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Abstract

In this thesis we consider graph partition of a particular kind of complex networks
referred to as power law graphs. In particular, we focus our analysis on the market graph,
constructed from time series of price return on the American stock market. Two different
methods originating from clustering analysis in social networks and image segmentation
are applied to obtain graph partitions and the results are evaluated in terms of the
structure and quality of the partition. Along with the market graph, power law graphs
from three different theoretical graph models are considered. This study highlights
topological features common in many power law graphs as well as their differences and
limitations.

Our results show that the market graph possess a clear clustered structure only for higher
correlation thresholds. By studying the internal structure of the graph clusters we found
that they could serve as an alternative to traditional sector classification of the market.
Finally, partitions for different time series was considered to study the dynamics and
stability in the partition structure. Even though the results from this part were not
conclusive we think this could be an interesting topic for future research.

Keywords: Complex networks, cluster analysis, graph partition, market graph, power
law graphs, random graphs.





Sammanfattning

I denna uppsats studeras graf partition av en typ av komplexa nätverk som kallas power
law grafer. Specifikt fokuserar vi p̊a marknadengrafen, konstruerad av tidsserier av ak-
tiepriser p̊a den amerikanska aktiemarknaden. Tv̊a olika metoder, initialt utvecklade för
klusteranalys i sociala nätverk samt för bildanalys appliceras för att f̊a graf-partitioner
och resultaten utvärderas utifr̊an strukturen och kvaliten p̊a partitionen. Utöver mark-
nadsgrafen studeras även power law grafer fr̊an tre olika teoretiska grafmodeller. Denna
studie belyser topologiska egenskaper vanligt förekommande i m̊anga power law grafer
samt modellerns olikheter och begränsningar.

V̊ara resultat visar att marknadsgrafen endast uppvisar en tydlig klustrad struktur för
högre korrelation-trösklar. Genom att studera den interna strukturen hos varje kluster
fann vi att kluster kan vara ett alternativ till traditionell marknadsindelning med in-
dustriella sektorer. Slutligen studerades partitioner för olika tidsserier för att undersöka
dynamiken och stabiliteten i partitionsstrukturen. Trots att resultaten fr̊an denna del
inte var entydiga tror vi att detta kan vara ett intressant sp̊ar för framtida studier.

Nyckelord: Komplexa nätverk, klusteranalys, graf partition, marknadsgrafen, power
law grafer, slumpmässiga grafer.
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1

Introduction

1.1 Background

Financial analysis of today often involve interpretation of very large data sets. One
convenient way to represent this large amount of data is in terms of a network. Network
theory has been used to analyse many different concepts, examples span from Internet
and social networks to biological networks, and recently financial networks.

Despite arising from different fields many of these network share topological characteris-
tics which cannot be described by neither uniform random graphs nor by regular lattices.
Thus to describe the complex topology of these graphs a new field emerged, complex net-
work theory. One feature observed in many of these networks is the occurrence of a heavy
tail in the degree distribution. A network showing this characteristic is called a scale
free network or a power law graph. Another common feature in these networks is their
tendency to form clustered communities in the graph. This introduces new problems to
find specific clusters or partitions of the networks into different clusters.

Several models for representing financial networks have been proposed. Results from
previous research revealed overall structure of the market as well as introduced a tool
for studying market dynamics [1]. Other considered topics involve the grouping of instru-
ments, stock classification and finding highly influential actors in the market [2]. Many
previous studies have also focused on identifying specific substructures in the graph [3].
One such example is the maximum clique problem, i.e. to identify a complete sub graph
of maximal cardinality in the graph. However, as many other network optimization
problem this is NP-hard which often makes it impossible to find an exact solution in a
reasonable amount of time.

1



CHAPTER 1. INTRODUCTION

1.2 Statement of purpose

The aim of this paper is to study community partition of the market graph. The parti-
tions will be obtained by using two different, well known objective functions for graph
partition. The resulting optimization problems will be presented together with heuris-
tic approaches to solve two partition formulations. Additional to the empirical market
graph, graph partitions of genetic power law graphs will be studied. The motivation
for this is to compare the partition structure of the market graph with some theoretical
models for power law random graphs. Each power law graph model will be presented and
followed by an empirical study of the topological structure of some graph instances. Con-
sequently, the proposed partition algorithms will be applied on both the model graphs
and instances of a real life Market graph. Finally, the results for the market graph will
be analysed further to interpret the structure of the market.

The paper is outlined as follows. The second chapter presents the necessary theoretical
background. Its first section serves to introduce basic graph theory definitions and
concepts. The following section covers graph partition and clustering. In Section 3,
the theory of random graphs is presented along with the concepts of power law random
graphs. Three different models for generating these graphs are discussed. The final
section describes the Market graph model.

In Chapter 2, two different approaches for graph partitioning are presented, and formu-
lated in terms of integer programs. Heuristic algorithms for computing both formulations
are also introduced.

The forth chapter presents some empirical results from a case study of power law graph
topologies. Properties and topological characteristics of graphs generated by the mod-
els introduced in Chapter 2 as well as instances of the Market graph model will be
studied.

The main results are given in Chapter 5. Here, graph partitions for different graphs are
presented. The approaches are tested on both simulated graphs and the market graphs
and evaluated in terms of the quality of the obtained solutions. Specific focus will be
put on studying the partition structure of the market graph. Finally, the partition of
the market graph will be studied for several consecutive periods to study the dynamics
and stability of the partition in the graph.

The final chapter includes conclusions and a discussion about open questions and possible
directions of future work.
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2

Theoretical background

2.1 Graph theory concepts

2.1.1 Basic definitions and notations

Since networks are represented in terms of graphs some notations from basic graph
theory is introduced. Let G = (V,E) be an undirected graph consisting of the set V
with |V | = n vertices and the set E of |E| = m edges. We say that AG is the adjacency
matrix representing G(V,E), if AG is a n×n -matrix such that AG = [aij ]

n
i,j , with aij = 1

if (i,j) ∈ E and i 6= j and otherwise aij = 0. The degree di of a vertex i is the number of
edges emanating from it. For every di = d, we can define n(d) as the number of nodes in
G with degree d. This give rise to a degree distribution of a graph G as the fraction of
vertices having degree d. The (open) neighbourhood T (i) of a vertex i ∈ G is the set of
all vertices sharing an edge with i, i.e T (i) = {j|aij = 1} . A path in G is a sequence of
edges connecting vertices. The average path length is the average number of steps along
the shortest path for all possible pairs of the network nodes. The diameter of the graph
is the longest of all the shortest paths in the graph. The graph G is connected if there is
a path from any vertex v ∈ V , to any vertex u ∈ V . We call G a complete graph if there
exists an edge (i,j) ∈ E for every i 6= j and i,j ∈ V . Given a subset S ⊆ V , we denote
by G(S) the subgraph induced by the set S.

The complementary graph of G, denoted Ḡ = (V,Ē) is defined as follows. If (i,j) ∈ E
then (i,j) /∈ Ē and if (i,j) /∈ E then (i,j) /∈ Ē. In words, one obtains the complementary
graph of G by removing all the edges (i,j) present in G, and then introducing all the
edges not present in G in the graph. The edge density, δ(G) measures the connectivity
in the graph, defined by the ratio between the number of edges in the graph and the
maximal possible number of edges in the graph. Mathematically we write

3



CHAPTER 2. THEORETICAL BACKGROUND

δ(G) =
2|E|

|V |(|V | − 1)
. (2.1)

The cluster coefficient reveals to what extent the nodes in the graph tend to cluster
together. The local clustering coefficient Ci for a vertex i with degree di > 1 is defined as
the ratio of the number of edges among its neighbours divided by the maximal (possible)
number of such edges. For di ≤ 1 Ci is undefined. Mathematically we write Ci as

Ci =
2Ei

di(di − 1)
, di > 1 (2.2)

where di is the degree of node i and Ei is the number of common edges among its
neighbours. The global clustering coefficient C of the entire graph is defined as the
mean of the local clustering coefficients, i.e., C = 1

n

∑n
i Ci.

2.1.2 Clusters, cliques and independent sets

Generally speaking, a cluster in a network is a set of elements that are more similar to
each other than to elements not included in the cluster. Studying graph clusters can
reveal topological structure of the network as well as information about the particular
elements in the clusters. The similarity criterion varies depending on what property
the cluster should reveal. Common criterias include vertex degree, vertex distance, or
cluster density.

One special case of cluster called a clique is displayed in Figure 2.1. We say that C ⊆ V
is a clique if the induced sub-graph G(C) is complete. A clique is maximal if it cannot
be contained in any larger clique in the graph, and it is called a maximum clique if it is
a clique of maximal cardinality in the graph. A problem in graph theory is to identify
maximum cliques in a graph, called the maximum clique problem, (MC.). The size of a
maximum clique is called the clique number, denoted ω(G).

Figure 2.1: Example of a graph G(C), induced by the clique C (black nodes)

4



CHAPTER 2. THEORETICAL BACKGROUND

Since the strict requirements of cohesiveness in the clique definition often is difficult to
fulfill, several relaxations of cliques have been introduced. Examples of clusters being
cliques relaxations include k-clubs, k-cores, k-communities and γ -quasi clique, all further
discussed in [4]. We say that the set Q ⊆ V with |Q| = p is a γ -quasi clique, (0 < γ < 1)
if the graph G(Q) induced by Q is connected and satisfies |E(G(Q))| ≥ γ

(
p
2

)
. This

means that we impose the requirement that the edge density of the induced graph G(Q)
must be greater or equal to the threshold γ. Note that in the case when γ = 1, then Q
corresponds to a clique.

The opposite of a clique is an independent set. An independent set is a set I ⊆ V such
that the induced graph G(I) has no edges. The problem of finding an independent set of
maximal cardinality in a graph is called the maximum independent set problem (MIS.).
By α(G) we denote the size of the largest independent set of G. Note the symmetry
between the maximum clique problem and the maximum independent set problem. The
set Q is a maximum clique in Ḡ if and only if Q is a maximum independent set in G.
Therefore a MIS. can easily be reformulated into a MC. and vice verse, and hence it
holds that ω(G) = α(Ḡ).

2.2 Clustering and graph partitions

Clustering involves the task of partitioning the elements of the graph into disjoint clus-
ters. Generally one seeks a partition of the vertices in a way that maximizes the similarity
within the clusters and minimizes the similarity between the clusters. A partition where
each cluster is a clique is called a clique partition. The minimal clique partition problem
is to find the smallest integer k such that the vertex set V of G can be partitioned into
the k disjoint sets C1,...,Ck, where each Ci is a clique. This minimal integer k is called
the clique partitioning number χ̄(G).

A concept closely related to graph partitioning is graph coloring. A proper k-coloring of
the vertices of G is an assignment of colors to the vertices in G such that no adjacent
vertices in G have the same color. If such a coloring exists we call the graph G k-colorable.
Seeking a coloring using a minimal number of colors is called the graph coloring problem.
The smallest integer k for which the graph G is k-colorable is the chromatic number of
G denoted χ(G). In a coloring of G the vertices with the same color are all pairwise non-
adjacent, making them by definition independent sets. Thus, the graph coloring problem
is equivalent to finding a minimal partition of G into pairwise, disjoint independent sets.
Due to the symmetry between cliques and independent sets the graph coloring problem
of Ḡ can therefore also be formulated as the minimum clique partition problem of G.
Again, due to the symmetry we have that χ̄(G) = χ(Ḡ).

5



CHAPTER 2. THEORETICAL BACKGROUND

2.2.1 Desirable cluster properties

What constitutes a cluster of high quality will of course depend on the application
at hand. However, some characteristics are relevant for most structures. First, the
cluster must be connected, thus if there is no path between two vertices u, and v,
they should not be grouped within the same cluster. By classifying edges as internal
if they connect vertices within a cluster to each other, the internal degree of a vertex
v in a cluster C ⊂ V as degint(v,C) = |T (v) ∩ C|, where T (v) is the neighbourhood
of v in G. Similarly, edges are identified as external if they connect a vertex in a
cluster with a vertex outside the cluster. Thus the external degree of a vertex v in a
cluster C is degext(v,C) = |T (v) ∩ (V \ C)|. Note that with these definitions we have
dv = degint(v,C) + degext(v,C).

In general, if degint(v,C) = 0, then v should not be included in cluster C as it is not
connected to the other vertices in C. Similarly degext(v,C) = 0 implies that C could
be a good cluster for v as it has no connections outside C. Generally in clustering one
seeks to form clusters such that the induced sub-graph is dense and has few connections
to the rest of the graph. We therefore introduce two density measures with respect to a
cluster C. We call the density of the sub-graph induced by C internal or intra-cluster
density if it is defined by

δint(C) =
|{(u,v) ∈ E|v ∈ C, u ∈ C}|

|C|(|C| − 1)
=

1

|C|(|C| − 1)

∑
v∈C

degint(v,C). (2.3)

Given a clustering of a graph G into k clusters C̄ = (C1,C2...,Ck) we define the intra-
cluster density of the clustering C̄ as the average of the intra-cluster densities of the
included clusters.

δint(G|C1,C2...,Ck) =
1

k

k∑
i=1

δint(Ci). (2.4)

Similarly, we introduce the external or iter-cluster density of a clustering as the ratio of
the number of external edges and the maximal possible number of external edges.

δext(G|{C1,C2...,Ck) =
|(u,v)|v ∈ Ci, u ∈ Cj , i 6= j}|
n(n− 1)−

∑k
l=1 |Cl|(|Cl| − 1)

(2.5)

Employing the introduced density measures above a good clustering should have an in-
ternal density significantly higher than that of the overall graph, δ(G) and an external
density much lower than δ(G). Depending on how strict these density constraints are
imposed different cluster types can be obtained. The loosest possible definition being
a connected component and the strictest being a maximal clique. However, in prac-
tice most interesting structures can be found somewhere in between. Computation of

6



CHAPTER 2. THEORETICAL BACKGROUND

connected components can be done in O(n + m) time with a breadth-first search while
identifying maximal cliques is NP-complete [5].

2.2.2 Clustering structure

An important characteristic in a clustering structure is whether the clusters C1,C2...,Ck
must be disjoint or if cluster overlap is allowed. In the former case we talk about a
graph partition, or a ”hard” clustering where Ci∩Cj = ∅, ∀i 6= j. When clusters overlap,
we call this a graph cover of a ”soft” clustering. In this paper we will focus on the
former structure and we will use the term clustering and partition exchangeable, always
referring to the hard clustering.

Another distinction for a clustering structure is the one between flat versus hierarchical
clustering. If the partition consists of a set of clusters without any explicit structure
that would relate clusters to each other we talk about a flat clustering. On the other
hand, we say that a clustering is hierarchical if it contains several levels of clusters where
each top level cluster consists of clusters from lower levels. This way the clusters can
be represented in terms of a tree structure, called a dendrogram, Figure 2.2 shows an
hierarchical clustering with its corresponding dendrogram. Which type of clustering that
is preferred depends on the network topology. If it is known that the data contains a
hierarchical structure, then this should be preferred. However, if the number of clusters
are known prior, then a flat clustering approach is preferred over a hierarchical structure,
[5].

Figure 2.2: An hierarchical clustering, represented by (a) set division, (b) dendrogram. [6]

Hierarchical clustering can be separated further into two types, depending on whether
the partition is refined or coarsened between each level. In the first type, called top-down
or divisive hierarchical clustering the graph is recursively spilt into smaller and smaller

7



CHAPTER 2. THEORETICAL BACKGROUND

pieces. In the second version, bottom-up or agglomerative clustering, smaller clusters
are iteratively merged into larger ones.

2.2.3 Measures to identify clusters

Clusters are usually identified with two different approaches, using vertex similarities
or a fitness measure. In the former approach one computes a set of similarity values
for all vertices and then classifies them into clusters according to their overall score. In
the latter case one computes a fitness function over the set of possible clusters and then
chooses among the set of clusters that optimize the chosen fitness measure. An extensive
overview of clustering techniques can be found in [5, 7].

Density based measures

Some approaches uses a density based fitness measure to identify maximal sub-graphs
with a density higher than a certain threshold. As Schaeffer [5] mentions, finding clusters
based on their edge-density can essentially be considered as special cases of the following
decision problem:

Instance: Given an undirected graph G = (V,E), with a density measure δ(·) over the
vertex subsets S ⊆ V , a positive integer k ≤ |V | and a rational number ξ ∈ [0,1].

Question: Does it exist a subset S ⊆ V such that |S| = k and the density δ(S) ≥
ξ?

Note that if the density measure used is the overall graph density the problem is NP-
complete since for ξ = 1 it coincides with the NP-complete maximum clique problem.
Many variants and relaxations of this problem have been proposed and studied during
the years. Matsuda et al. proposed a model that considers γ-quasi cliques as clusters
[8]. They showed that it is NP-complete to determine whether a given graph has a 1

2
quasi clique of order at least k.

Cut based measures

Instead of focusing on the internal density of the cluster one can also measure how
connected the cluster is to the rest of the graph. These measures are usually based on
cut sizes. Given a graph G = (V,E) and two subsets S1 ⊆ V , S2 ⊆ V we define the
cut size, c(S1, S2) of S as the number of edges between nodes in S1 and nodes in S2.
Mathematically, we write this as

c(S1,S2) = |{(u,v) ∈ E|u ∈ S1, v ∈ S2}|. (2.6)

8



CHAPTER 2. THEORETICAL BACKGROUND

The definition in (2.6) can be extended to a collection of clusters Π = (V1,....,VK) as the
sum of all edges with end nodes in different clusters. We define the cut of a collection
of clusters Π = (V1,..., VK) as

C(Π) :=
1

2

K∑
i=1

c(Vi,V̄i) (2.7)

where V̄i is the complement of Vi in V and c(Vi,V̄i) is given by (2.6) and as before,
V̄i = V \ Vi.

If the cut is normalized by the sizes of the corresponding clusters, we get the Ratio Cut,
CR(Π) defined as

CR(Π) :=
1

2

K∑
i=1

c(Vi,V̄i)

|Vi|
. (2.8)

Another normalization was introduced by Shi and Malik [9], called the Normalized cut,
CN (Π). They defined it as the ratio between the cut size and the degrees of the ver-
tices.

CN (Π) :=
1

2

K∑
i=1

c(Vi,V̄i)

vol(Vi)
(2.9)

where vol(Vi) =
∑

j∈Vi dj , i.e. the sum over the degrees of the vertices in Vi.

Modularity

Another common measure to identify graph clusters is the metric modularity, introduced
by Newman and Girvan in [10]. The metric modularity, denoted Q, is defined as

Q(Π) = (the number of the edges that fall within a cluster) - (the expected such number
if edges were distributed at random)

The meaning of the first term is clear. However, the second term requires some com-
ments. Determine the expected number of edges in a cluster necessitate choosing a null
model for the network, a question we will address soon. First, we introduce Pij as the
probability that there is an edge between vertex i and j. Thus, the actual, minus the
expected number of edges between i and j can be written Aij − Pij and the modularity
is proportional to the sum of this quantity over all pairs of vertices in the same cluster.
Thus, the modularity can be expressed as

9



CHAPTER 2. THEORETICAL BACKGROUND

Q =
1

2m

∑
ij

[Aij − Pij ]δ(Ci,Cj) (2.10)

where δ(Ci,Cj) = 1 if Ci = Cj and zero otherwise.

Returning to the question of choosing a null model. A possible choice could be to consider
a standard uniform random graph, in which edges appear random with equal probability
Pij = p. However, this model turns out to be a bad representation for many real life
graphs. In particular the model often fails to reflect the degree distribution of the graph.
One way to deal with this in practice is to approximate the expected degree of each
vertex within the model with the actual degree, di of the corresponding vertex i in the
real network. The expected degree of i is given by

∑
j Pij , giving us the relation

∑
j

Pij = di (2.11)

The simplest null model in this class, is the one in which edges are distributed at random
subject to the constraint (2.11). This implies that the expected number of edges between
i and j, Pij can be expressed as a product of separate functions of the degrees.

∑
j

Pij = f(di)
∑
j

f(dj) = di

Hence, f(di) = Cdi, for some constant C. Furthermore, since
∑

i di = 2m, (m being the
number of edges in the graph) we can write

2m =
∑
i

∑
j

Pij = C2
∑
i

∑
j

didj = (2mC)2

which gives C = 1√
2m

, and hence Pi,j =
didj
2m .

Thus, the modularity (2.10) can be rewritten as

Q =
1

2m

∑
ij

[
Aij −

didj
2m

]
δ(Ci,Cj) (2.12)

2.3 Random graph theory

2.3.1 Uniform random graphs

The theory of random graphs was introduced in 1959 in the work of Erdös and Renyi
[11]. In the context of their probabilistic method a random graph can be described in the

10
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following way. Consider the situation where we try to study the existence of graphs GP
with a specific property P. Let the existence of such a graph be represented by the random
variable X. Then, one can construct a probability space such that the appearance of
GP with property P can be described by the event E. Showing that the probability of
observing this event E is larger than zero, i.e. showing that P (X = E) > 0 implies that
such a graph GP with property P in fact can exist. By studying the distributions of
probability spaces of this kind random graphs are introduced.

In their first paper Erdös and Renyi introduced two formulations for the uniform random
graph model. The first version, G(n,m) assigns a uniform probability to all graphs with
n nodes and m edges. By setting N =

(
n
2

)
we can see that G(n,m) has

(
N
m

)
elements, all

with probability
(
N
m

)−1
. In the second formulation denotedG(n,p), a graph is constructed

by introducing edges between nodes with an independent probability p, where 0 < p < 1.
One can easily identify similarities between the two formulations since all graphs with n

nodes and m edges will have the same probability pm(1− p)(
n
2)−m in the G(n,p) model.

From now on we will continue working with the second formulation of the model.

With the notation above a graph in G(n,p) has
(
n
2

)
·p expected number of edges. There-

fore the degree distribution of a particular vertex v is given by the Binomial distribution,
and we have

P (dv = k) =

(
n− 1

k

)
pk(1− p)n−1−k. (2.13)

Letting n→∞ we get that for the case np = constant the degree distribution tends to
the Poisson distribution, [12].

P (dv = k) =
(np)ke−np

k!
(2.14)

Many properties of the G(n,p) model have been studied, some fundamental results cover
graph connectivity, emergence of a giant connected component, as well as results about
graph diameter, independent sets, cliques and colorings. The interested reader is referred
to [12] for a more comprehensive review of the different properties of random graphs.
Proving the existence of many of these properties rely on studying the probability space
as n tends to infinity. One says that the random graph G(n,p) asymptotically almost
surely, (a.a.s) has a property Q if limn→∞ P [G(n,p) = Q] = 1. Many graph properties
undergo structural changes as the edge density passes some limit [13]. As this limit is
passed a graph undergoes a phase transition from not having the property Q to having
the property Q. This is referred to as the threshold function of the property Q. A
threshold function r(n) is defined as:

r(n) is called a threshold function for a graph theoretic property Q if

(i) When p(n) << r(n), limn→∞ Pr[G(n,p) = A] = 0

11
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(ii) When p(n) >> r(n), limn→∞ Pr[G(n,p) = A] = 1

In words this means that p(n) << r(n) implies that G(n,p) does not have property Q
and p(n) >> r(n) implies it does have property Q. If such a threshold function exists
for a property we say that a phase transition occurs at the threshold. The observation
of such phase transitions was one of the main contributions of [11].

Two characteristics worth mentioning in this context is the degree distribution and clus-
ter coefficient of a random graph G(n,p). First, as stated above the degree distribution
for G(n,p) tends to the Poisson distribution as n grows large. This is the first drawback
when using this model to represent real-life graphs. Many real life graphs have instead
shown to exhibit a degree distribution with a heavy right end tail [14, 15]. This kind
of degree distribution is often referred to as a power law distribution. Secondly, the
clustering coefficient of a random graph G(n,p) is given by, CR = <k>

n = p. This is a
second indication that G(n,p) is not suitable for modelling real life networks since it has
been shown that in many real life graphs the clustering coefficient highly exceeds this
number, [16].

2.3.2 Power law random graphs

Following the discoveries that the topology of many real life networks could not be accu-
rately modelled by the classical uniform random graph theory new models for describing
these scale free networks have been presented. A common feature of these models is the
occurrence of a power law in the right end tail of their degree distribution. This section
will therefore introduce the power law distribution and its specific properties. We then
move on and discuss some proposed graph models for generating networks with a power
law degree distribution.

Power law distribution

One says that the random variable X > 0 follows a power law if it has the probability
density function.

f(x)X =
α

xβ
, x ∈ S (2.15)

where S is the support of x, α is a normalization constant and β is the power law
exponent. Note that by taking the logarithm of both sides the relationship (2.15) will
be linear in a log-log scale with coefficient −β and intersection log(α). A common power
law distribution is the Pareto distribution, defined as

12
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f(x)X =


βxβmin
xβ+1

, x ≥ xmin

0 x < xmin

(2.16)

The corresponding discrete distribution is called the Zipf distribution.

Scale invariance

A characteristic of power law distributions is their scale invariance property. That a
function f(x) is scale invariant means that scaling x with a constant c is equivalent to
scaling the function itself with a constant, that is:

f(x) = αxβ ⇒ f(cx) = α(cx)β = cβf(x) (2.17)

Moments

Another topic worth mentioning about power law distributions is the limited existence
of higher moments. The k:th moment of a probability distribution is defined as

< xk >=

∫ ∞
−∞

xkp(x)dx (2.18)

With for example the Pareto distribution defined in (2.16), we get the k:th moment
as

< xk >= βxβmin

∫ ∞
xmin

xk−β+1dx (2.19)

We can see that for k = 1, corresponding to the mean, the integral (2.19) will diverge for
1 < β ≤ 2. When 2 < β ≤ 3 the mean will be finite but the second moment (variance)
will still be infinite. Only for β > 3 the distribution will have both finite mean and
variance.

The concept of a power law graph arises when the degree distribution of the vertices in
a graph G follows (or closely approximates) some power law, i.e., when the number of
vertices y with degree x in the graph can be described by the relation y = eα

xβ
. A more

precise, universal definition is not available, but must be specified within the particular
graph model.

13



CHAPTER 2. THEORETICAL BACKGROUND

2.3.3 Models for generating power law random graphs

Several models for generating random graphs with a topology such that their degree
distribution follow a power law have been developed and analyzed in recent years. Since
this feature was first observed in graphs representing real life networks the developed
models often try to mimic the topology of these specific graphs. As a consequence the
different models all create graphs with a degree distribution approximating a power
law, however they differ in many other topological characteristics, such as edge density,
clustering coefficient, and average path length. This is partly due to the fact that there is
still no strict universal, mathematical definition of what constitutes a power law graph.
Usually graph models can be divided into two different groups, curve fitting generators
and preferential attachment generators.

Curve fitting generators make use of an explicit, scale free degree distribution D =
(d1,d2,...,dN ) to connect N nodes in such a way that the resulting graph G has the desired
degree distribution D. The family of preferential attachment generators combines the
idea of network growth with preferential attachment of the vertices. Starting with a
small connected graph the growth of the network is divided into time steps in which the
probability that a new edge will be connected to a vertex in the graph is proportional
to the degree of the vertex. For an extensive review of developed generators the reader
is referred to [17]. We will focus on three different, well known models. First the Power
Law Random Graph model (PLRG) belonging to the curve fitting family and later the
Albert-Barabasi (BA) and the Copying model (COPY), belonging to the second family
of generators.

Power Law Random Graph

The Power Law Random Graph is due to Aiello, Chung and Lu [18]. The model denoted
by G(α, β) assigns uniform probability to all graphs G = (V,E) with a degree distribution
satisfying;

P (|v ∈ V |deg(v) = x|) = y =

[
eα

xβ

]
(2.20)

where y is the number of vertices with degree x. The [·] in (2.20) refers to the integer
part of eα

xβ
. This is necessary since vertex degrees can only take integer values. An

assumption in the model is that the sum of all degrees in the graph must be even, the
motivation for this will be clear later. In this formulation the maximal possible node
degree in the graph is equal to e

α
β . By summing the density function over all possible

degrees one can express the number of vertices in the model as

14
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N =
e
α
β∑

x=1

eα

xβ
=


ζ(β)eα, β > 1

αeα β = 1

e
α
β

1− β
0 < β < 1

(2.21)

where ζ(t) =
∑∞

n=1
1
nt is the Riemann zeta function.

The expected number of edges in the graph can be computed by

E =
1

2

e
α
β∑

x=1

x
eα

xβ
=



1

2
ζ(β − 1)eα, β > 2

1

4
αeα β = 2

1

2

e
2α
β

2− β
0 < β < 2

(2.22)

The explicit construction of a graph can be described as follows. A degree sequence
D = (d1,d2,...,dN ) is drawn from a truncated Pareto distribution with the input values,
the target number of nodes N and a power law exponent, β. Note that these values will
uniquely determine the scaling constant α. The degree sequence is then assigned to the
N nodes in the graph. Then, for each node i we create di ”stubs” (can be considered
as half edges which needs to be connected to another half). The number of ”stubs ” is
even since it is equal to the sum of the degrees in the graph. Now, every ”stub” will be
connected to another one, chosen at random and without repetition. Due to the random
choice in the matching the resulting graph may not be connected, and can include self-
loops and duplicating links. However, by adding a post processing that eliminates self
loops and disconnected components a connected, simple graph can be obtained. The
procedure is not exact but will asymptotically yield power law graphs [18]. For a given
degree sequence D the procedure can be described by Algorithm 1.

The authors in [19] showed several characteristics of the model, including the following
proposition.

Proposition 2.3.1 For 2 < β < β0 = 3.47875 the random graph G(α, β) a.a.s has a
unique giant connected component, and the size of the second largest component is of
size O(log(N)).

Barabasi-Albert Model

The model introduced by Barabasi and Albert [20] is based on preferential attachment
and network growth. The algorithm starts with a small, complete graph of size m0 and
adds in each time step one vertex with m edges to the graph. The probability that a
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Algorithm 1: PLRG generator

Input: Degree sequence, D = (d1,..., dN )
Result: Edge list E for graph G
Initialize E = [ ] ;
for j = 1 : N do

E = [E; j · ones(dj ,1)] ;
end
M = length(E) ;
randomize the position of the rows in E ;
for j = 1 : M/2 do

connect E(j) to E(M − j + 1) ;
end

new vertex will be adjacent to vertex i in the graph is proportional to the degree of the
latter, di, such that:

P (X = i) =
di(t)∑
∀j dj(t)

(2.23)

This relation describes the preferential attachment for high degree nodes of the model.
The concept is sometimes refereed to as the ”richer get richer” phenomena. Using a
continuum theory approach as in [16] it can be proved that this model will generate a
power law graph topology. By considering the degree di of a node i as a continuous real
variable one finds that the rate at which the di changes will be proportional to (2.23),
and di will therefore satisfy

∂di
∂t

= m · P (X = i) = m · di(t)∑
∀j dj(t)

(2.24)

using that
∑N−1

j=1 dj = 2mt−m at time t this can be rewritten as

∂di
∂t

=
di

2t− 1
(2.25)

For large t, we can neglect the −1 in the denominator, giving us

∂di
di

=
1

2

∂t

t
(2.26)

By integrating of (2.26) and using that all vertices have initial degree di(ti) = m the
solution for the (2.26)
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di(t) = m

(
t

ti

)1/2

(2.27)

Using (2.27), the probability that a node i has degree di < d can be expressed by

P [di(t) < d] = P (ti >
m2t

d2
) (2.28)

Assuming that the growth process is divided into equal time intervals the ti values will
have a constant probability density, P (ti = 1

m0+t). Substituting this into (2.28) we get
that

P

(
ti >

m2t

d2

)
= 1− P

(
ti ≤

m2t

d2

)
= 1− m2t

d2(t+m0)
(2.29)

Finally, the probability density function can be obtained using that

P (d) =
∂P [di(t) < d]

∂d
=

2m2t

(m0 + t)

1

d3
(2.30)

Thus, the BA model will generate a graph with a power law degree distribution, with
power law exponent equal to β = 3 independent of the parameters m and m0. How-
ever, one can note that the scaling constant of the distribution will be proportional to
m2.

In practice the process of creating a graph can be described by the pseudo code in
Algorithm 2.

Copying model

The copying model, (COPY) was first introduced by Kleinberg, Kumar, Raghavan,
Rajagopalan and Tomkins in [21] and [22] to model the characteristics of the Web graph.
Like the BA model it is based on network growth, however the attachment process differs.
The basic mechanism can be described as follows. First the graph is initialized by a small
clique. Then, for every new vertex v, introduced in the graph, a single vertex u, is chosen
uniformly at random from the graph nodes. For each neighbour ui of u connect ui and
v with probability q and with probability 1 − q connect v with a random vertex. A
result of this is that dv = du. The first process where neighbours of u are connected to
v increases the probability of high-degree vertices receiving new incoming edges. Hence,
this part corresponds to the preferential attachment procedure in the BA model.

The evolution of the node degrees in the graph can be found by considering the following
case. The degree of an existing vertex j could increase in two ways. First, if one of the
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Algorithm 2: Barabasi- Albert generator

Input: Number of nodes N , edges to attach m
Result: Edge list E for graph G
First step: create clique with m0 nodes ;
[Ecore] = CreateCore(m0) ;
E = [Ecore] ;
degree = [m0 − 1 ∗ ones(m0,1); zeros(N −m0,1)] ;
Second step: attach remaining nodes with preferential attachment bias. ;
for i = m0 + 1...N do

pcum = cumsum(degree(1 : i− 1))./sum(degree(1 : i− 1) ;
nodeschosen = zeros(1,m) ;
r = random(1,m) ;
for j = 1 : m do

nodeschosen(1,j) = min(find(r(1,j) < pcum) ;
end
nodeschosen = unique(nodeschosen) ;
Create reciprocal edge between i and nodeschosen in E ;
Update degree vector for node i and nodeschosen ;

end

neighbours of j is copied by the new vertex, j will increase its degree with probability q.
Alternatively j could be chosen directly from uniform attachment. Assuming we want
to create a network with N nodes, we will have a random process with N steps. Let
the random variable Xj(t) represent the number of in-links to vertex j at time t ≥ j.
Using the initial condition Xj(j) = 0 (has no in-links when introduced) and assuming
that every introduced vertex has initial degree 1 we can write the probability that node
t+ 1 links to node j, (i.e. that vertex j increases its in degree by one) as

p

t
+
qXj(t)

t
(2.31)

By approximating the discrete random variable Xj(t) with a continuous function of time
xj(t) we can write

dxj
dt

=
p

t
+
qxj(t)

t
=⇒ 1

p+ qxj

dxj
dt

=
1

t
(2.32)

Integrating (2.32) gives us

∫
1

p+ qxj

dxj
dt

dt =

∫
1

t
dt
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=⇒ ln(p+ qxj) = qln(t) + c, setting A = ec

=⇒ p+ qxj = Atq,

=⇒ xj(t) =
1

q
(Atq − p) (2.33)

Using the initial condition, xj(j) = 0 we get

0 = xj(j) =
1

q
(Ajq − p)⇒ A =

p

jq

And thus we have xj(t) as

xj(t) =
1

q
(
p

jq
· tq − p) =

p

q

[(
t

j

)q
− 1

]
(2.34)

Now, for a given value k, and time t we look for the fraction of vertices in the graph
with at least k in-links. Using the continuous approximation we look for the fraction of
functions satisfying xj(t) ≥ k, giving us

xj(t) =
p

q

[(
t

j

)q
− 1

]
≥ k ⇒ j ≤ t

[
q

p
· k + 1

]− 1
q

Thus, the fraction of values j (out of the total t) that will satisfy this is

1

t
· t
[
q

p
· k + 1

]− 1
q

=

[
q

p
· k + 1

]− 1
q

This approximates the number of nodes with at least k in-links, which we will denote
by F (k). Finding the number of nodes with exactly k in-links can be obtained by

differentiating F (k), f(k) = dF (k)
dk , giving us

f(k) =
1

q

q

p

[
q

p
· k + 1

]−1− 1
q

Thus, the fraction of nodes f(k) with k in-links is proportional to k
−(1+ 1

q
)
. Since, q ∈ [0,1]

we can see that the power law exponent of f(k), α can take values between [2,∞].

The explicit procedure of creating a graph can be described by Algorithm 3.

Many more elaborate versions have been developed from this basic mechanism, for ex-
ample the model Forestfire, [23].
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Algorithm 3: COPY model generator

Input: Number of nodes N , copy threshold probability q, initial clique size m.
Result: Edge list E for graph G
First step: create clique of size m ;
CreateCore(m) ;
Second step: attach remaining nodes through copying mechanism. ;
for i = m+ 1,...N do

u = random copy node selected from 1,...i− 1 ;
du = degree(u) ;
neigbouru = vector with neigbours of u ;
for j = 1 : du do

select r at random, r ∈ U(0,1) ;
if r > q then

Create reciprocal edge in E between i and neighbouru(j) ;
end
else

Create reciprocal edge in E between i and vertex t chosen at random
from 1...,i− 1 ;

end

end

end

2.4 The Market graph model

A real life power law graph will also be considered. Employing the method introduced
in Boginski, Butenko and Pardalos [2] we construct the market graph by representing
traded instruments by vertices and introducing edges if the Pearson cross-correlation
between two instruments exceeds a certain threshold, θ. This can be expressed in terms
of the graph adjacency matrix A = [ai,j ]

n
i,j=1 as

aij =

1, if Ci,j ≥ θ

0, if Ci,j < θ
(2.35)

where θ ∈ [−1,1]. The cross correlation between i and j is given by

Ci,j =
E(RiRj)− E(Ri)E(Rj)√

V ar(Ri)V ar(Rj)
(2.36)
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where Ri(t) is the daily return of instrument i at time t.

Ri(t) =
Pi(t)

Pi(t− 1)
(2.37)

and Pi(t) is the closing price of instrument i at time t.

This results in an undirected, unweighted graph, represented with an adjacency matrix
A(θ) = [ai,j ]

n
1 , where ai,j is 1 if there is an edge between i and j and 0 otherwise.

Graph characteristics such as edge distribution, cluster coefficient, maximum cliques and
independent sets can be examined to study the structure of the market. Many previous
studies have shown that above a certain threshold the degree distribution of the market
graph will follow a power law, [1, 3, 24, 25].

In this paper we focus on the problem of partitioning the market graph into disjoint
clusters. In terms of the market graph this can be interpreted as a division into different,
strongly connected segments of the market.
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Graph Partitioning Methods

3.1 Problem formulations

In this section we will present two formulations for graph partition based on two different
fitness measures, the normalized cut, (2.9) and modularity, (2.12). Both formulations
result in integer programs which turn out to be NP-hard problems.

3.1.1 Minimizing Normalized cut

The first formulation seeks a partition of V into (a fixed number of) k disjoint subsets
such that the normalized cut (2.9) of the partition is minimized. This approach was
introduced in [9] for image segmentation and is solved using a spectral relaxation of the
problem. The approach was further studied in [26]. The objective function in this case
is given by

minimize
(A1,...,Ak)

CN (A1,...,Ak) (3.1)

where CN (·) is defined by (2.9).

We will first consider the case when k = 2, since the formulation is easiest to understand
in this case. Hence, we seek a bisection Π = (A, Ā) of V that minimizes (3.1)

First, we define the cluster indicator function f as
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fi =


√

vol(Ā)
vol(A) , if vi ∈ A

−
√

vol(A)
vol(Ā)

, if vi ∈ Ā
(3.2)

where as before

vol(A) =
∑
i∈A

di. (3.3)

Let D be the matrix with the node degrees on the diagonal, D = diag(d1,..., dn). Then,
we have that

(Df)′1 =

n∑
i=1

difi = 0, (3.4)

and

f ′Df =
n∑
i=1

dif
2
i

=
vol(Ā)

vol(A)

∑
i∈A

di +
vol(A)

vol(Ā)

∑
i∈Ā

di

using (3.3) = vol(A) + vol(Ā)

= vol(V ). (3.5)

Now, let L = D − A be the Laplacian matrix, defined as in Appendix B. Then, using
Proposition 8.1.1 we can write

f ′Lf =
1

2

n∑
i,j=1

aij(fi − fj)2

=
1

2

∑
i∈A,j∈Ā

aij

(√
vol(Ā)

vol(A)
+

√
vol(A)

vol(Ā)

)2

+
1

2

∑
j∈A,i∈Ā

aij

(
−

√
vol(Ā)

vol(A)
−

√
vol(A)

vol(Ā)

)2

= vol(V )CN (A,Ā). (3.6)

Thus, for k = 2 the problem (3.1) can be rewritten as
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minimize
A

f ′Lf

subject to f as in (3.2)

1′Df = 0

f ′Df = vol(V ).

(3.7)

For each fi there is 2 possible choices, depending on if vi belongs to A or not. In [9] the
authors showed that (3.7) is NP-complete even for a regular grid. A possible relaxation
is to discard the condition of discreteness and allow fi to take arbitrary values in R.
Imposing this relaxation leads to the following relaxed problem

minimize
f∈Rn

f ′Lf

subject to 1′Df = 0

f ′Df = vol(V ).

(3.8)

By introducing, g := D1/2f we can rewrite (3.8) as

minimize
g∈Rn

g′D−1/2LD−1/2g

subject to g′D1/21 = 0

||g||2 = vol(V ).

(3.9)

Now, making the observations that D−1/2LD−1/2 = Lsym, that D1/21 is the first eigen-
vector of Lsym and that vol(V ) is constant, we can identify the problem (3.9) to be on
the form of (8.1) and we can apply Theorem 8.2.2, (see Appendix B), and its solution
g is given by the second eigenvector of Lsym. Substituting back f = D−1/2g and using
Proposition 8.2.1 in Appendix B we can see that f is the second eigenvector of Lrw,
or equivalently, the generalized eigenvector of Lu = λDu. Hence, the solution of the
relaxed problem (3.8) is given by the f = u. So, we can approximate the minimizer of
(3.1) by the second eigenvector of Lrw. However, since the eigenvector takes values in
Rn the solution must be discretized to satisfy the constraints on the discrete indicator
vector f . In the case when k = 2 this is done by using the sign of f as indicator function,
that is

vi ∈ A if fi ≥ 0

vi ∈ Ā if fi < 0
(3.10)

This result can be extended for the case k > 2, by instead of f defining the indicator
vectors hj = (h1,j ,...,hn,j)

′, (i = 1,..,n and j = 1,...,k) by
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hi,j =


1√

vol(Aj)
, if vi ∈ Aj

0 otherwise.

(3.11)

Next we set the matrix H to be the matrix with the k indicator vectors as its columns,

i.e H = {hj}kj=1. Now, since HH ′ = I, h′iDhi = 1, and that h′iLhi = cut(Ai,Āi)
vol(Ai)

, the

k-way CN (Π) minimization problem (3.1) can be reformulated as

minimize
A1,...,Ak

Tr(H ′LH)

subject to H as in (3.11)

H ′DH = I.

(3.12)

Again, relaxing the discreteness condition on hj , and introducing T by T = D1/2H, we
can write the relaxed problem in the following way

minimize
T∈Rn×k

Tr(T ′D−1/2LD−1/2T )

subject to TT ′ = I.
(3.13)

System (3.13) is a standard trace minimization problem and its solution is obtained by
choosing the matrix T to contain the k first eigenvectors of Lsym as columns. Again,
substituting back H = D−1/2T and using Proposition 8.2.1 in Appendix B, we see that
H will consists of the first k eigenvectors of the matrix Lrw, or equivalent to the first k
generalized eigenvectors of Lu = λDu. This results in the normalized spectral algorithm
from [9] for arbitrary k.

3.1.2 Maximizing Modularity

Several graph partition formulations with modularity maximization have been proposed.
Here we only present the integer formulation introduced in [27]. Other commonly used
formulations include the spectral relaxation presented by [28], this has great similarities
with the relaxed spectral formulation presented for the normalized cut. The reader is
referred to [28] for a comparison between these formulations.

The formulation in [27] results in a linear integer program. The objective is to find a
partition Π of V that maximizes the modularity as defined in (2.12). Note that in this
formulation the number of clusters k is not fixed.

First we introduce the variable fij for each pair (i,j) of vertices in the graph, where
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fij =

1, if i and j belong to the same cluster

0, otherwise.
(3.14)

These variables can be interpreted as an equivalence relation over V and thus form a
partition by its equivalence classes. To ensure consistency we must impose the following
constraints on the relation.

reflexivity ∀i : fii = 1

symmetry ∀i,j : fij = fji

transitivity ∀i,j,l : fij + fjl − 2fil ≤ 1.

(3.15)

Using the introduced decision variables fij the objective function (2.12) can be expressed
as

Q =
1

2m

∑
ij

[
Aij −

didj
2m

]
fij (3.16)

where as before m is the total number of edges in the graph and di denotes the degree
of vertex i.

The modularity maximization problem is then given by

maximize
fij

Q

subject to fij as in (3.15), fij ∈ [0,1].
(3.17)

Since we consider undirected graphs, we have fij = fji, so it is enough to introduce(
n
2

)
= O(n2) optimization variables fij for i < j. However, there are

(
n
3

)
constraints from

(3.15). Brandes et al. showed in [27] several characteristics of modularity maximization,
including a proof that the decision version of the problem is NP-complete.

3.2 Algorithms

Considering the complexity of both the formulations in the previous section the al-
gorithms presented here will be heuristic. When solving (3.17) we will use a greedy
agglomerative approach, similar to the ones presented in [29, 30, 31], while (3.12) will
be solved using the spectral relaxation (3.13) and the approach described in [26].

26



CHAPTER 3. GRAPH PARTITIONING METHODS

3.2.1 Spectral Algorithm for Normalized Cut

A partition from minimizing the normalized cut will be found by considering the relaxed
problem (3.13). This problem is computed by solving the generalized eigenvalue problem
for L. The obtained relaxed solution must then be made feasible for the original prob-
lem, taking the discrete constraints into consideration. Several approaches have been
proposed for this including directional cosine method, randomized projection heuristic,
and clustering rounding. We will adapt the method suggested in [26], using k-means
algorithm on the eigenvectors of the normalized Laplacian Lrw to obtain a feasible solu-
tion.

The complete algorithm can be described by the following steps.

Algorithm 4: Spectral normalized cut

Input: Adjacency matrix A (n× n), number of clusters k
Result: Clusters, (C1,..., Ck)
D = diag(d1,...,dn) ;
L = D −A ;
Compute the k first generalized eigenvectors (u1,...,uk) by solving the generalized
eigenvalue problem Lu = λDu ;
U = [u1...uk] ;
Y = [ ] ;
for i = 1:n do

yi = U(i,; ) ;
end

Cluster the points (yi)
n
i=1 in Rk by Matlab kmeans function into clusters

(C1,..., Ck) ;

The complexity of Algorithm 4 is determined by the computation of the k first eigen-
vectors of Lrw = D−1L, which in general has complexity O(n3). However, using sparse
matrices this can be done more efficiently using a power method or Krylov subspace
methods such as the Lanczos method.

3.2.2 Greedy Algorithm for Modularity

Problem (3.17) is solved by using a greedy agglomerative hierarchical heuristic that
follows a scheme similar to [30]. The algorithm is based on an aggregation process with
two different phases. The first phase performs small changes by shifting nodes between
clusters and a second phase merges entire clusters, resulting in larger changes. Starting
from singleton clusters the algorithm evaluates the modularity change in every phase,
∆Q, of each possible move/merging and then performs the action that would result in
the largest modularity increase. The algorithm will alternate between these two actions
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as long as an improvement in the modularity is possible. The algorithm can be described
with the following pseudo-code.

Algorithm 5: Greedy Modularity

Input: Adjacency matrix, A
Result: Clusters, (C1,..., Ck) and Q
Initialize clusters, with one node per cluster;
while change == true do

while node move == true do
Pick a node at random and choose its best move based on ∆Q choosen
from (3.18).

end
while cluster merge == true do

Pick a cluster at random and choose its best merging based on ∆Q
choosen from (3.19).

end

end

Where ∆Q is the modularity change of each possible node move or cluster merging.
Using (2.12) moving a vertex i from its current cluster ci to another cluster cj will in
the first phase result in the modularity change

∆Qi,ci,cj =
1

2m

−(
∑
k∈ci

Aik −Aii) + 2 · di(Wci − di)
2m

+
∑
k∈cj

Aik − 2 ·
Wcj · di

2m

 (3.18)

with Wcj = vol(cj) =
∑

k∈cj dk introduced to simplify notations. The first term removes

i′s contribution of internal edges in ci. The second and fourth term adds and removes
the null factor term associated with moving i from ci to cj . The third term adds the
contribution of i to the internal edges of cj .

The modularity change from merging cluster ci and cluster cj in the second phase is
computed using the relation from [29] as

∆Qci,cj = 2(ecicj − bcibcj ) (3.19)

where ecicj is the fraction of edges with ends in ci and cj and bci =
∑

cj
ecicj is the

fraction of all ends of edges being attached to any of the vertices in cluster ci.

The algorithm terminates when no moves in both phases can produce a positive ∆Q. The
authors of [30] writes that the overall complexity of the algorithm is not straightforward
to establish but each of the two phases iterates over the edges of the nodes, resulting in an
overall O(m) complexity. This was further supported by the simulations in [30].
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Empirical study of power law
graphs

In this chapter we present some result from an empirical study of different instances of
power law graphs from the models discussed in Section 2.3.3. The first motive for this
study is that the loose definition of a power law graph enables graphs with very different
network characteristics to fit within the definition. Hence, two graphs with similar power
law degree distribution can differ vastly in terms of other network metrics. The aim is
to highlight common features for all power law graphs as well as differences between the
models. Also, the structure of the genetic graphs will be compared to the characteristics
of a real-life Market graph instance, created from closing prices on the American Stock
market. This is done to evaluate how well the models can represent the topology of a
market graph.

4.1 Model generated graphs

This section studies the topological characteristics of the graph models discussed in
Section 2.3.3. The models considered are Barabasi-Albert (BA), Power law random
graph (PLRG) and the Copying model (COPY). The graphs are created by selecting
input parameters such that the desired power law exponent is 2.5 for all the generators
except Barabasi-Albert, which can only produce graphs with power law exponent 3.
Graphs of sizes between 500 and 5000 vertices were generated and studied.
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4.1.1 Degree distribution

Since the main purpose of the models presented is to generate graphs with a degree
distribution approximating a power law the degree sequences of the generated graphs
are studied and the power law exponent is approximated by the maximum likelihood
method from [32] for validation purpose. The graphs below show the degree distribution
of the generated graphs plotted together with an approximated power law for graphs with
3000 vertices. Table 4.1 reports the estimated power law exponents of the probability
density function obtained from ML-estimation of 20 generated graphs with 3000 vertices
and the variance between the different estimations.

Figure 4.1: Degree distribution and approximated power law for PLRG, BA, COPY
graphs.

4.1.2 Clustering coefficient

Another characteristic of many power law graphs is a high clustering coefficient, this
is examined for the different graph models. For comparison, the edge density, δ(G) of
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Power exponent µ σ2

PLRG 2.558 0.0118

Barabasi 2.920 0.0105

Copy 2.482 0.0979

Table 4.1: Power law exponent for generated graphs, N = 3000.

the graphs are also included. Table 4.2 reports the mean and variance of the global
graph clustering coefficient together with the edge density of the graph. One can see
that the global clustering coefficient for all the generated power law graphs are higher
compared to their edge density. However, the clustering coefficient of the COPY graphs
are much higher (relative the graph edge density) than for graphs generated by the BA
model.

Graph clustering coefficient µ σ2 δ(G)

PLRG 0.1045 1.31 · 10−3 0.0018

Barabasi 0.0141 4.47 · 10−6 0.0020

Copy 0.0165 1.67 · 10−4 8.02 · 10−4

Table 4.2: Mean and variance of global graph clustering coefficient, edge density, N = 3000.
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4.1.3 Assortativity

The assortativity coefficient R measures the correlation between the node degrees in the
network. A positive R indicates an assortative network, meaning that high degree nodes
are linked to other high degree nodes. A negative R suggests dissortative behaviour in
the network, where high degree nodes are connected to low degree nodes, creating hubs
in the network. The definition we use was introduced by Newman in [33] as

R =
1

σ2
q

∑
jk

jk(ejk − qkqj). (4.1)

Where qk is the distribution of the remaining degree of the vertices, reflecting the number
of edges encountered when reaching a vertex by traversing an edge. This is given by

qk =
(k+1)pk+1∑

j pj
, with pj being the probability of a random node having degree j. The

link distribution ejk is the joint probability distribution of the remaining degrees of the
two vertices at either end of a randomly chosen edge. In other words, the probability
that a vertex with remaining degree k is connected to a vertex with remaining degree j.
Also, σq denotes the standard deviation of the distribution qk. For undirected network
we have that ejk = ekj and

∑
jk ejk = 1. Newman showed [33] that in practice for an

observed network R is computed from

R =
m−1

∑
i jiki − [m−1

∑
i

1
2(ji + ki)]

2

m−1
∑

i
1
2(j2

i + k2
i )− [m−1

∑
i

1
2(ji + ki)]2

(4.2)

where ji and ki are the degree at each end (vertex) of the edge i = 1,...,m.

Table 4.3 show estimated assortativity coefficient computed from 20 instances of each
graph model and market graph instances with θ = [0.2 : 0.1 : 0.7].

Assortativity µ σ2

PLRG -0.0796 8.81 · 10−4

Barabasi -0.03 9.07 · 10−4

Copy -0.1206 1.31 · 10−4

Market graph -0.1028 3.6 · 10−3

Table 4.3: Assortativity coefficient for generated graphs, N = 3000 and market graphs
with θ = [0.2 : 0.1 : 0.7]

32



CHAPTER 4. EMPIRICAL STUDY OF POWER LAW GRAPHS

4.1.4 Shortest path

Another network topology measure is the mean shortest path of the graph (also called
average path length). Mathematically this can be expressed as l(G) = 1

n(n−1 ·
∑

i 6=j v(i,j),

where v(i,j) is the length of the shortest path between node i and j. This metric reflects
how fast information is spread in the network. Previous result indicates that this is
smaller for many power law graphs than for uniform random graphs [17]. Using graphs
of size 500, and implementing the algorithm by Dijkstra, [34] the mean shortest path was
found for graphs of size 500 (mean over 20 model generated graphs) was found. Results
are reported in Table 4.4.

Shortest Path µ σ2 max

PLRG 3.55 0.22 7

Barabasi 3.22 0.094 5

Copy 4.86 0.54 10

Market graph 0.6 3.5266 0.6548 11

Market graph 0.7 5.4450 1.1333 14

Table 4.4: Mean, variance and max of shortest path in generated graphs. N = 500. and
market graphs with θ = 0.6, 0.7.

4.2 The Market graph

By considering the closing prices of stocks on the New York Stock market (comprising of
NYSE, Nasdaq, AMEX) a market graph was created. The original data consisted of 504
observations of 6330 stocks taken from Yahoo Finance with observations made between
January 4:th 2012 and December 31 2013.

In order to obtain more reliable results two pre-processing procedures were applied on the
original data. First, all illiquid instruments were removed. This was done by removing
all instruments that had no trading volume for more than 20% of the observations. The
second filtering procedure was introduced due to the large amount of Exchange traded
funds, (ETF’s) present on the American market. The ETF’s were removed since they
often aim to track the market itself making them highly correlated with most stocks in
the market. Their presence adds a noise of highly correlated instruments, not reflecting
the overall behavior of the market. After applying these two procedures 4519 instruments
remained, these time series were used to construct the market graph and its adjacency
matrix Aij by using equations (2.35) and (2.36) in Section 2.4.

33



CHAPTER 4. EMPIRICAL STUDY OF POWER LAW GRAPHS

Figure 4.2: a) Correlation distribution and fitted distribution for entire period, b) Fitted
correlation distribution for different time periods.

4.2.1 Correlation distribution

The correlation distribution represents the fundamental structure of the market. A plot
of the correlation distribution for the entire time period can be found in the left hand
graph in Figure 4.2 together with a fitted normal distribution, with µ = 0.1532 and
σ = 0.1264. One can see that the correlation distribution of the US market does not
seem to fit perfect with the normal distribution. Even though both tails of the distribu-
tion are covered the shape of the fitted curve is not consistent with the data. However, it
is interesting to note that stocks seem to mainly exhibit positive correlation, suggesting
that stock prices will often move in the same direction. This has been observed before
and has then been interpreted as a sign of globalisation with the motivation that more
and more stock effect each other positively, [2, 35]. The graph on the right in Figure
4.2 shows fitted distributions for different, shorter time periods, each period consisting
of 100 observations. Even though there are some differences between the different pe-
riods the correlation distribution of the market remains stable over the considered time
intervals.

4.2.2 Edge density

The density of the market graph will of course depend on the correlation threshold.
Varying the threshold θ generates graphs of different degrees of correlation. Figure 4.3
shows the edge density for different threshold, as expected the density will decrease with
increasing threshold.
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Figure 4.3: Edge density as a function of correlation threshold

4.2.3 Clustering coefficient

By computing the global clustering coefficient for graphs of different θ we found that
the cluster coefficient was larger among positively correlated stocks than for negatively
correlated stocks. As an example, the edge density of the graph obtained with threshold
0.6 is very close to that of the complementary graph for threshold −0.05. However, the
corresponding global clustering coefficients of the two graphs are C = 0.76 and C = 0.19
respectively. Hence, one can suspect that positively correlated stocks tend to cluster
more in the graph than negatively correlated stocks. This feature has been observed
previously for other market graphs [1, 2].

For higher positive thresholds the global clustering coefficient appears almost constant.
Figure 4.4 shows the graphs clustering coefficient for positive θ. For all θ ∈ [0.2, 0.9]
the clustering coefficient of the graph remains in the interval [0.70, 0.82]. It should be
noted that this is significantly higher than what would be expected from an uniform
random graph with the same edge density. A high clustering coefficient is a common
feature among many real life graphs, indicating that the market graph could possess a
community structure.
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Figure 4.4: Cluster coefficient as a function of correlation threshold

4.2.4 Assortativity

Figure 4.5 displays the average degree of neighbours plotted against the node degree
for the market graph with threshold θ = 0.5. The graph shows that the market graph
does not possess any clear assortative or dissortative behavior. This seem to be the
case especially for the low degree nodes, where the spread of the neighbours degree
is the greatest. However, for nodes with higher degrees the behaviour seems slightly
dissortative, indicated by the negative slope for higher degrees.

Also, by computing the assortativity coefficient 4.1 for different θ ∈ [0.2, 0.7] we find that
R ∈ [−0.2,−0.05] for all these values, indicating a weak dissortative behavior.

4.2.5 Connected components

By studying the connectivity of the graph for a series of thresholds it was found that
the graph becomes disconnected for a threshold above θ = 0.12. It therefore becomes
interesting to study how the connected components of the graph changes depending
on the threshold. Figure 4.6 shows the size of the connected components in the graph
plotted against positive thresholds θ. The left graph of Figure 4.6 shows the size of
the largest connected component while the right hand sub-figure shows the sizes of the
second to fifth largest connected components against the correlation threshold θ.
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Figure 4.5: Average degree of neighbour against node degree for θ = 0.5

Figure 4.6: a) Size of largest connected component, b) Size of connected components 2-5.
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Figure 4.7: Degree distribution for θ = {0.4, 0.5, 0.6, 0.7}

4.2.6 Degree distribution

By fixing the threshold a specific market graph is obtained. For this graph a degree
distribution can be studied. As was also found in [2] the degree distribution is filled with
noise for lower thresholds, however for higher values the power law behaviour becomes
more clear. Figure 4.7 shows the degree distribution for thresholds θ = {0.4, 0.5, 0.6, 0.7}
in a loglog plot. From the figure one can notice that the noise in the graph decreases as
the threshold is increased. Also, it is interesting to note that the slope is lower compared
to the edge distribution of many other real life graphs. For instance, the Web graph has
been estimated to follow a power law with slope 2.18 [14]. The small exponent suggests
that there could exist many vertices with high degree in the graph implying that there
could exist larger clusters in the graph.

4.3 Graph models for representing the Market graph

Taking only the studied metrics into consideration we can make the following observa-
tions about the topologies of the simulated graphs relative the topology of the market
graph. First, all of the studied models does indeed create graphs with a power law degree
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distribution. However, since the model by Barabasi-Albert only produce power law ex-
ponents equal to 3 this is inappropriate for modelling the market graph. The model also
fails to capture both the high clustering coefficient of the market graph and its slightly
dissortative behaviour.

The PLRG model can generate power laws with varying exponent, however it produces
graphs with low clustering coefficient relative the market graph. The model is also a
bad representation for a dynamic market since the it creates a graph in one single step,
not allowing the network size to grow over time. Also, the model requires that we know
the explicit degree distribution of the network, something that is not always possible in
practice.

Finally, the COPY model is the only model that somewhat captures the high clustering
coefficient of the market graph. Also, it seems to produce weakly dissortative networks,
similar to the market graph. However, the COPY model was more difficult to tune and
showed larger deviations in many metrics.
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Result from simulations

5.1 Simulation Setup

By applying Algorithm 4 and 5 on instances of model generated graphs and on market
graph instances partitions were obtained. In a first attempt to evaluate the result of the
two approaches we ran both algorithm N times on each studied graph. For each of these
N partitions the following metrics were computed.

• Number of clusters found - Remember that this is a free variable for the Mod-
ularity based formulation while it is fixed for the Normalized cut approach.

• Internal clustering density - computed from Equation (2.4)

• Max internal cluster density - computed from Equation (2.3)

• Min internal cluster density - computed from Equation (2.3)

• External cluster density - computed from Equation (2.5)

• Min cluster size

• Max cluster size

Then, the average over all N values were taken, and the results are reported in Table
7.1 and 7.2 in Appendix A. Since the formulation based on Normalized cut requires
a fixed number of clusters, k as input, this algorithm was applied with three different
k = 10, 20, 30 for each graph.

Additionally, to evaluate the consistency of the partitions for each algorithm we com-
pute the Adjusted Rand Index (ARI) [36] between some obtained partitions. The ARI
measures the overlapp between two partitions and is defined in the following way. Given
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a set V = (1,2,...,n) and the partitions X = (X1,..., Xs) and Y = (Y1,...,Yt) of V we can
define the following quantities

a - the number of pairs of elements in V that are in the same set in X and in the
same set in Y.

b - the number of pairs of elements in V that are in different sets in X and in different
sets in Y.

c - the number of pairs of elements in V that are in the same set in X and in different
sets in Y.

d - the number of pairs of elements in V that are in different sets in X and in the
same set in Y.

Using these quantities the Adjusted Rand index is defined as

ARI =

(
n
2

)
(a+ d)− [(a+ b)(a+ c) + (c+ d)(b+ d)](
n
2

)2 − [(a+ b)(a+ c) + (c+ d)(b+ d)]
. (5.1)

ARI has expected value 0 and maximal value 1, corresponding to identical partitions.
It can be used to compare both partitions obtained by the same approach, to evaluate
the method’s consistency as well as comparing the results obtained from different for-
mulations. Computed ARI for different pairs of partitions can be found in Table 7.3 in
Appendix A.

The considered graphs consists of Market graph instances created by the different thresh-
olds θ = {0.4, 0.5, 0.6, 0.7}, and genetic graphs from the models PLRG, BA and COPY.
Specific graph characteristics are reported in Table 7.1 and 7.2 in Appendix A.

5.2 Partitions of the Market graph

The result from the simulations show that for the lower thresholds θ ∈ [0.4, 0.5], both
approaches produce partitions with low modularity. Also, the partitions have low min-
imal internal cluster density and a high external density relative to the overall graph
density. As an example, for θ = 0.4 the minimal internal density of a cluster is of the
same magnitude as the edge density of the entire graph for both algorithms. Also, the
external cluster edge density is approximately half that of the overall graph density,
indicating that the identified clusters are not well separated. All these results indicate
that the Market graph lacks a strong community structure for lower thresholds. This
is not really surprising as at lower thresholds even weakly correlated stocks can be con-
nected in the graph making it more difficult to distinguish which instruments truly form
clusters.

Also, for these lower thresholds the size of the largest cluster found is very large, espe-
cially for the greedy modularity approach where the largest cluster consists of nearly 2/3
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Figure 5.1: Partition of th Market graph (θ = 0.5) into 18 clusters from Modularity
approach

of the considered nodes. This cluster has low internal density and is strongly connected
to the rest of the graph. This further supports the idea that the market graph lacks
a clear community structure for lower thresholds. Figure 5.1 shows a partition of the
giant connected component obtained by the modularity approach for θ = 0.5. One can
see that even though each cluster seems strongly connected, most of them are not well
separated.

For higher values of the thresholds (θ ∈ [0.6, 0.7]) the quality of the partitions increases.
Partitions of these graphs display higher modularity, combined with higher minimal
internal cluster density and lower external density. As an example, for θ = 0.7 the
minimal internal cluster density is more than three times as high as the overall graph
density and the external cluster density is less than 1

10 the edge density of the entire
graph. Hence, clusters are both more dense and better separated compared to partitions
for lower thresholds. This result was found for all the approaches. Figure 5.2 and 5.3
show the partitions of the largest connected component for θ = 0.7 for both algorithms.
In this case the partitions seems very similar, this is also confirmed by computing the
Adjusted Rand index for the two partitions, ARI = 0.9295, further indicating a large
overlap between the two partitions.

In Figure 5.4 we have plotted the internal cluster density against cluster size for both
approaches (with 20 partitions of each) applied on Market graphs with θ = [0.5, 0.6, 0.7].
From Figure 5.4 we can notice that the result from the two approaches becomes more
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Figure 5.2: Partition from modularity approach for Market graph θ = 0.7

Figure 5.3: Partition from normalized cut approach for market graph θ = 0.7
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Figure 5.4: Internal cluster density against cluster size for GM (blue) and SC (red) θ =
[0.5, 0.6, 0.7]

Figure 5.5: Normilized cut of cluster vs. cluster size for GM (blue) and SC (red) θ =
[0.5, 0.6, 0.7]

similar for larger values of θ, indicating a stronger community structure for higher thresh-
olds in the graph. Figure 5.5 shows the normalized cut plotted against cluster size of
the corresponding partitions. Here we can notice a difference between the approaches
since the modularity formulation produces partitions with smaller fluctuations in the
normalized cut of clusters than the cut formulation.

Comparing the two approaches one can notice that using modularity generally gives a
larger giant cluster that the method using normalized cut (when they are set to find the
same number of clusters).

5.2.1 Internal cluster structure

Since a common way to classify instruments in portfolio management is by dividing
them into industrial sectors we will compare the internal structure of the clusters with
12 industrial sectors of the market. First, the sector representation in the data and for
the giant component of different market graphs can be found in Table 7.4 in Appendix
A. It is especially interesting to note that as the threshold θ increases some sectors as
finance, basic industries and energy increases its percentage in the largest connected
component of the graph while other sectors, as health, drastically decreases. Hence, the
degree of correlation between industrial sectors in the market differs.
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To analyse the internal structure of the clusters in the graph partitions we study the
percentage representation of each sector in every cluster. Table 7.5 in Appendix A
show the relation between industrial classification and clusters in partitions of the giant
connected component of the market graph, obtained by the greedy modularity approach
for different thresholds.

For lower thresholds θ = 0.5 the sector overlap between clusters is relatively large. This
is especially clear for the two largest clusters in the partition. In these sets all 12 industry
sectors are represented. Hence, for moderate correlations there is no strong connection
between clusters and industry sectors. It is also interesting to note that the financial
sector stands out by existing in all of the 4 largest clusters, indicating that this sector
is connected to many other sectors at this correlation level. This is further confirmed
by the fact that when selecting the 10 nodes with the highest degrees in the graph more
than 50% of these belong to the financial sector.

For higher thresholds the correlation between industrial sectors and clusters is stronger.
At threshold 0.7, no cluster includes stocks from all sectors and more clusters now only
consists of one sector. However, even though the correlation between cluster and sector
is very strong, it is not complete, even at this high threshold level. This phenomena
introduces the possibility to use graph clusters instead of industry sectors in portfolio
diversification.

5.2.2 Dynamics of partition

To study possible dynamics and stability in the partition structure we divide our data
of price returns into 4 periods, each consisting of 150 days, and with 50 days overlap
between each consecutive period. For each time series we construct a Market graph for
θ = 0.7.

First, computing the giant connected component (GC) of each market graph we notice
that its size varies greatly, from 253 instruments in period 3 up to 701 in period 4.
Thus the market correlations in these sub-periods are quite different compared to the
correlations obtained by using data covering all time series. Moreover, by considering
the overlap for these different GC’s we can see that it is not only the cardinality that
changes but also which instruments that are present in the GC. The intersection between
all the GC’s is 131 indicating that the instruments composing the GC’s changes over
different time periods. However, the edge density of the GC is almost constant over all
4 periods.

Using the greedy modularity approach, partitions for the different time period were
obtained ( 20 for each graph), the results are reported in Table 7.5. From these numbers
it can be observed that the modularity decreases between period 1 and period 4. This,
together with the fact that the external cluster density increases over the same time could
imply that the the community structure of the graph decreases over time. Partitions
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Figure 5.6: Partitions of market graph with θ = 0.7 for period 1 (left) and 4 (right) into
11 resp. 12 clusters.

of the market graph for θ = 0.7 from period 1 and 4 can be found in Figure 5.6, these
graphs confirm the differences between the partitions.

By studying the sector composition of the clusters it was found that the connection
between sectors and clusters was weaker in all sub periods compared to the entire period.
Also, this pattern increased for every considered period, and in the last period most
clusters consisted of several different industrial sectors. Hence, the correlation between
industrial sectors and graph clusters is weaker for shorter time series.

5.3 Partitions of Model generated graphs

The two approaches were also applied on some instances of the model graphs from Section
2.3.3. Since the graphs are random, 5 instances each with 1000 nodes and power law
exponent, β close to 2.5 (except for Barabasi-Albert graph where β = 3) were generated.
The procedure described in section 5.1 was performed, only with the exception that for
each graph the algorithms were applied N = 10 times. The results are reported in Table
7.2.

Figures 5.7, 5.9, 5.8 show examples of the partitions obtained from the greedy modularity
algorithm for each type of graph. From Figure 5.7 it is clear that the Barabasi-Albert
graphs lacks a community structure. This is supported by the numbers reported in Table
7.2. Partitions of BA graphs have relatively low modularity and a high external cluster
density. Also, the internal cluster density is almost constant regardless of the cluster size,
indicating that it does not exist an optimal size for the clusters in the partition.

A partition of a PLRG graph can be seen in Figure 5.8. The quality of this partition
seems better compared to the one for the BA graph, and the community structure is
more clear. However the clusters are still quite connected to each other, supported by
the relatively large external cluster density of the partition.
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Figure 5.7: Partition from modularity approach for Barabasi Albert

Figure 5.8: Partition from modularity approach for PLRG graph
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Figure 5.9: Partition from modularity approach for Copy graph

Finally, Figure 5.9 shows the partition of a COPY model graph. For this graph we can
clearly distinguish a community structure in the graph. The obtained clusters in the
partition are well separated and clusters have an internal density much higher than that
of the entire graph.

Another indication that neither BA nor PLRG graphs exhibit a clear community struc-
ture can be seen from Figure 5.10 showing the modularity of a partition (found by the
Spectral algorithm for different k) plotted against the number of clusters. First, the
modularity of the COPY graph is almost twice as large as for the BA and PLRG graphs.
Also, the maximum modularity for this graph is not constant for all number of clusters,
which indicates that the topology has an optimal cluster partition.

To summarize, from the simulations we can make the following general observation

• Barabasi-Albert graphs seems to lack a clear community structure. Partitions
of these graphs show low modularity, combined with low internal cluster density
and high external cluster density relative the global graph density. Moreover, these
result are constant no matter the number of clusters in the partition. This indicates
that the topology lacks such an optimal partition structure.

• PLRG graphs exhibit some community structure, but due to large deviation in the
results we can not conclusively claim it has clear community structure.

• COPY model exhibit strong community structure.
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Figure 5.10: Modularity of of partition plotted against the number of clusters in partition
for different power law graphs.
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Conclusions

This chapter concludes the findings of the thesis. We also discuss possible modifications
and recommendations for future research.

We have, by implementing two different formulations for graph partitioning studied the
partition structure of the Market graph, a network constructed by daily price returns
on the American stock market. The two approaches are based on two commonly used
metrics to identify graph clusters, the normalized cut and modularity. Depending on
which objective that was used to identify the clusters we found partitions with different
structure. One major difference between the results from the two approaches was that
the modularity based formulation produced partitions with a large spread between the
clusters sizes while for the spectral approach the clusters are more equal in size. We also
found that the partitions from each formulation became more similar for market graphs
with a higher correlation threshold.

Results from both formulations indicated that the Market graph lacks a strong com-
munity structure for correlation thresholds below 0.6. However, for thresholds above
this the partition, the community structure of the graph becomes more clear. Thus,
we can note that even though features as high clustering coefficient and a power law
degree distribution can be observed in the market graph for thresholds lower than 0.6,
the community structure is not present at those correlation levels.

The fact that not all power law graphs possess a clear clustered structure was further
supported but the results from partitions of the considered generated graphs. The struc-
ture and quality of the partitions differ vastly among the different power law models.
Hence, we find that there is no direct connection between the occurrence of a power law
degree distribution and that the graph has a community structure. The great topologi-
cal differences between the graph models was also seen from the empirical study of their
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topology. The findings in Chapter 3 showed that none of the considered graph models
is able to fully capture the structure of the Market graph. However, this should come
as no surprise as the considered models were developed to mimic the topology of the
Internet graph rather than the Market graph. These observations illustrate the need to
develop models specifically for the topology of the Market graph.

By studying the internal structure of clusters we showed that the connection between
clusters and industrial sectors increased with the partition quality (modularity, or cut
size). This result supports that, when considering longer time periods, prices of instru-
ments within a particular industrial sector are often significantly correlated.

Considering partitions for different, shorter sub-periods showed that the partition struc-
ture and its quality fluctuates over time. We also observed that the connection between
clusters and industrial sectors increased with the length of the considered time period
and was stronger in the early sub-periods in the data.

Possible focus for future studies could be finding stricter formulations for the cluster
densities in the partition. Also, the connection between graph clusters and industrial
sectors could be further studied to examine the possibility of using clusters as instrument
classification in portfolio analysis. Another topic could be to consider weighted graphs.
Finally, it would be interesting to further study partitions for more and longer time series
to analyse the dynamics in the partition structure.
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Appendix A: Tables
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7.1 Partitions of the Market graphs

Number of runs is N = 50 for all Market graphs

Threshold θ

Market graph 0.4 0.5 0.6 0.7

Nr. nodes in GC 2964 2020 934 278

Global density (GC) 0.0928 0.0400 0.0282 0.0337

Greedy Modularity

Mean nr. clusters 14.1 20.66 13.66 11.08

Max/Min nr. clusters [9,20] [15 33] [10 19] [10 12]

Mean internal density 0.5768 0.4686 0.4562 0.3758

Max internal density 0.9968 0.9571 0.9933 0.8691

Min internal density 0.0924 0.0996 0.0714 0.1009

External cluster density 0.0400 0.0123 0.0037 0.0013

Min cluster size 2.1 2.5 2.64 3.32

Max cluster size 938.78 630.22 276.78 66.48

Modularity 0.2406 0.4353 0.6738 0.7271

Spectral Ncut, k = 10

Nr. clusters 10 10 10 10

Mean internal density 0.3243 0.2765 0.3162 0.3514

Max internal density 0.7932 0.6511 0.6506 0.8282

Min internal density 0.1083 0.0526 0.0632 0.117

External cluster density 0.0689 0.0188 0.0051 0.0021

Min cluster size 13.40 11.70 9.40 5.15

Max cluster size 1086 976 280.8 71.45

Modularity 0.0490 0.1360 0.6290 0.7044

Spectral Ncut, k = 20

Nr. clusters 20 20 20 20

Mean internal density 0.2865 0.3037 0.3596 0.5113

Max internal density 0.8373 0.7370 0.8168 0.9950
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Min internal density 0.0925 0.0874 0.0745 0.1524

External cluster density 0.0852 0.024 0.0079 0.0043

Min cluster size 7.25 8.80 4.10 2.60

Max cluster size 484.35 351.0 157.85 54.95

Modularity 0.0417 0.2844 0.5984 0.6349

Spectral Ncut, k = 30

Nr. clusters 30 30 30 30

Mean internal density 0.2576 0.3084 0.4412 0.5526

Max internal density 0.8150 0.7967 0.9837 1

Min internal density 0.0801 0.0979 0.0880 0.1599

External cluster density 0.0901 0.0274 0.0094 0.0108

Min cluster size 9.62 4.5 2.6 2

Max cluster size 257.75 227.5 127.4 43.7

Modularity 0.0489 0.2559 0.5654 0.5575

Table 7.1: Result for the algorithms on market graphs for different θ

7.2 Partitions of Model generated graphs

Number of runs is N = 10 for all model generated graphs.

Power law graph model

Graph CO PLRG BA

Nr. nodes in GC 1000 1000 1000

Global density (GC) 0.0020 0.0055 0.0137

Greedy Modularity

Mean nr. clusters 38.4 16.2 13.66

Max/Min nr. clusters [37,40] [14 18] [15 21]

Mean internal density 0.2359 0.0476 0.0454

Max internal density 0.6667 0.1316 0.0766

Min internal density 0.0192 0.0254 0.0341

External cluster density 0.00086 0.00300 0.0017
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Min cluster size 3 23.9 28.85

Max cluster size 219.1 94.35 73.75

Modularity 0.8228 0.4039 0.3522

Spectral Ncut, k = 10

Nr. clusters 10 10 10

Mean internal density 0.0325 0.0610 0.0293

Max internal density 0.0766 0.1684 0.0495

Min internal density 0.0076 0.0081 0.0194

External cluster density 0.000162 0.0017 0.0033

Min cluster size 31 14.6 59.7

Max cluster size 346.1 447.5 152.3

Modularity 0.6359 0.2933 0.3281

Spectral Ncut, k = 20

Nr. clusters 20 20 20

Mean internal density 0.067 0.0664 0.0513

Max internal density 0.1757 0.2494 0.0788

Min internal density 0.0188 0.0214 0.0351

External cluster density 0.000584 0.0024 0.0035

Min cluster size 13.5 9.7 31.6

Max cluster size 120.4 140.1 73.3

Modularity 0.714 0.3879 0.3565

Spectral Ncut, k = 30

Nr. clusters 30 30 30

Mean internal density 0.0901 0.0858 0.0785

Max internal density 0.3074 0.2834 0.1232

Min internal density 0.0248 0.0329 0.0372

External cluster density 0.000603 0.0025 0.0036

Min cluster size 7.3 7.4 18.7

Max cluster size 94.9 77.6 87.7

Modularity 0.7233 0.4062 0.3500

Table 7.2: Result for algorithms on generated graphs
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7.3 Adjusted Rand Index

Adjusted Rand Index for different partition approaches and market graphs. The ARI
was obtained by choosing 3 pairs of partitions, at random from each type, computing
the ARI for each of them and then taking the average of these values. (GM - Greedy
modularity, SNC - Spectral Normilized cut).

Threshold θ

Market graph 0.5 0.6 0.7

ARI

GM & GM 0.5846 0.7845 0.9593

SNC & SNC 0.5317 0.9124 0.9212

GM & SNC 0.4084 0.5900 0.8963

Table 7.3: Adjusted Rand Index for different algorithms and Market graphs
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7.4 Industrial Sectors in the Market graph

Tables 7.4 shows the percentage of different sectors in the data and market graphs for
different thresholds.

Threshold θ

Market graph Data 0.5 0.6 0.7

Sector

Basic industries 0.0755 0.1065 0.1192 0.0294

Capital goods 0.0860 0.1097 0.1205 0.0196

Consumer Dur. 0.0326 0.0368 0.0314 0.0049

Consumer Non Dur. 0.0508 0.0387 0.0226 0

Consumer Serv. 0.1525 0.1503 0.1267 0.2745

Energy 0.0712 0.0958 0.1192 0.1569

Finance 0.1649 0.2245 0.2961 0.5049

Health 0.1128 0.0323 0.0138 0.0049

Miscellaneous 0.0315 0.0146 0.0013 0

Public Util. 0.0590 0.0729 0.0803 0

Technology 0.1379 0.0977 0.0590 0.0049

Transportation 0.0252 0.0203 0.0100 0

Table 7.4: Sector representation in data and market graphs GC for θ = [0.5, 0.6, 0.7].
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7.5 Industrial sectors and clusters
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Market graph θ = 0.5 with industrial sectors and clusters from Greedy modularity.
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Market graph θ = 0.6 with industrial sectors and clusters from Greedy modularity.
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Market graph θ = 0.7 with industrial sectors and clusters from Greedy modularity.

7.6 Partitions of Market graph for different periods

Number of runs is N = 20.
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Threshold θ

Market graph P1 P2 P3 P3

Nr. nodes in GC 532 559 253 701

Global density (GC) 0.0313 0.0209 0.0273 0.0291

Greedy Modularity

Mean nr. clusters 9.1 12.5 10 13.45

Max/Min nr. clusters [7, 11] [11 13] [8 12] [10 16]

Mean internal density 0.2853 0.2614 0.3281 0.4988

Max internal density 0.7047 0.5613 1 1

Min internal density 0.0643 0.0511 0.09264 0.0727

External cluster density 0.0012 0.0012 0.0025 0.0070

Min cluster size 8.3000 8.1000 2.0 2.0

Max cluster size 134.4 120.5 62.8 239.7

Modularity 0.7483 0.7847 0.6143 0.5120

Table 7.5: Partitions for different time periods and θ = 0.7 from Greedy modularity
approach
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Appendix B: Graph Laplacians

8.1 The unnormalized Laplacian

Definition The unnormalized graph Laplacian matrix of a graph G with adjacency
matrix A = [aij ]

n
1 and degree matrix D = diag(d1,...dn) is defined L = D −A.

Proposition 8.1.1 (Properties of L.)
L satisfies the following properties:

1. For every vector f ∈ Rn it holds that

f ′Lf =
1

2

n∑
i,j=1

aij(fi − fj)2

2. L is symmetric and positive semi-definite.

3. The smallest eigenvalue of L is zero, corresponding to the eigenvector of the con-
stant one vector, 1.

4. L has n non-negative, real-valued eigenvalues, 0 ≤ λ1 ≤ λ2 ≤ ... ≤ λn.

8.2 The normalized Laplacians

Definition We define two different normalized Laplacians Lrw and Lsym as,

Lrw = D−1L = I −D−1W

Lsym = D−1/2LD−1/2 = I −D−1/2AD−1/2
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Proposition 8.2.1 (Properties of Lsym and Lrw)
The normalized Laplacians Lsym and Lrw satisfy the following properties.

1. For every vector f ∈ Rn it holds that

f ′Lsymf =
1

2

n∑
i,j=1

aij

(
fi√
di
− fj√

dj

)2

2. λ is an eigenvalue of Lrw with eigenvector u if and only if λ is an eigenvalue of
Lsym with eigenvector w = D1/2u

3. λ is an eigenvalue of Lrw with eigenvector u if and only if λ and u solve the
generelized eigenproblem Lu = λDu

4. 0 is an eigenvalue of Lrw with the constant one vector as eigenvector, 1. 0 is an
eigenvector of Lsym with eigenvector D1/21

5. Lrw and Lsym are positive semi-definite and have n non-negative, real-valued eigen-
values 0 ≤ λ1 ≤ λ2 ≤ ... ≤ λn.

Consider the symmetric eigenvalue problem

Ax = λMx, A = A∗, M = M∗ > 0 (8.1)

Theorem 8.2.2 (Trace theorem for the generalized eigenvalue problem)
Let A and M be as in (8.1), then

λ1 + λ2 + ...+ λp = mintrace(X∗AX)

where λ1,...,λp are the eigenvalues of (8.1). Equality holds if and only if the columns of
the matrix X that achieves the minimum span also the eigenspace corresponding to the
smallest p eigenvalues.
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