
Applying REST principles on local client-side APIs

ROBERT OLSSON

Master’s Thesis at CSC
Supervisor: Olov Engwall

Examiner: Olle Bälter

Abstract
In this thesis, the application of REST principles on lo-
cal client-side APIs is explored. REST is a popular soft-
ware architectural style designed with simplicity, scalability
and generality in mind. The benefits and drawbacks of us-
ing REST over conventional styles of designing local APIs
have been investigated, with a specific focus on libspotify.
Libspotify is a C API that allows third-party developers
to use Spotify’s music streaming service. A local REST
API was implemented on top of the libspotify C API. Soft-
ware metrics were applied to the APIs, showing that the
implementation was less decoupled than the equivalent C
API. The metric results and relevant previous studies were
used to analyze REST in local APIs. The main benefit was
found to be the decoupling, leading to better evolvability
and maintainability of an API. The main drawback is the
additional work needed to model a REST API, and to make
it more user friendly. The conclusion is that libspotify can
benefit from REST, but that it might require more work
than designing a conventional local API.

Sammanfattning
Applicering av REST-princper på lokala

API:er på klientsidan

I det här examensarbetet utforskas användningen av REST-
principer på lokala API:er. REST är en populär arkitek-
turstil för att utveckla mjukvara, designad för att vara en-
kel, skalbar och generell. För- och nackdelar med att an-
vända REST istället för konventionella stilar att utveckla
API:er har utforskats, med fokus på libspotify. Libspoti-
fy är ett C-API som låter tredjepartsutvecklare använda
Spotifys musikströmningstjänst. Ett lokalt REST-API im-
plementerades ovanpå libspotifys C-API. Metoder för att
mäta API:ernas egenskaper användes, som visade att det
existerande API:t hade ett större beroende mellan mjukva-
rukomponenter än REST-API:t. Mätresultaten och tidigare
relevanta studier användes för att analysera REST i loka-
la API:er. Den huvudsakliga fördelen visade sig vara det
minskade beroendet mellan mjukvarukomponenter, vilket
leder till att API:t blir lättare att utveckla och underhålla.
Den största nackdelen är det extra arbete som krävs för
att dels modellera ett REST-API, och dels göra det mer
användarvänligt. Slutsatsen är att libspotify kan dra nytta
utav REST, men att det kan innebära mer arbete än att
designa ett konventionellt lokalt API.

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Problem statement . 2
1.3 Scope limitations . 2
1.4 Terminology and abbreviations . 3

2 Background 4
2.1 API . 4
2.2 REST . 5

2.2.1 Principles . 5
2.2.2 Constraints . 5
2.2.3 REST in practice . 7

2.3 Software metrics . 8
2.3.1 Coupling . 8
2.3.2 Performance . 10

2.4 Related implementations . 11
2.4.1 Resource-Oriented Computing 11
2.4.2 Restlet . 11
2.4.3 HTTP . 11

3 Methodology 12
3.1 Implementation . 12
3.2 Analysis . 12
3.3 Metrics . 13

3.3.1 Coupling . 13
3.3.2 Performance . 13

4 Implementation 15
4.1 The existing API . 15
4.2 Overview . 16
4.3 Representations . 16

4.3.1 Methods . 17
4.3.2 Types . 17

4.4 Interface . 17
4.5 Model . 18
4.6 Limitations . 19
4.7 Example . 19

5 Analysis 23
5.1 Modeling . 23
5.2 Decoupling . 24

5.2.1 Metric . 24
5.2.2 Data decoupling . 25
5.2.3 Evolvability . 25
5.2.4 Other benefits . 25

5.3 Performance . 26
5.3.1 Metric . 26
5.3.2 Uniform interface . 27
5.3.3 Layers . 27
5.3.4 Caching . 27

5.4 Usability . 27
5.4.1 Type checking . 28
5.4.2 Wrapper classes . 28

6 Conclusions 29
6.1 REST in local APIs . 29
6.2 REST in libspotify . 29
6.3 Social and ethical aspects . 30
6.4 Future work . 30

Bibliography 31

Chapter 1

Introduction

This chapter introduces the thesis by presenting the background
and the problem statement.

1.1 Introduction
In software development, it is common to separate a system into different smaller
components. Components are usually separated in such a way that each compo-
nent handles a distinct concern. A typical piece of client-side software could consist
of components related to the graphical user interface, the logic, network commu-
nication, etc. Separating a system into components can give many benefits, such
as reusability of parts of the software and better scalability. An application pro-
gramming interface (API) is a set of standards for how such software components
communicate with each other [17]. APIs in object-oriented programming languages
like C++ and Java commonly consist of a set of exposed classes and class methods
along with their definitions. APIs in procedural languages like C, similarly consist
of functions and function definitions. In such languages communication between
different components is thus done by function calls.

REST stands for REpresentational State Transfer and is a software architecture
style that has become very common in web services. It is targeted at distributed
information systems and has been designed with simplicity, scalability and gener-
ality in mind. REST APIs with their resource oriented nature differ in many ways
from how local APIs are commonly designed [18].

1

CHAPTER 1. INTRODUCTION

Music
streaming client

libspotify

Log in

Play

Search

.

.

.

Music
streaming client

libspotify

Request

Conventional local API REST API

.

.

.

.

.

.

.

.

.

Figure 1.1. An illustration of the uniform way of performing API requests in REST,
compared to a common local API.

One difference is the way that requests are made, which is illustrated in fig. 1.1.
In common local APIs, API requests are usually made by performing hard-coded
function calls, specific to the component communicated with. A component that
wants to initiate communication simply calls a specific function in another com-
ponent, which in turn can respond by returning a value. In REST, requests are
instead constructed in the form of self-descriptive messages, that are sent through
a common uniform interface [18].

1.2 Problem statement
This thesis will look into whether the benefits of REST that has made it popular
among web based APIs can also be applied to local APIs on the client side. The
goal is to investigate what parts of REST could be beneficial to apply to local APIs.
To do this, a local REST API will be implemented on top of an already existing
common local API. The benefits and drawbacks of the REST API over the original
one will then be investigated. The thesis will also present the implemented API to
give an idea of how a local REST API could look in practice.

1.3 Scope limitations
Local APIs come in several different shapes and forms, and there are many as-
pects of an API to consider. To limit and further define the scope of this project,
the investigation will be based on the libspotify API. Libspotify is a local C API
that enables third-party developers to write applications that use the Spotify music
streaming service [9]. The implementation presented will be a REST API around
libspotify. The hope is still that the results of the work will be relevant in a more
general context than libspotify only.

2

1.4. TERMINOLOGY AND ABBREVIATIONS

1.4 Terminology and abbreviations
API

Application Programming Interface, a set of standards for how different soft-
ware components communicate with each other.

HTTP
HyperText Transfer Protocol, an application protocol for distributed hyper-
media systems used by the World Wide Web.

JSON
JavaScript Object Notation, a lightweight text format for the serialization of
structured data.

REST
REpresentational State Transfer, a software architecture style targeted at dis-
tributed information systems.

RESTful
An API is said to be RESTful if it conforms with the principles of REST.

URI
Uniform Resource Identifier, a formatted string that identifies a resource.

URL
Uniform Resource Locator, a type of URI used to identify resources in HTTP.

3

Chapter 2

Background

This chapter presents the background theory needed to understand
the presented implementation and analysis. APIs and REST are
explained, along with different software metrics used to measure
properties of software. Relevant previous work is also presented.

2.1 API
Modern software applications are typically built on several APIs. An API could
be seen as a problem abstraction. It specifies how software components should
interact with other software components that provide a solution to that problem
[13]. Libspotify is such an API, which implements a solution for applications wanting
to stream music from Spotify’s music streaming service. Libspotify in turn uses
several other APIs to help provide its functionality, e.g. libogg and libvorbis to
decode compressed audio streams [9]. The purpose of an API is thus to provide a
simple logical interface to a component and its functionality, while hiding irrelevant
implementation details. In local contexts, these components are often distributed
as software libraries, intended to be usable by many different applications [13].
Figure 2.1 illustrates, in the form of a graph, how a music streaming client using
libspotify could depend on various APIs. The nodes in the graph represent the
different software components, and the edges connecting the components represent
communication channels. Each edge thus also corresponds to an API.

4

2.2. REST

Music streaming
client

libspotify API

libogg API

libvorbis API

.

.

.

.

.

.

Graphics API

Figure 2.1. Possible API dependencies for a music streaming client using libspotify.

2.2 REST
REST is a software architecture style targeted at distributed information systems.
In other words, it is targeted at systems where all components are not on the same
physical machine, and have to communicate through a network. REST is defined
by Roy Fielding in his dissertation [5], which is used as the main theoretical REST
reference. It goes through the constraints of REST and the properties they induce.

2.2.1 Principles
Resources and representations are two key aspects of REST. Information is modeled
as resources, which can basically be any concept that can be named. A resource
could be a document, a person, a list of resources or even non-static concepts like
"The most played songs in Sweden today". Representations are used to transfer
resource states between different components, e.g. from a server to a client. A
representation is just a sequence of bytes, e.g. in a specific document or image
format, along with metadata describing the bytes. The representation types used
are negotiated upon by the client and server [5].

2.2.2 Constraints
REST is formally described as a set of constraints applied to elements within the
architecture. Because REST is an architectural style, the constraints are high-level
and do not specify implementation-specific details such as specific protocols or file
formats [5].

5

CHAPTER 2. BACKGROUND

2.2.2.1 Client-server

The functionality of a server and a client should be separated. This
improves portability of the client as it does not have to be concerned of server-
specific concerns as data storage. Consequently the server does not have to care
about the user interface, simplifying the server and improving scalability. Another
benefit of this separation of concerns is that components can evolve independently
[5].

2.2.2.2 Stateless

The nature of the communication between clients and servers must be
stateless. No client state should be stored on the server, instead clients should
include all information needed to process a request. This constraint increases server
scalability and simplicity as servers do not have to store any state between requests.
One disadvantage with this constraint is that it can decrease communication per-
formance between components as clients might have to send more repetitive data.
It also puts more responsibility on clients to ensure consistent application behavior
[5].

2.2.2.3 Cache

Data within a server response must specify, implicitly or explicitly, whether
it is cacheable or not. If a response is cacheable, a client is allowed to reuse that
data for later requests. This can improve efficiency, as some interactions between
the client and the server can potentially be eliminated. One disadvantage with
caching is that reliability might decrease as stale cached data can differ from data
on the server [5].

2.2.2.4 Uniform interface

The interface between components should be uniform to simplify overall
system architecture. REST defines four interface constraints for this. Unifor-
mity can potentially decrease efficiency as information has to be transferred in a
standardized form instead of a more optimized application-specific form [5].

Identification of resources Each distinct resource has an identifier to identify
it during interaction between components [18]. This could e.g. be a URI.
This principle is also used on the web and is implemented in HTTP where
all resources like web pages, images and other documents are identified using
distinct URLs.

Manipulation of resources through representations Clients update and add
resources on the server by sending representations [18]. When a client wants
to e.g. create, change or delete a resource on a server, it creates and sends a
representation indicating the desired state of the resource.

6

2.2. REST

Self-descriptive messages Messages between components not only contain data,
but also metadata describing how to process the contents of the message.
Typical metadata could be the URI of the resource that the representation
is representing, or the type of the representation, e.g. what file format it is
in. Messages also contain control data defining the purpose of a message. A
client could specify what action it wants to perform on a resource (whether
it wants to create a new resource, update or delete an existing resource etc.)
[18].

Hypermedia As The Engine Of Application State (HATEOAS) Except for
a known initial resource identifier, the client only changes states by choosing
between state transitions provided by the server in received representations.
This is how the user interface of a web browser usually works; a user navigates
to a known bookmark and then navigates between web pages and performs
actions by clicking on links or submitting forms provided by the web server
[18].

2.2.2.5 Layered system

Components should only see other components within the layer that
they are interacting with. This constraint limits the complexity of the system.
Together with the uniform interface constraint, it also enables the creation of com-
ponents between server and clients without changing the interface between them.
Such intermediate components can process and transform data passing through
them, and can e.g. act as proxies, gateways or firewalls. The main disadvantage
of using layered systems are increased overhead and latency as data is processed in
several layers [5].

2.2.2.6 Code-on-demand

A client can receive and execute code from a server, enabling extension
of the client. This can simplify clients and improve system extensibility, as the
number of features that have to be implemented on the client is reduced. A web
browser can e.g. download and execute JavaScript from a web server. Code-on-
demand is the only optional constraint of REST [5].

2.2.3 REST in practice
Although REST does not specify any specific protocols, HTTP is the most com-
monly used application protocol in conjunction with REST. This has led to a com-
mon misconception that any HTTP-based interface is a REST API, which is not
always the case. A typical pitfall when designing a REST API is to break the
HATEOAS constraint by hard-coding URIs (other than the URI for the API entry
point) on the client side. By blindly assuming that certain resources exist with

7

CHAPTER 2. BACKGROUND

static URIs, a server loses control of the client’s available state transitions and the
URI namespace [6].

When using HTTP, resources are identified by URLs. Actions are performed on
these resources in a uniform way by using a set of predefined verbs like GET, POST,
PUT and DELETE. HTTP messages also contain headers that allow descriptions
of the representations that they contain. HTTP headers can contain information
about media type, cacheability, client state in the form of cookies, etc. [7].

2.3 Software metrics
Software metrics are used to measure different properties of software in a quantifi-
able way. Metrics are important in all sciences, as they can provide objective and
reproducible measurements. Continuous effort in computer science is thus put into
bringing such approaches to software development [19].

2.3.1 Coupling
Coupling is a measure of dependence between components in a software system.
Coupling has been correlated to maintainability, traceability and robustness in soft-
ware. High levels of coupling have been associated with greater design effort, greater
rework and lower productivity. There exists metrics to quantify the amount of cou-
pling between software components, which could assist when comparing the coupling
of different APIs [1].

Fenton and Melton have defined some different types of coupling between two
software modules. The types are ordered from the highest and most undesirable
levels of coupling, down to type 0, which is no coupling at all. They suggest the
coupling metric shown in eq. (2.1), to measure the coupling between two modules x
and y. i is the greatest coupling type between the modules, and n is the number of
interconnections between the modules. A higher value of M(x, y) indicates a higher
coupling between x and y [4].

M(x, y) = i + n

n + 1
(2.1)

2.3.1.1 Content coupling (level 5)

Content coupling is the strongest type of coupling according to Fenton and Melton’s
metric. Two modules x and y are content coupled if x refers to the inside of y, i.e. it
branches into or changes data in y [4]. Listing 2.1 shows an example of two modules
represented as two C++ classes. x communicates with the class y by directly
modifying the variable A that is internal to y, making the two modules content
coupled.

8

2.3. SOFTWARE METRICS

class x { class y {
void B() { static int A;

y.A = 5;
} ...

}; };

Listing 2.1. An example of content coupling between two classes in C++.

2.3.1.2 Common coupling (level 4)

Common coupling is when two modules x and y share global data [4]. Listing 2.2
is an example of common coupling between two classes. The class y writes to the
global variable A, and x reads the same variable.

int A;

class x { class y {
void B() { void C() {

int D = A; A = 5;
... }

} };
};

Listing 2.2. An example of common coupling between two classes in C++.

2.3.1.3 Control coupling (level 3)

Control coupling means that a module x communicates with another module y by
passing parameters, with the intention of controlling the behavior of y [4]. Listing 2.3
shows an example of control coupling. The class x communicates with the class y by
calling the function B. The value of the function parameter determines the behavior
of y, as the parameter is evaluated in an if statement.

class x { class y {
void A() { static void B(bool a) {

y.B(false); if (a == true) {
} ...

} } else {
...

}
}

}

Listing 2.3. An example of control coupling between two classes in C++.

9

CHAPTER 2. BACKGROUND

2.3.1.4 Stamp coupling (level 2)

If a module x communicates with another module y by passing parameters in the
form of data structures, they are stamp coupled [4]. Listing 2.4 is an example of
stamp coupling between two classes. The class x calls a function in the class y with
a structure as parameter.

class x { class y {
Person p; static void B(Person p) {

float age = p.age;
void A() { ...

y.B(p); }
} }

}

Listing 2.4. An example of stamp coupling between two classes in C++.

2.3.1.5 Data coupling (level 1)

Data coupling means that a module x communicates with another module y by
passing parameters that consist of single data elements or a homogeneous set of
data that do not include any control elements [4]. Listing 2.5 shows an example
of this, where the class x communicates with y by passing a float parameter. The
behavior of y is not controlled by the parameter, as it is only used in a calculation.

class x { class y {
void A() { static void B(float a) {

float value = y.B(9); return a * a;
... }

} }
}

Listing 2.5. An example of data coupling between two classes in C++.

2.3.1.6 No coupling (level 0)

Level 0 is the lowest level of coupling between two modules. It indicates that the
two modules do not communicate at all and are totally independent [4].

2.3.2 Performance
While coupling is related to the overall system design, performance is specific to
runtime. Performance is an indication of a system’s responsiveness, and is measured
in the terms of either throughput or latency. Throughput is a measure of how many
events that occur in a given amount of time. Latency is a measure of the time it

10

2.4. RELATED IMPLEMENTATIONS

takes to respond to any event. The performance of an application can affect its
scalability [10].

2.4 Related implementations
Some related implementations were found in the form of frameworks and protocols
that implement REST or similar principles.

2.4.1 Resource-Oriented Computing
Resource-oriented computing (ROC) is a model for designing software systems de-
rived from research started at Hewlett-Packard Laboratories and later continued by
1060 Research [8]. It is inspired by the characteristics of Unix systems and the World
Wide Web. ROC revolves around the concept of abstract resources referenced by
identifiers and has much in common with REST. It is meant to complement object-
oriented programming rather than to replace it [2]. Different tiers of an architecture
are interconnected using logical channels instead of using physical memory refer-
ences to each other.

NetKernel is a ROC implementation in the form of a ROC platform [8]. Because
of the similarities between ROC and REST, NetKernel will be of interest for the
implementation.

2.4.2 Restlet
Restlet is a REST framework for Java that provides a set of classes and interfaces to
serve as a foundation for RESTful applications [15]. Although it is mainly targeted
at web applications, it abstracts away the protocol that connects the components
from the actual API. Apart from HTTP, Restlet provides several communication
protocols, including local protocols such as Restlet Internal Access Protocol (RIAP).
RIAP uses internals calls to communicate between components, enabling an entire
RESTful system with components to run and communicate locally within one phys-
ical machine.

2.4.3 HTTP
Hypertext Transfer Protocol (HTTP) is an application protocol for distributed hy-
permedia systems and is used by the World Wide Web. REST and HTTP have some
shared history, as Roy Fielding, the introducer of REST, also is one of the authors
for the HTTP specification [7]. HTTP implements many of the properties needed
for REST, so when used correctly HTTP can be used to design RESTful APIs.
Although HTTP is web based, many of its principles should also be applicable to
local contexts.

11

Chapter 3

Methodology

This chapter presents the methodology used to accomplish the goal
of the project.

The first stage of the project consisted of research on the theory behind REST,
on related implementations and on similar studies. The second stage was to imple-
ment a local REST API around libspotify. The third and last stage was to analyze
the benefits and drawbacks of REST in local contexts.

The work of the different stages overlapped and was carried out iteratively. As
the implementation and analysis progressed, new sources were looked up as needed.
Because local REST APIs is quite an unexplored area, it was hard to anticipate
what sources were needed beforehand. This also allowed for implementation im-
provements, and to find more relevant sources.

3.1 Implementation
The implementation that was done was based on the related implementations found.
There were two main goals with the implementation. The first goal was to present
how a local API could be implemented. The second goal was to aid the analysis.
The implementation provided a tangible local API that was used for comparison
purposes. The experiences gained from creating the local implementation was com-
pared to what is presented in the REST study by Pautasso, Zimmermann and
Leymann, where they compare REST to other web service standards from an ar-
chitectural perspective [12].

3.2 Analysis
The comparison and analysis is mainly based on the similar studies found. These
studies cover different aspects of REST, including architectural aspects [12], cou-
pling [3], and various areas mentioned by Fielding in his dissertation [5]. Arguments
presented in these studies that are applicable to the problem statement will be

12

3.3. METRICS

considered, and the focus will lie on areas that are mentioned by several sources.
Because REST is mainly an architecture designed for distributed systems, most of
the existing studies do not focus on local REST interfaces. To help verify that the
found arguments also hold in a local context, experiences from the implementation
will also be considered and compared to the studies.

3.3 Metrics
Software metrics were applied where possible to objectively compare the libspotify
C API and the implemented local libspotify REST API. Not all aspects of software
are easily quantifiable, but metrics for the areas covered in the analysis that were
found were used.

3.3.1 Coupling
The uniform interface and the decoupling is one of the benefits of REST mentioned
both by Fielding, and other studies found [11, 12, 16]. To quantify the amount of
coupling in the local REST API and C API, coupling was one of the software metrics
chosen. The coupling metric suggested by Fenton and Melton was applied to the
APIs, as that metric was found to be widely cited. Another considered coupling
metric was the well-cited metric suggested by Dhama [3]. Dhama’s coupling metric
considers more variables than Fenton and Melton’s, like the number of different
parameter and variable types connecting different software modules. It was deemed
too complex and time consuming for this purpose, as it would require analysis of
the libspotify C API implementation.

As only part of libspotify was implemented in the REST API, the existing
libspotify C API is much more extensive than the REST API. Only the parts
common to both APIs were thus considered in the metric to get a more fair result.

3.3.2 Performance
Potential performance drawbacks introduced by some REST constraints is men-
tioned by Fielding [5]. To measure how significant the overhead introduced by the
local REST API is, it was measured and compared to the C API. Because the
latency introduced by the REST layer is so small that it might be hard to mea-
sure with reasonable precision, the throughput was measured. To isolate the REST
layer, no libspotify calls were included in this metric. Including libspotify calls could
add uncertainties in the form of network delays, cached responses etc. Instead, a
dummy API was set up using the REST implementation, with requests of varying
processing times, together with an equivalent C API. Ideally, the throughput for
the API requests should be the inverse of the processing time of the requests. In
practice, processing overhead in the API layer will affect the throughput for both
APIs.

13

CHAPTER 3. METHODOLOGY

Throughput of requests with processing times between 0.01 ms and 10 ms were
chosen. The processing time was simulated using a sleep function. The lower bound,
0.01 ms, was chosen because of the limited precision of the sleep function. Testing
processing times over 10 ms was not deemed to be necessary, as by that point the
processing time would dominate the throughput, and the API overhead would be
relatively insignificant. Each request was called as many times as possible in a time
frame of about 10 seconds. The call count was divided by the time taken, giving
an average value for how many requests that could be called each second. Because
background processes running on the test computer could affect the results, the
measurement was repeated five times for each API, and the values were averaged.

14

Chapter 4

Implementation

This chapter presents the implementation of the libspotify REST
API. The different parts of the API are explained, and an example
of how the API can be used is shown.

4.1 The existing API
The existing libspotify C API is split up into modules. Different modules implement
different parts of the API, and they each consist of a set of functions and data struc-
tures [9]. The modules that have been used during the REST API implementation
are presented in table 4.1.

Module Used functions Used structures/types

Session

sp_session_create
sp_session_login
sp_session_logout
sp_session_player_load
sp_session_player_play
sp_session_process_events
sp_session_user
sp_session_userdata

sp_session
sp_audioformat
sp_session_callbacks
sp_session_config

Track sp_track_add_ref
sp_track_is_loaded sp_track

Link
sp_link_as_track
sp_link_create_from_string
sp_link_release

sp_link

Error sp_error_message sp_error
Table 4.1. The different functions and structures of libspotify used in the REST
API implementation.

The session module contains the sp_session structure that represents a session,
and functions like sp_create_session, sp_session_login and sp_session_player_play

15

CHAPTER 4. IMPLEMENTATION

to manage a session. The track module contains the sp_track structure which rep-
resents a track, that can e.g. be played using functions from the session module.
The link module contains the sp_link structure which represents a Spotify URI,
which can be a reference to a track, album, artist, etc. The error module contains
the sp_error type, which represents an error. The different functions throughout
the libspotify API return an sp_error, to indicate whether an error occurred, and
what the error was. Other modules exist for managing other parts of libspotify, like
playlists, albums, toplists, etc. [9].

4.2 Overview
The implementation is written in C++. Internally the API utilizes object-oriented
programming, like any other C++-based API. Externally, the interface that is ex-
posed is a general REST interface consisting of two C++ methods through which
API requests are performed. The mindset during the implementation of the API
has been to reuse existing standards and technology when possible, to focus the time
on areas where established standards do not exist. HTTP has been the main inspi-
ration for the API. The representation structure and the uniform way of performing
actions on resources using a set of predefined verbs are based on HTTP.

4.3 Representations
A representation is stored in a general representation class that contains a header
and a data part. Components communicate with each other by passing around such
objects. The header is a dictionary that maps field names to values. The idea is to
make the messages self-descriptive to conform with REST. Some standard header
fields have been predefined. The URI header field specifies the resource that is
being represented or manipulated by the representation. The Status field specifies
the result of a client request, i.e. whether the request was successfully completed
or if an error occurred.

The representation class can be extended to simplify management of different
representation types. Much of the data passed from and to the API is JSON-
based. JSON is a common lightweight format for representing structured data
in web services. A JSON representation class was implemented to make it easier
to manipulate such representations. A component is not required to know of all
the different representation types and subclasses of the representation class, as all
representations are serializable and have a uniform way of being represented. This
is usable for components that need to handle representations but not necessarily
understand the data they contain, like routers or caches.

16

4.4. INTERFACE

4.3.1 Methods
To provide a uniform way of performing actions on resources, the representation
header field Method is used to specify an action in client requests. The methods
defined are the verbs CREATE, READ, UPDATE and DELETE. These are similar
to the verbs used in HTTP, but they have been renamed to make their purpose
clearer. CREATE is a method used to create a new resource on the server at the
given resource URI, or as a subordinate of that resource. READ is used to retrieve
a resource, and should not have any side-effects, to ensure stateless communication.
UPDATE is used to replace an existing resource at the given URI. DELETE is used
to delete the resource at the given URI.

4.3.2 Types
Each representation should have the header field Type, specifying the type of the
representation data. The format of a type follows the same standard as media
types in HTTP. The type for JSON data is e.g. application/json. Types not reg-
istered with the Internet Assigned Number Authority (IANA) should be prefixed
with x-, e.g. application/x-spotify-track+json, which is the type for a track in the
implementation.

4.4 Interface
Each server component in the API implements a general connector interface. The
interface provides two methods for clients to perform requests on a component.
These methods are uniform across the entire API. Both methods take a represen-
tation object, the request. One of the methods is used to perform asynchronous
requests, and also takes a callback function that is called when the response is
available. The other method performs blocking requests and returns the response
representation when it is available. These methods provide a uniform interface and
enables the creation of layered systems. A client communicates with a connector
and does not care whether the component associated with it is a server component,
or if it happens to be an intermediate proxy or cache.

17

CHAPTER 4. IMPLEMENTATION

Router

Session component

Router

Player component

Connector

Router

Search component

Router

Spotify component
/session

/player

/search

Figure 4.1. A process view of the API, showing the different components and the
top level URI space.

To improve modularity, different parts of the API are separated into different
internal components, e.g. a session component that manages login and a player
component that manages music playback. To give a client a single interface to
communicate with several server components like these, a router component was
implemented. Figure 4.1 illustrates this in the form of a general process view of the
API. A router holds pointers to several connectors along with their corresponding
URI address spaces, but provides only one connector for clients. The router inspects
the URI header field of each incoming request and routes the request to the correct
connector. This is similar to how a network router works with its routing table.
Routers are also used by components to manage their local address space. In that
case address spaces are mapped to methods within the component rather than
connectors. The router was inspired by Restlet, that also uses a similar router
solution to delegate requests [14].

4.5 Model
Libspotify is a typical C API, consisting of function and structure definitions. This
model was turned into a resource-oriented model. The functionality provided by
the functions was mapped to resources and the predefined set of uniform meth-
ods as shown in table 4.2. Generally the different resources correspond to different
modules of libspotify, e.g. session management, player and search. Functions in
the C API corresponding to just accessing data are implemented using the READ
method. Functions modifying state are implemented using UPDATE or DELETE.

18

4.6. LIMITATIONS

URI Method Corresponding calls in C API

/session/user CREATE sp_session_login
DELETE sp_session_logout

/player READ
UPDATE sp_session_player_*

/search/{query} READ sp_search_*
Table 4.2. The resource model of the API

4.6 Limitations
Because of the limited time of this project, only a very basic libspotify REST API
was implemented. Libspotify is quite extensive, and functionalities like playlists,
top lists, browsing and social were not implemented.

4.7 Example
This section presents a concrete example of how the final implemented REST API
works, by showing C++ code excerpts from a simple demo application that uses the
API, along with equivalent calls in the C API for comparison. The example only
shows the interface of the implemented API, what a user of the API would work
with, not any underlying implementation details.

To start off, a Spotify object has to be created (listing 4.1). The Spotify object
represents a REST component, and it has implemented the connector interface.
Upon creation it also creates the standard set of components (session, player and
search), and sets up its internal router to point to them (see fig. 4.1). All requests
to the API is done through the request method of the Spotify object. Listing 4.1
shows how the C API is set up.

Spotify connector ;

Listing 4.1. Create a Spotify component in the REST API.

19

CHAPTER 4. IMPLEMENTATION

sp_session_callbacks callbacks ;
callbacks . logged_in = & login_callback ;
...

sp_session_config config ;
config . callbacks = & callbacks ;
config . cache_location = "/tmp";
...

sp_session_create (& config , & session);

Listing 4.2. Setting up libspotify in the C API. The config structure contains various
libspotify options and callback functions for the API.

To start interacting with the different resources, their URIs must first be known.
To get the available top-level resources, a read request is sent to the entry point of
the API, which is predefined as "/". This resource contains the available resources,
and it responds with a JSON representation of them. In the example in listing 4.3
the player and session user resources are extracted from the JSON response. No
equivalent call exists in the C API, as all function names are already known and
defined in its documentation [9].

Json resources = connector . request (Representation (READ , "/"));
string playerUri = resources [" player "]. getString ();
string userUri = resources [" session_user "]. getString ();

Listing 4.3. Read the top-level resources in the REST API.

The next step is to log in using a Spotify account, by creating a session user
resource. To do this, a representation containing a user is sent, with the method
header field set to CREATE. The representation contains an account username
and password. The example in listing 4.4 shows how a login is performed, in this
case taking the username and password as the first command line arguments. This
time a callback function is also sent with the request. This makes the request
call asynchronous, avoiding locking up the thread in which it was called. Instead
of returning the response immediately, the response is delivered to the specified
callback function when it is available. An equivalent login call in the C API is
shown in listing 4.5.

Json user(CREATE , userUri);
user[" username "] = argv [1];
user[" password "] = argv [2];
connector . request (user , & loginCallback);

Listing 4.4. Log in to the service with a Spotify account in the REST API.

20

4.7. EXAMPLE

sp_session_login (session , argv [1], argv [2], false , NULL);

Listing 4.5. Login in the C API.

A request callback function takes a representation as its only parameter, which
represents the response to the corresponding request. The callback shown in list-
ing 4.6 will be called when the login is complete. A typical use case after a user has
logged in is to start playing music. This is achieved by updating the player resource.
A representation containing the new desired values is sent. To start playing a track
using a Spotify URI, the track attribute is set to the desired URI, and the playing
flag is set to true. Pausing the playback is simply done by updating playing to false.
Listing 4.7 shows how a track is played in the C API.

void loginCallback (Representation response) {
if (response . getHeaderInt (HEADER_STATUS) == STATUS_OK) {

Json player (UPDATE , playerUri);
player ["track"] = " spotify :track :6 JEK0CvvjDjjMUBFoXShNZ ";
player [" playing "] = true;
connector . request (player , & playCallback);

}
}

Listing 4.6. Start playing a track in the login callback if the login succeeded in the
REST API.

void login_callback (sp_session * session) {
const char *uri = " spotify :track :6 JEK0CvvjDjjMUBFoXShNZ ";
sp_link *link = sp_link_create_from_string (uri);
sp_track *track = sp_link_as_track (link);
sp_track_add_ref (track);
sp_link_release (link);

// Called when track has loaded
sp_session_player_load (session , track);
sp_session_player_play (session , play);

}

Listing 4.7. Playing a track in the C API when login is completed.

To finally log out the user, the session user resource is simply deleted (listing 4.8).
In the C API, the logout function is called, as shown in listing 4.9.

connector . request (Representation (DELETE , userUri));

Listing 4.8. Log out the user in the REST API.

21

CHAPTER 4. IMPLEMENTATION

sp_session_logout (session);

Listing 4.9. Log out the user in the C API.

Performing some actions in the C API require more steps than the REST API,
which is a result of the implemented API being more simplistic than the existing
API, rather than the properties of REST. The difference between listing 4.6 and
listing 4.7 is one example of this, where the C API requires more steps to play a
track, but in turn is more powerful in what it can do. The main differences between
the API styles are that resources and types are represented in a more general way
in the REST API, as they are all encapsulated in a representation object, and sent
through the same request method.

22

Chapter 5

Analysis

This chapter attempts to answer the problem statement by ana-
lyzing the found studies and the performed measurements.

5.1 Modeling
Pautasso, Zimmermann and Leymann have compared REST to other web service
standards like SOAP, from an architectural perspective [12]. They focus on the dif-
ferences in the architectural decisions that a web service developer has to make
using the different standards. They conclude that more decisions must be made
with REST, like the choice of representation types. This also results in more flex-
ibility and control. Significant development efforts and technical risks can also lie
in designing the resource specifications and the addressing scheme. They also find
that REST does not have as good tool support as other standards.

Some of their findings are consistent with what was found during the implemen-
tation of the local REST API. This could indicate that designing a local REST API
could involve more work and be more time consuming than designing a more con-
ventional local API. Tool support for local REST APIs was found to be even worse
than that for REST web services, and very few relevant tools could be found (see
section 2.4). As there are no widespread standards to follow when designing local
REST APIs, the implementation was inspired by technology and standards used
by REST web services. Some standards, like media types, could be used directly.
Other standards were not directly applicable in a local context. HTTP for example,
which is a very common application protocol for REST web services, relies on an
underlying network transport protocol like TCP.

Time was also spent on designing the resource model. Depending on the un-
derlying structure of how data is represented and manipulated in the system, this
could implicate more or less work. The libspotify C API is not very REST or
resource-oriented to begin with, so several steps had to be taken to make it REST-
ful before any code could be written on the implementation. The list of functions in
the existing C API had to be conceptually transformed into a set of REST modules,

23

CHAPTER 5. ANALYSIS

resources and types. Some parts of the REST API were conceptually harder than
others to model. Some local APIs like libspotify are e.g. not just about retriev-
ing and sending data, but also about performing actions like playing and pausing
playback. These types of actions do not directly correspond to any of the prede-
fined verbs, but still have to be mapped to resources in some way. One way of
implementing a play action could be to introduce completely new verbs, like PLAY,
PAUSE and STOP, that could act on certain resources. Another approach could
be to implement a player resource, whose play state could be updated using the
UPDATE verb. The latter approach was chosen in the implementation, as it felt
more general and did not introduce a need for new specialized verbs.

5.2 Decoupling
According to Fielding, the uniform interface between components is what mainly
distinguishes REST from other network-based architectural styles. The benefit of
this constraint is presented to be a simpler overall system architecture, and improved
visibility of interactions [5].

5.2.1 Metric
The result of the coupling metric is presented in table 5.1. Several sources mention
that REST reduces coupling, when compared to other web service standards like
SOAP [11, 12, 16]. This is backed up by the metric, which supports that the imple-
mented REST API is less coupled than the C API, with a value of 3.75 compared
to 3.93.

Coupling type Interconnections Final metric
C API 3 13 3.93
REST API 3 3 3.75

Table 5.1. Application of Fenton and Melton’s coupling metric on the APIs

The metric clearly states which API is less coupled, but it is not apparent how
significant the difference of 0.18 is. Fenton and Melton do not discuss how to
interpret the magnitude of this value when they present the metric, so it is hard to
draw any additional conclusions with the value alone. By looking at what the metric
actually takes into account, more can be understood. According to eq. (2.1), the
metric takes the greatest coupling type between the two modules, and the number
of interconnections between them into account. Both APIs have the same greatest
coupling type, control coupling, which is described in section 2.3.1.3. Both use
parameters to communicate, and the parameter controls the behavior of the APIs.
The number of interconnections is what differs. The C API has one interconnection
for each public function and callback function, whereas the REST API only has
two methods to make requests, and one method type for callbacks. The uniform

24

5.2. DECOUPLING

way of performing requests in REST is ultimately what lowered the coupling in the
implementation according to the metric. Because the REST API only provides a
subset of libspotify’s functionality, only the corresponding parts of the libspotify C
API was considered in the metric.

5.2.2 Data decoupling
Vinoski presents several properties of REST that contributes to decoupling between
a server and a client. The freedom for resources to represent their states using differ-
ent media types, and clients to indicate their desired types, reduces data coupling.
Supporting a wider variety of client applications can be easier if clients can choose
media type after what is best for them. Using standardized media types provided
by IANA, which are widely used on the web, can lead to further decoupling. These
standardized media types will not change, removing uncertainty and the need for
versioning of the types [16].

5.2.3 Evolvability
According to Fielding, decoupling in REST also encourages independent evolvabil-
ity of components [5]. Vinoski gives one example of that, also related to types. It
is common to use specialized constructed types, like structs, when passing data to
and from a local C API like libspotify. This results in high coupling. In larger ap-
plications, different parts might have been developed by different teams, at different
times, with different versions of underlying software and even in different program-
ming languages. In such applications specialized constructed types can be difficult
to use by developers not connected to the team that manages the types. In REST,
media types can be versioned, and should not be language or protocol specific [16].

5.2.4 Other benefits
The small and generic interface of the implemented REST API, which consists
of only two request methods and a response callback, leads to other benefits as
well. Intercepting all requests for e.g. debugging or other processing purposes can
be done at a single location. During the development of the Spotify REST API,
a simple printing component was implemented, that was connected between the
Spotify component and the client. The component simply prints the contents of the
requests and responses passed through it, making it simpler to visualize the API
messages and find any problems. Implementing the same thing in the C API would
mean that each function had to be modified, and specialized routines might have
to be implemented to print different data structures.

Local REST APIs can also simplify creation of bridges between different pro-
gramming languages. Android is a platform where such bridges are used, where
applications written in Java can access APIs written in C or C++. Java Native
Interface (JNI) is the framework used to enable this. The more functions that have
to be called through the language barrier, the more JNI code has to be written.

25

CHAPTER 5. ANALYSIS

5.3 Performance
The properties of REST introduce both potential performance gains and perfor-
mance losses. While the uniformity constraint might result in processing overhead
in REST APIs, caching can improve efficiency.

5.3.1 Metric
The measured throughput of the APIs is presented in fig. 5.1. The difference in
throughput between the two APIs increases as the request processing time gets
shorter. For requests taking about one millisecond, the difference in throughput is
2.4 %. For 0.1 millisecond requests the difference is 30 %.

Figure 5.1. Performance throughput of the REST API layer compared to an equiv-
alent C API. The scales of both axes are logarithmic.

The performance metric applied to the implemented dummy APIs shows that
the REST API has notable performance overhead for shorter and frequent requests.
For less frequent requests the difference was smaller. For 10 millisecond requests
the difference is only 0.025 %, where both APIs could process around 89 requests
per second. Requests to the libspotify REST API are quite sparse, as they are
mainly performed when a user performs actions like logging in and starting to play
a track. In normal circumstances such actions would be significantly less frequent
than any of the performance measurements. The performance overhead will thus
be negligible for the implemented API.

26

5.4. USABILITY

5.3.2 Uniform interface
According to the constraints of REST, data should be transferred in a uniform and
standardized way. This leads to degraded efficiency according to Fielding, because
data is not sent in an application-specific way [5]. Representation data sent in the
API has to be transformed when sent, and then re-transformed when arriving at
the receiver. Representations in the implemented API containing e.g. JSON objects
have to be serialized to strings when transferred, and then deserialized back to a
JSON object for the receiver to use that data. This can add a considerable overhead
to each request compared to function calls in C, where data in function calls usually
is transferred by copying or by pointers. This partly explains why the REST API
performed worse than the C API for requests with shorter processing times. If
a component’s processing time to handle a certain request is short, the overhead
introduced by the REST layer can dominate the total processing time.

5.3.3 Layers
Fielding mentions that processing in intermediate component layers like routers add
overhead and latency to API requests in a REST system [5]. At each router in the
implemented API, the URI of a request is looked up against the structure containing
the different address spaces and their corresponding connectors. Requests are often
routed through several routers (see fig. 4.1), which happens in runtime. In contrast,
method calls to a C library are linked to the correct memory address once during
compile time or when the program starts. This is also part of the reason why the
measured throughput of the REST API was worse than that for the C API.

5.3.4 Caching
Caching can be used to reduce interactions like network interactions, disk interac-
tions or computations. This can improve efficiency and user-perceived performance
[5]. The uniformity, layerability and cache constraints make caching simple. Be-
cause different representation types go through a uniform communication channel
and have a uniform way of being represented, a general cache can be built to man-
age different representation types. As libspotify already handles local caching, it
was not implemented in the REST layer.

5.4 Usability
From an API user’s perspective, the REST API is quite different to use compared
to traditional C or C++ APIs. This is not an area that is mention in any of
the studies covering web based APIs, but some observations were made during the
implementation of the local REST API. Making a request in the API generally
requires more code than making a call in an equivalent C/C++ API. One example
is the four line login call shown in listing 4.4, where a representation is created,

27

CHAPTER 5. ANALYSIS

the user details are set and the representation is finally sent. The equivalent call
in libspotify is a single call to a login function (listing 4.5). Another observation
related to types and resources was made. Because types and resources are not
defined in language specific ways (i.e. well defined structures and functions in the
case of C and C++), the compiler has no concept of these. This means that it can
not perform any checks related to these during compile time (e.g. misspelled URIs
or type attributes). This also limits the functionality of code completion, as code
editors has no knowledge of REST resources or types.

5.4.1 Type checking
Because of the nature of REST, type checking in the API is performed at runtime.
Types are not known at compile time, as it is up to the client and server to nego-
tiate what types to use when performing requests. Languages where most of the
type checking is performed at runtime are called dynamically typed. C and other
languages like C++ and Java, are on the other hand statically typed. In those
languages, type checking is performed during compile-time, as the arguments and
return types of API calls are known. Dynamically and statically typed program-
ming languages have different properties, and the benefits and drawbacks of them
will not be discussed in great detail. One benefit of static typing is that it can
increase software reliability by detecting type errors in compile-time before they
occur in runtime. A benefit of dynamic typing is the flexibility of choosing types.

5.4.2 Wrapper classes
One downside to having a dynamically typed API in an otherwise statically typed
language like C++ is that it might add inconsistency. Developers are probably
used to APIs using the style and conventions of the language they work with. One
way to provide more consistency is to create language-specific wrapper classes for
the various media types. This way representations can still be passed through the
uniform API, and also be handled in a more language-specific way, like conventional
well-defined structures or objects in the case of C or C++. An example of such a
wrapper class is the JSON class presented in section 4.3, which was created for this
very reason. Making the REST API more coherent with the programming language
which it is implemented in can thus require additional effort.

28

Chapter 6

Conclusions

This chapter concludes the findings of this project, and presents
potential areas that could be of interest for future work.

6.1 REST in local APIs
To conclude, it is fully possible to apply REST principles on local APIs, as shown in
the presented implementation. Using REST over more conventional principles when
developing a local API introduces both benefits and drawbacks. In the end these
have to be weighed against each other to decide if a REST API could be appropriate
in a case by case basis. The main discovered strength is the decoupling, along with
the potential evolvability and type handling benefits. The additional modeling effort
needed, and the extra work needed to make the API language-consistent is found
to be the main downside.

In some cases a local REST API might not be appropriate at all, like when API
performance is crucial, or for very simple APIs where the work overhead might be
unjustified. In other cases a REST API could definitely be worth considering, e.g.
if the API is expected to be used by and worked on by a large number of people.

6.2 REST in libspotify
In the case of libspotify, the performance overhead was shown to be negligible. The
main downsides are instead related to additional effort in designing the API and
making it more user friendly for developers using the API. Applying REST principles
could in the other hand provide benefits in the form of better maintainability and
evolvability of the API. Due to the small interface of REST APIs, it could also
simplify the creation of language bindings. This could be beneficial for an API like
libspotify that is intended to work on many different platforms. Libspotify could

29

CHAPTER 6. CONCLUSIONS

thus be a good candidate to develop a REST API around, if one would be ready to
spend the additional time and effort.

6.3 Social and ethical aspects
Social and ethical aspects, including economically, socially, and ecologically sustain-
able development, have been considered during this project due to requirements
from KTH. Because of the nature of the project, they have been regarded as irrel-
evant.

6.4 Future work
One area that has not been covered in this report is the implementation of some
more advanced concepts related to REST, like type relations, lists, and modeling of
more complex actions. Some types, e.g. lists that refer to other types, might require
a way to specify relations between types. Non-standard actions, like login and
managing playback, have been modeled very ad hoc in this REST implementation.
A more general and formalized procedure to model REST resources from functions
in procedural languages could be another interesting area to explore.

30

Bibliography

[1] Jarallah S. Alghamdi. Measuring Software Coupling. 2008.
[2] Developer’s Introduction to Resource Oriented Computing. 1060 Research,

Ltd, 2007.
[3] Harpal Dhama. Quantitative Models of Cohesion and Coupling in Software.

1995.
[4] Norman Fenton and Austin Melton. Deriving Structurally Based Software

Measures. 1990.
[5] Roy Fielding. “Architectural Styles and the Design of Network-based Software

Architectures”. Doctoral dissertation. University of California, Irvine, 2000.
[6] Roy Fielding. REST APIs must be hypertext-driven. Oct. 2008. url: http:

//roy.gbiv.com/untangled /2008/ rest- apis- must- be- hypertext-
driven (visited on 02/18/2013).

[7] Roy Fielding et al. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616. 1999.
[8] Introduction to Resource-Oriented Computing. 1060 Research, Ltd, 2007.
[9] Libspotify. 2013. url: https://developer.spotify.com/technologies/

libspotify/ (visited on 03/11/2013).
[10] J.D. Meier et al. Microsoft Application Architecture Guide, 2nd Edition. Mi-

crosoft Press, 2009.
[11] Michael zur Muehlen, Jeffrey V. Nickerson, and Keith D. Swenson. Developing

web services choreography standards: the case of REST vs. SOAP. 2005.
[12] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. “Restful web ser-

vices vs. "big"’ web services: making the right architectural decision”. In: Pro-
ceedings of the 17th international conference on World Wide Web. WWW ’08.
2008.

[13] Martin Reddy. API Design for C++. Elsevier, 2011.
[14] Restlet 2.1 - Tutorial. 2013. url: http://restlet.org/learn/tutorial/2.

1/ (visited on 04/05/2013).
[15] Restlet FAQ. 2013. url: http://restlet.org/discover/faq (visited on

03/06/2013).

31

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://developer.spotify.com/technologies/libspotify/
https://developer.spotify.com/technologies/libspotify/
http://restlet.org/learn/tutorial/2.1/
http://restlet.org/learn/tutorial/2.1/
http://restlet.org/discover/faq

BIBLIOGRAPHY

[16] Steve Vinoski. “Demystifying RESTful Data Coupling”. In: 2008.
[17] Wikipedia. Application programming interface. 2013. url: http://en.wikipedia.

org/wiki/Api (visited on 03/04/2013).
[18] Wikipedia. Representational state transfer. 2013. url: http://en.wikipedia.

org/wiki/Representational_state_transfer (visited on 05/08/2013).
[19] Wikipedia. Software metric. 2013. url: http://en.wikipedia.org/wiki/

Software_metric (visited on 05/08/2013).

32

http://en.wikipedia.org/wiki/Api
http://en.wikipedia.org/wiki/Api
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Software_metric
http://en.wikipedia.org/wiki/Software_metric

	Introduction
	Introduction
	Problem statement
	Scope limitations
	Terminology and abbreviations

	Background
	API
	REST
	Principles
	Constraints
	Client-server
	Stateless
	Cache
	Uniform interface
	Layered system
	Code-on-demand

	REST in practice

	Software metrics
	Coupling
	Content coupling (level 5)
	Common coupling (level 4)
	Control coupling (level 3)
	Stamp coupling (level 2)
	Data coupling (level 1)
	No coupling (level 0)

	Performance

	Related implementations
	Resource-Oriented Computing
	Restlet
	HTTP

	Methodology
	Implementation
	Analysis
	Metrics
	Coupling
	Performance

	Implementation
	The existing API
	Overview
	Representations
	Methods
	Types

	Interface
	Model
	Limitations
	Example

	Analysis
	Modeling
	Decoupling
	Metric
	Data decoupling
	Evolvability
	Other benefits

	Performance
	Metric
	Uniform interface
	Layers
	Caching

	Usability
	Type checking
	Wrapper classes

	Conclusions
	REST in local APIs
	REST in libspotify
	Social and ethical aspects
	Future work

	Bibliography

