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Abstract

New railway lines are continuously being constructed and existing lines are
upgraded. Hence, there is a need for research directed towards efficient design
of the supporting structures. Increasingly advanced calculation methods can
be motivated, especially in projects where huge savings can be obtained from
verifying that existing structures can safely support increased axle loads and
higher speeds.

This thesis treats the dynamic response of bridges under freight and pas-
senger train loads. The main focus is the idealisation of the train load and
its implications for the evaluation of the vertical bridge deck acceleration. To
ensure the running safety of train traffic at high speeds the European design
codes set a limit on the vertical bridge deck acceleration. By considering the
train—bridge interaction, that is, to model the train as rigid bodies on suspen-
sion units instead of constant moving forces, a reduction in bridge response
can be obtained. The amount of reduction in bridge deck acceleration is typ-
ically between 5 and 20% for bridges with a span up to 30 m. The reduction
can be higher for certain train—bridge systems and can be important also
for bridge spans over 30 m. This thesis aims at clarifying for which system
parameter combinations the effect of train-bridge interaction is important.

To this end, a thorough literature survey has been performed on studies in
train—track—bridge dynamics. The governing parameters in 2D train—bridge
systems have been further studied through a parameter screening procedure.
The two-level factorial methodology was applied to study the effect of param-
eter variations as well as the joint effect from simultaneous changes in several
parameters. The effect of the choice of load model was thus set in relation to
the effect of other parameter variations.

The results show that resonance can arise from freight train traffic within
realistic speed ranges (< 150 km/h). At these resonance peaks, the reduction
in bridge response from a train—bridge interaction model can be considerable.

From the screening of key parameters it can furthermore be concluded
that the amount of reduction obtained with a train-bridge interaction model
depends on several system parameters, both for freight and passenger train
loads. In line with the European design code’s guidelines for dynamic assess-
ment of bridges under passenger trains an additional amount of damping can
be introduced as a simplified way of taking into account the reduction from
train—bridge interaction. The amount of additional damping is today given
as function of solely the bridge span length, which is a rough simplification.
The work presented in this thesis supports the need for a refined definition of
the additional damping.

Keywords: dynamics, vibration, railway bridge, bridge deck acceleration,
moving load, train—bridge interaction, vehicle model.
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Sammanfattning

Nya jarnvagslinjer byggs kontinuerligt och befintliga linjer uppgraderas.
Det finns darfor ett behov av forskning inriktad péa effektiv design av de ba-
rande konstruktionerna. Alltmer avancerade berdkningsmetoder kan vara mo-
tiverade, sérskilt i projekt dér stora besparingar kan erhallas fran att verifiera
att befintliga konstruktioner kan bara 6kade axellaster och hogre hastigheter.

Foreliggande avhandling behandlar broars dynamiska respons under be-
lastning av gods- och passagerartag. Huvudfokus ar att studera modellerings-
alternativ for taglasten och vilka konsekvenser de har for utviarderingen av
brobanans vertikala acceleration. For att garantera trafiksdkerhet vid hoga
taghastigheter definierar de europeiska normerna en maximalt tillaten verti-
kal acceleration i brobanan. Genom att beakta tag-bro-interaktion, dar tag-
komponenterna modelleras som avfjadrade stela kroppar istéllet for konstanta
punktlaster, kan en minskning av brons respons erhallas. Reduktionen av bro-
banans acceleration ar typiskt mellan 5 och 20% for broar med en spannvidd
pa upp till 30 m. Minskningen kan vara hogre for vissa tag-brosystem och
kan vara viktigt ocksa for spdnnvidder Gver 30 m. Denna avhandling syf-
tar till att klargora for vilka kombinationer av tag-broparametrar effekten av
tag-bro-interaktion ar viktig.

I detta syfte har en omfattande litteraturstudie genomfoérts inom omra-
det tag-spar-brodynamik. De styrande parametrarna i 2D tag-brosystem har
studerats vidare i en parameterstudie. Tva-niva faktorférsok har tillimpats
for att studera effekten av parametervariationer samt den ytterligare effekten
av samtidiga forandringar i flera parametrar. Effekten av valet av lastmodell
sattes ddrmed i relation till effekten av andra parametervariationer.

Resultaten visar att resonans kan uppsta fran godstrafik inom ett realis-
tiskt hastighetsintervall (< 150 km/h). Vid dessa resonanstoppar kan en bety-
dande minskning av broresponsen erhallas med en tag-bro-interaktionsmodell.

Fran studien av nyckelparametrar kan man vidare dra slutsatsen att re-
duktionen som erhélls med en tag-bro-interaktionsmodell beror pa flera system-
parametrar, bade for gods- och passargerartag. Enligt de europeiska normer-
nas rekommendationer for dynamisk kontroll av broar f6r passagerartrafik kan
en 6kad broddmpning introduceras som ett forenklat satt att ta hansyn till
minskningen fran tag-bro-interaktion. Mangden tilldggsdampning anges idag
som en funktion av enbart brons spinnvidd, vilket &4r en grov férenkling. Det
arbete som presenteras i denna avhandling visar pa behovet av en forbattrad
definition av tilliggsddmpningen.

Nyckelord: dynamik, vibration, jarnvéigsbro, brobaneacceleration, rorliga
laster, tag-bro-interaktion, tagmodell.
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Chapter 1

Introduction

Increasingly high demands are being placed on railway systems. The strategic plan
for transportation within Europe (European Commission, 2011) outlines goals for
increased freight traffic and aims at a well-developed high-speed rail network by
2050. The intention is that a majority of all medium-distance passenger traffic
should be conducted by rail. At the same time, 50% of the road-based freight
traffic should be shifted to alternative methods of transportation, such as rail and
waterborne transportation. In Sweden, the Bothnia Line (Botniabanan) was com-
pleted in 2010 serving both passenger and freight traffic between a number of cities
along the northern coastline. At the time of writing the project Ostlédnken (the
East link) is to be initialised — a high-speed passenger railway line between Jérna
and Link6ping in southern Sweden. The project is intended to reduce the travel
times and, moreover, to clear the existing lines from passenger traffic to enable in-
creased freight traffic (Naringsdepartementet, 2012). Ostldnken is intended to form
a part of Gotalandsbanan — a future connection between Stockholm and Goéteborg.
In a later stage the Gotalandsbanan may serve as a part of the European Cor-
ridor (Europakorridoren). The European corridor, which is still at a conceptual
stage (Trafikverket, 2012; Néringsdepartementet, 2014), is intended to provide a
high-speed connection to the European rail network; see Figure 1.1.

To meet the increased demands on existing railway lines as well as the urge to con-
struct new lines, research on the railway infrastructure system is vital. With the
limited space for new infrastructure, and in order to meet the high comfort require-
ments at high-speed lines, bridges or viaducts may very well form an increasing
part of the railway infrastructure.
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Figure 1.1: Conceptual sketch of the European corridor (Europakorridoren) in-
cluding the Gotalandsbanan between Stockholm and Goéteborg. Reproduced from
Europakorridoren (2014).
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1.1 Background

High-speed rail traffic was first introduced in Europe through the Paris—Lyon line
in 1981. Excessive vibrations were observed especially in short span bridges, which
lead to rapid deterioration of track quality (Zacher and BaeBler, 2009). Bridge
deck accelerations proved indeed to be an important parameter besides the dynamic
amplification of deformations and stresses. Based on shake table tests undertaken in
connection to the work of the European Rail Research Institute (ERRI) committee
D214 (ERRI D214, 1999a) a bridge deck acceleration limit was set in the European
design codes (Eurocode), CEN (2003). The limits are 3.5 m/s? and 5 m/s? for
ballasted and non-ballasted track, respectively.

For speeds above 200 km/h the bridge deck acceleration and the dynamic amplifi-
cation of deformations and stresses should generally be determined from a dynamic
analysis. The acceleration limit is typically decisive in dynamic analyses (Zacher
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and BaeBler, 2009; Johansson et al., 2011), which is why research focused on verti-
cal bridge deck acceleration is of interest. In the design of lines that do not carry
high-speed traffic dynamic analyses are generally not required.

Freight-train-induced bridge vibration

Resonance is not typically expected from freight train traffic due to the low speeds.
However, Majka and Hartnett (2009) point out that resonance may indeed arise
within realistic speed ranges. The short axle distances, as compared to passenger
trains, leads to lower resonance speeds (the resonance speeds v can be predicted by
v = d. X fo/k, where d. is the characteristic axle distance, fy is the fundamental
bridge frequency and k = 1,2,3,...). Especially in combination with low bridge
fundamental frequencies, the first or second order resonance speeds may very well
be within realistic speed ranges. Karoumi and Wiberg (2006) present results from
dynamic simulations on a large number of bridges. The analyses show that the
bridge deck acceleration is generally higher under the Swedish Steel Arrow train
(see paper IIT) than under the Eurocode high speed load model (HSLM) in the
speed range 50-120 km/h. In a number of cases the Steel Arrow train acceleration
(50-120 km/h) is even higher than the HSLM acceleration at speeds up to 300 km /h.

Train—bridge interaction

A train-bridge interaction (TBI) model considers not only the dynamic properties
of the bridge but also those of the train. Typically, the train subsystem is intro-
duced by considering the train components as rigid masses connected by springs
and dampers. These models make the evaluation of passenger comfort criteria pos-
sible. Furthermore, TBI models enable analyses of the train—bridge response at the
presence of track irregularities, as well as the running safety of trains under cross
winds or earthquake loads. In this thesis, our primary concern is the reduction in
vertical bridge deck response that, for some train—bridge systems, is obtained from
a TBI analysis as compared to a moving force (MF) analysis.

In keeping with the Eurocode (CEN, 2003), a certain amount of additional damping
can be introduced in bridges of span 0-30 m to take into account the reduction in
bridge response from TBI. In detailed analyses, for example in the upgrading of
existing lines, it can be motivated to make the effort of conducting TBI analyses
instead of adopting the simplified procedure available in the Eurocode. This thesis
aims at exemplifying cases for which a TBI analysis can give different results (more
or less reduction in bridge response) as compared to the additional damping in the
Eurocode.
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Figure 1.2: The moving force model (a), the moving mass model (b) and the sprung
mass model (c).

1.2 Previous work

The very first work dealing with dynamics of railway bridges is said to be the
account of experiments performed with rolling loads on girders by Willis (1849).
The research was conducted in an enquiry prompted by the collapse of the Chester
railway bridge in the United Kingdom. The experiments supported the hypothesis
that the dynamic deflection can grow larger than the static one. In the late 19th and
early 20th centuries the problem of a moving vehicle over a beam was analytically
formulated using: (1) a moving mass over a massless beam by, e.g., Stokes (1849),
(2) a moving force over a massive beam by, e.g., Timoshenko (1922), and (3) a
moving mass over a massive beam by, e.g., Jeffcott (1929) and Inglis (1934). The
latter two idealisations are depicted in Figure 1.2(a) and (b).

Hillerborg (1951), and later for example Biggs et al. (1959), introduced a model
including the train suspension system, which thus constituted a simple TBI model;
see Figure 1.2(c). From there on, models with up to 35 degrees of freedom (DOFs)
for each 4-axle train carriage have been presented to simulate the vertical and lateral
train—bridge dynamics as well as the running safety of trains; see for example Zhai
et al. (2013a). The track system, modeled with a beam-mass-spring system or
with solid elements, is typically included in such studies. Sinusoidal or stochastic
uncertainties can be introduced to the rail or the bridge surface to take into account
the additional excitation from the unsprung wheel masses traversing an imperfect
track.

Simple TBI models, such as the 2D rigid beam (RB) model and the simplified
interaction model (SIM) on simply supported beams, Figure 2.1(a) and (b), have
been used to study the governing parameters in the TBI system. A thorough
literature review of works on TBI is presented in paper I.
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1.3 Aims and scope

The overall aim of this licentiate project has been to study the effect of TBI on
the bridge response, with particular focus on the vertical bridge deck acceleration.
More precisely, the aim was to increase the knowledge of the effect of TBI under
variations in the key system parameters. A specific aim has been to identify relevant
idealisations and possible simplifications for 2D vehicle models for both passenger
and freight train loads. Another specific aim was to identify which bridges and
span lengths that are particularly sensitive to heavy freight trains.

In line with the overall aim of the research, one of the main objectives has been to
present a literature survey on bridge, train and track dynamics.

The following limitations apply to the research work, though not necessarily to the
scope of the literature review:

e The additional excitation originating from track irregularities has not been
considered in the models. The reader is referred to paper I, sections 6 and 9,
for a discussion on track irregularities.

e The data for the bridges in papers II and III is based on statistics of con-
crete bridges within the Swedish bridge stock. Many of these bridges are
single-track bridges or two-track bridges composed of adjacent bridge decks
separated by a joint. Therefore, the parameters are representative for single-
track bridges.

e 2D models have been used, which enables the study of vertical train and bridge
responses while omitting lateral and torsional responses and 3D effects. This
does not pose a problem in the analysis of single-track bridges.

e No comparison with measured data has been performed within the scope of
this work.

1.4 Research contribution

The literature survey and the theoretical studies presented in this thesis have re-
sulted in the following scientific contributions:

¢ A summary of conclusions from the vast number of studies on TBI available in
the literature has been provided through the comprehensive literature review.
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A rough guide to modelling choices concerning the train load and the track
system is given as part of the conclusions in the literature review (paper I,
Section 10).

o A two-level factorial method was adopted (papers IT and III) to study the ef-
fect of modeling choices and uncertainties in key train—bridge system param-
eters. Hence, it was exemplified for which cases the effect of TBI is important
relative to variations in, for example, bridge mass, stiffness and damping.

o Cases have been identified for which reduced bridge response can be obtained
by performing a TBI analysis instead of adopting the Eurocode additional
damping (paper II). Moreover, for portal frame bridges, as an example, it
was identified that the additional damping is not always conservative and
should thus be used with caution (Chapter 5).

e The aforementioned theoretical studies, together with the literature survey,
have brought attention to the fact that the additional damping in the Eu-
rocode is a rough simplification that should be enhanced and also developed
for other bridge types besides simply supported bridges.

1.5 Outline of the thesis

This thesis consists of two parts of which Part A provides an extended summary
of the work presented in the papers appended in Part B. Part A Chapter 1 gives
an introduction and some general aspects to demonstrate the relation between the
appended papers. Chapter 2 presents some details on the TBI modelling used in the
present work and the procedure used for parametric studies. Chapter 3 treats the
two-level factorial experiment methodology adopted in the appended papers II and
III. Chapter 4 provides an extension of the discussion on the governing parameters
of TBI systems that is presented in paper I. Chapter 5 presents TBI analyses on
bridges along the Bothnia Line (Botniabanan) performed within a project for the
Swedish Transport Administration (Trafikverket). Conclusions and a discussion of
further research are given in Chapter 6.

As illustrated in Figure 1.3, the literature review (paper I) treats various subjects
within bridge dynamic analyses and TBI. The parameters governing the amount
of reduction obtained from TBI is thoroughly discussed. This discussion in the
staring point for papers II and III which focus on the key parameters in the TBI
system for passenger trains and freight trains, respectively. A description of each
appended paper is as follows:
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Figure 1.3: Schematic illustration of the relation between papers I-111I.

Paper I presents a literature review with a particular focus on TBI models for the
evaluation of vertical bridge deck acceleration. The review is complemented
by numerical examples comparing different TBI models. Furthermore, general
aspects of dynamic analysis of bridges are treated, as well as track models and
the effect of track irregularities. TBI models that have been verified with field
measurements are also briefly discussed.

Paper II provides a screening of key parameters in the dynamic analysis of beam
bridges subjected to passenger train loads (the Swedish Green Train). A two-
level factorial experiment is applied to highlight the relative influence of TBI
as compared to variations in other key parameters: bridge stiffness, bridge
mass, bridge damping ratio, bridge rotational support stiffness and train axle

load. Bridge deck vertical acceleration and displacement are studied.

Paper III applies the same methodology as is used in paper II to study freight-
train-induced bridge vibration (the Swedish Steel Arrow train). The amount
of reduction obtained using a TBI model as compared to an MF model is
set in relation to the effect of variations in bridge stiffness, bridge mass and

bridge damping ratio.






Chapter 2

Modelling of the TBI system

A TBI analysis requires the solution of two coupled systems of equations: the train
subsystem and the bridge subsystem. The two systems can be regarded as coupled
via the dynamic interaction forces, which depend on time as the vehicles moves
over the bridge, as well as on the bridge and vehicle displacements (not known at
the outset).

Through a formulation of the interaction force, the system can be transformed
into two uncoupled equations and solved iteratively by enforcing self-consistency
between the bridge and vehicle at each time step. Alternatively, the iterations
are performed on the system level; the two subsystems are solved in turns for the
whole time sequence until convergence is reached for the interaction forces. A finite
element (FE) representation of the system yields the following discrete equations
of motion for the train—bridge system (Yang and Fonder, 1996; Guo et al., 2012):

My iy, + Cp, + Kpup = fi (2.1a)
M,y + Cotty + Koty = fo (2.1b

where subindex b refers to the bridge system and v refers to the vehicle system, M,
C and K are the mass, damping and stiffness matrices, respectively, and u is the
displacement vector. The bridge force vector, fy, is composed of the static (gravity)
load from the vehicle as well as the dynamic interaction forces that depend on both
the bridge and vehicle motions, as well as time, t. The vehicle force vector, f,
contains the dynamic interaction forces.

The same system can be described with a coupled equation of motion. The mass,

damping and stiffness matrices are then time-dependent as the vehicles move over
the bridge and has to be updated at each time step. With the assumption that

13



14 CHAPTER 2. MODELLING OF THE TBI SYSTEM

(@) e, Jo (b)

ks, Cs y . FC/4 y .
mb, Jy My
k., c
M, Jc 1
C
v—» —>
k,c
mw

Figure 2.1: The two-layer suspension RB model (a), the SIM (b), the single-layer
suspension RB model (c) and the single-layer suspensmn quarter car model (d),
where F; /4 is the constant load of the car body; me, my, and m,, are the mass of
the car, bogie and wheel, respectively; J. and Jy, are the car and bogie inertia; kp
and cp, ks and ¢ are the spring stiffness and damping representing the primary
and secondary suspension system; finally, k£ and ¢ are the combined stiffness and
damping of the primary and secondary suspension systems.

(©)

no external force acts on the vehicle, track irregularities are neglected and that the
wheels always remain in contact with the beam, the coupled equation of motion
can be written on the form:

Mb +Mv}w 0 :| |:ub:| + |:Cb +Cv,w va:| |:ub:| +

0 Mv,u uv va Cv,u dv
Kb + Kv,w Kbv Ub | _ fgrav
e 1 AR o B

where subindex b refers to the bridge system and v refers to the vehicle system
consisting of the wheel DOF:s, w, in contact with the bridge and the upper DOF:s
of the vehicle, u, not in contact with the bridge. The force on the bridge system,
ferav, is the static (gravity) load from the vehicles on the bridge. The submatrices
for different beam and vehicle idealisations can be found in, for example, Olsson
(1985); Lin and Trethewey (1990); Xia et al. (2000); Au et al. (2001); Museros et al.
(2002); and Song et al. (2003).

The assumption of constant contact between the train and the bridge (the “no loss
of contact” assumption) is commonly adopted. Particularly for running stability
analyses involving lateral dynamics, more advanced contact theories have been used.
Common approaches implement Hertz contact for the normal contact and Kalker
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creep theory for the lateral contact (Zhai et al., 2013b; Goicolea and Antolin, 2012;
Romero et al., 2013). In such studies 3D vehicle models are widely adopted despite
their computational expense. Important applications include TBI systems under
wind and earthquake load.

Considering the vertical bridge response, 2D models are sufficient as long as no
other motives for implementing a 3D model are present, such as eccentrically placed
track or other important 3D bridge behaviour. The models outlined in Figure 2.1
have been implemented in the present research. Out of these models only model
(a), the two-layer suspension rigid beam (RB) model, represent both the car body—
bridge and the bogie-bridge interaction. Model (b), the simplified interaction model
(SIM), neglects the car body—bridge interaction. The SIM is a relevant idealisation
for passenger trains with a two-level suspension system that partly decouples the
car body from the dynamic interaction (ERRI D214, 1999¢; Museros and Alarcén,
2002; Liu et al., 2009; Goicolea and Antolin, 2012). Model (c) ignores the bogie—
bridge interaction as it represents the car body as a rigid beam on a single-layer
suspension system. The single-layer RB model is in paper III proved to be a rather
adequate model for a freight train model with a stiff secondary suspension system.
Model (d), the quarter car model, further neglects the coupling between the axles.

2.1 Modelling details in Abaqus

In this thesis the dynamic interaction between the train and the bridge has been
implemented in the commercial FE software Abaqus (Dassault Systémes, 2011a).
Train models travelling over Euler-Bernoulli beams were considered in 2D. Some
details on the modelling are as follows:

The train models in Figure 2.1 have been modeled by point masses and rigid
beam elements connected by linear spring and dashpot elements. The gravity
load from the vehicles was applied in a static step, preceding the dynamic
analysis. It is worth noting that, in Abaqus, the dashpots introduce damping
in static steps. The amount of damping is determined by the “velocity” at
which the load is applied, that is, the displacement divided by the total time
during which the load is applied (Dassault Systémes, 2011a). For the gravity
step, a large static time step minimises the effect of damping.

The movement of the train across the beam was enforced by a displacement
boundary condition for one of the vehicle nodes (the “vehicle reference node”)
in each carriage (or in each axle in the decoupled models). An amplitude
function for the boundary condition specifies the movement of each carriage
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or axle. The remaining longitudinal DOFs were constrained to that of the
“vehicle reference node” using equation constraints.

The contact between the beam and the vehicle wheel nodes was realised through
a surface-to-surface contact definition. The beam acted as a master surface
and the vehicle wheel nodes as slave nodes. The interaction was defined using
large (finite) sliding, frictionless tangential behaviour, and a “hard” pressure-
overclosure contact property, enforced by the penalty method (Dassault Sys-
teémes, 2011a; Saleeb and Kumar, 2011; Martino, 2011). The procedure for
solving the TBI system is hence similar to the formulation in Equation 2.1
with iterations for compatibility in each time step.

A no loss of contact condition was enforced throughout the analysis. This infers
that the contact forces have to be checked so that they are positive at all times,
otherwise separation should occur. The model would obviously not be able to
describe the loss and re-establishment of contact that can occur under severe
track irregularities (ERRI D214, 1999b; Li et al., 2010; Saleeb and Kumar,
2011; Ang and Dai, 2013; Zhai et al., 2013b).

The default direct integration scheme in ABAQUS was used, which is a Hilber-
Hughes-Taylor method with numerical damping. As a direct integration method
was used the modal damping ratios were approximated with a Rayleigh damping.
The Rayleigh coefficients were chosen to give a damping close to the desired one
over an interval containing the most important bridge modes. The bounds of the
interval were chosen as the first mode and the second or the third mode.

2.2 Numerical example I: moving sprung mass

The implementation in Abaqus was verified against a benchmark that can be found
in Yang and Wu (2001), among others. The problem with a simply supported
beam subjected to a moving sprung mass is outlined in Figure 2.2 together with
the associated vehicle and beam data. No damping is considered. In the present
analysis, a time step of 0.005 s was used, and the beam was divided into 50 Euler-
Bernoulli beam elements. For comparison, also the MF model was adopted.

As shown in Figure 2.3, the agreement with Yang and Wu (2001) is good. Although
not shown in the figures, the sprung mass accelerations are also in good agreement.
The omission of higher modes in the analytical solution from Biggs (1964), also
included in Figure 2.3, is most apparent in the acceleration results.
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Figure 2.2: The example I sprung mass model.
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Figure 2.3: Example I: beam mid-span displacement (a) and acceleration (b).
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Figure 2.4: The ICE 2 train with one leading and one trailing power car and 12
passenger carriages. Axle distances are as indicated, with a characteristic carriage
distance of 26.4 m for the passenger carriages.

2.3 Numerical example II: ERRI D214 results

As a second benchmark, the implementation in Abaqus is compared to results from
ERRI D214 (1999¢). The ERRI committee D214 results are part of the calculations
that lie behind the additional damping, A(, in the Eurocode (CEN, 2003). As
mentioned, the additional damping is used as a simplified way of taking into account
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Table 2.1: Properties of the ICE 2 train model, from ERRI D214 (1999c¢).

Ttem Power car Carriage
Axle load, F' (kN) 196 112

Car mass, m. (kg) 60,768 33,930
Car inertia, J. (kg m?) 1.344 x 105 2.115 x 10°
Bogie mass, my, (kg) 5600 2373
Bogie inertia, J;, (kg m?) 21,840 1832
Wheel set mass, my, (kg) 2003 1728
Vertical stiffness, primary suspension, 4800 1600
per axle box, k, (kN/m)

Vertical damping, primary suspension, 108 20

per axle box, ¢, (kNs/m)

Vertical stiffness, secondary suspension, 1760 300

per bogie side, ks (kN/m)

Vertical damping, secondary suspen- 152 6

sion, per bogie side, ¢s (kNs/m)

w
o

---Present, MF {=1.0%
t---Present, MF {+A{=1.0+0.68%
—Present, SIM, {=1.0%
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Q.
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Figure 2.5: Example II: beam mid-span acceleration under the ICE 2 train.

the reduction in bridge response obtained from a TBI model. A fictitious additional
damping was introduced in an MF model, which was then calibrated against the

SIM (see Figure 2.1(b)).

Out of the available results, a 10-m span beam with EI = 3,803,120 kNm?, a
distributed mass of 10,000 kg/m and damping ratio 1% was chosen for the com-
parison. The fundamental frequency of the beam was 9.7 Hz. The train load was
the ICE 2 train with properties according to Figure 2.4 and Table 2.1. Additional

assumptions are described in Section 5.2.
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Figure 2.6: The procedure used to build models and perform TBI simulations in
Abaqus, and to thereafter extract output data for processing in Matlab.

As seen in Figure 2.5, the results from the SIM in the present implementation
in Abaqus tally well with those of the ERRI committee D214. The discrepancies
between the results that is seen above 320 km/h can partly be explained by the
omission of higher order modes in the ERRI committee D214 analyses.

2.4 Scripting

The implementation in Abaqus as described in this chapter was used to perform the
parameter screening presented in papers II and III. In order to perform the 640-
5440 TBI analyses for each bridge the analysis procedure was scripted. The Python
scripting (van Rossum, 2008) capabilities within Abaqus were used. Guidelines on
how to control Abaqus using Python scripts can be found in the Abaqus scripting
manual (Dassault Systémes, 2011b). The models and the corresponding input files
were first generated using a Python script, which also generated a batch script to
subsequently perform the analyses in Abaqus from the system command prompt.
In this way, analyses could be performed with systematic variations in the system
parameters for a range of speeds. The extraction of output data from the Abaqus
output database (odb-) file was automated via another Python script. The analysis
results could then be processed in Matlab (The MathWorks, Inc., 2012). The
analysis procedure is outlined in the flow chart presented in Figure 2.6.






Chapter 3

Two-level factorial experimentation

The two-level factorial experiment is a parameter screening procedure that is used
to identify the most influential parameters in a system. The procedure differs from
ordinary one-factor-at-a-time methods in that the parameters are systematically
varied simultaneously, allowing for the identification of interaction effects. The
two-level (2") factorial design is performed for two levels of n factors and requires
2™ runs. The factors can be quantitative or qualitative (on-off factors).

The main effect of a factor is defined as the effect of a change in the parameter from
its low to its high value. It is thus evaluated as the difference in result between all
runs with the factor at its low value and all runs with the factor at its high value.

The interaction effect is the joint effect from simultaneous changes in several fac-
tors. Consider an experiment with three factors: A, B and C. The two-parameter
interaction between factor A and factor B (A*B) is evaluated as the difference be-
tween the effect of factor A at the low and high level of factor B. The interaction
effects are symmetrical so that the same interaction effect can be evaluated as the
difference between the effect of factor B at the low and high level of factor A. The
three-parameter interaction A*B*C is evaluated as the difference in the A*B in-
teraction effect at the low and high level of factor C, or vice versa according to
symmetry.

The results of all runs in the experiment can thus be described as a linear combina-
tion of main and interaction effects, together with an error term and a replication
term. A model equation can be formulated according to Johnson et al. (2011):

Yii = p+oi+06i+v+ (aB)ij + (ay)ic + (57)
+(aBY)ijk + pr + Eijkis (3.1)

21
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where Y is the estimated response for observation y;;,; which is the I:th repli-
cation with factor A at level i, factor B at level j and factor C at level k. In the
equation,  is the grand mean, o, f;, v are the estimated effect of factor A, B and
C, respectively, at level 4, j and k. The estimated parameter interaction effect of
the ¢th level of factor A and the jth level of factor B is given by (a3);;, and so forth.
The effect of the replicate [ is given by p, and €;;1; are the error terms which are
assumed to be random variables having a normal distribution with zero mean and
variance o2. Furthermore, the effects are restricted to the conditions oy = —ay,
B1 = —PBo, 11 = —0- Equally, the sums of the two- and three-way interaction term
effects are assumed zero, as well as the sums of the replication effects. As can be
realised from Equation (3.1), the change in the mean response p from a change
from level 0 to level 1 in one term corresponds to two times its estimated effect «;,
Bjs Vs (@B)ij, ..., which is what we above referred to as the effect of that term.

The concept of the two-level factorial experiment is well described in the book by
Box et al. (2005). Some practical guidelines on the choice of factor levels are given
by Mee (2009).

3.1 Limitations

The major limitation of the two-level factorial experiment is that the model de-
scribes only linear variations. Non-linearities in the variation between two levels
of a factor will not be detected. This infers a restriction on how to choose the
high and low value for the factors: preferably, the chosen response variable should
be reasonably linear for changes in the quantitative factors within the range of the
experiment. This restriction does not apply for the qualitative factors as the nature
of the on-off concept is that the variation in between the levels is not defined. An
example of a qualitative factor is the choice of catalyst A or catalyst B in a chemical
experiment. The amount of catalyst, on the other hand, would be a quantitative
factor.

Another limitation with the present implementation of the two-factorial concept
is to determine which effects are significant. Normally, in a replicated experiment
the significance of each factor would be estimated based on the error term. The
estimation can be based on the standard error as in Box et al. (2005) or on the
ANOVA concept as described in Johnson et al. (2011). Box et al. (2005) argue
strongly against the use of ANOVA for the two-factorial screening procedure as the
decisions are taken too mechanically based on a certain level of probability. In the
present application, the experiments are performed without replication as the FE
model produces identical results for unchanged input data. Then an estimation of
the error can be obtained by pooling a number of insignificant high-order interaction
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Table 3.1: Numerical example: influence on the response Y;; (beam fundamental
frequency in Hz) from factors S (beam stiffness) and M (beam mass).

Level 7 of factor S Level j of factor M Response Yj;

0 0 26.74
1 0 29.29
0 1 25.49
1 1 27.92

effects. This error estimate could be used in the same way as an error estimate
based on replications. The graphical method by Daniel (1959) provides means for
determining which high-order interaction effects that are insignificant and can be
pooled, as well as a visual way of determining which effects that are significant.
According to Daniel’s method the two-level factorial effects are plotted on a normal
probability plot. Insignificant effects then form a straight line whereas significant
effects deviate from the straight line. Examples can be found in papers II and
IIT where half-normal score plots are used to determine which factors that are
important.

It should furthermore be noted that the two-level factorial procedure identifies
interactions whenever factor effects are not additive. In applications where we
expect multiplicative behaviour (i.e. we are interested in effects as a percentage of
the response) the parameter interactions may be distorted when large main effects
are present. If one main effect (say in a factor A) is large compared to the mean
response, p, then the effect of the other factors will, in absolute numbers, be larger
at one level of factor A than at the other level of factor A even if their percentage
effects are equal at both levels of factor A. A logarithmic transformation makes
effects that are multiplicative on the raw scale additive on the logarithmic scale
(Mee, 2009). Box et al. (2005) point out that a logarithmic transformation affects
the result if the ratio between the largest and the smallest observation is large. This
issue is briefly discussed in paper III in connection to main effects of over 50% of
the mean response. In the paper, no spurious interactions were seen in the results
but relevant interactions were overshadowed by the scale effect from one large main
effect. A procedure to further examine the results and identify these interactions
was adopted.

3.2 Numerical example

Table 3.1 presents an example of a two-level factorial experiment with two factors.
The influence of factors S (stiffness) and M (mass) on the fundamental frequency
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Figure 3.1: Two-way diagram (a) and marginal mean plot (b) for the results in
Table 3.1.
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Figure 3.2: Normal score plot of the factor effects calculated from the results in
Table 3.1.

of a 6-m span beam is evaluated. The level one stiffness value represents a 20%
increase in beam stiffness from the level 0 value. A 10% increase was considered for
the beam mass. Four runs are needed in an unreplicated 22 factorial to evaluate
the main effects S and M, a well as the interaction S*M. From the results of the
four runs the effect of factor S is evaluated as the difference between the average
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response at its high and its low level:

Yio+Yii Yoo+ Yo

2 2
29.29 +27.92  26.74 + 25.49
_ rorge bt — 2.49. (3.2)
2 2
An increased beam stiffness increases the fundamental frequency. Similarly, the

effect of M is:

S =

Yor +Yi1 Yoo+ Yio

2 2
25.49 +27.92  26.74 4+ 29.29
- rerde bt — 131 (3.3)
2 2
An increase in mass reduces the fundamental beam frequency. The parameter
interaction effect S*M is half the difference in effect of S at the high and the low

level of M, or vice versa:

M:

(Y11 — Yo1) — (Y10 — Yoo)
2
(27.92 — 25.49) — (29.29 — 26.74)

- 5 = —0.06. (3.4)

SxM =

The response Y;; can now be described by inserting the factor effects into Equa-
tion 3.1:

= 97.36 + (2.49/2)x1 + (—1.31/2)zs + (~0.06/2)z122,  (3.5)

where 1 and x5 take the value +1 or —1 for level 1 or level 0 of ¢ and j, respectively.
The error and replication terms from Equation 3.1 are absent as the experiment
was performed without replication.

The data is visualised in the two-way diagram in Figure 3.1(a). The interaction
term S*M is, as expected, very small, which can be seen also from the marginal
mean plot in Figure 3.1(b) as the lines are practically parallel. The normal score
plot is given in Figure 3.2, although this kind of plot is more interesting when a
larger number of factors are considered (see for example Figure 6 in paper II).

3.3 Comments on the application to train-induced bridge
vibration

The factorial experimental procedure can be applied to evaluate the influence of
different factors on the dynamic response of bridges due to passing trains; this is
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Figure 3.3: The effect of a 5% increase in bridge deck mass on the bridge deck
acceleration under a train passage.

done in papers II and III. In this kind of application, the influence of the train
speed must be recognised. Some factor variations (such as bridge stiffness and
bridge mass) affect the natural frequencies of the bridge and thus the resonance
speeds. We typically want to differentiate the effect of the change in resonance
speed from the overall or “global” effect of a factor. Figure 3.3 illustrates this
issue: an increase in mass alters the resonance speed so that the response at a
certain speed increases or decreases depending on which speed we choose to look
at. However, the overall, “global”, effect of the 5% increase in mass is a 5% decrease
in acceleration. To detect this effect a speed range must be chosen that covers the
resonance peak for both factor combinations.



Chapter 4

Discussion on the TBI system
parameters

TBI models for passenger trains passing simply supported bridges has been stud-
ied by for example Olsson (1983); Dahlberg (1984); Museros (2002); Museros and
Alarcén (2002); Majka and Hartnett (2008); Liu et al. (2009); and Doménech and
Museros (2011). The amount of reduction obtained from a TBI model as compared
to an MF model has been shown mainly governed by: the bogie-bridge frequency
ratio, the bogie—bridge mass ratio and the bridge—carriage length ratio. The re-
duction from TBI is largest at high mass ratios and, for realistic ranges of train
and bridge parameters, at a bogie-bridge frequency ratio of 1.0-1.5. The frequency
ratio is important as the train components interact with the bridge only if their fre-
quencies are reasonably close to each other. For passenger trains the bogie-bridge
interaction is most important as the train suspension system is typically designed
to isolate the car body from vibrations. The mass ratio is important as the effect
of interaction is notable only if the mass of the train components is considerable
compared to the bridge mass. Finally, Museros (2002) showed that the relation
between the bridge length and the carriage length directly affects the amount of
reduction, and that it moreover has an indirect effect as the bridge length decides
realistic ranges for the frequency and mass ratios. The reader is referred to Sec-
tion 4 in paper I (including Figures 9 and 10) for further details. In this section a
discussion is developed on a number of other important factors and modeling issues
arising from these relations.

27
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Figure 4.1: Bridge deck mid-span acceleration for the Skidtrésk bridge under the
ICE 2 train with (a) 12 carriages and 2 power cars, and (b) with 24 carriages and

2 power cars.

4.1 'Train type

From the fact that the mass ratio, frequency ratio and length ratio are important
follows obviously that different trains will yield reductions from TBI of different
magnitudes. The load effect from the ICE 2 train (see Figure 2.4 and Table 2.1) as
compared to the Swedish Green Train (used in paper II) on the Skidtrésk bridge
may serve as an example. The Skidtrésk bridge is a 36-m single-track, simply
supported, steel-concrete composite bridge in Sweden. The 2D beam model of
the bridge has a fundamental frequency of 3.86 Hz; see paper II for details. The
amount of reduction obtained from a TBI analysis as compared to an MF analysis
was in paper II found to be around 30% at resonance under the Green Train load.
Figure 4.1(a) shows that the reduction in bridge deck acceleration is around 20% at
the resonance peak at 370 km/h for the ICE 2 train. The fact that the reduction is
lower under the ICE 2 load can possibly be explained by: (1) the ICE 2 train has a
different set of train characteristics resulting in a different bogie—bridge frequency
ratio, and (2) the ICE 2 train bogies are lighter than the powered bogies of the
Green Train resulting in a lower bogie-bridge mass ratio.

An MF model with additional damping was manually fitted to the results of the
two-layer suspension RB model in Figure 4.1; an additional damping of 0.5% was
found reasonable. Using the same procedure, the estimation of additional damping
from the Green Train results would instead be 1.0%. In the Eurocode, the amount of
additional damping is given as a function of span length and no additional damping
is given to bridges with a span above 30 m.



4.2. TRAIN LENGTH 29

6,

—Skidtrask RB{ = 0.5%
t---Skidtrask MFZ = 0.5%
---Skidtrask MFZ + A = 0.5 + 0.5%

Acceleration (m/§)
M 2w » o

=

foo 150 200 250 300 350 40c

Speed (km/h)

Figure 4.2: Bridge deck mid-span acceleration for the Skidtrésk bridge under a
theoretical 12-carriage ICE 2 train set without the two power cars.

4.2 Train length

The amount of reduction from TBI increase with the number of regularly spaced
axles. This is exemplified in Figure 4.1 which shows the bridge deck acceleration
under (a) an ICE 2 train set with 12 carriages and 2 power cars, and (b) a theoretical
ICE 2 train set with 24 carriages and 2 power cars. The difference between the MF
model and the RB model is in (a) 20%, and in (b) 25%, at the resonance peak at
370 km/h.

An MF model with additional damping was manually fitted to the results of the
RB model in Figure 4.1. For both the 12+4-2-carriage and the 24+4-2-carriage trains
an additional damping of 0.5% was found reasonable. Based on these results the
additional damping describes the effect of TBI very well in this particular respect:
both the effect of an additional amount of damping and the effect of TBI grows
larger with more pronounced bridge resonances.

4.3 Train set configuration

Figure 4.2 shows the bridge deck acceleration for the Skidtrdsk bridge under a
theoretical ICE 2 train set without the two power cars. Based on the comparison
between Figure 4.2 and Figure 4.1(a) the amount of reduction from TBI seems to be
similar for train sets with and without power cars. This may very well be because
the response at resonance in both cases is governed by the repetitive carriage axle
loads. An additional damping of 0.5% was found reasonable also based on the
results from the train set without power cars.
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4.4 Type of resonance

According to the author’s knowledge no studies have been performed to reveal
whether the reduction from TBI is the same at the primary resonance peak as at
the secondary or higher order resonance peaks (i.e. v = d. x fo x 3.6/k, for k > 2).
ERRI D214 (1999¢) studied the reduction at the highest resonance peak within the
interval 150-350 km/h. A similar approach was used by the author in papers II
and III. For short spans with a high fundamental frequency the resonance peaks
within realistic speed intervals are typically higher order resonances. The primary
resonance for these bridges corresponds to very high speeds. Museros and Alarcén
(2002) and Doménech and Museros (2011) adopted another approach and studied
specifically the primary resonance.



Chapter 5

Case study: bridges along the
Bothnia Line

In this chapter, some of the author’s results from an ongoing investigation for
the Swedish Transport Administration (Trafikverket) are included. The project
provides an example of the use of TBI in a feasibility study for increased speeds on
an existing railway line.

5.1 The Bothnia Line bridges and previous work

The Bothnia Line is a single-track railway line in northern Sweden, built between
1999 and 2010. For most of the 87 railway bridges along the line, no dynamic
analysis was performed as the Eurocode (CEN, 2003) design guidelines for high-
speed traffic were not yet implemented in Sweden at the time of design. Therefore, a
dynamic assessment for future high-speed trains was performed by Johansson et al.
(2013). The work presents a first stage out of three in the planned assessment and
adopts simple 2D models for dynamic analyses of 76 of the bridges. It was found
that the design limit on the vertical bridge deck acceleration was exceeded for about
50% of the bridges. In a second stage, Andersson et al. (2014) implemented more
advanced numerical models. It was believed that the following modelling aspects
can reduce the predicted bridge deck acceleration: the use of load distribution, the
consideration of soil-structure interaction and the consideration of TBI. Some of
the author’s results concerning TBI will be described here. Field measurements
and model calibration are intended as a third stage in the project.

31



32 CHAPTER 5. CASE STUDY: BRIDGES ALONG THE BOTHNIA LINE
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Figure 5.1: The fundamental frequencies of the ERRI D214 (1999¢) bridges used in
the analyses behind the Eurocode additional damping. The approximate frequency
range covered by the ERRI D214 bridges is indicated in light red. The frequency
range specified for high-speed railway bridges in the Eurocode is indicated in grey.
The frequencies of some of the Bothnia Line bridges are included for comparison.

Additional damping according to the Eurocode, CEN (2003), for bridges of span 0—
30 m, was implemented already in stage one of the project. The objective of this part
of the work was to investigate whether reduced response from TBI can be obtained
for two simply supported bridges with spans over 30 m. For this purpose, similar
models as those used by ERRI D214 (1999c¢) in deriving the additional damping
in the FEurocode was adopted. Another objective was to investigate whether the
additional damping according to the Eurocode can be deemed reasonable for the
portal frame bridges along the line. Comparative TBI analyses on portal frame
bridges are motivated as the additional damping in the Eurocode was derived for
simply supported bridges only.

5.2 Analyses by the ERRI committee D214

The additional damping in the Eurocode was derived by ERRI D214 (1999¢) from
TBI analyses of simply supported beam bridges of span 0-30 m. The fundamental
frequencies of the bridges are shown in Figure 5.1 (where they are compared to the
fundamental frequencies of some of the Bothnia Line bridges). A fictitious addi-
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Figure 5.2: The ERRI D214 (1999¢) results behind the Eurocode additional damp-
ing defined as a function of span length (a). Analyses in which no resonance oc-
curred were deemed unrepresentative by the ERRI committee and are indicated in
red. In (b), the results are plotted against bridge fundamental frequency instead of
span length. An example of a curve fitted to the lower bound values is included.

tional damping was introduced in an MF model, which was then calibrated against
results from TBI analyses with the SIM. The ICE 2 train, seen in Figure 2.4, with
one leading and one trailing power car and 12 passenger carriages was considered
together with the Eurostar train. Additionally, the following was assumed for the
SIM: (1) the unsprung mass of the wheelset was neglected, (2) the stiffness and
damping of the axles were taken as equal to those of the primary suspension. Anal-
yses were performed in the speed range 150-350 km/h with no consideration taken
to track irregularities. In the ERRI committee D214 analyses, the deformed shape
of the beam was described using modal superposition with a maximum of three
modes and a cut-off frequency at 30 Hz. Modal superposition was not used in the
analyses performed within the present work.

The results from the ERRI committee D214 are shown in Figure 5.2(a) together
with the additional damping as a function of span length. As mentioned, the choice
to give additional damping as a function of span length is a simplification. This
can be realised from the large spread in the results in Figure 5.2(a). Another
possible choice is to give the additional damping as a function of bridge frequency,
even though this is also a simplification of a much more complex relation. The
ERRI committee D214 results plotted against frequency is shown in Figure 5.2(b).
The curve shows that some additional damping is to be expected for bridges with
frequency 2-3 Hz. Steel-concrete composite bridges with spans of about 30-40 m,
that are given no additional damping according to the Eurocode, can be expected
to have a fundamental frequency within this range.
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Figure 5.3: The studied Bothnia Line bridges, photos from BaTMan (Trafikverket,
2014).

5.3 TBI analyses of the Bothnia Line bridges

TBI analyses have been performed for two simply supported single span bridges
and three portal frame bridges seen in Table 5.3. The train load was the ICE 2
train with parameters according to Figure 2.4 and Table 2.1. The reasons behind
the choice of train model were: (a) to make the analyses comparable to those
performed within the ERRI committee D214, (b) there are no vehicle parameters
available for the HSLM load model that is normally used in design calculations.
Based on Figure 5.2(a) we can expect slightly higher reductions from TBI with the
ICE 2 train than with the Eurostar train.

The two-layer suspension RB model and the SIM, outlined in Figure 2.1(a) and
(b), were used in the analyses. As mentioned, the SIM takes into account the
bogie-bridge interaction while the car body—bridge interaction is ignored. The RB
model takes into account also the car body-bridge interaction. For bridge spans
above around 30 m, or with a fundamental frequency much lower than the bogie
frequency (closer to the car body frequency), the SIM deviates slightly from the
RB model. The SIM then predicts less reduction in response. This is why also the
RB model was adopted here. The vertical bogie frequency of the ICE 2 passenger
carriages is 6.11 Hz whereas the vertical car body frequency is 0.64 Hz.
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Figure 5.4: Schematic sketch of the model used for TBI analyses in Abaqus for: (a)
the SIM on simply supported bridges, (b) the two-layer suspension RB model on
simply supported bridges, and (c) the SIM on portal frame bridges.

Figure 5.4(a) and (b) present schematic sketches of the Abaqus model used for TBI
analyses of the simply supported bridges. The analyses were performed as described
in Chapter 2 with additional assumptions according to the previous section.

The simplified 2D beam model described in Johansson et al. (2014) was adopted
to idealise the portal frame bridges. The rigidity of the frame walls as well as the
elastic interaction with the soil is taken into account by vertical and rotational
springs at the supports. The mass of the frame walls and the soil resting on the
foundation is lumped into the beam model over a length of 0.1 m from each support.
The damping associated with the soil-structure interaction was not considered. In
Abaqus, the stiffness contributions from the springs are not automatically included
in the Rayleigh damping matrix. Therefore, equivalent dashpots were introduced
in parallel with the vertical and rotational springs at the supports to achieve the
desired overall damping ratio.

A track was introduced to the beam models with elastic supports (the portal frame
bridge models) to guide the axles over the bridge; see Figure 5.4(c). A relatively



36 CHAPTER 5. CASE STUDY: BRIDGES ALONG THE BOTHNIA LINE

Table 5.1: Bridge data for the Bryngean bridge, from Johansson et al. (2013).

Modes of vibration Bridge properties
Bridge type beam bridge, sim-
ply supported
— * Span length (m) 48
f1=2.05 Hz E (GPa) 200
— I (m?%) 0.86
£2-8.21 Hz m (kg/m) 19,000
s ———  (, excluding additional 0.5
f3=18.46 Hz damping (%)
A(, additional damp- 0
ing (%)

stiff bed modulus was assumed for the track (300 MN/m and m along the track) to
reduce the load distributive effect of the track. It is assumed that the presence of
the track does not affect the amount of reduction in bridge deck acceleration from
the SIM as compared to the MF model. This has been verified only for a 10-m
simply supported bridge.

5.4 The Bryngean bridge and the Banafjil bridge

The Bryngean bridge is one out of two simply supported steel-concrete composite
bridges that did not fulfil the design limit for vertical bridge deck acceleration
according to the analyses in stage one of the project. The Bryngean bridge has a
span of 48 m and is therefore given no additional damping due to TBI. However,
with a bridge frequency of 2.05 Hz we can expect a small amount of additional
damping according to Figure 5.2(b). Modes of vibration and bridge properties are
given in Table 5.1.

The mid-span acceleration under the ICE 2 train load in the speed range 100—
300 km/h is shown in Figure 5.5. As can be observed, there is little difference
between the MF model and the SIM. As mentioned, the RB model represents a
slightly more complex model of the train taking into account also the car body—
bridge interaction. As seen in Figure 5.5, the RB model predicts indeed slightly
reduced responses compared to the SIM. An additional damping has been man-
ually fitted to the results of the RB model. As could be expected, the amount
of additional damping that can be motivated for this bridge is rather low: about
0.1%. The additional damping of 0.1% leads to a 5% decrease in the predicted
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Figure 5.5: Acceleration at mid-span for the Bryngeén bridge. Results from the
SIM, the RB model and the MF model. An MF model with additional damping
has been manually fitted to the RB results. The first resonance of the fundamental
frequency and the characteristic axle distance is seen at: v = f; X d. X 3.6 =
2.05 x 26.4 x 3.6 = 195 km/h.

maximum bridge deck acceleration under the most critical HSLM load model (A7),
as an example.

The results for the 42-m span Banafjdlsan bridge were similar and an additional
damping of 0.1% could be motivated also for that bridge.

5.5 Portal frame bridges

The results from TBI analyses of three portal frame bridges are presented in Fig-
ures 5.6-5.8. The Ava bridge, Table 5.2, has a span length of 6.5 m while the Orrvik
bridge and the Norra Kungsvéigen bridge both have span lengths of about 15-16 m;
see Tables 5.3 and 5.4.

As can be observed from Figure 5.6 the bridge deck acceleration obtained with the
MF model and the SIM are similar for the Ava bridge, that is, the reduction obtained
from including TBI is small. The Eurocode additional damping assumption seems
reasonable for this bridge. For the Orrvik bridge, Figure 5.7, the bridge acceleration
obtained from the SIM is considerably lower than from the MF model. There is
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Table 5.2: Bridge data for the Ava bridge, from Johansson et al. (2013).

Modes of vibration

Bridge properties

Bridge type

portal
frame, open

£ % Spanlength (m) 6.5
£1=9.59 Hz E (GPa) 20.4
[ (m?) 0.14
1055 Hy Mplate (kg/m) 17,126
Mfoundation (kg) 3687267
s—— 3% [ (MN/m) 1604
£3=22.25 Hz ky, (MNm/rad) 959
¢, excluding additional damping (%) 2.45
A(, additional damping (%) 0.16

Table 5.3: Bridge data for the Orrvik bridge, from Johansson et al. (2013).

Modes of vibration

Bridge properties

Bridge type

portal
frame, open

£~ % Span length (m) 15.25
f1=5.88 Hz E (GPa) 20.4
I (m*) 0.48
& T ¢
£=9.74 Hz Mplate(kg/m) 22,625
Mfoundation (kg) 459,410
§———— % Lk, (MN/m) 1984
f3-11 Hz k, (MNm/rad) 2208

¢, excluding additional damping (%) 1.83
A(, additional damping (%) 0.65

a good match between the results of the SIM and those of the MF model with
additional damping according to the Eurocode. Also for this bridge, the Eurocode
recommendations seem reasonable.

From Figure 5.1 we can see that the fundamental frequency of the Norra Kungsva-
gen bridge (8.09 Hz) is considerably higher than those of the 15-m bridges consid-
ered by the ERRI committee D214. We therefore expect that the results from a
TBI analysis on this bridge will not match the results predicted by the Eurocode
additional damping. Figure 5.8 confirms that the additional damping according to
the Eurocode is indeed too high for this bridge.
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Figure 5.6: Acceleration at mid-span for the Ava bridge. Results from the SIM and
the MF model. An MF model with additional damping according to the Eurocode
is also included. The peak is a resonance induced by the power car and the third
bridge mode at 22.25 Hz (a first bending mode), see Table 5.2.
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Figure 5.7: Acceleration at mid-span for the Orrvik bridge. Results from the SIM
and the MF model. An MF model with additional damping according to the
Eurocode is also included. The second resonance of the fundamental frequency and
the characteristic axle distance is seen at: v = f1 xd.x3.6/2 = 5.88%x26.4%3.6/2 =
279 km/h. The third resonance is seen at around 190 km/h.
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Table 5.4: Bridge data for the Norra Kungsvéigen bridge, from Johansson et al.
(2013).

Modes of vibration Bridge properties
Bridge type portal
frame, open
£ * Span length (m) 15.7
£1=8.09 Hz E (GPa) 20.4
I, (m*) 1.59
e ]
- Mplate (kg/m) 21,712
mfoundation(kg) 5477456
§F—— 2% k, (MN/m) 2294
£3=13.68 Hz ky, (MNm/rad) 6581
¢, excluding additional damping (%) 1.80
A(, additional damping (%) 0.65
1.

—Norra Kungsvégen SIM, = 1.80%
---Norra Kungsvagen ME,= 1.80%
---Norra Kungsvagen ME,+ Al = 1.80 + 0.647%
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Figure 5.8: Acceleration at mid-span for the Norra Kungsvigen bridge. Results
from the SIM and the MF model. An MF model with additional damping according
to the Eurocode is also included. The third resonance of the fundamental frequency
and the characteristic axle distance is seen at: v = f; X d. X 3.6/2 = 8.09 x 26.4 X
3.6/3 = 256 km/h. The forth resonance is seen at around 190 km /h.
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5.6 Case study conclusions

The initial motive to the investigation was that the additional damping due to TBI
as prescribed in the Eurocode is a rather rough simplification of a complex relation;
refined TBI analyses might reduce the calculated acceleration levels for some of the
bridges.

The results show that, if the RB model is adopted, a moderate reduction in response
due to TBI can be expected under the ICE 2 train load for the two studied simply
supported bridges: the Banafjdlsan bridge and the Bryngean bridge. Both bridges
have rather low fundamental bridge frequencies, around 2 Hz, that approaches those
of the car body modes. Presumably, this is why the RB model, that also includes
the car body-bridge interaction, shows larger reductions as compared to the SIM.
A small amount of additional damping, about 0.1%, can be motivated for both
bridges based on the RB analyses. Under the HSLM load this additional damping
corresponds to a reduction in bridge deck acceleration of about 5% for both bridges.

Contrary to the results from the Skidtrask bridge, presented in Section 4.1, the
reductions in acceleration from TBI are small. For the 36-m Skidtrask bridge the
reduction in acceleration was up to 20% (see Figure 4.1(a)). The bridge has a
slightly higher fundamental frequency (closer to the vertical train bogie frequency),
and is slightly lighter than the Banafjélsan bridge and the Bryngean bridge.

The additional mass in portal frame bridge structures (from the frame walls and
the soil on the foundations), as well as the differences in frequencies and mode
shapes between portal frames and simply supported bridges, lead us to call into
question whether the Eurocode additional damping covers portal frame bridges. In
this work, the elastic soil-structure interaction was included in the models. This
lead to reduced bridge frequencies (and to the introduction of rigid body modes) as
compared to models with fixed supports. Under these assumptions, the fundamen-
tal frequencies of the portal frame bridges match well the frequencies of the bridges
in the analyses behind the additional damping; see Figure 5.1. This is believed to
be the reason for the god fit between some of the TBI results and the results with
additional damping as provided in the Eurocode. For the Norra Kungsvigen bridge,
with a fundamental frequency considerably higher than the ERRI committee D214
bridges, the additional damping according to the Eurocode proved to be too high
and thus non-conservative. In conclusion, the analyses show that the additional
damping is not directly applicable to portal frame structures.






Chapter 6

Discussion and conclusions

6.1 Parametric studies

Two-level factorial experiments were adopted to study parameter variations in TBI
systems. Contrary to one-factor-at-a-time procedures, factorial experiments are
able to show parameter interactions. Moreover, they provide a neat way of present-
ing the results: the relative importance of each parameter is easily observed from
a normal score plot. The parametric studies in papers IT and III showed that:

o TBI is only important at resonance — an observation which is consistent with
the conclusions in ERRI D214 (1999¢); Liu et al. (2009); and Rocha et al.
(2012).

e The reduction from TBI is slightly larger for acceleration than for displace-
ment; this was also observed by Doménech and Museros (2011).

e For some of the train—bridge systems, the effect of TBI was smaller or com-
parable to the effect of other parameter variations (e.g. in axle load, beam
stiffness, beam mass, beam damping and rotational support stiffness) while
it was the most important effect for other train—bridge systems. This applies
both to passenger train and freight-train-induced bridge vibration.

o A number of parameter interactions were found: load model*beam damping,
load model*beam stiffness, load model*axle load, and load model*rotational
support stiffness. These results confirm that the effect of TBI depends on
several other system parameters.

43
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o The parameter interaction effects were rather low (mostly below 10%) for
factor variations corresponding to reasonable model uncertainties. If larger
variations were introduced the interaction effects would be more important.

e Considerable reductions in response from TBI were obtained for clear reso-
nance cases for the freight train applications in paper III. Possible explana-
tions are the considerable length of the freight trains and the high train—bridge
mass ratios (especially as the bridge data were chosen based on mainly single-
track bridges).

o The SIM (Figure 2.1(b)) gives similar results as the slightly more complex two-
layer suspension RB model (Figure 2.1(a)) for passenger train applications;
thus, it presents a relevant simplification of the train load. The RB model can
give a slight additional reduction in the results for bridges with frequencies
well below that of the train bogie frequency (Chapter 5).

o For freight trains with a stiff secondary suspension system the car body-bridge
interaction is important which is why an RB model should be adopted (with
a single- or two-layer suspension, Figure 2.1(a) and (c)), or alternatively the
simplified quarter car model (Figure 2.1(d)). The SIM is not a suitable model
for this type of freight trains.

6.2 Freight-train-induced bridge vibration

Although freight trains travel at lower speeds than passenger trains the, typically,
shorter axle distances imply that the resonance speeds are lower. In combination
with low bridge fundamental frequencies, the first or second order resonance speeds
may very well be within realistic speed ranges. If resonance indeed occurs it can
grow large due to the considerable length of the trains. The analyses presented
in Karoumi and Wiberg (2006), as well as the examples in paper III, indicate
that single-track steel-composite bridges and prestressed concrete bridges can be
susceptible to freight-train-induced vibrations. This is especially true for single-
span bridges (20-45 m) with a fundamental frequency below approximately 5 Hz.
As an example, the models in paper III predict a resonance peak at 95 km/h for
the steel-concrete composite Skidtréask bridge under the Swedish Steel Arrow train.
The acceleration peak was much reduced with a TBI model, as compared to the
MF model.
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6.3 Additional damping

The Eurocode (CEN, 2003) defines additional damping for bridges of span 0-30 m.
Throughout the work of this thesis examples have been identified for which the re-
sults from a TBI analysis deviate from what is predicted by the Eurocode additional
damping;:

o The reduction from TBI was shown to be considerable (20-30%) under the
ICE 2 train and the Green Train for the Skidtrédsk bridge with span over 30 m
(see Figure 4.1 and paper II).

e The reduction in acceleration from TBI for the 6-m bridge in paper II was
slightly lower than what is predicted by the additional damping (see paper 11,
Table 4).

o It was observed in Chapter 5 that the additional damping seem applicable to
some of the portal frame bridges along the Bothnia Line in northern Sweden.
For the Norra Kungsvigen bridge, however, the reduction in acceleration
predicted by the additional damping was non-conservative compared to the
results from a TBI analysis (see Figure 5.8).

Additionally, the following show that the additional damping is a rough simplifica-
tion: (1) the large spread seen in the results of the analyses behind the additional
damping criteria in Figure 5.2(a), and (2) the fact that the span length has not been
found to be the most important parameter, but rather: the train—bridge frequency
ratio, the train—bridge mass ratio and the bridge-carriage length ratio.

The above reasoning leads to the choice between:

(i) to use the present additional damping in the Eurocode and define bridge types
for which it may be worth conducting a TBI simulation, or

(ii) to refine the additional damping criteria in the Eurocode to better describe
the effect of TBI for a wider range of bridge characteristics.

As a rough recommendation on choice (i), a TBI analysis is relevant whenever
the frequency of the bridge lies well outside the frequency range covered by the
bridges in the ERRI committee D214 analyses; see the light red area in Figure 5.1
and Figure 8 in paper II. For passenger train applications we may expect large
reductions in bridge deck accelerations at resonance in low mass bridges with a
frequency close to the bogie frequency of the train. Due to the influence of the
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mass ratio, higher reduction can be expected for light single-track bridges than for
heavy double track bridges. If resonance occurs under freight train passages we
might expect considerable reductions by considering TBI as we then typically have
large train—bridge mass ratios and a pronounced resonance due to the long train
sets.

The author finds choice (ii), a further development of the additional damping con-
cept, more relevant as: (1) it can easily be included in the dynamic analysis, and (2)
it describes the effect of TBI rather well as TBI and damping are both important
only at resonance.

We must recognise, though, that the additional damping is a small amount of damp-
ing that is added to an initial bridge damping estimate that is generally associated
with a large uncertainty. The Eurocode recommendations on damping ratios are
essentially based on lower bound values from numerous damping ratio estimates,
determined from measured free vibrations after train passages. The author believes
that a “consistent degree of approximation” should be sought in order for the addi-
tional damping concept to be fully relevant: if the additional damping contribution
from the TBI is investigated in detail then an equivalent amount of effort should be
put into the bridge damping estimate. The studies by Ulker-Kaustell and Karoumi
(2011, 2013) present examples of detailed investigations into the bridge damping.
For a simply supported steel-concrete composite bridge, they observed damping
ratios that, at low amplitudes of vibrations, are in line with the Eurocode recom-
mendations. However, they show that the damping ratios increase considerably at
high amplitudes of vibration.

6.4 Further research

During the course of the present research the author has identified many interesting
future research directions: a list of suggestions is found as part of the conclusions
in the literature review, paper 1. Some of the issues that are most closely related to
the content of this extended summary will be further developed here.

Proposal for refinement of the additional damping for simply
supported bridges

The need for a refinement of the additional damping in the Eurocode was motivated
in the previous section. The author sees several alternatives for enhancing the
additional damping definition for simply supported bridges; further studies should
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determine which is the most feasible. Possible definitions include: (1) additional
damping based on the train-bridge frequency ratio, train—bridge mass ratio and
bridge—carriage length ratio, (2) additional damping based on bridge frequency
and further differentiated based on bridge mass and bridge length, or (3) additional
damping based on bridge frequency and differentiated based on bridge type (e.g.
bridge deck material, single-track or multi-track). Alternative (1) would be the most
solid alternative. It would however require the knowledge of train characteristics
(masses and suspensions). Therefore, alternatives (2) or (3) could be better choices.
Then, for each combination of bridge characteristics, a range of train characteristics
needs to be analysed to be able to give a lower bound recommendation as a function
of bridge characteristics only.

Hence, to develop a refined additional damping definition analyses are needed for
a range of bogie—bridge frequency ratios, bogie-bridge mass ratios and bridge—
carriage length ratios. A set of dimensionless parameters can be used to cover such
parameter ranges, as was implemented by Museros et al. (2002) and Doménech and
Museros (2011).

Based on the rather limited analyses presented in Chapter 4, the amount of ad-
ditional damping that should be introduced to fit the results from a TBI model
seem independent of the train set length: both the effect of TBI and of an ad-
ditional amount of damping increase with increasing resonance. Similarly, based
on the analysis in Chapter 4 the train set configuration (presence or absence of
power cars) do not affect the estimation of additional damping when the resonance
is induced by the repetitive carriage axle loads. According to the knowledge of the
author no studies have revealed whether the effect of TBI is the same at the first
order resonance as at higher multiples of resonance. It should therefore be further
investigated whether an additional damping fitted to the fundamental resonance is
valid also at higher order resonance peaks that occur at lower speeds.

Furthermore, an extension of the additional damping definition to include also
speeds above 350 km /h is interesting. New railway lines in Sweden will be designed
for 320 km/h (Trafikverket, 2012), and as calculations is to be performed up to
1.2 times the maximum permitted speed the limitation on the present additional
damping criteria at 350 km/h is too low.

Additional damping for other bridge types

A definition of additional damping for bridge types other than simply supported
beam bridges can be motivated based on the discussion on portal frame bridges
in Chapter 5. The need for a unique definition of additional damping should be
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examined for: (1) portal frame bridges (2) multi-span continuous bridges, and (3)
series of simply supported bridges.

Guidelines for the dynamic assessment of bridges under freight
train traffic?

No dynamic analysis is generally required for bridges along lines with speeds below
200 km/h. As bridge resonance may arise due to freight train traffic, special design
rules for dynamic analyses of bridges under freight train traffic may be relevant.
The reduction from considering TBI can be large, as was shown in paper III. TBI
analyses or the development of an additional damping curve for freight trains could
thus be of interest. The use of more detailed load models is particularly relevant
in the upgrading of existing lines for higher train speeds and higher axle loads.

Field measurements

There is a need for further field measurements to verify TBI models. Some pub-
lished comparisons between measured data and 3D TBI models are discussed in
paper L. It would further be interesting to perform measurements on the simplest
possible full scale railway bridge (that can be sufficiently well described with a 2D
beam model) to verify the amount of reduction obtained in our 2D TBI models as
compared to MF models. A well-maintained track is preferable to reduce the effect
of track irregularities. However such comparisons are difficult due to the inherent
discrepancies between theoretical models and the actual bridge structure in, for
example, damping, bridge member stiffnesses and support conditions.
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