocols would compli-
cate the network traffic collection for cellular networks as the information is not
included with our measurement techniques and complicate comparing network
access patterns of test case runs because of differing header sizes, while not con-
tributing to better change detection of the app’s network footprint.

2.1.3 Application Protocols

The Internet enabled applications also need standard on how to communicate.
Web browsers commonly use the HTTP protocol to request web pages from web
servers. HTTP is a line-separated plain-text protocol and therefore easy for hu-
mans to analyze without special protocol parsing tools. HTTP’s widespread use,
relatively simple necessary parts and flexible use-case have made it popular to
use for application-to-application API communication as well.

2.1.4 Encrypted Protocols

With the growing move of sensitive information onto the Internet with banking,
password services, health-care and personal information on social networks, traf-
fic encryption has become common. HTTP’s choice for encryption is the transport
layer security (TLS)/secure sockets layer (SSL) suite. TLS for HTTP is often used
with X.509 certificates signed by certificate authorities (CA). Which CAs are to be
trusted for signing certificates is defined by the operating system or the browser.
There are also proprietary and non-standard encryption systems, as well as many
more standardized.

Encryption makes classifying and analyzing traffic harder as it is by its very de-
sign hard to peek inside of the encrypted packets. This can in some cases be
alleviated when controlling one of the end nodes by telling it to trust a middle-
man (e.g. by adding your own CA to the trusted set) to proxy the traffic or by
having it leak information on what it is doing via a side-channel.

2.1.5 Protocol Detection

In the contemporary Internet one can no longer trust the common 5-tuple (pro-
tocol type, source IP, destination IP, source ports, destination port) to provide
trustworthy information on what service is actually in use [20]. Some of the rea-
sons for this may be for the system generating the traffic to avoid (easy and cheap)
detection and filtration of its traffic (e.g. P2P file-sharing) and to handle overly
aggressive firewall filtration. There are various suggestions on techniques to clas-
sify traffic streams as their respective protocols, including machine learning [20]
and matching on known protocol behavior.

2.2 Spotify-Specific Protocols 13

Bro

Bro1 is a network analysis framework that among other things can be used to
determine the protocol(s) of a connection [22]. Bro can be run on live network
traffic or previously captured traffic in a supported format, and in its most basic
case output a set of readable log files with information about the seen traffic.
Being a framework it can be extended with new protocols to detect and scripted
to output more information.

Listing 2.1 : Bro script for dynamic detection of the Spotify AP protocol.

3 samples of the first 16 bytes of a client establishing a connection,
payload part. Collected and displayed with tcpdump + Wireshark.
#0000 00 04 00 00 01 12 52 0e 50 02 a0 01 01 f0 01 03R.P.......
#0000 00 04 00 00 01 39 52 0e 50 02 a0 01 01 f0 01 039R.P.......
#0000 00 04 00 00 01 a3 52 0e 50 02 a0 01 01 f0 01 03R.P.......
signature dpd_spap4_client {
ip-proto == tcp
Regex match the observed common parts
payload /^\x00\x04\x00\x00..\x52\x0e\x50\x02\xa0\x01\x01\xf0\x01\x03/
tcp-state originator
event "spap4_client detected"

}

3 samples of the first 16 bytes of server response to above connection,
payload part. Collected and displayed with tcpdump + Wireshark.
#0000 00 00 02 36 52 af 04 52 ec 02 52 e9 02 52 60 93 ...6R..R..R..R‘.
#0000 00 00 02 38 52 b1 04 52 ec 02 52 e9 02 52 60 27 ...8R..R..R..R‘’
#0000 00 00 02 96 52 8f 05 52 ec 02 52 e9 02 52 60 0dR..R..R..R‘.
signature dpd_spap4_server {
Require the TCP protocol
ip-proto == tcp
Regex match the observed common parts
payload /^\x00\x00..\x52..\x52\xec\x02\x52\xe9\x02\x52\x60/
Require that the client connection establishment was observed in
this connection
requires-reverse-signature dpd_spap4_client
tcp-state responder
event "spap4_server response detected"
Mark this connection with service=SPAP
enable "spap"

}

2.2 Spotify-Specific Protocols

Spotify primarily uses a proprietary protocol that establishes a single TCP con-
nection to one of Spotify’s edge servers (access points, APs). This connection is
then used to multiplex all messages from the client to Spotify’s back-end services
[14]. This connection is encrypted to protect the messages and the protocol from
reverse engineering.

1Bro (official website), http://bro.org, February 2014

http://bro.org

14 2 Computer Networks

Supplementing this primary connection to a Spotify AP are connections using
more common protocols like HTTP and HTTP secure (HTTPS).

2.2.1 Hermes

Spotify uses another proprietary protocol called Hermes. Hermes is based on Ze-
roMQ2, protobuf3 and HTTP-like verbs for message passing between the client
and the back-end services4 [25]. These messages are sent over the established
TCP connection to the AP. Hermes messages use proper URIs to identify the tar-
get service and path, which is useful in identifying the purpose and source of
the message. The Hermes URIs starts with “hm://”, designating the protocol
Hermes.

2.2.2 Peer-to-Peer

Spotify’s desktop clients creates a peer-to-peer (P2P) network with other Spotify
desktop clients to exchange song data. This serves to reduce the bandwidth load
and thereby the cost on Spotify’s back-end servers and in some cases reduce la-
tency and/or cost by keeping user’s Spotify traffic domestic. The P2P mechanism
is only active in the desktop clients and not on smartphones, the web client or in
libspotify [13].

This thesis focuses on the mobile client and is therefore not further concerned
with the P2P protocol. One advantage of excluding P2P traffic from the analy-
sis is that we avoid its probably non-deterministic traffic patterns caused by the
random P2P neighbors random cache misses from random song plays.

2.3 Content Delivery Networks

A Content Delivery Network or Content Distribution Network (CDN) is “net-
work infrastructure in which the network elements cooperate at network layers 4
[transport] through 7 [application] for more effective delivery of content to User
Agents [web browsers],” as defined in RFC6707 [21]. CDNs perform this service
by placing caching servers (Surrogates) in various strategic locations and route
requests to the best Surrogate for each request, where best may be determined by
a cost/benefit function with parameter such as geographical distance, network
latency, request origin network, transfer costs, current Surrogate load and cache
status for the requested content.

Different CDNs have different resources and strategies for placing Surrogate. Some
observed patterns are (1) leasing servers and network capacity in commercial
data centers and use IP addresses assigned by the data center; (2) using several
other CDN providers; (3) using their own IP address space(s) and AS numbers;

2ZeroMQ (official website), http://zeromq.org, February 2014
3Protobuf (repository), https://code.google.com/p/protobuf, February 2014
4Presentation Slides on Spotify Architecture - Press Play, by Niklas Gustavsson http://www.

slideshare.net/protocol7/spotify-architecture-pressing-play, February 2014

http://zeromq.org
https://code.google.com/p/protobuf
http://www.slideshare.net/protocol7/spotify-architecture-pressing-play
http://www.slideshare.net/protocol7/spotify-architecture-pressing-play

2.4 Network Intrusion Detection Systems 15

and (4) using their own IP address space(s) and AS numbers, combined with
Surrogates on some Internet Service Providers’ (ISP’s) network, using the ISP’s
addresses.

The different Surrogate placing strategies and dynamic routing makes determin-
ing if two streams belong to the same service end-point hard. It can be especially
hard for streams originating from different networks or at different times, as the
CDN may have different routing rules for the streams. Spotify utilizes several
CDNs and the traffic will therefore show signs of several of the patterns above.

Some data sources that can be useful in determining if two streams are indeed
to the same service end-point are (1) the AS number, (2) the DNS PTR for the IP
address, (3) the DNS query question string used to find the network end-point IP
address, (4) X.509 certificate information for TLS/SSL connections, and (5) the
host-field of HTTP requests; (6) content provider hybrid solutions with CDNs
and dedicated servers to get lower cost and better customer proximity [6], as
these often of legal or best practice reasons contain information related to the
service, the content provider and/or the CDN provider.

2.4 Network Intrusion Detection Systems

Network Intrusion Detection Systems (NIDS) are systems strategically placed to
monitor the network traffic to and from the computer systems it aims to defend.
They are often constructed with a rule matching system and a set of rules de-
scribing the patterns of attacks. Some examples of NIDS software are SNORT5

and Suricata6.

Related to NIDS are NIPS – Network Intrusion Prevention Systems – designed
to automatically take action and terminate detected intrusion attempts. The ter-
mination is typically done by updating firewall rules to filter out the offending
traffic.

5SNORT official web site, http://snort.org, May 2014
6Suricata official web site, http://suricata-ids.org, May 2014

http://snort.org
http://suricata-ids.org

3
Machine Learning

Arthur Samuel defined machine learning in 1959 as a “field of study that gives
computers the ability to learn without being explicitly programmed” [26, p. 89].
This is achieved by running machine learning algorithms on data to build up a
model, which then can be used to predict future data. There are a multitude of
machine learning algorithms, many of which can be classified into the categories
supervised learning, unsupervised learning and semi-supervised learning based
on what data they require to construct their model.

Supervised learning algorithms take labeled data: samples of data together with
information on how the algorithm should classify each sample. Unsupervised
learning algorithms take unlabeled data: samples without information on how it
is supposed to be classified. The algorithm will then need to infer the labels from
the data itself. Semi-supervised learning algorithms have multiple definitions in
literature. Some researchers define semi-supervised learning as having a small
set of labeled data combined with a larger set of unlabeled data to boost the
learning. Other, especially in novelty detection, defines semi-supervised learning
as only giving the algorithm samples of normal class data [11].

3.1 Probability Theory

A stochastic variable is a variable that takes on values by chance, or random, from
a sample space. The value of a stochastic variable is determined by its probability
distribution.

The mean of a stochastic variable X is denoted µX and is for discrete stochastic

17

18 3 Machine Learning

variables defined as:

µX = IE[X] =
N∑
i=1

xipi ,

where pi is the probability of outcome xi and N the number of possible outcomes.
For a countable but non-finite number of outcomes N = ∞.

The variance of a stochastic variable X is the expected value of the squared devi-
ation from the mean µX :

Var(X) = IE[(X − µX)2].

Standard deviation is defined as the square root of the variance:

σX =
√

Var(X).

A stochastic process is a collection of stochastic variables. Stochastic processes
where all stochastic variables have the same mean and variance are called station-
ary processes. Non-stationary processes’ stochastic variables can have different
mean and variance, meaning the process probability distribution can change over
time.

3.2 Time Series

A time series is a sequence of data points where each data point correspond to a
sample of a function. The sampling interval is usually uniform in time and the
function can be the number of bytes transmitted in since the last sample.

In this thesis we make use of data in ordinary time series data. We also consider
another format where the sampling is not done with uniform time interval, but
triggered by en event, e.g. the end of a test case. This will form a series of data
points, which can be treated as a time series for some algorithms, like Exponen-
tially Weighted Moving Average (EWMA).

3.3 Anomaly Detection

Anomaly detection is the identification of observations that do not conform to
expected behavior. Anomaly detection can be used for intrusion detection, fraud
detection and detection of attacks on computer networks, to name a few appli-
cations. In machine learning anomaly detection is among other things used to
automatically trigger an action or an alarm when an anomaly is detected, which
enables manual or automatic analysis and mitigation of the cause. Because of
the typically non-zero cost associated with manual/automatic analysis and miti-
gation the anomaly detection a low rate of false positives is desirable, and since
there is often a value in the observed process working as expected the anomaly
detection also need a low rate of false negatives.

3.3 Anomaly Detection 19

There are a lot of anomaly detection algorithms, each with their strengths, weak-
nesses and suitability to different domains. Since the unit of measurement and
definition of anomaly is domain specific, the selection of the anomaly detection
algorithm and pre-processing of observations also often is domain specific and
may require knowledge of the domain.

3.3.1 Exponentially Weighted Moving Average

A basic method to detect anomalies in time series of interval or ratio values is
exponentially weighted moving average (EMWA).

The EWMA series is given by

zt = αxt + (1 − α)zt−1,

where xt is the observed process value at time t, and α is the decay factor, typi-
cally selected between 0.05 and 0.25. Upper and lower thresholds are set as

UCL = µs + T σs,

LCL = µs − T σs,

where µs is the mean of the series, σs the standard deviation, and T is the number
of tolerated standard deviations before considering an EWMA value, zt anoma-
lous. In general [12] the parameter T is determined by the decay value α as

T = k

√
α

2 − α
,

where k typically chosen as k = 3 from the “three sigma” limits in Shewhart
control charts [12]. The process is considered to produce anomalous values at
times where zt < LCL or UCL < zt , that is the EWMA value passes outside the
upper or lower thresholds.

A different way to define how quickly the EWMA value should change with new
values is by specifying a span value. Span is related to the decay value α as:
α = 2

span+1 and is meant to describes the number of samples which contributes
a significant amount of their original value. To get meaningful EWMA charts,
span should be selected ≥ 2. To see this, note that as span = 1 means zt = xt
(no historic samples), span = 0 gives zt = 2xt − zt−1, span = −1 is undefined and
span ≤ −1 gives sign inverted zt . The typically selected α values 0.05 and 0.25
correspond to span = 7 and span = 39, respectively. As span approaches infinity
α approaches 0, that is the EWMA takes infinitesimal regard to current values
and is therefore biased towards historic values, which will decay slowly.

EWMA Chart

An example EWMA chart is shown in Figure 3.1. The line annotated “defect
client” denotes where a defect was introduced in the application. Data points
0 to 68, before the line, are measurements from the normal version of the app;
data points 69 to 76, after the line, are measurements from the application with
a defect. The mean µs and variance σs are calculated from the data points from

20 3 Machine Learning

the normal version. Note how sample 74 and 76 are detected as anomalies as the
EWMA line (dashed) crosses the upper threshold (UCL).

0 10 20 30 40 50 60 70 80

test run

2600

2800

3000

3200

3400

3600

3800

p
a
ck

e
ts

0 1

d
e
fe

ct
 c

lie
n
t

measurement

EWMA

Lower threshold

Upper threshold

Figure 3.1: Example EWMA chart. span = 20 and threshold according to
equations in Section 3.3.1. Data set is the number of packets for test case
T3, with normal app and app with defect A3, both further described in Sec-
tion 4.4.

3.4 k-Means Clustering

Cluster analysis is a method of grouping similar data points together in order
to be able to conclude things from the resulting structure. Cluster analysis, or
clustering, is used as or as a part of many machine learning algorithms. Running
a cluster analysis of the data and labeling the clusters can construct an unsuper-
vised classifier.

k-means is “by far the most popular clustering tool used in scientific and indus-
trial applications.” [2]. The k-means algorithms require the number of clusters,
k, as input and finds k clusters such that the sum of the squared distance from
each point to its closest cluster center is minimized. That is find k centers so as
to minimize the potential function,

argmin
S

k∑
i=1

∑
xj∈Si

||xj − µi ||2,

3.4 k-Means Clustering 21

where µi is the center point for cluster i.

Solving this problem optimally is NP-hard, even for k = 2 [7, 19]. There are more
computationally efficient heuristic algorithms, which are often used in practice.

A widely used heuristic algorithm for k-means is Lloyd’s algorithm [18]. Lloyd’s
algorithm finds a local minimum for the cost function by (1) selecting k center
candidates arbitrarily, typically uniform at random from the data points [1]; (2)
assign each data point to each nearest center; and (3) re-compute the centers as
the center of mass for all data points assigned to it. As the Arthur and Vassilvit-
skii [1] explains, the initial center point candidates can be chosen in a smart way
to improve the both the speed and accuracy.

Figure 3.2: Example of k-means clustering of 20 observations each of three
stochastic processes with Gaussian distribution and mean (0,0), (2,0) and
(0,2) respectively, k=3. The observations are split into learn and verify as
90%/10%. The learn set is used to train the model, that is decide where
the cluster centers are. Observations from learn is black, verify red and the
cluster center is a blue X.

3.4.1 Deciding Number of Clusters

k-means need the number of clusters as input. Finding the true number of clus-
ters in a data set is a hard problem which many times is solved by manual in-
spection by a domain expert to determine what is a good clustering. Automated
analysis must solve this in another way. One way to automatically select a reason-
able number of clusters in a data set is to run the k-means clustering algorithm
for a set of values for k and determine how good the clustering turned out for
each one.

22 3 Machine Learning

The silhouette score, Sk , is a measurement of how well data points lie within
their clusters and are separated from other clusters [24], where k is the number
of clusters (parameter to k-means). It is defined as

Sk =
1
k

k∑
i=1

bi − ai
max(ai , bi)

,

where ai is the average dissimilarity of data point i with the other data points
in the same cluster, bi the lowest average dissimilarity of i to any other cluster
where i is not a member, and k is the number of clusters (parameter to k-means).
Silhouette scores are between −1 and 1, where 1 is means that the data point
is clustered with similar data points and no similar data points are in another
cluster.

The average silhouette score, Sk , gives a score of how good the clustering fits the
total data set and can therefore be used to decide whether the guess for number
of clusters, k, is close to the actual number of clusters. The k value giving the
highest silhouette score Sk is denoted as k∗, and calculated as

k∗ = argmax
kmin≤k≤kmax

Sk ,

where kmin and kmax is the upper and lower limits of the range of tested k.

In Figure 3.3 we show an example of using silhouette scoring to decide the num-
ber of clusters in the data set from Figure 3.2. With kmin = 2 and kmax = 14, the
silhouette score analysis gives

k∗ = argmax
2≤k≤14

Sk = 3,

which is what we intuitively expected from the data set.

3.4.2 Feature Extraction

Good selection and transformation of features is vital in constructing a service-
able model using data mining or machine learning.

Features can be classified in different measurement classes depending on how
measured values of a feature can be compared. Stanley Smith Stevens introduces
the scale types nominal, ordinal, interval and ratio [27]. Nominal values can be
evaluated if they are the same or if they differ; one example is male vs. female.
Nominal is also known as categorical, which is the term used in this thesis. Ordi-
nal values can in addition be ordered; one example is healthy vs. sick. Interval
values can in addition be added and subtracted; one example is dates. Ratio val-
ues can in addition be compared in ratios, such as a is twice as much as b; one
example is age.

Often collected data need processing to be usable in algorithms used for data
mining and machine learning. The standard k-means clustering algorithm for ex-
ample computes the Euclidean distance between data point vectors to determine
their likeness and therefore need features defined as meaningful numbers. Cat-

3.4 k-Means Clustering 23

2 4 6 8 10 12 14
Number of clusters, k

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
ilh

o
u
e
tt

e
 s

co
re

,
S
k

M
a
x
im

u
m

 S
ilh

o
u
e
tt

e
 s

co
re

Training set
Verification set

Figure 3.3: Silhouette scores for learn and verify set in Figure 3.2 for cluster
sizes 2 to 14. In this example, the maximum Silhouette score is achieved for
k∗ = 3.

egorical features such as colors can be mapped to a binary feature vector, where
each color in the domain is mapped to its dimension.

Ordinal features that are not numerical need to be encoded in order to be used
to determine distance with classic distance metric such as the Euclidean distance
metric. One example of ordinal features is “too small”, “too big” and “just right”,
which may be ordered as “too small”, “just right”, “too big” and encoded as -1,
0 and +1, respectively. Binary features may be encoded with this method with-
out being ordinal features, as it then essentially mimics the label binarization
introduced above. This kind of encoding is called label encoding.

Normalization

Normalization is needed to avoid single features dominating others in distance
measurement between data points by having larger values. Normalization can be
done for feature j with values xi,j (1 ≤ i ≤ N), by calculating the mean µj and

24 3 Machine Learning

color domain: { “red”, “green”, “blue” };
values: “blue”, “red”, “green”

Output:
“blue” is encoded as <0, 0, 1>
“red” is encoded as <1, 0, 0>
“green” is encoded as <0, 1, 0>

category binarization vector <red, green, blue>

Figure 3.4: Transformation of red, green and blue from the color domain to
a binary vector, where each color is its own dimension.

standard deviation σj of feature j as:

µj =
1
N

N∑
i=1

xi,j ,

σj =

√√√
1
N

N∑
i=1

(xi,j − µj)2,

where N is the number of observations and xi,j is the value of feature j in obser-
vation i. The normalized feature vector is then calculated as

x̂i,j =
xi,j − µj
σj

,

for each instance i in feature j. This makes the features comparable to each other
in terms of their deviation from the mean.

3.5 Novelty Detection

Novelty detection is the act of classifying observations as similar to previously
seen observations and thereby is “normal”, or if they constitute deviations from
the previously seen observations and thereby is “novel”.

One method of performing novelty detection is by training a clustering algorithm
on observations considered normal, which will form clusters of observations with

3.6 Evaluation Metrics 25

Table 3.1: Confusion matrix of an anomaly/novelty detection system.

Sample anomalous/
novel Sample normal

Classified as
anomalous/novel True positive (t+) False positive (f +)

Classified as normal False negative (f −) True negative (t−)

cluster centers and distances of observations to cluster centers. The maximum
distance from an observation from the normal data set to its cluster center can be
considered the outer boundary of normal values for each cluster. New observa-
tions are then considered normal if they fall inside the normal boundary, i.e. have
an equal or shorter distance to the cluster center. Observations that fall outside
the normal boundary are considered novel.

3.6 Evaluation Metrics

To know if our machine learning algorithms are performing acceptably and to
compare against other algorithms, we define some performance metrics. Anomaly
and novelty detection systems are a type of binary classification systems; deter-
mining if a sample is novel/anomalous or normal. In the context of anomaly
and novelty detection a classification of a sample as a novelty or anomaly is de-
noted as positive, while a classification as normal is denoted as a negative. The
performance is often based on the four rates of true/false positive/negative clas-
sification, visualized as a confusion matrix in Table 3.1.

Some common metrics to evaluate the performance of a classification system are
precision, true positive rate (T P R) and false positive rate (FP R), defined as fol-
lows:

P recision =
t+

t+ + f + ,

T P R =
t+

t+ + f −
,

FP R =
f +

f + + t−
,

where t+ is the number of true positive, t− is the number of true negative, f + is
the number of false positive, and f − is the number of false negative. Precision

26 3 Machine Learning

is the rate of detections that are correct. True Positive Rate (TPR) is the rate
of detection of anomalous/novel samples, also called recall. False Positive Rate
(FPR) is the rate of miss-classification of normal samples as anomalous/novel.

Ideally, a system should have high precision, high true positive rate and a low
false positive rate.

The true positive and false positive rates for a range of values of a system thresh-
old setting is often visualized in a graphical plot called a Receiver Operating
Characteristics (ROC) curve. ROC curves are generated by varying the threshold
setting for the evaluated system to find the achievable pairs of T P R and FP R;
ideally this is done by running the system once to determine a score for each data
point and use that to calculate all achievable pairs of T P R and FP R. Figure 3.5
shows an example of a ROC curve. The area under the ROC curve should ideally
be equal to 1, which is achieved when the true positive rate is 1 for all values of
the false positive rate, especially false positive rate = 0. The ROC curve can be an
aid in comparing classification systems and choosing a threshold with acceptable
rates of true and false positives.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

 (
T
P
R

)

ROC curve (area = 0.79)

Figure 3.5: Receiver Operating Characteristic (ROC) curve example showing
the relation between the true positive rate and the false positive rate for a
binary classification system. The dashed line constitutes the ROC of a system
which making random guesses. Above and to the left of the curve is better
than random guess and below and to the right is worse.

3.7 Tools

There are a lot of tools and software suites for doing data mining and machine
learning. Python based libraries have the advantage of being widely accepted
for deployment in production, which is a necessity for an automated regression

3.8 Related Work 27

testing system. For the machine learning part of this thesis the following are
used:

• Python – dynamically typed programming language;

• Pandas Data Analysis Library1 – storing features, data manipulation and
calculating statistics;

• Scikit-learn for Python [23] – machine learning and calculating statistics;

• matplotlib2 – for plotting.

3.8 Related Work

This section describes identified previous work related to this thesis.

3.8.1 Computer Networking Measurements

Mobile developing software suites offer ways to profile apps in the simulator/em-
ulator or on the device (e.g. instruments for iOS3 and DDMS for Android4). One
of the measure categories is network I/O and often includes bytes total, bytes per
second, packets total and packets per second; all both for incoming and outgoing.
This is a good way for a developer to get an instantaneous overview of how much
the app is communicating, but often does not give details on with what and why,
and does not provide an automatic way to compare and find changes between
test case runs.

Jimenez et al. [13] investigate the consequences of integrating the Spotify An-
droid client in Spotify’s P2P network. A part of this study was to measure the
correlation of network activity and energy consumption, which affects battery
life, of the Spotify application for Android. This serves as a good highlight of one
of the reasons to why monitoring an app’s network activity changes over time is
a good idea. The paper does not bring up any solutions on how to automate this
testing, as the main focus is verifying the impact of using P2P on mobile.

As mentioned in Section 1.2.2 the Spotify client saves some aggregated statistics
on network usage. While this may have been enough at the time, the growing
complexity of the clients together with partner demands means Spotify need a
new solution.

1http://pandas.pydata.org/, May 2014
2http://matplotlib.org/
3Instruments User Guide, https://developer.apple.com/library/ios/

documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/
MeasuringIOActivityiniOSDevices/MeasuringIOActivityiniOSDevices.html, Febru-
ary 2014

4Using DDMS, https://developer.android.com/tools/debugging/ddms.html#
network, February 2014

http://pandas.pydata.org/
http://matplotlib.org/
https://developer.apple.com/library/ios/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/MeasuringIOActivityiniOSDevices/MeasuringIOActivityiniOSDevices.html
https://developer.apple.com/library/ios/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/MeasuringIOActivityiniOSDevices/MeasuringIOActivityiniOSDevices.html
https://developer.apple.com/library/ios/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/MeasuringIOActivityiniOSDevices/MeasuringIOActivityiniOSDevices.html
https://developer.android.com/tools/debugging/ddms.html#network
https://developer.android.com/tools/debugging/ddms.html#network

28 3 Machine Learning

3.8.2 Anomaly and Novelty Detection

There is a lot of work on automatically identifying anomalies and novelties in the
traffic of computer networks in order to augment the static rule-based detection
of Network Intrusion Detection Systems (NIDS) with detection of yet unknown
types of attacks.

Lee et al. [17] describe “data-flow” environment as applications that involve real-
time data collection, processing and analysis. They build a data-flow environ-
ment to automatically create rules for network intrusions detection by building
a model of the normal traffic from network traffic collect over a few days, and a
model of intrusions with network traffic from simulated or real and manually la-
beled attacks. The features used are the start time, duration, source host, source
port number, destination host, destination port number (service), bytes sent from
the source, bytes sent from the destination, and a flag denoting the state of the
connection. Methods for efficient storage and evaluation of the created rules are
also detailed. As the rules are constructed using explicit samples of network
traffic corresponding to intrusions, it is likely this method will not successfully
identify novel intrusion types; this is also noted by the authors in future work.

Yeung et al. [30] propose using a novelty detection, semi-supervised learning ap-
proach to identify network intrusions, which is trained only using normal data,
and not data from observed/simulated intrusions. They create a model of the
normal traffic as a density estimation for the probability density function, us-
ing Parzen-window estimators with Gaussian kernels. New samples are tested
against the normal model by thresholding the log-likelihood that they are drawn
from the same distribution as the samples that created the normal model. The
threshold is also corresponding to the expected false detection rate. The pro-
posed method is evaluated using the KDD Cup 1999 network data set, with the
categorical features (called “symbolic” in the paper) encoded as binary features.
It compares favorably to the winner of the KDD Cup 1999, considering the win-
ner used supervised learning to explicitly learn to identify the different attacks
present in the data set. A drawback of using the Parzen-window method is that
the window width parameter σ need to be specified by the user or an expert.

Tarrassenko et al. [28] use a clustering analysis approach to design a novelty
detection system for identifying unusual jet engine vibration patterns in an ef-
fort to highlight possible failures before they happen. Their data set consists of
measured vibration spectra of 52 healthy engines to build a model of normal. The
measured spectra are encoded as 18-dimensional feature vectors. To give each fea-
ture equal importance the authors use tries two transformations: (1) component-
wise normalization, as described in Figure 3.4.2; and (2) whitening, removing
correlation between features. Cluster analysis with the k-means method assigns
each transformed feature vector to a cluster of similar vectors. To avoid having
to select a global threshold that is assuming the same probability distribution for
each cluster, the authors calculates the average distance form feature vectors to
their respective centers for all clusters. The average distances are then used to
normalize, or weight, the distance of a test sample to a cluster center, giving its

3.8 Related Work 29

novelty score. The threshold is set to classify all training samples as normal. This
method achieved good metrics, identifying all unusual vibration patterns of 33
engines and managed to identify on average 8.8 of 10 verification samples from
the set of normal engines. The component-wise normalization performed far bet-
ter than the whitening, which only identified on average 5.4 of the verification
samples as normal, as the whitening transform lead to model overfitting on the
training samples.

The k-means clustering with component-wise normalization approach described
is interesting as it uses a well known technique to group data together with intu-
itive add-ons to perform novelty detection with a good results. The intuitiveness
should make it easy to reason about the output of the process, which may be
needed when alerting stakeholders.

Part II

Implementation and Evaluation

4
Measurement Methodology

"I often say that when you can measure what you are speaking about,
and express it in numbers, you know something about it; but when you
cannot express it in numbers, your knowledge is of a meager and
unsatisfactory kind; it may be the beginning of knowledge, but you
have scarcely, in your thoughts, advanced to the stage of science,
whatever the matter may be."

LORD WILLIAM KELVIN

This chapter describes the tools and techniques used to capture and process the
network traffic. The resulting data sets used in the evaluation are also described
in this chapter.

4.1 Measurements

There are various tools and processes to capture information about network traf-
fic. For internet service provider’s (ISP’s) backbone networks, companies’ edge
nodes or even busy servers storing all network traffic would be prohibitively ex-
pensive compared to the business advantages (at least if the business is not spying
on the world by any means necessary). These kinds of networks often only stores
aggregated statistics on usage such as number of bytes and packets for periods
of e.g. one minute or since last restart. There are also commercial solutions to
sample the network traffic and extract particularly useful features for capacity
planning and maintenance, such as Cisco’s NetFlow1.

1Cisco IOS NetFlow, http://www.cisco.com/c/en/us/products/
ios-nx-os-software/ios-netflow/index.html, March 2014

33

http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html

34 4 Measurement Methodology

Since our purpose is to monitor the network activity of a single application un-
der conditions that are expected to work on smartphones connected via mobile
networks, the total network traffic will be comparatively small. Furthermore, cap-
turing all of the raw network traffic allows for more involved offline analysis at a
later date, which may come in handy.

Capturing network traffic on a local interface is often done with some tool using
a port of libpcap2, usually tcpdump, which is capable of capturing all traffic
matching a set of rules on a specified interface and stores its dumps in the PCAP3

or PCAPNG4 format.

4.1.1 General Techniques

To capture traffic you first need to have access to it. There are generally three
ways to get access to all network traffic destined for or originating from another
host (A) on a network:

• Gatekeeper – Tap the network where the traffic must pass to reach (A), e.g.
the default gateway, the nodes ISP. Where the tap is placed will determine
what portion of the traffic you capture – tapping at ISP level will not grant
you access to the host’s local network traffic.

• Snitch – Use something in the know to send you a copy of the traffic. This
may be realized by using a so called mirror or switch port analyzer (SPAN)
port on a switch - a port which will send a copy of all traffic on one switch
port out on the mirror port.

• Sniff – Some network topologies send all hosts’ traffic to all other directly
connected hosts. Unencrypted wireless networks, wireless networks en-
crypted with a pre-shared key (PSK)-scheme5, and old-style wired networks
using hubs are some examples of such network topologies. This arrange-
ment of course makes it trivial for all connected hosts to capture other hosts’
data.

The Gatekeeper method allows for manipulation of packets before they are trans-
ferred, facilitating man in the middle attacks to extract more information from
the protocols (see Section 4.1.3). The other two methods generally only allow
observation of the traffic streams.

4.1.2 Mobile Apps

There are many ways of capturing the network traffic of apps running on a mobile
platform. Often the software development kit (SDK) includes tools to perform
network activity measurement for the platform, either the simulator/emulator

2tcpdump & libpcap official web page, http://www.tcpdump.org, March 2014
3PCAP man page, http://www.tcpdump.org/manpages/pcap.3pcap.html, March 2014
4Wireshark: PcapNg documentation, http://wiki.wireshark.org/Development/PcapNg,

March 2014
5Wireshark guide: How to Decrypt 802.11 http://wiki.wireshark.org/

HowToDecrypt802.11, March 2014

http://www.tcpdump.org
http://www.tcpdump.org/manpages/pcap.3pcap.html
http://wiki.wireshark.org/Development/PcapNg
http://wiki.wireshark.org/HowToDecrypt802.11
http://wiki.wireshark.org/HowToDecrypt802.11

4.1 Measurements 35

running on the developer’s computer or on the physical mobile device, or both.
The output from network activity measurement tools varies, some only output
aggregated statistics, and some give access to the actual network traffic for more
detailed analysis.

Other ways are related to the general techniques described in Section 4.1.1, like
setting up an ad-hoc WiFi network on a computer running tcpdump and connect-
ing the device to the WiFi.

Not all techniques are usable to capture network traffic on both WiFi and cellular
connections, which can be necessary to get a complete view of the app’s behavior
in the different environments it is commonly used.

iOS

Apple provides the testing tool rvictl6 to configure a mirror interface of a con-
nected iOS device. A remote virtual interface (rvi) is configured by connecting a
device with USB to a host computer and providing the rvi control tool rvictl with
the target device id:

Listing 4.1 : Starting a Remote Virtual Interface on a Connected iOS Device (from rvictl
documentation).

$ # First get the current list of interfaces.
$ ifconfig -l
lo0 gif0 stf0 en0 en1 p2p0 fw0 ppp0 utun0
$ # Then run the tool with the UDID of the device.
$ rvictl -s 74bd53c647548234ddcef0ee3abee616005051ed

Starting device 74bd53c647548234ddcef0ee3abee616005051ed [SUCCEEDED]

$ # Get the list of interfaces again, and you can see the new virtual
$ # network interface, rvi0, added by the previous command.
$ ifconfig -l
lo0 gif0 stf0 en0 en1 p2p0 fw0 ppp0 utun0 rvi0

This method is of the snitch type as the iOS device mirrors all packets to the
virtual interface.

The virtual interface represents the entire network stack of the iOS device, and
there is no way to distinguish between traffic over the cellular link and traffic over
WiFi. This also means that the rvi may be used to capture 3G network data. Mea-
suring over 3G could otherwise be hard as devices are often directly connected
to the telephone companies network so the vanilla Gatekeeper technique will not
work. The Sniff technique relies on weak encryption, and snitch requires priv-
ileges to run a network sniffer on the device, which could be achieved through
jailbreaking7. Jailbreaking is not always feasible as it is not possible at all times

6https://developer.apple.com/library/mac/qa/qa1176/_index.html#//apple_
ref/doc/uid/DTS10001707-CH1-SECIOSPACKETTRACING

7The iPhone wiki, general description of jailbreak and availability matrices, http://
theiphonewiki.com/wiki/Jailbreak, May 2014

https://developer.apple.com/library/mac/qa/qa1176/_index.html#//apple_ref/doc/uid/DTS10001707-CH1-SECIOSPACKETTRACING
https://developer.apple.com/library/mac/qa/qa1176/_index.html#//apple_ref/doc/uid/DTS10001707-CH1-SECIOSPACKETTRACING
http://theiphonewiki.com/wiki/Jailbreak
http://theiphonewiki.com/wiki/Jailbreak

36 4 Measurement Methodology

for all device and software versions, may be illegal in some regions, violate busi-
ness agreements, and may affect the System Under Test (SUT) as measurement
is not done in the same environment as the app will run in later. Another way
to capture 3G network data would be routing all traffic via a catchall proxy such
as a VPN. Drawbacks with routing through a VPN to capture traffic is that it re-
quires managing the VPN system and that it could affect the SUT by changing the
latency with the extra hop, worse/better network routes to destination, increas-
ing/decreasing data size by adding VPN data or compressing payloads. Existing
receiver side methods to detect and route mobile traffic may also be disrupted.
Using a VPN to capture network traffic may also raise a suspicion that the op-
erating system selects what traffic to route through the VPN and what to route
directly through the Internet.

One drawback of the rvictl approach is that it requires the measurement com-
puter to run an OS X environment, but since that is required to build iOS apps
that requirement is often automatically fulfilled. The virtual interface is using a
custom data link type and Apple’s modified libpcap is required to capture traf-
fic, making tools such as vanilla tcpdump and Bro, built with vanilla libpcap fail.
Traffic dump files written with the tcpdump library in OS X is compatible with
vanilla libpcap, making analysis possible.

We have observed that intermittently the dump files written by Apple’s tcpdump
are corrupt and not possible to read. This occurred in 20 of the test case runs
for a set of 61 test case runs done 2014-05-20. The corrupt files were tested
with vanilla tcpdump, Apple’s tcpdump, Wireshark, and Bro, all rendering the
same or similar error messages and no further information about the captured
traffic, hindering investigation. We perceived the error messages to be related to
corrupt or missing libpcap metadata for the network interfaces and suspect a bug
in one or more of rvi, libpcap or tcpdump, possibly Apple’s modified versions.
No pattern in time of measurement or tcpdump output file size was observed
between the corrupt and normal files. As we missed tools to do further analysis,
no pattern was observed for the corruptions, and the error message hinted at
a problem in writing interface metadata to the files, the corrupt files were not
thought to have any specially interesting network traffic and were excluded from
the data set.

4.1.3 Tapping into Encrypted Data Streams

Many modern applications use encryption protocols such as SSL/TLS, SSH, or
something else to tunnel much or all of the applications traffic. In Spotify’s case
a great part of the app’s traffic is sent over the multiplexed and encrypted TCP
stream to their AP, as described in Section 1.2.2. This hampers attempts to extract
information from the payload, which could have been useful for analysis, such as
what resource is accessed. If all of the app’s traffic is routed through a single
encrypted tunnel we will only be able to analyze traffic flow patterns such as
bytes/second, packets/second, etc. This chapter describes some techniques that
can be used to get access to richer information in such cases.

4.1 Measurements 37

Man-in-the-Middle Techniques

A popular technique to see behind the veil of encryption for one of the most
used encrypted protocols, HTTPS, is to set up a program that injects itself into
the flow by intercepting traffic from the two communicating parties, decrypt it,
and re-encrypt and retransmit it to the other, acting like the original source, i.e.
a man-in-the-middle attack (MitM). HTTPS+X.509’s solution to this problem is
to verify the sender’s identity by cryptographic measures based on a certificate
issued by a trusted third party, the certificate authority (CA). This system can
be abused by having the MitM software act as a CA and issue itself certificates
for every party it which to impersonate. Since we in this case have access to the
operating system on the device running the app under test, we are able to setup
our MitM CA as trusted by the device by installing the MitM CA’s certificate on
the device.

There are many commercial off-the-shelf (COTS) products with CA to do a MitM
attack of HTTPS, e.g. mitmproxy8, Fiddler9 and Charles proxy10. There are how-
ever ways for the app developers to hinder these kind of MitM attack called cer-
tificate pinning, where the app verifies that the server’s certificate used to estab-
lish the connection is the expected (hard coded) one and not just one signed by a
CA trusted by the operating system.

However, not all encryption protocols work the same way HTTPS+X.509 does.
Examination of Spotify’s AP protocol show that using these COTS designed for
HTTPS will not be fruitful, as it seem to implement some other standard. There
may very well be a way to MitM attack this protocol as well, but since we have
access to instrument the app to send meta data about the traffic via a side-channel
no more time was put into this effort. There is also the risk of affecting the SUT’s
behavior when using these kinds of semi-active measurements instead of just
passively listening and recording the data.

Instrumenting the App and Test-automation Tool

The test automation tool and the app itself may be instrumented to provide in-
formation on interactions, state and network requests. One example for iOS is
implementing NSURLProtocol11 and subscribing to relevant URL requests, log-
ging it, and then pass the request on to let the actual protocol handler take care of
it. The Graphwalker test-automation driver system can be configured to output
time-stamped information about visited vertices and traversed edges, describing
the intended state and performed user interactions.

8mitmproxy, official website, http://mitmproxy.org/, March 2014
9Fiddler official website, http://www.telerik.com/fiddler, March 2014

10Chares proxy official website, http://www.charlesproxy.com/, March 2014
11Apple NSURLProtocol Class Reference, https://developer.apple.com/library/

mac/documentation/cocoa/reference/foundation/classes/NSURLProtocol_Class/
Reference/Reference.html, May 2014

http://mitmproxy.org/
http://www.telerik.com/fiddler
http://www.charlesproxy.com/
https://developer.apple.com/library/mac/documentation/cocoa/reference/foundation/classes/NSURLProtocol_Class/Reference/Reference.html
https://developer.apple.com/library/mac/documentation/cocoa/reference/foundation/classes/NSURLProtocol_Class/Reference/Reference.html
https://developer.apple.com/library/mac/documentation/cocoa/reference/foundation/classes/NSURLProtocol_Class/Reference/Reference.html

38 4 Measurement Methodology

4.2 Processing Captured Data

This section describes how the captured raw traffic is processed to extract statis-
tics and features for the anomaly and novelty detection algorithms described in
Chapter 5.

4.2.1 Extracting Information Using Bro

Bro is a network analysis framework, introduced in Section 2.1.5. It can be
scripted to output statistics and information on captured traffic. In this thesis
Bro is used to convert the binary PCAP network traffic capture files to plain text
log files with information about each packet, DNS request and HTTP request.

Several output formats are used to enable analysis of various features: aggregate
statistics for each stream, statistics for each network packet, aggregate statistics
for plain text HTTP and DNS requests. The data format for the used output is
further described in Appendix A.

4.2.2 Transforming and Extending the Data

To import the test case run artifacts in the change detection tools, the logs from
Bro, the test automation tool and the app are read to extract information we wish
to use.

All timestamps are transformed to be relative to the time of the first observed
network packet (t = 0). The measurement computer’s clock is the time source for
all logs, so no synchronization is needed.

4.2.3 DNS Information

Bro’s standard log output for connections does not include information about the
DNS name of the network end-points. As described in Section 2.3, this infor-
mation could be relevant in determining if two streams are to the same service
end-point, even though the network end-point (IP and port) is different.

We hypothesize that a very useful data point for determining service end-point
likeness is the DNS named used to establish a stream, which hold true if a canon-
ical DNS name is used to establish all connections to a service end-point. The
original DNS name is the easily retrieved with a recursive lookup from the stream
end-point’s IP address in a map of observed DNS queries and responses, which is
one of the standard outputs of Bro.

In some instances a DNS query matching the stream network end-point address
cannot be found. This may be because of at least two distinct reasons: (1) the
stream is not established using a DNS name, meaning none of the test case runs
will have a DNS name for the IP address; and (2) the DNS response is cached, so
the app/operating system does not have to resolve it. For (1) an alternative DNS
name can be derived from the IP address; the PTR record for the IP address may
tie the stream to the organization/service as discussed in Section 2.1.1. For (2)
using the DNS name for some test case runs and PTR or some other information

4.2 Processing Captured Data 39

derived from the IP address will be problematic since they may very well be dif-
ferent (see “www.lon2-webproxy-a2.lon.spotify.com” vs. “www.spotify.com” ex-
ample in Section 2.1.1). As (1) and (2) is indistinguishable in this analysis the
same method must be used for both. Because of this the usefulness of the DNS
name as a data point for service end-point similarity of streams will be different
for different apps and operating systems, and must be evaluated for each case.

4.2.4 Other Network End-Point Information

The log processing system also add some other information about the network
end-point of the responding party: numeric IP address, whether the IP address
belongs to a subnet reserved for private (non-Internet routable) or multicast net-
works and the PTR record. Details described in Table A.2, which contain a mix
of features added by Bro and the log processing system.

Estimate Network Activity

Since keeping the network hardware in a non-idle state by uses a lot of energy
[13] it is preferable to use the network in bursts and let the network hardware idle
in between. We do not explicitly measure the energy consumption, but using
the captured network traffic characteristics and a simple model to emulate the
network hardware’s energy state we can calculate a number that can be used to
compare how much the app let the network hardware idle.

We propose the following algorithm to calculate the time a test run’s network
access have kept the network hardware active, based on the simplified model
that there are two energy states for the network hardware, active and idle and
that the network hardware is kept in the active state “tail” seconds after a packet
transmission is started:

Listing 4.2 : Algorithm to calculate network hardware active state with simple model of the
network hardware.

def calculate_network_active_time(packet_timestamps, tail=0.2):
"""
Calculate the time the network hardware is in a non-idle state by
using a model where the hardware transition to the idle state after
tail seconds.
Input:
- packet_timestamps: sorted list of timestamps in seconds of sent
packets.

- tail: number of seconds the hardware is kept non-idle after a
packet is sent.

"""
active_time = 0
start = packet_timestamps[0]
end = start + tail
for ti, ts in enumerate(packet_timestamps):

if ts > end:
active_time += end - start
start = ts

end = ts + tail
if ti == len(timestamps) - 1:

40 4 Measurement Methodology

awake += end - start
return active_time

4.3 Data Set Collection

This section describes how the data sets were collected.

4.3.1 Environment

All data sets were collected from an iPhone 5c running iOS 7.0.4, connected to a
computer running the rvictl tool (Section 4.1.2) to capture the phone’s network
traffic and Spotify’s test automation tool to perform the test cases defined in Sec-
tion 4.4.3 and Section 4.5.1 in a predictable manner. The phone was configured
to minimize iOS network traffic by disabling iCloud, iMessage and location ser-
vices.

For data set I the phone was connected to the Internet over the Spotify’s office
WiFi connection. For data set II the phone was connected to a WiFi provided
with Internet access through Comhem. Data set I and II are used in separate
evaluations and no direct comparison is done between them.

Measurements were exclusively done over WiFi to avoid the extra cost associ-
ated with cellular data connections during the design and evaluation period. The
results are expected to translate well to measurements over cellular data connec-
tions as none of the methods are tailored to the traits of a WiFi connection.

4.3.2 User Interaction – Test Cases

To make comparisons of the network activity of various versions of the app, some
way to minimize the variability between runs of a test case. To achieve this a
graphical user interface (GUI) automation tool is used, as a computer is much
better at performing tasks in a deterministic manner than a person. This also
helps in generating the large amount of samples that may be necessary to train
the algorithms, with minimal manual intervention. The network activity measur-
ing system is integrated with Spotify’s system for automated testing to make it
easy and accessible to write new tests on a familiar platform and reuse suitable
existing tests.

Each test case starts with clearing the app’s cache, setting up the network traffic
recording as described in Section 4.1.2 and ends by stopping the network record-
ing and collecting recorded network and log data.

4.3.3 Network Traffic

The collected network traffic was saved to pcapng files using tcpdump to save
all network traffic on the rvictl interface to a file by running the command in
Listing 4.3. Traffic from/to transport protocol port 8023 was filtered out as it
is used by the test automation tool to remote control the application and receive

4.3 Data Set Collection 41

log and state information. No non-test automation remote control traffic could be
observed on port 8023 when investigating, so no negative impact on the quality
of the data set is expected.

Listing 4.3 : Command to start tcpdump to capture the network traffic

/usr/sbin/tcpdump -i rvi0 -s 0 -w tcpdump.pcapng port not 8023

Features are extracted from the network dumps with Bro [22] (partially described
in Section 2.1.5) to identify protocols and connections and extract payload data
from the application level protocols DNS and HTTP. Bro by default produces an
abundance of log files with miscellaneous information. For our analysis and vi-
sualization we required some custom features, so we defined a custom Bro log
format to capture information for each network packet by subscribing to Bro’s
new_packet event12. This logging format enables time-based analysis. Descrip-
tion of the features can be found in Table A.1 in Appendix A.

In a later preprocessing step the following features are added, derived from the
features above. Description of the derived features can be found in Table A.2 in
Appendix A.

Although the phone was configured to minimize non-app network traffic some in-
termittent traffic to Apple’s servers was detected. Since it is possible that changes
to the app will lead to a change in network traffic to or from Apple’s servers, it
was decided to avoid filtering attempts of this traffic at this stage.

4.3.4 App and Test Automation Instrumentation Data Sources

The test automation tool and app produces logs, which can include relevant data
to correlate features from the captured network traffic with. To enable time syn-
chronization and to give the context in which anomalies/novelties were detected
the state and actions of the GraphWalker model based testing system that drives
the test automation is extracted from the logs. The app have been instrumented
to output information about its view state, observed HTTP/HTTPS requests and
when adding network usage statistics to the app-internal RequestAccounting sys-
tem.

The information obtained using instrumentation is:

1. The Graphwalker (test-automation driver) vertices and edges, correspond-
ing to state and action of the test automation system.

2. “Breadcrumbs” from the app, detailing what view of the app is entered/ex-
ited; representing the visual state of the app.

3. Calls to the internal network activity statistics module, detailing the end-
point, bytes uploaded, bytes downloaded and the network type. This is the

12http://bro.icir.org/sphinx/scripts/base/bif/event.bif.html#id-new_
packet, May 2014

http://bro.icir.org/sphinx/scripts/base/bif/event.bif.html#id-new_packet
http://bro.icir.org/sphinx/scripts/base/bif/event.bif.html#id-new_packet

42 4 Measurement Methodology

main method to extract more detailed information about the service end-
point traffic for the long-lived, multiplexed and encrypted connection to
Spotify’s access point.

4. HTTP/HTTPS requests by implementing NSURLProtocol and subscribing
to requests for the relevant protocols to log it and then pass it to the real
protocol handler.

The app log data will not be available in situations where it is not possible to
instrument the app, like when missing access to the source code. Test run state
and actions should be available even when testing a prebuilt binary as it is as-
sumed the examiner is in control of the test-driving tool, whether it is manual or
automated. Because of this and the utility to others than developers of the sys-
tem we will avoid relying on the information from the app log to construct the
basic anomaly/novelty detection system. It will be used to augment the analysis
or construct a complementary, more detailed, detection system.

4.4 Data Set I - Artificial Defects

This section describes the dataset with manually introduced defects used to eval-
uate the algorithms’ ability to find the effects of some types of defects.

Data set I was collected 2014-04-07 - 2014-04-14.

4.4.1 Introduced Defects

To verify the novelty detection and visualization algorithms and system some ar-
tificial defects were introduced into the app that was used to generate the normal
base traffic. These defects are created as examples of some of the anomaly/novel
types we aim to detect, affecting the network activity in different ways to facilitate
algorithm tweaking and detection evaluation.

The introduced defects are:

A1 On login (starting the app, not resuming from background) downloading
a 935 kB large jpeg image13 over HTTP from a service end-point not previ-
ously observed in the app’s traffic. This anomaly deviate from the normal
traffic on several dimensions and ought to be easily detectable by suitable
machine learning algorithms, and may as such be used as a sanity check.

A2 Partially breaking the app’s caching mechanism by removing cache folders
on when the test automation tool is restarting the app.

A3 Sending ping messages to the Spotify AP 100 times more often. Ping mes-
sages are small with only 4-byte payload.

A4 On login (starting the app, not resuming from background) downloading
a 25 kB large cover art image over HTTP from one of Spotify’s CDNs for

13Spotify press logo for print, http://spotifypresscom.files.wordpress.com/2013/
01/spotify-logo-primary-vertical-light-background-cmyk.jpg, March 2014

http://spotifypresscom.files.wordpress.com/2013/01/spotify-logo-primary-vertical-light-background-cmyk.jpg
http://spotifypresscom.files.wordpress.com/2013/01/spotify-logo-primary-vertical-light-background-cmyk.jpg

4.4 Data Set I - Artificial Defects 43

media metadata14. Downloads from the media metadata CDN is usually
done over HTTPS. This cover art is normally downloaded as part of the
test case in Listing 4.6. As this file is small relative to the total size of the
network traffic of a test case run and from a source that is used in normal
traffic it should be a challenge to detect.

The introduced defects are selected to create network traffic changes we would
like to be able to find, and to create varyingly difficult changes to detect to bench-
mark the detection methods.

4.4.2 Normal Behavior

The algorithms are taught what traffic patterns are considered normal from a set
of test case run artifacts for each test case running on the Spotify iOS client 0.9.4
to. Note that some traffic activity of this app version may not be actually de-
sirable, and may therefore contain traffic that ought to be classified as anomalies.
This problem is not considered in this thesis; we solely focus on novelty detection
and therefore need some traffic patterns to use as a baseline for what is normal.

4.4.3 Test Cases

The test cases T1, T2 and T3 (detailed in Listing 4.4, Listing 4.5, and Listing 4.6)
are used to generate the data for the normal and defect versions of Spotify iOS
0.9.4.25. These test cases are created to trigger one or more of the introduced
defects and to produce varying amount of network activity with different charac-
teristics to enable detection performance analysis for the algorithms for different
situations.

Listing 4.4 : Login and Play Song (T1)

0. Start with cleared cache.
1. Login.
2. Search for "Infected Mushroom Where Do I Belong".
3. Touch the first song to start it.
4. Verify that the song is playing.
5. Pause the song.

Listing 4.5 : Login and Play Song, Exit The App and Redo (T2)

0. Start with cleared cache.
1. Login.
2. Search for "Infected Mushroom Where Do I Belong".
3. Touch the first song to start it.
4. Verify that the song is playing.
5. Pause the song.
6. Exit the app (triggering removal of metadata if defect A2 is active).
7. Search for "Infected Mushroom Where Do I Belong".
8. Touch the first song to start it.
9. Verify that the song is playing.

14http://d3rt1990lpmkn.cloudfront.net/640/9c0c3427b559f5cae474f79119add480544e58d5,
April 2014 over HTTP

http://d3rt1990lpmkn.cloudfront.net/640/9c0c3427b559f5cae474f79119add480544e58d5

44 4 Measurement Methodology

10. Pause the song.

Listing 4.6 : Login and Create Playlist From Album, Exit The App and Redo (T3)

0. Start with cleared cache.
1. Login.
2. Search for "Purity Ring Shrines".
3. Touch the first album to go to the album view.
4. Add the album as a new playlist.
5. Go to the new playlist and verify its name.
6. Remove the new playlist.
7. Exit the app (triggering removal of metadata if defect A2 is active).
8. Search for "Purity Ring Shrines".
9. Touch the first album to go to the album view.
10. Add the album as a new playlist.
11. Go to the new playlist and verify its name.
12. Remove the new playlist.

4.4.4 Summary

Defects (Section 4.4.1) were introduced by modifying the source code of the
Spotify iOS 0.9.4.25 app and building one binary per defect, which was installed
on the phone before collecting measurements for these app types. The measure-
ments were performed on a all combinations of app types {normal, A1, A2, A3,
A4} and test cases {T1, T2, T3}. The numbers of test case runs for each app type-
/test case combination can be found in Table 4.1.

The normal version has many runs as it need to capture the possibly different
network activity patterns of the app. The numbers of test case runs of the defect
versions are low to enable manual inspection of each as necessary. This also cor-
respond to the expected use case, where many historic measurements of versions
deemed normal are available while a small number of samples a new app is pre-
ferred to minimize time to detection and maximize throughput. Differences in
the numbers of test case runs between test cases are due to the corrupt network
captures in Section 4.1.2.

Table 4.1: Number of collected test case runs for each test case and app
version for data set I.

T1 T2 T3

normal 87 72 69

A1 5 4 3

A2 22 5 8

A3 9 10 8

A4 3 10 7

4.5 Data Set II - Real World Scenario 45

4.5 Data Set II - Real World Scenario

In an effort to evaluate the network pattern change detection performance in a
real world scenario data sets were collected from instrumented versions of the
Spotify iOS client version 1.0.0 and 1.1.0.

Data set II was collected 2014-05-18.

The release notes for 1.1.0 can be found in Listing 4.7 and may include clues
about what network traffic pattern changes can be expected to be found or lead
to an explanation of why a change was observed.

Listing 4.7 : Spotify iOS 1.1.0 Release Notes

First, an apology from us.
We know there were some issues introduced in the last release.
We’ve been getting through a lot of coffee trying to fix them, and things
should get a lot better with this release! Thanks for bearing with us.

- New: Introducing Your Music, a better way to save, organise and browse
your favourite music.

- New: Play the same song over and over with Repeat One. Now available
for Premium users and free users on iPad.

- Fixed: Smoother track skipping.
- Fixed: We’ve banished some crashes.
- Fixed: You can now delete Radio stations.

4.5.1 Test Cases

The test cases T4, T5 and T6 (detailed in Listing 4.8, Listing 4.9, and Listing 4.10)
are used to generate the data set for the Spotify iOS version 1.0.0 and 1.1.0 in this
thesis. These test cases were taken from the Spotify iOS client test automation
set, but slightly modified to behave deterministically.

Listing 4.8 : Artist page biography and related artists (T4)

0. Start with cleared cache.
1. Login.
2. Search for "David Guetta".
3. Touch the first artist to go to the artist page.
4. Go to the artist biography.
5. Go back to the artist’s page.
6. Go to related artists.
7. Touch the first artist to go to its artist page.
8. Go back two time, ending up on the first artist’s page.

Listing 4.9 : Display the profile page (T5)

0. Start with cleared cache.
1. Login.
2. Go to the profile page.

46 4 Measurement Methodology

Listing 4.10 : Add an album to a playlist and play the first track (T6)

0. Start with cleared cache.
1. Login.
2. Search for "Purity Ring Shrines".
3. Touch the first album to go to the album view.
4. Add the album as a new playlist.
5. Go to the new playlist.
6. Play the first track in the playlist.
7. Pause the track.
8. Remove the new playlist.

4.5.2 Summary

The number of test case runs for each app type/test case combination can be
found in Table 4.2. The differing number of test case runs are due reasons ana-
logue to the ones given in Section 4.4.4.

Table 4.2: Number of collected test case runs for each test case and app
version for data set II.

T4 T5 T6

1.0.0 59 52 32

1.1.0 22 22 18

5
Detecting and Identifying Changes

We have implemented and evaluated two change detection systems: (1) an anomaly
detection system using the EWMA chart method described in Section 3.3.1, and
(2) a novelty detection system using the k-means clustering algorithm described
in Section 3.4, Section 3.5 and Section 3.8.

5.1 Anomaly Detection Using EWMA Charts

A classic method for anomaly detection in statistical quality control is Exponen-
tially Weighted Moving Average (EWMA) charts; see Section 3.3.1 for a theoret-
ical introduction. An EWMA chart defines a target value and an allowed multi-
ple of standard deviations from the target value as the upper and lower bound.
EWMA uses the inertia from the “tail” of weighted prior values to smooth the
signal, which means that occasional data points outside the bound will not set off
the alarm, but a systematic drift will drag the weighted EWMA function outside
and trigger the alarm.

The inertia is dictated by the decay factor α. This thesis instead defines span,
which is related to α as α = 2

span+1 and approximately describes the number of
historic data points that influence the EWMA in (see discussion in Section 3.3.1).
Span is commonly selected as 7 ≤ span ≤ 39, corresponding to 0.05 ≤ α ≤ 0.25,
to strike a balance between new and historic values. Larger span values gives
more smoothing and more resiliency to random noise, but slower reaction to
change.

Setting span to different values within the interval [7, 39] was not observed to
impact the ROC curves or performance measures precision, FP R or T P R in an
apparent way for the data set I. We believe this is due to that the threshold T

47

48 5 Detecting and Identifying Changes

changing to allow a larger threshold when the EWMA is less smoothened because
of lower span, and vice versa. As no superior span value was found, span = 20 is
used for the rest of this thesis.

The upper and lower thresholds for anomaly detection, UCL and LCL, is selected
as

UCL = µs + T σs,

LCL = µs − T σs,

where µs is the mean and σs the standard deviation of the time series and T the a
tolerance factor giving a trade off between false positives and false negatives.

5.1.1 Data Set Transformation

For each test case run four values are calculated as features for the EWMA chart
analysis:

1. Number of network level bytes (ip_len) – the network footprint.

2. Number of packets – related to network footprint and network hardware
activity.

3. Number of unique network end-points (feature names: resp_h, resp_p).

4. Number of unique (ASN, services) pairs, where services is the protocol de-
tected by Bro’s protocol identification.

These features are selected from the available features in Appendix A in an effort
to make regression testing possible for the characteristics in Section 1.1.2.

5.1.2 Detecting Changes

EWMA analysis is good at identifying changes when the deviation is sufficiently
large and persistent to drive the EWMA outside the UCL/LCL thresholds, as can
be seen in Figure 5.1, where the data points from the defect client is correctly
identified as anomalous after five data points of false negatives.

Each transformed data set from Section 5.1.1 may be described as a stochastic
process (see Section 3.1). The data sets are separately subjected to EWMA chart
analysis, as the basic method only treat one process at a time. As the observed
outcomes from the stochastic variables depend on unknown states of the whole
communication system, such as the time of the day, the current routing for mu-
sic streams and current available download bandwidth from different sources,
the stochastic process is non-stationary. EWMA chart analysis can fail to detect
changes in non-stationary processes, since a single mean and variance is calcu-
lated, not taking into account the (possibly) different properties of the stochastic
variables. In an EWMA chart of such a process the mean will be the mean of
means and the variance will be larger than any of the process’ single stochastic
variable variance.

5.1 Anomaly Detection Using EWMA Charts 49

0 10 20 30 40 50 60 70 80

test run

1800000

2000000

2200000

2400000

2600000

2800000

b
y
te

s

0123

d
e
fe

ct
 c

lie
n
t

Figure 5.1: EWMA chart of the A2 (metadata) anomaly using the T3 (al-
bum playlist) test case and total number of IP bytes – the network footprint.
span = 20 and threshold according to equations in Section 3.3.1.

50 5 Detecting and Identifying Changes

If the anomaly is small enough to not deviate sufficiently from the mean with
regards to the variance it will hide in the large variation of the normal traffic. In
Figure 5.2, three levels of total network traffic can be observed (disregarding the
single sample 5), eliminating any chance that the anomaly will be detected. The
reason for the three distinct levels of the normal traffic in Figure 5.2 is twofold:

1. Test case run artifacts collected on 2014-04-08 have a 500 kB large meta-
data request which have not been observed any other day. This corresponds
to the 4 MB level of the first 24 artifacts and the two last artifacts on the
anomalous client side.

2. When starting a non-cached song the first small chunk will be requested
from two sources in an effort to minimize click-to-play latency. If the first
request completes before the second, the second is cancelled and a new
request is issued for the rest of the song. If instead the second request
completes first enough data have been downloaded to satisfy the short play
session and no more request is issued.

0 10 20 30 40 50 60 70 80 90

test run

3000000

3500000

4000000

4500000

5000000

5500000

b
y
te

s

01

2345

6

7
8
91011

1213
14
15
16
17

d
e
fe

ct
 c

lie
n
t

Figure 5.2: EWMA chart of the A4 defect using the T1 (play song) test case
and total number of IP bytes. Note the number of false positives (marked
with a number and arrow). span = 20 and threshold according to equations
in Section 3.3.1.

5.2 Novelty Detection Using k-Means Clustering 51

5.2 Novelty Detection Using k-Means Clustering

Novelty detection can be used to find when sampled network traffic exhibit pat-
terns dissimilar to a learn model of normal traffic. Novelty detection is done
by building a model of the system’s normal behavior and comparing new data
points, similarity to the model to determine if it should be classified novel or nor-
mal. With careful selection of features and methods this detection system can be
used to identify in what way the network traffic patterns have changed compared
to earlier data points, if any. Measurements transformed into vector space – a
vector of selected features for each measurement data point – are called vectors.

5.2.1 Feature Vector

In an effort to detect and highlight in what traffic type a change have been found
we wish to build the normal model as traffic characteristics for meaningful traffic
types. Traffic types can be defined in a lot of ways; including more information
gives higher resolution, which means higher precision in the change detection
report, helping analyzers to pinpoint the problem. However, including too much
or noisy information has the drawback of creating patterns that are not useful in
determining if a new sample is novel or not.

As discussed in Section 1.1.1, Section 2.1.1 and Section 2.3, some of the collected
network traffic features (see Appendix A) are problematic to use directly to es-
tablish if two different connections are to the same service end-point. Especially
load balancing routing to different end-points, cloud computing creating real-
time dynamic sized clusters with different addresses, and the non-contiguous
allocation of IP-addresses make the end-point IP-address resp_h problematic for
classifying the network traffic of dynamic applications. Our hypothesis is that the
Autonomous System (AS) number (explained in Section 2.1.1) can be used to clas-
sify network traffic stream into meaningful stream families with all end-points
belonging to the same cluster of machines in the same family.

To increase the resolution further, as the AS numbers can contain a lot of IP ad-
dresses and machines, a feature that describe the type of service the traffic be-
longs to would be suitable. As mentioned in Section 1.1.1 and Section 2.1.1 the
transport protocol port numbers may not be the best way of determining the ser-
vice type any longer. We therefore elect to use the feature provided by Bro’s pro-
tocol identification system, which is available in the services field of the network
capture data set.

Many streams are asymmetrical in regards of traffic amount sent/received, such
as downloading files; the traffic direction is added to discern such patterns.

The network traffic features are grouped on the categorical features described
above (asn, services, direction) into stream families; streams that have the same
ASN, identified service, and direction. This feature vector is described in Ta-
ble 5.1.

This transformation gives multiple dimensions in cluster space for each test run,

52 5 Detecting and Identifying Changes

Table 5.1: Feature vector for k-means novelty detection.

label transformation description

asn Label binarization (described in
Section 3.4.2)

ASN identified by Bro.

services Label binarization (described in
Section 3.4.2)

Service protocol identi-
fied by Bro.

direction Label encoding 0, 1 Direction of the stream –
to or from the app.

ip_len Component-wise normalization
(described in Figure 3.4.2)

Number of IP-level bytes
for the stream family.

count Component-wise normalization
(described in Figure 3.4.2)

Number of packets for
the stream family.

typically 28-33 dimensions, which means the novelty detection is performed on
stream families and not the test case runs. The relationship between a test case
run and a stream family is identified from a cluster space vector by keeping track
of indices in the data structures.

5.2.2 Clustering

Assigning features vectors to clusters based on similarity allows the algorithm to
estimate the center and size of the regions where vectors from the normal data
set are in vector space. The k-means algorithm identifies k clusters of similar
feature vectors, finding an assignment of vectors to clusters that minimizes the
dissimilarity between the points and their respective cluster center. We use the
Euclidean distance as the dissimilarity metric.

One problem with using the k-means algorithm to automatically find clusters in
previously unknown data is that the algorithm need the number of clusters as an
in parameter; that is, we need to know how many clusters there are in the data.
The silhouette score introduced in Section 3.4.1 is a measurement of how good
the clustering is based on how similar vectors in the same cluster are and how
dissimilar they are to vectors in other clusters. Running the k-means algorithm
iteratively with a range of values for k and calculating the silhouette score for
each let us determine which value k∗ gives the most meaningful clustering with
regards to cluster separation. This silhouette score ranking is used to automati-
cally determine the value for k for the set of vectors from the normal app when
building the model of normal.

To counteract overfitting the model to the normal data set, the data set is split
into a 90 % learning set and a 10 % verify set selected at random.

5.2 Novelty Detection Using k-Means Clustering 53

5.2.3 Novelty Detection

When the vectors from the learn data set is divided into clusters, novelty detec-
tion can be done on new vectors by determining by how much they deviate from
the clusters.

The deviation for vectors to their closest cluster center is based on the Euclidean
distance. For vector xj the distance to its closest cluster center, i is di,j :

di,j = ||xj − µi ||,

where µi is the vector for the cluster center i.

The verify set is used in combination with the learn set to determine the maxi-
mum distance a normal vector can have to its cluster center – the normal bound-
ary for the cluster. The normal boundary is determined for each cluster and is
selected such that all vectors in the learn and verify set falls within it.Si is the set
of all vectors from the learn and verify data set with closest cluster i. The normal
boundary for cluster i, bi , is calculated as:

bi = max
xi∈Si

di,j .

Each new vector zj , with closest cluster Si is assigned a novelty score nj based
on its distance to the closest cluster center, weighted with the cluster’s normal
boundary to account for different variations for different clusters:

nj =
||zj − µi ||
bi + ξ

,

where ξ is a small tolerance term to account for the clusters with non-existent
variance. No variance of the vectors in cluster i means bi = 0. Setting ξ = 0 and
bi = 0 =⇒ nj = ∞, when zj , µi . ξ = 0.05 is determined as a good balance to
not exaggerate the novelty score for deviations from a zero-variance cluster with
a too small value while keeping it small enough to not have the normal boundary
cover novelties. The testing to determine ξ was performed on data set I.

The normal boundary is not used as a hard limit for classifying novelties, but for
normalization of the distances to establish a novelty score. Vectors with novelty
score ≥ 1 have a larger distance to their cluster center than vectors from the learn-
and verify set. This means 1 is a feasible start threshold for classifying novelties,
but higher or lower thresholds may be selected to decrease the false positive rate
or increase the rate of true positives, respectively.

6
Evaluation

In this chapter the proposed methods from Chapter 5 are evaluated using the
data sets from Chapter 4.

6.1 Anomaly Detection Using EWMA Charts

The performance of the EWMA anomaly detection system to detect network ac-
tivity change is evaluated by measuring the number of correct and incorrect clas-
sification of the data points from the normal and defect app. Since all introduced
defects increase all the metrics used for EWMA (see Section 5.1.1), the lower
bound, LCL, is set twice the distance from the mean compared to UCL; that is,
LCL = µs − 2T σs. This eliminates some of the instances where the data points
from the defect happen to be slightly below LCL, which together with the repeti-
tion of each value in Section 6.1.2 made them classified as anomalies of the wrong
reason. As the numbers of samples for the defect apps are low the wrong classifi-
cations have a big impact on the performance number, so adjusting the threshold
make the evaluation more clear. Taking this to the extreme and setting LCL = 0
would be less acceptable in a real world scenario; great deviations toward lower
values are still interesting and LCL = µs − 2T σs � 0 for the considered features.

Ideally there should be possible to find a tolerance factor, T , where all data points
from apps with a defect which is triggered by the current test case are marked as
anomalous, while none of the data points from the normal app are. The mea-
sures precision, true positive rate T P R and false positive rate FP R introduced in
Section 3.6 are used as performance measurements for the classification system.

55

56 6 Evaluation

6.1.1 First Method ROC Curves

The first attempt at measuring the classification rates of the EWMA anomaly de-
tection system is to use the mechanism described above to classify data points
from a series of data points, where the data points from the defect app are placed
after the data points from the normal. The data points are tagged as from the
normal or defect version of the app to determine if the classification is true/false
positive/negative.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
si

ti
v
e
 r

a
te

 (
T
P
R

)

0.0
0.2
0.4
0.6
0.8
1.0

area = 0.471 area = 0.267 area = 1.000

0.0
0.2
0.4
0.6
0.8
1.0

area = 0.638 area = 0.633 area = 0.884

0.0
0.2
0.4
0.6
0.8
1.0

area = 0.612 area = 0.732 area = 0.096

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

area = 0.207

0.0 0.2 0.4 0.6 0.8 1.0

area = 0.738

0.0 0.2 0.4 0.6 0.8 1.0

area = 0.228

Figure 6.1: ROC curve of EWMA chart anomaly detection of the feature net-
work footprint (total number of bytes sent/received), first method. Sub-
plots on x-axis left to right: T1, T2, T3; y-axis top to bottom: A1, A2, A3,
A4.

As a core property of EWMA is the delayed reaction, the first data points from
a defect app is unlikely to be classified as anomalous, which drives down the
true positive rate artificially as some of these data points would eventually be
detected. An alternative way of establishing whether a sample would be classified
as anomalous is described below.

6.1.2 Better Conditions for Classifying Defects as Anomalous

Determining if defect app data point is an anomaly or not will be done by re-
peating the defect app data point span times and count the sample as anomalous
only if the last repeated sample of it is marked as an anomaly. The ROC curve for
the EWMA anomaly detection system under these ideal conditions for anomaly
detection can be observed in Figure 6.2.

Comparing the ROC curves in Figure 6.2, generated with the higher probability

6.1 Anomaly Detection Using EWMA Charts 57

of detecting anomalies in the data set from the defect app, to the ROC curves in
Figure 6.1 it is clear that the new conditions detect more data points from the
defect app and therefore have a higher T P R. The true T P R to FP R relation lies
somewhere in between the two sets of ROC curves, but the latter will be used in
this analysis, keeping in mind that it is under artificial conditions.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
si

ti
v
e
 r

a
te

 (
T
P
R

)

0.0
0.2
0.4
0.6
0.8
1.0

area = 0.970 area = 0.806 area = 1.000

0.0
0.2
0.4
0.6
0.8
1.0

area = 0.601 area = 0.353 area = 1.000

0.0
0.2
0.4
0.6
0.8
1.0

area = 0.566 area = 0.743 area = 0.813

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

area = 0.475

0.0 0.2 0.4 0.6 0.8 1.0

area = 0.754

0.0 0.2 0.4 0.6 0.8 1.0

area = 0.580

Figure 6.2: ROC curve of EWMA chart anomaly detection of the feature net-
work footprint (total number of bytes sent/received), ideal EWMA condi-
tions for true positives. Subplots on x-axis left to right: T1, T2, T3; y-axis top
to bottom: A1, A2, A3, A4.

6.1.3 Detected Anomalies

In this section we for each introduced defect discuss the EWMA charts analysis’
detection ability and false positives for the typical setting for UCL as introduced
in Section 3.3.1 and the LCL double the distance of UCL as discussed in Sec-
tion 6.1. The referenced ROC curves are created with varying UCL and LCL
to map the balance between achievable T P R and FP R with ideal detection. The
ROC curves can be found in Figure 6.2 through Figure 6.5, where test cases T1-T3
are represented on the horizontal x-axis left to right, and the introduced defects
A1-A4 on the vertical y-axis top to bottom.

A1 Defect

The A1 defect was expected to be easy to detect since it adds 935 kB network
traffic and uses a new network and service end-point. However, for the T1 and
T2 test cases with large variance in network footprint, the FPR is high and TPR
and precision is low for all data representations except the number of distinct
AS/service pairs where T2 achieves good and T1 ok scores. T3 achieves good

58 6 Evaluation

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
si

ti
v
e
 r

a
te

 (
T
P
R

)

0.0
0.2
0.4
0.6
0.8
1.0

area = 1.000 area = 1.000 area = 1.000

0.0
0.2
0.4
0.6
0.8
1.0

area = 0.601 area = 0.086 area = 1.000

0.0
0.2
0.4
0.6
0.8
1.0

area = 0.184 area = 0.726 area = 0.891

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

area = 0.525

0.0 0.2 0.4 0.6 0.8 1.0

area = 0.758

0.0 0.2 0.4 0.6 0.8 1.0

area = 0.569

Figure 6.3: ROC curve of EWMA chart anomaly detection of the feature
number of packets, ideal EWMA conditions for true positives. Subplots on
x-axis left to right: T1, T2, T3; y-axis top to bottom: A1, A2, A3, A4.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
si

ti
v
e
 r

a
te

 (
T
P
R

)

0.0
0.2
0.4
0.6
0.8
1.0

area = 0.899 area = 0.993 area = 0.981

0.0
0.2
0.4
0.6
0.8
1.0

area = 0.864 area = 0.931 area = 1.000

0.0
0.2
0.4
0.6
0.8
1.0

area = 0.826 area = 0.904 area = 0.830

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

area = 0.739

0.0 0.2 0.4 0.6 0.8 1.0

area = 0.907

0.0 0.2 0.4 0.6 0.8 1.0

area = 0.946

Figure 6.4: ROC curve of EWMA chart anomaly detection of the feature
number of distinct network end-points, ideal EWMA conditions for true
positives. Subplots on x-axis left to right: T1, T2, T3; y-axis top to bottom:
A1, A2, A3, A4.

6.1 Anomaly Detection Using EWMA Charts 59

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
si

ti
v
e
 r

a
te

 (
T
P
R

)
0.0
0.2
0.4
0.6
0.8
1.0

area = 1.000 area = 1.000 area = 1.000

0.0
0.2
0.4
0.6
0.8
1.0

area = 0.717 area = 0.994 area = 0.797

0.0
0.2
0.4
0.6
0.8
1.0

area = 0.525 area = 0.836 area = 0.797

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

area = 0.418

0.0 0.2 0.4 0.6 0.8 1.0

area = 0.997

0.0 0.2 0.4 0.6 0.8 1.0

area = 0.884

Figure 6.5: ROC curve of EWMA chart anomaly detection of the feature
number of distinct (AS, service) pairs, ideal EWMA conditions for true
positives. Subplots on x-axis left to right: T1, T2, T3; y-axis top to bottom:
A1, A2, A3, A4.

scores for the network footprint because of the test case’s smaller variance in
network footprint.

Table 6.1: Detection performance numbers for EWMA on the A1 defect.

feature test case precision T P R FP R

IP bytes
T1 0.12 0.40 0.17
T2 0.00 0.00 0.13
T3 1.00 1.00 0.00

Packets
T1 0.16 0.60 0.18
T2 0.00 0.00 0.11
T3 1.00 1.00 0.00

Network end-points
T1 0.00 0.00 0.00
T2 0.00 0.00 0.00
T3 0.00 0.00 0.04

ASN-service pairs
T1 0.25 0.60 0.10
T2 1.00 1.00 0.00
T3 1.00 0.33 0.00

A2 Defect

The A2 defect is triggered when the app is restarting, which only occurs in T2
and T3; thus the T1 test case should be equally probable to detect data points
from normal as the defect. This “random guess” can be observed in Figure 6.1
as the ROC curve tracking the dashed line and area ≈ 0.5. The pattern can be
observed for the ROC Figures 6.2 - 6.5, as well as the curves bias toward higher

60 6 Evaluation

T P R. The T3 test case is best in classifying the defect combined with the network
footprint features.

Table 6.2: Detection performance numbers for EWMA on the A2 defect. (*)
Defect not triggered by test case, no true positive detection possible.

feature test case precision T P R FP R

IP bytes
T1∗ - - 0.17
T2 0.00 0.00 0.13
T3 1.00 0.75 0.00

Packets
T1∗ - - 0.18
T2 0.00 0.00 0.11
T3 1.00 0.75 0.00

Network end-points
T1∗ - - 0.00
T2 1.00 0.20 0.00
T3 0.57 0.50 0.04

ASN-service pairs
T1∗ - - 0.10
T2 1.00 0.60 0.00
T3 0.00 0.00 0.00

A3 Defect

The A3 defect increases the rates of pings in the Spotify AP protocol by 100.
It is expected to be primarily detectable in the packet features, since the ping
messages are only 4 bytes each. As can be seen in Table 6.3, only T3 with network
packets detected the defect.

Table 6.3: Detection performance numbers for EWMA on the A3 defect.

feature test case precision T P R FP R

IP bytes
T1 0.00 0.00 0.17
T2 0.00 0.00 0.13
T3 0.00 0.00 0.00

Packets
T1 0.00 0.00 0.18
T2 0.00 0.00 0.11
T3 1.00 0.63 0.00

Network end-points
T1 0.00 0.00 0.00
T2 0.00 0.00 0.00
T3 0.00 0.00 0.04

ASN-service pairs
T1 0.00 0.00 0.10
T2 0.00 0.00 0.00
T3 0.00 0.00 0.00

A4 Defect

The A4 defect downloads a small image file from one of the metadata CDN re-
sources already used by the app, but using HTTP instead of the usual HTTPS. It
is expected to be hard to detect using EWMA and the set of features because it
should only cause a relatively small deviation for some of the features. T2 have
a high T P R and low FP R for the ASN-service pair feature; see the EWMA chart
in Figure 6.6. As no clear explanation of why just this combination of test and
feature should be able to find the defect, a second data set captured 2014-05-20
was analyzed for this defect. The EWMA chart for the same defect, test case and
feature on the secondary data set can be found in Figure 6.7 and indicates that
the test case and feature is not able to detect the A4 defect.

6.1 Anomaly Detection Using EWMA Charts 61

0 10 20 30 40 50 60 70 80

test run

15

16

17

18

19

a
sn

-s
e
rv

ic
e
 p

a
ir

s

d
e
fe

ct
 c

lie
n
t

Figure 6.6: EWMA chart of the A4 http-cover defect using the T2 (play song,
exit, play song) test case and total number of distinct ASN-service pairs.
span = 20 and threshold according to equations in Section 3.3.1.

0 5 10 15 20 25

test run

16.5

17.0

17.5

18.0

a
sn

-s
e
rv

ic
e
 p

a
ir

s

Figure 6.7: EWMA chart of the A4 http-cover defect using the T2 (play song,
exit, play song) test case and total number of distinct ASN-service pairs.
span = 20 and threshold according to equations in Section 3.3.1. Ad-hoc
data set for this verification, as described in “The A4 defect” in Section 6.1.3.

62 6 Evaluation

Table 6.4: Detection performance numbers for EWMA on the A4 defect.

feature test case precision T P R FP R

IP bytes
T1 0.00 0.00 0.17
T2 0.00 0.00 0.13
T3 0.00 0.00 0.00

Packets
T1 0.00 0.00 0.18
T2 0.00 0.00 0.11
T3 0.00 0.00 0.00

Network end-points
T1 0.00 0.00 0.00
T2 0.00 0.00 0.00
T3 0.00 0.00 0.04

ASN-service pairs
T1 0.00 0.00 0.10
T2 0.00 0.00 0.00
T3 0.00 0.00 0.00

6.2 Novelty Detection Using k-Means Clustering – Data Set I 63

6.2 Novelty Detection Using k-Means Clustering –
Data Set I

6.2.1 ROC Curves

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
si

ti
v
e
 r

a
te

 (
T
P
R

)

0.0
0.2
0.4
0.6
0.8
1.0

area = 1.000 area = 1.000 area = 1.000

0.0
0.2
0.4
0.6
0.8
1.0

area = 0.693 area = 1.000 area = 1.000

0.0
0.2
0.4
0.6
0.8
1.0

area = 0.806 area = 0.757 area = 0.979

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

area = 1.000

0.0 0.2 0.4 0.6 0.8 1.0

area = 1.000

0.0 0.2 0.4 0.6 0.8 1.0

area = 1.000

Figure 6.8: ROC curve of k-means clustering novelty detection of stream
families. Subplots on x-axis from left to right: T1, T2, T3; y-axis from top to
bottom: A1, A2, A3, A4.

To evaluate the false positive rate of the novelty detection system 10% of the
test runs of the normal app were randomly selected and removed before training.
Vectors from this test set were evaluated against the model of normal in the same
way that vectors from runs of a defect app are and the classification performance
recorded. Random selection of the test data set and retraining of the model is
done several times and the average computed.

For the ROC curve in Figure 6.8 test case runs having at least one stream family
vector detected as novel are marked as detected/positive. The true positive and
false positive rates are in other word calculated on test runs and not stream fam-
ilies, to make the ROC curves comparable to the ones generated for the EWMA
chart.

Since the proposed novelty detection method is detecting novelties in feature vec-
tors based on stream families, an alternative evaluation graph have been added
to compare the number of identified novelties for the test data set versus the data
set from a defect app (Figure 6.9). A dashed horizontal line is added to mark
the number of expected novelties for each app defect type. The number of ex-
pected novelties is approximate based on observations and deduction on what
is reasonable for a given defect. We cannot determine the exact number of nov-

64 6 Evaluation

0.0 0.2 0.4 0.6 0.8 1.0
Novelties detected per test run of normal app

0.0

0.2

0.4

0.6

0.8

1.0

N
o
v
e
lt

ie
s

d
e
te

ct
e
d
 p

e
r

te
st

 r
u
n
 o

f
d
e
fe

ct
 a

p
p

0 2 4 6 8 10
0

5

10

15

0 2 4 6 8 10
0

5

10

15

0 2 4 6 8 10
0

5

10

15

0 2 4 6 8 10
0

5

10

15

0 2 4 6 8 10
0

5

10

15

0 2 4 6 8 10
0

5

10

15

0 2 4 6 8 10
0

5

10

15

0 2 4 6 8 10
0

5

10

15

0 2 4 6 8 10
0

5

10

15

0 2 4 6 8 10
0

5

10

15

0 2 4 6 8 10
0

5

10

15

0 2 4 6 8 10
0

5

10

15

Figure 6.9: Number of identified novelties in the data set from the app with
defect versus the normal app. Subplots on x-axis from left to right: T1, T2,
T3; y-axis from top to bottom: A1, A2, A3, A4. The dashed line corresponds
to the expected number of detected novelties.

elties to be detected for a defect-test-pair, since the defect may have unforeseen
consequences and the dynamic network nature of the app makes some requests
only occur intermittently. Other parts of the app/back-end communication may
also change in between measurements, which may lead to vectors that should be
classified as novelties but are not caused by the introduced defect.

One example of the latter is in the test-defect-pairs T2-A1 and T2-A4 where a
request for configuration for a module was routed to one AS during the data
collection from the normal app and another AS during the data collection for the
defect apps. The corresponding high number of average detected novelties for
the defect apps can be seen in the subplot (2, 1) and (2, 4) of Figure 6.9.

6.2.2 Detected Novelties

Novelty detection is done for each test case on the data set from each defect app
and a test set which consist of 10 % randomly selected from the normal set and
removed before training the model. Vectors are classified as novel if their novelty
score are above 1. The performance numbers precision, T P R and FP R can be
found in Table 6.5.

The silhouette analysis found k = 39 for T1, k = 34 for T2, and k = 39 for T3.

6.2 Novelty Detection Using k-Means Clustering – Data Set I 65

A1 Defect

The A1 defect downloads an image from “spotifypresscom.files.wordpress.com”,
which resolve to a set of IP addresses located in two different AS (2635 and
13768), the effects of the defect may have different values, with the app selecting
the request target at random during run time. The discovered t+ novelties are ex-
pected to be any or all of the classes: ASN={13768, 2635}, service={UNKNOWN,
HTTP}, direction={send, receive}.

No novelties are detected in the test data set for any of the test cases. For T1 5.2
novel vectors on average are detected, for T2 8.5 and T3 6.7. For T1 there are
two f + in the set of five test case runs: Spotify AP protocol (SPAP), receive (score
4.3 and 5.1), because they are in the middle of two clusters representing two of
the three levels in the captures of the play test case discussed in Section 5.1.2.
All expected vectors from the defects are classed as novelties and the minimum
novelty score of the t+ novelties is 12.5. For the threshold of novelty score = 1 the
performance values are precision = 0.92, T P R = 1.00, FP R = 0.01, and selecting
the threshold above 5.1 but below 12.5 would yield a good balance between T P R
and FP R.

For T2 there are 4 f + in the set of 4 test case runs: SPAP receive (score 1.2, 1.4,
1.8, 1.9). All expected vectors from the defects are classed as novelties and the
minimum novelty score of the t+ novelties is 24.3.

For T3 there were no f +. All expected vectors from the defects are classed as nov-
elties and the minimum novelty score of the t+ novelties is 1.0, but the novelties
with the big file download had a minimum novelty score of 2.2.

A2 Defect

The A2 defect is triggered when restarting the app and there should not be de-
tectable by the T1 test case. The expected effects of the A2 defect is harder to
judge than for the A1 defect since it affects all parts of the system it removes the
cache for. We expect there will be some extra metadata fetching from Spotify’s AP
over the SPAP protocol and some images from one or more of the CDN providers.

T1 finds 0 novelties, as expected. No performance numbers involving true posi-
tives are specified, as there is nothing to detect.

T2 find on average 2.4 novelties. Only two are deemed true positive, caused by
the defect: receive over SPAP with novelty score 1.1 and 1.2 respectively. 10 false
positives are found, two for each test case run: send/receive to ASN 1299 over
HTTP, score 27.4. The reason for the false positives Requests to a third party API
operating on a hybrid type CDN (discussed in Section 2.3) routed requests to a
IP on an AS which is not in the normal model. As the requests to AS 1299 are
to the same service end-point they are deemed false positives. Adding a test case
run of the normal version of the app when the CDN is routing to AS 1299 would
eliminate these false positives. There is no ground truth on which vectors are
false negatives, but from the detections in T3 we can surmise that the send and

66 6 Evaluation

receive vectors for the SPAP service and send/receive for the SSL service to AS
14618 should be considered novel.

T3 find on average 4.1 novelties for the A2 defect. There are 8 test case runs for
this test/defect combination. Vectors for AS 14618 SSL send and receive vectors
are detected for all test case runs, the cause being the re-download of configura-
tion because of the cache removal. SPAP receive is detected for the five first test
case runs and send four of them. For test case runs 3, 4, 6, 7 and 8 the vector
of the CDN resource AS 16509, SSL, receive is classified as novel, with novelty
score 1.4 for 6-8 and 1.05 for 3 and 4. A possible explanation for this would be
a gradual shift to download metadata from the CDN instead of SPAP. Due to the
uncertainty of what should be detected performance numbers are left out.

A3 Defect

The A3 defect is expected to be detectable as an increase in the number of pack-
ets and a minor increase in number of bytes sent over the SPAP protocol. No
novelties are detected for this defect using the T1 test case.

With the T2 test case two false positives are detected: SPAP receive in both cases.
The reason the novel SPAP receive are not determined as true positives, even
though the A3 defect’s extra ping messages is likely to have a minor effect on the
receive stream as well in the form of ACK messages, is that no change is detected
for SPAP send which ought to be relatively larger and that SPAP receive is not
marked novel with the T3 test case, which marks 7/8 of the SPAP send as novel.

With T3 the method identifies one false positive vector (AS 16509, SSL, receive)
with score 1.00, just over the threshold. It also correctly identifies 7 of the 8
expected SPAP send, with novelty scores 1.13 to 1.54.

A4 Defect

The A4 defect is expected to deviate in the dimensions service (HTTP), number
of bytes and number of packets. It is however a small download (25 kB) relative
the other traffic levels.

T1 identifies two false positives for one test case run: send and receive from AS
16509 SSL. It correctly identified three true positives for receive over HTTP from
16509, but misses the send vectors.

T2 suffers the same problem with false positives from AS 1299 as for the test case
runs for defect A2, see above. In total 30 false positives are found, of which 20
are AS 1299 vectors and 10 are SPAP receive. The effects of the defect are found
as HTTP receive for 8 of the 10 test case runs. The expected AS 16509, HTTP,
send vectors are not classified as defect and are therefore false negatives.

T3 correctly identifies 14 vectors of send and receive, AS 16509, HTTP, with
scores above 2.4 for the receive. No false positives are detected.

6.2 Novelty Detection Using k-Means Clustering – Data Set I 67

Table 6.5: Detection performance numbers for novelty detection using clus-
ter analysis. This table is NOT directly comparable with Table 6.1 through
Table 6.4 as this method considers change detection in stream families
whereas the EWMA considers change detection of whole test case runs. (*)
Defect not triggered by test case, no detection possible. (**) Left out due to
uncertainties, see discussion in the T3 paragraph of the A2 section above.

Defect test case precision T P R FP R

A1
T1 0.92 1.00 0.01
T2 0.88 1.00 0.03
T3 1.00 1.00 0.00

A2
T1∗ - - 0.00
T2 0.17 0.10 0.06

T3∗∗ - - -

A3
T1 0.00 0.00 0.00
T2 0.00 0.00 0.01
T3 0.88 0.88 0.00

A4
T1 0.60 0.50 0.02
T2 0.21 0.40 0.09
T3 1.00 1.00 0.00

68 6 Evaluation

6.3 Novelty Detection Using k-Means Clustering –
Data Set II

In this section the performance of the clustering novelty detection method is eval-
uated for data set II – the comparison of Spotify iOS 1.0.0 and Spotify iOS 1.1.0
with test cases T4, T5 and T6.

The test case runs for version 1.0.0 are used as the baseline to train the model
and the test case runs for version 1.1.0 is compared against the model for 1.0.0 to
identify changes in the traffic patterns.

10 % of the baseline test case runs are randomly selected split and off into a
test dataset used to verify that the model is not overfitted to the training vectors,
making unseen vectors of the same app appear as novelties.

The silhouette analysis found k = 30 for T4, k = 32 for T5, and k = 34 for T6.

Please note that it is likely that the found network activity increases for metadata
from 1.0.0 to 1.1.0 described below only occur when starting the app with an
empty cache; that is, no general increase in network activity for ordinary usage is
established.

6.3.1 Detected Novelties

No vectors from the test data set are classified as novelties.

Test Case T4

The T4 test case detects two novelties for each test case run: SPAP receive with
novelty scores 2.8 - 3.3 and SPAP send with novelty scores 1.2 - 2.0, correspond-
ing to an increase in network footprint of 167 kB or 26 %. Since the change is in
the encrypted SPAP connection further identification of the root cause are done
in the client logs (see Section 4.1.3). The client logs reveals that data increase is
due to an added metadata request, possibly due to the introduction of your mu-
sic (Listing 4.7). The source code revision control system enables assisted binary
search in the history for the commit that changed the behavior.

Test Case T5

The T5 test case also detect two novelties for each test case run: SPAP receive with
novelty scores 6.0 - 6.7 and SPAP send with novelty scores 1.7 - 2.9, correspond-
ing to an increase in network footprint of 167 kB or 29 %. Manual inspection of
the client logs reveals that the detected novelty for the T5 test case is the same as
the one found in T4.

Test Case T6

The T6 test case detects, for one test case run, the vector (AS 0, service “-DNS”,
direction send) as a novelty due to the unique service signature “-DNS” caused by
a protocol misclassification by Bro for one of the local services multicast messages.
Two true positive novelties are detected for each test case run: SPAP receive with

6.3 Novelty Detection Using k-Means Clustering – Data Set II 69

scores 9.0 - 9.7 and send with scores 3.5 - 4.5, corresponding to an increase in
network footprint of 419 kB or 82 %. Inspection of the client logs reveals an
increase in the payload communication with the metadata service of 397 kB.

7
Discussion and Conclusions

This chapter sum up the thesis with a discussion and conclusions.

7.1 Discussion

The methods for network activity change detection proposed in Chapter 5 both
have advantages and disadvantages. In an effort to save space the EWMA-chart
anomaly detection method introduced in Section 5.1 will be called EWMA, and
the k-means clustering novelty detection introduced in Section 5.2.2 called clus-
tering.

EWMA can detect small systematic changes over long time (trends) caused by
concept drift. Clustering have difficulties detecting these small drifts because
the change detection requires a vector to have a larger distance to its cluster cen-
ter than any of the vectors in the normal set belonging to the cluster. The drift
problem is exacerbated for the clustering method if the model, in an effort to keep
it up to date, is automatically updated with all vectors not classified as novel.

As for quick detection after an introduced change EWMA is held back by its
intrinsic delay caused by the averaging. This is configurable by lowering the
span value (affecting the α decay value), but that could lead to a higher rate of
false positives due to quicker reaction to change even for the normal data points.
The clustering method does not suffer this problem and will detect the change
immediately.

When it comes to detection performance the clustering method performs bet-
ter for some of the artificially introduced defects, see for example the A4 defect
where the clustering method with test case T3 achieved precision = 1.00, T P R =

71

72 7 Discussion and Conclusions

1.00, FP R = 1.00 and the EWMA method achieved precision = 0.00, T P R = 0.00
for all test cases and features while getting an average false positive rate (FPR) of
0.06.

The clustering method is able to provide more details about the stream set that
deviated from normal than the EWMA method, since the EWMA analysis use ag-
gregate statistics from all streams making it impossible to distinguish which have
changed. This problem could possibly be mitigated by performing EWMA-chart
analysis on the features of rational type for each combination of values for cate-
gorical features, making it possible to identify which combinations of categorical
feature values the anomaly is detected in.

With the arguments above, a case can be made for using both systems in collab-
oration – EWMA chart analysis with a long span and a wide threshold to keep
track of the long term trends and the cluster analysis novelty detection method
for detailed feedback quickly after something has changed.

7.1.1 Related Work

Zhong et al. [31] investigate multiple clustering algorithms for unsupervised
learning network intrusion detection using the data set from the 1998 DARPA
off-line intrusion detection project. Under the assumption that the normal traffic
constitutes η% of the data set (total size N), they introduce a novel technique
to label vectors as normal or attack: Find the largest cluster with cluster center
µ0, sort remaining clusters in ascending order of center-to-center distance from
µ0 and the instances in each cluster the same way, mark the first ηN as normal
and the rest as attack. They find that the Natural-Gas algorithm performs best
with regard to mean square error and average cluster purity, but that an online
version of the k-means algorithm achieves comparable numbers and is superior
in execution time. They also find that 200 clusters achieve better accuracy, false
positive rate, and detection rate than 100 clusters for the considered clustering
algorithms; the greater amount of clusters also incurs a penalty in the execution
time.

We believe the proposed method and knowledge from the comparison is applica-
ble on the problem of network activity change detection, seeing change as attack.
The assumption that normal traffic dominates the data set holds as long as the
data set to be tested is smaller than the data set for normal. As ηN vectors will
be classified as attack/change, seldom occurring but normal traffic patterns will
be marked as change. This could be positive as seldom occurring patterns could
be unwanted and a notification could lead to an investigation, but the total false
positive rate could prove too high for alerting without mitigation techniques.

Chakrabarti et al. [4] introduce a framework for handling the problem of evolu-
tionary clustering – producing consistent clustering over time, when new data is
incorporated. A modification to the k-means clustering algorithm is presented,
which updates the cluster centers with a weighted mean of the new and historic
cluster centers. The suggested algorithm for k-means evolutionary clustering may

7.2 Future Work 73

be useful to address the problems of updating the normal case and keeping the
model of normal relevant, discussed in future work (Section 7.2).

7.2 Future Work

In this section we discuss ideas for future work to improve the detection capabil-
ities of the proposed methods.

7.2.1 Updating the Model of Normal

When the novelty detection algorithm have discovered a novel data point and a
stakeholder have determined that the data point is benign and should be consid-
ered normal from now on, there need to be a mechanism to update the model of
normal.

Identified alternatives: (1) Wipe the old model and re-learn using the new app.
Drawbacks: time consuming to re-learn the normal model; may miss cases that
only occur once in a while, potentially leading to reintroduced false positives
later. (2) Add the data point to the normal model, leading to a new cluster or a
redefinition of the normal boundary. May eventually lead to a cluttered normal
model where every data point is considered normal because it is always inside
the normal boundary of some cluster. (3) Combine (2) with a strategy to keep M
latest test case runs or data points.

7.2.2 Keeping the Model of Normal Relevant

A problem with the proposed methods, and especially the novelty detection clus-
tering analysis method, is how to decide what test case runs to include in the data
set defining normal. Using too few risks that the only a part of the actual vari-
ance of the normal behavior is represented, leading to false positives. Using too
many/old test case runs of a often changing system risks that the vector space
is crowded with regions defined as normal, leading to nothing being detected.
There is also the concern of the run time complexity of the involved algorithms
slowing down the detection process too much to be usable if the data set is too
large.

This will need to be discovered over time. One initial approach is to just keep the
last M test case runs.

7.2.3 Improve Identification of Service End-Points

In the proposed method and set of features service end-points are approximated
by AS number and detected protocol. This identification method is coarse since
all service end-points served over e.g. HTTP hosted at a common cloud provider
will be classified as the same end-point. It also fails when a service end-point
is served over multiple protocols or from multiple networks with different AS
numbers.

74 7 Discussion and Conclusions

Features to better represent service end-points and get more stable segmentation
and precise detections should be investigated. Some features that may be used
separately or in combination are discussed in Section 2.3.

7.2.4 Temporal Features

Further segmenting measured network activity features with some temporal fea-
ture, like timestamp or test-automation tool actions, would increase the change
sensibility for regions with lower network activity in the normal case. It would
also increase the identification precision for notifications to stakeholders as the
detected change can be pinpointed in the time domain. This is probably neces-
sary for the change detection system to be useful in longer test cases, simulating
typical real user behavior.

Unfortunately this proves challenging as test-automation tool and the way it con-
trols the client introduces varying delays, so some sort of multipoint synchroniza-
tion would be needed. Using the test-automation log for state changes improves
the segmentation somewhat compared to using the time elapsed since the first
packet, but suffers from different levels of residual network traffic for some ac-
tions like pausing a track.

Two possible ways forward are: (1) synchronize test case runs on test-automation
or client state changes and sample with some partially overlapping windowing
function; and (2) using explicit synchronization states with delays before and
after in the test-automation system to avoid state-overlapping network traffic.

7.2.5 Network Hardware Energy Usage

Network change detection could include detection of changes in the usage levels
of network hardware, which affects the device battery drain. The feature of simu-
lated or measured network hardware uptime both for total and per stream family
could be added to the methods proposed in this thesis.

7.3 Conclusions

Our main research questions (stated in Section 1.3) were:

(1) What machine learning algorithm is most suitable for comparing network
traffic sessions for the purpose of identifying changes in the network footprint
and service end-points of the app?

Using clustering analysis and novelty detection enable quick stakeholder notifi-
cation when changes occur. It is capable of identifying network footprint changes
exceeding the extreme values of the training set and if there are distinct local ex-
tremes, even values between a the maximum of one peak and the minimum of
another. Detection of service end-points change depends on the used features’
abilities to describe a service end-point such that they can be clustered together.

(2) What are the best features to use and how should they be transformed to

7.3 Conclusions 75

suit the selected machine learning algorithm when constructing a network traffic
model that allows for efficient detection of changes in the network footprint and
service end-points?

The communication data size is a necessary feature to enable detection of changes
in the network footprint. We have further shown that segmenting the network
traffic metrics into buckets of related streams improves the detection likelihood
of small deviations in streams. The segmentation also adds the value of an initial
identification of what kinds of traffic have changed, enabling quicker root cause
analysis. The evaluated method of segmentation on AS number, detected proto-
col and flow direction work well when comparing traffic measurements from the
same source network and approximately at the same time, due to the dynamic
routing problem mostly observed for CDNs.

Appendix

A
Data Set Features

Bro defines the following data types relevant this thesis:

• port: integer;

• count: integer;

• addr: network layer address in grouped format (ipv4 format: 172.16.13.21,
ipv6 format: ff02::1);

• string: string of characters

79

80 A Data Set Features

Table A.1: Features extracted with Bro from each network packet of the raw
network data dump.

name data
type

description

conn string unique connection identifier.

ts time unix timestamp with µs resolution.

direction string R (receive) for traffic to the device running
the SUT and S (send) for from the device
running the SUT.

transport_protocol string transport level protocol: icmp, tcp, udp.

orig_p port originating (phone) transport protocol
port for tcp/udp, type for icmp.

resp_h addr IP address of the receiving party.

resp_p port destination transport protocol port for
tcp/udp, type for icmp.

services string identified protocol by Bro’s protocol iden-
tification system.

eth_len count size of the ethernet frame in bytes.

ip_len count size of the IP packet in bytes.

transport_len count size of the transport protocol packet in
bytes.

payload_len count size of the payload data in bytes.

81

Table A.2: Features derived from features in Table A.1.

name data
type

description

country_code string two character country code for resp_h
according to MaxMind’s IP-to-country
database of 2014-04-28.

asn count AS number for resp_h according to Max-
Mind’s IP-to-ASN database of 2014-04-28.

port_group string dns (53/udp), http (80/tcp), https
(443/tcp), spap (4070/tcp), low (<1024),
high (≥1024).

ip_net_twelve string CIDR /12 subnet of resp_h, example:
193.176.0.0/12.

ip_net_twenty string CIDR /20 subnet of resp_h, example:
ff02::/20.

ptr string DNS PTR record for resp_h or the PTR
query (1.1.168.192.in-addr.arpa.) if no
PTR record is returned.

is_multicast count 1/0 denoting if resp_h belongs to a mul-
ticast subnet defined by IANA or global
broadcast address. IPv6: ff00::/8, IPv4:
224.0.0.0/4, 255.255.255.255/32.

is_private_net string 1/0 denoting if resp_h belongs to a pri-
vate net as defined by RFC1918 or equiv-
alent. IPv6: fc00::/7, IPv4: 10.0.0.0/8,
172.16.0.0/16, 192.168.0.0./16.

Table A.3: Features extracted from the test automation tool.

name data
type

description

vertex_change string Describe transitions from one vertex to
another in the Graphwalker test model
graph.

82 A Data Set Features

Table A.4: Features extracted from the instrumented client.

name data
type

description

RequestAccountingAdd string,
integer,
integer,
integer

Sent everytime a network request is com-
pleted by an app module supporting
the RequestAccounting logging. Specifies
SPAP endpoint URI, network type, bytes
downloaded, bytes uploaded.

HttpRequestAdd string,
integer,
integer

Sent everytime a HTTP(s) request de-
tected by the NSURLProtocol (implemen-
tation described in Section 4.1.3) is com-
pleted by the app. Specifies URL, bytes
downloaded, bytes uploaded.

B
Data Set Statistics

B.1 Data Set I - Artificial Defects

Table B.1: Data set statistics for test case T1

App type Measurement Statistic Value
Normal Number of packets mean 3,774.60

std 370.25
min 3,345.00
25% 3,587.00
50% 3,622.00
75% 3,954.50
max 5,165.00

Aggregate IP size mean 3,659,696.06
std 476,921.73
min 3,202,439.00
25% 3,436,810.00
50% 3,446,860.00
75% 3,947,839.50
max 5,475,984.00

Aggregate payload size mean 3,464,279.85
std 457,470.20
min 3,029,779.00
25% 3,251,562.00
50% 3,261,184.00
75% 3,742,833.00
max 5,208,924.00

Unique network end-points mean 22.78
std 1.86
min 19.00
25% 22.00
50% 22.00
75% 23.50
max 30.00

Unique streams mean 46.17
std 3.89
min 34.00
25% 43.00

83

84 B Data Set Statistics

Table B.1 – continued from previous page
App type Measurement Statistic Value

50% 46.00
75% 49.00
max 55.00

A1 Number of packets mean 5,003.20
std 464.23
min 4,636.00
25% 4,654.00
50% 4,704.00
75% 5,509.00
max 5,513.00

Aggregate IP size mean 4,957,549.40
std 679,264.77
min 4,458,671.00
25% 4,462,958.00
50% 4,463,658.00
75% 5,669,200.00
max 5,733,260.00

Aggregate payload size mean 4,704,898.80
std 664,600.72
min 4,217,826.00
25% 4,218,947.00
50% 4,222,982.00
75% 5,395,516.00
max 5,469,223.00

Unique network end-points mean 24.20
std 1.92
min 22.00
25% 23.00
50% 24.00
75% 25.00
max 27.00

Unique streams mean 45.20
std 3.27
min 40.00
25% 45.00
50% 46.00
75% 46.00
max 49.00

A2 Number of packets mean 3,475.68
std 92.40
min 3,374.00
25% 3,418.50
50% 3,442.50
75% 3,479.75
max 3,700.00

Aggregate IP size mean 3,338,687.00
std 59,066.10
min 3,302,273.00
25% 3,308,176.75
50% 3,311,814.00
75% 3,323,333.00
max 3,472,004.00

Aggregate payload size mean 3,159,219.95
std 54,354.65
min 3,125,681.00
25% 3,131,278.75
50% 3,133,714.00
75% 3,146,877.50
max 3,286,488.00

Unique network end-points mean 21.82
std 1.22
min 20.00
25% 21.00
50% 22.00
75% 22.75
max 25.00

Unique streams mean 43.05

B.1 Data Set I - Artificial Defects 85

Table B.1 – continued from previous page
App type Measurement Statistic Value

std 3.93
min 37.00
25% 40.25
50% 42.00
75% 47.00
max 49.00

A3 Number of packets mean 3,681.67
std 52.38
min 3,615.00
25% 3,649.00
50% 3,669.00
75% 3,717.00
max 3,768.00

Aggregate IP size mean 3,435,826.33
std 8,089.57
min 3,420,274.00
25% 3,435,016.00
50% 3,436,256.00
75% 3,440,139.00
max 3,445,837.00

Aggregate payload size mean 3,245,870.89
std 6,563.57
min 3,231,142.00
25% 3,245,936.00
50% 3,247,863.00
75% 3,248,847.00
max 3,252,118.00

Unique network end-points mean 22.56
std 1.24
min 21.00
25% 22.00
50% 23.00
75% 23.00
max 25.00

Unique streams mean 46.11
std 2.71
min 42.00
25% 45.00
50% 46.00
75% 47.00
max 52.00

A4 Number of packets mean 3,928.00
std 210.27
min 3,686.00
25% 3,859.00
50% 4,032.00
75% 4,049.00
max 4,066.00

Aggregate IP size mean 3,891,898.67
std 183,488.20
min 3,680,043.00
25% 3,837,730.50
50% 3,995,418.00
75% 3,997,826.50
max 4,000,235.00

Aggregate payload size mean 3,689,156.33
std 172,386.29
min 3,490,107.00
25% 3,638,770.50
50% 3,787,434.00
75% 3,788,681.00
max 3,789,928.00

Unique network end-points mean 22.67
std 0.58
min 22.00
25% 22.50
50% 23.00

86 B Data Set Statistics

Table B.1 – continued from previous page
App type Measurement Statistic Value

75% 23.00
max 23.00

Unique streams mean 47.00
std 5.29
min 43.00
25% 44.00
50% 45.00
75% 49.00
max 53.00

Table B.2: Data set statistics for test case T2

App type Measurement Statistic Value
Normal

Number of packets

mean 6,917.28
std 755.12
min 5,912.00
25% 6,344.50
50% 6,565.00
75% 7,372.00
max 8,709.00

Aggregate IP size

mean 6,963,204.12
std 990,003.08
min 5,840,768.00
25% 6,280,937.00
50% 6,500,155.00
75% 7,637,116.75
max 9,349,237.00

Aggregate payload size

mean 6,605,350.54
std 950,816.52
min 5,535,412.00
25% 5,952,611.00
50% 6,160,272.00
75% 7,257,475.75
max 8,898,729.00

Unique network end-points

mean 27.97
std 2.46
min 24.00
25% 26.00
50% 28.00
75% 29.00
max 36.00

Unique streams

mean 63.92
std 4.69
min 53.00
25% 59.75
50% 63.50
75% 67.25
max 75.00

A1

Number of packets

mean 7,958.75
std 98.68
min 7,870.00
25% 7,880.50
50% 7,945.00
75% 8,023.25
max 8,075.00

Aggregate IP size

mean 7,817,359.25
std 26,410.87
min 7,795,363.00
25% 7,797,178.00
50% 7,811,243.00
75% 7,831,424.25
max 7,851,588.00

Aggregate payload size

mean 7,405,198.25

B.1 Data Set I - Artificial Defects 87

Table B.2 – continued from previous page
App type Measurement Statistic Value

std 21,326.76
min 7,387,131.00
25% 7,389,183.00
50% 7,400,345.00
75% 7,416,360.25
max 7,432,972.00

Unique network end-points

mean 30.50
std 0.58
min 30.00
25% 30.00
50% 30.50
75% 31.00
max 31.00

Unique streams

mean 64.75
std 4.99
min 61.00
25% 61.75
50% 63.00
75% 66.00
max 72.00

A2

Number of packets

mean 6,843.00
std 51.45
min 6,783.00
25% 6,795.00
50% 6,866.00
75% 6,869.00
max 6,902.00

Aggregate IP size

mean 6,621,587.40
std 5,765.82
min 6,612,471.00
25% 6,620,802.00
50% 6,622,081.00
75% 6,624,750.00
max 6,627,833.00

Aggregate payload size

mean 6,268,332.60
std 4,025.42
min 6,262,447.00
25% 6,266,338.00
50% 6,269,952.00
75% 6,270,053.00
max 6,272,873.00

Unique network end-points

mean 30.60
std 4.28
min 27.00
25% 29.00
50% 29.00
75% 30.00
max 38.00

Unique streams

mean 71.80
std 4.66
min 66.00
25% 69.00
50% 71.00
75% 76.00
max 77.00

A3

Number of packets

mean 6,342.20
std 77.31
min 6,210.00
25% 6,314.25
50% 6,348.00
75% 6,397.75
max 6,437.00

Aggregate IP size

mean 6,037,592.80
std 41,824.09
min 5,956,502.00
25% 6,033,182.75
50% 6,047,295.50

88 B Data Set Statistics

Table B.2 – continued from previous page
App type Measurement Statistic Value

75% 6,060,140.00
max 6,083,968.00

Aggregate payload size

mean 5,709,798.80
std 38,374.58
min 5,635,822.00
25% 5,706,092.75
50% 5,715,913.50
75% 5,732,610.00
max 5,754,559.00

Unique network end-points

mean 29.10
std 2.28
min 25.00
25% 28.25
50% 29.00
75% 31.00
max 32.00

Unique streams

mean 63.40
std 2.76
min 59.00
25% 61.50
50% 63.00
75% 64.75
max 68.00

A4

Number of packets

mean 6,042.00
std 76.50
min 5,899.00
25% 5,988.50
50% 6,060.00
75% 6,110.25
max 6,117.00

Aggregate IP size

mean 5,864,168.30
std 53,503.95
min 5,798,759.00
25% 5,819,417.00
50% 5,863,606.00
75% 5,903,693.25
max 5,951,664.00

Aggregate payload size

mean 5,551,616.00
std 50,025.02
min 5,494,047.00
25% 5,509,197.00
50% 5,549,710.00
75% 5,588,434.50
max 5,635,960.00

Unique network end-points

mean 29.90
std 3.73
min 26.00
25% 27.00
50% 29.50
75% 30.75
max 38.00

Unique streams

mean 61.80
std 7.66
min 53.00
25% 55.50
50% 60.00
75% 65.75
max 77.00

Table B.3: Data set statistics for test case T3

App type Measurement Statistic Value
Normal Number of packets mean 3,160.36

B.1 Data Set I - Artificial Defects 89

Table B.3 – continued from previous page
App type Measurement Statistic Value

std 156.38
min 2,760.00
25% 3,058.00
50% 3,191.00
75% 3,284.00
max 3,452.00

Aggregate IP size mean 2,170,137.67
std 127,404.95
min 1,813,872.00
25% 2,095,819.00
50% 2,191,681.00
75% 2,251,307.00
max 2,389,286.00

Aggregate payload size mean 2,006,822.90
std 119,506.13
min 1,671,992.00
25% 1,937,204.00
50% 2,025,713.00
75% 2,084,790.00
max 2,213,740.00

Unique network end-points mean 27.22
std 2.36
min 23.00
25% 26.00
50% 27.00
75% 29.00
max 34.00

Unique streams mean 63.32
std 4.34
min 52.00
25% 60.00
50% 63.00
75% 66.00
max 75.00

A1 Number of packets mean 5,042.00
std 248.80
min 4,822.00
25% 4,907.00
50% 4,992.00
75% 5,152.00
max 5,312.00

Aggregate IP size mean 4,079,885.00
std 269,431.86
min 3,802,473.00
25% 3,949,549.50
50% 4,096,626.00
75% 4,218,591.00
max 4,340,556.00

Aggregate payload size mean 3,945,812.67
std 113,913.99
min 3,837,903.00
25% 3,886,266.00
50% 3,934,629.00
75% 3,999,767.50
max 4,064,906.00

Unique network end-points mean 31.33
std 4.04
min 29.00
25% 29.00
50% 29.00
75% 32.50
max 36.00

Unique streams mean 70.67
std 4.04
min 66.00
25% 69.50
50% 73.00

90 B Data Set Statistics

Table B.3 – continued from previous page
App type Measurement Statistic Value

75% 73.00
max 73.00

A2 Number of packets mean 3,802.00
std 113.72
min 3,621.00
25% 3,730.50
50% 3,830.50
75% 3,868.25
max 3,963.00

Aggregate IP size mean 2,639,642.12
std 143,030.40
min 2,459,521.00
25% 2,474,209.75
50% 2,720,123.00
75% 2,746,446.00
max 2,766,137.00

Aggregate payload size mean 2,443,230.38
std 137,710.65
min 2,266,256.00
25% 2,285,070.75
50% 2,521,829.00
75% 2,545,257.25
max 2,566,117.00

Unique network end-points mean 33.00
std 3.07
min 30.00
25% 31.75
50% 32.00
75% 33.25
max 40.00

Unique streams mean 76.88
std 3.18
min 73.00
25% 75.00
50% 75.50
75% 78.75
max 82.00

A3 Number of packets mean 3,550.88
std 193.91
min 3,121.00
25% 3,497.00
50% 3,614.50
75% 3,675.25
max 3,706.00

Aggregate IP size mean 2,237,981.75
std 177,368.29
min 1,827,135.00
25% 2,216,456.25
50% 2,302,374.50
75% 2,330,542.75
max 2,392,168.00

Aggregate payload size mean 2,054,684.00
std 167,596.19
min 1,665,887.00
25% 2,036,466.00
50% 2,115,624.00
75% 2,140,559.25
max 2,201,232.00

Unique network end-points mean 26.88
std 1.96
min 24.00
25% 25.75
50% 26.50
75% 29.00
max 29.00

Unique streams mean 63.25
std 5.01

B.2 Data Set II - Real World Scenario 91

Table B.3 – continued from previous page
App type Measurement Statistic Value

min 54.00
25% 61.25
50% 64.00
75% 66.25
max 70.00

A4 Number of packets mean 3,014.00
std 86.40
min 2,856.00
25% 2,980.00
50% 3,029.00
75% 3,067.00
max 3,119.00

Aggregate IP size mean 2,040,448.43
std 37,739.89
min 1,982,132.00
25% 2,027,757.50
50% 2,032,429.00
75% 2,055,363.00
max 2,102,337.00

Aggregate payload size mean 1,884,651.71
std 33,941.31
min 1,835,302.00
25% 1,871,855.50
50% 1,877,495.00
75% 1,897,536.00
max 1,940,982.00

Unique network end-points mean 28.29
std 2.06
min 25.00
25% 27.50
50% 29.00
75% 29.00
max 31.00

Unique streams mean 62.43
std 4.47
min 56.00
25% 60.50
50% 62.00
75% 64.00
max 70.00

B.2 Data Set II - Real World Scenario

Table B.4: Data set statistics for test case T4

App type Measurement Statistic Value
1.0.0

Number of packets

mean 3,970.64
std 134.08
min 3,723.00
25% 3,886.00
50% 3,953.00
75% 4,058.00
max 4,348.00

Aggregate IP size

mean 2,927,543.52
std 112,101.24
min 2,719,011.00
25% 2,858,263.75
50% 2,913,247.00
75% 2,987,192.25
max 3,283,753.00

92 B Data Set Statistics

Table B.4 – continued from previous page
App type Measurement Statistic Value

Aggregate payload size

mean 2,722,386.02
std 105,349.54
min 2,526,623.00
25% 2,658,417.50
50% 2,709,089.00
75% 2,776,299.25
max 3,058,857.00

Unique network end-points

mean 28.62
std 2.40
min 25.00
25% 27.00
50% 28.00
75% 30.00
max 35.00

Unique streams

mean 54.00
std 5.54
min 43.00
25% 50.00
50% 53.50
75% 58.00
max 68.00

1.1.0

Number of packets

mean 4,056.00
std 120.36
min 3,862.00
25% 3,956.00
50% 4,063.00
75% 4,138.00
max 4,266.00

Aggregate IP size

mean 3,054,163.05
std 106,375.67
min 2,897,609.00
25% 2,938,301.00
50% 3,062,319.00
75% 3,121,189.00
max 3,244,857.00

Aggregate payload size

mean 2,844,554.86
std 100,205.51
min 2,697,513.00
25% 2,734,585.00
50% 2,852,099.00
75% 2,908,513.00
max 3,025,157.00

Unique network end-points

mean 28.95
std 1.47
min 27.00
25% 28.00
50% 29.00
75% 30.00
max 32.00

Unique streams

mean 52.57
std 5.88
min 44.00
25% 48.00
50% 52.00
75% 55.00
max 66.00

Table B.5: Data set statistics for test case T5

App type Measurement Statistic Value
1.0.0

Number of packets

mean 1,505.30
std 51.08
min 1,433.00

B.2 Data Set II - Real World Scenario 93

Table B.5 – continued from previous page
App type Measurement Statistic Value

25% 1,477.50
50% 1,490.50
75% 1,526.75
max 1,683.00

Aggregate IP size

mean 872,930.42
std 35,829.69
min 852,906.00
25% 858,727.75
50% 861,949.50
75% 868,165.75
max 995,980.00

Aggregate payload size

mean 795,508.26
std 33,497.48
min 777,782.00
25% 781,447.25
50% 785,559.50
75% 790,394.75
max 909,764.00

Unique network end-points

mean 26.30
std 1.74
min 24.00
25% 25.00
50% 26.00
75% 27.00
max 32.00

Unique streams

mean 45.44
std 3.65
min 40.00
25% 43.00
50% 45.00
75% 47.00
max 57.00

1.1.0

Number of packets

mean 1,654.43
std 26.20
min 1,611.00
25% 1,635.00
50% 1,651.00
75% 1,664.00
max 1,710.00

Aggregate IP size

mean 1,026,279.29
std 5,152.99
min 1,013,151.00
25% 1,024,224.00
50% 1,025,300.00
75% 1,028,630.00
max 1,038,303.00

Aggregate payload size

mean 941,079.67
std 4,549.05
min 927,523.00
25% 939,746.00
50% 940,435.00
75% 941,519.00
max 950,846.00

Unique network end-points

mean 26.05
std 1.83
min 23.00
25% 25.00
50% 26.00
75% 27.00
max 32.00

Unique streams

mean 44.19
std 3.08
min 40.00
25% 42.00
50% 43.00
75% 46.00
max 54.00

94 B Data Set Statistics

Table B.6: Data set statistics for test case T6

App type Measurement Statistic Value
1.0.0

Number of packets

mean 3,896.35
std 215.18
min 3,494.00
25% 3,777.50
50% 3,827.00
75% 3,960.50
max 4,673.00

Aggregate IP size

mean 3,345,209.26
std 187,475.09
min 2,714,340.00
25% 3,300,056.00
50% 3,309,643.00
75% 3,393,413.00
max 4,079,685.00

Aggregate payload size

mean 3,169,288.74
std 179,762.14
min 2,553,508.00
25% 3,130,193.50
50% 3,138,611.00
75% 3,212,407.00
max 3,872,425.00

Unique network end-points

mean 28.42
std 2.33
min 26.00
25% 27.00
50% 28.00
75% 29.50
max 36.00

Unique streams

mean 57.84
std 5.81
min 47.00
25% 53.00
50% 57.00
75% 61.50
max 72.00

1.1.0

Number of packets

mean 4,553.65
std 296.70
min 4,237.00
25% 4,312.00
50% 4,473.00
75% 4,589.00
max 5,098.00

Aggregate IP size

mean 3,982,639.41
std 277,835.89
min 3,743,046.00
25% 3,812,335.00
50% 3,871,313.00
75% 3,911,745.00
max 4,486,828.00

Aggregate payload size

mean 3,773,910.47
std 266,199.69
min 3,548,342.00
25% 3,614,551.00
50% 3,661,229.00
75% 3,699,937.00
max 4,256,736.00

Unique network end-points

mean 28.94
std 2.73
min 26.00
25% 27.00
50% 28.00
75% 29.00
max 35.00

B.2 Data Set II - Real World Scenario 95

Table B.6 – continued from previous page
App type Measurement Statistic Value

Unique streams

mean 59.12
std 10.22
min 50.00
25% 53.00
50% 55.00
75% 59.00
max 82.00

96 B Data Set Statistics

Bibliography

[1] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of care-
ful seeding. In Proc. ACM-SIAM symposium on Discrete algorithms, pages
1027–1035. Society for Industrial and Applied Mathematics, 2007. (Cited
on page 21.)

[2] Pavel Berkhin. A survey of clustering data mining techniques. In Grouping
Multidimensional Data, pages 25–71. Springer, 2006. (Cited on page 20.)

[3] R Braden. Rfc 1122. Requirements for Internet Hosts—Communication
Layers, 1989. (Cited on page 9.)

[4] Deepayan Chakrabarti, Ravi Kumar, and Andrew Tomkins. Evolutionary
clustering. In Proceedings of the 12th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 554–560. ACM, 2006.
(Cited on page 72.)

[5] Cisco. Cisco visual networking index: Global mobile data traffic forecast up-
date, 2012–2017. Technical report, Cisco, February 2013. (Cited on page 1.)

[6] György Dán and Niklas Carlsson. Dynamic content allocation for cloud-
assisted service of periodic workloads. In Proc. IEEE International Confer-
ence on Computer Communications (INFOCOM), 2014. (Cited on page 15.)

[7] Sanjoy Dasgupta. The Hardness of K-Means Clustering. Department of
Computer Science and Engineering, University of California, San Diego,
2008. (Cited on page 21.)

[8] Paul M Duvall, Steve Matyas, and Andrew Glover. Continuous Integration:
Improving Software Quality and Reducing Risk. Pearson Education, 2007.
(Cited on pages xix and 2.)

[9] Mikael Goldmann and Gunnar Kreitz. Measurements on the spotify peer-
assisted music-on-demand streaming system. In Proc. IEEE International
Conference on Peer-to-Peer Computing (P2P), pages 206–211, 2011. (Cited
on page 4.)

97

98 Bibliography

[10] Børge Haugset and Geir Kjetil Hanssen. Automated acceptance testing: A
literature review and an industrial case study. In Agile 2008 Conferance,
pages 27–38, 2008. (Cited on page 2.)

[11] Victoria J Hodge and Jim Austin. A survey of outlier detection methodolo-
gies. Artificial Intelligence Review, 22(2):85–126, 2004. (Cited on page 17.)

[12] J Stuart Hunter. The exponentially weighted moving average. Journal of
Quality Technology, 18(4):203–210, 1986. (Cited on page 19.)

[13] Raul Jimenez, Gunnar Kreitz, Björn Knutsson, Marcus Isaksson, and Seif
Haridi. Integrating smartphones in spotify’s peer-assisted music streaming
service. 2013. Draft. (Cited on pages 4, 14, 27, and 39.)

[14] Gunnar Kreitz and Fredrik Niemelä. Spotify – large scale, low latency, p2p
music-on-demand streaming. In Proc. IEEE International Conference on
Peer-to-Peer Computing (P2P), pages 1–10, 2010. (Cited on pages 4 and 13.)

[15] Erik Kurin and Adam Melin. Data-driven test automation: Augmenting gui
testing in a web application. Master’s thesis, Linköping University, 2013.
(Cited on page 4.)

[16] Michael Larsen and Fernando Gont. Rfc 1122: Recommendations for
transport-protocol port randomization. 2011. (Cited on page 11.)

[17] Wenke Lee, Salvatore J Stolfo, and Kui W Mok. Mining in a data-flow en-
vironment: Experience in network intrusion detection. In Proc. ACM in-
ternational conference on Knowledge discovery and data mining (SIGKDD),
pages 114–124. ACM, 1999. (Cited on page 28.)

[18] Stuart Lloyd. Least squares quantization in pcm. IEEE Transactions on
Information Theory, 28(2):129–137, 1982. (Cited on page 21.)

[19] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar
k-means problem is np-hard. In WALCOM: Algorithms and Computation,
pages 274–285. Springer, 2009. (Cited on page 21.)

[20] Thuy TT Nguyen and Grenville Armitage. A survey of techniques for in-
ternet traffic classification using machine learning. IEEE Communications
Surveys & Tutorials, 10(4):56–76, 2008. (Cited on page 12.)

[21] B. Niven-Jenkins, F. Le Faucheur, and N. Bitar. Rfc 6707: Content distribu-
tion network interconnection (cdni) problem statement. 2012. (Cited on
page 14.)

[22] Vern Paxson. Bro: A system for detecting network intruders in real-time. In
Proc. USENIX Security Symposium, 1998. (Cited on pages 13 and 41.)

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-

Bibliography 99

chine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011. (Cited on page 27.)

[24] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of Computational and Applied Math-
ematics, 20:53–65, 1987. (Cited on page 22.)

[25] Vinay Setty, Gunnar Kreitz, Roman Vitenberg, Maarten van Steen, Guido
Urdaneta, and Staffan Gimåker. The hidden pub/sub of spotify (industry
article). In Proc. ACM international conference on Distributed Event-Based
Systems (DEBS), pages 231–240, 2013. Arlington, TX. (Cited on page 14.)

[26] Phil Simon. Too Big to Ignore: The Business Case for Big Data. John Wiley
& Sons, 2013. (Cited on page 17.)

[27] Stanley Smith Stevens. On the theory of scales of measurement. Science,
103(2684):677–680, 1946. (Cited on page 22.)

[28] Lionel Tarassenko, Alexandre Nairac, Neil Townsend, and P Cowley. Nov-
elty detection in jet engines. IEE Colloquium on Condition Monitoring:
Machinery, External Structures and Health, 034:4/1–4/5, 1999. (Cited on
page 28.)

[29] Paul Watson. Slipping in the window: Tcp reset attacks. Technical report,
2003. (Cited on page 11.)

[30] Dit-Yan Yeung and Calvin Chow. Parzen-window network intrusion detec-
tors. In Proc. International Conference on Pattern Recognition, volume 4,
pages 385–388. IEEE, 2002. (Cited on page 28.)

[31] Shi Zhong, Taghi M Khoshgoftaar, and Naeem Seliya. Clustering-based net-
work intrusion detection. International Journal of Reliability, Quality and
Safety Engineering, 14(02):169–187, 2007. (Cited on page 72.)

100 Bibliography

Upphovsrätt

Detta dokument hålls tillgängligt på Internet — eller dess framtida ersättare —
under 25 år från publiceringsdatum under förutsättning att inga extraordinära
omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för icke-
kommersiell forskning och för undervisning. Överföring av upphovsrätten vid
en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ
art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman
i den omfattning som god sed kräver vid användning av dokumentet på ovan
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan
form eller i sådant sammanhang som är kränkande för upphovsmannens litterära
eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se för-
lagets hemsida http://www.ep.liu.se/

Copyright

The publishers will keep this document online on the Internet — or its possi-
ble replacement — for a period of 25 years from the date of publication barring
exceptional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for his/her own use and
to use it unchanged for any non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional on the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be men-
tioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity, please
refer to its www home page: http://www.ep.liu.se/

© Robert Nissa Holmgren

http://www.ep.liu.se/
http://www.ep.liu.se/

	Front Page
	Title Page
	Library Page
	Abstract
	Sammanfattning
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Listings
	Notation
	1 Introduction
	1.1 Mobile App's Network Activity as a Quality Measure
	1.1.1 Challenges
	1.1.2 Types of Network Activity Change

	1.2 Spotify
	1.2.1 Automated Testing at Spotify
	1.2.2 Spotify Apps' Network Usage

	1.3 Problem Statement
	1.4 Contributions
	1.5 Thesis Structure

	I Theory
	2 Computer Networks
	2.1 Internet Protocols
	2.1.1 IP and TCP/UDP
	2.1.2 Lower Level Protocols
	2.1.3 Application Protocols
	2.1.4 Encrypted Protocols
	2.1.5 Protocol Detection

	2.2 Spotify-Specific Protocols
	2.2.1 Hermes
	2.2.2 Peer-to-Peer

	2.3 Content Delivery Networks
	2.4 Network Intrusion Detection Systems

	3 Machine Learning
	3.1 Probability Theory
	3.2 Time Series
	3.3 Anomaly Detection
	3.3.1 Exponentially Weighted Moving Average

	3.4 k-Means Clustering
	3.4.1 Deciding Number of Clusters
	3.4.2 Feature Extraction

	3.5 Novelty Detection
	3.6 Evaluation Metrics
	3.7 Tools
	3.8 Related Work
	3.8.1 Computer Networking Measurements
	3.8.2 Anomaly and Novelty Detection

	II Implementation and Evaluation
	4 Measurement Methodology
	4.1 Measurements
	4.1.1 General Techniques
	4.1.2 Mobile Apps
	4.1.3 Tapping into Encrypted Data Streams

	4.2 Processing Captured Data
	4.2.1 Extracting Information Using Bro
	4.2.2 Transforming and Extending the Data
	4.2.3 DNS Information
	4.2.4 Other Network End-Point Information

	4.3 Data Set Collection
	4.3.1 Environment
	4.3.2 User Interaction – Test Cases
	4.3.3 Network Traffic
	4.3.4 App and Test Automation Instrumentation Data Sources

	4.4 Data Set I - Artificial Defects
	4.4.1 Introduced Defects
	4.4.2 Normal Behavior
	4.4.3 Test Cases
	4.4.4 Summary

	4.5 Data Set II - Real World Scenario
	4.5.1 Test Cases
	4.5.2 Summary

	5 Detecting and Identifying Changes
	5.1 Anomaly Detection Using EWMA Charts
	5.1.1 Data Set Transformation
	5.1.2 Detecting Changes

	5.2 Novelty Detection Using k-Means Clustering
	5.2.1 Feature Vector
	5.2.2 Clustering
	5.2.3 Novelty Detection

	6 Evaluation
	6.1 Anomaly Detection Using EWMA Charts
	6.1.1 First Method ROC Curves
	6.1.2 Better Conditions for Classifying Defects as Anomalous
	6.1.3 Detected Anomalies

	6.2 Novelty Detection Using k-Means Clustering – Data Set I
	6.2.1 ROC Curves
	6.2.2 Detected Novelties

	6.3 Novelty Detection Using k-Means Clustering – Data Set II
	6.3.1 Detected Novelties

	7 Discussion and Conclusions
	7.1 Discussion
	7.1.1 Related Work

	7.2 Future Work
	7.2.1 Updating the Model of Normal
	7.2.2 Keeping the Model of Normal Relevant
	7.2.3 Improve Identification of Service End-Points
	7.2.4 Temporal Features
	7.2.5 Network Hardware Energy Usage

	7.3 Conclusions

	A Data Set Features
	B Data Set Statistics
	B.1 Data Set I - Artificial Defects
	B.2 Data Set II - Real World Scenario

	Bibliography
	Copyright

