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Abstract 
This thesis studies potential solutions to improve the situational awareness of operators of 
heavy machinery in low visibility conditions caused by snow, heavy rain or fog. Sensors 
and techniques intended to provide situational awareness for vehicles have been studied 
in previous research, but these studies have not covered the robustness of the sensor 
platform to fog, heavy rain or snow. Furthermore, the information from the sensors has 
not been presented to a human operator. Four main functionalities are identified: 
localization, obstacle detection, data fusion and user interface. A number of potential 
concepts are identified within each functionality using a literature study. The identified 
concepts are evaluated in terms of feasibility and performance by analysis and in some 
cases an implemented prototype. Using the concepts evaluated for each function, a 
system prototype is developed and evaluated in an urban environment. The final 
proposition for the system involves a high precision GPS for localization, an automotive 
radar for obstacle detection, an unscented Kalman filter for data fusion and a user 
interface based upon a 3D map in which the localized obstacles are visualized. The 
suggested prototype is judged to be suitable for production in small series, aimed at 
applications where down time caused by bad visibility is present and costly. 
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Sammanfattning 
Detta examensarbete behandlar möjliga lösningar för att förbättra omvärldsuppfattningen 
för operatörer av tunga fordon vid dålig sikt uppkommen på grund av tät dimma, snöfall 
eller kraftigt regn. Sensorer och tekniker för att ge en förbättrad omvärldsuppfattning i 
fordonstillämpningar har studerats tidigare, men dessa studier har inte beaktat 
robustheten mot snö, regn och dimma eller presenterat resultatet för en operatör. Fyra 
huvudfunktionaliteter identifieras: lokalisering, hinderdetektering, databehandling och 
användargränssnitt. Genom en litteraturstudie identifieras möjliga koncept för varje 
funktionalitet. De identifierade koncepten utvärderas med avseende på genomförbarhet 
och prestanda genom att studera och analysera litteratur och i vissa fall implementera en 
prototyp. Med hjälp av koncepten för varje delfunktion utvecklas en systemprototyp som 
utvärderas i stadsmiljö. Det slutgiltiga förslaget för ett system består av en högprecisions-
GPS för lokalisering, en fordonsradar för hinderdetektering, ett UKF-filter för 
databehandling och användargränssnitt baserat på en 3D-karta, i vilken detekterade 
hinder visualiseras. Den föreslagna prototypen bedöms vara lämplig för småskaliga 
applikationer där den aktuella typen av dålig sikt orsakar kostsamma avbrott i 
verksamheten. 
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Chapter 1

Introduction

This chapter provides background information and the purpose description along
with the hypothesis and a description of the methodology used and the delimitations
of the thesis.

1.1 Background and problem description
Many off-highway machinery operators operate machines in low visibility conditions,
such as fog, heavy rain, snow or darkness. These machines are often part of a
production system that relies on their operation. If they can not operate as intended,
the production is seriously affected or even halted. Typical applications are military
applications, forestry, mining, construction equipment or agricultural machines. In
some of these applications, downtime is extremely costly and large investments are
profitable if they slightly reduce this down-time.

The system owner wants to evaluate a system to support the machinery operators
in these situations, to evaluate if the safety can be improved and the down-time
reduced. The aim of the system owner is to develop and sell the evaluated system
if it is judged feasible and profitable.

1.2 Purpose
The purpose of the project is to develop, evaluate and compare different configu-
rations of a system designed to improve the situational awareness of operators of
heavy machinery in low visibility conditions.

1.3 Hypothesis
The hypothesis of the thesis is that it is possible to develop a system that can provide
an increased situational awareness for heavy machinery operators.

1



2 CHAPTER 1. INTRODUCTION

1.3.1 Questions to be answered by the thesis
In order to answer the hypothesis, a number of questions must be answered. The
sensor technology must be determined and the robustness of different sensor tech-
nologies must be assessed. The desired coverage of sensors and hence the number
of sensors needed must be determined. The thesis must also answer how the sensor
data should be interpreted and point out suitable algorithms for these tasks. Fur-
thermore, the thesis must answer which technology that is needed to visualize the
static surroundings of the heavy machinery.

1.4 Methodology
The methodology used in the thesis is a combination of literature study and physical
prototyping. Initially a literature study is used to derive concepts for each function-
ality and analyze the concepts. If possible, the concept selection is based upon
literature. However, if the literature study can not give a clear answer, the concepts
are evaluated by physical prototyping and the choice of concept is based upon this
evaluation. Once all functionalities have an identified concept, a system prototype
is assembled and evaluated. Based upon this system prototype analysis, conclusions
are drawn regarding the feasibility and performance potential of the system.

1.5 Delimitations
To limit the scope of the thesis, no tests are performed in an authentic environment
or using authentic vehicles. The system prototype tests are carried out using a
passenger car in an urban environment. Furthermore, the robustness to snow, fog
and rain conditions are not evaluated by a physical prototype, but the sensor choise
is based upon previous research.



Chapter 2

Literature study

This literature study covers different solutions for positioning of a vehicle and per-
ception of its surroundings. Different concepts and solutions are reviewed and their
strengths and weaknesses are highlighted.

2.1 Research Scope

This literature study focuses on vehicles that need a good perception of their sur-
roundings, as well as specific technologies to obtain this perception and algorithms
to fuse information from different sources to one belief of the vehicle surroundings.
Throughout this thesis, the term “belief” will be used to describe the most likely
state of a system, given all available information.

A special interest of this literature study is the robustness of different sensors to
disturbances, as robustness against one or more of snow, fog and rain conditions is
important in the intended applications.

The aim of this literature study is to form a background for concept generation
as well as to identify technologies that are suitable for the application.

Despite that the intended application is in an off-road environment, sources
considering on-road applications are considered relevant in this literature study. The
reasons for this are the many similarities between vehicle perception in on-road and
off-road environments. In terms of applications, the regulations and requirements
may differ between the two environments, but the differences are considered to be
sufficiently small to use on-road references in this literature study.

The following sections describe several areas where technology of interest for
this thesis is implemented. Sensor platforms of autonomous vehicles are studied as
a starting point for the study, since these sensor platforms have been developed to
provide a perception of the environment which is sufficiently accurate to control the
vehicle. Furthermore, these platforms are thoroughly tested in real-world conditions
and proven to give rich and accurate information of the vehicle surroundings.

Based upon the sensor platform of autonomous vehicles, a few key technologies

3



4 CHAPTER 2. LITERATURE STUDY

and aspects are studied in-depth. These include localization in section 2.3, obstacle
detection in subsection 2.4.1, and sensor fusion algorithms in section 2.5.

2.2 Sensor platforms of autonomous vehicles

The sensor platforms of autonomous vehicles have to provide a very accurate esti-
mate of the vehicle surroundings. An early implementation of autonomous vehicles
is demonstrated by [Gray, 2000], who has investigated how to perform autonomous
operation of a farm tractor. The sensors used are a high-end GPS, an advanced high
precision gyroscope and a 2D LIDAR. A LIDAR is a sensor measuring the range to
surrounding objects by laser beams, providing a large number of distance measure-
ments at different angles around the sensor. The author prefers a radar sensor, but
the price of such a radar at the time of the thesis is too high. The LIDAR used
instead suffers from false positive readings caused by dust from the tires of the trac-
tor, which is worked around by ignoring all readings within seven feet, disabling the
possibility to avoid any new obstacle within seven feet. Detected objects are stored
in a map and used by the tractor itself, such that the tractor can avoid obstacles
despite not detecting them by the LIDAR when they are close to the vehicle. This
map is a so called certainty map, where objects that have been detected several
times have large certainty, while objects present in the map but not detected in a
scan are decreased in certainty [Gray, 2000].

A major driver of technological advancements for autonomous vehicle is the
DARPA Grand Challenge organized by the Defense Advanced Research Projects
Agency (DARPA) within the American Department of Defense. The challenge in-
clude to race an autonomous vehicle through a track in the Mojave desert completely
without human intervention. The track was unknown to the competitors until a few
hours before the race, and the vehicles hence had to be able to drive through un-
known terrain. The vehicles need a robust and accurate sensor platform in order
to manage the demanding task. Note that algorithms specifying the autonomous
behavior of the vehicles are outside the scope of this thesis and not studied in further
detail.

The winning vehicle is the contender from Stanford University, named "Stanley".
Stanley featured a sophisticated GPS receiver, which included a GPS compass using
two antennae, a high-end IMU, two radar sensors using 24 GHz technology with
a range of 200 meters and a 20 degree field of view, five 2D laser scanners, here
after called LIDARs and a color camera, which is used for road detection. The five
LIDARs, visible in Figure 2.1, are facing the road ahead of the vehicle at different
angles, and hence measuring the ground profile at different distances in front of
the vehicle. The maximum range of the LIDARs used is 25 meters. Beyond this
range, the color camera is used to detect drivable areas. The area concluded to be
drivable by the LIDARs is used as a training set, and the vision algorithm searches
for similar surface further ahead. The radars are used to detect obstacles far in
front of the vehicle. The LIDARs return a 3D point cloud based upon the range



2.2. SENSOR PLATFORMS OF AUTONOMOUS VEHICLES 5

Figure 2.1. Stanley with the visible sensor platform, showing the roof mounted
LIDARs [Woodward]

measurement and the known angle of each laser beam. These 3D points are mapped
to the global coordinate system, where their height coordinates are compared to
neighboring points. If their height differ more than a preset threshold, the area is
classified as an obstacle. This process is subject to false positive obstacles, i.e. areas
erroneously marked as obstacles, due to errors in the vehicle pose estimate, i.e which
roll and pitch angle the vehicle has. This inaccuracy is tackled using a probabilistic
test, which identifies outliers, i.e. erroneous measurements far from the likely values.
The vehicle must also be very robust against sensor failures, and be able to handle
a GPS outage, i.e. a period during which GPS position information is unavailable.
This is handled using odometry and the IMU. Odometry is measurements of wheel
speeds and distances traveled by one or more wheels. This information is used,
together with the accelerometers and gyroscopes of the IMU to form an estimate of
the vehicle position. To prevent the vehicle position from drifting due to inaccuracies
in the accelerometers and gyroscopes, the vehicle reduces its speed to 10 mph and
uses a model of how it might move to constrain the drift. As GPS is available, a less
restrictive model is used, which allows the vehicle position estimate to move in all
directions. A model in this context is a mathematical description of the expected
behavior, used as an extra source of information [Thrun et al., 2006b].

The contenders from Carnegie Mellon University used a similar sensor platform,
extended by a long range LIDAR suspended using a mechanical gimbal that enables
the long range LIDAR to be angled at different areas. The sensor fusion is however
different: instead of mapping all sensor measurement into one map and assess the
terrain in this map, each sensor creates its own cost map, with high cost correspond-
ing to rough terrain. All these local cost maps are added, and the sum of all costs
are used as an estimate of the terrain. The authors from Carnegie Mellon Univer-
sity points out the compromise while using radar. A radar is less accurate than a
LIDAR, but is a lot more robust to disturbances such as dust [Urmson et al., 2006].

The next large event within the development of autonomous cars was the DARPA
Urban Challenge, organized by DARPA in 2007. As the name implies, the au-
tonomous vehicles were this time driven in an urban environment. A large difference
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compared to the Grand Challenge was that the vehicles should this time compete in
the same area, and had to handle other autonomous vehicles as well as other traffic,
which forced the use of more advanced sensor platforms. This is demonstrated for
instance by the winning team from Carnegie Mellon University and their vehicle
“Boss”. Boss uses a number of 2D LIDARs, including two long range LIDARS, with
a sensing distance of up to 300 meters. The 2D LIDARS are complemented by a
3D LIDAR, which can be seen in Figure 2.2, that uses 64 vertically distributed laser
beams that spins 360 degrees around the vehicle and measures the range to nearby
objects. The data is used to estimate the road shape around the vehicle, together

Figure 2.2. The Velodyne HDL-64E sensor used by Carnegie Mellon University
[Velodyne, 2011]

with the 2D LIDARs. Using these estimates, the vehicle creates a map of its sur-
roundings and tracks moving objects. In addition to the LIDARs, the vehicle uses
a high-end GPS/IMU unit and a number of automotive radars using an operating
frequency of 77 GHz. Moving obstacles are tracked, i.e. they are followed during
multiple scans and their motion is estimated, using one of two models, the box model
and the point model. The box model specifies the length and width of each object
and models the movement of each object by the bicycle model, modeling each object
by a speed and a steering direction. The point model assumes the object to move
with constant acceleration, but has no information of size or shape of the object.
The vehicle switches between the models and tries to adapt the best model at any
given time. Interestingly, the vehicle generates multiple hypotheses at any point
where a tracked object could make a choice, for instance at intersections.

The entry from Stanford University, called “Junior”, finished second using a
similar sensor platform. Junior used several LIDARs at different angles to the ground
to map the height of the ground at each point in the map, this was compared to
neighboring points, and marked as an obstacle if the relative height between two
points exceeded a threshold. This algorithm did also compensate for roll and pitch
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movement of the vehicle. Static obstacles detected by the vehicle are stored in a map
that is used to avoid obstacles that are no longer observed by the sensors. Despite
using a high-end positioning solution, Junior did not rely on GPS to determine
its lateral position, since GPS was considered to be too inaccurate. Instead, the
vehicle used LIDAR data to form an estimate of the curb location, and used this to
output an offset to the position received from the GPS. Another challenge brought
up by the Stanford team was the difficulty to map sensor data to a global map as
the GPS might give discontinuities in its position. The challenge was to map two
measurements of the same spot to the correct spot in the map, despite the fact that
the position offset might be different between the two measurements. This is solved
by using local and global coordinates, and use a filter to smooth the offset between
the two [Montemerlo et al., 2008].

A rather different approach to the DARPA Urban Challenge is represented by
Team Victor Tango and their vehicle Odin. The sensor platform used for Odin was
less complex than those of Junior and Boss, it did for instance not incorporate a
3D LIDAR, but a number of 2D LIDARs, including two coordinated four plane
2D LIDARs, essentially being four 2D LIDARs each. Apart from these four plane
2D LIDARs, the vehicle used five planar 2D LIDARs, cameras, odometry and a
GPS/INS positioning unit. The team performed well and finished third in the Urban
Challenge, showing that much information can be obtained using a comparably
simple sensor platform [Bacha et al., 2008].

The dependence on an accurate global position was somewhat questioned by
MIT and their entry Talos. The vehicle used a local reference frame and all sensor
data was referenced to this system. External information was transferred to the
local frame, where it was interpreted. The motivation for this approach was that
if a human can safely drive a car without having a clue of its global position, an
autonomous vehicle should be able to do the same. The transformation between the
global reference system and the local one used data from GPS, INS and odometry.
The data fusion algorithms used are a hybrid particle filter and an extended Kalman
filter (EKF). The vehicle used a similar sensor platform as Junior and Boss[Leonard
et al., 2008] [MIT, 2007].

An Italian research team set up and completed their own VisLab Intercontinental
Autonomous Challenge (VIAC), where they used 16 1D laser scanners, called laser
beams, which provided 16 distance measurements around the vehicle. The sensor
platform relied heavily on cameras and featured a total of 10 cameras and was
apart from this similar to the platforms used in the DARPA Grand Challenge. The
research team claimed good performance in harsh environments, but did not provide
any formal test results [Bertozzi et al., 2012] [Ber, 2010].

While the solutions described earlier in this section have featured high-end
sensors, Goncalves et al. have investigated low cost perception platforms for au-
tonomous vehicles in laboratory scale. The implemented sensor platform consists
of a low resolution camera and ultrasound distance sensors. The camera is used to
detect lanes, while the ultrasound sensors are used to detect objects in the vicinity
of the vehicle. The lane detection faces several difficulties, mainly limited visibility
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due to low light conditions or other vehicles blocking the camera field of view. The
authors furthermore assume that the lane width of the road is known, which might
not be true on unknown roads. The camera module is evaluated in a full-scale test on
a highway, but the ultrasound sensors are only tested in a small scale environment,
and the authors do not consider how these sensors could be scaled up to full-scale
vehicles. The robustness of the sensor platform is not evaluated [Goncalves et al.,
2007].

2.3 Localization
An important aspect in a system designed to aid a heavy machinery operator is
accurate positioning, which is thoroughly covered in the study by Skog and Handel.
The authors point out five main sources of position information:

• Global navigation satellite system (GNSS) and other radio-frequency based
methods

• Sensors observing vehicle dynamics

• Road maps

• Vehicle models

• Sensors measuring relative to their surroundings

The fifth category was not thoroughly covered by the authors, as it is rarely used by
in-car navigation systems, mainly due to the cost of these sensors. The authors did
specify four criteria to which the performance of a positioning system is validated:

• Accuracy

• Integrity

• Availability

• Continuity of service

While accuracy, availability and continuity of service is self explanatory, integrity
might need further explanation: integrity is the concept of knowing when the posi-
tioning solution is inaccurate. To achieve this, redundant information is needed, as
the minimum amount of information will not include any contradicting information,
which might be used to detect errors. For instance, a GNSS receiver, such as a GPS
receiver, calculates the distance to several satellites, and can hence use the amount of
contradiction as an estimate of its uncertainty, this is known as receiver autonomous
integrity monitoring (RAIM). There are however some disturbances that are hard
to manage. For instance, GNSS receivers suffer from multi-path errors, which might
arise due to reflections of the signal from the environment, these errors are generally
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not discovered by the receiver unit. To further improve the integrity, more sensors,
such as odometry, accelerometers and gyros are often used in car navigation systems.
Another technique is to use maps of the road network as further information, as a
car is most likely to remain on the road.

To further improve the accuracy of GNSS positioning, common mode errors such
as atmospheric disturbances can be compensated for by a stationary GNSS receiver
at a known position. Since the common mode errors are the same for GNSS receivers
close to each other, the relative position between the stationary receiver and the
mobile one can be determined. As the absolute position of the stationary receiver
and the relative position of the mobile receiver is known, the absolute position of
the mobile receiver can be determined. This solution can however not compensate
for non-common mode errors such as multi-path errors and sensor noise [Skog and
Handel, 2009].

Different techniques for compensated GNSS positioning have been discussed by
Mekik and Arslanoglu. The two major techniques discussed are differential GPS (D-
GPS) and Real Time Kinematics - GPS (RTK-GPS). Both technologies estimates
the time-delay caused by external disturbances, but they differ in how accurately
these time-delay measurements are made. While DGPS measures the periods of the
GPS carrier wave, RTK-GPS systems are able to measure the phase of the GPS
carrier wave, enabling more accurate measurements of the time delay, and hence
enabling a more accurate compensation for common mode errors. The result is that
while DGPS-systems typically can reach accuracies of 1-5 m, the RTK-GPS system
evaluated by the authors reach an accuracy of 2.5 cm, compared to the accuracy of
an unassisted GPS: 10-100 m [Mekik and Arslanoglu, 2009].

Another method to localize is to use bearing only information, as implemented
with infrared (IR) beacons and receivers by Krejsa and Vechet. By knowing the
identity of each beacon and roughly estimating the angle to these receivers, a posi-
tion can be obtained without knowing the distance to beacons. Although bearing
only information is less accurate than distance only information, bearing only imple-
mentations might be cheaper and hence preferable in some implementations [Krejsa
and Vechet, 2012].

IR technology might also be used to set up reference position markers with
patterns recognizable by a camera. To distinguish different markers transmitting
different frequencies, a separate IR receiver might be used, as demonstrated by
Brassart et al., where each marker is built up using three IR LEDs in an asymmetrical
pattern, allowing position as well as heading information from a single measurement,
as the reference markers are mounted at a known height above the camera. If
a camera is used to measure position, an accurate model of the camera optics is
important to achieve good performance [Brassart et al., 2000].

Laser scanners, commonly known as LIDARs, can be used to localize relative
to a given map. Baldwin and Newman have implemented localization using two
orthogonal 2D LIDARs based upon a 3D map, known in advance. The implementa-
tion uses no external sensors, but measures the movement by comparing the offset
in distance and angle between two consecutive laser scans, a technique known as
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scan-matching. A difficulty using this technique is to avoid moving objects from in-
fluencing the output of the estimation. To avoid this influence, a position dependent
sensor model can be used and trained to avoid areas typically influenced by moving
objects [Baldwin and Newman, 2012].

Another way to incorporate LIDARs is to limit INS drift during GPS outages by
fusing LIDAR measurements of known landmarks into the position estimate. This
solution has been evaluated in simulation and shows good performance in terms of
mean error during the simulation if updates from the LIDAR is sufficiently frequent.
In the simulation, an update frequency of 0.2 Hz from the LIDAR shows performance
equivalent to continuous GPS/INS localization [Klein and Filin, 2011].

In order to provide localization using sensors that measure relative to their sur-
roundings a map that describes the surroundings is needed. This can either be done
in advance, as during the three examples discussed in section 2.3, or by the vehicle
as it localizes in an environment. This is known as simultaneous localization and
mapping (SLAM). In its simplest form, this is done off-line using data that has been
collected by a vehicle moving in the environment. This is implemented by Yang
et al., using a LIDAR and odometry to map an area. This map is later used to
localize the vehicle within this map during GPS outages. The mapping process can
take place without GPS, but the estimate is improved by using the entrance and
exit coordinates of the mapping area to compensate for any drift. Once the sensor
data has been obtained and processed off-line, the vehicle can later use it to localize
without GPS, using an unscented Kalman filter (UKF) to fuse odometry and LIDAR
data. [Yang et al., 2011].

As an extension of off-line SLAM, SLAM can also be performed on-line, i.e. in
real-time, as the vehicle drives through an environment [Thrun et al., 2006a].

2.3.1 Localization Concepts
The studied techniques addressing localization are:

• D-GPS

• RTK-GPS

• GNSS/INS fusion

• Local beacons

• Sensor measuring relative to their surroundings

• Vehicle models

• Road maps

GNSS-based systems provide a direct measurement of the absolute position,
while sensors measuring relative to their surroundings, such as LIDARs, can only



2.4. OBSTACLE DETECTION 11

provide an estimate of the relative position to the surrounding. This relative position
can be translated to a global position using knowledge of the absolute position of the
surroundings. The same technique can be used to obtain a global position from local
beacons. As described by Skog and Handel, many different sources of information
are generally fused to one belief of the vehicle position. Vehicle models can provide
yet more information, but more advanced models need to be vehicle specific. Road
maps might be used, but require an assumption that the vehicle stays on the road,
and is hence unsuitable for safety systems, where such an assumption would reduce
functionality.

The main difference between RTK-GPS and D-GPS is cost and precision, where
the choice is a trade-off between the two. Both D-GPS and RTK-GPS can be
implemented together with an INS, to improve the update rate, as an INS typically
has a higher update frequency than a GPS-system[Zhang et al., 2005].

Another advantage of using several sensors is that it enables fault monitoring, as
contradicting information from different sensors will indicate faulty measurements.
For instance, a sudden change in GPS-position without a large acceleration measured
by an INS, is an unlikely situation, and suggests that either the GPS or the INS
has provided faulty measurement. This situation could occur as a multi-path error
is induced to the GPS measurements, caused by a GPS-signal being reflected before
reaching the GPS antenna. If a vehicle model is used together with the GPS and INS
units, the sudden change in position from the GPS is contradicted by both the vehicle
model and the INS. It is hence possible to determine that the GPS-measurement is
the most likely to be the faulty one.

2.4 Obstacle detection

Related to mapping is obstacle detection, which involves finding objects in the vehi-
cle path that should be avoided. Obstacle avoidance involves detecting objects and
finding some path that prevents a collision with the detected object. This is imple-
mented by H.Schafer et al. in an off-road environment using three 2D LIDARs, out
of which one is paned to provide a 3D LIDAR scan. In this implementation, data is
recorded in a scanner local reference frame, which is fixed to the sensor, and later
transformed into the global reference frame using the sensor pan and vehicle pitch
and roll angles. As objects are detected, they are stored in a local map in order for
the vehicle to know their position as they are outside the field of view of all sensors
[H.Schafer et al., 2008].

Obstacle avoidance can be performed using a variety of sensors. An implementa-
tion based on LIDAR is described above and an implementation using marine radar
has been performed by Larson et al.. The authors also implement tracking, which is
the ability to follow moving objects through consecutive radar readings. The track-
ing is used to predict the path of moving obstacles and based on this information
estimate the future positions of the moving objects. This information is used to
predict the risk of collisions for different future paths of the USV [Larson et al.,
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2007].
In its simplest form, a tracking algorithm uses a predefined model of the objects

to be tracked and uses a sensor which is stationary. Dominguez et al. implements
a tracking algorithm which does not rely on any prior assumptions of the size or
movement of the tracked objects, the scope is however limited to a stationary sen-
sor. Using LIDAR data, data points close to each other are joined in segments,
which can be joined with nearby segments into clusters if they are assumed to be-
long to the same object. These clusters are later associated to previously detected
objects and the velocity including the direction of each object is estimated. The
authors thoroughly study the implication of varying the threshold for the case when
two clusters of measurement data are joined into one object. Ideally, two separate
objects, no matter how close they are, should be identified as two separate objects
and one object should never be identified as two separate objects. This is however
not possible due to occlusion by other objects and the resolution of the sensor. This
leads to a compromise between joining close objects together or splitting single ob-
jects into several objects. The issue arising from occlusion of objects by other objects
in the foreground are addressed by an algorithm which joins segments if they are
sufficiently close [Dominguez et al., 2011].

An extension to the solution presented above is implemented by Wang et al.
using a 2D LIDAR mounted on a moving vehicle, releasing the assumption of a
stationary sensor, without any prior assumptions regarding the size or shape of the
objects to be tracked. Each object is identified in a similar fashion to the solution
presented above, and tracked using a constant velocity model. Meaning that each
object is predicted to be where it was last seen, plus the distance traveled since the
last measurement assuming it had the same velocity. Objects are tracked using an
extended Kalman filter [Wang et al., 2013].

A more sophisticated version is implemented by Thuy and Leon, based on a
similar sensor platform. The authors have implemented a real time particle filter
tracking algorithm operating in global coordinates. To predict the motion of the
tracked objects, a non-linear process model is used, assuming that the tracked ob-
jects can not move sideways without moving forward as well, modeling the typical
behavior of a road vehicle [Thuy and Leon, 2009].

Moving object tracking is usually considered as a challenge separated from lo-
calization and mapping, but they are all three simultaneously addressed by Wang
et al.. The implementation is not dependent on GPS or any other global localiza-
tion. The main advantage is while mapping and localizing in dynamic environments,
as many of the detected objects are dynamic, and must be distinguished from the
static background [Wang et al., 2004].

A further extended version is SLAM simultaneous with detection, classification
and tracking of moving objects (DTCMO) implemented by Thorpe et al.. The
extension is classification, which means that each tracked object is determined to
be a certain type of object. To further improve the accuracy, a so called light stripe
range finder is used. This system emits a pulsating laser stripe on the side of the
vehicle, which is observed by a camera that is coordinated with the laser pulses. If
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the ground is not flat, the laser stripe will distort in shape, which can be detected
and analyzed by the camera and used to accurately detect the curb. A probabilistic
collision detection algorithm is implemented, which tracks potential trajectories of
the tracked objects and the ego-vehicle. The number of coincidences between these
trajectories is used as a measure of the probability of collision [Thorpe et al., 2003].

Classification can be performed using different sensors. Cassiola has implemented
a classification system designed to separate cars from other objects by using a com-
puter vision algorithms to identify typical car attributes such as tail lights and wheels
[Cassiola, 2007].

2.4.1 Robustness to disturbances

The low visibility considered by this thesis is caused by snow, dust, fog or rain. It
is hence critical that a system designed to aid a machine operator in low-visibility
conditions is robust to these conditions.

Foessel et al. investigates the robustness of a short range millimeter wave
(MMW) radar in polar environments, where blowing snow poses a large challenge
to sensors. As described by the authors, LIDARs and camera systems are unable
to provide accurate measurements in these harsh environments, but a millimeter
wave radar is tested and shows to be only slightly affected by heavy blowing snow
compared to clear conditions [Foessel et al., 1999].

Similar results are shown by Yamauchi as an ultra wide band (UWB) radar
is compared to a LIDAR in a foggy environment. The accuracy of the LIDAR is
superior to the accuracy of the radar, mainly due to the poor angular resolution of
the radar, which shows for instance by walls at a long distance being represented
as arcs rather than straight lines. This could be improved by more advanced signal
processing. The radar measures the signal strength in 256 segments ranged between
0 and 78 meters and the radar data is interpreted by subtracting an estimate of
the background noise and consider the distance region with the highest intensity as
the range measurement. While tested in a fog-filled room, the LIDAR produces too
short range measurements, as the laser beams fails to penetrate the fog. Meanwhile,
the UWB radar is mostly unaffected by the fog. [Yamauchi, 2010].

Another test of the robustness of different sensors is performed by Reina et al.,
as a MMW radar mounted on an unmanned outdoor vehicle is used to study the
radar background, which in this case is the ground returns from the radar, in order
to classify the ground. A key feature of the radar in this context is its ability to
detect multiple objects in one scan, along with its robustness to disturbances. The
authors implement a model to predict the radar return given a pose of the vehicle,
this prediction is compared to the MMW radar return, and deviations from the
prediction are classified as an obstacle. A comparative test is performed between
LIDAR and MMW radar in clear and dusty environments. The LIDAR is heavily
influenced by the dust and unable to separate obstacles from dust, while the MMW
radar detects all obstacles in both clear and dusty environments [Reina et al., 2011].
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2.4.2 Radar
Tutusaus evaluates a Bosch long range radar (LRR) in the context of human detec-
tion. A frequency modulated continuous wave (FMCW) radar like the LRR uses
Doppler shift to measure distance to and velocities of objects. A FMCW radar pro-
vides direct measurements of the velocity of objects in the radial direction seen from
the radar sensor, without differentiating position measurements, which has to be
done with most other sensors, such as an odometer or a LIDAR. The radar does not
provide a direct measurement of the size of the objects, but returns the radar cross
section (RCS) as a measurement of how intense a radar echo is. This measurement
depends on many factors such as surface material, shape and size. A pedestrian
may have varying RCS depending on for instance orientation, body shape, size and
clothing. The ability of a radar to detect an object is dependent on its RCS, meaning
that targets with smaller RCS, such as humans, are harder to detect than objects
with a large RCS, such as cars. The performance of the radar is found to be reduced
significantly when used for human detection compared to when used for detecting
cars. One large difficulty using a radar is to separate an object having a small RCS
from a nearby object having a large RCS. This leads to difficulties to detect a human
close to a vehicle, which is one of the main reasons why the author discourages the
use of an automotive radar for human detection [Tutusaus, 2008].

Apart from automotive radars, radars using two antennae only providing distance
information might be used to localize objects in the plane. Using three distances as
shown in Figure 2.3: from the first antenna to the object and back again, denoted
r11, from the second antenna to the object and back again, denoted r22 and the
distance from one antenna, to the object and back to the other antenna, denoted
t21, the position of the object can be determined. The two former distances span
two circles in the plane and the latter distance spans an ellipsoid in the plane. The
object position is calculated using trilateration, assuming that the radar antennae
do not receive echoes from objects behind the antennae, as shown by the shaded area
in the lower half of the figure. This technique does however suffer from false positive
readings, called ghosts. An algorithm to suppress these ghosts can be implemented,
but tuning the parameters of that algorithm is a trade-off between suppressing ghosts
and detecting all present objects [Rabe et al., 2009].

2.4.3 Obstacle Detection Concepts
The methods studied that can provide obstacle detection are:

• Automotive radar

• Marine radar

• Distance only radar

• LIDAR
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Figure 2.3. Showing how the three distances can be used to determine the position
of an object using only distance information [Rabe et al., 2009]

• Laser beams (1D)

• Ultrasonic sensors

• Mono camera

• Stereo camera

All the above technologies may or may not be implemented together with a tracking
algorithm in the data fusion.

These sensors are in four main categories, radar, laser scanners, ultrasonic and
cameras. Cameras can provide a lot of information, but they are not a good comple-
ment to a human driver, since they use the same frequency spectrum as the human
eye. If the human operator can not see the surroundings, the cameras are likely to
be blind to. They are hence not suitable for this application.

Ultrasonic sensors suffer from poor accuracy and range, which makes them un-
suitable for this application.

Laser scanners and radars have complementary strengths, as the laser scanners
are more accurate than radars, but the radars are more robust to disturbances. They
might hence be suitable for the application.

2.5 Data Fusion
Once a sensor platform is implemented and measurements collected, the data from
all sensors must be filtered and joined to one estimate of the vehicle surroundings.
This process is called sensor fusion, and is described in this section.

Most modern filters are some variant of Bayesian filters, i.e. they are based upon
Bayes’ theorem. These include the Kalman filter and the particle filter. The original
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Kalman filter, introduced by Kalman in 1960 is the foundation for techniques such
as the extended Kalman filter and unscented Kalman filter described later. The
idea of the Kalman filter is to use a process model and the control signal of a linear
system as an extra source of information, which is used together with the sensor
readings. The Kalman filter is designed for linear processes with white Gaussian
noise, i.e. the noise should be distributed according to a normal distribution with
zero mean. Both inaccuracies in the process model and in the measurements should
be accurately described by white Gaussian noise. If these three criteria are fulfilled,
the Kalman filter is the optimum estimator of the process states. The filter works in
two main steps, the first, called prediction, uses the process model and the control
signals to forecast the system states at the next time instant. Based upon the
estimated noise levels in the measurement and process respectively, a Kalman gain
is calculated. This gain is used in the second main step, called measurement update,
where the prediction and the measurement is weighted together. The Kalman gain
works as a weighting factor, and increases the influence of the most certain source
of information, either the measurement or the prediction [Kalman, 1960].

The main drawback of the original Kalman filter is its limitation to linear sys-
tems, as most real-life systems are non-linear. This has been addressed by the
extended Kalman filter (EKF), which linearizes the process model around a working
point and evaluates the system behavior using Jacobian matrices. This linearized
system is then processed as in the original Kalman filter [Thrun et al., 2006a].

However, the EKF relies on an approximation of the linear system and is hence
not the ideal estimator, as the Kalman filter is for linear systems. Furthermore it re-
quires the derivation of Jacobian matrices, which might be non-trivial in some cases.
As an alternative to the EKF, the unscented Kalman filter (UKF) is introduced by
Julier and Uhlmann. The main concept of the UKF is to generate 2n + 1 sigma
points to estimate an n-dimensional variable. These sigma points are transformed
through the non-linear system equations and the mean and variance of the system
is evaluated through a weighted mean value and the spread of the processed sigma
points respectively. The sigma points and their weights are not generated at ran-
dom, but according to a deterministic algorithm. The UKF is argued to be a more
accurate estimation algorithm than EKF when applied to non-linearities [Julier and
Uhlmann, 1997].

The UKF is one type of sigma-point Kalman filters (SPKF), others are the
central-difference Kalman filter (CDKF) and square root implementations. What
differs these filters is how their sigma-points and their weights are selected. It
is possible to perform data fusion with delayed measurements, such as GPS, by
using a latency compensated SPKF (LC-SPKF). The LC-SPKF is implemented
by maintaining the cross-correlation between time steps and hence calculate the
correlation between a GPS measurement a number of time steps ago and the current
state. van der Merwe et al. has implemented a LC-SPKF and tested it compared
to SPKF and EKF. The LC-SPKF is shown to outperform the standard SPKF,
which in turn outperforms EKF when applied to navigation of a unmanned aerial
vehicle (UAV). The error in the EKF estimate is especially large during aggressive
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maneuvers that increase the non-linear behavior. [van der Merwe et al., 2004].
A similar comparison between EKF and UKF was implemented by El-Sheimy

et al. with the filters applied to fusion of GPS and INS measurements. EKF and
UKF shows similar performance while the behavior is fairly linear. As a large dis-
turbance is induced, and the filters have to operate far from their initial belief, the
EKF diverges and is not able to recover, while the UKF converges [El-Sheimy et al.,
2006].

While implementing UKF it is less critical to have an accurate process model,
since there is no need to differentiate the model to form a Jacobian matrix. It
is hence possible to use an approximative representation of the dynamic motion
model, such as a Runge Kutta integration, to propagate the sigma points [Zhang
et al., 2005].

In addition to Kalman filtering, minima controlled recursive averaging (MCRA)-
filtering can be adopted in order to subtract the noise power frequency spectrum
from the measured noisy power spectra. This has shown to increase the accuracy of
a localization solution using vehicle constraints, an IMU and odometry [Liut et al.,
2005].

Another challenge when fusing GPS and IMU is that the two data sources gen-
erally have different update rates, typically several IMU measurements are available
between each GPS measurement. In general, the GPS measurements are not syn-
chronized with any IMU measurement. To solve this, the prediction can take place
once for every IMU measurement, and the latest prediction can be propagated by
extrapolation to the time of the GPS measurement [Zhang et al., 2005].

As multiple sensors are fused, their significance will vary over time, depending
on the context of the system. A typical scenario where this might occur is when
GPS and INS are fused to a position estimate and the GPS signal is interrupted.
This problem can be addressed by using a context based filter, which considers the
context of the system and trusts readings from sensors with high accuracy in the
present context. As one sensor is detected to be inaccurate, it might then be given a
low or zero weight in the estimation process. This algorithm has been evaluated and
can provide results that are as good as current industrial standards for GPS/IMU
fusion, while it outperforms the reference solution during a GPS bias [Caron et al.,
2006].

If the system that should be estimated is significantly non-linear or the system
noise is significantly non-Gaussian or biased, the Kalman filters is not able to handle
the estimation, and more advanced filters are needed. This is usually handled by a
particle filter, which propagates a large number of random so called particles, each
representing a hypothesis of the system states, through the process model, and eval-
uates the system behavior based on these particles. These filters are able to handle
any distribution as long as the number of particles are sufficient. Implementations of
particle filters are usually a trade-off between robustness and accuracy on one hand
and computational complexity on the other, depending on the number of particles
used. The computational complexity of a particle filter is generally much larger
than the complexity of a Kalman filter, while the accuracy of the particle filter is
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generally better when applied to non-linear processes [Thrun et al., 2006a].

2.5.1 Data Fusion Concepts
The studied technologies for data fusion are:

• Linear Kalman filter (KF)

• Extended Kalman filter (EKF)

• Unscented Kalman filter (UKF)

• Iterative extended Kalman filter (IEKF)

• Latency compensated - sigma point Kalman filter (LC-SPKF)

• Particle filter (PF)

These filters can be used together with:

• Extrapolation of data to fuse different update rates

• Context based filters

Since the localization and obstacle tracking processes in question does not have
significant non-linearities and the processes can be assumed to have fairly Gaussian
noise, the benefits of a particle filter would probably be small compared to Kalman
filters, and would hence not justify the computational complexity associated with
particle filters.

The processes do however contain non-linearities, as the geometrical relationships
involved in the localization and obstacle tracking processes are non-linear, and will
not be well-described by small angle approximation as the angles increase. This
makes the linear Kalman filter an unsuitable solution, as it would not handle these
non-linearities well.

The literature study shows several examples of situations where the unscented
and extended Kalman filters have been successfully applied in applications similar
to the application that is intended in this thesis. While the IEKF and LC-SPKF
could be used, the UKF and EKF are likely to work, are less complex to implement
and have lower computational complexity.

The choice between UKF and EKF have been covered in the literature study,
where the UKF is argued to be the best solution. Due to this, the UKF is chosen
as the preferred filter to be used in the prototype.



Chapter 3

Requirements

This chapter identifies the key stakeholders of the system and derives requirements
of the system performance and limitations set by the system environment.

3.1 Stakeholder analysis
In order to derive top level requirements for the system, the stakeholders of the
system must be identified and their priorities evaluated. The stakeholder analysis
in this thesis will take part in three major steps. Stakeholders will be brainstormed,
the key stakeholders will be identified among all identified stakeholders and the main
interests of these key stakeholders will be summarized.

3.1.1 Stakeholder identification
In this identification, a stakeholder will be defined as someone potentially affecting
or being affected by the system in any way. A number of stakeholders are identified
and presented below with no particular order:

• The system owner

• Component suppliers

• Machine operators

• Machine owners

• Vehicle manufacturers

• National governments

• Customer of machine services

19
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Most stakeholders presented above could be further separated into for instance
employees and owners of each involved stakeholder, but that separation is considered
outside the scope of this thesis.

3.1.2 Stakeholder prioritization
The stakeholders identified in subsection 3.1.1 must be evaluated and prioritized.
To limit the scope of this thesis and avoid an intractable complexity, a simplified
stakeholder analysis is used. In order to better prioritize the stakeholders and their
relevance to the system, a stakeholder network overview is reviewed.

System'owner'

Vehicle'
manufacturer'

Component'
suppliers'

Machine'
owner'

Machine'
operator'

End'customer'
of'services'

Figure 3.1. The stakeholder network, showing the stakeholder relations.

Figure 3.1 shows the relationships between the different stakeholders. The system
owner intends to sell the system to vehicle manufacturers, who in turn sell machines
using the system to machine owners. These machine owners use the system together
with a machine operator (who may or may not be the same person as the machine
owner) and perform some sort of service using the machine to an end customer.
This service may be for instance transportation or excavation work. Governmental
regulations may affect all other stakeholders, but are omitted in Figure 3.1 to give
a better overview.

The simplified stakeholder analysis should be as efficient as possible, i.e. the
maximum amount of information should be gathered given the available time frame
of the thesis. In order to achieve this, the stakeholders to consider must be carefully
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selected. The key aspect in this choice is to use knowledge of other stakeholders
gathered by stakeholders themselves. As a vehicle manufacturer has large resources
to gather information of what the machine owners and end users demand and prefer,
they can provide valuable information about these stakeholders. This implies that
the stakeholder analysis can be made faster, while the loss of information as a
consequence of the simplification is minimized.

The ideal method for a stakeholder analysis would be to perform the process for
each individual stakeholder, but the resources needed for this are not available. In
particular, the time frame of this thesis could not allow such an analysis.

The system owner will be considered as a main stakeholder given its position
as product owner and project initializer, while governmental regulations will be
considered outside the scope of this thesis. The main reason for not considering
governmental regulations is that the aim of the thesis is to develop a concept and
the governmental regulations can be met during later product development stages.
Component suppliers does not determine the requirements of the system, but gives
limitations in terms of which products they can deliver, to what cost and in which
quantities. They are hence reviewed in some cases, but are not used in chapter 3 to
derive system requirements.

3.1.3 The system owner
The system owner wants to evaluate a prototype for a system that would enhance
the situational awareness of heavy machinery operated by human operators. The
main interest is a fair evaluation of this type of system in terms of performance
potential and what type of components that would be needed. Based upon the cost
and performance of such a system, the company can take further strategic decisions.

The main technical interest of the system owner is that the system should be
modular, such that components from this system can be reused in other systems or
in alternative configurations of this system. The number of components used by the
system should ideally be as few as possible, to enable retrofitting of the system to
existing vehicles.

3.1.4 Vehicle manufacturers
The main technical request of the vehicle manufacturer in question is that existing
sensors should be used to the largest possible extent. Furthermore, sensors must be
robust, not only in terms of sensor data, but also physically robust to vibrations
and harsh conditions such as cold weather and heavy wind. Typically, sensors using
moving parts have been found insufficiently robust by the manufacturer.

Sensors mounted to the external parts of the vehicle should be small in order
to allow robust installations. The manufacturer distinguishes two separate types
of installations: small-scale high-end installations and large-scale mass-production
installations. In the former category, rather large internal hardware and high costs
would be acceptable. In the latter, all hardware must be fully integrated to the
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interior of the vehicle and background information such as maps must be widely
available, at the same time, the cost of each unit must be low.

A system used in products (in small or large scale) must be fault tolerant and
have large integrity (i.e. identify inaccuracies). It is however not required that the
system can compensate for errors that occur, the safety criteria is fulfilled as the
system can detect errors and notify the driver.

The manufacturer also mentions an alternative application, where multiple ve-
hicles driving close to each other and blocking the field of view of vehicles behind
could gather information and send this information to drivers in following vehicles.
This is an example of poor visibility not caused by extreme weather.

3.2 System requirements

The requirements derived based upon the stakeholder interests presented in sub-
section 3.1.3 and subsection 3.1.4 are categorized into three categories: compulsory
requirements, optional requirements and preferences. The compulsory requirements
have to be fulfilled if the system is to be considered working, these requirements
are presented in subsection 3.2.1. The optional requirements are not strictly bind-
ing, but considered as system objectives. These are presented in subsection 3.2.2.
The last category, preferences, are requirements that the system aims to fulfill, if
it is considered possible and does not compromise any stronger requirement. These
requirements are presented in subsection 3.2.3.

3.2.1 Compulsory requirements

The preliminary compulsory requirements derived from the stakeholder interests are:

1. The system shall be fault tolerant and have a sufficiently high integrity to
inaccuracies.

2. The system shall have a sufficiently high accuracy for the operator to navigate
safely.

3. The system shall detect a sufficiently large proportion of potentially harmful
obstacles in harsh conditions.

The completion of the project is verified against these requirements and they must
hence be specific in order to provide clear success criterions. These requirements are,
as stated above, too vague and must be further specified. However, this specification
can not be made based upon the information provided by the stakeholders. Further
information is obtained by evaluation of the system prototype in chapter 5.
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3.2.2 Optional requirements
The optional requirements are, as stated in section 3.2, less strict than the com-
pulsory requirements. The optional requirements derived from stakeholder interests
are:

1. The system should be compatible with existing software.

2. The system should be robust to the harsh conditions that the vehicle can be
exposed to.

The above requirements are general for all system implementations. In a large scale
mass production case, the following requirements are added:

3. The system should be fully integrated into the interior of the vehicle.

4. The system should only use data sources that are widely available.

5. The system should not add a significant cost to the overall vehicle price.

Despite the fact that some of these requirements are somewhat vague, they concretize
the stakeholder interests into criterion more easily overviewed.

3.2.3 Preferences
The requirements in this section are considered as desirable, but may be compro-
mised by requirements with higher priority. The preferences derived from the stake-
holder interests are:

1. The system may preferably consist of as few units as possible.

2. The system may preferably use existing sensors and sensor technology.

3. The system may preferably not use any large units mounted to the exterior of
the vehicle.

4. The system may preferably be as inexpensive as possible.





Chapter 4

Implementation

This chapter describes the implemented prototype and its subsystems, including tech-
nical descriptions.

4.1 System architecture
The implemented prototype must provide the following main functionalities:

• Localization

• Obstacle detection

• Data fusion

• User interface

The aim of the prototype is to provide a platform to evaluate the concepts found
relevant in the literature study. Some functionalities and aspects will be evaluated
using the literature study and others using the prototype.

4.2 Implementation scope
The scope of the thesis in terms of the presented prototype are described in this
section.

The mobile prototyping platform shown in Figure 4.1 is not constructed and
built within the thesis. However, it is by the thesis expanded with an automotive
radar and a physical CAN-network. The test vehicle used in chapter 5 is equipped
with hardware within the scope of the thesis.

The development environment and implementation framework is set up by the
system owner and made available to the thesis project.

The LIDAR localization system implemented with the mobile prototyping plat-
form is developed by the system owner and made available to the thesis project.

25
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The data produced by the localization system is used in the thesis and interfaced
through the ROS-framework described in section 4.3.

The obstacle detection system is developed and implemented within the scope
of the thesis and so is the obstacle tracker. This includes hard- and software for
interfacing and encoding data from the sensor used. The tracker uses existing algo-
rithms such as UKF and the constant velocity model, but the algorithm selection
and implementation is made within the thesis. The main tracker structure shown
in Figure 4.3 is developed within the scope of the thesis. Furthermore, the pri-
oritization algorithm and the tracker data structure are developed as part of the
thesis.

The user interface is based upon an open source visualization tool, which is
configured by and used in the thesis project. The maps used are provided and
adapted to the visualization tool by the system owner.

4.3 Implementation framework

The system owner does have an existing mobile prototyping platform suitable for
this application, which features a LIDAR, and an on-board computer. The on-
board computer features a quad core processor and SSD storage, enabling substantial
computational capacity. This platform may be extended with further sensors if
needed. The existing platform have an implemented LIDAR localization system,
which uses a particle filter for positioning using the LIDAR scans and maps recorded
by the platform itself. The existing platform is shown in Figure 4.1, when fitted
with an automotive radar. The software of the existing platform is implemented
in an Ubuntu environment using the Robot Operating System (ROS). ROS is a
framework that among other capabilities provides communication between different
software processes, the ability to record, playback and visualize data. Each software
process is implemented in a separate C++ file, which can either interface hardware,
the user or data from other software processes, called nodes. The communication
between different software processes is realized using so called topics, to which one
or more nodes can publish data. The data published to a topic is received by one or
more nodes if the nodes have subscribed to that topic. The ROS framework provides
message handling with configurable buffers, such that short bursts of messages can
be handled by slower nodes.

The existing platform is interfaced through wireless network from a stationary
computer, allowing all topics to be monitored together with the user interface. The
sensor data from the system can be recorded into a data file and later played back, to
compare the difference between different parameters or software algorithms applied
to the same sensor data.
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Figure 4.1. The mobile prototyping platform, fitted with an on-board computer
(1), a CAN-network (2), an automotive radar (3) and a LIDAR scanner (4).

4.4 Localization

The existing platform does, as stated above, have an implemented localization sys-
tem, which can be used indoors as well as outdoors. The localization system can
record maps and localize within these maps. The mapping and localization uses a
LIDAR sensor, which through scan-matching provides a measurement of position
change, which is used in the prediction step of a particle filter. The LIDAR sensor
is used to determine the most likely position in the measurement update step of
the particle filter used. The implemented system is well tested and provides a high
precision localization, which can be used during the prototyping.

The interesting aspect in terms of positioning is to determine how accurate the
positioning needs to be, in order to provide the intended functionality. This deter-
mines which type of localization solution that is suitable in the final system. There
are a wide variety of positioning solutions on the market, offering varying accuracies
and price levels, as discussed by Mekik and Arslanoglu. This means that if the accu-
racy requirement can be determined, the localization can be solved by using a system
on the market with sufficient performance. In order to determine how less accurate
positioning solutions perform, a positioning bias can be added in simulation, and
the results reviewed.
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4.5 Obstacle detection

The obstacle detection sensor is selected in subsection 4.5.1 and the implementation
is described in subsection 4.5.2.

4.5.1 Sensor selection

In the literature study, two obstacle detection sensor types are proposed, LIDAR
and automotive radar.

LIDAR sensors provide a very wide field of view and high resolution, but might
suffer from insufficient range and poor robustness. A number of manufacturers pro-
vide various models that are commercially available. The LIDAR sensors contains
moving parts, which make them less robust to vibrations. Furthermore, subsec-
tion 2.4.1 shows that the LIDAR sensors are not robust to disturbances caused by
dust and fog, while radar sensors provide robust measurements in the same condi-
tions.

Automotive radars are commonly used in safety and comfort features such as
adaptive cruise control and emergency braking systems, where they are used to
sense the distance to surrounding vehicles. As described in subsection 2.4.1 and
subsection 2.4.2, these radars are very robust to disturbances and have a rather
large range, but might suffer from insufficient accuracy and a narrow field of view.
As a consequence of the rather narrow field of view, several sensors are needed to
cover the full surroundings of a vehicle, if that coverage is necessary. The typical
usages of these radars have made them commercially available and they are produced
in large quantities and several different models.

Due to the lacking robustness of LIDAR sensors shown in subsection 2.4.1, the
LIDAR sensors are judged to be unsuitable for the intended application, leaving the
automotive radars as the preferred sensor, to be evaluated using a prototype.

4.5.2 Sensor implementation

The automotive radar used communicates using CAN-bus, and is interfaced using
several different software nodes. Each CAN message consists of an identifier, a
message length specifier and a number of data bytes. Each message can transfer a
total of 64 bits of data. The radar interface overview can be seen below, in Figure 4.2.

The CAN-messages transferred from the radar are received by a CAN-adapter,
which is a hardware chip considered a black box in this implementation. The au-
tomotive radar is connected to the CAN-adapter by a CAN-network that is imple-
mented on the mobile platform. The CAN-adapter is controlled by the serial inter-
face, which can both receive and write CAN-messages through the CAN-adapter.
The serial interface interfaces the hardware chip and sends each received sign to the
serial decoder. The communication between the interface and the decoder uses a
buffer, since the received CAN-messages often arrive in short bursts, too fast to be
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Figure 4.2. The radar interface overview, showing the different hardware and soft-
ware nodes

decoded as they arrive. The decoder can however handle all data traffic during a
measurement cycle, by using this buffer.

The serial signs are processed by the serial decoder, which identifies the start
and ender bits of each CAN-message and identifies the received CAN-ID, determines
the length of the message and reads the content of the CAN data bytes, containing
all transferred data.

This information is transferred to the CAN decoder, which is able to decode the
CAN messages into relevant data, by finding the right bits in the CAN data bytes,
often using data from several data bytes. The data is later converted to physical
quantities and sent to the rest of the system, which can read data such as obstacle
velocity or position.

Thanks to ROS, described in section 4.3, data published by one software node
can be read by all other nodes, and hence used throughout the system. To maintain
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maximum modularity, as desired in section 3.2, the general CAN implementation
has been separated from the hardware specific one. The general functionality, which
interfaces hardware and publishes CAN-messages to ROS is contained in CAN-
adapter, the serial interface and the serial decoder. All implementation specific to
the radar is contained in the CAN-decoder software node. If more than one CAN
unit is needed in the system, the former three software nodes can be re-used, and
the latter can be used in parallel with other nodes, specific to the CAN units in
question, to achieve parallel functionality of multiple CAN units.

4.6 Data fusion

Once obstacles have been identified by a sensor, the position of each of these obstacles
must be determined by the system. If only one sensor is used, the position of each
obstacle could be calculated based upon the orientation of the sensor, the position
of the vehicle and the reading from the sensor. As described in section 4.5, several
sensors might be needed to provide sufficient coverage of the vehicle surroundings.
Since obstacles might be moving and the ego-vehicle will be moving at most times
during the system usage, an obstacle is likely to move between more than one sensor
and might be observed by more than one sensor at the same time. To handle this
situation, and to achieve a more robust positioning of obstacles surrounding the
vehicle, the sensor readings must be processed. As described in chapter 2, this
task is often performed using some sort of Bayesian filters. In section 2.5, UKF is
determined to be the best solution for this implementation.

In order to process the data from sensors into valuable information of the vehicle
surroundings, a tracker algorithm is developed. The main steps of this tracker
algorithm are shown in Figure 4.3. The obstacle tracker estimates the states of a
number of objects, called tracker objects. The number of tracker objects is limited,
to restrict the computational complexity of the tracker algorithm, which is necessary
to ensure real time performance.

The first step is to receive measurements of the surrounding objects and the
ego-vehicle position. The next step is to transform each measurement into global
coordinates, where the tracking is performed. Once all measurements are trans-
formed to global coordinates, the existing tracker objects are propagated using the
tracker model, to predict the state of all tracker objects at the current time instant,
during which the measurement is performed. The selection of which model to use in
the prediction step is described further in subsection 4.6.1. The tracker then seeks
to associate the measurements to the propagated tracker objects. This association
is further described in subsection 4.6.2. If a measurement is successfully associated
to an existing tracker object, the tracker performs the measurement update steps of
the UKF directly. If however, the measurement is not successfully associated with a
tracker object, a new object is created. If the current number of tracker objects in
the tracker is lower than the maximum amount of tracker objects, the new object is
added to tracker and the prioritize objects step is skipped. If however the amount
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Figure 4.3. An overview of the tracker algorithm, showing the main steps involved
in the tracking process during one time instant.

of tracker objects is at the maximum amount, the object with the lowest priority is
deleted from the tracker, and the new object is added, unless the new object has the
lowest priority. The algorithm performing the prioritization of objects is described
in subsection 4.6.4. If the new object is rejected as being the object with the low-
est priority, the tracker ignores the measurement associated with this object. If a
new object is created, the tracker returns the object state according to the object
initialization.

If the measurement is correctly associated and the measurement update is per-
formed, it is followed by a step which deletes objects having a too low priority. The
aim with this step is to reduce the amount of objects in the tracker, if many of them
have very low priority. After this step, the object state is returned.
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4.6.1 Tracker model selection
The tracker model is used in the prediction step of the Kalman filter algorithms. The
aim of the model is to use knowledge of how the tracked object is most likely to move
together with the measurements. It follows from this that the model has to predict
the behavior of the object well, if it should improve the accuracy of the estimate. A
poor model could make the filter output less accurate than the measurement itself.

Since the obstacle tracker should track objects varying from vehicles of various
sizes to humans and stationary obstacles, the model needs to be very versatile.
Alternatively, several models can be used, and the tracker can switch between these.
This solution is however more complex to implement and requires the objects to be
classified, such that the correct model can be used.

At the same time, the model must not be too computationally expensive, since
the prediction step must take place in real time, for each tracked object at each time
instant. If a model is too computationally expensive, this real-time criteria can not
be met, or the hardware required to perform the prediction in real time might be
too costly.

The tracking algorithm should be easily adaptable to different environments.
Ideally, the algorithm should be versatile enough to handle all environments without
modification.

Some models studied in chapter 2 are:

• Stationary object

• Constant velocity

• Constant acceleration

• Bicycle model

• Non-linear vehicle models

Throughout the report, the coordinate definition in Figure 4.4 is used.
A stationary object model simply assumes that the obstacle has remained in the

same position as where it was last estimated to be at.

x

t+1 = x

t

y

t+1 = y

t

�

t+1 = �

t

(4.1)

The mathematical description of the stationary model is found in Equation 4.1,
where x and y denotes the position in the x- and y-direction respectively and �

denotes the planar orientation. The subscripts denotes the discrete time instants. It
is obviously a very simple model, with no calculations to be made in the prediction
step, the prediction is simply the estimated position at the last time instant. On the
other hand, if the obstacle has moved, which is likely in the intended application,
the model will not be able to predict that behavior.
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Figure 4.4. The coordinate definition. The direction of travel is the positive x-
direction.

A constant velocity model assumes that the tracked object moves with constant
velocity and direction. The mathematical description of this model is found in Equa-
tion 4.2, where x, y, � and the subscripts have the same definition as in Equation 4.1.
v

x and v

y denotes the translational velocities in the x- and y-direction respectively
and ! denotes the planar rotational velocity.
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This model is still relatively simple in terms of computational requirements, as a
linear prediction using the estimated velocity and direction requires few calculations.
The constant velocity model has no drawbacks in terms of tracking performance
compared to the constant position model, as it can track stationary objects as having
the constant velocity zero, but is more general and can handle non-stationary objects
better. It does on the other hand require more calculations at each time instant and
more data to be transferred between time instants.

The constant acceleration model assumes, as the name implies, that the tracked
object moves with constant acceleration. The mathematical description of the con-
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stant acceleration model is found in Equation 4.3.
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In Equation 4.3, x, y, �, vx, vy, !, �t and the subscripts have the same definition
as in Equation 4.2. Furthermore, ax, ay and !̇ denotes the translational and rota-
tional accelerations.This is an extension to the constant velocity model, which allows
more accurate tracking at the cost of increased computational complexity. The in-
creased tracking performance is only beneficial if the tracked objects have varying
velocity, but it can also handle objects with constant velocity equally well as the
constant velocity model. The main drawback of the constant acceleration model
compared to the constant velocity model is increased computational complexity.

The bicycle model is yet more advanced than the constant acceleration model
and estimates the steering angle of the vehicle [Milliken and Milliken, 1995]. It has
been used for instance by Carneigie Mellon University, the winners of the DARPA
Urban Challenge, as described in section 2.2. The bicycle model assumes that the
tires do not slip. A figure of a bicycle model can be seen in Figure 4.5. It follows

R"

l"

α"

δ"

Figure 4.5. The bicycle model, with turning radius R, steering angle �, wheelbase
l and wheelbase angle ↵.
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from the geometrical relations that:

� = ↵ (4.4)

Since l and R are perpendicular, it follows from trigonometrical relations that:

tan(↵) =
l

R

(4.5)

Combining Equation 4.4 and Equation 4.5 defines the turning radius as a function
of the vehicle wheelbase and the steering angle:

R =
l

tan(�)
(4.6)

The movement between two time instances in the tracker is shown in Figure 4.6.
The relation between the turning radius, the angle �, and the traveled distance s is

β"
t"

t+1"

s"

R"

Figure 4.6. The movement between two time instants, showing the vehicle at time
t and t+ 1 having moved a displacement s along a turn with turning radius R.

given by Equation 4.7.
s = R ⇤ � (4.7)

By defining �t as the time between the two time instants t and t+ 1, Equation 4.7
can be expressed in terms of the translational velocity v, as stated in Equation 4.8.

� =
v ⇤�t

R

(4.8)

By using the coordinate definition from Figure 4.4, the distance traveled in the x-,
y- and �-direction can be expressed in terms of the angle � and the turning radius
R. This is shown in Equation 4.9, where � denotes the difference between the two
time instants.

�x = R ⇤ sin(�)
�y = R ⇤ (1� cos(�))
�� = �

(4.9)



36 CHAPTER 4. IMPLEMENTATION

Using Equation 4.6, Equation 4.8 and Equation 4.9, the movement equations of the
bicycle model can be stated in Equation 4.10.
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Equation 4.10 contains several non-linear calculations, which if �t and the steering
angle � are sufficiently low, can be simplified. A low �t corresponds to a small angle
�, which in combination with a small � allows small angle approximation. This
simplification is however omitted in this thesis.

The bicycle model uses, as seen in Equation 4.10, the wheelbase of the vehicle,
and estimates the translational velocity v and the steering angle �. If the wheelbase is
unknown, which it is in an obstacle tracking application with varying obstacle types,
the wheelbase must be estimated for each obstacle as well. This is implemented
by adding the wheelbase to the tracker state. The main drawback of the bicycle
model compared to the constant acceleration or velocity models is its increased
implementation complexity. It requires properties of the tracked vehicles to be
estimated by the tracker, and it is not designed to track other types of obstacles,
such as pedestrians.

A non-linear vehicle model is a the most advanced model category. It uses a more
or less simplified vehicle model, and can if used with the correct parameters track
the vehicle behavior with large accuracy. These models are however dependent on
accurate vehicle parameters, which will vary substantially between different vehicles,
and must hence be estimated by the tracker, similar to how the wheelbase must be
estimated if a bicycle model is used. The amount of calculations to be made at each
time step and the amount of data to be saved between time steps increases with
the complexity of the model. There are many different versions of non-linear vehicle
models, but the generic form of such a model is shown in Equation 4.11

X

t+1 = f(X
t

) (4.11)

The variable X denotes the obstacle states, containing all the quantities that are to
be estimated, such as velocity, size and position. The prediction of the states at the
next time instant is a non-linear function of some or all of the states at the present
time instant.

As the complexity of the model increases, it is not only the number of calculations
that increases, but also the amount of data that needs to be saved and processed.
This can be seen when comparing for instance Equation 4.1 with Equation 4.3. The
amount of variables from time instant t that are needed when predicting the time
instant t+ 1 is significantly higher when using the more advanced model, and so is
the amount of calculation to be made.

In this prototype implementation, a simple yet efficient model is preferred. The
bicycle model and the non-linear vehicle models are considered too advanced and
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complex for the scope of the thesis, and do require many calculations to be made
and a lot of data to be saved between time instants. They are hence not selected.
The stationary object model is however considered too simple, as it can not pre-
dict any motion, which is not acceptable in an environment where many obstacles
are moving. Many of the obstacles, such as pedestrians and vehicles move with a
constant velocity and changes this velocity rather slowly. This behavior is captured
by the constant velocity model, which is judged to be sufficiently accurate and is
successfully used by Wang et al., while being relatively simple to implement. The
constant velocity model is chosen because of it being the least complex model that
has been successfully implemented in a similar application, and is thus judged likely
to work in the prototype.

4.6.2 Association of measurements
Each measurement from a sensor observing the vehicle surroundings does likely
contain multiple objects, such as buildings, vehicles or pedestrians. Each of these
obstacles is tracked by an obstacle tracker using the model described in subsec-
tion 4.6.1, where measurements are fused together by using the model together with
sensor readings. In order to perform the tracking, each object in the measurement
must be associated with the corresponding object in the obstacle tracker. A typical
measurement scenario is shown in Figure 4.7. Typically, all the vehicles, including

B"

C"

A"

D"

Figure 4.7. A typical vehicle surrounding measurement situation, where the ego-
vehicle A observes the surrounding through a sensor with the field of view indicated
by the blue triangle. B, C and D are other vehicles.
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the ego-vehicle, may be moving during the tracking, which further complicates the
association. The association algorithm can use the available information from the
sensor and the tracker to determine the most likely association between tracker and
sensor objects. In addition to the position of an object the sensor can usually provide
additional information such as size and shape.

The tracker will at each time instant use the model described in subsection 4.6.1
to predict the position and velocity of each object. These predictions represents the
most likely state of each obstacle at the time instant. Due to this, the model used is
important to ensure proper association performance. A likely measurement situation
one time instant after the situation shown in Figure 4.7 is shown in Figure 4.8. If the

B"

C"

A"

D"

Figure 4.8. A typical vehicle surrounding measurement situation, shown one time
instant later than in Figure 4.7, where the ego-vehicle A observes the surrounding
through a sensor with the field of view indicated by the blue triangle. B, C and D
are other vehicles, and all vehicles except for D has moved.

model would not have predicted the movements of the vehicles shown in Figure 4.7
and Figure 4.8, the association would likely have been faulty, since B and C have
moved. Note that the ego vehicle motion influences the relative measurements of
surrounding objects.

It is intuitive that the measurement closest to each prediction should be asso-
ciated with the predicted object. However, this method would not make use of
additional information such as size and shape. In order to weigh this additional
information into the association process, a more advanced algorithm is needed.

A commonly used algorithm to make use of more data is the Mahalanobis dis-
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tance [Thrun et al., 2006a]. The Mahalanobis distance is calculated as a weighed
average of the differences between the expected state values and the measurements.
The weighting is made based upon the uncertainties of each state. By using the un-
certainties, two issues are resolved, first of all, the uncertainties are usually roughly
proportional to the state size, meaning that states of different size can be weighted
together without the larger state being dominant. In addition, weighting by the un-
certainties means that the most certain properties of the measurement have a larger
influence in the association process.

The basic concept is to use the Mahalanobis distance to estimate how likely each
measurement is to belong to each tracker object. Note that one Mahalanobis distance
is created for each combination of measurement and tracker object. The lower the
Mahalanobis distance between an object and a measurement, the more likely it is
that the measurement belongs to that object. If the smallest Mahalanobis distance
between a measurement and all tracker objects is sufficiently large, a new tracker
object is created, since it is unlikely to belong to any existing tracker object.

For each tracker object, a prediction of the vehicle state at the next time instant
is determined based upon the selected tracker model. Using the predicted vehicle
state and a model of the measurement, the expected measurement for each tracker
object is determined. These predicted measurements, called z̄, are compared to
the real measurements from the sensors, called z, the variables z̄ and z denote
vectors containing all measurements. Given the two measurement vectors and their
uncertainty matrix, denoted S, the Mahalanobis distance, denoted D

m

, is given
according to Equation 4.12

D

m

=
q
(z � z̄)TS�1(z � z̄) (4.12)

The larger the differences between the prediction and the actual measurement, the
larger the Mahalanobis distance for the combination of sensor measurement and
measurement prediction, hence indicating that the measurement is more unlikely
to belong to the obstacle from which the measurement prediction is derived. The
multiplication with the inverse of the uncertainty matrix S implements the weighting
described earlier, where measurements having a lower uncertainty are weighted more
heavily.

4.6.3 The unscented Kalman filter
The Unscented Kalman Filter (UKF) is a version of the Kalman Filter that is
designed to handle non-linear processes without using derivatives. As the original
Kalman filter described in section 2.5, the UKF uses the process model together with
the measurements to estimate the vehicle surroundings. The process model used is
the tracker model described in subsection 4.6.1. The fundamental idea behind the
UKF is to use the unscented transform to handle the non-linearities. This involves
determining a number of so called sigma points, which are propagated through the
process model. An overview of the UKF algorithm is found in Figure 4.9. The
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Figure 4.9. An overview of the unscented Kalman filter, showing the main steps
involved in the estimation process for one time instant.

number of sigma points ,n⌃, is related to the number of variables in the tracker
state, n

X

, according to Equation 4.13.

n⌃ = 2n
x

+ 1 (4.13)

The sigma points are determined based upon the filter belief of mean value µ

t�1 and
covariance ⌃

t�1 at the previous time instant. The first sigma point �

0 is equal to
the belief, while the other sigma points are determined as the mean value shifted in
one state. This is implemented according to Equation 4.14 for i = 1, ..., n

X

.

�

i = µ

t�1 + (
p
(n

X

+ �)⌃
t�1)i (4.14)

Similarly, the sigma points corresponding to i = n

X

+ 1, ..., 2n
X

is determined
according to Equation 4.15

�

i = µ

t�1 � (
p
(n

X

+ �)⌃
t�1)i�n

X

(4.15)

In Equation 4.14 and Equation 4.15, � determines the spread of the sigma points,
and is calculated according to Equation 4.16. In Equation 4.14 and Equation 4.15,
the right hand index denotes the column to be used from the matrix.

� = ↵

2(n
X

+ )� n

X

(4.16)

In Equation 4.16, ↵ and  are parameters determining the distribution of sigma
points around the mean value.
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As the prediction is determined in the UKF, each sigma point is propagated
through the process model and the result from each sigma point is weighted together
to form the filter belief of the mean value. The spread of the result from the different
sigma points is used to estimate the covariance of the prediction. The weights used
to calculate the predicted mean w

m

are determined according to Equation 4.17.

w

i

m

=

8
>><

>>:

�

n

X

+ �

for i = 0

1

2(n
X

+ �)
for i = 1, ..., 2n

X

(4.17)

The weights used to calculate the predicted covariance w

c

are determined according
to Equation 4.18

w
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c
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(4.18)

Given a propagation function g(X), which describes the model used to predict the
motion of the obstacle being tracked, the propagated sigma points ⌥ are determined
according to Equation 4.19

⌥i = g(�i) (4.19)

Once the n⌃ sigma points have been propagated, the mean µ̄ is determined using a
weighted average of the propagated sigma points determined in Equation 4.19 and
the weight determined by Equation 4.17.

µ̄ =
n⌃X

i=0

w

i

m

⌥i (4.20)

Similar to Equation 4.20, the covariance of the prediction ⌃̄ is determined according
to Equation 4.21

⌃̄ =
n⌃X

i=0

w

i

c

(⌥i � µ̄)(⌥i � µ̄)T +R

t

(4.21)

The matrix R

t

is the model noise matrix, which increases the predicted uncertainty,
reflecting the fact that there is uncertainty in the model.

Based upon the predicted mean µ̄ and covariance ⌃̄, new sigma points are ex-
tracted analog to Equation 4.14 and Equation 4.15, substituting µ

t�1 with µ̄ and
⌃
t�1 with ⌃̄. The new sigma points are denoted �̄

t

.
The UKF uses a measurement model, which predicts the measurements for each

sigma point. The measurement model is denoted h, and relates the sigma points
and the predicted measurements sigma points Z̄

t

according to Equation 4.22

Z̄

t

= h(�̄
t

) (4.22)
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Given the measurement sigma points, the predicted measurement is calculated as a
weighted sum according to Equation 4.23

z̄

t

=
n⌃X

i=0

w

i

m

Z̄

i

t

(4.23)

The measurement prediction uncertainty, denoted S

t

, is calculated according to
Equation 4.24

S
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� z̄
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� z̄
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(4.24)

The matrix Q

t

is the covariance of the additive measurement uncertainty, which
reflects the uncertainty associated with the measurement.

The cross-covariance ⌃̄x,z

t

between the tracker states and the measurements is
calculated according to Equation 4.25

⌃̄x,z

t

=
n⌃X

i=0
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i

c
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� µ̄

t

)(Z̄i

t

� z̄

t

)T (4.25)

The measurement prediction uncertainty from Equation 4.24 is used together with
the cross covariance from Equation 4.25 to calculate the Kalman gain K

t

, which is
used to determine the filter weighting between the prediction by the process model
and the measurements. The Kalman gain is calculated according to Equation 4.26

K

t

= ⌃̄x,z

t

S

�1
t

(4.26)

The Kalman gain K

t

is used to calculate the estimate of the states and their uncer-
tainty according to Equation 4.27 and Equation 4.28.
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⌃
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K

T

t

(4.28)

The final estimate µ
t

is returned as the estimate from the filter given both the process
model and the measurement. This estimate is returned together with its covariance
matrix ⌃

t

. In Equation 4.27, the importance of the Kalman gain is clear. The size of
the Kalman gain determines the influence of the measurement to the prediction from
the model. If the Kalman gain is small, the influence of the measurement is small,
while a large Kalman gain will allow the measurement to have a large influence on
the returned estimate µ

t

.

4.6.4 Prioritization algorithm
Since the obstacle tracker is run in real time, the amount of objects in the tracker
must be limited. As this limitation is implemented, it is preferable if the most
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relevant objects can be separated from the least important ones. To implement this
prioritization of objects, a simple prioritization algorithm is implemented. The main
objective of the implemented algorithm is to provide a flexible framework that can
easily be adjusted to different environments and types of objects. The implemented
algorithm is a linear combination of the state vector and a weight vector. By using
negative weights, a smaller state value gives increased priority. The weight vector is
shown in Equation 4.29.

w
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Using this weight vector, the prioritization number of the i:th object, denoted p

i

is
determined according to Equation 4.30, where X

i

denotes the state vector of the
i:th tracker object.

p

i

= w

p

⇤X
i

(4.30)

The resulting scalar p

i

can easily be compared between different objects and the
most relevant objects can be separated from less relevant ones.

4.6.5 Tracker data structure
The obstacle tracker is implemented using the process model described in subsec-
tion 4.6.1, the association algorithm described in subsection 4.6.2 and the UKF
described in subsection 4.6.3.

The tracker relies on the assumption that the ego vehicle position provided by the
localization algorithm is known and accurate. Given this assumption, the absolute
position of each measured object is determined from the absolute position of the ego
vehicle and the relative measurement between the ego vehicle and the object. These
absolute positions are used in the tracker, as the tracker model used predicts the
movement of surrounding obstacles in absolute positions, rather than in the relative
position between the object and the ego vehicle.

Furthermore, the tracker runs one separate obstacle tracker for each surrounding
object, where the measurement is paired with a tracker object using the association
algorithm. As described in subsection 4.6.2, if a measurement is sufficiently unlikely
to belong to any existing tracker object, a new tracker object is created.

The state vector used in the tracker is presented in Equation 4.31
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(4.31)

The variables x, y, ↵ and v

trans

denote the x- and y- position, the rotational orien-
tation and the translational velocity respectively. They are illustrated in Figure 4.10
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Figure 4.10. The object coordinates defined. x and y denotes the absolute position,
↵ denotes the absolute orientation and v

trans

denotes the translational velocity.

The state variable ! denotes the rotational velocity of the object, being the derivate
of ↵. P is the existence probability, returned from the internal signal processing of
the radar sensor and used to prioritize objects. Finally, A

rcs

is the radar cross sec-
tion area, returned by the radar and used to make the association of measurements
to tracker objects more robust. Note that this radar cross section area is not a direct
measurement of size or geometrical cross section area, but depends on several factors
such as orientation and shape of the measured object.

The first five states in Equation 4.31 parallels the constant velocity model de-
scribed in Equation 4.2, but the velocity perpendicular to the direction of travel has
been assumed to be zero and omitted from the state vector, reflecting the assumption
that the surrounding objects are not sliding.

4.7 User interface
The user interface consists of two major parts, the visualization of map and sensor
data, described in subsection 4.7.1 and the parameter set up, described in subsec-
tion 4.7.2.

4.7.1 Visualization
The user interface presents the information gathered by the system to the machine
operator, such that the operator can use the information to control the vehicle.
Within the scope of this thesis a prototype user interface is implemented using the
robot operating system (ROS), which is introduced in section 4.3. The tool within
ROS that is used is called rviz and provides a framework where data available in the
ROS system can be visualized. The ego-vehicle position is exported to rviz and vi-
sualized along with the surrounding objects identified by the data fusion algorithms.
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The maps used for visualization within this thesis are static, but must be brought
in to the ROS framework in order to be visualized by rviz. The system owner has
provided a 3D mapping node in ROS, which uses maps consisting of a geo-referenced
aerial photograph together with height data for each pixel. Each pixel is placed at
the height specified by the map and visualized as a so called point-cloud, where each
pixel has a color determined by the aerial photograph and the position in the 3D
space is determined by the height data and the geo-referencing. The pixel density is
adjustable, such that the resolution can be lowered below the full resolution of the
original map. It is furthermore possible to only display a subset of the original map,
which can lower the computational demand.

4.7.2 Parameter adjustment
The implemented system has a number of parameters that must be tuned to ob-
tain satisfactory performance. In order to significantly speed up the tuning process,
and allow the prototype to be more flexible, a dynamic parameter system is imple-
mented using a ROS library called dynamic reconfigure. The dynamic parameter
system allows parameters to be adjusted during run time, enabling instant feedback
to parameter changes. This is preferable and allows more configurations and pa-
rameters to be tested during the same time span, compared to an approach where
re-compiling the software is necessary to change the parameters.





Chapter 5

Evaluation

This chapter presents the evaluation of the different subsystems and their perfor-
mance as a system prototype.

5.1 Evaluation strategy
5.1.1 Evaluation areas
The areas to be evaluated are positioning, maps and obstacle detection.

5.1.2 Evaluation methods
In terms of positioning, the accuracy requirement must be determined. The strategy
to determine this requirement is to add noise to the precise position data obtained
from the LIDAR positioning in order to simulate less accurate position data.

Different maps are tested to evaluate to what extent they provide relevant in-
formation to the operator of the vehicle. The available maps are an abstract 2D
map and a photo-realistic 3D map, which can also be viewed straight from above,
to simulate a photo-realistic 2D map.

The obstacle detection is evaluated to several criteria: sensor range, field of view,
accuracy and ability to detect obstacles. As a reference to the obstacle detection,
video is captured together with the sensor data, and can be used to indicate the
true positions of surrounding obstacles. The robustness of the sensor platform is
not evaluated by these tests, but the results found in subsection 2.4.1 show that the
sensor type used is very robust to disturbances.

5.2 Test design
5.2.1 Evaluation vehicle and setup
The sensors used by the prototype are an automotive radar, a LIDAR sensor and
a camera. The test vehicle is a passenger car, with the LIDAR sensor fitted to the

47



48 CHAPTER 5. EVALUATION

roof, the automotive radar fitted to the front of the car and the camera mounted on
the dashboard, facing forward. The test vehicle can be seen in Figure 5.1.

2"

1"

Figure 5.1. The test vehicle, showing the front-mounted automotive radar (1) and
the roof-mounted LIDAR (2).

To evaluate the prototype, the LIDAR is used to localize the vehicle in a 2D grid
map created by the vehicle itself. This grip map is geo-referenced and overlayed by
a photo-realistic 3D map, into which obstacle data is plotted. The basic test process
can be summarized in the following steps:

1. Create an abstract 2D grid map of the area to be tested.

2. Geo-reference this map manually by localizing key points in the grid map.

3. Localize the vehicle in the 2D grid map using the existing LIDAR localization
system.

4. The local position in the 2D grid map together with the geo-referencing of the
map gives the global position.

5. The photo-realistic 3D map is geo-referenced and can be overlayed onto the
grid map.

6. Enable the overlay of obstacle data into the 3D map.

7. Evaluate system performance by using captured video as reference.
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5.2.2 Test cases
Localization

In order to evaluate requirement 2 in subsection 3.2.1 the desired accuracy of the
positioning solution to be used must be determined. This is determined by simulat-
ing typical inaccuracies of different positioning systems. These inaccuracies can be
found in section 2.3 and are presented in Table 5.1.

Table 5.1. Typical inaccuracies of different positioning solutions

Localization method Typical accuracy [m]
Unassisted GPS 10-100
D-GPS 1-5
RTK-GPS 0.025

The inaccuracy of a RTK-GPS system is very small compared to the size of a
vehicle, and the position of such a system is assumed to be the ground truth position.
To verify the performance of other available systems, position biases of 1 m, 5 m,
10 m and 100 m respectively are simulated and the data reviewed. The minimum
and maximum values of the inaccuracies give an estimate of how the system can be
expected to perform during ideal and worst case situations, respectively.

Map

To determine the requirements for the underlying map, three types of maps are
available. Apart from map type, the resolution must be determined, such that the
accuracy of the map fulfills requirement 2 in subsection 3.2.1.

The simplest map is the grid map created by the vehicle itself. The details behind
the SLAM (Simultaneous Localization And Mapping) algorithm used to create this
abstract map is outside the scope of this thesis, but briefly the map is constructed in
2D by the measurements from the LIDAR. The 2D space is divided into grid cells,
and each grid cell is labeled by the system as either occupied, free or unknown.

A 3D map is generated by using a high resolution geo-referenced aerial photo-
graph, where each pixel in the photograph is provided together with height infor-
mation. Each pixel is later plotted in 3D space by using the longitude and latitude
of each pixel to determine the position in the plane, and the height information to
determine the height of each pixel in 3D space. The pixel color is maintained from
the aerial photograph, creating a photo-realistic 3D view. The resolution of the map
can be scaled, such that only a fraction of the pixels are plotted, to simulate a low
resolution map.

The 3D map can be viewed straight from above, neutralizing the affect of the
height information, and effectively being a photo-realistic 2D-map. As with the full
3D-map, the resolution can be lowered.

By evaluating the three maps, and varying the resolution, the desired map type
and the resolution requirement can be specified.
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Obstacle detection

In order to fulfill requirement 3 in subsection 3.2.1, the obstacle detection perfor-
mance must be evaluated. This is evaluated using measurements of radar data,
which are compared to simultaneously captured video and LIDAR measurements.
As reference data the video and LIDAR data have complementing strengths: the
video has long range, but a fairly narrow field of view, while the LIDAR has short
range (20 m), but a wide field of view (270 °). Hence, the LIDAR can be used to
identify objects approaching from the sides and from behind, while the camera can
be used to identify objects in front of the vehicle. The requirements to be specified
in terms of obstacle detection is the desired coverage around the vehicle, the desired
range, the desired accuracy and how false negative measurements affect the result.

The test will be performed by evaluating through video which obstacles that
should be detected, and verify if the prototype’s range and field of view is sufficient
to achieve this and if the obstacle has been observed. If not, the required range
and field of view will be estimated through the obstacle position and the ego-vehicle
position.

5.3 Test results

5.3.1 Subsystem testing

Localization

As described in subsection 5.2.2, several different accuracy levels are simulated.
These accuracy levels are all evaluated using the same real position, to simplify
assessment. As a reference, the on board video is shown in Figure 5.2
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Figure 5.2. The on board camera of the test vehicle showing the reference position,
i.e. that the test vehicle is positioned in the middle of the right lane.

Note that the vehicle is positioned in the middle of the lane, a position which is
accurately tracked by the LIDAR positioning, as shown in Figure 5.3

Figure 5.3. The graphical representation of the test vehicle showing the reference
position. The blue cuboid represents the test vehicle position.
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This accuracy is at least what can be expected from an RTK-GPS system. To
simulate the accuracy from a D-GPS system, a bias of 1 m is added. This is,
according to Table 5.1 what can be expected from a D-GPS in ideal conditions. The
resulting graphical representation is shown in Figure 5.4

It can be seen that the position estimate has now moved to intersect with parking
cars. Please note that the cars being parked in the map are not the cars being viewed
in Figure 5.2, since the cars in the map are the cars parked at the spot when the
map was made.

The inaccuracy seen in Figure 5.4 can be acceptable in some cases, but in an
environment similar to the evaluated one, the inaccuracy would potentially cause
collisions.

The upper tolerance of a D-GPS localization is given as 5 m by Table 5.1. This
bias is simulated in Figure 5.5

Figure 5.4. The graphical representation of the test vehicle showing the position
with a 1 m bias, the lower interval of a D-GPS localization. The blue cuboid represents
the ego-vehicle position.
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Figure 5.5. The graphical representation of the test vehicle showing the position
with a 5 m bias, the upper interval of a D-GPS localization. The blue cuboid repre-
sents the ego-vehicle position.

The 5 m inaccuracy simulated in Figure 5.5 is clearly too inaccurate to be used
in an environment similar to the evaluated one. It would be impossible for a driver
to determine the road position of the vehicle during these inaccuracies.

An unassisted GPS system has even larger inaccuracies, but these simulations
are not included in this thesis, as such an inaccuracy is obviously too large to provide
any useful information in this application.

Maps

There are two main factors in terms of map selection. These two are resolution
and map type. There are three map types available in this evaluation, these are
an abstract 2D map, a 3D photo-realistic map and the same photo-realistic map
viewed from above to simulate a 2D photo-realistic map. The resolution of this
photo-realistic map can be changed, and three different levels are evaluated. The
lowest resolution evaluated is 1 m, which is shown in Figure 5.6.
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Figure 5.6. A 2D photo-realistic map with 1 m resolution. The blue rectangle
represents the ego-vehicle position and the green circles represent identified obstacles.

This resolution is too poor to provide valuable information to the machine op-
erator. The next resolution level evaluated is 0.5 m, which is shown in Figure 5.7.

The difference between Figure 5.6 and Figure 5.7 is significant, and the 0.5 m
resolution provide a lot more detail to the operator. The best available resolution
is 0.25 m, which is shown in Figure 5.8. The resolution showed in Figure 5.8 allows
significantly closer zoom levels, which gives larger flexibility to find the ideal zoom
level for a specific operator. A resolution of 0.5 m is judged to be insufficient, since
the zoom-level possible with this resolution does not reveal information that could
be of importance to the operator. Comparing Figure 5.7 and Figure 5.8 shows
that while the latter give an indication of the distance to the region where cars are
normally parked, the former can not give that information.

In addition to the different resolutions, different map types are available. The
basic abstract 2D map used by the LIDAR localization can be viewed in Figure 5.9

The abstract 2D map does not provide any information about the terrain and
is very hard to interpret for a human operator. Note that no difference is made in
the map between road and vegetation. It is judged that this map does not give a
sufficient amount of information to the machine operator. This type of map can be
enriched by further information, such as a more clear definition of drivable surfaces,
but is yet judged too unintuitive.

The most advanced map evaluated is the photo-realistic 3D map seen in Fig-
ure 5.10. Since the map is created based upon aerial photographs and height infor-
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Figure 5.7. A 2D photo-realistic map with 0.5 m resolution. The blue rectangle
represents the ego-vehicle position and the green circles represent identified obstacles.

mation, no information is available regarding vertical surfaces. This is clearly seen
as building walls are not shown. The performance of the map is however satisfactory
at surfaces that are horizontal or near horizontal, such as road and terrain surfaces,
which is where the system is intended to be used. For instance, the vegetation at the
left side of the road that the ego-vehicle is driving at is shown in an intuitive way,
and all drivable surfaces are shown accurately. The map can be further cropped, as
shown with the 2D-map in Figure 5.8.

Obstacle detection

As described in subsection 5.2.2, the range and field of view of the obstacle detection
are important requirements that must be determined from tests. The needed range
is dependent on the application. In this case, the intended application is heavy
machinery, typically driving at low speed, which means that the required range is
lower than in a high speed application. During the situation shown in Figure 5.10,
the automotive radar provides measurements of objects more than 100 meters ahead
of the vehicle. At typical operating speeds of heavy machinery, this gives a reaction
time of more than 10 seconds.

To assess the field of view of the sensor used, a situation in an intersection is
reviewed. The test vehicle is stationary throughout the measurement series presented
in this section. In Figure 5.11, another vehicle enters the field of view of the on board
camera.
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Figure 5.8. A 2D photo-realistic map with 0.25 m resolution, further cropped.
The blue rectangle represents the ego-vehicle position and the green circles represent
identified obstacles.

As the passing vehicle is located to the left of the ego vehicle (as shown in
Figure 5.11), the system provides the output shown in Figure 5.12, where the crossing
vehicle is shown by the LIDAR measurements, but not by the automotive radar. In
Figure 5.13, the system output is shown as the passing vehicle is straight in front of
the ego vehicle. The passing vehicle is now detected by the automotive radar. The
automotive radar returns the position of the closest corner of the detected vehicle,
and a comparison to video shows that the position of the passing vehicle is accurate.
The LIDAR measurements are to the right of the radar measurement, which is
explained by the LIDAR being roof mounted and returning measurements of the
upper part of the passing vehicle, while the automotive radar is mounted at a low
position, returning a measurement of the lower parts of the passing vehicle, which
extends further than the upper parts.

In Figure 5.14 the position of the passing vehicle at the time of the last radar
measurement is shown. As the passing vehicle moves further, no measurements of
the vehicle is received from the automotive radar. This sequence demonstrates the
narrow field of view of the automotive radar, which is especially evident at short
ranges, since the width of the field of view is smaller closer to the ego vehicle.

It is evident that in order to detect vehicles approaching from the sides of the
vehicle, a wider sensor coverage than the one provided by a single automotive radar
is needed.
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Figure 5.9. The abstract 2D map used by the LIDAR localization. The blue cuboid
represents the ego-vehicle and the green cylinders indicate identified obstacles. The
white areas of the map are marked as unoccupied.

5.3.2 System prototype evaluation
This section summarizes the information received by the system in a typical use case.
This use case is illustrated by the image reference in Figure 5.15. The corresponding
system output is shown in Figure 5.16.

To evaluate the system performance, the information available in Figure 5.16 is
assessed. Note that the cars parked in the map are not present during the test. The
cars present during the test can be identified and positioned by the reference image
in Figure 5.15.

The two vehicles parked in the edges of the image are not detected by the auto-
motive radar, due to the limited field of view. The two cars parked to the right are
however detected and displayed in the system output. The two cars parked at the
right side of the road further ahead are marked and displayed as well as the road
signs marking the pedestrian crossing under the bridge. On the left side of the ego
vehicle, the buildings give rise to measurements of a number of objects at the build-
ing walls. These measurements are not present at the right side of the image, where
most of the buildings are hidden behind the parked cars. The prototype evaluated
during this test does not classify the different objects.

To conclude, the obstacles present in Figure 5.15 are shown in Figure 5.16,
showing that the system can provide valuable information to the machine operator,
despite only using sensors robust to rain, snow and fog.
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Figure 5.10. A photo-realistic 3D map with 0.25 m resolution. The blue cuboid
represents the ego-vehicle and the green cylinders indicate identified obstacles

Figure 5.11. A vehicle enters the field of view of the on board camera, used as a
reference.
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Figure 5.12. The system output as a vehicle is crossing ahead of the ego vehicle,
slightly to the left. The blue cuboid shows the ego vehicle position, the green cylinders
indicate radar obstacles and the purple dots indicate LIDAR measurements.

Figure 5.13. The system output as a vehicle is crossing ahead of the ego vehicle,
straight in front of the ego vehicle. The blue cuboid shows the ego vehicle position,
the green cylinders indicate radar obstacles and the purple dots indicate LIDAR
measurements.
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Figure 5.14. Video showing the position of the passing vehicle as it leaves the field
of view of the automotive radar.

Figure 5.15. The image reference of a typical use case.
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Figure 5.16. The system output of a typical use case. The blue cuboid shows the
ego vehicle position, the green cylinders indicate radar obstacles and the purple dots
indicate LIDAR measurements.





Chapter 6

Future work

This chapter outlines areas of interest for further study and potential improvements
that must be made to turn this prototype into a product.

6.1 Areas of interest for further study

A number of questions must be addressed before a system like the one suggested in
this thesis can be manufactured and used.

6.1.1 Full scale evaluation

To further investigate the system performance, a full scale evaluation should be
performed. This full scale evaluation should take place with heavy machinery test
vehicles in a realistic operating environment. The system output should be displayed
to the operator through an in-vehicle display and the operator feedback should be
assessed.

6.1.2 Refinement of requirements

The requirements presented in section 3.2 need to be further specified. The tests
performed within this thesis can give an clear indication which technologies that are
suitable, but a more precise specification of the technical requirements are needed
in order to asses the process of turning the prototype into a product.

6.1.3 Compliance with governmental regulations

The compliance with governmental regulations is not considered in this thesis, but
must be addressed before further development is done. It is possible that the system
must be expanded or changed in order to comply with existing regulations.
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6.2 Potential system expansions
The prototype evaluated in this thesis could be further expanded, this section
presents some suggestions within a few areas.

6.2.1 Obstacle classification
The current prototype does not classify the obstacles detected by the system. It
lacks information regarding the type and expected behavior of obstacles, except
for the expected obstacle movement. The information gathered by the system can
however be used to classify the obstacles into different categories. For instance,
the obstacle velocity, the radar cross section, and the movement pattern of each
obstacle is gathered by the system. The observed characteristics of each obstacle
can be compared to typical characteristics of each category.

This categorization can be made more or less advanced. In a simple case, velocity
can be used to separate stationary objects from moving ones. This classification can
be refined, such that an obstacle moving at very slow speed can be assumed to be
a pedestrian, while objects moving fast are assumed to be vehicles. By saving the
maximum speed of each obstacle, a car that has slowed down should still be classified
as a car. To make this classification more robust, further information can be used.
The radar cross section is returned and can be used to further improve classification.

This intuitive classification could be implemented by the Mahalanobis distance
technique described in subsection 4.6.2, where each obstacle and its characteristics
can be compared to objects that has typical characteristics for each category. By
varying the uncertainties, different deviations from the typical values can be allowed
for different types of information.

6.2.2 Full 3D-map
The 3D-map used in the prototype does not have any information of vertical surfaces
such as walls and steep terrain. This information could be helpful to the operator
in order to make the system output more similar to the real surroundings, which in
turn can help the operator to localize and drive more intuitively. Technologies to
show a full 3D-map with the desired resolution exist, but has not been available to
this thesis.

6.2.3 Map updates
Heavy machinery often operate in changing environments, where new obstacles may
appear. To provide a good support to the operator, these new obstacles should
preferably be added to the map. The simplest implementation of this is to re-map
the area frequently. This can however be a costly process that should be avoided if
possible.

A more affordable option is to use information gathered by the vehicles operating
in an environment to update the map. The map must be certain, and large caution
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is needed if observed obstacles are to be added to the map. However, if an obstacle is
observed repeatedly at several different times, the obstacle can certainly be assumed
to be a static object and can hence added to the map. This technique can be used
to share information between vehicles, to further improve the available information
and certainty in the information that is being presented to the operators.

The two techniques above could be used together, where the updates performed
by the vehicles themselves allows longer time between re-mappings.

A yet more advanced option is if the vehicles can create their own map. This
would allow the vehicles to have updated maps, and share new obstacles with each
other. The visual mapping of the surroundings can take place in full visibility condi-
tions, and later used by the vehicles during low-visibility conditions. A more precise
design of such a system is outside the scope of this thesis, but the implementation
would essentially be similar to the aerial mapping techniques used to create the
3D-map used.

6.2.4 Improved localization integrity
A precise localization is critical to the success of the system. The system output
should support the operators to navigate heavy machinery, and must hence be both
accurate and have large integrity. To provide large integrity, multiple sources of
information are needed, such that contradicting information can be used to detect
inaccuracies.

Global localization techniques such as GPS can be supported by alternative lo-
calization techniques such as inertial measurement units (IMU:s) and vehicle models
that describe how the vehicle is likely to behave. Further information is available
from sensors measuring wheel movement, known as odometry information.

By estimating the position from different sensors and comparing the results, con-
tradicting results could be identified and used to improve the integrity. For instance,
if the GNSS system inaccurately indicates a sudden move sideways, this is contra-
dicted by the vehicle model stating that the machine can not perform the reported
movement and the IMU measuring low accelerations. Using this information, the
GNSS-update can be identified as likely to be inaccurate.

6.2.5 Augmented reality
To expand the functionality of the system, the system output can be enhanced
with information that improve productivity and facilitate the vehicle operation.
This could for instance be navigation information, such as which route the operator
should use, if some areas should be avoided or are preferred. To include this type of
information would require a minimum extra effort.

Information can also be shared between vehicles. In the simplest case, this can
be the position of other vehicles, showing if traffic from other vehicles equipped with
the same system is expected. In a more advanced application, more information
can be shared. If the traction control system of one vehicle reports that the road is
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slippery, this information can be shared among vehicles to warn operators of other
machines.



Chapter 7

Conclusion

This chapter summarizes the outcome of this thesis and seeks to answer the problem
description.

7.1 Suggested system architecture
The suggested system architecture should provide localization, obstacle detection
and a user interface.

The test performed in subsection 5.3.1 shows that the accuracy provided by a
D-GPS solution is insufficient to support the operator, while the position provided
by a RTK-GPS system is sufficiently accurate. The system would hence need an
RTK-GPS to operate properly.

Based upon subsection 2.4.1, a LIDAR does not provide sufficient robustness
to detect obstacles in the harsh conditions demanded in subsection 3.2.2, while the
radar sensors evaluated the same studies show satisfactory robustness. It follows
from this that automotive radars are the one evaluated solution that could operate
in these conditions and satisfy the requirements. However, as presented in subsec-
tion 5.3.1, the field of view of a single automotive radar is too narrow to be used
as the only sensor. To compensate for the narrow field of view, multiple automo-
tive radars are needed. Note that the obstacle tracker described in subsection 4.6.5
provides support for multiple sensors.

The map evaluation indicates that a 3D-map would enhance the operator expe-
rience and that such a map would help the operator to navigate more intuitively.
Preferably, a system should implement an even more advanced 3D-map than what
is evaluated in this thesis, such that building walls and and steep terrain would
be displayed as well. However, an early version of the system could use the map
presented and evaluated in this thesis.

To satisfy the integrity requirement presented in subsection 3.2.1, the RTK-GPS
must be complemented by other navigation sensors. As described in chapter 6, a
combination of RTK-GPS, an IMU and vehicle models would provide good integrity,
and can be implemented using existing standard components.
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7.2 Feasibility

Requirement 1 in subsection 3.2.1 is not satisfied by the implemented prototype, but
the system is judged to be able to satisfy this requirement if the proposed integrity
algorithms are implemented.

Requirement 2 in subsection 3.2.1 is satisfied by the proposed RTK-GPS local-
ization system and the 0.25 m map resolution proposed.

Requirement 3 in subsection 3.2.1 forces the use of multiple sensors, as proposed
in section 7.1. If multiple sensors are used, this requirement is judged to be satisfied,
as the proposed sensor type show good performance within the intended field of view.

Requirement 1 in subsection 3.2.2 is satisfied by the implemented prototype, since
the prototype uses the same framework as the existing software and communication
between the existing software and the software implemented in the prototype is
established.

Requirement 2 in subsection 3.2.2 is judged o be satisfied by the proposed system,
as the radar sensors proposed are tested and concluded to perform well in harsh
conditions by several studies.

Due to this, the system presented in section 7.1 is judged to be implementable
without violating any of the binding requirements, while using available standard
components. A full scale implementation of the proposed system is hence judged be
feasible.

By implementing the suggested system, several improvements can be made. By
enabling machine operators to have a better perception of their surroundings, the
safety of these machine operators can be improved, as well as the safety of pedestrians
and other vehicles operating in the vicinity of heavy machinery. The cost of the
proposed system would be high, but it is likely that the system in some applications
would save money by decreasing the down time, in addition to the social benefit of
increased safety. Furthermore, the proposed system expansion in subsection 6.2.5
can improve the efficiency of the machines used, for instance by helping the machine
operators to chose the most fuel efficient routes or avoid queuing in areas where
other machines are already operating. This can, in addition to increasing safety,
also reduce both costs and emissions, thus enabling a more sustainable operation of
heavy machinery.

7.3 Potential market segments

The use of RTK-GPS adds a significant cost to a vehicle, and makes a large scale
production of a system like this unlikely. The high-end maps used in this implemen-
tation, and required by the system, would further increase the cost and decrease the
availability of the system. These facts can be compared to the requirements spec-
ified in subsection 3.2.2, where they clearly contradict the requirements for mass
production. Due to this, the system proposed in section 7.1 must initially be aimed
at small series production focused on extreme applications, where down time caused
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by bad visibility is present and very costly.
However, the obstacle detection sensors proposed are standard production units,

available at reasonable costs. To visualize the data, once maps are available, can
be made inexpensively and well integrated into the machines. This means that if
sufficiently advanced maps can be made available and accurate localization can be
implemented at a reasonable prize, an expansion of the system could be suitable for
production in larger series.
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