
PERSONNEL ALLOCATION FOR

ENGINEERING PROJECTS

by

Louis Francois Theron

Thesis presented in partial fulfilment of the requirements for the degree of Master

of Science in Engineering at Stellenbosch University

Supervisor: Dr. G.C. van Rooyen

Faculty of Engineering

Department of Civil Engineering

December 2013

i | P a g e

DECLARATION

Department of Civil Engineering

Stellenbosch University

By submitting this thesis electronically, I declare that the entirety of the work contained therein

is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise

stated), that reproduction and publication thereof by Stellenbosch University will not infringe any

third party rights and that I have not previously in its entirety or in part submitted it for obtaining

any qualification.

December 2013

/ƻǇȅǊƛƎƘǘ ϭ нлмп {ǘŜƭƭŜƴōƻǎŎƘ ¦ƴƛǾŜǊǎƛǘȅ
!ƭƭ ǊƛƎƘǘǎ ǊŜǎŜǊǾŜŘ

Stellenbosch University http://scholar.sun.ac.za

ii | P a g e

ABSTRACT

The logical allocation of tasks in engineering offices currently relies heavily on the experience and

intuition of project managers. In large scale projects the complexity of the task allocation

procedure exceeds the capacity of human intuition, and a systematic technique is required to aid

project managers in assigning tasks to individuals. In this project such a systematic technique is

modelled and implemented using the Java programming language. An equation was developed

to calculate an individual’s workload, and used in conjunction with other criteria to intelligently

and systematically select an optimal individual to complete engineering tasks. The software

solution is network-based, and also aims to aid project managers in various managerial duties.

Stellenbosch University http://scholar.sun.ac.za

iii | P a g e

OPSOMMING

Die logiese toekenning van ingenieurstake steun tans swaar op die ervaring en aanvoeling van

projek bestuurders. In grootskaalse projekte is die kompleksiteit van die taak toekenningsproses

veel groter as die kapasiteit van menslike intuïsie. Dus word ‘n sistematiese proses wat projek-

bestuurders kan help met die toeken van take aan individue vereis. In hierdie projek is so 'n

sistematiese tegniek ontwikkel en geïmplementeer met behulp van die Java-

programmeringstaal. 'n Vergelyking is ontwikkel om 'n individu se werklading te bereken en is in

samewerking met ander kriteria gebruik om take intelligent en sistematies toe te ken. Die

sagteware is network en databasis-gebaseerd en kan ook gebruik word om projek-bestuurders

te help met verskeie bestuurspligte.

Stellenbosch University http://scholar.sun.ac.za

iv | P a g e

TABLE OF CONTENTS

Declaration ... i

Abstract ... ii

Opsomming .. iii

Table of Figures .. ix

Table of Database Tables .. ix

Table of Equations ... x

Table of Graphs... xi

Table of Screenshots.. xii

Table of Source Code Inserts .. xiii

Table of Results .. xiii

Definitions .. xiv

Acknowledgements .. xvi

1. Introduction ... 1

1.1 Introduction and Background .. 1

1.2 Motivation for study .. 2

1.2.1 Existing software solutions .. 4

1.3 Definition of the research problem .. 5

1.4 Software used .. 6

1.5 Outline of chapters .. 7

2. Software .. 8

2.1 Functionality... 8

2.1.1 Overview .. 8

2.1.2 Manager Toolkit ... 9

2.1.3 Chart Drawer.. 10

2.2 Database .. 12

Stellenbosch University http://scholar.sun.ac.za

v | P a g e

3. Quantifying Workload ... 13

3.1 Introducing Workload .. 13

3.2 Components of perceived workload .. 14

3.2.1 Perceived workload component: Workday length .. 15

3.2.2 Perceived workload component: Slack .. 16

3.2.3 Perceived workload component: Task stiffness .. 19

3.2.4 Perceived workload component: Number of assigned tasks... 21

3.2.5 Idle factor ... 23

3.3 Worker efficiency ... 24

3.4 Final form of Percevied workload equation ... 26

3.5 Choosing constants .. 28

3.5.1 Weights .. 28

3.5.2 Component parameters ... 29

3.6 Sensitivity analysis .. 32

3.6.1 Sensitivity to the weight factors .. 32

3.6.2 Sensitivity to Workday duration logarithm base a .. 36

3.6.3 Sensitivity to Slack exponent base 1/b .. 37

3.6.4 Sensitivity to Exponent denominator c .. 39

3.6.5 Sensitivity to Exponent denominator d ... 40

3.6.6 Sensitivity to Task stiffness control e ... 41

3.7 Evaluation of Perceived workload .. 42

3.7.1 Assigned tasks – Workday duration ... 43

3.7.2 Assigned tasks – Percentage of day required .. 44

3.7.3 Assigned tasks – Worker Inefficiency .. 45

3.8 Survey of engineering managers’ opinions .. 46

3.8.1 Survey conclusion .. 47

4. Designing the Object Model .. 49

Stellenbosch University http://scholar.sun.ac.za

vi | P a g e

4.1 Components of the object model .. 50

4.1.1 Tasks .. 50

4.1.2 Resource: Personnel .. 51

4.1.3 Location ... 53

4.1.4 Offices .. 53

4.1.5 Filters ... 54

4.1.6 Allocation ... 54

4.1.7 Computation of project cost .. 55

5. Database Modelling ... 57

5.1 Database Normalisation ... 58

5.1.1 First Normal Form .. 58

5.1.2 Second Normal Form (2NF) ... 59

5.1.3 Third Normal Form (3NF) ... 59

5.2 Tables ... 60

5.2.1 LOCATION .. 61

5.2.2 DEPARTMENT... 62

5.2.3 RATE ... 62

5.2.4 TASK ... 63

5.2.5 SKILL ... 65

5.2.6 SKILL_TO_TASK .. 65

5.2.7 SKILLTAG .. 66

5.2.8 WORKPACKAGE.. 66

5.2.9 OFFICE .. 67

5.2.10 DEPARTMENT_TO_OFFICE .. 67

5.2.11 FILTER .. 68

5.2.12 FILTERCONFIGURATION .. 68

5.2.13 FILTER_TO_FILTERCONFIGURATION ... 69

Stellenbosch University http://scholar.sun.ac.za

vii | P a g e

5.2.14 PROJECT ... 69

5.2.15 PROJECTTEAM ... 70

5.2.16 HUMANRESOURCE .. 70

5.2.17 HUMANRESOURCEFLOW... 71

5.2.18 HUMANRESOURCE_TO_PROJECTTEAM .. 72

5.2.19 TASKFLOW ... 72

5.2.20 TASKOVERHEAD... 73

5.2.21 INTERNAL_PERSONNEL ... 74

5.2.22 EXTERNAL_PERSONNEL ... 75

5.2.23 BOOKING ... 76

5.2.24 PROVISIONALBOOKING ... 76

5.2.25 NONSTANDARDHUMANRESOURCE .. 77

5.2.26 VACATION .. 78

5.2.27 VACATION_TO_HUMANRESOURCE ... 79

5.2.28 RELEVANTSKILLS .. 79

5.2.29 SKILL_TO_RELEVANTSKILLS ... 80

5.2.30 QUOTE ... 81

5.2.31 QUOTERESOURCE .. 82

5.3 Entity-Relationship Diagram .. 83

6. Enhancing the Model ... 84

6.1 Hierarchy .. 84

6.2 Optimisation and Finding People ... 84

6.2.1 Score .. 85

6.2.2 Restrictive Filters ... 85

6.2.3 Exclusion Filters ... 85

6.2.4 Refinement Filters ... 86

6.3 Tasks and Flat-lining ... 92

Stellenbosch University http://scholar.sun.ac.za

viii | P a g e

7. Test Project: Software in Action .. 93

8. Project Resource Locator - Key Points of the Code ... 98

8.1 Filter ... 98

8.2 Distance Between Office and Project... 101

8.3 Implementing Workload Calculation ... 101

8.4 ResourceLocator .. 104

8.5 Connecting to the database ... 105

8.5.1 Java representation of database tables ... 105

8.6 Discussing the GUI in general ... 110

8.6.1 Starting up: The Manager Toolkit .. 110

8.6.2 Add People ... 112

8.6.3 Find People .. 114

8.6.4 Schedules ... 116

8.6.5 Building Reports: Chart Drawer ... 117

8.7 Code Diagrams ... 121

8.7.1 Drawing Charts .. 121

8.7.2 Find People .. 122

9. Recommendations for further work .. 123

10. Conclusion .. 125

References ... 126

Appendix A... 129

Appendix B ... 150

Stellenbosch University http://scholar.sun.ac.za

ix | P a g e

TABLE OF FIGURES

Figure 1: Project and task relationship .. 51

Figure 2: Personnel, skills and rates relationships ... 52

Figure 3: Locations ... 53

Figure 4: Process of task allocation ... 55

Figure 5: Database ERD.. 83

Figure 6: Test company command structure ... 93

Figure 7: Example project task breakdown ... 94

Figure 8: Test company employee skills and locations .. 95

Figure 9: Location details ... 95

Figure 10: Allocations as made by software .. 96

Figure 11: UML – Drawing Charts .. 121

Figure 12: UML – Finding People ... 122

TABLE OF DATABASE TABLES

Table 1: LOCATION layout ... 61

Table 2: DEPARTMENT layout .. 62

Table 3: RATE layout .. 62

Table 4: TASK layout .. 63

Table 5: SKILL layout .. 65

Table 6: SKILL_TO_TASK layout ... 65

Table 7: SKILLTAG layout ... 66

Table 8: WORKPACKAGE layout ... 66

Table 9: OFFICE layout ... 67

Table 10: DEPARTMENT_TO_OFFICE layout .. 67

Table 11: FILTER layout .. 68

Table 12: FILTERCONFIGURATION layout .. 68

Stellenbosch University http://scholar.sun.ac.za

file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013663
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013767
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013768
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013769
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013770
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013771
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013772
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013773
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013774
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013775
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013776
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013777

x | P a g e

Table 13: FILTER_TO_FILTERCONFIGURATION layout ... 69

Table 14: PROJECT layout .. 69

Table 15: PROJECTTEAM layout ... 70

Table 16: HUMANRESOURCE layout .. 70

Table 17: HUMANRESOURCEFLOW layout .. 71

Table 18: HUMANRESOURCE_TO_PROJECTTEAM layout.. 72

Table 19: TASKFLOW layout .. 72

Table 20: TASKOVERHEAD layout .. 73

Table 21: INTERNAL_PERSONNEL layout ... 74

Table 22: EXTERNAL_PERSONNEL layout .. 75

Table 23: BOOKING layout ... 76

Table 24: PROVISIONALBOOKING layout ... 76

Table 25: NONSTANDARDHUMANRESOURCE layout .. 77

Table 26: VACATION layout ... 78

Table 27: VACATION_TO_HUMANRESOURCE layout .. 79

Table 28: RELEVANTSKILLS layout ... 79

Table 29: SKILL_TO_RELEVANTSKILLS layout ... 80

Table 30: QUOTE layout... 81

Table 31: QUOTERESOURCE layout ... 82

TABLE OF EQUATIONS

Equation 1: Workload definition ... 13

Equation 2: Perceived workload definition ... 14

Equation 3: Contribution of workday length on perceived workload ... 15

Equation 4: Total task duration ... 17

Equation 5: Calculation of an individual’s slack ... 17

Equation 6: Preliminary contribution of slack on perceived workload ... 17

Stellenbosch University http://scholar.sun.ac.za

file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013778
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013779
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013780
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013781
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013782
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013784
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013785
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013787
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013789
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013791
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013793
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013794
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013795
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013796

xi | P a g e

Equation 7: Contribution of slack on perceived workload .. 18

Equation 8: The effect of task stiffness on perceived workload .. 19

Equation 9: The contribution of increasing the number of assigned tasks on perceived workload 22

Equation 10: Contribution of individual idle factor to perceived workload .. 23

Equation 11: Time inefficiency factor .. 25

Equation 12: Individual perceived workload equation framework ... 26

Equation 13: Individual workload equation combined – final form .. 27

Equation 14: Balancing weight factors .. 28

Equation 15: Contribution of slack on perceived workload .. 30

Equation 16: Equation final form... 42

Equation 17: Definition of object set ... 49

Equation 18: Singleton definition .. 58

Equation 19: First Normal Form definition .. 58

Equation 20: Second Normal Form definition ... 59

Equation 21: Third Normal Form definition .. 59

Equation 22: Equation for quantifying perceived workload .. 88

Equation 23: Weight of task duration out of full day .. 90

Equation 24: Equation for time spent on specific task .. 91

Equation 25: Spherical law of cosines ... 91

Equation 26: Task time distribution .. 103

TABLE OF GRAPHS

Graph 1: Contribution of workday length to perceived workload .. 16

Graph 2: Contribution of slack on perceived workload ... 18

Graph 3: The effect of task stiffness on perceived workload .. 20

Graph 4: The contribution of increasing the number of assigned tasks on perceived workload 22

Graph 5: Linear relationship between time inefficiency factor and perceived workload ... 25

Stellenbosch University http://scholar.sun.ac.za

file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013823
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013824
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013826

xii | P a g e

Graph 6: Contribution of slack on perceived workload ... 30

Graph 7: Perceived workload vs number of allocated tasks – F1=1.923*F2 .. 33

Graph 8: Perceived workload vs number of allocated tasks – F1=1.1*F2 .. 34

Graph 9: Perceived workload vs number of allocated tasks – F1=1.5*F2 .. 34

Graph 10: Perceived workload vs number of allocated tasks – no relationship between F1, F2 and F3 35

Graph 11: Perceived workload vs number of allocated tasks – changing values of constant a 36

Graph 12: Perceived workload vs number of allocated tasks – changing values of constant 1/b 37

Graph 13: Perceived workload vs number of allocated tasks – changing values of constant 1/b for overtime 38

Graph 14: Perceived workload vs number of allocated tasks – changing values of constant c 39

Graph 15: Perceived workload vs number of allocated tasks – changing values of constant d 40

Graph 16: Perceived workload vs number of allocated tasks – changing values of constant e 41

Graph 17: 3D Plot of equation results: perceived workload vs number of tasks vs workday length 43

Graph 18: 3D Plot of equation results: workload vs number of tasks vs fraction of workday required 44

Graph 19: 3D plot of equation results: workload vs number of tasks vs worker inefficiency 45

Graph 20: Task relative priority vs priority value .. 90

TABLE OF SCREENSHOTS

Screenshot 1: Manager Toolkit .. 9

Screenshot 2: Chart Drawer .. 11

Screenshot 3: Connect to Database GUI window .. 109

Screenshot 4: ManagerToolkit window ... 110

Screenshot 5: Add People window .. 112

Screenshot 6: General data selector ... 113

Screenshot 7: Find People window ... 115

Screenshot 8: Manage Provisional Bookings window ... 115

Screenshot 9: Schedule Viewer window.. 116

Screenshot 10: Chart Viewer with menu window ... 117

Stellenbosch University http://scholar.sun.ac.za

file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013828
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013833
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013834
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013835
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013836
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013837
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013841

xiii | P a g e

Screenshot 11: Example resulting PDF export ... 118

Screenshot 12: Chart Creator window .. 119

Screenshot 13: JavaFX example window ... 123

TABLE OF SOURCE CODE INSERTS

Source Code Insert 1: Typical Filter class declaration .. 98

Source Code Insert 2: Example RestrictiveFilter constructor .. 98

Source Code Insert 3: Removal of Scores using instance of EliminationFilter ... 99

Source Code Insert 4: Typical RefinementFilter affectScores() method .. 100

Source Code Insert 5: Distance calculation in code ... 101

Source Code Insert 6: Average workload over task period - scores .. 102

Source Code Insert 7: Average workload over task period - dates .. 102

Source Code Insert 8: Time allocation among tasks .. 103

Source Code Insert 9: ResourceLocator class declaration ... 104

Source Code Insert 10: createTable() in code .. 105

Source Code Insert 11: addSql() in code .. 106

Source Code Insert 12: updateSql() in code .. 107

Source Code Insert 13: UserInputDBSettings constructors ... 108

Source Code Insert 14: GetDatabaseConnection constructors ... 108

Source Code Insert 15: Creating flags for important tasks .. 111

Source Code Insert 16: Creating a new DataSelector .. 113

Source Code Insert 17: Populating the DataSelector .. 113

Source Code Insert 18: Populating sub-type dropdown lists... 120

Source Code Insert 19: Creating a chart dataset according to choices ... 120

TABLE OF RESULTS

Results 1: Survey Results ... 47

Stellenbosch University http://scholar.sun.ac.za

file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013855
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013858
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013859
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013860
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013863
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013864
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013865
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013866
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013867
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013868
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013869
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013870
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013871
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013872
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013873
file:///C:/Users/Louis%20Theron/Dropbox/LFTheron-Thesis-FinalDraft-Omega-Isnt-Even-My-Final_Form2.docx%23_Toc381013874

xiv | P a g e

DEFINITIONS

● Class – Any word written in this font and format, and starting with a Capital letter refers

to Java class. If a name follows, the name references a specific instance of that class. E.g.

Workload wl indicates that wl is an instance of class Workload.

● variable – Any word written in this font and format, not starting with a capital letter

refers to a variable defined in a Class.

● method() – Any lowercase word written in this font and format, not starting with a

capital drop and followed by parenthesis refers to a method defined in a Class.

● TABLENAME – Any word written in all capital letter like this refers to a table of the

database.

● column_head – Any word or combination of words written in bold and starting without a

capital letter refers to a database table column head.

● SQL – Structured Query Language

● ERD – Entity-Relationship Diagram

● _fk – Database tables are comprised of columns and rows. If a column name ends in this

postfix, records within the column are foreign keys, and references a value existing in

another database table. The referenced value must always be a primary key.

● _pk – If a column head ends in this postfix, records within the column are primary keys

that are unique and can be referenced by other tables in the database. Referencing values

are noted as foreign keys of this primary key.

● Null – Zero, empty or undefined

● ResultSet – the result of a database query

Stellenbosch University http://scholar.sun.ac.za

xv | P a g e

● GUI – Graphical User Interface. The part of an application displayed on the computer

screen, allowing interaction with the computer and the application.

● Human Resource – Synonym for personnel. There are many types of resources that can

be used in project management, human resources are just one of them.

● Risk – The probability of loss associated with a specific task. In the case of this document

it is associated with the probability of a task not being completed on time.

● PDF - A file format that provides an electronic image of text or text and graphics that looks

like a printed document and can be viewed with a PDF reader, e.g. Adobe Acrobat Reader.

● FLATLINE – A priority state a task can be declared as. It indicates that all assigned

resources should be working 100% of their time to complete the task as soon as possible.

The main reason for flat-lining a task would be if the task neared its latest end date – the

date at which if it is not complete, the rest of the project would be influenced

detrimentally. Also known as fast-tracking.

● Set – In both mathematics and the relational database model, a set is

an unordered collection of unique, non-duplicated items.

● UML – Unified Modelling Language is a set of graphic notation techniques used to

create visual models of object-oriented software-intensive systems.

● GRG – Generalised Reduced Gradient. A nonlinear optimisation method.

● CTC – Cost to Company. The rate which an individual is paid by the company to do work.

Stellenbosch University http://scholar.sun.ac.za

xvi | P a g e

ACKNOWLEDGEMENTS

I would like to thank my friends and family for all their support and attempts to understand and

be interested in this endeavour. I would especially like to thank Mareleen Smit, without whom

my life would be meaningless.

Thank you to all the kind people who helped in testing the software and who I tested my theories

on. Thank you to everyone whom I had long discussions with me regarding my work and who

gave insightful advice.

I would like to give special thanks to soon to be Dr Johann Potgieter. His own work and insights

were essential in shaping my project the last two years. He is a remarkably brilliant man, and

someone I consider a friend.

Most importantly, I would like to thank Dr Gert van Rooyen, my study leader. His formidable

knowledge in the area of informatics was invaluable for the successful implementation and

completion of this thesis. The knowledge gathered in this documented thesis would not have

been possible without his admirable help and guidance.

Thank you all, I appreciate everything you have done for me.

Stellenbosch University http://scholar.sun.ac.za

1 | P a g e

1. INTRODUCTION

1.1 INTRODUCTION AND BACKGROUND

Projects and project management are cornerstones of the engineering environment. Because of

this, it is of the utmost importance to make sure that engineers are supported by the right project

management software to make sure management runs smoothly and is as correct as humanly

possible.

 A project is defined as an organised undertaking designed to achieve an aim [1]. It can be further

explained as an undertaking that involves a single definable purpose with well-defined

deliverables or results, usually specified in terms of cost, performance requirements or schedule

[2]. Every engineering project requires a slightly different approach, even if the same project has

been attempted before, such as laying a few cables. Site-specific variables such as terrain, zoning

laws, labour market issues, access and public services all combine to make it unique. An

engineering project is most likely a once-off activity, never to be exactly repeated again.

Given that each engineering project is unique, it necessarily involves unfamiliarity and risk. It may

involve new technology or techniques and possess significant elements of uncertainty for the

organisation undertaking the project.

When an organisation wants to undertake a specific project it becomes important for them to

ensure that the work is completed as planned. Failure to complete a project could jeopardise the

organisation or its goals. Goals may usually be financial, but can possibly be reputation-based.

The incentive to succeed, combined with the inherent risk involved in projects, make planning

any project very important. Planning a project correctly will greatly reduce the risk involved with

completing it correctly, safely and on time. However, it is just as important for engineers to

continuously apply innovative techniques to the way projects and the offices assigned to these

projects are managed in order to ensure that the planned aims and milestones are actually

achieved.

Stellenbosch University http://scholar.sun.ac.za

2 | P a g e

1.2 MOTIVATION FOR STUDY

One of the many challenges a project manager is faced with is assigning tasks to individuals within

the workspace. The project manager should know when available personnel are overloaded so

that he can outsource specific tasks in time. The crucial objective when assigning tasks is to

maximise the probability that the tasks will be completed correctly and on-time. However,

according to sources within the engineering industry, project managers have to rely on

rudimentary heuristic methods to decide to whom tasks are assigned [3]. An example of this

would be to numerically compare how many tasks individuals have assigned to them, assigning

the next task to the one who has least. One manager jokingly said he would give the next task to

the person that appears to be the least tired. Although such methods have been working

surprisingly well, it is quite apparent that a number of factors are not brought into the calculation.

As a result there is a pressing need in engineering design offices for an impartial method to

determine who should be assigned more tasks and who should not.

The task assignment problem is not unique to engineering design offices. On construction sites,

for example, there are even more resource constraints that have to be considered. Other types

of projects may be of such a nature that no logical order of tasks can or want to be found.

However, this study is focused on trying to solve the problem specifically in engineering offices.

It is assumed that projects being executed by engineering design offices can be broken up into

discrete tasks, which can be scheduled and optimised.

Consider, for example, programming projects. Complex programming projects cannot be

perfectly partitioned into discrete tasks that can be worked on without communication between

the workers and without establishing a set of complex relationships between tasks and the

workers performing them [4]. Assigning additional programmers to such a project increases the

communication overhead, which will consume an ever increasing quantity of time available for

development, indicating that assigning more programmers to a project running behind schedule

will make it even more behind schedule. Because these types of projects do not have discrete

Stellenbosch University http://scholar.sun.ac.za

3 | P a g e

tasks, a detailed project schedule cannot be created. Such un-schedulable projects fall outside

the scope of the study.

Researchers have been investigating the problem of allocating tasks [5]. Task juggling, where

workers work on too many tasks at the same time and detrimentally affect performance, has

been studied and documented [5]. A rudimentary standard workload formulationa is used to

assign classes to teachers at the Algonquin College, but this technique is unusable for engineering

purposes [6]. Much work has been done in trying to optimise task scheduling [7], and such an

optimal schedule is assumed in the methods described here. Research has been done to

investigate enhancing task-allocation algorithms for computer hardware [8].

Although good practices for personal workload and task management is advised, no sure way

exists that addresses the task allocation problem completely. At most it has been proven that

more care has to be taken when assigning tasks than using project evaluation and review

techniques [9]. One research team believed that worker skill level in specific disciplines is all that

is needed to optimally assign tasks [10]. Individual skill level is difficult to quantify, this and the

complexity with regards to calculating and storing skill level for each task before it is even

attempted, make this approach unusable for general use.

It is believed that although individual skill level is important in allocating tasks, the reality is that

each worker will have to be scored for each expertise individually to ensure correctness and up-

to-date relevance. This study instead chooses to focus on a broader spectrum of criteria for

allocating tasks, making the assumption that workers employed by the organisation are in fact

capable of completing tasks allocated to them.

The software and techniques developed here are intended to be used as tools to aid project

managers in their tasks, and not merely to replace them.

a No official formulation of the equation could be located

Stellenbosch University http://scholar.sun.ac.za

4 | P a g e

1.2.1 EXISTING SOFTWARE SOLUTIONS

There are numerous existing software solutions that can be used to aid in project management.

Microsoft Project [11] is a popular choice, with Bonita BPM [12], 24SevenOffice [13] and

BrightWork [14] being some of the other choices. Some of these software packages include

convenient web-based task management interfaces, promoting assembly line efficiency. The

problem that most of these solutions share, is that they all try and cover as broad a spectrum of

services and utilities as possible. This makes the software less relevant for a specific use. Software

companies have already seen the need for specialised software, but the engineering industry is

lagging behind. One specific software package, Clarity [15], provides automatic and semi-

automatic task assignment and scheduling of jobs to field agents, specialising in the field of

telecommunications. Although this is close to what is needed in engineering offices, this solution

focuses on technicians doing field work, not engineers working on designs. In these solutions

there are also one specific component missing, namely a quantifiable factor for individual

workload.

Stellenbosch University http://scholar.sun.ac.za

5 | P a g e

1.3 DEFINITION OF THE RESEARCH PROBLEM

1.3.1 MAIN PROBLEM

With technology continuing to evolve, service industries continuing to grow, and domestic

entities facing rapidly expanding global competition, the challenge of identifying, developing and

deploying the right skill set has never been more important to the future of an organisation than

it is now [16]. Nonetheless, even in the face of this realisation, companies are slow to adopt new

technologies since irrational tradition typically hampers progress. In order to have any chance of

acceptance, new techniques and software should be simple, easy to use, and result orientated.

It is believed that companies are more willing to turn to a software package that solves the one

specific problem they are struggling with, rather than to one which only lightly touches on some

of their issues.

This study focuses on techniques and applied prototype software that can aid project managers

in engineering offices. Chief amongst the managerial duties that have to be addressed, is a semi-

automatic task allocation procedure. Stated in another way, a technique is required for project

managers to easily assign incoming tasks to personnel in an intelligent manner. This has to be

supported by a way to generate statistical work breakdown reports. These functionalities have

to be available to all project managers connected to the organisation. For this implementation, a

centralised relational SQL database was used to persist information across an organisation and

ensure the required connectivity.

In summary, the following design goals were attempted:

1. Develop a technique with which project managers can allocate incoming tasks to

personnel,

2. Implement techniques to generate graphical reports on tasks and personnel,

3. Provide ease of use and corporate availability via a client-side graphical user interface, or

GUI,

4. Ensure integrity and persistence of information by implementing a suitable SQL database

structure.

Stellenbosch University http://scholar.sun.ac.za

6 | P a g e

1.3.2 ADDITIONAL PROBLEMS

Task allocation cannot and should not be fully automated, as not all of the finer details of task

allocation can be easily automated. The project managers must remain in control since they know

the policies and personnel of the organisation. It was consequently deemed essential to develop

a way for project managers to have full control over the task assignments. Filters which guide the

personnel search, similarly to a sieve, were developed. The filters should be turned on or off

individually, according to the policies of the organisation. Further customisation should also be

possible in the form of sliders which determine the relative importance of specific filters to the

search. After the search has run its course and a best candidate has been determined, it is

imperative to still offer the project manager the choice of final allocation.

1.4 SOFTWARE USED

The following software was used in some way to aid in the completion of this thesis.

 PostgreSQL database and server

 Eclipse Java SDK, version 3.7.0

 Google’s WindowBuilder plugin for Eclipse

 JFreeChart libraries for Java

 iText libraries for Java

 Microsoft Access 2013

 Microsoft Office 2013

 Microsoft Excel 2013

 Google Chrome

 Microsoft Paint for Windows 7

 MATLAB R2012b

 www.surveymonkey.net

Stellenbosch University http://scholar.sun.ac.za

http://www.surveymonkey.net/

7 | P a g e

1.5 OUTLINE OF CHAPTERS

 Introduction describes the current state of affairs and why the project is necessary. A

general overview of the project and the problems expected during its execution is also

provided.

 Software describes the functionality of the finished software solution. Databases and data

structures are also discussed.

 Quantifying Workload aims to describe and develop an equation to compute individual

workload. Sensitivity analyses and a survey was utilised to test the validity of the

equations developed to quantify workload.

 Designing the Object Model discusses modelling in general, and how the specific object

model was created.

 Database Modelling discusses the mathematics behind data structures, along with key

explanations of database terminology. Specific elements of the model are also discussed,

with focus on how the model was translated to the SQL database.

 Enhancing the Model discusses how the model was enhanced with the addition of

features and optimisation.

 Test Project: Software in Action runs through a simulated company and its task

allocations, thus showing how the software provides results.

 Project Resource Locator – Key Points of the Code takes a cursory glance through the most

important features of the software solution, with emphasis on how specific achievements

were made using Java code.

 Recommendations for further work discusses the shortcomings of the software and how

it could be improved in future development iterations.

Stellenbosch University http://scholar.sun.ac.za

8 | P a g e

2. SOFTWARE

A significant part of the work described in this document covers the development and prototype

implementation of an object model and underlying database that supports project managers in

the assignment of tasks. The techniques and technologies employed in the development are

described in later chapters. In this chapter a very brief overview of the software is given. The

intention is to give the reader a glimpse of what to expect since similar task allocation software,

to the best of the author's knowledge, is not available on the market at the time of writing. The

various functionalities that the prototype implementation provides come to the surface in the

main application window, while the underlying database becomes visible in the form of the data

displayed on the user interface.

2.1 FUNCTIONALITY

2.1.1 OVERVIEW

The software developed as part of this thesis aims to aid project managers in their managerial

duties by adding a semi-automatic task allocation procedure to their arsenal. Furthermore the

software adds additional functionality by allowing project managers to easily generate chartsb

that can be added to reports. These functions are managed by an underlying database model

that can potentially be accessed from multiple outlets concurrently. User friendliness and

compatibility was intended to be an important factor in the design of the software as it is

estimated to speed adoption rates of the software.

The user interface side of the software, managed by GUIsc, is split into two main parts: namely

the Manager Toolkit and the Chart Drawer.

b Or graphs
c Graphical user interfaces

Stellenbosch University http://scholar.sun.ac.za

9 | P a g e

2.1.2 MANAGER TOOLKIT

The Manager Toolkit is the hub from where a project manager can control all the different

aspects of the software. To keep the interface from getting cluttered with information, only

important notifications are shown for events that happen within a set timeframe. The GUI allows

the user to manually set the timeframe scope, but ideally it should be automatically locked to an

optimal timeframe. The GUI allows managers to identify which employeesd are to complete

which tasks at a glance. Tasks which are flagged as being of higher importance than normal, with

FLATLINE being the highest importance, are also shown on the GUI. The Manager Toolkit can also

be used to manage the information stored in the database by allowing the user to add people

when new employees are hired, tasks when a new project comes in, or create new project teams.

It is also possible to view the schedule of all the employees for the given timeframe in a Gantt

chart format. The Chart Drawer window can be easily launched from the Manager Toolkit.

Screenshot 1: Manager Toolkit

d Or Human Resources

Stellenbosch University http://scholar.sun.ac.za

10 | P a g e

The most important function available from the Manager Toolkit is the ability to intelligently find

people to do tasks. Once the user launches the appropriate window, the user can select to either

view all tasks, or only view the unassigned tasks. From this list the manager can select any number

of tasks that he/she wants assigned, then toggle different search filters on or off, or change their

relative importancee. The software then takes the manager’s input, searches the database for

the most appropriate candidates based on the search criteria, and displays the options on screen.

The best choice according to the user’s criteria for each task is automatically selected, but the

manager can make individual allocation changes if he/she so desires. If the settings are accepted

and the procedure started, the task allocations are stored as provisional bookings. Future

improvements may enable users to take these provisional bookings and create cost estimates for

how much a project is going to cost the organisation in terms of human resources. If the manager

is satisfied with the allocations, it is possible to upgrade these provisional bookings to normal

bookings. It is important to note that when a search is completed, it is entirely possible that no

suitable candidates will be found. In such a case it is possible that the organisation simply does

not have the manpower to complete the tasks and indicates that outsourcing the tasks is a mustf.

If the manager does not recommend outsourcing the task, it is still possible to forcibly allocate a

task to an employee, it will however result in their workload jumping to an above acceptable

level. This level of workload acceptance can be manually determined by the manager.

2.1.3 CHART DRAWER

The Chart Drawer is the part of the software that project managers use to draw up charts.

Multiple charts can be created and stored for use in reports. While the user is still busy setting

up the report, the charts can be saved to file, and restored later to continue working on them.

When the user is done, all the charts can be exported to a single PDF for use in a report. When

creating a chart, the user can select a graph from a short list of frequently used charts, e.g. work-

breakdown pie chart, or he/she can create a unique chart. It is easy to select a chart type and the

e The search method will be discussed in more detail in chapter 6.2 Optimisation and Finding People

f Hiring an external resource

Stellenbosch University http://scholar.sun.ac.za

11 | P a g e

comparing data sets from handy drop down lists. After the comparable data sets have been

selected, an automatic database query retrieves the relevant results from the persistent

database. Different chart specific options can be toggled to customise the resulting graph. Once

the chart is created, the user can zoom in to specific parts, change axes information or even

change the colours used. These visual alterations will be remembered by software and can be

exported to a PDF when so desired.

Screenshot 2: Chart Drawer

Stellenbosch University http://scholar.sun.ac.za

12 | P a g e

2.2 DATABASE

Traditional Human Resource databases track benefit information, data of newly hired personnel,

performance reviews, exhaustive family information and perhaps salary and job history [16]. The

database that is necessary for this software implementation does not need most of this

information and is not meant to replace these already existing employee databases.

A new database was developed to ensure all the necessary data is present. Storing the same data

multiple times is traditionally perceived as something to be avoided at all costs, however, the

nature of creating a new isolated database means that data duplication across multiple databases

is possible and even an unfortunate necessity.

The database was designed to be able to incorporate any future additions to the model and

software. It not only stores basic employee data, but also tracks the projects and tasks completed

by the organisation. This additional information can later be used to help serve as an engineering

accounting platform by enabling the calculation of how much was spent on human resources.

Functionality for doing a personnel allocation halfway, then stopping to be continued later was

also implemented. Different task allocation scenarios can be created and quoted, to test the

viability of projects.

SQL is a language that can easily communicate with databases. It is aimed to store, manipulate

and query data stored in relational databases [17]

Stellenbosch University http://scholar.sun.ac.za

13 | P a g e

3. QUANTIFYING WORKLOAD

3.1 INTRODUCING WORKLOAD

An impartial method to determine who should be assigned more tasks and who should not, needs

to be developed. Although current heuristic methods have been working surprisingly well, no

task-assignment method could be found in the literature that considers individuals, as well as the

relative difficulty of specific tasks, to more accurately decide with whom it is safe to leave a task.

In this section such a method is developed. It is based on the workload, defined below, that

individuals experience. It is very important to note that in order to make the method at all viable

for use in industry, only data that is reasonably easy to capture should be used. If this were not

the case and the method required a total restructuring of human resource management,

combined with a multitude of additional costs, it will not be implemented and the industry will

carry on business as usual.

The term used to describe how busy a person is g , is workload. An individual’s workload is

represented as a percentage and is defined as the amount of work he/she has to do in the time

available:

workload =
project hours per day

hours in work day
∗ 100%,

Equation 1: Workload definition

Project hours are the sum of hours an individual is expected to work on all tasks assigned to him.

Work hours are defined as the number of hours an individual is expected to work in a day. The

higher an individual's workload is, the busier he/she will be, which increases the risk when a new

task is assigned to him. The lower the workload, the less an individual has to do, and the safer it

is to leave a task with him/her. Workload, as defined, is a very simple indicator that can be used

in the allocation of tasks. However, there are a number of factors that influence the workload that

an individual experiences. For example, if a person has too many tasks he feels overwhelmed,

even though his maximum computed workload is limited to 100%. The components that make up

g As well as an indication whether said person can handle additional tasks

Stellenbosch University http://scholar.sun.ac.za

14 | P a g e

an individual’s perceived workload are considered in the following section.

3.2 COMPONENTS OF PERCEIVED WORKLOAD

The workload equation 1 provides a basis for task allocation, but a number of components make

up the perceived workload, or PWL, that an individual experiences. These components have to

be accounted for in the computation of workload in order to make it useful for task allocation.

Since the components have to account for perceptions they are difficult to quantify. A novel

approach was devised by the researcher: For each component a suitable equation was identified

which qualitatively describes the influence that the component has on the workload that an

individual experiences. The parameters of the equation were then adjusted, on the basis of

investigations, regarding the magnitude that the component has on the actual workload.

PWL is thus defined as the sum of a few contributing components scaled to adjust their

magnitude:

PWL = ∑(workload components)

Equation 2: Perceived workload definition

The various components and the qualitative equations used to describe them are defined in the

sub-sections below.

Stellenbosch University http://scholar.sun.ac.za

15 | P a g e

3.2.1 PERCEIVED WORKLOAD COMPONENT: WORKDAY LENGTH

The number of hours in a person’s workday directly enters the workload equation 1. Since the

calculation of workload specifically aims to facilitate project management in engineering design

offices, it may be assumed that reasonably standard office hours are kept. However, depending

on the amount of work to be done, office hours may be limited a little, or it may creep upwards

when the office is under pressure. If the office does not have enough work, task allocation is not

a problem and consequently that scenario is not investigated further. However, when work

pressure is mounting, proper task allocation is important. In this situation individuals feel the

pressure and the length of their work days start to increase. This has an influence on their

perceived workloads, which has to be accounted for when actual workloads are computed.

An equation that measures the effect of work day length on workload should have the following

properties:

 if a person is on leave or sick his work day has zero hours and the effect is zero.

 if a person only works a few hours a day, the change between not working at all and

working one or two hours is dramatic, i.e. his PWL increases rapidly.

 if a person who works a normal 8-hour day stays on to work another hour or two, his PWL

does not increase as rapidly as the case described above.

The function of equation 3 has the required properties:

workday length, component of PWL = {
0, 𝐿 = 0
0, 𝑛 = 0

 log𝑎(𝐿 + 1) , 𝑛 ≠ 0

Equation 3: Contribution of workday length on perceived workload

in which L = work day length,

 a = parameter that adjusts the gradient of the function,

 L+1 is taken to ensure the function is zero when L = 0,

 n = number of tasks assigned to the person under consideration

Stellenbosch University http://scholar.sun.ac.za

16 | P a g e

Equation 3 is shown graphically in graph 1, indicating that the equation has all the properties

described above.

3.2.2 PERCEIVED WORKLOAD COMPONENT: SLACK

Most engineering companies have lists of typical tasks and the average time each task takes from

start to completion. As it is very subjective to attach a numerical value to any given task to

indicate task difficulty, task duration can be used as an unbiased approximation for how difficult

a task is supposed to be. These duration values are usually for the company as a whole and does

not take the circumstances of individual branch offices into account. Take, for example, a task

“Weekly hour-long meeting”. As the name clearly states, this task should take an hour to

complete. However, what if the office where the individual that is responsible for the task is on

the opposite side of the city from where the meeting is held? The time it takes to drive to the

meeting would be considered as a task overhead. Another example of overhead would be the

additional time it takes between requesting old paper building plans locked up at head-office and

physically receiving a scanned copy via email. A similar task overhead can be imagined for any

type of task, whether it is time to actually get to where the task must be completed, or some

other difficulty specific to an office.

The following expression formulates the relationship between total task duration and task

overhead mathematically:

C
o

n
tr

ib
u

ti
o

n
 t

o
 p

er
ce

iv
ed

w

o
rk

lo
ad

Length of workday (L)

log𝑎(L+1)

Graph 1: Contribution of workday length to perceived workload

Stellenbosch University http://scholar.sun.ac.za

17 | P a g e

total task duration = 𝑡𝑖(1 + 𝑜𝑖),

Equation 4: Total task duration

Where, 𝑡𝑖 is the statistical average task duration of a specific task and 𝑜𝑖 the overhead attached

to that task.

The effect that task overhead has on individuals’ PWL is that it impacts on their “free time” in the

workday. We call this “free time” an individual’s slack, defined as:

𝑆𝑙𝑎𝑐𝑘 = 𝐿 −∑(𝑡𝑖(1 + 𝑜𝑖)

𝑛

𝑖=1

Equation 5: Calculation of an individual’s slack

In which ti = duration of task i assigned to individual,

 n = number of tasks assigned to a person,

 oi = overhead of task ti for the office where the individual works,

 L = length of work day.

An equation is required that measures the effect of an individual’s slack on his PWL. The equation

should have the following properties:

 If the slack is significant, a small change in slack has a negligible effect on PWL.

 As the slack becomes small, a change in slack starts to have an effect on PWL.

 If the slack becomes negative, i.e. the individual has to start working overtime, the effect

on PWL increases rapidly.

The exponential function of equation 5 has the required properties:

slack, component of PWL = (
1

𝑏
)
𝐿−∑ (𝑡𝑖(1+𝑜𝑖)

𝑛
𝑖=1

= (
1

𝑏
)
𝑠𝑙𝑎𝑐𝑘

,

Equation 6: Preliminary contribution of slack on perceived workload

In which b = parameter that adjusts the growth of the function.

Stellenbosch University http://scholar.sun.ac.za

18 | P a g e

Equation 6 is shown graphically in graph 2, indicating that the equation has the required

properties.

Equation 6 has to deal with two special cases, namely when an individual’s workday length is zero

and when he has no tasks. In both cases the effect on workload should be zero. Equation 6 is

consequently adapted as follows to form equation 7:

slack, component of PWL =

(

{

0, 𝐿 = 0

0, ∑(𝑡𝑖(1 + 𝑜𝑖)

𝑛

𝑖=1

= 0

1

𝑏

(𝑇−∑ (𝑡𝑖(1+𝑜𝑖)
𝑛
𝑖=1

, ∑(𝑡𝑖(1 + 𝑜𝑖)

𝑛

𝑖=1

≠ 0
)

Equation 7: Contribution of slack on perceived workload

C
o

n
tr

ib
u

ti
o

n
 t

o
 p

er
ce

iv
ed

 w
o

rk
lo

ad

Slack (hours)

(1/𝑏)(slack)

Graph 2: Contribution of slack on perceived workload

Stellenbosch University http://scholar.sun.ac.za

19 | P a g e

3.2.3 PERCEIVED WORKLOAD COMPONENT: TASK STIFFNESS

In the previous section task overhead was introduced, which accounts for variability in task

duration due to the work environment. This section introduces an overhead due to the nature of

the task itself and is characterised by the so-called task stiffness. Stiffness may also be called “a

lack of permeability” since it is a measure which indicates whether a task can be partially

completed while the responsible individual also works on other tasks. As such it indicates

whether a task can be broken up into segments, or if it has to be completed from start to finish

without any interruptions. A stiffness of 1.0 indicates that a task has to be completed fully before

moving on, while a stiffness of 0 indicates that the task can be left at any time to work on other

tasks. This clearly has an influence on how much an individual can fit into a day and is thus an

important influencing factor on workload. Task stiffness will, however, be a measure that will be

more useful when trying to restructure task allocation and balance workloads. Task stiffness only

has an effect on PWL when an individual is assigned more than one task at the same time. The

more tasks, the greater the effect of stiff tasks will be. It is assumed that the stiffest task among

all tasks will dictate the difficulty in completing other tasks.

An equation that measures the contribution of task stiffness to PWL should have the following

properties:

 is only applicable when an individual is assigned more than one task.

 the effect should increase linearly with increasing task stiffness.

 the gradient of the equation is dependent on the number of assigned tasks, with the

effect of task stiffness being greater for a larger number of tasks.

 only the highest stiffness among all assigned tasks should be significant.

 needs some constant to explicitly control the contribution of stiffness to PWL.

The following equation is proposed:

task stiffness, component of PWL = {
0, 𝑛 ≤ 1

𝑒 ∗ 𝑠𝑚𝑎𝑥 ∗ 𝑛
𝑑 , 𝑛 > 1

Equation 8: The effect of task stiffness on perceived workload

Stellenbosch University http://scholar.sun.ac.za

20 | P a g e

In which smax = the highest task stiffness among all tasks assigned to the individual,

 n = the number of assigned tasks,

 d = parameter that adjusts the growth of the function,

 e = parameter that adjusts the contribution of stiffness to PWL.

Equation 8 is shown graphically in graph 3, indicating that the equation has the properties

described above.

Graph 3: The effect of task stiffness on perceived workload

C
o

n
tr

ib
u

ti
o

n
 t

o
 p

er
ce

iv
e

d
 w

o
rk

lo
ad

Task stiffness

e*smax*nd

1 2 3 4 5

Stellenbosch University http://scholar.sun.ac.za

21 | P a g e

3.2.4 PERCEIVED WORKLOAD COMPONENT: NUMBER OF ASSIGNED TASKS

The contribution that the number of tasks assigned to an individual has on his/her PWL is

investigated in this section. It is believed that when two individuals are compared, the individual

with more tasks assigned to him will be busier, especially when they work the same amount of

time. This is important as it is very unlikely for individuals to ever only have one task to do in a

day. It is a well-known time saving method to group tasks together in batches so that they can

be focused on and completed together.

In a study done by Microsoft Research called “A Diary Study of Task Switching and Interruptions”

[18], it is documented that information workers switch among tasks a significant number of times

per day. The study shows that tasks which are returned to later were more complex, on average,

than shorter-term tasks. Complex tasks which are significantly lengthier in duration were

obviously interrupted more. Because the tasks were longer the tasks experienced more revisits

by workers after attention switches. These complex tasks were also rated to be harder to return

to than shorter term projects.

It is reasonable to assume that engineering workers will behave similarly, namely that the more

tasks an individual have to do, the more attention switching will happen during a day. According

to the definition of basic workload, the number of tasks do not have an effect, but due to

attention switching an individual will feel busier. Therefore the number of tasks has an effect on

an individual’s PWL, as illustrated in the following example: Person A has one task to do and the

duration of that task is just as long as his workday. Assume workday duration is 8 hours. According

to our earlier definition of workload, Person A has 8 hours of work to do in 8 hours, which implies

that he/she is 100% loaded. Person B has two tasks, both with duration of 4 hours each. Assuming

the two people work in the same office, and have the same work hours, it is believed that Person

B will feel slightly more loaded than Person A. This suggests that Person B could, for argument’s

sake, be 102% loaded. Just how much of a difference additional tasks make will be discussed

later.

Stellenbosch University http://scholar.sun.ac.za

22 | P a g e

An equation that measures the effect of increasing the number of tasks assigned to an individual

on PWL should have the following properties:

 if an individual has zero tasks assigned to him/her, the contribution to PWL should be

zero.

 the contribution of increasing the number of tasks assigned should grow exponentially.

 a low number of tasks should result in less attention switching, resulting in a flat curve

 a high number of tasks should result in more attention switching, with each added task

swelling the growth of PWL and increasing the curve gradient.

The exponential function of equation 9 has the required properties:

number of tasks, component of PWL = {
0, 𝑛 = 0

𝑛
𝑛
𝑐⁄ , 𝑛 ≠ 0

Equation 9: The contribution of increasing the number of assigned tasks on perceived workload

In which n = number of assigned tasks,

 c = parameter that adjusts the growth of the function.

Equation 9 is shown graphically in graph 4, indicating that the equation has the properties

described above.

C
o

n
tr

ib
u

ti
o

n
 t

o
 p

er
ce

iv
ed

w

o
rk

lo
ad

Number of tasks (n)

𝑛(𝑛⁄𝑐)

Graph 4: The contribution of increasing the number of assigned tasks on perceived workload

Stellenbosch University http://scholar.sun.ac.za

23 | P a g e

3.2.5 IDLE FACTOR

The last component that needs to be added to the method of calculating PWL is an individual’s

idle factor. Idle factor is the percentage of a work day that an individual is expected to be idle.

This can be when people take bathroom or coffee brakes, or time wasted browsing the internet.

There are some documented statistics suggesting a typical idle factor value [19], but again it will

be up to the project manager in question to personalise this value for the formula to be as

effective as possible. The idle factor can also be used as an external manipulation tool to alter

the values given by the formula. Project managers may want to do this if they want their

employees to work a bit more, or a bit less. The idle factor will just be shown as 𝐼𝐹 in the

equation. To preserve the definition of the equation, the following mathematical form shall be

used:

Idle factor = {
0, 𝐿 = 0
0, 𝑛 = 0
𝐼𝐹, 𝑛 ≠ 0

Equation 10: Contribution of individual idle factor to perceived workload

Stellenbosch University http://scholar.sun.ac.za

24 | P a g e

3.3 WORKER EFFICIENCY

The complexity of a task has an influence on workload, since it directly determines the duration

of the task. The challenge with task complexity and duration is that it will be experienced

differently by different individuals, raising the question of how difficult an individual will find a

specific task. The answer to this dilemma lies in human psychology and experience. To really find

out how difficult a task is for individuals, extensive psychological tests will have to be performed,

trying to identify how a person performs in each test under different circumstances. Since the

aim is to develop a method that does not extraneously modify the daily running of a company,

trying to compute exact task difficulty for each individual should be avoided. Where task

overhead provides a way to customise task duration and accounts for variability inherent to

offices, worker efficiency caters for variability inherent to individuals. The variability measure that

is easily available and can be reasonably estimated, is an individual’s efficiency. All the unknown

or unreachable psychological factors boil down to the idea that they influence how effective or

efficient an individual is at his/her work. The less efficient an individual is at doing tasks, the longer

these tasks will take to complete, resulting in him/her feeling overwhelmed and having an effect

on his/her PWL. It is possible to approximate efficiency the same way in which task overhead

affects the duration of a task. It can, however, be simplified to a single scale factor which is easier

to incorporate into the PWL equation. It is believed that if an individual is infinitely efficient,

he/she would be able to do any amount of work in the allotted time, resulting in a PWL of zero.

With the same logic, if an individual is infinitely inefficient, no amount of time in the world would

be enough to complete a task. This implies a directly linear relationship between worker efficiency

and PWL, as the more efficient one becomes the more work one can fit into a day.

The term that indicates the effect of worker efficiency on PWL should have the following

properties:

 the effect on PWL should result in a workload of zero if an individual has zero inefficiency.

 the effect on PWL should result in a maximum workload if an individual has zero

efficiency, i.e. maximum inefficiency.

Stellenbosch University http://scholar.sun.ac.za

25 | P a g e

Worker efficiency, or inefficiency, is measured using the so-called time inefficiency factor. This

factor is defined as the fraction of an hour an individual spends completing a statistical hour of

workh. For example: if an individual works twice as fast as normal, the factor would be 0.5 and

would be 2 if an individual worked twice as slow.

The following expression formulates the time inefficiency factor mathematically:

𝑡ineff =
hours required to complete one hour of work

1 hour

Equation 11: Time inefficiency factor

While the data used in the components described before reside in the projects data store of the

company, a person’s efficiency or inefficiency is a little harder to obtain. There are many ways to

approximate work efficiency, for example having employees fill out time sheets or just

approximating it in-situi. Ultimately it is up to the project managers to find and implement a

suitable method to gather this data.

The effect of worker inefficiency on PWL is shown graphically in graph 5:

Graph 5: Linear relationship between time inefficiency factor and perceived workload

h The average time it takes to complete a hour long task, according to statistical data
i Guessing efficiency on the fly without prior thought or calculations

Pe
rc

ei
ve

d
 w

o
rk

lo
ad

Time inefficiency factor

Time inefficiency factor on perceived workload

Stellenbosch University http://scholar.sun.ac.za

26 | P a g e

3.4 FINAL FORM OF PERCEVIED WORKLOAD EQUATION

The components making up PWL have been described above, as well as worker efficiency. In this

section they are entered into an equation for PWL. The nature and definition of each component

determine its unit of contribution to PWL. The effect of worker efficiency and the idleness

component have to be made special mention of. Due to the nature of worker efficiency, it

influences all the components except idleness. If an individual is more efficient, a global effect

will be felt across all components, reducing overall PWL. An individual cannot, however, be more

efficient at being idle. An improved expression for PWL is:

PWL = 𝑡ineff ∗∑(components) + Idleness

= 𝑡ineff

∗

(

{

0, 𝐿 = 0

0, ∑(𝑡𝑖(1 + 𝑜𝑖)

𝑛

𝑖=1

= 0

1

𝑏

(𝐿−∑ (𝑡𝑖(1+𝑜𝑖)
𝑛
𝑖=1

, ∑(𝑡𝑖(1 + 𝑜𝑖)

𝑛

𝑖=1

≠ 0

+ {
0, 𝐿 = 0
0, 𝑛 = 0

 log𝑎(𝐿 + 1) , 𝑛 ≠ 0

+ ({
0, 𝑛 ≤ 1

𝑒 ∗ 𝑠𝑚𝑎𝑥 ∗ 𝑛
𝑑 , 𝑛 > 1

) + {
0, 𝑛 = 0

𝑛
𝑛
𝑐⁄ , 𝑛 ≠ 0

)

+ {
0, 𝐿 = 0
0, 𝑛 = 0
𝐼𝐹, 𝑛 ≠ 0

Equation 12: Individual perceived workload equation framework

In equation 12 above it is assumed that all of the components have an equal contribution to the

PWL, but this is not the case. Some components are more important than others in determining

the PWL. What these divisions are exactly, are unknown as of yet and each component is assigned

weight to alter its contribution. The weights have to be a value between 0 and 1.0, sum up 1.0,

and ensure that the PWL is always equivalent to basic workload.

Stellenbosch University http://scholar.sun.ac.za

27 | P a g e

It was found, however, that if the component governing the effect of task stiffness is scaled

alongside the other components, the equation returns illogical results when task stiffness does

not play a role in the equation, i.e. for zero or one assigned tasks. The parameter e, that adjusts

the contribution of stiffness to PWL, already scales the component with a fixed amount.

Consequently it is unnecessary to scale it again with a weight. The final form the equation is:

PWL = 𝑡ineff ∗

(

(

{

0, 𝐿 = 0

0, ∑(𝑡𝑖(1 + 𝑜𝑖)

𝑛

𝑖=1

= 0

1

𝑏

(𝐿−∑ (𝑡𝑖(1+𝑜𝑖)
𝑛
𝑖=1

, ∑(𝑡𝑖(1 + 𝑜𝑖)

𝑛

𝑖=1

≠ 0
)

⏞
slack

(𝐹1)

+ ({
0, 𝐿 = 0
0, 𝑛 = 0

 log𝑎(𝐿 + 1) , 𝑛 ≠ 0⏟
workday length

)(𝐹2) + ({
0, 𝑛 = 0

𝑛
𝑛
𝑐⁄ , 𝑛 ≠ 0

)
⏟

number of tasks

(𝐹3)

+ ({
0, 𝑛 ≤ 1

𝑒 ∗ 𝑠𝑚𝑎𝑥 ∗ 𝑛
𝑑 , 𝑛 > 1

)
⏟

stiffness

)

+ {
0, 𝐿 = 0
0, 𝑛 = 0
𝐼𝐹, 𝑛 ≠ 0⏟

idleness

Equation 13: Individual workload equation combined – final form

Stellenbosch University http://scholar.sun.ac.za

28 | P a g e

3.5 CHOOSING CONSTANTS

The various components of the equation to calculate PWL have been described and formulated.

The equation contains parameters and weights that must be assigned or determined in order to

quantify the PWL. Parameters can be chosen intelligently or calculated according to tendencies

inherent to the equation, as described later.

3.5.1 WEIGHTS

The weight factors of equation 13 will now be examined to determine their values. Within the

slack-component, task duration and task overhead are combined to form the concept of slack.

This is the only component that incorporates task duration. Since task duration is the only direct

measurement of unbiased task difficulty, it is believed that the slack-component should receive

precedence over any other component. This means that the weight factor governing the slack-

component, F1, should be the largest. The component of task stiffness, although important, is not

assigned a weight factor, as described before.

It is important to note that as the nature of this equation is qualitative. The exact values do not

matter overly much, as long as results are correct relative to each other. The weights will initially

be chosen, then analysed in more detail in a sensitivity analysis that follows. For now j , the

relationship between F1 and F2 is chosen to be 𝐹1 = 1.923 ∗ 𝐹2k. F3 follows from:

1 = 𝐹1 + 𝐹2 + 𝐹3

Equation 14: Balancing weight factors

Then, if F1 = 0.5 it follows that F2 = 0.26 and F3 = 0.24, in compliance with the argument above.

j This relationship may change, discussed later
k The ratio of F1 to F2 was chosen to result in a reasonable distribution of weights, starting with F1 as 0.5.

Stellenbosch University http://scholar.sun.ac.za

29 | P a g e

3.5.2 COMPONENT PARAMETERS

Each of the components that contribute to the PWL has one or more parameters that must be

qualified. The choice of values is described below.

Referring to the workday length component of equation 13, the constant a defines the shape of

the logarithmic function and dictates the effect of workday duration on PWL. If all other

components and factors are neglected, the value of a should yield a PWL of 1 for a given choice

of standard workday length T. For T = 8, the PWL equals 1, i.e. it equals the basic workload, if a =

9.0.

The slack-component is a function of the parameter b. Keeping the standard 8 hour workday in

mind, a value for b must now be chosen. If an individual only spends half of his day on tasks, it

seems intuitive that he/she should only be 50% loaded. Half a day, according to the pre-defined

standard workday length, is 4 hours. If we choose 1/b as 0.841, the function yields 50% at 4 hours

free time and also approaches zero relatively quickly. This constant would be a perfect fit if not

for the very steep incline for negative slack. The formula makes the effect of an individual having

to work 1 hour overtime result in an 18% jump in PWL. Two hours of overtime results in a 40%

increase in PWL. Although the function was chosen specifically to load overtime heavily, these

values are too high. As a result the function for slack has to be split into two parts: the current

part for positive values of slack, but a modified expression that will yield more realistic values for

negative values of slack.

In a study performed by Revay and Associates called “Calculating Loss of Productivity Due to

Overtime Using Published Charts – Fact or Fiction” [20] the effect of working overtime was

investigated. Revay and Associates found that a 50 hours per week work schedule results in a loss

of productivity of 10 percent on average. A 60 hour week results in a 17 percent loss, while a 70

hour week results in a 31 percent loss. These weekly work hours can be simplified as 2 hours

overtime per day, 4 hours per day and 6 hours per day respectively. If this growth is modelled

using an exponential function, the value of 1/b that yields in values closest to those claimed by

Revay and Associates is 0.959. The split expression for slack is therefore:

Stellenbosch University http://scholar.sun.ac.za

30 | P a g e

Slack =

(

{

0, 𝑇 = 0

0, ∑(𝑡𝑖(1 + 𝑜𝑖)

𝑛

𝑖=1

= 0

0.841(𝑇−∑ (𝑡𝑖(1+𝑜𝑖)
𝑛
𝑖=1 , ∑(𝑡𝑖(1 + 𝑜𝑖)

𝑛

𝑖=1

≤ 𝑇

0.959(𝑇−∑ (𝑡𝑖(1+𝑜𝑖)
𝑛
𝑖=1 , ∑(𝑡𝑖(1 + 𝑜𝑖)

𝑛

𝑖=1

> 𝑇
)

Equation 15: Contribution of slack on perceived workload

Graph 6 visually represents a typical result from equation 15:

As equation 17 above is an empirical equation, it is not optimised or intended to be used for very

high or very low values of slack. It does not take into account physical limitations, for example the

fact that it is impossible for a person to have more than 24 hours free per day, or that workday

plus overtime duration cannot exceed 24 hours.

The parameters of equation 13 that still have to be determined are c, used in the expression for

the number of assigned tasks and d and e used in the expression for task stiffness. Although there

C
o

n
tr

ib
u

ti
o

n
 t

o
 p

er
ce

iv
ed

 w
o

rk
lo

ad

slack

Graph 6: Contribution of slack on perceived workload

Stellenbosch University http://scholar.sun.ac.za

31 | P a g e

are many studies and theories about human psychologyl that support the assumption that PWL

increases with an increasing number of tasks, no studies based on quantitative data exist which

show the actual effect. Because of this, a value for c has to be found in another way. Since the

parameters c, d and e determine the effect of added tasks on an individual’s PWL, they have to

be solved simultaneously. Since parameter e serves as the weight factor for task stiffness, its value

is expected to be small, otherwise stiffness will overwhelm the equation.

Given equation 13, and a task stiffness of zero, the values c = 33.96, d = 3.405 and e = 0.000472

result in a PWL of 101.0% for two assigned tasks, and 109% for six assigned tasks. These results

were obtained by solving for a minimum value of PWL for five assigned tasks using GRG Nonlinear

optimisationm. When stiffness is fixed at 1.0, the maximum stiffness, two tasks render a PWL of

101.5%, while 6 tasks render a PWL of 130%.

A realistic value for stiffness is 0.5. When this is the case, two tasks results in a PWL of 101.25%,

and six tasks 119.5%. These values seem reasonable, and were tested against opinions of

managers, as described in 3.8.

The GRG method allows nonlinear constraints and arbitrary bounds on an equation’s variables.

The idea of the method is to choose the independent variables to be the reduced gradient. A step

size between the boundaries is then chosen and for each step a correction procedure applied to

optimize the answer. The calculated gradient is used in the correction.

l See “Stroop effect” [32]
m Generalized reduced gradient method

Stellenbosch University http://scholar.sun.ac.za

32 | P a g e

3.6 SENSITIVITY ANALYSIS

The validity of the weight factors and component parameters of the PWL equation 13 have to be

evaluated. Keeping in mind that exact quantification of the PWL is not crucial, it is appropriate to

determine how sensitive the expression is to the various weight factors and parameters. If the

sensitivity to a certain factor or parameter is low, its exact value is less important. However, if a

small change is the value of a weight factor or parameter causes a significant change in the value

of the PWL, the value of that factor or parameter has to be considered with more care.

All sensitivity analyses are performed by taking the PWL equation, varying one specific variable,

or set of variables, while keeping other variables constant and plotting how the change influences

PWL. PWL is always plotted against the number of assigned tasks, since task assignment is the

core issue. Other variables PWL could be plotted against include workday length, stiffness or

slack. However these variables cannot be controlled by the project manager in the same way that

the number of assigned tasks can be controlled. Consequently their effect is the same for all

members of a project team. It should be remembered that they do have an effect, and as such

are considered in the calculation. However, no sensitivity analyses were performed for these

variables.

3.6.1 SENSITIVITY TO THE WEIGHT FACTORS

In this analysis the workload growth between 1 and 2 tasks was kept at a constant 1.25% for a

fixed stiffness of 0.5. To accomplish this, the constant c, which parameterises the number of tasks

effect, was recalculated for various combinations of the weight factors. This means that a

workload of 101.25%, when two tasks were assigned, was always guaranteed for this analysis. If

this was not the case no real comparison could be made to how the weight factors influence the

growth of PWL. Workday length was set to 8 hours, the total number of hours worked was always

adjusted to sum to 8 and all other constants were chosen as defined in section Component

Parameters.

Stellenbosch University http://scholar.sun.ac.za

33 | P a g e

A graphical representation of valid weight distributions for the following relationship: 𝐹1 =

 1.923 ∗ 𝐹2 is shown in graph 7. Valid combinations are obtained when weights add up to 1.0, are

not negative and the following relationship: F1 > F2 > F3 applies. This results in the following valid

tuples of (F1, F2, F3): (0.5, 0.26, 0.24), (0.55, 0.29, 0.16), (0.6, 0.31, 0.24) and (0.65, 0.34, 0.01).

Graph 7: Perceived workload vs number of allocated tasks – F1=1.923*F2

Graph 7 indicates the PWL is not sensitive to the weight factor values when the number of tasks

are varied, except when F3 becomes very small. Since F3 weighs the number of tasks component,

small values of F3 effectively removes this component from PWL and the change in PWL is then

the result of the ratio of F1 : F2.

The effect of changing the ratio F1 : F2 is shown in Graphs 8 and 9. It indicates that PWL is not

sensitive to this ratio.

1

1,2

1,4

1,6

1,8

2

2,2

2,4

2,6

0 1 2 3 4 5 6

Pe
rc

ev
ie

d
 w

o
rk

lo
ad

Number of assigned tasks

F1=1.923*F2

0.50 0.26 0.24 0.55 0.29 0.16 0.60 0.31 0.09 0.65 0.34 0.01

Stellenbosch University http://scholar.sun.ac.za

34 | P a g e

Valid tuples of (F1, F2, F3) for the ratio F1 = 1.1*F2 are: (0.4, 0.36, 0.24), (0.45, 0.41, 0.14) and (0.5,

0.45, 0.5).

Graph 8: Perceived workload vs number of allocated tasks – F1=1.1*F2

Valid tuples of (F1, F2, F3) for the ratio F1 = 1.5*F2 are: (0.45, 0.3, 0.25), (0.5, 0.33, 0.14) and (0.55,

0.37, 0.08).

Graph 9: Perceived workload vs number of allocated tasks – F1=1.5*F2

1

1,05

1,1

1,15

1,2

1,25

1,3

0 1 2 3 4 5 6

Pe
rc

ev
ie

d
 w

o
rk

lo
ad

Number of assigned tasks

F1 = 1.1*F2

0.40 0.36 0.24 0.45 0.41 0.14 0.50 0.45 0.05

1

1,05

1,1

1,15

1,2

1,25

0 1 2 3 4 5 6

Pe
rc

ev
ie

d
 w

o
rk

lo
ad

Number of assigned tasks

F1=1.5*F2

0.45 0.30 0.25 0.50 0.33 0.17 0.55 0.37 0.08

Stellenbosch University http://scholar.sun.ac.za

35 | P a g e

When the restriction: F1 > F2 > F3 is waved, results for the relationship 𝐹1 = 1.923 ∗ 𝐹2 are as

follows:

Graph 10: Perceived workload vs number of allocated tasks – no relationship between F1, F2 and F3

Due to the number of results the legend in graph 10 is omitted. The graph shows the same

grouping as the previous graphs, indicating that the restriction of F1 > F2 > F3 is not critical. This

means that the choice of the weight parameters as F1 = 0.5, F2 = 0.26 and F3 = 0.24 were

acceptable, since changing these values will only have a small effect on the workload. It was found

that whatever the changes in parameter values, the calculated PWL always change in relation to

each other. As was previously stated, as long as this is the case, the values remain relevant.

1

1,05

1,1

1,15

1,2

1,25

0 1 2 3 4 5 6

Pe
rc

ei
ve

d
 w

o
rk

lo
ad

Number of assigned tasks

F1+F2+F3 = 1

Stellenbosch University http://scholar.sun.ac.za

36 | P a g e

3.6.2 SENSITIVITY TO WORKDAY DURATION LOGARITHM BASE a

To test the sensitivity of the logarithm base number controlling the effect of workday duration on

PWL, the base number a was varied and PWL plotted as a function of the number of assigned

tasks. Stiffness of all tasks was fixed at 0.5, workday length was set to 8 hours, the total amount

of hours worked was always adjusted to sum to 8 and all other constants were chosen as defined

in section 3.5.2 Component Parameters. Graph 11 shows the PWL for different values of a:

It is found that the change in PWL diminishes for values of a higher than 6. In a previous section

a was chosen as 9 by way of logical deduction. By looking at this graph it can be seen that if the

chosen value was 8 or 10 instead, it would make little to no difference to the PWL. This means

that the initial choice of a = 9 is acceptable.

0,9

1

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

1,9

0 1 2 3 4 5 6

Pe
rc

ei
ve

d
 w

o
rk

lo
ad

Number of assigned tasks

Changing values of a

2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20

2

4

3
2

Graph 11: Perceived workload vs number of allocated tasks – changing values of constant a

Stellenbosch University http://scholar.sun.ac.za

37 | P a g e

3.6.3 SENSITIVITY TO SLACK EXPONENT BASE 1/b

To test the sensitivity of the exponent base number controlling the effect of task slack on PWL

the exponent base number b was varied. Stiffness of all tasks was fixed at 0.5, workday length

was set to 8 hours, the total number of hours worked was always adjusted to sum to 7, one hour

less than a full day’s work, and all other constants were chosen as defined in section 3.5.2

Component Parameters. Graph 12 shows PWL for different values of 1/b:

If the values of 1/b are varied between 0.1 and 1, results for perceived workload vary between

70% and 180%. This is a big difference and implies that the equation is sensitive to changing this

value. Values are however parallel to one another, meaning that chaning the 1/b is merely a

matter of scale. The PWL is less sensitive for low values of 1/b, i.e. 1/b < 0.8. The chosen value of

0,45

0,65

0,85

1,05

1,25

1,45

1,65

1,85

0 1 2 3 4 5 6

Pe
rc

ei
ve

d
 w

o
rk

lo
ad

Number of assigned tasks

Changing values of 1/b with positive slack

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Graph 12: Perceived workload vs number of allocated tasks – changing values of constant 1/b

Stellenbosch University http://scholar.sun.ac.za

38 | P a g e

0.841 is slightly bigger, but was chosen to fulfil a logical need, as described in section 3.5.2

Component Parameters.

To investigiate the case where overtime is involved, task durations were changed to yield 10

hours, i.e. 2 hours overtime per day.

If the value of 1/b is again varied, PWL groups together for values approaching 1, was shown in

graph 13, with very little difference between choosing a value of 0.9 or 1. This suggests that if the

chosen value of 0.959 is changed slightly, the effect will be insignificant.

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7

Pe
rc

ei
ve

d
 w

o
rk

lo
ad

Number of assigned tasks

Changing values of 1/b with negative slack

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Graph 13: Perceived workload vs number of allocated tasks – changing values of constant 1/b for overtime

Stellenbosch University http://scholar.sun.ac.za

39 | P a g e

3.6.4 SENSITIVITY TO EXPONENT DENOMINATOR c

To test the sensitivity of the exponent denominator governing the effect of additional tasks on

PWL, the exponent denominator c was varied. Stiffness of tasks was fixed at 0.5, workday length

was set to 8 hours, the total amount of hours worked was always adjusted to sum to 8 hours, and

all other constants were chosen as defined in section 3.5.2 Component Parameters. Graph 14

shows the results graphically for different values of c:

Graph 14 shows that the greater the value of c becomes, the smaller the difference between

values become. This means that the chosen value of 33.92 is acceptable and PWL is not sensitive

to small changes of this value.

1

1,05

1,1

1,15

1,2

1,25

1,3

1,35

1,4

0 1 2 3 4 5 6

Pe
rc

ei
ve

d
 w

o
rk

lo
ad

Number of assigned tasks

Changing values of c

14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30

Graph 14: Perceived workload vs number of allocated tasks – changing values of constant c

Stellenbosch University http://scholar.sun.ac.za

40 | P a g e

3.6.5 SENSITIVITY TO EXPONENT DENOMINATOR d

To test the sensitivity of the exponent denominator governing the growth of task stiffness on

PWL, the exponent denominator d was varied. Stiffness of tasks was fixed at 0.5, workday length

was set to 8 hours, the total amount of hours worked was always adjusted to sum to 8 hours, and

all other constants were chosen as defined in section 3.5.2 Component Parameters. Graph 15

shows the results graphically for different values of d:

The results indicate that perceived workload is moderately dependent on the value of d,

especially if the number of tasks is greater than 4. This is to be expected since the equation was

designed to be sensitive for high values of stiffness and tasks. Although PWL is sensitive to this

constant, it is still only a matter of scale, and the chosen value of d = 3.405 is deemed acceptable.

1

1,02

1,04

1,06

1,08

1,1

1,12

1,14

0 1 2 3 4 5 6

p
er

ce
iv

ed
 w

o
rk

lo
ad

Number of assigned tasks

Changing values of d

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

Graph 15: Perceived workload vs number of allocated tasks – changing values of constant d

Stellenbosch University http://scholar.sun.ac.za

41 | P a g e

3.6.6 SENSITIVITY TO TASK STIFFNESS CONTROL e

Changing the value of e, the constant controlling the effect of stiffness on the equation, has a

similar effect as changing the value of d, as shown in graph 16. Graph 16 starts at 2 assigned tasks

because the contribution of stiffness is designed to be zero for zero or one assigned tasks.

Graph 16: Perceived workload vs number of allocated tasks – changing values of constant e

The equation is quite sensitive to the value of e, indicating that the value should be chosen

carefully. The assigned value, e = 0.000472, was chosen to conform to values tested against the

opinion of engineering managers.

1

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

2 2,5 3 3,5 4 4,5 5 5,5 6

p
er

ce
iv

ed
 w

o
rk

lo
ad

Number of assigned tasks

Changing values of e

0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007

0.0008 0.0009 0.001 0.0011 0.0012 0.0013 0.0014 0.0015

0.0016 0.0017 0.0018 0.0019 0.002 0.0021 0.0022 0.0023

0.0024 0.0025 0.0026 0.0027 0.0028 0.0029

Stellenbosch University http://scholar.sun.ac.za

42 | P a g e

3.7 EVALUATION OF PERCEIVED WORKLOAD

The values of the weight factors and parameters of the PWL-equation 13 have been determined

in section 3.5 Choosing constants. The sensitivity analysis described in the previous section

indicated that the values scale the result that is obtained for the PWL, but, for the chosen values,

the PWL is proportionally balanced. The variation of the PWL-equation is investigated and

discussed in this section.

perceived workload

= 𝑡ineff

∗

(

(

{

0, 𝑇 = 0

0, ∑(𝑡𝑖(1 + 𝑜𝑖)

𝑛

𝑖=1

= 0

0.841(𝑇−∑ (𝑡𝑖(1+𝑜𝑖)
𝑛
𝑖=1 , ∑(𝑡𝑖(1 + 𝑜𝑖)

𝑛

𝑖=1

≤ 𝑇

0.959(𝑇−∑ (𝑡𝑖(1+𝑜𝑖)
𝑛
𝑖=1 , ∑(𝑡𝑖(1 + 𝑜𝑖)

𝑛

𝑖=1

> 𝑇
)

(0.5)

+ ({
0, 𝐿 = 0
0, 𝑛 = 0

 log9(𝐿 + 1) , 𝑛 ≠ 0
)(0.26) + ({

0, 𝑛 = 0

𝑛
𝑛
33.96⁄ , 𝑛 ≠ 0

) (0.24)

+ ({
0, 𝑛 ≤ 1

0.000472 ∗ 𝑠𝑚𝑎𝑥 ∗ 𝑛
3.405, 𝑛 > 1

)

)

+ {
0, 𝐿 = 0
0, 𝑛 = 0
𝐼𝐹, 𝑛 ≠ 0

Equation 16: Equation final form

Stellenbosch University http://scholar.sun.ac.za

43 | P a g e

3.7.1 ASSIGNED TASKS – WORKDAY DURATION

Individuals that are responsible for a large number of tasks usually have to work longer hours. In

graph 17, the PWL is shown as the number of assigned tasks varies between 0 and 7 and the

workday duration between 0 and 12 hours. Engineering tasks are typically not trivial and will take

a while to complete. If 4 tasks are assigned at 2 hours each it will make up an average workday,

because of this it was decided the interesting area is between 0 and 7 assigned tasks. PWL is

plotted on the z-axis, number of assigned tasks on the x-axis and workday duration on the y-axis.

Graph 17: 3D Plot of equation results: perceived workload vs number of tasks vs workday length

By design, PWL is equal to 1 when workday duration = 8 and assigned tasks = 1. Few tasks

combined with a short workday results in a PWL less than 1.0. The graph however shows the

exponential increase of the resulting PWL as the number of tasks increase to 6 and the workday

duration to 12 hours.

P
er

ce
iv

ed
 w

o
rk

lo
ad

Stellenbosch University http://scholar.sun.ac.za

44 | P a g e

3.7.2 ASSIGNED TASKS – PERCENTAGE OF DAY REQUIRED

Even if individuals are responsible for a large number of tasks, it does not necessarily mean it will

take a complete day to perform all the assigned tasks. In graph 18, the PWL is shown as the

number of assigned tasks varies between 0 and 7 and the fraction of a workday required to

perform assigned tasks varies between 0 and 2. A fraction of 2 represents an effective workday

length of 16 hours, this variation was limited as is to keep the graph in the interesting area. PWL

is plotted on the z-axis, number of assigned tasks on x and fraction of workday required on y.

Graph 18: 3D Plot of equation results: workload vs number of tasks vs fraction of workday required

By design, PWL is equal to 1 when fraction of workday required = 1 and assigned tasks = 1. When

the fraction-worked varies between 0 and 1, workload is seen to increase exponentially. When

the fraction increases further than 1, the surface increase flattens out slightly. A fraction between

0 and 1 implies an individual is working less than a full day’s work, while a fraction of more than

1, point to an individual working overtime. The curve is broken up into the two parts to realise a

more realistic expression of workload as explained in a previous section.

P
er

ce
iv

ed
 w

o
rk

lo
ad

Stellenbosch University http://scholar.sun.ac.za

45 | P a g e

3.7.3 ASSIGNED TASKS – WORKER INEFFICIENCY

In graph 19, the PWL is shown as the number of assigned tasks varies between 0 and 7 and the

individual’s inefficiency varies between 0 and 2. PWL is plotted on the z-axis, number of assigned

tasks on x and individual inefficiency on y.

By design, PWL is equal to 1 when fraction of workday required = 1 and worker inefficiency = 1.

Both an increase in tasks and inefficiency results in an increase in workload. As can be seen in the

graph, the effect of an individual’s inefficiency is linear while increasing number of assigned tasks

has an exponential effect.

Graph 19: 3D plot of equation results: workload vs number of tasks vs worker inefficiency

P
er

ce
iv

ed
 w

o
rk

lo
ad

Stellenbosch University http://scholar.sun.ac.za

46 | P a g e

3.8 SURVEY OF ENGINEERING MANAGERS’ OPINIONS

A survey was set up and sent out to members of the engineering community, with focus on

individuals with real project management responsibilities. The survey was primarily intended to

test their opinion regarding the assumption that workload should increase when the number of

assigned tasks is increased, even if the combined hours to complete the tasks were constant. The

concept that worker inefficiency should be directly proportional to workload was also tested.

A scenario was presented, with a few stated workload values. In all cases an 8 hour workday was

assumed.

When a scenario reads: “1 Task of 8 hours”, it means that an individual has one task assigned to

him for a given day and that task is estimated to take 8 hours to complete.

Please select your most appropriate workload value for all of the following scenarios:

Scenario Description Please highlight the most appropriate
workload percentage

1 Task of 8 hours. 95% 100% 105%

2 Tasks of 4 hours each. 100% 101.5% 115%

5 Tasks, durations add up to 8 hours. 100% 112% 124%

1 Task of 8 hours, but person works twice as fast as
everybody else.

50% 75% 100%

1 Task of 8 hours, but person works twice as slow as
everybody else.

100% 200% 400%

3 Tasks of 1.33 hours each. 25% 52% 70%

10 short tasks, each just 24 minutes long. (4 Hours) 50% 82% 100%

1 Task of 4 hours, but is found that this individual
consistently wastes 20% of his day on coffee breaks.

50% 70% 100%

Stellenbosch University http://scholar.sun.ac.za

47 | P a g e

The results of the survey are summarised in the table below:

Scenario Description

Number that voted for suggested workload

percentage

1 Task of 8 hours.
(9)

95%
(7)

100%
(3)

105%

2 Tasks of 4 hours each.
(9)

100%
(7)

101.5%
(3)

115%

5 Tasks, durations add up to 8 hours.
(6)

100%
(8)

112%
(5)

124%

1 Task of 8 hours, but person works twice as fast as
everybody else.

(8)
50%

(9)
75%

(2)
100%

1 Task of 8 hours, but person works twice as slow as
everybody else.

(3)
100%

(15)
200%

(1)
400%

3 Tasks of 1.33 hours each.
(2)

25%
(10)
52%

(7)
70%

10 short tasks, each just 24 minutes long. (4 Hours)
(4)

50%
(11)
82%

(4)
100%

1 Task of 4 hours, but is found that this individual
consistently wastes 20% of his day on coffee breaks.

(5)
50%

(12)
70%

(2)
100%

Results 1: Survey Results

3.8.1 SURVEY CONCLUSION

According to the survey, people believe that one task that takes up an entire work day, provides

an individual with a workload of a bit less than 100%. For the survey conducted the participants

selected a value of 95%. This is interesting because per definition the workload in that case should

be a full 100%. The same people voted for a workload of 100% for two tasks, and for 112% for 5

tasks. The fact that they feel a single task provides a workload of 95% indicate that they feel task

durations have an inherent safety factor imbedded into their duration. People then voted that

two tasks have a combined workload of 100%, which indicates that the safety factor has

dissolved. The 112% for five back-to-back tasks not only confirms the hypothesis that increasing

the number of tasks increases the workload, but also roughly quantifies the effect of the number

of tasks on perceived workload. The fact that the 112% was selected by participants in the survey,

and not 124% indicates that the results calculated with the workload formula are acceptable.

Stellenbosch University http://scholar.sun.ac.za

48 | P a g e

The equation for calculating workload assumes a linear relationship between efficiency and

workload. People who completed the survey however said, that they believe an individual

assigned one task that lasts a whole work day, but who works twice as fast as everybody else is

loaded with a workload of 75%. Which does not match up to the expected workload value of

50%. These same people agreed, quite convincingly, that if an individual would work twice as

slow as everybody else he would be loaded with 200%, which again confirms the linear

relationship. The difference between the numbers of people who voted for the 75% versus 50%

was not significant, but it could be possible that the relationship should stay linear for efficiency

values larger than one, but get slightly exponential with smaller values. The linear relationship

was however kept as is.

In conclusion, the survey indicates general agreement with the assumptions made when

calculating individual office workload. Where the people disagreed, it was by a very small margin.

It was thus decided to leave the calculation method as is.

Stellenbosch University http://scholar.sun.ac.za

49 | P a g e

4. DESIGNING THE OBJECT MODEL

A model is an abstract image of a selected part of the world. It is essential for engineers to be

able to map specific snapshots of the world into such models. The key is knowing exactly what

information to store, and what should be omitted. Models consist of component objects, and the

part of the world that is mapped to these objects depends on the purpose for which a model is

constructed. Every object is unique and can be distinguished from all other objects in the model.

An object is also identifiable by a unique identifier, such as a name or number which differs from

all other names or numbers in the model. Objects have attributes which define specific properties

of the object, and can be the identifier of another object. Any number of attributes can be stored

in the attribute-set of an object, it depends on the properties of the world that are to be mapped

to the object.

An object is characterised by its state, in the form of its attributes and their values.

Expressed mathematically, if the set of objects that represents the state of a model is called the

object set M, then:

𝑀 ∶= {𝑎 ∈ 𝑀 | 𝑎 𝑖𝑠 𝑎𝑛 𝑜𝑏𝑗𝑒𝑐𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙}

Equation 17: Definition of object set

Furthermore, object modelling requires the classification of the objects [21]. An object is an

instance of a class. In object-oriented programming, a class is a construct that is used as a

blueprint or template to create objects of that class.

The programming language Java uses this object oriented paradigm to implement object models,

and as such is very suitable to be used as a tool to create the model. [22]

In this chapter an overview of the object model’s components is presented. This provides an

indication of the functionality that can be expected of the prototype implementation.

Furthermore it forms the basis of the data model that is described in the next chapter.

Stellenbosch University http://scholar.sun.ac.za

50 | P a g e

4.1 COMPONENTS OF THE OBJECT MODEL

The allocation of tasks takes place within the context of an engineering company, its staff and

projects that are executed according to planned schedules.

Specific components of a model that accounts for this context are now conceptualised. These

concepts are transferred to an object model for the software implementation.

Although the focus is on task allocation, it will be shown that useful, additional functionality can

be obtained from the task allocation information. The model is extended to support the

implementation of these functionalities.

4.1.1 TASKS

Tasks are the most important components that the model have. In scheduling, tasks are the

activities that create deliverables. Some tasks require certain deliverables of other tasks before

they can be started. For example, a foundation has to be constructed before the walls of a house

can be built. The relationships between tasks and deliverables are used to create a graph in the

set of tasks. From this graph a schedule can be created and optimised. The schedule is used by

the task allocation software under consideration. It was decided not to store the deliverable data

of any individual task, but only the tasks themselves and how the tasks fit together in relation to

one another, i.e. the task graph. The task graph can be used to aid in task allocation, ensuring

personnel usage is spread evenly across the project, and that individuals do not have to complete

multiple tasks back to back. Each task is mapped to only one project.

Figure 1 illustrates that a project is a collection of tasks which each require one or more skills to

complete.

Stellenbosch University http://scholar.sun.ac.za

51 | P a g e

Task x

Project

Task y Task z

Requires skill

a

Requires skill

b

Requires skill

c and d

Figure 1: Project and task relationship

Along with the task graph, the schedule also discerns earliest start dates and latest end dates for

each task. These dates are dependent on task durations and the “has-to-be-executed-before”

relation in the set of tasks. The tasks’ durations, and start and end dates can then be used to

calculate the latest date a task has to be started before detrimentally affecting the rest of the

project. A task can consequently be flagged as more important than others when its latest start

date approaches.

Another important aspect of tasks is the fact that not everybody can complete every task. Tasks

require a specific skill set of the people assigned to complete it. This skill set can subsist of

multiple individual skills or roles within the industry.

4.1.2 RESOURCE: PERSONNEL

Personnel is in general the only resource considered when allocating tasks in an engineering

design office. The solution can be expanded to include other resource constraints, e.g. financial

considerations, office space availability or software licenses. Licenses will very rarely be a real

constraint that keeps employees from working concurrently and can be solved very easily by

obtaining more licences. Other possible constraints are considered inconsequential for the

typical use of the allocation technique, where all possible personnel are already settled in offices

with the organisation being able to pay salaries.

Stellenbosch University http://scholar.sun.ac.za

52 | P a g e

There are two types of personnel accounted for in this model, internal personnel and external

personnel. Internal personnel are permanent employees of the organisation. External personnel

are temporary personnel that are hired to perform a specific task or work on a specific project.

They are also known as outsource personnel. Each member of the internal personnel is assigned

to a specific department and a specific office. External personnel are only hired on a temporary

basis, and as such do not work in any particular department or office.

Both types personnel have a rates ascribed to them. A rate describes how much the company

pays an individual for doing hourly work, also how much the company earns from having him/her

do work. Having a reasonably comprehensive account of personnel rates is important for both

task allocation and creating cost estimates.

Personnel, internal and external, have certain skills ascribed to them. Skills are expertise or roles

within the industry attributed to individuals. “Cleaner”, “Draftsman” or “Civil Design Expert” are

all examples of skills. Multiple skills can be ascribed to an individual.

Figure 2 illustrates the relationship between skills and personnel, as well as rates and personnel.

PersonnelSkills Rates

A

B

C

D

cheap

standard

high

Figure 2: Personnel, skills and rates relationships

Stellenbosch University http://scholar.sun.ac.za

53 | P a g e

4.1.3 LOCATION

Locations are an important aspect of the model to conceptualise. Projects occur, or are

completed, at a specific location. This automatically links all tasks attributed to a specific project

to its location. Engineering offices are the other important concept that have locations, and with

all personnel being ascribed to an office, individuals store the location of their office. This capacity

is significant because it links where individuals work to where they have to complete tasks.

Locations consist not only of a description, e.g. a city name, but also of actual geographical

coordinates. These coordinates are used to accurately calculate the distance between distinct

locations, which may play a role in the task allocation procedure.

4.1.4 OFFICES

An organisation is considered to be a collection of offices, each with a unique location,

departments, and workforce. Different combinations of departments can be accredited to an

office, and an individual can then work in one of these departments.

Figure 3 illustrates how offices and projects are located in specific locations, and how members

of specific offices can be assigned to different projects.

Location A Location B

Office 1 Office 2 Office 3

Project

Alpha

Project

Gamma

Works on project Works on project

Works on project

Figure 3: Locations

The organisation structure within the office can also be modelled by defining employee to

superior links. If the link only connects an individual with his immediate superior, the whole

Stellenbosch University http://scholar.sun.ac.za

54 | P a g e

command structure can be envisioned, ending with the CEO of the organisation who has no

superior.

4.1.5 FILTERS

Filters are at the root of the task allocation procedure since they are used to select appropriate

personnel. It is not necessary to store filters in the data model, except to build a history of which

filters were used when realising a project’s task allocations.

Combinations of filters are called a filter configuration and can be stored when task allocations

are made. Filter configurations can be included in project cost quotations so that a specific

allocation can be recreated.

4.1.6 ALLOCATION

A task allocation, or booking, is made when a task is assigned to an individual with the

understanding that he/she should complete it. It can never be assured that a task will be

completed perfectly and on time, but the risk of the individual failing to perform is significantly

lower when the allocation process is done properly.

When an initial task allocation is made, it is at first only a provisional booking. This provisional

booking can then be manually upgraded to a permanent booking when the project manager is

satisfied with the choice. The provisional booking system also prevents accidental concurrent

bookings for multiple projects while allocation is still in progress.

If only one project was executed at a time, the task allocations could be done systematically and

optimally. Unfortunately this is not how the majority of the engineering community goes about

business. Most engineering design offices work on multiple projects concurrently, and this will

always be the case. This means that when allocating tasks, project managers may want to book

the same individual for different projects. The provisional booking system will allow possible

concurrent bookings to be evaluated and the most pressing one to be accepted.

Stellenbosch University http://scholar.sun.ac.za

55 | P a g e

Figure 4 illustrates the process gone through by a task to select the most appropriate personnel

allocation. Different types of filters are discussed in chapter 6, Enhancing the Model.

Task

All personnel stored in

database

A

B

C

D

E

All personnel pulled into

software for considderation

A

B

C

Personnel available for or

eligible for allocation

A

B

Personnel scoring and

sorting according to fit

B

A

Personnel a llocated

according to informed

choice

Figure 4: Process of task allocation

4.1.7 COMPUTATION OF PROJECT COST

The ability to create a quotation or budget for how much a project is estimated to cost is very

useful. It can be used to provide an estimated price for a client, or to judge whether the

organisation should take a project on. Since the model has the task allocation data at its disposal,

a fairly accurate quotation can be worked out.

Stellenbosch University http://scholar.sun.ac.za

56 | P a g e

A quotation resource can be created at the time of quotation, which creates a copy of an existing

human resource. This copy is necessary to maintain an accurate history of the project. For

example, if an individual’s rate changes, the organisation would be unable to accurately calculate

the work done or the money owed without the copy.

It is also useful to know how exactly task allocations were done. For that purpose the filter

configuration is also stored inside a quote. With all the information in place in the data model, a

project can be recreated at any time.

Multiple provisional allocations can be made and quotations used to compare employee

allocation strategies with one another before finally deciding on the strategy that fits the

organisation best.

Stellenbosch University http://scholar.sun.ac.za

57 | P a g e

5. DATABASE MODELLING

Data models are developed to support the structured storage of data used in information

systems. If a well-structured data model is used to store and access data, then different

applications can share data seamlessly. This requires that the mathematics behind the model

logic and structure to be well defined and the database well organised.

Various database technologies exist, of which the relational database has proven to be the most

popular choice. Databases are used to store sets of data. A data type as used in a typical relational

database might be a list of integers, a few dates or true or false statements. The relational theory

behind the data structure does not dictate what data types are supported, this is something

decided by function and design.

In relational data models a table corresponds with a set, and a record corresponds with an

element. If a database table were to have three records, the table can be thought of as a set with

each record being one of the three elements in it. These records represent instances of tuples. In

mathematics a tuple is an ordered list of elements. In set theory an n-tuple is a sequence of n

elements, where n is a non-negative integer. In database theory the relational model uses a tuple

definition similar to tuples as function, but with each element identified by a distinct name, called

an attribute, instead of a number. A tuple in relational models is formally defined as a finite

function that maps attributes to values [23].

Relational databases are made up of tables. Tables consist of columns and records. A column

specifies one single piece of data that a record has. This piece of data can be new data, unique

to the record, or data found in another table in the database. A record is uniquely identified by

its primary key, which is an entry in one of its columns or a combination of entries in more than

one column. Columns that are not part of the primary key are called the non-key columns.

The entire database can be visualised with an entity-relationship diagram, or ERD, which shows

the tables the database consist of along with the relationships between them. In a later section

the final modelled database’s ERD is shown to give a complete overview of how all the database

tables connect to form the information network that stores the model.

Stellenbosch University http://scholar.sun.ac.za

58 | P a g e

5.1 DATABASE NORMALISATION

Normalisation is the process of restructuring the logical data model of a database to eliminate

redundancy, organise data efficiently and to moderate the potential for anomalies during data

operations. Data normalisation may also improve data consistency and simplify future extension

of the logical data model. A non-normalised data structure may suffer from data anomalies by

storing data representing a particular value in multiple locations. An update to such data could

result in inconsistent data. A normalised database prevents such an anomaly by storing data in

only one location. Similarly, such redundancies in non-normalised databases can hinder deletion.

Database normalisation consist of conforming a database to a few rules, called normal forms. A

database is considered normalised once it achieves the Third Normal Form.

5.1.1 FIRST NORMAL FORM

In mathematics, a singleton, also known as a unit set, is a set with exactly one element. The term

is also used for a 1-tuple, a sequence with one element [24]. An indicator function is a function

defined on a set X that indicates membership of an element in a subset A ⊆ X, having the value

1 for all elements of A and the value 0 for all elements of X not in A.

If S is a mathematical class defined by an indicator function

𝑏: 𝑋 → {0,1}

Then S is called a singleton if and only if:

𝑏(𝑥) = (𝑥 = 𝑦) | 𝑥 ∈ X, y ∈ X

Equation 18: Singleton definition

By definition, the First Normal Form is a relation in which the intersection of each row, R, and

column, C, contains one and only one value, so that:

{𝑅 ∩ 𝐶 ≔ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 | 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ∈ 𝑆}

Equation 19: First Normal Form definition

Stellenbosch University http://scholar.sun.ac.za

59 | P a g e

5.1.2 SECOND NORMAL FORM (2NF)

The Second Normal Form is a relation that is in First Normal Form and where every non-primary

key attribute is fully functionally dependent on the primary key.

If:

 a is an attribute of a record,

 K a set containing only the primary key,

 nK a set containing all the non-key values then the following relationship holds:

𝑎 ∈ 𝑛𝐾 =>⋀⋁ 𝑎 = 𝑓(𝐾)

𝑓𝑎

Equation 20: Second Normal Form definition

5.1.3 THIRD NORMAL FORM (3NF)

The Third Normal Form is a relation that is in First and Second Normal Form, and in which no non-

key attribute is transitively dependent on the primary key [25]. This means that any non-key

attribute may only be dependent on its primary key and not on any other non-key attribute.

If a relation 𝐾 → 𝑛𝐾1 exists, then there may not exist a relation 𝑛𝐾1 → 𝑛𝐾2 , as that would

indicate 𝑛𝐾2 is transitively dependent on 𝐾 via 𝑛𝐾1.

The Third Normal form can be expressed as follows:

{𝑎 ∈ nK | 𝑎 = 𝑓(𝑏 ∈ nK \ {a})} = {}

Equation 21: Third Normal Form definition

Stellenbosch University http://scholar.sun.ac.za

60 | P a g e

5.2 TABLES

Each record inside a database table consists of three parts: A primary key, foreign keys and non-

key attributes. A foreign key is a referential constraint between two tables. It constrains the

column to what values it may contain and enables cross-referencing between tables. This builds

the database network. All foreign keys in this database references primary keys which are

integers as a rule. Non-key attributes are independent values which do not link to any tables and

only adds information to the database entry. [26]

The tables that make up the relational database of the task allocation application will now be

examined and explained. Primary keys are denoted as PKn in the graphical representation of the

tables. Foreign keys are shown as ending in _fk. Columns that do not end in either _fk or _pk

denotes a non-key attribute. Some tables model concepts or classes. These tables contain the

bulk of the information. Other tables only link tables together to form relationships inside the

database, called linking tables. All linking tables are in principle mathematical mappings of entries

to other table entries.

The database tables are an important part of the model. It is believed that should another

researcher ever wish to recreate the database, he/she should be able to do so using the

descriptions provided below. The tables are discussed in no specific sequence.

n Column names also end in _pk

Stellenbosch University http://scholar.sun.ac.za

61 | P a g e

5.2.1 LOCATION

LOCATION is a table referenced by multiple other

tables, and details an exact location. The longitude and

latitude are optional columns, used to calculate the

distance between two points around the curvature of

the earth. The method used to do this is explained in

chapter 6.2.4 Refinement Filters.

Table 1: LOCATION layout

Column Data type Function

location_description String
Text describing the location, and
providing an identifiable name.

country String
Text identifying the country where
the location is situated.

region String
Text identifying the region inside
the country.

city String
Text identifying the closest city to
the location.

longitude Double
Double value that stores the
longitude of the location.

latitude Double
Double value that stores the
latitude of the location.

Stellenbosch University http://scholar.sun.ac.za

62 | P a g e

5.2.2 DEPARTMENT

DEPARTMENT is used to describe the different segments

an office is broken up into, for example “Structural

Department”, or “Technical Drawings”. Every employee

of an organisation is assigned to one of these

departments. A single office may also only be one single

department.

Column Data type Function

department_description String
Text stating the department’s
name.

5.2.3 RATE

RATE is a table used to fully describe an individual’s

salary details as well as the amount the employee will

generate for the company. The table comprises a column

that describes the rate type and columns of double

values for Cost to Company, internal work rate and

billable work rate. Cost to Company o , is the salary

package of an employee. It indicates the total amount

the employer is spending on an employee per hour

including overhead cost. Internal work rate is how much

it will cost the organisation if the individual is doing in-

house work. Internal work rate would realistically be

greater than Cost to Company, as you have to pay the employee for his skills, but less than the

Billable rate as a discount is expected for doing work inside the same company. Billable rate is

the hourly rate the employee will generate for the organisation by doing external work.

o CTC

Table 3: RATE layout

Table 2: DEPARTMENT layout

Stellenbosch University http://scholar.sun.ac.za

63 | P a g e

If the employee is an external human resource, the billable, internal work and cost to company

rates could possibly be the same, excluding a possible mark-up to the billable rate to allow for

administration costs.

Column Data type Function

rate_description String
Text describing the rate in words.
E.g. Standard Rate.

cost_to_company_per_hour Double
Value detailing the individual’s
hourly Cost to Company.

internal_work_rate_per_hour Double
Value detailing the individual’s
hourly internal work rate.

billable_rate_per_hour Double
Value detailing the individual’s
hourly billable rate.

5.2.4 TASK

TASK is one of the most central and important tables in

the database. This table is where all the tasks that have

been completed, and those yet to be completed are

stored. Tasks have to be stored in the data model. Most

of the attributes required by tasks can be stored in a

single database entry. However, concepts such as task

overhead and task skills are stored in separate tables and

linked to tasks using relationship links in the database.

Tasks belong to a specific project and is also packaged

into a specific work package. earliest_start is a

timestamp attribute detailing the earliest date the task

may start. This is dependent on the end date of the tasks

preceding this one. All tasks are presumed to be

scheduled according to their precedence requirements.

latest_end is the latest date the task can end before

influencing tasks that come after this specific task.

actual_start only contains data if the task has already

started. priority is a numerical value between 0 and 3,
Table 4: TASK layout

Stellenbosch University http://scholar.sun.ac.za

64 | P a g e

with 0 being the most important, and 3 being the least. When a task is created, it will initially

have a priority value of 3. The level can then be manually set when it becomes clear to the project

manager that the task requires more attention. When a task’s priority reaches 0, it implies the

task is fast-tracked. Fast-tracking will be discussed in chapter 6.3, Tasks and Flat-lining.

stretchable is a true or false value stating whether a task can be broken up into smaller pieces,

or whether it should be completed in one sitting.

Column Data type Function

task_description String
Text stating task’s name or
description.

project_fk Integer
Foreign key reference to an entry in
the PROJECT table. Connecting this
task to a specific project.

duration Double
A task’s statistical time to complete
in hours.

workpackage_fk Integer

Foreign key reference to an entry in
the WORKPACKAGE table.
Connecting this task to a specific
work package.

earliest_start Timestamp
The earliest date the task can be
started.

latest_end Timestamp
The latest date the task has to be
finished without having a
detrimental effect on the project.

actual_start Timestamp
Empty if the task still has to start.
The date the task was finally
started.

stretchable Boolean
True or False value, stating whether
the task is stretchable.

stiffness Double
Decimal value between 0 and 1.0,
stating the task stiffness.

priority Integer
Value between 0 and 3, declaring
task priority.

Stellenbosch University http://scholar.sun.ac.za

65 | P a g e

5.2.5 SKILL

SKILL is used to describe the different skills individuals

have, as well as the skills that are required to do specific

tasks. Both HUMANRESOURCEs and TASKs can have

multiple SKILLs linked to them. A typical skill would be:

“Civil Engineer”.

Column Data type Function

skill_description String Text giving the skill name

5.2.6 SKILL_TO_TASK

SKILL_TO_TASK links an instance in the SKILL table to

an instance in the TASK table. In essence, tagging a task

as requiring, among others, a specific skill to complete.

Multiple skills can be tagged to the same task.

Column Data type Function

skill_fk integer

Foreign key reference to an entry in
the SKILL table. Referencing a
specific skill and tagging the task as
requiring an individual with this
skill.

task_fk Integer
Foreign key reference to an entry in
the TASK table. Referencing a single
task.

Table 5: SKILL layout

Table 6: SKILL_TO_TASK layout

Stellenbosch University http://scholar.sun.ac.za

66 | P a g e

5.2.7 SKILLTAG

SKILLTAG, similar to SKILL_TO_TASK, links instances of

SKILL to entries in HUMANRESOURCE. In essence it has

an individual as having a specific skill set. Multiple skills

can be linked to the same individual if he/she is

experienced in many things. This table is essential in the

task allocation procedure, as one of the most important

aspects is being able to identify who is able to complete

a given task

Column Data type Function

humanresource_fk Integer
Foreign key reference to an entry in
the HUMANRESOURCE table.
Referencing an individual.

skill_fk Integer

Foreign key reference to an entry in
the SKILL table. Referencing a
specific skill, and tagging an
individual as possessing said skill.

5.2.8 WORKPACKAGE

WORKPACKAGE is a table describing a set of tasks that

form a functional unit, for example the tasks involved in

foundation design. Each task can be assigned to a work

package, as described in the TASK table. These packages

can further be useful to organise task allocation by

enabling grouped individuals to be assigned a set of

tasks.

Column Data type Function

workpackage_description String
Text stating the work-package’s
name

Table 8: WORKPACKAGE layout

Table 7: SKILLTAG layout

Stellenbosch University http://scholar.sun.ac.za

67 | P a g e

5.2.9 OFFICE

OFFICE is used to describe a normal office. Every

organisation comprises of a number of offices. Every

office is defined by a unique description, and a

LOCATION.

Column Data type Function

office_description String Text describing the office.

location_fk Integer
Foreign key reference to an entry in
the LOCATION table, giving the
location of the office.

5.2.10 DEPARTMENT_TO_OFFICE

DEPARTMENT_TO_OFFICE is a table that stores no new

information, but only exists to link multiple instances of

OFFICE tables with multiple instances of DEPARTMENT

tables. This table is necessary due to database

normalisation rules. It enables a single office to have

either one or multiple departments under its wing.

Column Data type Function

office_fk Integer
Foreign key reference to an entry in
the OFFICE table.

department_fk Integer

Foreign key reference to an entry in
the DEPARTMENT table, linking a
specific department type to an
office.

Table 9: OFFICE layout

Table 10: DEPARTMENT_TO_OFFICE layout

Stellenbosch University http://scholar.sun.ac.za

68 | P a g e

5.2.11 FILTER

FILTER is a table used only for storing different

configurations of filters. These stored configurations will

then later be used to remember how a user made

specific task allocations for quotation purposes.

filtername is a String that provides the filter with an

identifiable name.

Column Data type Function

filtername String
Text describing the filter, and
providing an identifiable name.

5.2.12 FILTERCONFIGURATION

FILTERCONFIGURATION is a table used in the storing of

different combinations of filter settings. These stored

configurations will then later be used to remember how

a user made specific task allocations for quotation

purposes.

Column Data type Function

filterconfiguration_description String
Text giving short description of
configuration

Table 12: FILTERCONFIGURATION layout

Table 11: FILTER layout

Stellenbosch University http://scholar.sun.ac.za

69 | P a g e

5.2.13 FILTER_TO_FILTERCONFIGURATION

FILTER_TO_FILTERCONFIGURATION, like all linking

tables, contains no new information and only exists to

link multiple table entries with one another. In the case

of this table the purpose is to link an entry in the FILTER

table with an entry in the FILTERCONFIGURATION table.

Each instance of a filter-configuration is made up of

different filters being turned either on or off.

FILTER_TO_FILTERCONFIGURATION stores all the filters

that are turned on in a specific filter-configuration.

Column Data type Function

filterconfiguration_fk Integer
Foreign key reference to an entry in
the FILTERCONFIGURATION table.

filter_is_on_fk Integer

Foreign key reference to an entry in
the FILTER table. Meaning that the
specific filter is turned on and is
consequently linked to the entry in
FILTERCONFIGURATION.

5.2.14 PROJECT

PROJECT purveys the concept of project as defined in

chapter 4. An instance of PROJECT has a description, a

location and a version. The versioning is in place for

version control. It is also useful when a project manager

wants to rearrange task allocations to find an optimal

quote. When a new version is created all the other links

in the database chain will have to be recreated.

Column Data type Function

project_description String
Text stating project name or
description

Table 13: FILTER_TO_FILTERCONFIGURATION layout

Table 14: PROJECT layout

Stellenbosch University http://scholar.sun.ac.za

70 | P a g e

location_fk Integer
Foreign key reference to an entry in
the LOCATION table, giving the
location of the project.

version_number Double
Number stating the version of the
project, e.g. “1.2”

5.2.15 PROJECTTEAM

PROJECTTEAM is a table enabling the storage of project

teams. Project teams are linked to a specific project, and

can comprise of any number of human resources, see

table HUMANRESOURCE_TO_PROJECTTEAM. This is

used to keep a record of people who worked on a

project. Project teams can also be used to aid in task

allocation by trying to place team members on parallel

tasks.

Column Data type Function

projectteam_description String
Text stating project team name or
description.

project_fk Integer
Foreign key reference to an entry in
the PROJECT table, linking the team
to a specific project.

5.2.16 HUMANRESOURCE

HUMANRESOURCE is the central table in the database

and is linked to many other tables. The function of this

table is to express the concept of an employee doing

work for the company. If the software were ever to be

expanded to accommodate not only engineering design

offices, but construction sites as well, other types of

resources could be introduced into the database. A

human resource can be flagged as either standard, or

non-standard. A standard employee follows the normal

office hours, usually 9 AM to 5 PM. If this is however not
Table 16: HUMANRESOURCE layout

Table 15: PROJECTTEAM layout

Stellenbosch University http://scholar.sun.ac.za

71 | P a g e

the case, an entry in the NONSTANDARDHUMANRESOURCE table can be created.

efficiency_factor and idleness_factor are in this version of the software constants that have to

be set by the project manager. In future iterations however, more sophisticated methods of

calculating real time data will be implemented. These values were discussed in a chapter 3,

Quantifying Workload.

Column Data type Function

humanresource_description String
Text stating human resource’s
description.

is_standard Boolean
True or False value, stating whether
the individual follows standard
office hours.

efficiency_factor Double

Constant defined by the project
manager or a manager with
intimate knowledge the individual.
Describes individual’s efficiency at
work.

idleness_factor Double

Constant defined by the project
manager or a manager with
intimate knowledge the individual.
Describes the factor of a work-day
individual is considered to be idle.

5.2.17 HUMANRESOURCEFLOW

HUMANRESOURCEFLOW is a table designed to keep

track of the command structure within a company. This

is not used in the automatic task allocation procedure,

but can be useful information for a project manager to

have when deciding which task to give which employee.

This table, like all linking tables, contain no non-key

attributes and only stores the relations between two

tables. In this case both relations refer to instances of

HUMANRESOURCE.

Column Data type Function

humanresource_fk Integer
Foreign key reference to an entry in
the HUMANRESOURCE table.
Referencing an individual.

Table 17: HUMANRESOURCEFLOW layout

Stellenbosch University http://scholar.sun.ac.za

72 | P a g e

superior_humanresource_fk Integer

Foreign key reference to an entry in
the HUMANRESOURCE table,
referencing an individual who is the
other column’s superior.

5.2.18 HUMANRESOURCE_TO_PROJECTTEAM

HUMANRESOURCE_TO_PROJECTTEAM is a linking table

used to link individual human resources to a project

team. This is used to keep a record of people who

worked on a project.

Table 18: HUMANRESOURCE_TO_PROJECTTEAM layout

Column Data type Function

humanresource_fk Integer
Foreign key reference to an entry in
the HUMANRESOURCE table.
Referencing an individual.

projectteam_fk Integer
Foreign key reference to an entry in
the PROJECTEAM table. Referencing
a single team.

5.2.19 TASKFLOW

TASKFLOW is a table designed to keep track of the

scheduling of tasks. This table, like all linking tables,

contain no non-key attributes and only stores the

relations between two tables. In this case both tables are

the same one, being two entries in TASK. TASKFLOW

enables the storage and initiation of a chain of tasks. This

helps project managers evaluate which tasks should be

completed next.

Column Data type Function

task_fk Integer
Foreign key reference to an entry in
the TASK table. Referencing a single
task.

Table 19: TASKFLOW layout

Stellenbosch University http://scholar.sun.ac.za

73 | P a g e

successor_task_fk Integer

Foreign key reference to an entry in
the TASK table, referencing a task
which is the other column’s
successor.

5.2.20 TASKOVERHEAD

TASKOVERHEAD is a database table that links a specific

combination of task -> office with an overhead value.

Although the task -> office relation is a unique ordered

pair, this relation is not enforced by the database

structure. It is up to the implementation to enforce this

rule. If this is not the case, there would be confusion as

to what the overhead value is supposed to be.

Column Data type Function

office_fk Integer
Foreign key reference to an entry in
the OFFICE table. Referencing a
specific office.

task_fk Integer
Foreign key reference to an entry in
the TASK table. Referencing a single
task.

overhead Double

Factor value stating task-office
overhead. The value indicates the
fraction of the task duration
considered to be overhead.

Table 20: TASKOVERHEAD layout

Stellenbosch University http://scholar.sun.ac.za

74 | P a g e

5.2.21 INTERNAL_PERSONNEL

INTERNAL_PERSONNEL is responsible for conveying the

concept of “employee” alongside HUMANRESOURCE.

INTERNAL_PERSONNEL specifically models employees

that have a permanent position in the organisation and

are assigned a department and an office. As such these

employees have a unique employee number to identify

them. Each entry in this table is linked to a single unique

entry in the HUMANRESOURCE table.

Table 21: INTERNAL_PERSONNEL layout

Column Data type Function

employee_number Integer
Unique number assigned to all
permanent personnel.

initials String Individual’s initials.

surname String Individual’s surname.

office_fk Integer
Foreign key reference to an entry in
the OFFICE table. Referencing a
specific office.

department_fk Integer

Foreign key reference to an entry in
the DEPARTMENT table, indicating
to which department the individual
owes allegiance.

rate_fk Integer
Foreign key reference to an entry in
the RATE table. Referencing a
specific salary rate.

humanresource_fk Integer

Foreign key reference to an entry in
the HUMANRESOURCE table,
referencing a unique entry that
table.

Stellenbosch University http://scholar.sun.ac.za

75 | P a g e

5.2.22 EXTERNAL_PERSONNEL

EXTERNAL_PERSONNEL is responsible for conveying the

concept of “employee” alongside HUMANRESOURCE.

EXTERNAL_PERSONNEL specifically models employees

that do not have a permanent position in the

organisation and is only temporarily part of a project as

outsource personnel. Unlike a permanent member of

staff, outsource personnel do not have employee

numbers to identify themselves, nor are they connected

to just one office or department. They can, but not

necessarily, work for a single department. External

personnel are presumed to do work for the whole

company.

Column Data type Function

initials String Individual’s initials.

surname String Individual’s surname.

company String
The company which is the
individual’s permanent employer.

rate_fk Integer
Foreign key reference to an entry in
the RATE table. Referencing a
specific salary rate.

humanresource_fk integer

Foreign key reference to an entry in
the HUMANRESOURCE table,
referencing a unique entry that
table.

Table 22: EXTERNAL_PERSONNEL layout

Stellenbosch University http://scholar.sun.ac.za

76 | P a g e

5.2.23 BOOKING

BOOKING is an important table that manages all task

allocations. This table links an entry from

HUMANRESOURCE, an individual, to an entry in TASK. The

average hours per day the individual is booked to spend

on the task is also stored as hours_per_day.

Table 23: BOOKING layout

Column Data type Function

humanresource_fk Integer
Foreign key reference to an entry in
the HUMANRESOURCE table.
Referencing an individual.

task_fk Integer
Foreign key reference to an entry in
the TASK table. Referencing a single
task.

hours_per_day double
The average hours per day the
individual is booked to work on this
specific task.

5.2.24 PROVISIONALBOOKING

PROVISIONALBOOKING is a duplication of BOOKING,

with the exception of having a

booking_version_number field. During the task

allocation procedure, the semi-automatic process first

provisionally books an individual for tasks. These

provisional bookings can then be reviewed by the

project manager if he/she so desired. If slight alterations

are made to the provisional bookings, in order to find the

task allocation best suited to the needs of the

organisation, the booking_version_number is

incremented. PROVISIONALBOOKING can also be used

to aid in setting up hypothetical task allocations for quotation purposes. When the project

Table 24: PROVISIONALBOOKING layout

Stellenbosch University http://scholar.sun.ac.za

77 | P a g e

manager is satisfied with a project’s task allocations, the software implementation can upgrade

the provisional bookings to fixed bookings.

Column Data type Function

humanresource_fk Integer
Foreign key reference to an entry in
the HUMANRESOURCE table.
Referencing an individual.

task_fk Integer
Foreign key reference to an entry in
the TASK table. Referencing a single
task.

hours_per_day Double
The average hours per day the
individual is booked to work on this
specific task.

booking_version_number Double

Versioning system in place to
remember what possibilities was
already explored in the allocation
process.

5.2.25 NONSTANDARDHUMANRESOURCE

NONSTANDARDHUMANRESOURCE is a table that

describes an individual’s working hours if he/she does

not conform to the company standard. When an

individual stored in HUMANRESOURCE is flagged as

being non-standard, an entry in this table is expected

and required. This table is necessary for people like off-

peak repair technicians, who only work on weekends for

example. This data can then be used to indicate work

availability and billing.

Table 25: NONSTANDARDHUMANRESOURCE layout

Stellenbosch University http://scholar.sun.ac.za

78 | P a g e

Column Data type Function

humanresource_fk Integer
Foreign key reference to an entry
in the OFFICE table. Referencing a
specific office.

monday_hours Double
Number stating the hours the
individual is expected to work on
Monday.

tuesday_hours Double
Number stating the hours the
individual is expected to work on
Tuesday.

wednesday_hours Double
Number stating the hours the
individual is expected to work on
Wednesday.

thursday_hours Double
Number stating the hours the
individual is expected to work on
Thursday.

friday_hours Double
Number stating the hours the
individual is expected to work on
Friday.

saturday_hours Double
Number stating the hours the
individual is expected to work on
Saturday.

sunday_hours Double
Number stating the hours the
individual is expected to work on
Sunday.

5.2.26 VACATION

VACATION is a table defining the concept of a vacation,

or an off day. A vacation can be seen as similar to a task,

and as such can be assigned to individuals. A vacation

can also signify sick days or public holidays. A vacation

has a start date, stored as timestamp_at_start, and an

end date, stored as timestamp_at_end. If a vacation is

in fact a public holiday, the administrator may want to

flag the holiday as recurring. To incorporate different

intervals of recurrence, the data type of recurring is a

string describing the recurrence. The software solution

will interpret these strings and incorporate the data into

a calendar.

Table 26: VACATION layout

Stellenbosch University http://scholar.sun.ac.za

79 | P a g e

Column Data type Function

vacation_description String Text declaring vacation description.

timestamp_at_start Timestamp Date of vacation start.

timestamp_at_end Timestamp Date of vacation end.

recurring String

Empty if not a recurring vacation.
Text describing the recurrence if it
is, “weekly” or “yearly” are some
valid descriptions.

5.2.27 VACATION_TO_HUMANRESOURCE

VACATION_TO_HUMANRESOURCE links entries from

the VACATION table to entries in the HUMANRESOURCE

table. In essence, tagging an individual as taking a

specific vacation.

Table 27: VACATION_TO_HUMANRESOURCE layout

Column Data type Function

humanresource_fk Integer
Foreign key reference to an entry in
the HUMANRESOURCE table.
Referencing an individual.

vacation_fk integer
Foreign key reference to an entry in
the VACATION table. Referencing a
specific vacation.

5.2.28 RELEVANTSKILLS

RELEVANTSKILLS is a table that is used as an assembly

point to link skills which are deemed similar to one

another in some way. This table is essential in increasing

the accuracy of the task allocation procedure by enabling

the possibility of adding a search filter which scores for a

similar skill set than what is required.

Table 28: RELEVANTSKILLS layout

Stellenbosch University http://scholar.sun.ac.za

80 | P a g e

5.2.29 SKILL_TO_RELEVANTSKILLS

SKILL_TO_RELEVANTSKILLS is a table that links entries in

SKILL to instances of RELEVANTSKILLS. In principle this

table stores combinations of skills which are similar to

one another. For example the skill “Draftsman” could be

seen as similar to “Structural analyser” as both may

involve drawing structures with software. It could be

reasoned that both skills share common ground. This

pool of skills that are comparable is used to receive

partial scorings for task allocations. If there is absolutely no individual trained to complete a task,

rather the task be assigned to an individual who is skilled in something similar, than to someone

who is not.

Column Data type Function

skill_fk Integer
Foreign key reference to an entry in
the SKILL table. Referencing a
specific skill.

relevantskill_fk Integer
Foreign key reference to an entry in
the RELEVANTSKILLS table.

Table 29: SKILL_TO_RELEVANTSKILLS layout

Stellenbosch University http://scholar.sun.ac.za

81 | P a g e

5.2.30 QUOTE

QUOTE purveys the concept of quotations. It would

sometimes be prudent for an organisation to estimate

the cost of a project, either to the client, or to the

organisation, to decide whether to take a project on. At

the time a quotation is desired, an entry in this table will

be made, linking to an entry in PROJECT and giving a

current date. QUOTE also links to an entry in

FILTERCONFIGURATION, to store which filters were on

at the time the quote was created. This can aid in the

duplication of an allocation if so desired. A quote is

assembled with aid from the QUOTERESOURCE table.

Column Data type Function

quote_description String Text giving summary of quote.

project_fk Integer
Foreign key reference to an entry
in the PROJECT table. Referencing a
specific project.

filterconfiguration_fk Integer

Foreign key reference to an entry in
the FILTERCONFIGURATION table.
Referencing a specific configuration
of filters.

timestamp Timestamp Date when quote was created.

Table 30: QUOTE layout

Stellenbosch University http://scholar.sun.ac.za

82 | P a g e

5.2.31 QUOTERESOURCE

QUOTERESOURCE works in combination with QUOTE

to create a useable quotation. As the only type of

resource currently supported by the model is human

resources, this table basically links a human resource

to a quote in a one-to-many relationship. This implies

that many human resources can be mapped to the

same quote. As it is possible for individuals’ asking rate

to change with time, an individual’s CTC – Cost to

Company, internal work rate and billable rate are

copied into this table to enable recreating quotation

history.

Column Data type Function

humanresource_fk String

Foreign key reference to an entry
in the HUMANRESOURCE table.
Referencing an individual as a
resource.

quote_fk Integer

Foreign key reference to an entry
in the QUOTE table. Referencing
a specific quote. Linking this
QUOTERESOURCE to a QUOTE.

cost_to_company_rate_per_hour_copied Double

Value detailing the resource’s
hourly Cost to Company,
duplicated at the time of
quotation.

internal_work_rate_per_hour_copied Double

Value detailing the resource’s
hourly internal work rate,
duplicated at the time of
quotation.

billable_rate_per_hour_copied Double

Value detailing the resource’s
hourly billable work rate,
duplicated at the time of
quotation.

Table 31: QUOTERESOURCE layout

Stellenbosch University http://scholar.sun.ac.za

83 | P a g e

Department_to_Office

External_Personnel

Filter

Internal_Personnel
HumanResource

Office

ProjectTeam

TaskFlow

TaskOverhead

ProvisionalBooking

HumanResource_to_ProjectTeam

Skill

Quote

HumanResourceFlow

Skill_to_RelevantSkills

QuoteResource

Skill_to_Task

Rate

Filter_to_FilterConfiguration

Location

SkillTag

RelevantSkills

WorkPackage

Vacation_to_HumanResource

Vacation

Task

Project

NonStandardHumanResource

FilterConfiguration

Booking

Department

5.3 ENTITY-RELATIONSHIP DIAGRAM

This diagram provides an overview of the tables and the relationships between them.

Figure 5: Database ERD

Stellenbosch University http://scholar.sun.ac.za

84 | P a g e

6. ENHANCING THE MODEL

Following the aims of the research project described here, the core components of an object

model aimed at task allocation was developed in chapter 4, and its supporting database model

in chapter 5. The functionalities of the models were hinted at, but not described in detail. In this

chapter the key functionalities and how the model was enhanced to incorporate them, are

described.

6.1 HIERARCHY

Relationships between database records are formed using primary and foreign keys. Some

database tables exist purely to link records in many-to-many relationships. In Java, relationships

are maintained using references.

A need was identified for specific concepts to be able to able to link to separate instances of that

same concept. This is needed for two specific purposes, namely to create a task hierarchy and a

human resource hierarchy. In the case of the task hierarchy the relations describe the order in

which the tasks should be completed by linking a task to its successor. In the case of the human

resource hierarchy, the command structure of the organisation is described, where every human

resource is linked to his/her immediate superior.

6.2 OPTIMISATION AND FINDING PEOPLE

There are many types of technical optimisation available, from conjugate gradient methods and

Quasi-Newton methods to evolutionary optimisation. It is not practical to run an optimisation

procedure to select the most suitable human resource for a given task. Instead, a powerful and

efficient filtration procedure was implemented.

Three layers of filters were designed to aid in finding the best choice for task allocations. These

layers are Restrictive Filters, Exclusion Filters, and Refinement Filters.

Stellenbosch University http://scholar.sun.ac.za

85 | P a g e

6.2.1 SCORE

Score is the concept which the search filters use to determine the most appropriate candidate

for a task. A score maps a single human resource to single task. A new Score is created for each

person-task combination where said person is eligible to execute the task. Each Score has a

numerical value, called the score, to numerically track how appropriate the person is to do the

specific task. Scores are stored in a sortable set, or list, called ScoreList. Each refinement

filter sorts the ScoreList is its own unique way and increments the score value of each Score

appropriately. All sorting is done using Java’s comparable interface. Once all the refinement

filters enabled by the project manager have run their course, the ScoreList is analysed to find

the highest scoring individuals for each task.

The highest scoring individual, along with a percentage of the runner-ups, are displayed on the

Graphical User Interfacep for the project manager to review.

6.2.2 RESTRICTIVE FILTERS

The concept behind restrictive filters is to limit the amount of data queried from the database. If

an organisation is large and the initial query for data returns too much information, the local

computer would struggle to store the entire result-set inside memory and deconstruct the

information. This problem can be averted if the initial search is given some directional focus. If

the project manager only wants to recruit individuals from a specific office, region, or even

country, a restrictive filter is the way to accomplish this.

Restrictive filters are the only filters that explicitly alter the SQL String sent to the database.

6.2.3 EXCLUSION FILTERS

Exclusion filters serve to exclude invalid individuals from the search, further narrowing the search

and potentially increasing the speed at which further filter actions are taken. The only exclusion

currently implemented is a filter checking for individuals who are currently working on a flat-

p GUI

Stellenbosch University http://scholar.sun.ac.za

86 | P a g e

lined task, called Exclude Task Priority. Per definition, an individual who is assigned to a flat-lined

task must spend 100% of his time on finishing it, and as such is not available to work on other

tasks.

6.2.4 REFINEMENT FILTERS

Refinement filters are the third layer of filters and perform the brunt of the optimisation. Each

filter can be turned on or off, depending on the needs and wants of the project manager. Sliders

can be used to determine an individual filter’s relative importance to the current search. This

functionality means a project manager can truly customise his/her search to suit the need of the

organisation.

The refinement filters that are currently developed will now be discussed. It should be noted that

all score alterations are affected by the user’s choice of slider value.

6.2.4.1 EXACT SKILL MATCH

The Exact Skill Match filter is a search that sorts through the ScoreList and assigns a fixed value

to the score of each individual who possess a skill required by the task. If a task has multiple skill

requirements, a single individual can get multiple score alterations if he/she possess the correct

skills.

6.2.4.2 RELEVANT SKILLS

The Relevant Skills filter works similarly to the Exact Skill Match filter. The filter searches through

the skills of all the applicable Scores and assesses whether one of an individual’s skills are in the

same SkillGrouping as a skill required by a task. SkillGrouping is a Java class that extends

Set<Skill>, and as such is a set of skills which are all considered relevant to each other. Skill

relevance has to be determined manually by a user before allocation can occur, and is

persistently stored in the database in the RELEVANTSKILLS table. Relevant skill matches are

treated the same way as exact skill matches, but carries less weight in the filter procedure.

Stellenbosch University http://scholar.sun.ac.za

87 | P a g e

6.2.4.3 MAXIMISE PROFITS

The Maximise Profits filter assigns scores according to individuals’ billable rate per hour, retrieved

from the billable_rate_per_hour column in the RATE table. The scores are assigned with an

increasing order of rate values. A linear counter, starting with a value of one goes down the list,

adding the counter’s value to the individual’s score and incrementing by one when the human

resource changes. Consequently the same human resource always receives the same amount of

points for all of his possible tasks. Individuals that generate the lowest income for the

organisation will receive the least amount of points, while individuals with the highest billable

rate receive the most.

6.2.4.4 MINIMISE COST TO COMPANY

The Minimise Cost to Company filter sorts individuals according to decreasing cost to company

values, retrieved from the cost_to_company_per_hour column in the RATE table. Again a linear

counter with a starting value of one goes down the list of scores, increasing the value of the

counter every time the human resource changes. This results in individuals with a higher cost to

company receiving less points than individuals with a low cost to company.

6.2.4.5 CALCULATE WORKLOAD

Calculate Workload is arguably the most important and innovative refinement filter in the filter

system. This filter uses the individual workload calculation defined earlier in this document.

Stellenbosch University http://scholar.sun.ac.za

88 | P a g e

perceived workload

= 𝑡ineff

∗

(

(

{

0, 𝑇 = 0

0, ∑(𝑡𝑖(1 + 𝑜𝑖)

𝑛

𝑖=1

= 0

0.841(𝑇−∑ (𝑡𝑖(1+𝑜𝑖)
𝑛
𝑖=1 , ∑(𝑡𝑖(1 + 𝑜𝑖)

𝑛

𝑖=1

≤ 𝑇

0.959(𝑇−∑ (𝑡𝑖(1+𝑜𝑖)
𝑛
𝑖=1 , ∑(𝑡𝑖(1 + 𝑜𝑖)

𝑛

𝑖=1

> 𝑇
)

(0.5) + ({

0, 𝐿 = 0
0, 𝑛 = 0

 log9(𝐿 + 1) , 𝑛 ≠ 0
)(0.26)

+ ({
0, 𝑛 = 0

𝑛
𝑛
33.96⁄ , 𝑛 ≠ 0

) (0.24) + ({
0, 𝑛 ≤ 1

0.000472 ∗ 𝑠𝑚𝑎𝑥 ∗ 𝑛
3.405, 𝑛 > 1

)

)

+ {
0, 𝐿 = 0
0, 𝑛 = 0
𝐼𝐹, 𝑛 ≠ 0

Equation 22: Equation for quantifying perceived workload

The problem with using this equation is that it computes PWL for a single day, which is not very

useful as there is not a specific day that needs analysing. The method that can, however, be used

to retrieve useful information is to take the average PWL over a period of days.

The time from the earliest start date among all the tasks that are part of the search, to the latest

end date of these tasks was taken as the period. Each day’s PWL is calculated, added together,

and then divided by the total number of days within the period. This provides a reasonable

estimation of an individual’s workload.

Another obstacle to overcome when trying to use the workload equation, is to find the amount

of hours spent on each task every day. This is difficult because of the way tasks are assigned. An

individual is booked for a task, from the earliest start date, to the latest end date; and the

individual has to find time within that timeframe to complete the task. This makes it impossible

to pinpoint exactly when, and how much, the individual will work on a specific task.

Stellenbosch University http://scholar.sun.ac.za

89 | P a g e

The importance, or priority, of a task can however be used effectively to ascertain how much of

an individual’s day he/she should spend working on that specific task. The individual’s workday

duration is split up into as many parts as there are tasks assigned to him on that day. Tasks with

a higher importance ranking receive more time, while less important tasks receive less time. This

method is called time distribution. If one of the tasks is flat-lined, the individual’s workload is

automatically set to 100% and he/she becomes unsuitable for further loading.

Assume that the summation of all the time allocated to tasks within a day, always equals the

workday duration. The question is, how long should an individual spend on each task?

The fraction, or weight, of an individual’s workday spent on a single task can be written as

(𝑤𝑜𝑟𝑘𝑑𝑎𝑦 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) ∗ 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 = 𝑡𝑎𝑠𝑘𝑇𝑖𝑚𝑒𝑖, with i referencing a specific task.

A task’s weight is a function of that specific task’s priority.

Task priority is defined as inversely proportional to numerical value, meaning that low values of

priority actually denote more importance than high values of priority. Therefore, a task’s relative

priority is taken as 1 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦⁄ .

The relative priority version of the three available priority settings is shown in the graph below.

Stellenbosch University http://scholar.sun.ac.za

90 | P a g e

Graph 20: Task relative priority vs priority value

It should be noted that the final priority, the fast-track priority, when the priority equals zero,

yields a relative priority of infinity. This does not matter overly much as we know that when an

individual is assigned a task with a zero priority value, that person may not be assigned any other

tasks and should spend the full workday on that task.

As can be seen from graph 20, the relative priority forms a hyperbola as priority increases. This

is ideal as it states that a task with a priority of 1, is exponentially more important than a task

with a priority of 2, and so on.

Per definition, task weights should also always sum up to 1. To enable this the following equation

for task weight is proposed:

𝑤𝑒𝑖𝑔ℎ𝑡 =
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦

∑ 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦
,

Equation 23: Weight of task duration out of full day

Where ∑𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦, is the summation of all the day’s relative priorities.

This would mean, written mathematically correctly, that:

0

0,2

0,4

0,6

0,8

1

1,2

0 1 2 3 4

R
el

at
iv

e
p

ri
o

ri
ty

Priority value

Relative priority vs Priority value

Stellenbosch University http://scholar.sun.ac.za

91 | P a g e

𝑡𝑎𝑠𝑘𝑇𝑖𝑚𝑒𝑖 = (𝑤𝑜𝑟𝑘𝑑𝑎𝑦 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) ∗
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖

∑ 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑘
𝑛
𝑘=1

,

Equation 24: Equation for time spent on specific task

With n denoting the number of tasks for the day, and i denoting the current task.

A very descriptively named method, ifEndDateisTodayAndTaskDurationIsLessThanDay(),

checks for the special cases where a specific day coincides with a task’s end date, or when the

duration of a task is less than a day. In these cases the full task duration is fit into the one day, in

preparation for focusing on that one task.

6.2.4.6 DISTANCE TO PROJECT

Distance to Project is a filter that sorts individuals according to the straight-line distance between

their offices and the project location. Distances are sorted in descending order, meaning the

distance gets smaller as the list goes down. A linear counter with a starting value of one crawls

down the list, increasing the value of the counter with every line. This counter is added to the

score of the individual. This results in individuals who work farther away from the project

destination receiving less points than those who work closer.

It was deemed acceptable to assume the earth is a sphere for calculation purposes. The shortest

distance along the surface of a sphere between two points is along a great-circle which contains

the two points. This method of calculating distance between coordinates results in a possible

error of 0.5%. [27]

The calculation method will now be discussed.

Let Φ1, 𝜆1and Φ2, 𝜆2 be the geographical latitude and longitude of two points 1 and 2. If ΔΦ,Δ𝜆

was the absolute differences, then Δ𝜎, the dominant angle between the two points would be

given by the spherical law of cosines as [28]:

Δ𝜎 = arccos(sinΦ1 sinΦ2 + cosΦ1 cosΦ2 cos Δ𝜆)

Equation 25: Spherical law of cosines

Stellenbosch University http://scholar.sun.ac.za

92 | P a g e

The distance d, for a sphere of radius r and angle Δ𝜎 would then be calculated as 𝑏𝑑 = 𝑟 ∗ Δ𝜎

The shape of the Earth closely resembles a flattened sphere with an equatorial radius of 6478

km. If a completely spherical Earth is assumed, accepting the error of 0.5%, a good estimation for

the radius of the sphere would be the mean earth radius: 6371 km.

6.3 TASKS AND FLAT-LINING

Tasks have a duration, start, and end dates that can be used to calculate the latest date a task

has to be started before it cannot statistically be completed in time. If a task is not yet started

and this latest start date nears, the task can be flagged as critical and that it should be flat-lined.

The latest start date can be calculated by subtracting the task duration from the task’s latest end

date.

A rudimentary system was developed to aid in notifying project managers of important tasks.

The software scans for any currently assigned tasks and their individual priority; then assigns a

flag to be displayed on screen. If a task has a priority of zero, it indicates the task is to be fast-

tracked, or flat-lined. The software also compares the current local date to that of the latest start

date of the task. The software currently alerts the project manager if the current day is within

one week of the latest day a task must be started by displaying the following message on-screen:

“(GET READY TO FLATLINE SOON)”. A similar message is displayed for when the day has

arrived, or has passed.

 }

Stellenbosch University http://scholar.sun.ac.za

93 | P a g e

7. TEST PROJECT: SOFTWARE IN ACTION

An imaginary company was simulated to test the software implementation. The company has the

indicated command structure shown in figure 2 and certain characteristics of the personnel are

indicated.

Mr Specialist

norm al

external

A Alpha

norm al

B Beta

slow

C Charlie

fast

D Delta

no t standard

E Echo

high ctc

F Foxtrot

busy

G Gamma

fasttracked

Test Company

Hire-R-Us

External CompanyHome Organization

Figure 6: Test company command structure

The company has seven employees, and one external personnel member currently on payroll.

Each of the employees has a unique characteristic: one is fast in his work, another is slow, another

is busy, etc.

One of the projects the company has on its to-do list is a project called, “Somerset Will Thrive”,

which is a small project on a building in Somerset-West. The project is comprised of only four

tasks that have to be completed, with each task requiring one or more skills to complete.

Stellenbosch University http://scholar.sun.ac.za

94 | P a g e

Task: Clean

Skill: Clean

Task: Think

Skill: Structures

Task: Paint

Skill: Interior

Task: Build

Skill: Structures

Skill: Civil Works

Project

Somerset Will Thrive

Figure 7: Example project task breakdown

The company has two offices, one in Cape Town, and one in Stellenbosch. The personnel’s skills,

along with which employees are native to which offices are shown in the following diagram.

Stellenbosch University http://scholar.sun.ac.za

95 | P a g e

Employee: A Alpha

Skill: Clean

Employee: B Beta

Skill: Structu res

Employee: G Gamma

Skill: Civil W orks

Employee: C Charlie

Skill: Clean

Employee: D Delta

Skill: Civil W orks

Outsource: Mr Specialist

Skill: Interior

Employee: E Echo

Skill: Civil W orks

Employee: F Foxtrot

Skill: Civil W orks

Cape Town Office

Stellenbosch Office

Somerset-West Site

Figure 8: Test company employee skills and locations

The locations have the following details, in the format that the information is stored in the database:

Figure 9: Location details

Stellenbosch University http://scholar.sun.ac.za

96 | P a g e

The project, meaning all of the tasks, now have to be assigned to individuals within the

organisation. Some of the important aspects the task allocation procedure look at is: Skill

Matching, availability and relative risk, and travel distance.

After the semi-automatic procedure was left to run its course, with the top choice being chosen,

this is the resulting task allocations.

Figure 10: Allocations as made by software

In this organisation, B Beta is the only individual with a Structures skill, and is thus the only logical

choice for Task: Think, as it requires that exact skill. There are two possible choices for Task:

Clean, as there are two individuals with the Clean skill, namely A Alpha and C Charlie. The only

difference between the two individuals is that A Alpha works in the Stellenbosch Office, while C

Charlie works in the Cape Town Office. As Stellenbosch is closer to Somerset West than Cape

Town is, A Alpha is the better choice for the task. Stellenbosch is about 20 kilometres from

Somerset West, while Cape Town is about 45 kilometres [29].

There are five possible choices for Task: Build; namely Beta, Delta, Echo, Foxtrot, and Gamma. All

these individuals only have one of the skills required by the task. Foxtrot already as a task

assigned to him, as he is trademarked by being busy. Gamma is also busy with a task, but it is

flat-lined, or fast-tracked, and as such cannot be loaded with another task. Beta is slow and

already has a task assigned to him this project. Echo has a high Cost to Company. This only leaves

Stellenbosch University http://scholar.sun.ac.za

97 | P a g e

D Delta, which although he does not keep regular office hours, is mathematically the best choice

for the task.

The organisation has no permanent employees that possess the Interior skill that is required by

Task: Paint. This would have been a sign for the project manager that an external resource would

have to be approached for necessary expertise. As such, Mr Specialist was already on the payroll

of the organisation, and automatically received the task as he was the perfect fit.

This test project is a relatively small and simple example, and an individual could easily have

estimated the best task allocation his/herself. The real power of software comes into play when

the amount of tasks and possible personnel grows too large for a single person to construct all

the possible associations.

Stellenbosch University http://scholar.sun.ac.za

98 | P a g e

8. PROJECT RESOURCE LOCATOR - KEY POINTS OF THE CODE

Project Resource Locator is the working title of the software implementation. This chapter will

describe key aspects of this software and discuss how it works and also look at the Java

programming language implementation.

For task allocation, relevant information was retrieved from the database and stored in Java

classes and objects. This happens before any search is started. If a search was done directly on

the database, the connection to the database would have to remain open for an extended time,

during which concurrent users could skew results by altering data. In order to populate the

different tables and dropdown lists seen by the user on the Graphical User Interface (GUI), the

database has to be queried directly.

The way in which several important concepts were implemented in the software is described

below.

8.1 FILTER

Three layers of filters were designed, Restrictive Filters, Exclusion Filters, and Refinement Filters.

These three filters were all defined as abstract super-classes RestrictiveFilter,

EliminationFilter and RefinementFilter, with individual types of filters simply

extending these super-classes.

Source Code Insert 1: Typical Filter class declaration

Source Code Insert 2: Example RestrictiveFilter constructor

public abstract class RefinementFilter {

public class NoRestrictionRetrictive extends RestrictiveFilter{

 public NoRestrictionRetrictive() {
 super("No Restriction");

 }

Stellenbosch University http://scholar.sun.ac.za

99 | P a g e

RestrictiveFilter contains two mandatory methods, influenceQueryI() and

influenceQueryE(), which respectively alter the SQL query sent to the database for obtaining

internal personnel and external personnel.

Both EliminationFilter and RefinementFilter have only one mandatory method,

affectScores(). This method retrieves the current ScoreList, as defined in a previous

chapter, and affects the results accordingly.

Instances of EliminationFilter works by removing invalid Scores from the list.

else
{

 //remove from list.
 scores.remove(scores.getScoreByKey(hr.getPk(), newtask));
 System.out.println("Task removed from list: "+newtask.getPk()+" from
"+hr.getSimpleName());

 }

Source Code Insert 3: Removal of Scores using instance of EliminationFilter

Stellenbosch University http://scholar.sun.ac.za

100 | P a g e

Instances of RefinementFilter numerically add value to specific Scores.

public void affectScores() throws SQLException
{
 double constant = 12.0;

for (Score sc : scores.getScores())
 {
 HR hr = sc.getHR();
 SkillList hrSkills = hr.getSkills();
 for (Skill hrP : hrSkills)
 {
 System.out.println(hr.getSimpleName()+" has skill:
"+hrP.getDescription());
 System.out.println(hrP.getDescription());
 for (Task taskp : scores.getTasks())
 {
 SkillList taskSkills = taskp.getSkills();
 for (Skill tP : taskSkills)
 {
 if(tP.getDescription().equals(hrP.getDescription()))
 {
 int key = hr.getPk();
 Score s = scores.getScoreByKey(key, taskp);

 s.addPoints(constant * slidervalue);
 }
 }
 }
 }
 }
}

 Source Code Insert 4: Typical RefinementFilter affectScores() method

Stellenbosch University http://scholar.sun.ac.za

101 | P a g e

8.2 DISTANCE BETWEEN OFFICE AND PROJECT

The calculation used within the Refinement filter, Distance to Project, was implemented as

follows:

8.3 IMPLEMENTING WORKLOAD CALCULATION

Two separate classes implement the workload calculation namely, Workload and

WorkloadCalculations. WorkloadCalculations queries the database for all relevant

information. The applicable Refinement Filter receives all the necessary information from

ScoreList. The full WorkloadCalculations class is listed in Appendix B.

private void calc()
{
 double d2r = (Math.PI /180);
 try {
 double dlong = (endpoint.getLon() - startpoint.getLon()) * d2r;
 double dlat = (endpoint.getLat() - startpoint.getLat()) * d2r;
 double a =
 Math.pow(Math.sin(dlat / 2.0), 2)
 + Math.cos(startpoint.getLat() * d2r)
 * Math.cos(endpoint.getLat() * d2r)
 *Math.pow(Math.sin(dlong / 2.0), 2);
 double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));

 setDistanceKilometer(6371 * c);

 } catch(Exception e){
 e.printStackTrace();
 }

}

Source Code Insert 5: Distance calculation in code

Stellenbosch University http://scholar.sun.ac.za

102 | P a g e

The method used to retrieve an individual’s average workload over a period of days is shown

here:

Source Code Insert 6: Average workload over task period - scores

Source Code Insert 7: Average workload over task period - dates

public double getAverageWorkload(HR hr, ScoreList s)
 {

 Calendar earliest = Calendar.getInstance();
 Calendar latest = Calendar.getInstance();
 earliest.setTime(new Date(0));
 latest.setTime(new Date(999999999));

 for (Score score : s)
 {

 if (earliest.after(score.getTask().getEarlyStartDate()))
 earliest.setTime(score.getTask().getEarlyStartDate());
 if (latest.before(score.getTask().getEndDate()))
 latest.setTime(score.getTask().getEndDate());
 }
 return getAverageWorkload(hr, earliest.getTime(), latest.getTime());

 }

public double getAverageWorkload(HR hr, Date start, Date end)
{
 Calendar c = Calendar.getInstance();

c.setTime(start);
 double work = 0;
 double count = 0;

while(c.getTime().before(end))
{

 Date today = c.getTime();
 work += compute(hr, today);
 count++;

 if (c.DAY_OF_MONTH < c.getActualMaximum(c.DAY_OF_MONTH))before(end))
{

 c.add(Calendar.DAY_OF_MONTH, 1);
}

}
return work/count;

}

Stellenbosch University http://scholar.sun.ac.za

103 | P a g e

The method used to distribute the available hours in a day to all the assigned tasks is described

here. Note that the booking_distribution object is a map linking a task with its allocated

time:

The equation for task time distribution,

𝑡𝑎𝑠𝑘𝑇𝑖𝑚𝑒𝑖 = (𝑤𝑜𝑟𝑘𝑑𝑎𝑦 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) ∗
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖

∑ 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑘
𝑛
𝑘=1

,

Equation 26: Task time distribution

is represented in the source code insert with the double base equal to
(𝑤𝑜𝑟𝑘𝑑𝑎𝑦 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛)

∑ 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑘
𝑛
𝑘=1

,

and t.getPriority() denoting a task’s priority, meaning
1

𝑡.𝑔𝑒𝑡𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦()
 = relative priority.

total is equal to
1

∑ 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑘
𝑛
𝑘=1

.

public void distributeTime(HR hr)
 {
 double total = 0;
 double base;
 double T = hr.getT();

//remove tasks that have already been allocated time from the method
 for (Task t : booking_distribution.keySet())
 {
 if (booking_distribution.get(t) != null)
 T = T-booking_distribution.get(t);
 }
 for (Task t : booking_distribution.keySet())
 {
 total += 1.0/t.getPriority();
 }
 base = T/total;
 for (Task t : booking_distribution.keySet())
 {
 if (booking_distribution.get(t) == null)
 booking_distribution.put(t, base/t.getPriority());
 }
 }

Source Code Insert 8: Time allocation among tasks

Stellenbosch University http://scholar.sun.ac.za

104 | P a g e

8.4 RESOURCELOCATOR

ResourceLocator is a Java class that acts as a bridge between user input on the GUI and the

search algorithms. This offers possibilities for external software wanting to use the search

without going through the native GUI.

In the code insert above:

 DataBaseInterface is a Java class that creates a connection to the database and has

the ability to send it SQL updates and queries. It is used throughout this software to

communicate with the database

 Tasks is a list of the tasks that is part of the search procedure.

 FilterSettings is a summary of the user defined search parameters and weights.

public ResourceLocator (DataBaseInterface dbi, List<?> tasks, FilterSettings

settings) throws SQLException

Source Code Insert 9: ResourceLocator class declaration

Stellenbosch University http://scholar.sun.ac.za

105 | P a g e

8.5 CONNECTING TO THE DATABASE

8.5.1 JAVA REPRESENTATION OF DATABASE TABLES

Thirty-one classes were developed to create the database tables and transfer information

between the Java software and the database. The classes generate the Structured Query

Language (SQL) required by the database management system for the task at hand.

Each class extends superclass DBObject and deals with a specific table in the database. In each

class the table column heads are defined with getter and setter methods and provision is made

for createTable(), addSql() and updateSql() methods. Typical examples of these

methods from the TASK table will now be given.

createTable() provides the SQL to create the table, complete with names and constraints.

public static String createTable(){
 return "CREATE TABLE "+tableName()+"(" +
 P_KEY +" SERIAL PRIMARY KEY,"+
 PROJECT +" INTEGER NOT NULL, "+
 DESCRIPTION +" VARCHAR("+length(DESCRIPTION) +") UNIQUE NOT NULL, "+
 DURATION +" FLOAT4 NOT NULL, "+
 WORKPACKAGE +" INTEGER NOT NULL, "+
 EARLY_START +" TIMESTAMP NOT NULL, "+
 LATEST_END +" TIMESTAMP NOT NULL, "+
 ACTUAL +" TIMESTAMP NOT NULL, "+
 STRETCHABLE+" BOOLEAN NOT NULL, "+
 STIFFNESS+" FLOAT4 NOT NULL, "+
 PRIORITY+" INTEGER NOT NULL, "+
 "CONSTRAINT project_fk FOREIGN KEY("+PROJECT+") REFERENCES "+
 Project.tableName()+"("+Project.pKey()+"), "+
 "CONSTRAINT workpackage_fk FOREIGN KEY("+WORKPACKAGE+")
REFERENCES "+
 WorkPackage.tableName()+"("+WorkPackage.pKey()+")"+
 ");";
}

Source Code Insert 10: createTable() in code

Stellenbosch University http://scholar.sun.ac.za

106 | P a g e

addSql() provides the SQL to add a new entry to the table.

public String addSql(){
 String tsend = getString(LATEST_END);
 String tses = getString(EARLY_START);
 String tsa = getString(ACTUAL);
 if(tsend == null)
 tsend = "";
 if(tses == null)
 tses = "";
 if(tsa == null)
 tsa = "";
 return "INSERT INTO "+tableName()+"("+
 ((getValue(P_KEY) == null)?"":P_KEY+",")+
 DESCRIPTION +
 ", "+PROJECT +
 ", "+DURATION +
 ", "+WORKPACKAGE +
 ", "+EARLY_START +
 ", "+LATEST_END +
 ", "+ACTUAL +
 ", "+STRETCHABLE +
 ", "+STIFFNESS +
 ", "+PRIORITY +
 ") VALUES ("+
 ((getValue(P_KEY) == null)?"":getInt(P_KEY)+",")+
 "'"+ psql(getString(DESCRIPTION))+"'"+
 ", "+getInt(PROJECT)+
 ", "+getDouble(DURATION)+
 ", "+getInt(WORKPACKAGE)+
 ", (to_timestamp('"+psql(tses)+"', 'DD/MM/YYYY %H:MI'))" +
 ", (to_timestamp('"+psql(tsend)+"', 'DD/MM/YYYY %H:MI'))" +
 ", (to_timestamp('"+psql(tsa)+"', 'DD/MM/YYYY %H:MI'))" +
 ", "+getBoolean(STRETCHABLE)+
 ", "+getDouble(STIFFNESS)+
 ", "+getInt(PRIORITY)+
 ");";
}

Source Code Insert 11: addSql() in code

Stellenbosch University http://scholar.sun.ac.za

107 | P a g e

updateSql() provides the SQL to edit an existing entry in the table.

Two other classes used to communicate with the database are DatabaseInterface and

ResultSet.

DatabaseInterface is described in a previous section, while a ResultSet is a table of data

which is generated by executing a statement that queries the database [30].

public String updateSql() {
 String tsend = getString(LATEST_END);
 String tses = getString(EARLY_START);
 String tsa = getString(ACTUAL);
 if(tsend == null)
 tsend = "";
 if(tses == null)
 tses = "";
 if(tsa == null)
 tsa = "";
 return "UPDATE "+tableName()+" SET "+
 DESCRIPTION + "=" + "'"+getString(DESCRIPTION)+"'"+", "+
 PROJECT + "=" + getInt(PROJECT)+", "+
 DURATION + "=" + getDouble(DURATION)+", "+
 WORKPACKAGE + "=" + getInt(WORKPACKAGE)+", "+
 EARLY_START + "=" + "(to_timestamp('"+psql(tses)+"', 'DD/MM/YYYY
%H:MI'))"+", "+
 LATEST_END+ "=" + "(to_timestamp('"+psql(tsend)+"', 'DD/MM/YYYY
%H:MI'))"+", "+
 ACTUAL + "=" + "(to_timestamp('"+psql(tsa)+"', 'DD/MM/YYYY %H:MI'))"+", "+
 STRETCHABLE + "=" + getBoolean(STRETCHABLE)+", "+
 STIFFNESS + "=" + getDouble(STIFFNESS)+", "+
 PRIORITY + "=" + getInt(PRIORITY)+
 " WHERE "+P_KEY +" = "+getInt(P_KEY)+
 ";";
}

Source Code Insert 12: updateSql() in code

Stellenbosch University http://scholar.sun.ac.za

108 | P a g e

The class, UserInputDBSettings enables the user to connect to a database of his choice.

After the settings are stored, a database connection is established via the

GetDatabaseConnection class.

After GetDatabaseConnection establishes a connection to the database, the data values

which stores the username and password is cleared to facilitate security.

public UserInputDBSettings(String dbName, String dbUrl, char[] password, String user)
 {
 this.dbName = dbName;
 this.dbUrl = dbUrl;
 this.driverName = "org.postgresql.Driver";
 this.password = String.copyValueOf(password);
 this.user = user;
 }
 public UserInputDBSettings(String dbName, String dbIP, String dbPort, char[]
password, String user)
 {
 this.dbName = dbName;
 this.dbUrl = "jdbc:postgresql://"+dbIP+":"+dbPort+"/";
 this.driverName = "org.postgresql.Driver";
 this.password = String.copyValueOf(password);
 this.user = user;
 }

public GetDatabaseConnection (String dbName, String dbUrl, char[] password, String user)
 {
 this.settings = new UserInputDBSettings(dbName, dbUrl, password, user);
 this.dbi = new DataBaseInterface(settings);
 dbName = null;
 dbUrl = null;
 password = null;
 user = null;
 }
 public GetDatabaseConnection (String dbName, String dbIP,String dbPort, char[]
password, String user)
 {
 this.settings = new UserInputDBSettings(dbName, dbIP, dbPort, password,
user);
 this.dbi = new DataBaseInterface(settings);
 dbName = null;
 dbIP = null;
 dbPort = null;
 password = null;
 user = null;

 }

Source Code Insert 13: UserInputDBSettings constructors

Source Code Insert 14: GetDatabaseConnection constructors

Stellenbosch University http://scholar.sun.ac.za

109 | P a g e

The current version of the software automatically connects to a pre-created database on the

local machine. Functionality is however added to manually switch to another database, whether

the data is located on the local machine or on a remote server. The GUI for switching databases

is shown below.

Screenshot 3: Connect to Database GUI window

Stellenbosch University http://scholar.sun.ac.za

110 | P a g e

8.6 DISCUSSING THE GUI IN GENERAL

A graphical user interface was designed that makes the functionalities of program Project

Resource Locator available to project managers. In addition to the basic functionalities of

managing personnel and tasks, capabilities that provide an overview of the state of projects and

personnel are provided, as described in this section.

8.6.1 STARTING UP: THE MANAGER TOOLKIT

The Manager Toolkit screen is displayed at start-up. As shown in screenshot 4, all aspects of the

application can be accessed from this screen.

Screenshot 4: ManagerToolkit window

Stellenbosch University http://scholar.sun.ac.za

111 | P a g e

Important tasks and tasks requiring special attention are displayed in the central panel. This is

done with the following code snippet:

Calendar today = Calendar.getInstance();
 for (TaskItem task : main.taskitems)
 {
 Calendar imp = task.getLateststart();
 Calendar imponeweek = imp;
 imponeweek.add(Calendar.WEEK_OF_MONTH, -1);
 if (task.getPriority()==0)
 {
 main.listmodel.addElement(task.toString()+" (FLATLINE)");
 }
 else if (today.after(imp))
 {
 main.listmodel.addElement(task.toString()+" (SHOULD BE
FLATLINED BUT IS NOT)");
 }
 else if (today.after(imponeweek))
 {
 main.listmodel.addElement(task.toString()+" (GET READY TO
FLATLINE SOON)");
 }
 else if (task.getPriority()==1)
 {
 main.listmodel.addElement(task.toString()+" (HIGH PRIORITY)");
 }
 else if (task.getPriority()==2)
 {
 main.listmodel.addElement(task.toString()+" (NORMAL
PRIORITY)");
 }
 else if (task.getPriority()==3)
 {
 main.listmodel.addElement(task.toString()+" (LOW PRIORITY)");
 }

 }

Source Code Insert 15: Creating flags for important tasks

Stellenbosch University http://scholar.sun.ac.za

112 | P a g e

8.6.2 ADD PEOPLE

When the Add People button is pressed the following screen will be displayed on to the screen:

Screenshot 5: Add People window

On this screen the user can either select Internal Personnel or External Personnel. The choice

changes the fields available in the main panel.

Here the user can input all the necessary fields and add an employee to the system. To set which

skills the individual has, the following window will be displayed when the check box is ticked:

Stellenbosch University http://scholar.sun.ac.za

113 | P a g e

Screenshot 6: General data selector

The shown skills are obtained directly from the database. Any number or combinations of skills

can be chosen. Pressing Accept will store the decision. If the desired skill is not shown, it can be

manually added by pressing the Add Skill button on the previous screen. The same Data Selector

window is used every time a list of attributes have to be selected and new entries can be created

using the relevant add-button. To set an individual’s office, department and rate, similar dialogs

are displayed. The available offices, departments and rates are obtained from the database using

the code shown in code insert 14 and 15.

DataSelectorMulti ds = new DataSelectorMulti(dbi, "select SKILL.skill_description
from SKILL", frame, "setSkills");

dataName = sql;
String[] firstsplit = dataName.split(" ");
String [] secondsplit = firstsplit[1].split("\\.", 2);
System.out.println(secondsplit[0]);
dataName = secondsplit[0];
ResultSet rs = new RunQuery(dbi,sql).compute();
while(rs.next())
 {
 Object obj = rs.getObject(1);
 olddata.add(String.valueOf(obj));
 }
tablemodel.addColumn(dataName, olddata.toArray());

Source Code Insert 16: Creating a new DataSelector

Source Code Insert 17: Populating the DataSelector

Stellenbosch University http://scholar.sun.ac.za

114 | P a g e

8.6.3 FIND PEOPLE

The primary functionality of the software is the allocation of tasks, or as it is designated in the

GUI, Finding People to do Tasks. On the left hand side of the window, shown in screenshot 7, the

user can select whether to see only the unassigned tasks, or all the tasks. Once the user sees the

desired tasks, any task, or combination of them, can be selected for inclusion in the search. On

the right-hand side of the window the filter options can be set. Specific filters can be turned on

or off, or their relative importance can be changed. When the screen starts up for the first time

the settings are set to the default values, which were deemed to represent good engineering

judgement.

In Options, on the menu bar, the user can set what percentage of the total possible personnel to

see in the final answer. If the user only wants to see the top 10%, this is what makes it possible.

When the user is satisfied with the filter settings, the Search button at the bottom of the screen

can be pressed to start the procedure. The user should expect a delay since the filtration process

is computationally expensive. When the calculations are done the results will be displayed in the

panel near the right-hand bottom corner of the window. The user can browse through the

specific tasks that were pre-selected and the display will automatically change to display the top

choices for each task. The personnel are sorted according to the scores they received, with the

top scoring individual always being automatically selected. If the user instead prefers the task be

assigned to another individual, he/she simply has to select the individual from the list. When the

user is satisfied with the allocations, pressing the Accept button will create provisional bookings

and store them in the database.

If a user already knows who he wants to do a task, he/she does not have to go through the whole

search procedure as there is a method available to explicitly assign tasks to individuals. This

method does not go through any filters, and is thus not guaranteed to be optimal. The Explicitly

Assign Tasks button at the bottom of the screen can be pressed to accomplish this.

Stellenbosch University http://scholar.sun.ac.za

115 | P a g e

Screenshot 7: Find People window

After the provisional bookings have been stored, the user can view them by pressing the Manage

Provisional Bookings button available on the ManagerToolkit window.

Screenshot 8: Manage Provisional Bookings window

Stellenbosch University http://scholar.sun.ac.za

116 | P a g e

From this window it is possible to either delete provisional bookings, or upgrade them to

confirmed bookings.

8.6.4 SCHEDULES

If the Schedules-button on the ManagerToolkit window is depressed the window displays the

data in Gannt chart format. The chart can be zoomed in by clicking and dragging the cursor to the

right. The timeframe specified in the ManagerToolkit determines the outermost bounds of the

schedule. Different colours on the graph represent different types of bookings. Red for normal

bookings: blue for provisional bookings, and green for vacations. Vacations can be assigned to

individuals by pressing the Add Vacation Days button on the right-hand side.

Screenshot 9: Schedule Viewer window

Stellenbosch University http://scholar.sun.ac.za

117 | P a g e

8.6.5 BUILDING REPORTS: CHART DRAWER

A Chart Viewer can be launched using the File-menu of the ManagerToolkit window.

Screenshot 10: Chart Viewer with menu window

Clicking on either the “+” sign in the tabs, or going to Charts – Create Chart, will open a new

window, called the Chart Creator, which enables the user to create custom charts. While the user

is creating a collection of charts, the collection can be saved using Java serialisation. To

accomplish this the user should click on File – Save in the menu. Charts can be browsed via the

tabs at the top of the window. Right-clicking on the chart will give the user options to completely

customise the look of the chart. Some charts can also be zoomed in by left-click dragging to the

right. If the user has completed adding charts and is satisfied with his report, the collection can

be exported to a PDF file. Charts are projected on the top half an A4 sheet, with each chart taking

Stellenbosch University http://scholar.sun.ac.za

118 | P a g e

up a page on its own. This can be accomplished by clicking on File – Export to PDF. This PDF can

then be included into another report if so desired.

Screenshot 11: Example resulting PDF export

When creating charts with the Chart Creator, standard charts can be quickly generated via the

buttons on the quick pick panel. When selected, individual datasets can be altered if so desired.

A completely custom graph can be generated by using the lists inside the custom chart panel.

The chart type can be set along with which data both axes should be populated. Some charts

have sub-types which change how they look, for example pie charts can be viewed standard, or

exploded. It should be noted that some datasets cannot be compared by certain types of charts.

Bar Charts must compare a description with a numerical value. Two values cannot be compared

to one another. Checking has been implemented in the software for these cases.

Stellenbosch University http://scholar.sun.ac.za

119 | P a g e

Screenshot 12: Chart Creator window

Stellenbosch University http://scholar.sun.ac.za

120 | P a g e

Drop down lists are populated as soon as the Chart Creator is opened, with the following code

serving as an example.

Depending on the choice of chart, datasets are constructed differently.

if (selectedChart.equals("Pie Chart"))
 {
 box.addItem("Simple");
 box.addItem("Exploded");
 box.addItem("3D");
 }
else if (selectedChart.equals("Bar Chart"))
 {
 box.addItem("Vertical");
 box.addItem("Horizontal");
 box.addItem("3D Vertical");
 box.addItem("3D Horizontal");
 box.addItem("Waterfall");
 }
else if (selectedChart.equals("Line Chart"))
 {
 box.addItem("Vertical");
 box.addItem("Horizontal");
 box.addItem("3D Vertical");
 box.addItem("3D Horizontal");
 }

Source Code Insert 18: Populating sub-type dropdown lists

if (selectedChart.equals("Pie Chart"))
 {
 DefaultPieDataset dataset = new DefaultPieDataset();
 if (data1.size() != data2.size())

{
 System.out.println("INCORRECT DATASET SIZE MATCHING. REVISIT");
 }
 else
 {
 for (int i = 0 ; i < data1.size() ; i++)
 {
 if (((DataItem)comboBox_data1.getSelectedItem()).isnumber)
 {
 dataset.setValue((Comparable)data2.get(i),
(Double)data1.get(i));
 System.out.println("datavalue is :
"+(Double)data1.get(i));
 }
 else
 dataset.setValue((Comparable)data1.get(i), (Double)data2.get(i));

 }
 }
 if (selectedSub.equals("Simple")) {

 chart = ChartFactory.createPieChart(title, dataset,
legend, tooltips, false);

 }

Source Code Insert 19: Creating a chart dataset according to choices

Stellenbosch University http://scholar.sun.ac.za

121 | P a g e

8.7 CODE DIAGRAMS

Simplified versions of various parts of the code is visualised using Unified Modelling Language

(UML) diagrams, as shown below. The diagrams provide an overview of how the code is

connected together to yield various results.

8.7.1 DRAWING CHARTS

Figure 11: UML – Drawing Charts

Stellenbosch University http://scholar.sun.ac.za

122 | P a g e

8.7.2 FIND PEOPLE

Figure 12: UML – Finding People

Stellenbosch University http://scholar.sun.ac.za

123 | P a g e

9. RECOMMENDATIONS FOR FURTHER WORK

In this document a technique was developed to calculate perceived workload to aid project

managers to better allocate tasks. Supporting software was also developed with which an

organisation with all its offices and employees can be modelled. The software also provides

additional features which aims to aids project managers in management and transparency

thereof by enabling the generation of reports.

The software operates and it yields proper results. However, any software package can always

be improved and redesigned. A list of elements that can be improved or added now follows:

 The code can be rewritten and optimised. It is believed the program can be made smaller

and more responsive.

 The GUI was developed using the Java Swing framework. It should be rewritten using Java

FX. JavaFX, which will be released soon [31], will make the software look and feel much

Screenshot 13: JavaFX example window

Stellenbosch University http://scholar.sun.ac.za

124 | P a g e

more professional. Currently major workarounds is used that could have been avoided

with this new technology.

 The entire project should be moved online, with the controlling database located on a

remote server, and the graphical user interface imbedded into a website. This can be

accomplished by using Java Server Pages or the new JavaFX.

 Currently not all types of charts are implemented in the Chart Drawer. More charts can

be added to offer more functionality.

 Additional filters should be added to the search method to increase accuracy and

flexibility:

o People higher up in an organisation command structure should be allocated less

work, as the pressure of command and organisation is probably increased. These

individuals should be focusing on running a company.

o A method to force the spacing of individuals throughout the length of a project is

needed. This is to prevent the same skilled individual from working on a number

of consecutive tasks. The task-graph is available and can be used for this purpose.

The p-distribution discussed in a paper by Paul J. Maliszewski, Michael J. Kuby and

Mark W. Horner called “A comparison of multi-objective spatial dispersion models

for managing critical assets in urban areas” could be found useful.

 It is possible that the logic of the object model can be revisited for future

implementations. It is possible that some logic of the model can be simplified.

 If this software is developed for use in a real business environment, the model can be

further refined by discussing, with system analysts, what typical standardised

organisation models are used to define the typical business project, office or department.

 Although physical distance from project locations are already brought into the procedure,

the importance of time zones and day-night differences can possible be accentuated

specifically.

Stellenbosch University http://scholar.sun.ac.za

125 | P a g e

10. CONCLUSION

The primary objective of the research described in this thesis was to develop and implement a

technique by which project managers can allocate tasks to members of a project team in an

engineering environment. As part of the process an equation to calculate an individual’s

perceived workload was developed and implemented. A survey tested engineering manager’s

response to the equation’s logic, and the results were positive. Other criteria that influence the

allocation of tasks were also investigated and included in the selection procedure. The prototype

software enables a project manager to effectively allocate tasks to individuals within an

organisation. The software also aids in the generation of charts that can be used in the

management of the organisation. Most aspects of the prototype software were designed with

growth in mind and can be developed further.

It is believed that this software, and software like it, will truly make a difference in the engineering

world. Automation is the key to time saving, and thus to saving money. A large amount of time

and money is currently spent on project management, and software can assist project managers

to work more efficiently and obtain better results. The future of project management software

is promising and exciting. The challenge, however, is to convince companies and organisation s

to adopt and improve these advances in practise.

Stellenbosch University http://scholar.sun.ac.za

126 | P a g e

REFERENCES

1. Oxford University Press. Oxford Dictionaries Online. [Online]: Oxford University Press; 2007 [cited 2013 August

13. Available from: http://oxforddictionaries.com/definition/english]

2. Nicholas JM, Steyn H. Project Management for Business, Engineering, and Technology - Principles and Practise.

3rd ed. Oxford: Butterworth-Heinemann; 2008.

3. van Rooyen GC. Thesis discussion. In ; 2012; Stellenbosch. p. January - October, Once a week.

4. Brooks FP. The Mythical Man-Month. Anniversary Edition ed: Addison-Wesley; 1995.

5. Coviello D, Ichino A, Persico N. Time Allocation and Task Juggling. [Online]; 2011 [cited 2013 September 24.

Available from: http://federation.ens.fr/ydepot/semin/texte1213/NIC2013TIM.pdf]

6. Algonquin College of Applied Arts and Technology. Algonquin College: Standard Workload Formula (SWF).

[Online]; 2013 [cited 2013 September 24. Available from: http://www3.algonquincollege.com/hr/managers-

toolkit/talent-workload-management/standard-workload-formula/#assignment]

7. Tsai YL, Huang KC, Chang HY, Ko J, Wang ET, Hsu CH. Scheduling Multiple Scientific and Engineering Workflows

Through Task Clustering and Best-Fit Allocation. [Online]; 2012 [cited 2013 September 24. Available from:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6274023]

8. Kartik S, Siva Ram Murthy C. Improved Task- Allocation Algorithms to Maximize Reliability of Redundant

Distributed Computing Systems. [Online]; 1995 [cited 2013 September 24. Available from:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=475976]

9. Koshijima I, Tomio U. Human Resource Allocation in Project Management: Management Science Approach.

[Online]; 2003 [cited 2013 September 24. Available from:

http://www.sba.muohio.edu/abas/2001/brussels/Koshijima_Koshijima-Umeda.pdf]

10. Estellon B, Gardi F, Nouioua K. High-performance local search for task scheduling with human resource

allocation. [Online]; 2007 [cited 2013 September 24. Available from: http://pageperso.lif.univ-

mrs.fr/~bertrand.estellon/recherche/EGN_SLS_09.pdf]

11. Microsoft. Microsoft Office. [Online]; 2013 [cited 2013 09 24. Available from: http://office.microsoft.com/en-

us/project/]

Stellenbosch University http://scholar.sun.ac.za

http://oxforddictionaries.com/definition/english
http://federation.ens.fr/ydepot/semin/texte1213/NIC2013TIM.pdf
http://www3.algonquincollege.com/hr/managers-toolkit/talent-workload-management/standard-workload-formula/#assignment
http://www3.algonquincollege.com/hr/managers-toolkit/talent-workload-management/standard-workload-formula/#assignment
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6274023
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=475976
http://www.sba.muohio.edu/abas/2001/brussels/Koshijima_Koshijima-Umeda.pdf
http://pageperso.lif.univ-mrs.fr/~bertrand.estellon/recherche/EGN_SLS_09.pdf
http://pageperso.lif.univ-mrs.fr/~bertrand.estellon/recherche/EGN_SLS_09.pdf
http://office.microsoft.com/en-us/project/
http://office.microsoft.com/en-us/project/

127 | P a g e

12. Bonitasoft. BonitaSoft. [Online]; 2013 [cited 2013 09 24. Available from: http://www.bonitasoft.com/]

13. 24SevenOffice. 24SevenOffice. [Online]; 2013 [cited 2013 09 24. Available from: http://24sevenoffice.com/]

14. BrightWork. BrightWork - Project and Portfolio Management on SharePoint. [Online]; 2013 [cited 2013 09 24.

Available from: http://www.brightwork.com/index.htm]

15. Clarity International Pty Ltd. Clarity - Simplfying Operations. [Online]; 2011 [cited 2013 09 24. Available from:

http://www.clarity.com/]

16. Pringle D, Farrance M. Bonitasoft - How to Get the Human Resources Information Systems You Need. [Online]

Grenoble, France; 2012 [cited 2013 August 14. Available from:

http://www.bonitasoft.com/system/files/documentation_library/how_to_get_the_hris_you_need_010213.pdf]

17. Harrington JL. SQL Clearly Explained. In Harrington JL. The Relational Data Model. San Francisco: Morgan

Kaufmann Publishers; 2010. p. 3-21.

18. Czerwinski M, Horvitz E, Wilhite S. A Diary Study of Task Switching and Interruptions. PDF. Redmond: Microsoft,

Microsoft Research.

19. D M, A VH, D DB, S V, M G, T D, et al. Determining a set of measurable and relevant factors affecting nursing

workload in the acute care hospital setting: a cross-sectional study. Study. Belgium: University Hospital of

Ghent, Department of Nursing; 2011. Report No: PMID: 22030021.

20. Brunies R, Emir Z. The Revay Report- Calculating Loss of Productivity Due to Overtime. [Online] Montreal; 2001

[cited 2013 August 19. Available from: http://www.danzpage.com/Construction-Management-

Resources/Calculating_Loss_of_Productivity_Due_to_OT_Using_Charts_-_Nov_2001.pdf]

21. Firmenich B. System Design of an Open Engineering Platform. Masters Course in Civil Engineering Informatics.

Weimar: Bauhaus-Universit¨ at Weimar, Fakulat at Bauingenieurwesen; 2002.

22. Pahl PJ. Fundamentals Of Technical Optimization. Class Notes. Stellenbosch: Institute of Structural Engineering;

Stellenbosch University, Civil Engineering Informatics; 2012.

23. Codd EF. A relational model of data for large shared data banks. Communications of the ACM. 1970 June; 13(6):

p. 379.

Stellenbosch University http://scholar.sun.ac.za

http://www.bonitasoft.com/
http://24sevenoffice.com/
http://www.brightwork.com/index.htm
http://www.clarity.com/
http://www.bonitasoft.com/system/files/documentation_library/how_to_get_the_hris_you_need_010213.pdf
http://www.danzpage.com/Construction-Management-Resources/Calculating_Loss_of_Productivity_Due_to_OT_Using_Charts_-_Nov_2001.pdf
http://www.danzpage.com/Construction-Management-Resources/Calculating_Loss_of_Productivity_Due_to_OT_Using_Charts_-_Nov_2001.pdf

128 | P a g e

24. Stoll RR. Set Theory and Logic. 1st ed. Dover Publications I, editor. Mineola: W.H Freeman and Company; 1963.

25. Kau A. Normalization. 2012. GPCG PATIALA.

26. Theron LF. Java Based Construction Plant Management System. Final-year Dissertation. Stellenbosch: University

of Stellenbosch, Civil Engineering Informatics; 2011.

27. Movable Type Scripts. Calculate distance, bearing and more between Latitude/Longitude points. [Online]; 2013

[cited 2013 September 3. Available from: http://www.movable-type.co.uk/scripts/latlong.html]

28. Hirsch KA, Reichardt H. The VNR Concise Encyclopedia of Mathematics. 2nd ed. Gellert W, Kustner H, Hellwich

M, Kastner H, editors. New York: Van Nostrand Reinhold; 1989.

29. Google Inc. Google Maps. [Online]; 2013 [cited 2013 September 2. Available from: https://maps.google.co.za/]

30. Oracle. Java SE 6 Documentation. Software Documentation. Redwood City:; 2011.

31. Oracle. JavaFX Frequently Asked Questions. [Online]; 2013 [cited 2013 September 3. Available from:

http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#5]

32. Stroop JR. STUDIES OF INTERFERENCE IN SERIAL VERBAL REACTIONS. Journal of Experimental Psychology.

1935;(18).

Stellenbosch University http://scholar.sun.ac.za

http://www.movable-type.co.uk/scripts/latlong.html
https://maps.google.co.za/
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#5

129 | P a g e

APPENDIX A

Stellenbosch University http://scholar.sun.ac.za

130 | P a g e

WORKLOAD QUESTIONNAIRE - EXAMPLE

Name:………………………………………………………………….

Position:………………………………………………………………

Company:…………………………………………………………….

The term “workload” is used to describe how busy a person is. The aim is to use it as an indication of whether said

person can handle additional tasks. An individual’s workload is expressed as a percentage:

𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 =
𝑝𝑟𝑜𝑗𝑒𝑐𝑡 ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦

ℎ𝑜𝑢𝑟𝑠 𝑖𝑛 𝑤𝑜𝑟𝑘 𝑑𝑎𝑦
∗ 100%,

Project hours are the total number of hours an individual is expected to work on all tasks assigned to him. The higher

an individual's workload is, the busier he/she will be, which increases the risk when a new task is assigned to him.

It is a well-known time saving method to group tasks together in batches so that they can be focused on and

completed together. This is based on the simple logic that people with more to do get more done. The question is

how the number of tasks influences the workload: Is the workload of a person with 2 times 4 hour tasks higher than

that of a person with one 8 hour task?

The questions are very simple. A scenario is presented, with a few stated workload values. Please highlight (or in

some way mark) the most appropriate workload. In all cases an 8 hour workday is assumed.

When the scenario reads: “1 Task of 8 hours”, it means that an individual has one task assigned to him for a given

day and that task is estimated to take 8 hours to complete.

Please select your most appropriate workload value for all of the following scenarios:

Scenario Description Please highlight the most appropriate
workload percentage

1 Task of 8 hours. 95% 100% 105%

2 Tasks of 4 hours each. 100% 101.5% 115%

5 Tasks, durations add up to 8 hours. 100% 112% 124%

1 Task of 8 hours, but person works twice as fast as
everybody else.

50% 75% 100%

1 Task of 8 hours, but person works twice as slow as
everybody else.

100% 200% 400%

3 Tasks of 1.33 hours each. 25% 52% 70%

10 short tasks, each just 24 minutes long. (4 Hours) 50% 82% 100%

1 Task of 4 hours, but is found that this individual
consistently wastes 20% of his day on coffee breaks.

50% 70% 100%

Stellenbosch University http://scholar.sun.ac.za

131 | P a g e

INDIVIDUAL SURVEY ANSWERS

1. Please give your name, company and position inside the company:

Willie Enright Wateright Consulting Managing Director

2. 1 Task of 8 hours

95%

3. 2 Tasks of 4 hours each.

100%

4. 5 Tasks, durations add up to 8 hours.

112%

5. 1 Task of 8 hours, but person works twice as fast as everybody else.

75%

6. 1 Task of 8 hours, but person works twice as slow as everybody else.

200%

7. 3 Tasks of 1.33 hours each.

70%

8. 10 short tasks, each just 24 minutes long. (4 Hours)

82%

9. 1 Task of 4 hours, but is found that this individual consistently wastes 20% of his day on
coffee breaks.

70%

Stellenbosch University http://scholar.sun.ac.za

132 | P a g e

1. Please give your name, company and position inside the company:

Johann Malan, Aurecon, Civil Engineer

2. 1 Task of 8 hours

100%

3. 2 Tasks of 4 hours each.

101.5%

4. 5 Tasks, durations add up to 8 hours.

124%

5. 1 Task of 8 hours, but person works twice as fast as everybody else.

75%

6. 1 Task of 8 hours, but person works twice as slow as everybody else.

200%

7. 3 Tasks of 1.33 hours each.

52%

8. 10 short tasks, each just 24 minutes long. (4 Hours)

82%

9. 1 Task of 4 hours, but is found that this individual consistently wastes 20% of his day on
coffee breaks.

70%

Stellenbosch University http://scholar.sun.ac.za

133 | P a g e

1. Please give your name, company and position inside the company:

Wynand Smit Sasol Process Engineer

2. 1 Task of 8 hours

95%

3. 2 Tasks of 4 hours each.

101.5%

4. 5 Tasks, durations add up to 8 hours.

124%

5. 1 Task of 8 hours, but person works twice as fast as everybody else.

50%

6. 1 Task of 8 hours, but person works twice as slow as everybody else.

200%

7. 3 Tasks of 1.33 hours each.

52%

8. 10 short tasks, each just 24 minutes long. (4 Hours)

82%

9. 1 Task of 4 hours, but is found that this individual consistently wastes 20% of his day on
coffee breaks.

50%

Stellenbosch University http://scholar.sun.ac.za

134 | P a g e

1. Please give your name, company and position inside the company:

Petrus Theron, Mercenary Coder

2. 1 Task of 8 hours

100%

3. 2 Tasks of 4 hours each.

115%

4. 5 Tasks, durations add up to 8 hours.

124%

5. 1 Task of 8 hours, but person works twice as fast as everybody else.

75%

6. 1 Task of 8 hours, but person works twice as slow as everybody else.

200%

7. 3 Tasks of 1.33 hours each.

70%

8. 10 short tasks, each just 24 minutes long. (4 Hours)

82%

9. 1 Task of 4 hours, but is found that this individual consistently wastes 20% of his day on
coffee breaks.

100%

Stellenbosch University http://scholar.sun.ac.za

135 | P a g e

1. Please give your name, company and position inside the company:

Cameron Crombie Mechanical Master's Student, University of Stellenbosch

2. 1 Task of 8 hours

95%

3. 2 Tasks of 4 hours each.

115%

4. 5 Tasks, durations add up to 8 hours.

124%

5. 1 Task of 8 hours, but person works twice as fast as everybody else.

75%

6. 1 Task of 8 hours, but person works twice as slow as everybody else.

100%

7. 3 Tasks of 1.33 hours each.

70%

8. 10 short tasks, each just 24 minutes long. (4 Hours)

82%

9. 1 Task of 4 hours, but is found that this individual consistently wastes 20% of his day on
coffee breaks.

100%

Stellenbosch University http://scholar.sun.ac.za

136 | P a g e

1. Please give your name, company and position inside the company:

Melissa Kistner, Process Engineer - Sasol, Stellenbosch University

2. 1 Task of 8 hours

105%

3. 2 Tasks of 4 hours each.

115%

4. 5 Tasks, durations add up to 8 hours.

124%

5. 1 Task of 8 hours, but person works twice as fast as everybody else.

50%

6. 1 Task of 8 hours, but person works twice as slow as everybody else.

200%

7. 3 Tasks of 1.33 hours each.

70%

8. 10 short tasks, each just 24 minutes long. (4 Hours)

100%

9. 1 Task of 4 hours, but is found that this individual consistently wastes 20% of his day on
coffee breaks.

70%

Stellenbosch University http://scholar.sun.ac.za

137 | P a g e

1. Please give your name, company and position inside the company:

Miga JES Farms Farm Hand

2. 1 Task of 8 hours

95%

3. 2 Tasks of 4 hours each.

100%

4. 5 Tasks, durations add up to 8 hours.

112%

5. 1 Task of 8 hours, but person works twice as fast as everybody else.

100%

6. 1 Task of 8 hours, but person works twice as slow as everybody else.

200%

7. 3 Tasks of 1.33 hours each.

52%

8. 10 short tasks, each just 24 minutes long. (4 Hours)

100%

9. 1 Task of 4 hours, but is found that this individual consistently wastes 20% of his day on
coffee breaks.

50%

Stellenbosch University http://scholar.sun.ac.za

138 | P a g e

1. Please give your name, company and position inside the company:

G VAN HEERDEN STRUCTURAL ENGINEER KLS CONSULTING ENGINEERS

2. 1 Task of 8 hours

95%

3. 2 Tasks of 4 hours each.

100%

4. 5 Tasks, durations add up to 8 hours.

112%

5. 1 Task of 8 hours, but person works twice as fast as everybody else.

50%

6. 1 Task of 8 hours, but person works twice as slow as everybody else.

100%

7. 3 Tasks of 1.33 hours each.

25%

8. 10 short tasks, each just 24 minutes long. (4 Hours)

50%

9. 1 Task of 4 hours, but is found that this individual consistently wastes 20% of his day on
coffee breaks.

50%

Stellenbosch University http://scholar.sun.ac.za

139 | P a g e

1. Please give your name, company and position inside the company:

Pieter Eduard de Kock MFM 92.6 Presenter/Producer/Technician

2. 1 Task of 8 hours

100%

3. 2 Tasks of 4 hours each.

100%

4. 5 Tasks, durations add up to 8 hours.

100%

5. 1 Task of 8 hours, but person works twice as fast as everybody else.

50%

6. 1 Task of 8 hours, but person works twice as slow as everybody else.

200%

7. 3 Tasks of 1.33 hours each.

52%

8. 10 short tasks, each just 24 minutes long. (4 Hours)

50%

9. 1 Task of 4 hours, but is found that this individual consistently wastes 20% of his day on
coffee breaks.

70%

Stellenbosch University http://scholar.sun.ac.za

140 | P a g e

1. Please give your name, company and position inside the company:

Nico-Ben de Villiers, MEng(Informatics) Candidate at the University of Stellenbosch.

2. 1 Task of 8 hours

100%

3. 2 Tasks of 4 hours each.

100%

4. 5 Tasks, durations add up to 8 hours.

100%

5. 1 Task of 8 hours, but person works twice as fast as everybody else.

75%

6. 1 Task of 8 hours, but person works twice as slow as everybody else.

200%

7. 3 Tasks of 1.33 hours each.

52%

8. 10 short tasks, each just 24 minutes long. (4 Hours)

82%

9. 1 Task of 4 hours, but is found that this individual consistently wastes 20% of his day on
coffee breaks.

70%

Stellenbosch University http://scholar.sun.ac.za

141 | P a g e

1. Please give your name, company and position inside the company:

Hagen, Stellenbosch University, Master's student

2. 1 Task of 8 hours

100%

3. 2 Tasks of 4 hours each.

101.5%

4. 5 Tasks, durations add up to 8 hours.

112%

5. 1 Task of 8 hours, but person works twice as fast as everybody else.

50%

6. 1 Task of 8 hours, but person works twice as slow as everybody else.

200%

7. 3 Tasks of 1.33 hours each.

52%

8. 10 short tasks, each just 24 minutes long. (4 Hours)

82%

9. 1 Task of 4 hours, but is found that this individual consistently wastes 20% of his day on
coffee breaks.

70%

Stellenbosch University http://scholar.sun.ac.za

142 | P a g e

1. Please give your name, company and position inside the company:

Johan du Toit, Vanguard Software Solutions, CEO/CTO

2. 1 Task of 8 hours

95%

3. 2 Tasks of 4 hours each.

100%

4. 5 Tasks, durations add up to 8 hours.

100%

5. 1 Task of 8 hours, but person works twice as fast as everybody else.

75%

6. 1 Task of 8 hours, but person works twice as slow as everybody else.

200%

7. 3 Tasks of 1.33 hours each.

70%

8. 10 short tasks, each just 24 minutes long. (4 Hours)

100%

9. 1 Task of 4 hours, but is found that this individual consistently wastes 20% of his day on
coffee breaks.

70%

Stellenbosch University http://scholar.sun.ac.za

143 | P a g e

1. Please give your name, company and position inside the company:

Francois Malherbe Bozza.mobi Junior Developer

2. 1 Task of 8 hours

95%

3. 2 Tasks of 4 hours each.

101.5%

4. 5 Tasks, durations add up to 8 hours.

112%

5. 1 Task of 8 hours, but person works twice as fast as everybody else.

75%

6. 1 Task of 8 hours, but person works twice as slow as everybody else.

400%

7. 3 Tasks of 1.33 hours each.

52%

8. 10 short tasks, each just 24 minutes long. (4 Hours)

82%

9. 1 Task of 4 hours, but is found that this individual consistently wastes 20% of his day on
coffee breaks.

70%

Stellenbosch University http://scholar.sun.ac.za

144 | P a g e

1. Please give your name, company and position inside the company:

Johann Potgieter, self employed

2. 1 Task of 8 hours

105%

3. 2 Tasks of 4 hours each.

101.5%

4. 5 Tasks, durations add up to 8 hours.

112%

5. 1 Task of 8 hours, but person works twice as fast as everybody else.

75%

6. 1 Task of 8 hours, but person works twice as slow as everybody else.

200%

7. 3 Tasks of 1.33 hours each.

52%

8. 10 short tasks, each just 24 minutes long. (4 Hours)

50%

9. 1 Task of 4 hours, but is found that this individual consistently wastes 20% of his day on
coffee breaks.

70%

Stellenbosch University http://scholar.sun.ac.za

145 | P a g e

1. Please give your name, company and position inside the company:

Ruzelle van Rooyen Student University of Stellenbosch

2. 1 Task of 8 hours

100%

3. 2 Tasks of 4 hours each.

100%

4. 5 Tasks, durations add up to 8 hours.

100%

5. 1 Task of 8 hours, but person works twice as fast as everybody else.

50%

6. 1 Task of 8 hours, but person works twice as slow as everybody else.

200%

7. 3 Tasks of 1.33 hours each.

52%

8. 10 short tasks, each just 24 minutes long. (4 Hours)

50%

9. 1 Task of 4 hours, but is found that this individual consistently wastes 20% of his day on
coffee breaks.

70%

Stellenbosch University http://scholar.sun.ac.za

146 | P a g e

1. Please give your name, company and position inside the company:

Mareleen Smit, Dosent en Assistant Garderobe Meesteres by die Universiteit van Stellenbosch

2. 1 Task of 8 hours

100%

3. 2 Tasks of 4 hours each.

101.5%

4. 5 Tasks, durations add up to 8 hours.

112%

5. 1 Task of 8 hours, but person works twice as fast as everybody else.

50%

6. 1 Task of 8 hours, but person works twice as slow as everybody else.

200%

7. 3 Tasks of 1.33 hours each.

52%

8. 10 short tasks, each just 24 minutes long. (4 Hours)

82%

9. 1 Task of 4 hours, but is found that this individual consistently wastes 20% of his day on
coffee breaks.

70%

Stellenbosch University http://scholar.sun.ac.za

147 | P a g e

1. Please give your name, company and position inside the company:

Philip Nell Aurecon Namibia Structural Engineer

2. 1 Task of 8 hours

95%

3. 2 Tasks of 4 hours each.

100%

4. 5 Tasks, durations add up to 8 hours.

112%

5. 1 Task of 8 hours, but person works twice as fast as everybody else.

100%

6. 1 Task of 8 hours, but person works twice as slow as everybody else.

100%

7. 3 Tasks of 1.33 hours each.

70%

8. 10 short tasks, each just 24 minutes long. (4 Hours)

100%

9. 1 Task of 4 hours, but is found that this individual consistently wastes 20% of his day on
coffee breaks.

50%

Stellenbosch University http://scholar.sun.ac.za

148 | P a g e

1. Please give your name, company and position inside the company:

Emil Pragraj Sasol Polymers Senior Process Engineer

2. 1 Task of 8 hours

95%

3. 2 Tasks of 4 hours each.

100%

4. 5 Tasks, durations add up to 8 hours.

100%

5. 1 Task of 8 hours, but person works twice as fast as everybody else.

75%

6. 1 Task of 8 hours, but person works twice as slow as everybody else.

200%

7. 3 Tasks of 1.33 hours each.

25%

8. 10 short tasks, each just 24 minutes long. (4 Hours)

82%

9. 1 Task of 4 hours, but is found that this individual consistently wastes 20% of his day on
coffee breaks.

70%

Stellenbosch University http://scholar.sun.ac.za

149 | P a g e

1. Please give your name, company and position inside the company:

Brinton Walker Sasol Engineer

2. 1 Task of 8 hours

105%

3. 2 Tasks of 4 hours each.

101.5%

4. 5 Tasks, durations add up to 8 hours.

100%

5. 1 Task of 8 hours, but person works twice as fast as everybody else.

50%

6. 1 Task of 8 hours, but person works twice as slow as everybody else.

200%

7. 3 Tasks of 1.33 hours each.

70%

8. 10 short tasks, each just 24 minutes long. (4 Hours)

82%

9. 1 Task of 4 hours, but is found that this individual consistently wastes 20% of his day on
coffee breaks.

50%

Stellenbosch University http://scholar.sun.ac.za

150 | P a g e

APPENDIX B

Stellenbosch University http://scholar.sun.ac.za

151 | P a g e

SOURCE CODE: WORKLOADCALCULATIONS CLASS

package assign.components;

import gui.FilterSettings;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.Calendar;
import java.util.Date;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;
import util.assign.TimestampFunctions;
import util.database.CloseResultSetConnection;
import util.database.RunQuery;
import aho.util.database.DataBaseInterface;
import assign.components.HR;
import assign.components.LocatorTasks;
import assign.components.Score;
import assign.components.ScoreList;
import assign.components.Task;
import assign.components.TaskOverhead;

public class WorkloadCalculations{

 private RateList ratelist;
 FilterSettings settings;
 RefinementFilterList refinementfilterlist;
 DataBaseInterface dbi;
 LocatorTasks locatortasks;
 ScoreList scores;
 HRUnderConsideration hrlist;
 TaskOverheadList taskoverheads;
 Date t = new Date();
 double T = 8.0;
 Set<Task> tasks;
 Map<Task, Double> booking_distribution;//hours for each task

 public WorkloadCalculations(DataBaseInterface dbi) throws SQLException
 {
 this.dbi = dbi;
 hrlist = new HRUnderConsideration();
 taskoverheads = new TaskOverheadList();
 ratelist = new RateList();
 String combinedqueryI = "SELECT HUMANRESOURCE.humanresource_pk,
HUMANRESOURCE.humanresource_description," +
 " HUMANRESOURCE.is_standard, HUMANRESOURCE.efficiency_factor,
HUMANRESOURCE.idleness_factor," +
 " RATE.rate_pk, RATE.rate_description,
RATE.cost_to_company_per_hour, RATE.internal_work_rate_per_hour," +
 " RATE.billable_rate_per_hour, LOCATION.location_pk,
LOCATION.location_description, LOCATION.country," +
 " LOCATION.region, LOCATION.city, LOCATION.longtitude,
LOCATION.latitude," +
 " OFFICE.office_pk, OFFICE.office_description,
INTERNAL_PERSONNEL.humanresource_fk as \"hr\", INTERNAL_PERSONNEL.internal_personnel_pk,
INTERNAL_PERSONNEL.initials," +

Stellenbosch University http://scholar.sun.ac.za

152 | P a g e

 " INTERNAL_PERSONNEL.surname, INTERNAL_PERSONNEL.employee_number,
INTERNAL_PERSONNEL.department_fk," +
 " SKILL.skill_pk, SKILL.skill_description," +
 " DEPARTMENT.department_pk, DEPARTMENT.department_description" +
 " FROM HUMANRESOURCE, SKILLTAG, RATE, LOCATION, OFFICE,
INTERNAL_PERSONNEL, SKILL, DEPARTMENT" +
 " WHERE "+
 " INTERNAL_PERSONNEL.department_fk = DEPARTMENT.department_pk" +
 " AND humanresource_pk = INTERNAL_PERSONNEL.humanresource_fk" +
 " AND RATE.rate_pk = INTERNAL_PERSONNEL.rate_fk" +
 " AND OFFICE.office_pk = INTERNAL_PERSONNEL.office_fk" +
 " AND OFFICE.location_fk = LOCATION.location_pk" +
 " AND humanresource_pk = SKILLTAG.humanresource_fk" +
 " AND SKILL.skill_pk = SKILLTAG.skill_fk";

 String combinedqueryE = "SELECT HUMANRESOURCE.humanresource_pk,
HUMANRESOURCE.humanresource_description," +
 " HUMANRESOURCE.is_standard, HUMANRESOURCE.efficiency_factor,
HUMANRESOURCE.idleness_factor," +
 " RATE.rate_pk, RATE.rate_description,
RATE.cost_to_company_per_hour, RATE.internal_work_rate_per_hour," +
 " RATE.billable_rate_per_hour, " +
 " " +
 " EXTERNAL_PERSONNEL.external_personnel_pk,
EXTERNAL_PERSONNEL.initials, EXTERNAL_PERSONNEL.company," +
 " EXTERNAL_PERSONNEL.surname, EXTERNAL_PERSONNEL.humanresource_fk
as \"hr\"," +
 " SKILL.skill_pk, SKILL.skill_description," +
 " DEPARTMENT.department_pk, DEPARTMENT.department_description" +
 " FROM HUMANRESOURCE, SKILLTAG, RATE, EXTERNAL_PERSONNEL, SKILL,
DEPARTMENT, DEPARTMENT_TO_OFFICE" +
 " WHERE "
 +"department_pk = DEPARTMENT_TO_OFFICE.department_fk" +
 " AND rate_pk = rate_fk"+
 " AND humanresource_pk = SKILLTAG.humanresource_fk" +
 " AND humanresource_pk = EXTERNAL_PERSONNEL.humanresource_fk" +

 " AND SKILL.skill_pk = SKILLTAG.skill_fk";

 ResultSet queryresultI = new RunQuery(dbi, combinedqueryI).compute();
 ResultSet queryresultE = new RunQuery(dbi, combinedqueryE).compute();
 int c = 0;
 while(queryresultI.next()) {
 if (queryresultI.getInt("humanresource_pk") == queryresultI.getInt("hr")
&& queryresultI.getInt("department_pk") == queryresultI.getInt("department_fk"))
 {

 c++;

 Rate rate = addRate(queryresultI);

 Location location = addLocation(queryresultI);

 Office office = addOffice(queryresultI, location);

 Department dept = addDepartment(queryresultI);

 Internal_Personnel ip =
addInternal_Personnel(queryresultI, rate, office, dept);

Stellenbosch University http://scholar.sun.ac.za

153 | P a g e

 HR hrI = addHR(queryresultI, ip);

 }

 }
 new CloseResultSetConnection(queryresultI);
 System.out.println("added all I");

 while(queryresultE.next()) {
 if (queryresultE.getInt("humanresource_pk") ==
queryresultE.getInt("hr"))
 {
 Rate rate = addRate(queryresultE);

 External_Personnel ep = addExternal_Personnel(queryresultE,
rate);
 HR hrE = addHR(queryresultE, ep);
 }

 }
 new CloseResultSetConnection(queryresultE);
 tasks = new HashSet<Task>();
 System.out.println("added all E");
 for (HR hr : hrlist)
 tasks.addAll(hr.getCurrentTasks());
 taskoverheads = findOverheads(tasks);
 for(HR hr : hrlist)
 {
 System.out.println("I AM AN HUMANRESOURCE: "+hr.getSimpleName());
 linkSkillsHR(hr);
 }

 }
 private Department addDepartment(ResultSet rs) throws SQLException {
 int pk = rs.getInt("department_pk");
 String desc = rs.getString("department_description");

 Department dept = new Department(pk, desc);
 return dept;
 }

 public void buildSuccession(Map<Task, Integer> map) throws SQLException
 {
 String q = "SELECT TASKFLOW.taskflow_pk, TASKFLOW.task_fk,
TASKFLOW.successor_task_fk FROM TASKFLOW";
 ResultSet rs = new RunQuery(dbi, q).compute();
 while(rs.next())
 {
 int taskflowpk = rs.getInt("taskflow_pk");
 int t_fk = rs.getInt("task_fk");
 int t_succ = rs.getInt("successor_task_fk");

 for (Task t1 : map.keySet())
 if (t1.getPk() == t_fk)
 {
 for (Task t2 : map.keySet())
 if (t2.getPk() == t_succ)

Stellenbosch University http://scholar.sun.ac.za

154 | P a g e

 {
 t1.setSuccessor(t2);
 t1.setFlowpk(taskflowpk);
 break;
 }
 break;
 }
 }
 new CloseResultSetConnection(rs);

 }

 public TaskOverheadList findOverheads(Set<Task> locatortasks) throws SQLException
 {
 TaskOverheadList tol = new TaskOverheadList();
 String q = "select * from TASKOVERHEAD";
 ResultSet rs = new RunQuery(dbi, q).compute();
 while(rs.next())
 {
 int task_fk = rs.getInt("task_fk");
 int office_fk = rs.getInt("office_fk");
 double overhead = rs.getDouble("overhead");
 String office_desc = "";
 int loc_fk = -1;;
 Location loc = null;
 ResultSet officers = new RunQuery(dbi, "select * from OFFICE where
office_pk = "+office_fk).compute();
 while (officers.next())
 {
 office_desc = officers.getString("office_description");
 loc_fk = officers.getInt("location_fk");
 break;
 }
 new CloseResultSetConnection(officers);
 ResultSet locationrs = new RunQuery(dbi,"select * from LOCATION where
location_pk = "+loc_fk).compute();
 while (locationrs.next())
 {
 String description =
locationrs.getString("location_description");
 String country = locationrs.getString("country");
 String region = locationrs.getString("region");
 String city = locationrs.getString("city");
 double lon = locationrs.getDouble("longtitude");
 double lat = locationrs.getDouble("latitude");

 GeoCoordinates geo = new GeoCoordinates(lon, lat);
 loc = new Location(loc_fk,description, country, region, city,
geo);
 break;
 }
 new CloseResultSetConnection(locationrs);
 Office office = new Office(office_fk, office_desc, loc);
 for (Task task : locatortasks)
 {
 if (task.getPk() == task_fk)
 {
 TaskOverhead e = new TaskOverhead(office, task, overhead);
 tol.add(e);

Stellenbosch University http://scholar.sun.ac.za

155 | P a g e

 break;

 }
 }
 }
 new CloseResultSetConnection(rs);
 return taskoverheads;

 }

 private double compute(HR hr, Date today)
 {

 double T = hr. getT();
 double teff = hr.getTeff();

 booking_distribution = new HashMap<Task, Double>();

 for (Task task : hr.getCurrentTasks())
 {
 if (task.getDescription().equals("test"))
 {
 System.out.println("start" +task.getEarlyStartDate());
 System.out.println("end" +task.getEndDate());
 }
 System.out.println("size "+hr.getCurrentTasks().size());
 System.out.println("checking "+task.getDescription()+" on
"+hr.getSimpleName());
 if (today.after(task.getEarlyStartDate()) &&
today.before(task.getEndDate()))
 {
 System.out.println(hr.getSimpleName()+" has +1 task within
timeframe. Task: "+task.getDescription());
 booking_distribution.put(task, null);
 }
 else
 {
 //System.out.println(task.getDescription()+" is not in
timeframe");
 }
 }
 ifEndDatisTodayAndTaskDurationIsLessThanDay(hr, today);
 distributeTime(hr);

 int n = booking_distribution.size();
 double IF = hr.getIF();//idle factor
 double ans = 0.0;
 double f1 = 0.5;
 double f2 = 0.26;
 double f3 = 0.24;
 double maxStiffness = 0.0, workSum = 0.0;
 double increasingTasks, taskStiffness, workDuration, workdayLength;

 if (T == 0)
 {
 workDuration = 0;
 }
 else
 {

Stellenbosch University http://scholar.sun.ac.za

156 | P a g e

 for (Task ti : booking_distribution.keySet())
 {
 double overhead = 0.0;
 for (TaskOverhead to : taskoverheads)
 {
 if (hr.is_internal())
 {
 if (ti.getPk() == to.getTask().getPk() &&

 hr.getInternal_Personnel().getOffice().getPk() == to.getOffice().getPk())
 {
 overhead = to.getOverhead();
 break;
 }
 }

 }

 workSum += booking_distribution.get(ti)*(1 + overhead);
 }

 if (workSum == 0)
 workDuration = 0;
 else if (workSum >= T)
 {
 workDuration = Math.pow(0.959, T-workSum);
 }
 else
 {
 workDuration = Math.pow(0.841, T-workSum);
 }

 }

 if (T==0 || n==0)
 {
 workdayLength = 0;
 }
 else
 {
 workdayLength = Math.log(T+1)/Math.log(9.0);
 }

 if (n <= 1)
 {
 taskStiffness = 0;
 }
 else
 {
 for (Task ti : booking_distribution.keySet())
 {
 if (ti.getStiffness() > maxStiffness)
 maxStiffness = ti.getStiffness();
 }
 taskStiffness = 0.000472*maxStiffness*Math.pow(n, 3.405);
 }

Stellenbosch University http://scholar.sun.ac.za

157 | P a g e

 if (n == 0)
 increasingTasks = 0;
 else
 increasingTasks = Math.pow(n, n/33.96);

 ans = workDuration*f1 + workdayLength*f2 + increasingTasks*f3 +
taskStiffness;
 ans *= teff;

 ans += IF;

 return ans;

 }

 public double getAverageWorkload(HR hr, Date start, Date end)
 {

 Calendar c = Calendar.getInstance();
 c.setTime(start);
 double work = 0;
 double count = 0;
 while(c.getTime().before(end))
 {
 Date today = c.getTime();
 work += compute(hr, today);
 count++;

 if (c.DAY_OF_MONTH < c.getActualMaximum(c.DAY_OF_MONTH))
 {
 c.add(Calendar.DAY_OF_MONTH, 1);
 }

 }
 return work/count;

 }
 public double getAverageWorkload(HR hr, ScoreList s)
 {

 Calendar earliest = Calendar.getInstance();
 Calendar latest = Calendar.getInstance();
 earliest.setTime(new Date(0));
 latest.setTime(new Date(999999999));
 for (Score score : s)
 {

 if (earliest.after(score.getTask().getEarlyStartDate()))
 earliest.setTime(score.getTask().getEarlyStartDate());
 if (latest.before(score.getTask().getEndDate()))
 latest.setTime(score.getTask().getEndDate());
 }
 return getAverageWorkload(hr, earliest.getTime(), latest.getTime());
 }

Stellenbosch University http://scholar.sun.ac.za

158 | P a g e

 public void ifEndDatisTodayAndTaskDurationIsLessThanDay(HR hr, Date date)
 {
 double T = hr.getT();
 for (Task t : booking_distribution.keySet())
 {
 if (date.getYear() == t.getEarlyStartDate().getYear() && date.getMonth()
== t.getEarlyStartDate().getMonth() && date.getDay() == t.getEarlyStartDate().getDay())
 if (date.getYear() == t.getEndDate().getYear() && date.getMonth()
== t.getEndDate().getMonth() && date.getDay() == t.getEndDate().getDay())
 {
 if (t.getDuration() <= hr.getT())
 {
 booking_distribution.put(t, t.getDuration());
 T = T-t.getDuration();
 }
 else
 {
 booking_distribution.put(t, hr.getT());
 T = 0;
 }
 }
 }

 }

 public void distributeTime(HR hr)
 {
 double total = 0;
 double base;
 double T = hr.getT();

 for (Task t : booking_distribution.keySet())
 {
 if (booking_distribution.get(t) != null)
 T = T-booking_distribution.get(t);
 }

 for (Task t : booking_distribution.keySet())
 {
 total += 1.0/t.getPriority();
 }
 base = T/total;
 for (Task t : booking_distribution.keySet())
 {
 if (booking_distribution.get(t) == null)
 booking_distribution.put(t, base/t.getPriority());
 }
 }

 private HR addHR(ResultSet rs, Internal_Personnel ip) throws SQLException
 {
 int hr_key = rs.getInt("humanresource_pk");
 String description = rs.getString("humanresource_description");
 double teff = rs.getDouble("efficiency_factor");
 double IF = rs.getDouble("idleness_factor");
 Set<Task> ct = findCurrentTasks(hr_key);

Stellenbosch University http://scholar.sun.ac.za

159 | P a g e

 HR hr = new HR(hr_key, description, ip, teff, IF, T, ct);
 if (!rs.getBoolean("is_standard"))
 {
 changeToNonStandard(rs, hr);
 }

 hrlist.add(hr);

 return hr;
 }

 private HR addHR(ResultSet rs, External_Personnel ep) throws SQLException
 {

 int hr_key = rs.getInt("humanresource_pk");
 String description = rs.getString("humanresource_description");

 double IF = rs.getDouble("idleness_factor");
 Set<Task> ct = findCurrentTasks(hr_key);
 HR hr = new HR(hr_key, description, ep, T, IF, ct);
 if (!rs.getBoolean("is_standard"))
 {
 changeToNonStandard(rs, hr);
 }

 hrlist.add(hr);

 return hr;
 }

 private void changeToNonStandard(ResultSet rsHr, HR hr) throws SQLException {
 hr.setIs_standard(rsHr.getBoolean("is_standard"));
 String s = "SELECT NONSTANDARDHUMANRESOURCE.* FROM NONSTANDARDHUMANRESOURCE
WHERE NONSTANDARDHUMANRESOURCE.humanresource_fk ="+hr.getPk();
 ResultSet rs = new RunQuery(dbi, s).compute();
 while(rs.next())
 {
 hr.setNonStandardkey(rs.getInt("nonstandardhumanresource_pk"));

 hr.setMonday_hours(rs.getDouble("monday_hours"));
 hr.setTuesday_hours(rs.getDouble("tuesday_hours"));
 hr.setWednesday_hours(rs.getDouble("wednesday_hours"));
 hr.setThursday_hours(rs.getDouble("thursday_hours"));
 hr.setFriday_hours(rs.getDouble("friday_hours"));
 hr.setSaterday_hours(rs.getDouble("saterday_hours"));
 hr.setSunday_hours(rs.getDouble("sunday_hours"));
 break;
 }
 new CloseResultSetConnection(rs);

 }

 private Rate addRate(ResultSet rs) throws SQLException
 {
 int pk = rs.getInt("rate_pk");
 String description = rs.getString("rate_description");
 double ctc = rs.getDouble("cost_to_company_per_hour");
 double internal = rs.getDouble("internal_work_rate_per_hour");
 double external = rs.getDouble("billable_rate_per_hour");

Stellenbosch University http://scholar.sun.ac.za

160 | P a g e

 Rate r = new Rate(pk, description, ctc, internal, external);
 ratelist.add(r);
 return r;

 }

 private Location addLocation(ResultSet rs) throws SQLException
 {
 String description = rs.getString("location_description");
 String country = rs.getString("country");
 String region = rs.getString("region");
 String city = rs.getString("city");
 double lon = rs.getDouble("longtitude");
 double lat = rs.getDouble("latitude");
 int location_key = rs.getInt("location_pk");

 GeoCoordinates geo = new GeoCoordinates(lon, lat);
 Location loc = new Location(location_key,description, country, region, city,
geo);

 return loc;
 }

 private Office addOffice(ResultSet rs, Location loc) throws SQLException
 {
 int k = rs.getInt("office_pk");
 String description = rs.getString("office_description");
 Office o = new Office(k, description, loc);
 return o;
 }

 //call this after everything
 private void linkSkillsHR(HR hr) throws SQLException
 {
 ResultSet rs = new RunQuery(dbi, "select * from SKILL, SKILLTAG where skill_pk
= skill_fk and humanresource_fk = "+hr.getPk()).compute();

 while (rs.next())
 {
 int hr_key = hr.getPk();
 String description = rs.getString("skill_description");
 int p_key = rs.getInt("skill_pk");
 Skill p = new Skill(p_key, description);

 hrlist.getByKey(hr_key).addSkill(p);
 System.out.println("linking skill: "+description+" to hr: "+hr_key);

 }
 new CloseResultSetConnection(rs);

 }

 private Task linkSkillsTask(Task task) throws SQLException
 {

 int task_fk = task.getPk();
 SkillList skills = new SkillList();

Stellenbosch University http://scholar.sun.ac.za

161 | P a g e

 ResultSet rs = new RunQuery(dbi, "select skill_pk, skill_description from
SKILL_TO_TASK, SKILL where " +
 "skill_pk = skill_fk and task_fk = "+task_fk).compute();
 while(rs.next())
 {
 skills.add(new Skill(rs.getInt("skill_pk"),
rs.getString("skill_description")));
 }
 new CloseResultSetConnection(rs);
 task.setSkills(skills);
 return task;

 }

 private Internal_Personnel addInternal_Personnel(ResultSet rs, Rate r, Office o,
Department dept) throws SQLException
 {
 int pk = rs.getInt("internal_personnel_pk");
 int emp = rs.getInt("employee_number");
 String initials = rs.getString("initials");
 String surname = rs.getString("surname");
 int hr = rs.getInt("humanresource_pk");

 Internal_Personnel ip = new Internal_Personnel(pk, emp, initials, surname, o,
dept, r, hr);
 return ip;
 }
 private External_Personnel addExternal_Personnel(ResultSet rs, Rate r) throws
SQLException
 {
 int pk = rs.getInt("external_personnel_pk");
 String company = rs.getString("company");
 String initials = rs.getString("initials");
 String surname = rs.getString("surname");
 int hr = rs.getInt("humanresource_pk");

 External_Personnel ep = new External_Personnel(pk, company, initials, surname,
r, hr);
 return ep;
 }

 public Set<Task> findCurrentTasks(int hr_key) throws SQLException
 {
 String q = "select * from TASK, PROJECT, WORKPACKAGE, BOOKING, LOCATION where
BOOKING.task_fk = task_pk and workpackage_pk = workpackage_fk and project_pk = project_fk and
location_fk = location_pk and humanresource_fk = "+hr_key;
 ResultSet rs = new RunQuery(dbi, q).compute();
 HashMap<Task, Integer> map = new HashMap<Task, Integer>();
 while(rs.next())
 {

 int t_pk = rs.getInt("task_pk");
 System.out.println(+hr_key+" has task "+t_pk);
 String t_description = rs.getString("task_description");

 Date t_earlystart =
TimestampFunctions.timestampToDate(rs.getTimestamp("earliest_start"));

Stellenbosch University http://scholar.sun.ac.za

162 | P a g e

 Date t_lateend =
TimestampFunctions.timestampToDate(rs.getTimestamp("latest_end"));
 Date t_actualstart =
TimestampFunctions.timestampToDate(rs.getTimestamp("actual_start"));
 Boolean t_stretch = rs.getBoolean("stretchable");
 Double t_stiff = rs.getDouble("stiffness");
 int t_priority = rs.getInt("priority");
 double t_duration = rs.getDouble("duration");
 int work_pk = rs.getInt("workpackage_fk");
 String work_description = rs.getString("workpackage_description");
 int proj_pk = rs.getInt("project_fk");
 String proj_description = rs.getString("project_description");
 Double proj_version = rs.getDouble("version_number");
 int loc_pk = rs.getInt("location_fk");
 String loc_description = rs.getString("location_description");
 String loc_country = rs.getString("country");
 String loc_region = rs.getString("region");
 String loc_city = rs.getString("city");
 Double loc_longtitude = rs.getDouble("longtitude");
 Double loc_latitude = rs.getDouble("latitude");

 Location location = new Location(loc_pk, loc_description, loc_country,
loc_region, loc_city, loc_longtitude, loc_latitude);
 Project project = new Project(proj_pk, proj_description, location,
proj_version);
 WorkPackage workpackage = new WorkPackage(work_pk, work_description);

 Task task = new Task(t_pk, t_description, t_earlystart, t_lateend,
t_actualstart, t_duration, null, project, workpackage, t_stretch, t_stiff, null, t_priority);
 linkSkillsTask(task);
 map.put(task, null);

 }
 new CloseResultSetConnection(rs);
 buildSuccession(map);
 return map.keySet();
 }

 public HashMap<HR, Double> AllHRtoAverage(Calendar timeframeStart, Calendar
timeframeEnd)
 {
 HashMap<HR, Double> map = new HashMap();
 for (HR hr : hrlist)
 {
 map.put(hr, getAverageWorkload(hr, timeframeStart.getTime(),
timeframeEnd.getTime()));
 }
 return map;
 }

 public HashMap<HR, Double> AllHRtoSpecificDay(Date day)
 {
 HashMap<HR, Double> map = new HashMap();
 for (HR hr : hrlist)
 {
 map.put(hr, compute(hr, day));
 }
 return map;
 }
}

Stellenbosch University http://scholar.sun.ac.za

