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Abstract
Forecasting short-term viewership ratings for on-demand video is cru-
cial for the online advertisement market because advertisement sales is
done ahead of time, and errors in forecasting means either loss of profit
opportunities or having to compensate advertisers for not upholding
agreements. These forecasts can be made using an uncomplicated Sea-
sonal Averaging method, which produces forecasts for the coming weeks
using averaged hourly values from previous weeks (where the forecast
for next Sunday is the average of the actual value from the last three
Sundays). In this thesis, an alternative approach using a neural net-
work is implemented and benchmarked against the Seasonal Averaging
method, using data from December–February from a major online video
site. The network utilizes a Multilayer Perceptron design with inputs
corresponding to the seasonal patterns of the ratings data. It finds that
while good forecasting performance can be reached even over very long
horizons, weekly averages wins out when comparing standard forecast-
ing error metrics, likely owing to the strong seasonal pattern.



Referat
Att förutsäga tittarsiffror för on-demand video

Att förutsäga tittarsiffror för strömmande video är viktigt för reklamin-
dustrin då försäljning av reklam sker innan den visats. Alltför stora fel i
dessa förutsägelser leder till att annonsörer måste kompenseras för ej vi-
sade reklamsnuttar, alternativt att möjligheter till att sälja mer reklam
går förlorade. Dessa förutsägelser kan göras genom att ta genomsnit-
tet av tidigare veckors tittarsiffror och använda detta som förutsägelse
för påföljande veckor (där tittarsiffran för söndag nästa vecka är lika
med genomsnittet av de senaste tre söndagarna). I det här exjobbet un-
dersöks möjligheten att använda ett neuronnätverk för att göra dessa
förutsägelser istället, genom att jämföra resultaten från detta mot den
nuvarande metoden på data från December till Februari. Neuronnätet
är av typen Multilayer Perceptron och använder en design som är anpas-
sat till de veckovisa mönster som data uppvisar. Undersökningen finner
att trots goda förutsägelser från neuronnätverket når det inte samma
träffsäkerhet (mätt med standardmått på förutsägelser) som den nu an-
vända metoden, troligtvis på grund av det starka veckovisa mönstret
som data uppvisar.



Preface

This thesis was written at the KTH School of Computer Science and Communication
(CSC), on request from Videoplaza Ltd. The author would like to thank his thesis
counselor at CSC Olov Engwall, his mentors at Videoplaza Henry Rodrick and
Joachim Hedenius as well as all Plazaits who beat him up in foosball, and lastly his
thesis counseling group, consisting of Olle Hassel, Anton Lindström, Markus Felldin
and David Nilsson. Tack!

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction 1
1.1 Research question and scope . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Word list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Forecasting 3
2.1 Statistical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Naive methods . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Artificial neural networks . . . . . . . . . . . . . . . . . . . . 4
2.2.3 Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Error Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.1 Mean Absolute Percentage Error . . . . . . . . . . . . . . . . 7
2.3.2 Mean Absolute Scaled Error . . . . . . . . . . . . . . . . . . . 7

3 Previous work 9
3.1 Comparisons of neural networks to statistical methods . . . . . . . . 9
3.2 Neural network variants and implementation considerations . . . . . 10
3.3 Seasonal artificial neural networks . . . . . . . . . . . . . . . . . . . 10
3.4 Forecasting television ratings . . . . . . . . . . . . . . . . . . . . . . 11

4 The data 13

5 Test setup 15



6 Neural network design 17
6.1 Experimentation parameters . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 Hidden layers and number of hidden nodes . . . . . . . . . . . . . . 17
6.3 Output vector size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.4 Input vector size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.5 Training algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.6 Dynamic retraining vs Static network . . . . . . . . . . . . . . . . . 20
6.7 Final MLP implementation . . . . . . . . . . . . . . . . . . . . . . . 21

7 Benchmark results 23
7.1 Typical forecast results . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8 Analysis of results 27
8.1 Daily aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.2 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.3 Possible improvements . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Bibliography 31



Chapter 1

Introduction

Forecasting on-demand video ratings is still a relevant challenge for advertisers, be-
cause the business model is built around traditional television advertising where an
amount of impressions is sold in bulk over a limited amount of time. On-demand
video does not have the same temporal restrictions as traditional television (a show
only running at 18:00 on wednesdays, for example), but the way advertising cam-
paigns are sold has not changed much since the advent of the on-demand market.

On-demand video ratings poses a different set of challenges than those of tra-
ditional television, because of the unscheduled nature of television programming.
While measuring the actual ratings is much more precise since every view (known
as an impression) is logged, forecasting those ratings can be tricky - even if broad-
casters have mastered forecasting ratings for a certain show, one cannot know at
what time or weekday those impressions will be. However, since impressions are
spread out over time, one can imagine using time series forecasting techniques to
forecast the total amount of impressions each hour for any given online television
channel.

Forecasting on time series is a well studied problem of statistics, one which has
always had strong relevance for a range of industries. Forecasting has historically
been (and still is) carried out using statistical methods such as regression analysis.
Beginning with the 1990’s, the body of research investigating the performance of
machine learning methods has grown considerably, predominantly focusing on neu-
ral networks. There are conflicting finds on both sides of the forecasting fence, with
no real consensus or best practices emerging for all time series problems.

This thesis explores the possibility of forecasting on-demand video viewership
using a Multilayer Perceptron, which has been shown to exhibit good performance
in forecasting all kinds of time series, including highly seasonal time series [1, 2].

1.1 Research question and scope

The question this thesis aims to explore is: can current forecasting methods for
on-demand video viewership ratings be improved using neural networks? And, as
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CHAPTER 1. INTRODUCTION

a natural followup question, is the current method of Seasonal Averaging used by
Videoplaza a sound approach?

The motivation for this question comes from the online video and advertising
industry, for whom accurate forecasts are in high demand. This thesis aims to
specifically explore hourly forecasts, since hourly targeting is a current requirement
for some publishers. For instance, in order to reach a certain audience, a marketer
might want to show advertisements from a certain campaign only between midnight
and 3 am. This requirement depends greatly on the way that individual publishers
conduct advertisement sales, but since Videoplaza currently offers hourly precision
to its customers, hourly forecasts are the scope of this thesis.

1.2 Overview
This thesis begins with a background in Chapter 2 and an overview of previous
work in the neural network forecasting field including implementation variants and
comparisons to statistical methods in Chapter 3. Chapter 4 explains the charac-
teristics of the data used in this thesis, and Chapter 5 explains the test setup used
to judge forecasting methods. Chapter 6 contains a thorough explanation of the
design and testing phase used to develop the neural network based on the litera-
ture, and is followed by benchmark tests on ratings data using widely accepted error
measurements in Chapter 5 and finally an evaluation of the results in Chapter 7 - 8.

1.3 Word list
Time series

A time series is a series of data points measured at equally spaced time inter-
vals.

Forecasting horizon
The number of future data points to be forecast is defined as the forecasting
horizon. For example, if forecasting on a time series with monthly sales data,
the forecasting horizon is the number of months to forecast into.

Ad Impression
An ad impression is a measure of how many times a piece of advertising is
seen by a user of online media. In the context of online video, an impression
is equivalent to an ad being shown to a viewer in conjunction with a video
clip. Charging per impression is one of the main ways of monetizing online
content, and different impressions are worth different amounts depending on
if they were shown before a clip (preroll), in the middle of a clip (midroll) or
after a clip (postroll) as well as which genre (or specific show) the clip belongs
to.
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Chapter 2

Forecasting

2.1 Statistical methods
Forecasting is the practice of predicting the future based on information from the
past, and it relies on the basic assumption that there is a correlation between
the past and the future. Research into quantitative methods of forecasting has
increased considerably since the 1970’s, when statistical modeling using ARIMA
(Autoregressive Integrated Moving Average) methods was popularized by Box and
Jenkins in 1970 [3]. Other models in use since then are Dampen Trend, Holt,
Winter and a host of variants and combinations [4]. These models continued
to hold prominence in the forecasting field well into the 1990’s and are still used
extensively today [5].

2.1.1 Naive methods
Naive methods for forecasting can be used as a baseline for evaluating the perfor-
mance of forecasting models. The simplest one is straightforward – the forecast for
the next period is equal to the actual value of the last period. Formally, we say that

Ft+1 = Yt (2.1)

where F is the forecast at time period t+1, and Yt is the actual observation at time
period t. For any forecast horizon longer than 1 this method is obviously flawed,
but the idea is to only use this method as a mean of benchmarking a real forecasting
method. A slightly more advanced method involves removing the seasonality from
the time series, and then doing the same as above, i.e. use the last observation as
the forecast [5].

Seasonal Average

Another possibility for strongly seasonal data is using the average of the last n
seasons as the future value for any given period. In this method, if the data contains
a strong weekly cycle, the forecast for next Wednesday is the average of the last
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CHAPTER 2. FORECASTING

n Wednesdays. Increasing the number of seasons used for the average creates a
smoother forecast, but one that will be slow in picking up trends, while using fewer
weeks will be susceptible to spikes and noise in the data.

2.2 Machine learning

2.2.1 Motivation

In recent times, great strides have been made in the forecasting field by using ma-
chine learning and data-driven approaches – a study by Zhang et al. reveals the
uncertainty surrounding the performance of neural networks for forecasting, while
more recent studies show an advantage in forecasting performance by machine learn-
ing approaches, and neural networks in particular [6, 1, 7]. Meanwhile, other recent
studies show that statistical methods still hold their own in forecasting competitions,
and the only real consensus in the literature seems to be that models need to be
evaluated on a per-dataset basis [8]. This thesis therefore explores the possibilities
of a neural network approach for forecasting on-demand online video ratings.

2.2.2 Artificial neural networks

An artificial neural network (ANN) is a nonlinear mapping system built up by small
processing units, called neurons. The neurons are linked to each other via weighted
connections, and receive input from other neurons through these connections which
is processed by the neurons activation function. The output of the activation func-
tion is then sent on to other neurons in the network to be used as input.

Figure 2.1: Basic multilayer perceptron layout

The input to a neural network is a vector of normalized numerical values in the
range (1,0) which is fed to an input layer of neurons, that then pass it through
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2.2. MACHINE LEARNING

to the hidden layers. These hidden layers ultimately pass their output on to the
output layer, whose values is then interpreted as the output of the network [9].

In this way, a neural network functions as an approximator of a function from
the input space to the desired output space. The weights of the connections between
neurons are adjusted via supervised training, where the desired outputs given par-
ticular inputs are specified using one partition of the total amount of data known
as the training set. The other partition of the data is the test set, which is used to
evaluate the performance of the network. The most popular method of training a
neural network is the backward propagation algorithm (also known as backpropa-
gation or backprop, a network trained with this algorithm is denoted backpropaga-
tion network), and a detailed description of this algorithm can be found in multiple
places [9, 10]. This approach requires the network designer to provide at least one
parameter called the learning rate. This parameter balances training speed and
avoidance of local error minimums. A similar algorithm called Resilient backprop-
agation needs no such tuning, since the same standard constants can be used for
almost any neural networking problem. Resilient backpropagation has been shown
to be a highly effective training algorithm in comparisons [9, 11].

2.2.3 Multilayer Perceptron

Motivation

The choice of a standard feed-forward Multilayer Perceptron as the neural network
used in this thesis is based on the work of Ahmed et al. who found that they gen-
erally perform better on time series data than a range of different popular machine
learning methods [1].

Description

A Multilayer Perceptron is constructed out of cascading layers of neurons. Every
neuron in one layer is connected to all neurons in the next layer. It is feed-forward,
that is, the connection only goes one way, from left to right as in Figure 1.

The input layer does no processing, but instead represents the input data, and
thus it is the entry point of the system. Each input neuron passes on their value
to every neuron in the first hidden layer through their weighted connections. The
neurons in the hidden layer adds this weight input, runs it through its activation
function, and passes on the output to every node in the next layer (which can be
the output layer or another hidden layer).

Formally, what happens in each neuron in the hidden layer is as follows. The
neuron receives input xi from each neuron i in the preceding layer, associated with
a weight wi. The product of the input and the weight is summed:

p =
n∑

i=0
wixi (2.2)
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and that sum is run through the neurons activation function to produce the
output u:

u = f(p) (2.3)

The sigmoid
f(u) = 1

1 + e−u
(2.4)

is a common choice of activation function because it limits very large or small
values, and has a simple derivative which is important for performance when training
the network. Other choices include tanh, step and radial basis functions, though
some research indicates that the sigmoid and tanh functions are superior for most
applications [12].

The output u is then sent forward in the network, to all neurons in the next
layer, to be used in the same fashion. The output from the neurons in the output
layer is finally interpreted as the output of the system.

The number of layers in the system can theoretically be any value, but Hornik
showed that a MLP with as little as one hidden layer is a universal approximator,
given enough neurons in that hidden layer [13]. A summary of proofs of this can
be found in [9]. In practice, the number of hidden nodes required for an accurate
result may be too high in a single hidden layer, and some research indicates that
using more than one layer can improve accuracy [6].

Choosing the number of neurons in each layer is however still considered some-
what of an art and is also dependent on the data, but should generally lie somewhere
between the number of inputs and the number of outputs. There exists a few rules
of thumb for this, but ultimately a test-and-evaluate approach is necessary [14].

Time series forecasting

Forecasting on a time series with a neural network can be done in two ways, with
a one-step ahead or multi-step ahead method. In both methods, the input vector
consists of the normalized time series values for some fixed amount of time in the
past leading up to the forecast horizon. In the one-step ahead method, there is
only one output neuron, and it represents the forecast for the next time period.
This forecast value is then used iteratively for forecasting the next period, until
values for the entire forecasting horizon is found. In the multi-step ahead method,
the output layer has one neuron for each time period in the forecasting horizon,
whose values represent the total forecast. Which method performs best seems to be
problem-specific, but later research seems to indicate better results for the iterative
one-step ahead method [6, 15, 16].

2.3 Error Measurement
In order to compare and evaluate the efficiency of a forecasting network, we need a
way to measure the accuracy of any given forecast. In the M3 competition (described
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in Chapter 3) the main error measurement used was the Mean Absolute Percentage
Error (described in 2.3.1), which has remained popular among forecasters [4, 17].
However, Hyndman and Koehler argues for the adoption of Mean Absolute Scaled
Error (described in 2.3.2) as the standard when comparing the performance of time
series forecasts. They conclude that the MASE is the most stable and accurate error
measure for time series forecasts, although the MAPE may be preferable under
certain conditions because of its simplicity and intuitive explanation [18]. As such,
in this thesis, both measures will be used to determine the accuracy of forecasts.

2.3.1 Mean Absolute Percentage Error
The Mean Absolute Percentage Error (MAPE) is the mean of the absolute Percent-
age Error (PE) of a forecast period. The PE for one forecast period t is calculated
as follows:

PEt = 100(Yt −
Ft

Yt
) (2.5)

where, as above, Ft is the forecast at time period t, and Yt is the actual observation
at time period t. The MAPE is then defined as

1
n

n∑
t=1
|PEt| (2.6)

Where n is the forecast horizon. The MAPE is useful since it gives an error measure
that is independent of the scale of the data, and allows the quality of forecasts on
datasets with different time intervals and different sizes to be compared. It also
gives an intuitive understanding of the forecast performance without comparisons
– an error of 10% is easier to understand than an arbitrary error amount [5].

2.3.2 Mean Absolute Scaled Error
The Mean Absolute Scaled Error (MASE) is defined using the scaled error qt, defined
by

qt = Yt − F − t
1

n−1
∑n

i=2 |Yi − Yi − 1|
(2.7)

The MASE is then defined as
mean(|qt|) (2.8)

When the MASE for any method is less than 1, it is an indication that the method
performs better than the naive one-step ahead method (and greater than 1 means
it performs worse).The closer to 0 the MASE is, the better the method performs.
The greatest advantage of MASE over simpler measurements like the mean absolute
error is that it is independent of scale, which makes it better suited for comparisons
across different datasets [18].
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Chapter 3

Previous work

3.1 Comparisons of neural networks to statistical methods

Comparisons between statistical and neural network approaches to forecasting are
not straightforward, and there is currently no consensus on which method is the
"best", not even for specific datasets. The reasons outlined for this is variations and
different properties of datasets involved, specifics of implementation and choice of
error measurement [8]. Attempts to find the best forecasting method have been
made, most prominently in the M3 competition held in 1999, where a multitude
of statistical methods were benchmarked against each other on 3003 different time
series datasets. Among these were only one neural network, which did not perform
particularly well [4]. More recently in the NN3 competition which replicated the
M3 competition circumstances with the addition of a much larger amount of neural
network and other machine learning approaches, neural networks fared better but
did not dominate the top list [8]. One of the most prominent results of both
competitions was that methods which combined several other methods in some
weighted average fashion generally fared much better than those that consisted of
only one single model. The datasets included varied greatly, but forecasting horizons
were limited to 18 data points, which makes the conclusions reached hard to apply
to this thesis, where much longer horizons are required.

Other studies have found neural networks to forecast on average as well or bet-
ter than common statistical methods, with Box-Jenkins ARIMA being a popular
comparison method [19, 20]. The problem with these studies, however, is the un-
certainty involved with general statements of fact regarding forecasting performance
across all types of time series. Even when researchers produce good results fore-
casting with neural networks, it is hard to say whether they are better or worse
than all statistical methods, since there are so many methods around. Generally, a
highly specialized or improved technique is benchmarked against a basic, common
technique because of the huge burden of testing every available one. A study done
in 2012 exemplifies the problem of comparing forecasting methods: among forecasts
on 28 different time series representing inflation in 28 different countries, which
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CHAPTER 3. PREVIOUS WORK

technique performed better varied between the time series. This is even though
the time series in theory should have similar properties, since they model the same
phenomenon (albeit in different countries) [21]. Thus, the results are inconclusive,
despite neural networks performing quite well.

3.2 Neural network variants and implementation
considerations

Forecasting with neural networks comprises a host of different implementations and
designs. A comparison between multiple approaches done in 2010 using the M3 com-
petition data concluded that a fairly standard MLP implementation outperformed
all other tested implementations, including Bayesian neural networks, Radial Basis
Function (RBF) networks, support vector regression, K-nearest neighbor regression
and more [1]. Other studies finds that MLPs is the dominant type of neural net-
work used in forecasting, and even though other designs show good performance,
standard feed-forward MLPs on average perform as good or better [22].

Design issues for implementing MLPs include the number of nodes in each layer
of the network, which most studies involving neural networks agree is something
that need to be found through experimentation with the data at hand, since the
optimal number of nodes to use for a particular task varies greatly with the problem
to solve [6]. Another problem plaguing neural networks is overfitting, where the
network is trained to be so good at predicting the training sample that it cannot
generalize to new data. A study conducted 2010 proposes an alternative model
to combat this, using a dual-network design where one network outputs a forecast
and one a relative forecasting error, and their outputs are weighted to create an
improved forecast which is less prone to error when the input changes over time
[23]. Unfortunately, the work focuses on forecasts with a horizon of 1 data point,
and using the method in a longer horizon context is complex.

3.3 Seasonal artificial neural networks

When dealing with strongly seasonal time series, one can exploit the repeating
properties of the data in forecasts. One proposed model is the Seasonal artificial
neural network (SANN), which uses the seasonality of the data in network design.
The idea is to use the same amount of input nodes as there are data points in one
seasonal cycle, meaning that for monthly data one uses 12 input nodes, for hourly
data 24 nodes and so on. If the data is multi-seasonal, that is, more than one
seasonal cycle is present, input nodes corresponding to the largest reasonable cycle
is used. Applying this method to the dataset used in this thesis, with both daily
and weekly cycles, one would use the amount of hours in a week as input nodes, e.g.
168 input nodes. The SANN approach makes no suggestions about the amount of
hidden layers or nodes [24].
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3.4. FORECASTING TELEVISION RATINGS

In contrast to traditional statistical methods, which emphasize removing the
seasonal component of the data before forecasting, neural networks seem not to need
this filtering, but rather detect the pattern if left in the data. A study carried out
in 2012 showed an MLP outperforming traditional methods without any seasonal
filtering, when that filtering was being done for the statistical methods tested. This
result is highly relevant to this thesis, as it marks a real difference in approaches to
seasonal data between statistical and neural network strategies, and the data used
in this thesis is strongly seasonal.

3.4 Forecasting television ratings
Very little public research has been done in the area of on-demand video advertising,
which can probably be attributed to the highly competitive nature of the market.
An analysis of forecasting methods for traditional (scheduled) television ratings was
done in 2011, concluding that research in the area is made difficult by the secrecy
which surrounds the field. Although using ratings data from traditional television,
the study indicates the same pattern found in on-demand video ratings: viewership
is highly seasonal, with time of day, day of week and month of year playing a big
part in determining viewership. This pattern is the motivation for using straight
historical values from the same period the year before when forecasting television
viewership, similar to the Seasonal Average in use for on-demand video forecasting
[25].
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Chapter 4

The data

The data used in this study encompasses a sample of nine weeks of viewer logs
from three online video sites with different traffic volumes, from December 9th 2013
to February 18th 2014. The dataset is sampled at a rate of 1/100th of actual
impressions.

The sites sampled were chosen because they represent the spectrum of online
video sites – high, medium and low volume. The time period was chosen to capture
irregularities found over holiday periods, so that tests could be run on both irregular
and regular, stable data. This irregularity can be easily spotted in Figure 4.3, where
the impression counts takes a big dive around Christmas and keeps exhibiting an
irregular pattern which does not stabilize again until well into January. This period
is interesting because it is prone to forecasting errors, stemming from the fact that
the data before Christmas is regular and stable, forming an inaccurate basis for
forecasts over the Christmas season.

The sample data exhibits strong seasonality on a daily and weekly basis. On
a typical day, impression count progresses from around 6.00 every day, platforms
around lunchtime and continues to climb until the peak at 21.00 after which the im-
pressions rapidly decrease. Weekly, impressions peak on Wednesdays, and Sundays
are marked by their typical "hump", where the daily peak is less pronounced as total
impressions are spread more evenly throughout the day. A typical week can be seen
in Figure 4.1 and a typical day in Figure 4.2. Figure 4.3 shows the full impression
data from the largest dataset, where the disruption of the weekly pattern, as well
as the dip in ratings produced by the holiday season, is clearly visible.
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Figure 4.1: Typical week

Figure 4.2: Typical day

Figure 4.3: The full sample
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Chapter 5

Test setup

In order to test whether a neural network can create forecasts with improved ac-
curacy over current methods, a benchmarking framework was built so that tests
could be run with varying amounts of data and over varying time periods. Refer-
ence implementations of the Seasonal Averaging method were created to represent
the currently used method at Videoplaza, both to benchmark a neural network
implementation against, and to investigate the sub-question of this thesis: is the
current method of Seasonal Averaging used by Videoplaza a sound approach? The
Seasonal Average methods were implemented using 3, 2 and 1 week of historical
data, to discover whether using more or less data makes a significant difference to
the results. Motivations and descriptions of how the neural network was designed
and implemented can be found in Chapter 6.

The benchmark was designed as follows. Two different horizons were defined,
which roughly corresponds to the normal usage seen by Videoplaza’s user base: 1
and 3 weeks ahead (short and long term for ad campaigns). The Seasonal Averages
used corresponding amounts of data for their forecasts, while the neural network
used three weeks historical data for training, and an amount of hours leading up the
forecasting period corresponding to the amount of input nodes as the first input.
For example, when using 24 input nodes and forecasting from midnight the 30th of
december, the 24 hours between midnight the 29th and midnight the 30th would be
used as starting input. Comparison tests were then ran in a sliding window the size
of training data + forecast horizon, sliding the window one day at each step, and
recording the results. The purpose of this design was to gather statistical evidence
of the performance of the tested methods over a long period, and to capture the
behavior of methods when faced with both unpredictable (Christmas & New year
celebrations) and predictable (late January and onward) data.

The results acquired from the testing program are in the form of result graphs
created using the JFreeChart library showing MAPE errors at each step of the test.
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Chapter 6

Neural network design

In order to evaluate and benchmark a neural network approach to forecasting, an
implementation was created through experimentation outlined in the following chap-
ter.

6.1 Experimentation parameters
The basis for the neural network used was a basic feed-forward MLP implementa-
tion, as discussed in the majority of forecasting literature on neural networks. The
standard design parameters of a feed-forward MLP are: number of hidden layers,
number of hidden nodes in each layer, training algorithm, and finally input and out-
put vector sizes. In addition, the decision of whether to always train the network on
data that lies just before the test period, or train it only once and use that network
over all of the test periods had to be made.

The test setup described in Chapter 5 was used to evaluate network designs
during experimentation. Literature ( [6, 8, 22]) emphasizes the role of experimen-
tation when finding an optimal network design for a certain dataset, and therefore
final design decisions were decided based on results from these evaluations. The
evaluation was straightforward – the lower MAPE and MASE sum over the test
period, the better.

6.2 Hidden layers and number of hidden nodes
MLP designs commonly use one or at most two layers of hidden nodes, with more
layers increasing the risk of overtraining. Running the evaluation on networks with
one hidden layer yielded the lowest errors, regardless of the number of neurons in
each layer.

How to choose the number of hidden neurons is less well understood, and most
literature defer to experimentation. In order to find the optimal number, evaluation
is necessary, and so the method of finding the optimal number of hidden nodes was
conducted in the following way. A network with one hidden layer was constructed,
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using some basic assumptions for input and output nodes (later, at the end of the
experimentation phase, the test was rerun using the final number of nodes to confirm
the results). Starting at a small number of hidden nodes (10), a full evaluation was
run and the MAPE sum recorded. The number of nodes was then increased by 1,
the evaluation run again and the MAPE recorded. Continuing this evaluation until
MAPE values begin to destabilize, the recorded MAPE values were then graphed.

The results of this method can be seen in Figure 6.1, where it is clear that
the amount of hidden neurons, when chosen between 40 and 70 neurons, does not
impact results to a significant degree. Exact MAPE values naturally varied between
runs, but the pattern of results stabilizing after 40 and destabilizing after 70 was
consistent. Since increasing the amount of neurons in the hidden layer also increases
running time, it is preferable to choose the smallest amount which retains good
performance, and thus, 40 neurons was chosen for the final design.

Figure 6.1: MAPE sum as a function of the number of hidden nodes in
MLP

6.3 Output vector size
The size of the output vector depends on the approach taken regarding forecasting
– multi-step or one-step ahead forecasting. For one-step ahead forecasting, only one
output node is used, while multi-step ahead forecasting uses multiple output nodes,
up to (at most) the whole forecast horizon. There is some evidence for good per-
formance in both methods, and thus, both were evaluated using the benchmarking
environment [6, 15, 16].

The tested variants were one-step ahead, 24-hour (24 neurons) and 1 week ahead
(168 neurons) approaches. The number of neurons for the multi-step ahead variants
were motivated by the SANN model proposed by Hamzaçebi [26], which produced
improved results using input and output vectors corresponding to seasonal cycles in
the data. The main seasonal cycles in the data sample were daily and weekly cycles,
which motivates the choices of 24 hours and 1 week as output vectors to test.

The results of the 24-hour ahead method can be seen in Figure 6.2 . The 1-week
ahead forecast is not included, since it the forecasts it produced were on average
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three times worse than the other two methods. Although the 24-hour ahead method
appears to produce adequate forecasts for the most part, the one-step ahead is
clearly superior, having a lower MAPE overall.

Figure 6.2: MAPE over evaluation period for 24-hour ahead and one-
step ahead methods

6.4 Input vector size
The optimal size of the input vector can be determined experimentally in the same
fashion as other parameters. The SANN model can, again be used as a starting
point, proposing an input vector corresponding to the seasonal cycles in the data.
This means an input vector of 24 or 168 neurons based on the daily and weekly
seasonality in the data. An evaluation of networks with increasing amounts of
input neurons (starting at 7) was carried out, the result of which can be seen in
Figure 6.3. The results of this evaluation agrees with the theory of the SANN
model: MAPE values stabilize around 24 input neurons, to later climb and descend
again at exactly 168 neurons. Increasing the number of input neurons after 168
offers no benefit, and the error rises again if using more neurons past 230. Based
on the SANN model and the evaluation carried out, 168 input neurons was chosen
for the final design.

6.5 Training algorithm
Forecasting literature indicates that Backpropagation is the standard training al-
gorithm for neural networks used for time series forecasting, while some literature
on neural networks indicate that Resilient Backpropagation is faster and less prone
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Figure 6.3: MAPE sum as a function of the number of input neurons
in the network

to getting stuck in local error minimums for most problems [9, 11]. As such, both
were evaluated during experimentation, which showed that Resilient Backpropaga-
tion indeed produced much better results in the form of lower MAPE values than
regular Backpropagation. Resilient Backpropagation was therefore chosen as the
training algorithm.

6.6 Dynamic retraining vs Static network

The question of whether to dynamically retrain the network before each forecast
in the sliding window test also had to be answered, since the evaluation is done
on multiple continuous time series. Finding answers to this question in literature
proved difficult, since time series forecasting research generally focus on forecasting
one dataset at a time - which could be interpreted as an indication that retraining
the network dynamically is the correct approach. Intuitively, one might think that a
continuously retrained network will perform better than one trained on only one set
of data since it has access to the latest data, but the evaluation of the two approaches
proved differently. The network trained once on data between 9th och December
- 30th of December produced much more stable and more accurate forecasts than
the method of updating the network at each step. A comparison between the two
approaches can be seen in Figure 6.4, where very large error rates can be seen
in the beginning of January. This is likely because of the increasingly irregular
patterns being found in the training data as the evaluation window moves forward
through January. Although there are irregularities in the training data for the static
approach, it seems like this is offset by the presence of enough stable and regular
data from the beginning of December.
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Figure 6.4: MAPE over evaluation period of a dynamically retrained
network versus a network trained once

6.7 Final MLP implementation
The final implementation of the MLP used for benchmarking against the Seasonal
Average method, motivated by experiments based on literature, used the following
design: 168 input neurons, 1 hidden layer with 40 hidden neurons, and 1 output neu-
ron. The training algorithm used was Resilient Backpropagation, and the network
was trained only once, on the first three weeks of data in the sample.

The network was implemented in the Java programming language using the
well-tested Encog neural network library [14]. The benchmarking environment was
also implemented in Java, using the JFreeChart library to create graphs.
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Chapter 7

Benchmark results

The results below are generated from one of the video sites in the dataset – the
largest one. Very similar results were found while benchmarking using data from
the other two video sites in the complete dataset, and therefore those results are
omitted.

Running the sliding window benchmark test starting at the 30th of December
2013, Figure 7.1 and 7.2 shows the MAPE of the MLP compared to the MAPE
of the 3 different Seasonal Averages at each sliding iteration (for 1 and 3 week
horizons, respectively). The value at the 6th of January indicates the forecast error
from forecasting 6th Jan - 13th Jan for the one week horizon tests, and 6th Jan -
27th Jan for the three week horizon tests.

The MAPE and MASE sums for all four methods are tabulated in Table 7.1 for
one-week horizons and Table 7.2 for three-week horizons.

The huge difference in error from the beginning of the evaluation period (Jan-
uary) compared to the end (mid February) stems from the huge irregularity in the
data caused by the holiday season, which brings with it a big decrease in viewership
as well as an irregular pattern. Typical weekend patterns are placed in the middle
of the week, and ratings volume is nearly cut in half.

Method MAPE MASE
Last week average 641 35.9
Last 2 weeks average 735 40.7
Last 3 weeks average 806 45.0
MLP 742 38.9

Table 7.1: Summed error comparison of Seasonal Averages and MLP
over 1 week horizon
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Method MAPE MASE
Last week average 574 32.4
Last 2 weeks average 622 34.9
Last 3 weeks average 612 35.0
MLP 767 42.5

Table 7.2: Summed error comparison of Seasonal Averages and MLP
over 3 week horizon

Figure 7.1: MAPE errors of MLP in benchmark period compared to
weekly averages over 1 week horizons

Figure 7.2: MAPE errors of MLP in benchmark period compared to
weekly averages over 3 week horizons
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7.1 Typical forecast results

A typical successful run with the MLP captured the repeating pattern with some
success, but was usually unable to model large spikes or trends. Figure 7.3 shows a
typical well–behaved forecast, where the network picks up on the weekly repeating
pattern including the Sunday hump.

Figure 7.3: A typical successful forecast created by a MLP

Failed runs (runs with high error rates) could usually be identified by their prop-
agation of initial forecasting errors or heavy reliance on a repeating daily pattern.
Figure 7.4 shows a typical out of sync forecast run where the network has identi-
fied a repeating pattern, but failed to identify the daily variations, and over time
completely degenerates as it goes out of sync. This behavior leads to big errors on
a hourly level because of hourly de-synchronization, but can still produce accurate
forecasts on a daily level.

Figure 7.4: A typical degenerating forecast created by an MLP
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7.2 Evaluation
The MLP did not manage to outperform the Seasonal Averages over the entire
period, despite performing better than some of them intermittently. The main
factor in this is the fact that the Seasonal Averages begin to outperform the MLP
consistently at the end of the benchmark window, where the sample data begins
to take on a predictable and unchanging pattern. It is this pattern that allows the
Seasonal Averages to perform so well, and the MLP designs are not able to keep up
when the Seasonal Averages are performing at their best. According to Videoplaza,
this repeating pattern makes up the majority of the data throughout the year, with
brief interruptions for holidays and other major events. The repeating pattern is
so strong and so predictable that the Seasonal Average method really works well,
which is one explanation as to why the MLP approach cannot keep up.

Among the different weekly averages the result indicate a slight advantage for
the 1 week method in all error measurements.
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Chapter 8

Analysis of results

The results seem to indicate a small advantage to the weekly average methods over
the MLP, and in particular the 1 week Seasonal Average, which is best situated
to adapt to changes in viewership patterns. When the data falls into a repeating
pattern, the differences between the different weekly method diminishes, and while
the MLP also sees a stabilization over that period, it never quite catches up to the
averaging method. Considering a majority of a year’s data resembles that repeating
period, it can be argued that MLP methods does not produce superior forecasts on
online video viewership statistics.

The MLP evaluated in this thesis was implemented according to previous work
in forecasting literature, as well as thoroughly experimented with in regards to pa-
rameters to produce an optimal outcome – there is therefore little reason to believe
that design flaws are the cause of the MLP performing worse than the Seasonal
Average method. Two factors likely play the major roles: first of all, even the
1 week forecast horizon is abnormally long. Encompassing 168 data points, the
horizon is considerably longer than forecast horizons in most forecasting literature.
This creates problems for any neural network approach since forecasting errors are
propagated over the entire horizon, which means small error at the outset affects
the whole forecast, as is demonstrated in Figure 7.4. Second, the data is strongly
seasonal, a property so well modeled by the weekly averaging method that it be-
comes hard for the MLP to beat it. If the data repeats itself exactly every week,
the Seasonal Average method will perform at 100% accuracy. The area in which the
MLP approach could shine is in anticipating spikes and lows in the data, which it
could not do much better than the Seasonal Averages. It could be argued that the
MLP could anticipate changes in the data better with more data, perhaps with a
few year’s worth of data the yearly seasonal cycle could be picked up by the MLP.
However, the same could be said for the Seasonal Averaging method, given data
from some years back.
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8.1 Daily aggregation
There is one point to make about MLP performance which is out of scope of this
thesis, but nevertheless interesting: forecasting results aggregated on a daily basis.
Aggregating the hourly forecasts into daily forecasts beginning at midnight each day
and running the same evaluation described in Chapter 5 but instead of measuring
MAPE measuring the Mean Absolute Error (MAE):

1
n

n∑
t=0
|et| (8.1)

where et is the error at time t, a different picture emerges: the MLP actually
outperforms all of the Seasonal Averages. This can be seen in Figure 8.1. The
reason for using the MAE for the daily aggregates here is that it is a measure of the
absolute amount of "missed impressions" rather than a measure of forecast graph
accuracy – in short, it is a more relatable measure for publishers and advertisers,
since it represents the amount of impressions they’re actually losing.

What does this mean? It is an indication that the difference in performance
between the MLP and the Seasonal Averages comes down more to small hourly
sync errors rather than major erroneous calculation. This means that for publishers
and advertisers more interested in forecast resolutions on a daily level, the MLP
approach may be worth a second look. However, it should be noted that forecasting
on an hourly level and aggregating the results to a daily level might not be the best
approach if daily forecasts are sought – it is likely that forecasting directly on the
daily data will create even better results.

Figure 8.1: Daily MAE of MLP in benchmark period compared to
weekly averages over 1 week horizons
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8.2 Implications
The implications for companies like Videoplaza are clear: the currently used method
of weekly averaging is a solid and reasonable approach. It would be possible to ease
up on sample size, since using one or two weeks is not only as good, but in most cases
gives a more accurate forecast than using three weeks as averaging data. Neural
networks, of the form tested in this thesis, are both more complex to build and
maintain and are less accurate than weekly averaging, and based on these tests
cannot be recommended for implementation.

8.3 Possible improvements
In order to improve performance of a neural network, one could analyze each forecast
produced by a neural network, and compare the error rate and look of the graph
to detect strange behavior, thereby eliminating the outliers that appear in some
of the tests. One can also imagine producing a daily forecast in addition to the
hourly, and reconciling the two forecasts. With this approach, an advertiser who is
really only interested in the daily forecast can get more accurate results, while still
maintaining an improved hourly forecast.
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