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Abstract

INTELLIGENT ELEVATOR CONTROL BASED ON

ADAPTIVE LEARNING AND OPTIMISATION

E.A.B. Jordaan

Department of Electrical and Electronic Engineering,

University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: M.Eng

October 2014

Machine learning techniques have been around for a few decades now and
are being established as a pre-dominant feature in most control applications.
Elevators create a unique control application where tra�c �ow is controlled
and directed according to certain control philosophies. Machine learning tech-
niques can be implemented to predict and control every possible tra�c �ow
scenario and deliver the best possible solution. Various techniques will be im-
plemented in the elevator application in an attempt to establish a degree of
arti�cial intelligence in the decision making process and to be able to have
increased interaction with the passengers at all times.

The primary objective for this thesis is to investigate the potential of machine
learning solutions and the relevancy of such technologies in elevator control
applications. The aim is to establish how the research �eld of machine learn-
ing, speci�cally neural network science, can be successfully utilised with the
goal of creating an arti�cial intelligent (AI) controller. The AI controller is
to adapt to its existing state and change its control parameters as required
without the intervention of the user.

The secondary objective for this thesis is to develop an elevator model that rep-
resents every aspect of the real-world application. The purpose of the model
is to improve the accuracy of existing theoretical and simulated models, by
modulating previously unknown and complex variables and constraints. The
aim is to create a complete and fully functional testing platform for developing
new elevator control philosophies and testing new elevator control mechanisms.
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ABSTRACT iii

To achieve these objectives, the main focus is directed to how waiting time,
probability theory and power consumption predictions can be optimally utilised
by means of machine learning solutions. The theoretical background is pro-
vided for these concepts and how each subject can potentially in�uence the
decision making process. The reason why this approach has been di�cult to
implement in the past, is possibly mainly due to the lack of adequate repre-
sentation for these concepts in an online environment without the continuous
feedback from an Expert System. As a result of this thesis, the respective
online models for each of these concepts were successfully developed in order
to deal with the identi�ed shortcomings.

The developed online models for projected waiting times, probability networks
and power consumption feedback were then combined to form a new Intelli-
gent Elevator Controller (IEC) structure as opposed to the Expert System
approach, mostly used in present computer based elevator controllers.
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Uittreksel

INTELLIGENTE HYSBAKBEHEERDER GEBASEER

OP AANGEPASTE LEER EN OPTIMALISASIE

E.A.B. Jordaan

Departement Elektriese en Elektroniese Ingenieurswese,

Universiteit Stellenbosch,

Matieland 7602, Suid-Afrika .

Tesis: M.Ing

Oktober 2014

Masjienleertegnieke bestaan al vir 'n paar dekades en is 'n oorwegende ken-
merk in hedendaagse beheertoestelle. Hysbakke skep 'n unieke beheertoepas-
sing, waar verkeersvloei beheer en gerig kan word volgens sekere beheer�loso�ë.
Masjienleertegnieke kan geïmplementeer word om elke moontlike verkeersvloei
situasie te voorspel en te beheer en die beste moontlike oplossing te lewer.
Verskeie tegnieke sal in die tesis ondersoek word in 'n poging om 'n mate van
kunsmatige intelligensie in die besluitneming proses te skep asook verhoogte
interaksie met die passasiers te alle tye.

Die primêre doel van hierdie tesis is om die potensiaal van 'n masjienleer op-
lossing en die toepaslikheid van dit in hysbakbeheertoepassings te ondersoek.
Die doel is om vas te stel hoe die navorsing in die veld van die masjienleer,
spesi�ek in neurale netwerk wetenskappe, suksesvol aangewend kan word met
die doel om 'n kunsmatige intelligente beheerder te skep. Die kunsmatige in-
telligente beheerder moet kan aanpas by sy onmidelike omgewing en sy beheer
parameters moet kan verander soos nodig sonder die ingryping van die gebrui-
ker.

Die sekondêre doelwit vir hierdie tesis is om 'n hysbakmodel, wat elke as-
pek van die werklike wêreld verteenwoordig, te ontwikkel. Die doel van die
model is om die akkuraatheid van die bestaande teoretiese en gesimuleerde
modelle te verbeter deur voorheen onbekende en komplekse veranderlikes en
beperkings in ag te neem.
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UITTREKSEL v

Die doel is om 'n funksionele toetsplatform te skep vir die ontwikkeling van
nuwe hysbakbeheer�loso�ë en vir die toets van nuwe hysbakbeheermeganismes.

Om hierdie doelwitte te bereik, is die hoo�okus gerig om wagtyd, waarskyn-
likheidsteorie en kragverbruik voorspellings optimaal te gebruik deur middel
van die masjienleer oplossings. Die teoretiese agtergrond is voorsien vir hierdie
konsepte en hoe elke konsep potensieel die besluitneming kan beïnvloed. Die
rede waarom hierdie benadering moeilik was om te implementeer tot hede, is
moontlik te wyte aan die gebrek aan voldoende verteenwoordiging vir hierdie
konsepte in 'n aanlynomgewing sonder die voortdurende terugvoer van 'n Des-
kundige Stelsel. As gevolg van hierdie tesis word die onderskeie aanlynmodelle
vir elk van hierdie konsepte suksesvol ontwikkel om die geïdenti�seerde tekort-
kominge te oorkom.

Die ontwikkelde aanlynmodelle vir geprojekteerde wagtye, waarskynlikheids-
netwerke en kragverbruik terugvoer is dan gekombineer om 'n nuwe intelligente
hysbakbeheerder struktuur te skep, in teenstelling met die Deskundige Stelsel
benadering in die huidige rekenaar gebaseerde hysbakbeheerders.

Stellenbosch University  http://scholar.sun.ac.za



Acknowledgements

All acknowledgements are given to my Heavenly Father, for granting me the
ability and the favorable circumstances to complete this thesis. Sincere grat-
itude goes out to my family and friends for all their support and motivation,
my Supervisor for his guidance and to Majuba personnel and PTM for their
insight and assistance.

vi

Stellenbosch University  http://scholar.sun.ac.za



Contents

Declaration i

Abstract ii

Uittreksel iv

Acknowledgements vi

Contents vii

List of Figures x

List of Tables xiii

Listings xv

Nomenclature xvi

1 INTRODUCTION 1
1.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 THESIS OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . 1
1.3 THESIS CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . 2
1.4 THE RESEARCH ENVIRONMENT . . . . . . . . . . . . . . . 3
1.5 THESIS OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . 3

2 LITERATURE REVIEW 5
2.1 ELEVATOR OPERATING SYSTEM AND CONTROL . . . . . 5
2.2 ONLINE TRANSPORTATION PROBLEMS . . . . . . . . . . . 9
2.3 MACHINE LEARNING ALGORITHMS AND TECHNIQUES . 11
2.4 SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . 24

3 ELEVATOR CONTROL: INTRODUCTION TO ARTIFI-
CIAL INTELLIGENCE 25
3.1 INTRODUCTION TO ARTIFICIAL INTELLIGENCE . . . . . 25
3.2 INTELLIGENT SINGLE ELEVATOR CONTROL: GENERAL

PHILOSOPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vii

Stellenbosch University  http://scholar.sun.ac.za



CONTENTS viii

3.3 ELEVATOR MODE PERSONALISATION . . . . . . . . . . . 29
3.4 INTELLIGENT ELEVATOR GROUP CONTROL . . . . . . . 30
3.5 VARIATIONS AND CONSTRAINTS . . . . . . . . . . . . . . . 31
3.6 INFORMATION RECONCILIATION . . . . . . . . . . . . . . 33
3.7 SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . 33

4 ELEVATOR POWER CONSUMPTION 34
4.1 POWER CONSUMPTION PHILOSOPHY . . . . . . . . . . . . 34
4.2 ELEVATOR MODEL . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 MEASUREMENT AND VERIFICATION . . . . . . . . . . . . 39
4.4 MOTOR DESCRIPTION . . . . . . . . . . . . . . . . . . . . . 46
4.5 SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . 55

5 ELEVATOR PROBABILITY THEORY 60
5.1 PROBABILITY PHILOSOPHY . . . . . . . . . . . . . . . . . . 60
5.2 FLOOR ORDER PROBABILITY . . . . . . . . . . . . . . . . . 61
5.3 EXPECTED REQUESTS . . . . . . . . . . . . . . . . . . . . . 64
5.4 CAR CAPACITY PROBABILITY . . . . . . . . . . . . . . . . 68
5.5 SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . 72

6 WAITING TIMES CONSTRAINTS 73
6.1 WAITING TIME PHILOSOPHY . . . . . . . . . . . . . . . . . 73
6.2 BASIC WAITING TIME CALCULATIONS . . . . . . . . . . . 74
6.3 WAITING TIME CONJOINING NETWORK . . . . . . . . . . 75
6.4 SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . 80

7 NEURAL NETWORK ELEVATOR INTEGRATION 82
7.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.2 NEURAL NETWORK ENERGY MODEL . . . . . . . . . . . . 83
7.3 NEURAL NETWORK PASSENGER DEMAND AND TRAF-

FIC STATE CLASSIFICATION . . . . . . . . . . . . . . . . . . 92
7.4 CAR CAPACITY CLASSIFICATION . . . . . . . . . . . . . . 96
7.5 AUTOMATED REASONING WITH NEURAL NETWORKS . 98
7.6 INTELLIGENT ELEVATOR CONTROLLER SUMMARYAND

CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8 ELEVATOR CONTROL SIMULATION 104
8.1 TRAFFIC GENERATION AND COLLECTION . . . . . . . . 104
8.2 SINGLE ELEVATOR CONTROL SIMULATION . . . . . . . . 108
8.3 ELEVATOR GROUP CONTROL SIMULATION - WITHOUT

DESTINATION DISPATCHING . . . . . . . . . . . . . . . . . 123
8.4 ELEVATORGROUP CONTROL SIMULATION -WITH DES-

TINATION DISPATCHING . . . . . . . . . . . . . . . . . . . . 128
8.5 SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . 134

Stellenbosch University  http://scholar.sun.ac.za



CONTENTS ix

9 CONCLUSIONS AND RECOMMENDATIONS 138
9.1 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
9.2 THESIS CONTRIBUTION AND ORIGINAL CONTENT . . . 139
9.3 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 140
9.4 RECOMMENDATIONS FOR FUTURE WORK . . . . . . . . 144

List of References 145

Stellenbosch University  http://scholar.sun.ac.za



List of Figures

2.1 Software Structure for The Computer Control of An Elevator Sys-
tem In The Late 1970's [1]. . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Competitive Ratio of Smartstart Online Strategy, with ρ > 1. . . . 10
2.3 Fuzzi�cation Flow Diagram. . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Genetic algorithms (GA) General Flow Diagram. . . . . . . . . . . 17
2.5 Schematic Illustration of Two Biological Neurons [2]. . . . . . . . . 18
2.6 McCulloch and Pitts Model of a Single Neuron [2]. . . . . . . . . . 18
2.7 A Multilayer Perceptron Neural Network Having Two Layers of

Weights [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8 A Hop�eld Neural Network with 12 Connections [3]. . . . . . . . . . 20
2.9 A Typical Feedforward Neural Network [3]. . . . . . . . . . . . . . . 21
2.10 Temperature-time Ranges of Various Conventional and Advanced

Annealing Techniques [4]. . . . . . . . . . . . . . . . . . . . . . . . 22
2.11 Evolution of The Elastic Net Over Time [5]. . . . . . . . . . . . . . 24

4.1 Theoretical Geared Elevator Model . . . . . . . . . . . . . . . . . . 36
4.2 Measurement and Veri�cation Energy Metering Process [6]. . . . . . 40
4.3 Data Sampling with the OMICRON CMC 256-Plus Using Analog

Clamp-on's. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Data Sampling with the OMICRON CMC 256 Plus. . . . . . . . . 42
4.5 Actual Energy Measurements taken at Unit 1 Machine Room. . . . 44
4.6 AC/DC Clamp Adaptor Used for Current Measurements. . . . . . . 44
4.7 Measurement and Veri�cation Energy Measurement Panel Layout

[7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.8 Schindler Aux Bay Elevator Drive Machine, Located at Majuba

Power Station, Unit 1. . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.9 Two Speed Motor Current Sampling. . . . . . . . . . . . . . . . . . 49
4.10 Aux Bay U1 Elevator Motor Terminal Schematic. . . . . . . . . . . 49
4.11 Complete Torque-Speed Curve of a 3-Phase Induction Motor [8]. . . 50
4.12 Two Speed Motor Winding Transitioning Period. . . . . . . . . . . 50
4.13 Single-Phase Equivalent Circuit For a Polyphase Induction Motor

[9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.14 Main Supply Current Sample for a 20m to 16m Elevator Cycle Period. 53

x

Stellenbosch University  http://scholar.sun.ac.za



LIST OF FIGURES xi

4.15 18 Pole and 4 Pole Supply Current (rms) vs. Distance Travelled
and Load Percentages (0-100% of rated load per trip distance). . . . 56

4.16 Elevator Supply Current (rms) and Input Power vs. Distance Trav-
elled and Load Percentages (0-100% of rated load per trip distance). 57

4.17 Elevator Running Time vs. Distance Travelled and Load Percent-
ages (0-100% of rated load per trip distance). . . . . . . . . . . . . 58

5.1 Floor Order Probability Computations . . . . . . . . . . . . . . . . 63
5.2 Poisson Probability Functions. . . . . . . . . . . . . . . . . . . . . . 65
5.3 Actual non-homogeneous Poisson Passenger Arrivals (adaption from

[10]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4 Up-peak Passenger Arrivals (Generated Actuals vs. Predicted) . . . 70

6.1 RBF Graphical Illustrations: Waiting Time vs. Distance from Ele-
vator Car. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Exponential RBF Interpolant with Gaussian Radial Basis Function. 79

7.1 K-means Energy Sample Extraction Process. . . . . . . . . . . . . . 85
7.2 Neural Network Supply Current and Power Consumption Pattern

Recognition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.3 Non-homogeneous Poisson Passenger Arrival Rates, Actual vs. Pre-

dicted for a 5 Day Period . . . . . . . . . . . . . . . . . . . . . . . 95
7.4 Smartstart Load Capacity Setting's E�ect on Overall Waiting Time 97
7.5 Dynamic Smartstart Load Capacity Setting's E�ect on Waiting Time 98
7.6 RBF Network Representing Building Passenger Demand for Di�er-

ent Time Periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.7 Intelligent Elevator Control Structure . . . . . . . . . . . . . . . . . 103

8.1 Passenger Demand Benchmark for a Typical Building [11]. . . . . . 106
8.2 % Population vs. Period for a Typical Building [11]. . . . . . . . . 107
8.3 General Traveling Salesman Problem Simulation Trough Brute Force.110
8.4 Passenger Waiting Times for a Worst Case Scenario: Baseline vs.

TSP BF vs. TSP GA. . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.5 Elevator Controller Service Performance (with Service Time) for a

Worst Case Scenario: Baseline vs. TSP BF vs. TSP GA. . . . . . . 120
8.6 Elevator Controller Service Performance (with Service Count) for

a Worst Case Scenario: Baseline vs. TSP BF vs. TSP GA. . . . . . 121
8.7 Actual Trip counter for the lunch hour period (Aux Bay U1, 11

Aug 14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.8 Intelligent Elevator Controller Graphical User Interface (version

1.0): Medium Rise Building Con�guration. . . . . . . . . . . . . . . 125
8.9 False VRP Combinations with Binary Representation (4 Landings

to Visit). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.10 Service Waiting Time Performance for an Up-peak Cycle (Building

Population Capacity of a 500 People). . . . . . . . . . . . . . . . . 131

Stellenbosch University  http://scholar.sun.ac.za



LIST OF FIGURES xii

8.11 Service Waiting Time Performance for an Up-peak Cycle (Building
Population Capacity of a 1000 People). . . . . . . . . . . . . . . . . 135

8.12 Service Passenger Count Performance for an Up-peak Cycle (Build-
ing Population Capacity of a 1000 People). . . . . . . . . . . . . . . 136

Stellenbosch University  http://scholar.sun.ac.za



List of Tables

2.1 The History of Available Group Elevator Control Technologies [1]. . 7
2.2 TSP: Number of Calculated Steps. . . . . . . . . . . . . . . . . . . 11
2.3 NP Complete and in-P Problem Examples [12]. . . . . . . . . . . . 12
2.4 2 Dimensional Weight Matrix to Represent Each Connection and

its Associated Weights [3]. . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 User Personalised Elevator Control Modes. . . . . . . . . . . . . . . 30

4.1 Bill of Material of The Energy Measurement Panel [7]. . . . . . . . 46
4.2 Unit 1 Schindler Aux Bay 2-Speed Motor Nameplate Values . . . . 46
4.3 Theoretical Nameplate Motor Calculations. . . . . . . . . . . . . . 48
4.4 Unit 1 Aux Bay Elevator Actual Values and Measurements. . . . . 48
4.5 Current Sample Descriptions, Refer to Figure 4.14. . . . . . . . . . 53
4.6 Actual Measurements for 8 Persons Going Down From 20m to 16m

, Refer to Figure 4.14. . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.7 Actual Measurements for 1 Person Going Down From 20m to 16m

, Refer to Figure 4.14. . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1 Exponential RBF Test Model Results. . . . . . . . . . . . . . . . . 77

7.1 Output Normaliser Error Performance: Neural Network Output vs.
Training Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 Input Normalisation: Training Data Pre-processing. . . . . . . . . . 89

8.1 The Traveling Salesman GA Class Initialisation. . . . . . . . . . . . 111
8.2 Algorithmic Performance Results for Single Elevator Control. . . . 116
8.3 Passenger Average Waiting Time Results for a Worst Case Scenario. 117
8.4 Elevator Controller Service Performance Results. . . . . . . . . . . 119
8.5 Energy Model Simulation Results for a 5 Day Period with Aux Bay

U1 Elevator Con�guration. . . . . . . . . . . . . . . . . . . . . . . . 123
8.6 BF VRP: Number of Calculated Steps for a 5 Car Con�guration. . 126
8.7 Elevator Controller Service Performance Results for a Group Eleva-

tor Con�guration without Destination Dispatching and for a Build-
ing Population of 500. . . . . . . . . . . . . . . . . . . . . . . . . . 132

xiii

Stellenbosch University  http://scholar.sun.ac.za



LIST OF TABLES xiv

8.8 Elevator Controller Service Performance Results for a Group Eleva-
tor Con�guration with Destination Dispatching and for a Building
Population of 500. . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Stellenbosch University  http://scholar.sun.ac.za



Listings

6.1 Gaussian Radial Base Function from Eq. 6.3.5 . . . . . . . . . . 77
6.2 Interpolated Waiting Times. . . . . . . . . . . . . . . . . . . . . 78
8.1 Complete Randomisation Function. . . . . . . . . . . . . . . . . 104
8.2 Passenger Information Class De�nitions. . . . . . . . . . . . . . 107
8.3 Routing Time Estimation for Unit 2 Aux Bay. . . . . . . . . . . 108
8.4 Chromosome Decleration. . . . . . . . . . . . . . . . . . . . . . 111
8.5 Chromosome Fitness Calculation. . . . . . . . . . . . . . . . . . 112
8.6 Proximity Function. . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.7 Chromosome Mating Call Method. . . . . . . . . . . . . . . . . 112
8.8 TSP Simulated Annealing Parameters. . . . . . . . . . . . . . . 114
8.9 True VRP Combination Generator. . . . . . . . . . . . . . . . . 126

xv

Stellenbosch University  http://scholar.sun.ac.za



Nomenclature

Abbreviations and Acronyms

AC Alternating Current

AI Arti�cial Intelligence

ANN Arti�cial Neural Network

BMS Building Management System

CBR Case Base Reasoning

CT Current Transformer

DD Destination Dispatching

DSP Digital Signal Processing

DSRD Dynamic Service Request Database

ED E�ective Duty

GA Genetic Algorithms

GARS Genetic Algorithm for Regressors' Selection

GARST Genetic Algorithm for Regressors' Selection And Transforma-
tion

GUI Graphical User Interface

HP Horse Power

IAC Integrated Access Control

IC Integrated Chip

ICU Intensive Care Unit

IEC Intelligent Elevator Controller

IEC International Electrotechnical Commission

ILP Integer Linear Programming

IP Ingress Protection

IP Integer Programming

LIFO Last In First Out

M&V Measurement and Veri�cation

MST Minimum Spanning Tree

NARH The Neural Automated Reasoning Head

xvi

Stellenbosch University  http://scholar.sun.ac.za



NOMENCLATURE xvii

NP Non-deterministic Polynomial-time

NTDN The Neural Tra�c Distribution Network

OEM Original Equipment Manufacturer

P Polynomial-Time

PORT Personal Occupant Requirement Terminal

PTSP Probabilistic Traveling Salesman Problem

PTSPD Probabilistic Traveling Salesman Problem with Deadlines

RBF Radial Basis Function

RFID Radio-frequency Identi�cation

RMS Root Mean Square

SAT Satis�ability

SDVRP As Site-Dependent Vehicle Routing Problem

TSP Traveling Salesman Problem

VIP Very Important Person

VRP Vehicle Routing Problem

VT Voltage Transformer

VVVF Variable Speed Variable Frequency

WT Waiting Time

Constants

g 9.81 m.s−2

Symbols and Variables

α constant parameters

α rotational acceleration

β constant parameters

∆tmoving time spend in the car while moving . . . . . . . . . [ sec ]

∆tstationary time spend in the car when stationary . . . . . . . [ sec ]

η e�ciency at rated speed . . . . . . . . . . . . . . . [% ]

λi arriving rate

ωslip slip speed . . . . . . . . . . . . . . . . . . . . . . . . [ rad.s−1 ]

ωsync stator angular speed . . . . . . . . . . . . . . . . . [ rad.s−1 ]

ωm rotor angular speed . . . . . . . . . . . . . . . . . . [ rad.s−1 ]

Xs average

φq(s) base function

φq(x) localised function

Stellenbosch University  http://scholar.sun.ac.za



NOMENCLATURE xviii

ρ approximation ratio

σx,s standard deviation

θ scaling parameter

aij amount of available resources

bi budget or the allowed time limit . . . . . . . . . . . [ sec ]

c competitive ratio

cj cost

CM suspension ratio

Dij passenger's �nal destination

ds sheave diameter . . . . . . . . . . . . . . . . . . . . . [ cm ]

EfullD energy for the full sample duration . . . . . . . . . [ J ]

f(x) Poisson probability density

F (x) Poisson probability distribution

IfullD current for the full sample duration . . . . . . . . . [Arms ]

Iload load inertia . . . . . . . . . . . . . . . . . . . . . . . [ kg.m2 ]

IA phase current . . . . . . . . . . . . . . . . . . . . . . [A ]

IN rated current . . . . . . . . . . . . . . . . . . . . . . [A ]

K the scale parameter

Ki_up(x) passengers will not travel higher than the ith �oor

Ki population that have not reached �oor i

Ki(x) passengers amount

Lcable lenght . . . . . . . . . . . . . . . . . . . . . . . . . . [m ]

lrope total rope length . . . . . . . . . . . . . . . . . . . . [m ]

mcar no load car weight . . . . . . . . . . . . . . . . . . . [ kg ]

mcw counterweight mass . . . . . . . . . . . . . . . . . . [ kg ]

mrated rated full load car weight . . . . . . . . . . . . . . . [ kg ]

mrope rope mass . . . . . . . . . . . . . . . . . . . . . . . . [ kg ]

mcar car mass . . . . . . . . . . . . . . . . . . . . . . . . . [ kg ]

mcw counterweight mass . . . . . . . . . . . . . . . . . . . [ kg ]

n overall system e�ciency

Ni_up total number of �oors above the current �oor

n1 friction pulley performance rate

n2 friction pulley benches performance rate

n3 worm screw performance rate

nf forward e�ciency

nr feedback or reverse e�ciency
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NOMENCLATURE xix

Oi total population at �oor i

P (FX,Y |FY ) posteriori probabilities

P (FY |FX,Y transition probabilities

P (X) probability

PfullD power for the full sample duration . . . . . . . . . [W ]

Pin active 3 phase input power . . . . . . . . . . . . . . [W ]

Qin reactive 3 phase power . . . . . . . . . . . . . . . . [VAR ]

r radial separation

r0 scaling factor

rg gearbox reduction ratio

Sin apparent 3 phase input power . . . . . . . . . . . . [VA ]

sn slip . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ rad.s−1 ]

TfullD time for the full sample duration . . . . . . . . . . [ sec ]

tinitial initial time recorded for a pre-set �oor order . . . [ sec ]

Trope actual breaking load of rope . . . . . . . . . . . . . [N ]

Te torque at rated speed . . . . . . . . . . . . . . . . . [Nm ]

Ui number of people that are currently on �oor i

VDrop Value voltage drop constant per cable size . . . . . . . . [mV/A/m ]

Vdrop voltage drop . . . . . . . . . . . . . . . . . . . . . . [V ]

Vik value of of the kth feature of case i

VC contract speed . . . . . . . . . . . . . . . . . . . . . [m.s−1 ]

Vm rated motor speed . . . . . . . . . . . . . . . . . . . [ rpm ]

VN rated car speed . . . . . . . . . . . . . . . . . . . . . [m.s−1 ]

wij weight of city i to the point j.

wkq weighing parameters

X data point

Xi,σ provides a Z-score

xj passenger count

Yk continuous di�erentiable surface
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Chapter 1

INTRODUCTION

1.1 INTRODUCTION

Machine learning techniques have been around for a few decades now and
are being established as a pre-dominant feature in most control applications.
Elevators create a unique control application where tra�c �ow is controlled and
directed according to certain control philosophies. Machine learning techniques
can be implemented to predict and control every possible tra�c �ow scenario
and deliver the best possible solution. Various techniques will be implemented
in the elevator application in an attempt to establish a degree of arti�cial
intelligence in the decision making process and to be able to have increased
interaction with the passengers at all times.

1.2 THESIS OBJECTIVES

1.2.1 INTELLIGENT ELEVATOR CONTROL

ASSESSMENT AND COMPARISON

The primary objective for this thesis is to investigate the potential of a ma-
chine learning solution and the relevancy of such technology in an elevator
control application. The aim is to establish how the research �eld of machine
learning and neural network science can be successfully utilised with the goal
of creating an arti�cial intelligent controller. The AI controller is to adapt to
its existing state and change its control parameters as required without the
intervention of the user. The elevator model is to replicate exact real-time
energy consumption values and waiting times, which are used to in�uence the
decision making process of the controller in order to be a more energy e�cient
and optimal machine. The developed machine learning mechanisms should
also be compared to existing control philosophies to establish competitiveness
against a baseline.

1
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CHAPTER 1. INTRODUCTION 2

1.2.2 VIRTUAL MODEL AND TESTING PLATFORM

The secondary objective is to have an elevator model that represents every as-
pect of the real-world application as accurately as possible. The model should
improve the accuracy of existing theoretical or simulated models, by modu-
lating previously unknown and complex variables and constraints. The model
should include considerations to the elevator motor, drive, rope con�guration
and load variances. In addition to the required elevator model, a virtual en-
vironment should also be created; where multiple elevators are installed with
the respective control mechanisms and integrated building management system
(BMS). The virtual environment for elevator groups should include relevant
building dynamics together with simulated population distributions. The aim
is to create a complete and fully functional testing platform for developing new
elevator control philosophies and testing new elevator technologies.

1.3 THESIS CONTRIBUTIONS

1.3.1 BENCHMARKING

The elevator's machine learning control can be compared and benchmarked
against other philosophies and control technologies by way of simulation. Also
by conducting energy consumption and waiting time analysis on the di�er-
ent elevator control techniques, it can illustrate the bene�ts and the need to
upgrade the elevator's control system entirely.

1.3.2 GLOBAL ELEVATOR RESEARCH

CONTRIBUTIONS

Information and results produced by this thesis can be a major contribution
towards the research �eld of elevators. There are largely over 8.5 million eleva-
tors in operation worldwide, with the amount of new installations reaching 100
000 annually [13]. Each existing elevator also require an upgrade or a replace-
ment every 20 to 25 years, because of equipment obsolescence or the possibility
of appended statuary requirements. This creates a stable and continuous envi-
ronment for elevator technology improvements and implementations thereof. It
is thus important to produce a number of formal theses and registered articles
to keep the research �eld updated and to keep it from stagnating.
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CHAPTER 1. INTRODUCTION 3

1.4 THE RESEARCH ENVIRONMENT

The research environment for this thesis is directly applicable to Eskom Gen-
eration Power Stations, but not limited to any speci�c elevator con�guration.
The measurements and veri�cation results for this thesis shall be speci�cally
captured from Majuba Power Station, where 25 elevators are in operation.

1.5 THESIS OVERVIEW

The structure of the thesis is as follows:

Chapter 1 - INTRODUCTION
This chapter presents the thesis objectives, namely to develop an intelligent
elevator controller based on machine learning techniques and to create a vir-
tual model and testing platform. The thesis contributions are discussed and
the research environment is de�ned

Chapter 2 - LITERATURE REVIEW
This chapter presents a brief introduction to elevator control possibilities and
some background information on the history of elevator technologies. Various
machine learning concepts and arti�cial intelligence philosophies are intro-
duced in this chapter with the intent of implementing some of them in an
elevator application. Mention is also made to online vs. o�ine strategies and
the implementation thereof.

Chapter 3 - ELEVATOR CONTROL: INTRODUCTION TO AI
In this chapter, speci�c focus is placed on employing di�erent machine learning
techniques in order to improve the computational and symbolic intelligence of
the elevator control system. The main focus is to obtain the best possible
decisions with the available resources and limitations, but also to create an AI
system that can provide results based on its own arti�cial intellect and not
necessarily with pre-programmed responses. Speci�c references are made to
the Traveling Salesman problem and the Vehicle routing problem that will be
implemented throughout this thesis.

Chapter 4 - ELEVATOR POWER CONSUMPTION
This chapter will create an energy model for our elevator con�guration based
on theoretical calculations and actual energy samples.This chapter shall only
focus on traction elevators, where a geared traction elevator is used for actual
measurements, simulated results and theoretical models. The actual energy
samples will be compared to the theoretical calculations based on the rated
nameplate values, as well as the developed equations from this chapter.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 4

Chapter 5 - ELEVATOR PROBABILITY THEORY
This chapter will focus on the probability philosophy de�nition and make var-
ious theoretical predictions related to the elevator application. The Poisson
arrival probability function will also be introduced and implemented in such
a way to be used as a building population generator and to be incorporated
with other passenger probability de�nitions.

Chapter 6 - WAITING TIMES CONSTRAINTS
In this chapter the general waiting time philosophy will be provided, which
states that the controller should be able to minimise overall waiting time of
all passengers by establishing the most optimal route to follow for each car.
The concept of time management will also introduced, instead of just looking
at time minimisation techniques. A waiting time conjoining network will be
developed in this chapter, by implementing radial base function (RBF) tech-
niques.

Chapter 7 - NEURAL NETWORK ELEVATOR INTEGRATION
This chapter will describe in detail how e�ective Neural Networks can be in
an elevator application and how Neural Networks will be at the core of an
intelligent self-reasoning unit and provides how its predictive abilities can be
used in our application.

Chapter 8 - ELEVATOR CONTROL SIMULATION
This chapter is to develop the testing platform and the elevator simulation
with Java code, to be able to asses and compare various control philosophies
and algorithms.

Chapter 9 - CONCLUSIONS AND RECOMMENDATIONS
The thesis will conclude with contributions made to the elevator research �eld
and with any recommendation for future work.
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Chapter 2

LITERATURE REVIEW

The purpose of this chapter is to provide a literature review on general ma-
chine learning techniques, with the purpose of familiarising the reader with
the respective research �elds which are relevant to this thesis and expose the
reader to the various elevator control techniques being implemented at present.

2.1 ELEVATOR OPERATING SYSTEM AND

CONTROL

2.1.1 ELEVATOR CONTROLLER

When the conventional control system was �rst introduced there were only a
few distinct technologies available on the market that were being utilised by
the various elevator manufacturing companies. Relay logic and later on solid
state components were available for the implementation of an elevator control
system. Solid state components employing integrated circuits provided higher
reliability at the time, but with higher maintenance requirements due to in-
creased complexity and a higher degree of knowledge that were required [1].
The major drawback with these two types of controller components are the
lack of adaptability or �exibility to design changes. For each newly installed
elevator system we would like to properly de�ne the various group control
mechanisms, like sectoring and up-peak with down-peak sub zoning etc. but
with these technologies most settings are �nal after manufacturing stage and
are di�cult to �ne-tune later. However solid state components provides a
greater degree of �exibility than relay logic [1]. Other drawbacks to relay and
solid state �xed logic are their inability to simulate new control algorithms
and to prove their practicality without actual installation of the system. Pro-
gramming and simulations were very much restricted in those days and elevator
companies were limited to actual installations and costly modi�cations to eval-
uate and improve performance.

5
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CHAPTER 2. LITERATURE REVIEW 6

Figure 2.1: Software Structure for The Computer Control of An Elevator
System In The Late 1970's [1].

Relay and solid state �xed logic technologies have since been replaced with
ever improving digital computer control systems which have increased com-
putational and speed abilities. Computer control allows for numerous simu-
lations to be conducted for evaluation purposes and to test new algorithms
and philosophies. Software control also enables on-line alterations to most pa-
rameters of the control algorithms throughout the design and operating cycle
as required. Data logging is another advantage of computer control. Various
tra�c data can be logged, together with the elevator system responses and
possible fault reporting integration.

2.1.2 ELEVATOR SYSTEM CONTROL

The basic single elevator car philosophy, generally found in old elevator in-
stallations can be described as follows: When the elevator car travels in the
upwards direction, it stops at all the landing �oors where the up directional
button was pressed and vice versa. It will then change direction and service
any other landing �oors where a directional button was pressed. When the
destination �oor button is pressed inside the elevator car, that �oor is visited
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CHAPTER 2. LITERATURE REVIEW 7

if it is in conjunction with the direction being travelled. Similar single elevator
car philosophies include: highest-�oor-�rst and longest-waiting-passenger-�rst.
Highest-�oor-�rst algorithm will serve the highest activated �oor �rst and tra-
vels downwards to the rest of the �oor calls. The longest-waiting-passenger-
�rst algorithm don't actually know how long the passenger is waiting, but
rather the time di�erence between the �rst call was registered on the �oor and
the last time the �oor was serviced.

The history of elevator group control technologies can be summarised in Ta-
ble 2.1 [1]. The previous generations are not discussed here in detail, because
we are rather interested in the current generation; which is computer aided
elevator control.

Table 2.1: The History of Available Group Elevator Control Technologies [1].

Generation Years Control category
1 1850 - 1890 Simple mechanical control
2 1890 - 1920 Attendant and electrical car switch control
3 1920 - 1950 Attendant and push button control
4 1950 - 1975 Group control: scheduled and zoned
5 1975 - present Computer group control

Group control is responsible to improve overall elevator system performance
by having individual elevator cars working together to handle various tra�c
�ow patterns and intensities. Di�erent philosophies have been introduced in
order to �nd the best joint solution for two or more elevator cars operating
in the same conditions and passenger distributions.One of the more general
philosophies is static-zoning, where common landings are grouped together
based on physical proximities. Each elevator car only responds to the requests
that originate from its designated cluster of �oors and then transports all pas-
sengers in the elevator car to the respective destination �oors. The requests
can also be divided between up and down directions, where the elevator cars
are divided into these two groups for responding to directional calls rather
than actual �oor positions. The landing �oors can also be divided dynami-
cally depending on the various elevator car positions. The idea is to have the
elevator cars uniformly distributed and located throughout the length of the
elevator's con�guration. Each elevator car then only responds to the requests
that are between the elevator car and the next car traveling in the same di-
rection. When the top and bottom �oors are reached the direction of the car
interchanges. Any idle elevator car can either stay at its last destination �oor
with doors open or move to a designated �oor, which is normally the main
landing.
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CHAPTER 2. LITERATURE REVIEW 8

Most philosophies are designed with a response setting to di�erent tra�c pat-
terns, to optimise control in high passenger demand states. Thus elevator
control is normally de�ned in terms of di�erent tra�c modes. Up-peak mode
can be de�ned as an elevator system state whereby high intensity up-peak
tra�c is imminent or already being experienced [1]. Up-peak tra�c is where
heavily or fully loaded cars are leaving the main landing at speci�c times in
a day; where the passenger demand is at its highest. During this state all
available elevator cars are directed to the main landing to provide additional
capacity. Only requests originating from the main landing and inside the ele-
vator cars are being responded to during this mode. The other requests are
being ignored for the duration of the up-peak state. The available elevator cars
can also be parked at the main landing until, for instance the 80 % capacity
threshold is reached and then only will the doors close to service the passen-
gers, in order to minimise traveling costs and reduce return trips. Up-peak
mode is detected with either weighing devices or trip counters to establish
that the system is experiencing heavy tra�c from the main landing. The
controller should also be able to detect when the tra�c has subsided and that
the up-peak mode can be cancelled and the normal operating mode reinstated.

Down-peak mode is de�ned in much the same way as the up-peak mode, only
whereby the system is experiencing high intensity down-peak tra�c. During
this mode the elevator cars tend to reach full capacity from higher �oors and
are unable to handle any requests from �oors lower down the building. In this
state the system normally ignores requests from other �oors requiring to travel
upwards and also service the �oors in a round-robin fashion in order to allow
each �oor a systematic opportunity to be serviced [1].

The drawback of some directional button philosophies discussed above is that
the elevator car does not know when it is close to reaching its full capacity
and thus will still continue to stop at each registered landing �oor. Some sys-
tems do however utilise a weighing device that signals the controller to ignore
any further requests when full capacity has been reached, excluding the re-
quests that originated from inside the elevator car. These philosophies also
do not register any valuable information about their passengers or the respec-
tive destinations before the passenger gets into the elevator car. However, in
1992 Schindler introduced the �rst practical destination dispatch system to
the market: The Miconic 10 [14]. Schindler e�ectively introduced a new tra�c
control philosophy where the landing �oor directional buttons were replaced
with destination �oor buttons instead. The breakthrough was established by
the work of Dr. P. Friendli, who realised that the control system can bene�t
from a more advanced human interface system [14]. This alteration provides
the controller with additional data and creates new tra�c control possibili-
ties. However, this technology was only designed for elevator groups where
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CHAPTER 2. LITERATURE REVIEW 9

you have more than one elevator per landing �oor and was used to e�ectively
dispatch the designated elevators to certain destination �oors to e�ectively
reduce the passenger waiting times. At this stage the controller didn't utilise
all the available information about its passengers and was only further devel-
oped and released with the second generation destination dispatch system: the
Schindler ID in 2002 [14]. The system added the functionality of RFID tech-
nology, where passenger information is readily accessible and used for more
e�ective dispatching and personalisation.

13 years after the Miconic 10 Schindler released their third generation desti-
nation dispatch system; the PORT (personal occupant requirement terminal)
technology, which is de�ned as a Transit Management plan for a building.
After a destination �oor is entered into a 7" touch landing �oor panel; the op-
timal and designated elevator number to travel with is displayed. The PORT
system also employs RFID and proximity sensor technology and makes provi-
sion for disabled passengers through audible communication and easy-to-reach
buttons [15]. The drawback to this philosophy is that the dynamic data cap-
turing is not always dependable and is ever changing. In real world situations
people do change their minds on the destination �oor button pressed and also
leave the landing queue prematurely. The destination �oor is also pressed
more than once in a futile attempt to make the elevator react faster to the
call. Schindler does attempt to overcome this di�culties by using a weighing
device inside the elevator car to validate and logically balance out the number
of people entering and exiting on each �oor against the number of times the
landing buttons were pressed.

2.2 ONLINE TRANSPORTATION

PROBLEMS

Online-dial-a-ride problems are de�ned as on-line transportation requests, spe-
cifying the objects that are to be transported with each respective destination
and source information. Requests are received dynamically throughout the
duration of execution and is not initially known to the server. The server or
the controller has a few deterministic strategies on how to respond to the new
on-line requests. The �rst strategy is to ignore any new request and complete
the existing schedule or sequence as initially planned. After completion, the
additional requests are then processed into a next sequence to execute. The
second strategy is to recompute the existing sequence at every new request.
This Replan strategy will re-optimise the sequence for all known requests and
thus keep it up to date and optimal for the rest of the instance. The third
strategy is a combination between the previous two and has been developed
by Krumke S. which is called the Smartstart strategy [16].
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The Smartstart strategy provides the server with a decision function that will
either allow new requests to be included into the current schedule or not. The
server also has the ability to wait a calculated period before starting with a
computed schedule. The competitiveness of these strategies can be compared
to the optimal o�-line sequence when all requests are known beforehand. The
Replan strategy has been proven by Krumke to have a competitive ratio of
at most 3.5 times the optimal sequence and the Ignore strategy a competitive
ratio of at most 2.5 [16].

Figure 2.2: Competitive Ratio of Smartstart Online Strategy, with ρ > 1.

The Smartstart strategy can be proven to be the best possible online algorithm
with a competitive ratio of [16],

c = max{θ, ρ(1 +
1

θ − 1
),
θ

2
+ ρ} , (2.2.1)

with ρ the ratio of the length as calculated from an approximation algorithm
times the optimal length as calculated with brute-force. If the calculated length
is in fact the optimal length, then ρ = 1. θ is the waiting scaling parameter
and is de�ned as,

θ > 1 with t+ l(S) ≤ θt , (2.2.2)

where t is the present time and l(S) is the shortest schedule with the time
di�erence between completion and start time t.

The best choice for θ is 0.5(1 +
√

1 + 8ρ) which yields a competitive ratio
of,

c(ρ) = 0.25(4ρ+ 1 +
√

1 + 8ρ) , (2.2.3)

with ρ = 1 and θ = 2 the result will be a competitive ratio of 2, see Fig-
ure: 2.2 [16].
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2.3 MACHINE LEARNING ALGORITHMS

AND TECHNIQUES

2.3.1 THE TRAVELING SALESMAN PROBLEM

The Traveling Salesman Problem (TSP) is an �NP-hard (Non-deterministic
Polynomial-time hard) problem which is an optimisation problem of �nding
the least-cost cyclic route through all nodes of a weighted graph� [17]. The
problem can be generalised as follows: The traveling salesman must visit a
number of cities, where he must identify the shortest overall route from one
city to another where each city can only be visited once. The number of steps
in the allocation process is factorial. If the number of cities is classi�ed by n,
the calculated steps will be n× (n− 1)× (n− 2)× · · · × 3× 2× 1 if calculated
by brute force, see Table 2.2 [3].

The Vehicle Routing Problem (VRP) is an extension of the Traveling Salesman
Problem, where there are a number of packages to be moved from a central
depot to the destination location with a �eet of vehicles. Several variations or
additions to this problem exist including, pickup and delivery, time windows,
multiple trips and last in �rst out (LIFO). The aim is still to minimise the total
route cost. Potvin and Thangiah [18] used genetic clustering e�ectively to �rst
group certain nodes together based on each cluster's capacity limitations and
pre-set criteria; for example, the nodes that have close proximity coordinates
towards each other are grouped together. The number of clusters are set to the
number of available vehicles. The shortest route is then calculated within each
cluster, where it becomes the standard TSP again for each cluster. The im-
plementation of the TSP can be extended to applications including computer
wiring, machine sequencing and scheduling as well as frequency assignments
in communication networks and statistical data analysis [19].

Table 2.2: TSP: Number of Calculated Steps.

Number of cities Number of steps
1 1
2 1
3 6
4 24
5 120
6 720
7 5040
. . . . . .
13 6,227,020,800
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2.3.2 SEARCH AND OPTIMISATION PROBLEM

SOLVING THEORIES

The Traveling Salesman Problem belongs to a group of search problems and
concepts that have been around for decades and various attempts to solve these
problems exist today, but neither of the attempted solutions have reached the
satisfaction of our leading mathematicians and scientists of our time. A search
problem is de�ned as an algorithm that is given an instance and a proposed
solution as input and runs in polynomial time [12]. Table 2.3 provides a few
of these problems grouped together as NP-complete and in-P problems. The
right side refer to relatively easy problems which can be solved in polynomial
(in-P) time and with dynamic and specialised algorithms [12]. On the left
side we have problems which require much e�ort to solve e�ectively and often
have running times of 2n or worse. They can also be classi�ed as decision
problems or nondeterministic algorithms which produce accurate estimations
or attempts to reduce the search spaces [12].

Mathematically, the problems from Table 2.3 are all related and can be re-
duced to or extended to suit the same mathematical model, thus it can prove
to be bene�cial to investigate them in an attempt to solve or improve our so-
lution to the TSP. Thus each problem's terminology can be translated to the
TSP structure which includes bridges, cities, paths, etc. SAT or satis�ability
problems are Boolean statements or a collection of clauses which needs to be
solved with true and false values. The 1-SAT problem (at most 1 positive
literal), called the Horn formula, can be solved by a greedy algorithm [12]. 2-
SAT refers to where you have two literals and a connection between them and
can be e�ectively de�ned by image theory, however, 3 literals become more
di�cult (3-SAT) (refer to problem 1 and 10 in Table 2.3) [12].

Table 2.3: NP Complete and in-P Problem Examples [12].

No. Problem No. Problem
1: 3SAT 10: SAT, Horn SAT
2: The traveling salesman problem 11: Minimum spanning tree (MST)
3: Longest path 12: Shortest path
4: 3D matching 13: Bipartite matching
5: Knapsack 14: Unary knapsack
6: Independent set 15: Independent set on trees
7: Integer linear programming 16: Linear programming
8: Rudrata path/cycle 17: Euler path
9: Balanced cut 18: Minimum cut
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Related to the TSP is a much simpler problem, namely the minimum spanning
tree (MST)(problem 11), with distance matrix and a bound b, where the total
weight is de�ned as

∑
i,j dij ≤ b. The di�erence is that the TSP is not allowed

to branch like a tree, but rather be de�ned as a set path [12]. The Euler path
(problem 17) refers to the problem where you have multiple edges between
vertices or cities, where you have to �nd a path by crossing each edge (bridge)
once, but you can visit each city more than once if required. The Rudrata
cycle or path (problem 8) is similar to the Euler path, but only that every city
must be visited only once with multiple bridge crossings allowed if required.
A minimum cut problem (problem 19) is de�ned as the removal of a minimal
number of edges to leave a graph disconnected, thus to isolate one or more
cities from the rest of the cities. Balanced cut (problem 9) is where you need
to partition or group di�erent cities equally by cutting the bridges connecting
the di�erent groups. The vehicle routing problem can also be derived from the
balanced cut problem theory. The Knapsack problem states that a hiker must
decide how many goods to include in the trip vs. the comfort of carrying the
goods. The hiker have a budget of b amount of weight allowed on the trip and
more than one of each item is allowed, thus instead of x = 0 or x = 1 we have
x ≥ 0. (problem 5 and 14).

The TSP can also be de�ned by integer and linear programming techniques.
The integer programming (IP) (problem 16) formulation is an exact algo-
rithm to �nd the optimal solution at the cost of computational time and
resources. The IP formulation is given by minimising

∑n
i=1

∑n
j=1 dijxij with

the additional constraint of no sub-tours:
∑n

i=1 xij = 1, j = 1, . . . , n and∑n
j=1 xij = 1, i = 1, . . . , n with xij = 0 or 1 if xij ∈ X. With Dij, the distance

between vertices i and j and xij, the decision matrix [5; 19]. X is the solution
matrix of a collection of sub-tours breaking constraints, the maximum number
of constrains can reach (2n−1) with n cities. The values for the variables can be
further constrained to be only integers, which is de�ned as the a more di�cult
integer linear programming (ILP) problem (problem 7) [12].

2.3.3 FUZZY LOGIC AND EXPERT SYSTEMS

Fuzzy logic and expert systems are linguistic approaches to control strategies
and are based on human knowledge and logic decision making processes. A
fuzzy system is a rule-based system and is often required where the system's
mathematical model is not available or di�cult to obtain.

Fuzzy logic can also be used for system classi�cation as in the case for ele-
vator tra�c analysis. Fuzzy logic can be used to divide the passenger �ow
between trivial patterns identi�ed by elevator experts, previous set of prede-
�ned patterns or passenger count samples collected over time. For example,
passenger tra�c distributions can be divided between up-peak, down-peak and
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inter�oor passenger movements and then further divided between lunch hour
times or any other event that can have an e�ect on the tra�c patterns [20].
Di�culties in this approach are the inconsistencies in tra�c �ows throughout
the building and the need to maintain and update the fuzzy rules continuously.
E�ective rules can be written, for example, when the elevator car has reached
its passenger capacity at a certain �oor all the elevator cars in that elevator
group are send to that �oor as soon they are available or further described
by Koehler and Ottiger [20]: �If intensity is heavy, incoming tra�c is high,
outgoing tra�c is low, and inter�oor tra�c is low, then tra�c type is heavy
up-peak�. Only then will a speci�c control algorithm be triggered to send any
idle elevators down to that landing �oor.

Figure 2.3: Fuzzi�cation Flow Diagram.

Fuzzy logic is implemented by creating the membership functions by fuzzi�ca-
tion and the member functions are then implemented by an inference mecha-
nism to obtain the output by defuzzi�cation, see Figure 2.3 [21].
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2.3.4 GENETIC ALGORITHMS

Genetic algorithms are an evolutionary process that is derived from Darwin's
theory of evolution in the �eld of biology. Evolution can be described as the
change in the inherited characteristics of biological populations over successive
generations, which creates diversity and genetic variation as a result of natu-
ral selection [22]. Darwin's research on evolution is based on three principles,
namely: (1) Di�erent individuals in a population have di�erent morphologies,
physiologies and behaviours, (2) di�erences give rise to di�erent rates of sur-
vival and re-production in di�erent environments and (3) there is a distinct
correlation between the parents and their o�spring in terms of their composi-
tions and traits [23]. The di�erent rates of adaptability to survive are often
referred to as the di�erential �tness levels of the organism or biological struc-
ture. The better the �tness level, the better the chance of adaptability, repro-
duction and ultimately, survivability. Natural selection enforces the principle
that if any entity have variation, reproduction and heritability, it will evolve
[23].

From this area of research it brings forth genetic algorithms to implement
this evolutionary process to real world applications, which are not necessarily
biological. There is great need for certain processes to adapt and learn from
its present state and adjust to be more e�cient and coherent. But the changes
are still micro-evolutionary, meaning the changes will not result into a new
process or new species [3]. General uses for genetic algorithms are complex
scheduling, routing, machine learning, searching, allocation and detection. Ap-
plications normally include optimisation problems that cannot be solved with
traditional methods or existing computational powers. To refer back to evo-
lution, genetic algorithms illustrates parts of a process as chromosomes and
its genes as individual components to the program. Each chromosome must
however represent one individual solution to the problem [3]. Genes are the
parameters which can be optimised and changed in order for the single chro-
mosome to give a better solution than before. The optimal solution is created
by enforcing three operations, namely: (1) Selection, (2) crossover or mating
and (3) mutation. Selection is based on the �tness levels of each chromosome
and the privilege to mate. The mating is then accomplished by taking certain
sequences of genes from each parent chromosome and divide them between
o�spring chromosomes. Mutation refers to the introduction of variation by
either alteration, modi�cation, transformation or metamorphosis of a chromo-
some by adding random sequences of genes. However, the higher the mutation
rate the lower is the adaption rate for the o�spring, which will negate the e�ect
of optimisation and survivability.
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Lotz [24] makes referral to three existing genetic programming software appli-
cations that can be used to model process systems. The main purpose of these
applications is to solve complex regression problems not likely to be solved
by hand. Genetic algorithm's main purpose is to determine the relationship
between the independent and dependent variables and to search for the best
combinations to ultimately reduce them. GA's can also be used to transform
the independent variables in the most appropriate optimisation models, namely
the Genetic Algorithm for Regressors' Selection (GARS) and the Genetic Algo-
rithm for Regressors' Selection and Transformation (GARST) algorithm [25].
Lotz [24] �rst application makes reference to the GPLAB toolbox [26] that
generates models by using mathematical operators, Boolean functions and op-
erators. The GPLAB toolbox can compare parameters to other parameters,
functions of a parameter or other numeric values. The second application that
is made reference to, is the GP250 developed by Swart and Aldrich. This ap-
plication generates models by only using mathematical operators and is quite
resource intensive, being able to compile between 100 and 400 individuals per
generation and can run between 100 and 400 generations which comes down to
roughly 10 000 to 160 000 individuals [24]. DiscipulusTM is the third applica-
tion Lotz [24] makes reference to, which makes use of binary code. A lot more
individuals could be compiled by this applications with the same resources
than the previous two GA applications, roughly in the range of 25 million to
26 million individuals [24]. These applications illustrate the potential of us-
ing genetic algorithms in real world applications and the pure computational
power of these implementations.

The adaptability and search optimisation of genetic algorithms can be illu-
strated in the attempt to solve the well-known Traveling Salesman Problem
and the Vehicle Routing Problem. As suggested by Jana Koehler and Daniel
Ottiger [20], genetic algorithms can also produce better elevator dispatching
solutions with a stochastic search approach rather than those generated by a
prede�ned set of rules as in expert systems or with fuzzy logic dispatching me-
thods. The full potential of this type of dispatching algorithm is still unclear
and the right combination between mutation, mating and selection methods
present a challenge in this domain [20]. However, it is proven that with GA the
number of steps are considerably reduced and can be executed much faster by
limiting the number of generations. The general �ow of the GA is summarised
by Figure 2.4, as described by Potvin and Thangiah [18].

2.3.5 NEURAL NETWORKS

Similar to Genetic algorithms we will look to nature to �nd more optimal
methods for computer control applications to perform certain tasks and to
combine these methods with its superior computational abilities. The biolog-
ical neural network of the human brain is simulated and represented by the
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Figure 2.4: Genetic algorithms (GA) General Flow Diagram.

arti�cial neural network (ANN). The human brain is represented at the basic
level, where multiple biological neurons are connected together and signals are
received via its dendrites (received from the end nodes of another neuron),
which in turn activates or �res the respective speci�c neurons. When a neuron
is activated it will transmit the signal to other neurons via its axon [3]. A
synapse is the space between the end nodes of the one neuron and the den-
drites of the next neuron. The axon and the dendrites represent the �input�
from a software perspective and the �output� is represented by the synapses of
the neuron, see Figure 2.5. The neural activation process is in fact only a zero
or a one, which means that a combination of neurons can be used to represent
any basic level programming or function.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. LITERATURE REVIEW 18

Figure 2.5: Schematic Illustration of Two Biological Neurons [2].

Figure 2.6: McCulloch and Pitts Model of a Single Neuron [2].

The origins of the use of neural networks date back the 1940's with research
from McCulloch and Pitts [2] who modelled �a single neuron that forms a
weighted sum of inputs x1, . . . , xd given by a =

∑
iwi + w0 and then trans-

formed this sum using a non-linear activation function g() to give a �nal output
z = g()�, see Figure 2.6. Two common attributes associated with every neuron
are the threshold and the weights between them. �An incoming signal will be
ampli�ed, or de-ampli�ed, by the weight as it crosses the incoming synapse
and if the weighted input exceeds the threshold, then the neuron will �re� as
stated by Heaton [3].

In the late 1950's Rosenblatt adopted McCulloch's model into the perceptron
and developed the perceptron learning algorithm [2]. Research contributions
continued slowly until the 1980's where the physicist Hop�eld developed his
own learning algorithm based on error backpropagation. The Hop�eld network
is de�ned as a single layer, where every neuron is connected to each other as il-
lustrated in Figure 2.8. The network is classi�ed to be auto-associative, which
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means it returns the same pattern it recognises [3]. In a Hop�eld network,
the neurons do not have connections to itself, thus a four neuron network has
only 12 connections and also does not contain a threshold value as in the case
with some other neural networks. Each connection and its associated weights
can be presented by a 2 dimensional weight matrix [3]. The weight matrix
in Table 2.4 will recall the patterns 0101 and 1010. When such patterns are
presented it summates all the weights that have a 1 in the input pattern.
For an input of 1010 we will have an output vector with the following val-
ues: N1 = (−1) + (−1) = −2; N2 = 0 + 1 = 1; N3 = (−1) + (−1) = −2;
N4 = 1 + 0 = 1. With a threshold or activation function the neuron will �re if
the output is above a certain value. Hop�eld classi�ed the activation function
to be any value above zero, thus only N2 and N4 will �re in this case, which
resulted in the input pattern as expected.

Figure 2.7: A Multilayer Perceptron Neural Network Having Two Layers of
Weights [2].

Table 2.4: 2 Dimensional Weight Matrix to Represent Each Connection and
its Associated Weights [3].

Neuron 1 (N1) Neuron 2 (N2) Neuron 3 (N3) Neuron 4 (N4)
Neuron 1 (N1) 0 -1 1 -1
Neuron 2 (N2) -1 0 -1 1
Neuron 3 (N3) 1 -1 0 -1
Neuron 4 (N4) -1 1 -1 0

The feedforward neural network is where its neurons are only connected to
the next neuron layers and do not make any contact with the neurons be-
hind its current position, as illustrated in Figure 2.9. Hidden layers are often
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Figure 2.8: A Hop�eld Neural Network with 12 Connections [3].

utilised to improve the outer results but at the cost of making the network
more complex. The feedforward neural network is often implemented together
with the Backpropagation training method to compare the anticipated output
to the input with an error calculation function. The result obtained from the
error calculation is then used to adjust the weights of the output layer back to
the input layer. Backpropagation is classi�ed as supervised learning, because
the anticipated output values are required for the error calculation to be con-
ducted. Activation functions are used to scale the neural network output layer
into expected ranges or groups. Various activation functions can be used or
created, but most commonly used today are the sigmoid function, hyperbolic
tangent activation function and the linear function [3].

Problems that are well suited to the adaptive abilities of neural networks are
usually when there is a pattern recognition or a classi�cation requirement by
the system. Neural networks are trained to recognise certain patterns or clas-
si�cations by providing it with training samples and when the same or similar
samples are provided, it will attempt to provide the expected output related to
that speci�c pattern or group. Optimisation and prediction problems are also
e�ectively solved by neural networks like optimising the traveling salesman
problem and predicting the �nancial stock markets [3]. Problems that are not
well suited to neural networks are usually stepwise systems which is compiled
with logic statements and do not change over time [3]. Systems that are not
well suited are where you are particularly interested in how the output was
generated and the speci�c �ow of the process, because the con�guration and
steps of neural networks are often hidden to the user.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. LITERATURE REVIEW 21

Figure 2.9: A Typical Feedforward Neural Network [3].

2.3.6 SELF-ORGANISING MAP

The self-organising map also form part of the neural network architecture and
was developed by Tuevo Kohonen. The self-organising map does not return
a pattern like the feedforward backpropagation neural network, but rather
produce a single binary value as output from the winning neuron. By im-
plementing this network there is only one output neuron that �res, thus the
need to scale the output neural layer by means of an activation function be-
comes unnecessary and is not required anymore. The major bene�t to the
self-organising map is that it is an unsupervised training mechanism, where
the output data is not required to train an e�ective network and thus hidden
neuron layers are also not utilised. The input pattern, however, �rst needs to
be in a binary form, that is between −1 and 1, thus it �rst progresses through a
normalisation step before the input neuron layer receives the normalised values.

Problems that are well suited to the self-organising map includes systems
that require data classi�cation or cluster identi�cation. The network train
by adapting to the input pattern by gradually adjusting the respective con-
nection weights [5]. When the traveling salesman problem and the vehicle
routing problem are solved by this network, a ring is initially de�ned and
gradually modi�ed until it gets close to a city to create a return path or a tour
[5]. In this way certain input patterns (city order) are grouped or clustered
together, where the neighbouring cities are also more inclined to form part of
the winning ring to a reduced extend [5].
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2.3.7 SIMULATED ANNEALING

The term annealing refers to the metallurgical process of heating solids up
to a point or colour and then slowly cooling it down until it crystallises [3].
When integrated chips (IC's) are manufactured the infusion doping of ions to
the surface causes dissociation of the molecules into its atoms as result of the
rapid heating [4]. To avoid this occurrence di�erent annealing techniques are
introduced, to increase the anneal temperatures without surface dissociation.
But we also want to reduce the anneal time to avoid signi�cant dopant di�u-
sion, resulting in deeper junctions [4]. The di�erent techniques include furnace
and spike annealing to reach the 45 nm CMOS technology requirements and
depth, but for ultra-shallow 2 nm junctions, �ash and laser annealing can be
utilised. Flash annealing uses high voltage pulses to achieve the high tem-
peratures in the millisecond time range and laser annealing manage to reach
these high temperatures in the micro to nano-second time range. With higher
temperatures the atoms have more energy to settle down and with a higher
level of freedom, see Figure 2.10.

Figure 2.10: Temperature-time Ranges of Various Conventional and Advanced
Annealing Techniques [4].
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Simulated annealing in an algorithmic implementation attempts to emulate the
metallurgical process, described in the previous paragraph, where you begin
with very high temperatures and a wide range input randomisation (increased
freedom). For every pre-de�ned number of cycles the temperature is reduced
and the range of input randomness is decreased. For every cycle the set of
inputs that produce the best results, up to this point, is retained. The process
continues until the lower temperature boundary is reached or when the best
result has not improved for a number of continuous cycles.

Problems that often bene�t from simulated annealing are where you have a
speci�ed number of inputs or variables that you want to solve for an arbitrary
equation or when you want to simplify its algebraic equations or system con-
�guration. Simulated annealing can be used to randomise the weights of a
neural network within the range the weights are limited to [3]. The Traveling
Salesman Problem can also be solved by randomising the order of the cities
by the simulated annealing process as required until the best route is found.

2.3.8 ELASTIC NETS

The elastic net is modelled in much the same way as the self-organising map
in terms of the initial ring that is created for city clustering, however the way
they update the coordinates of the points on the ring di�ers to each other [5].
An elastic net algorithm does not form part of the neural network architecture,
but is rather an iterative procedure. The purpose of the iterative procedure is
to minimise the length of the ring and the points on the ring. Initially there
are more points on the ring than the number of classi�ed cities until each point
converge to a singular city. Let Xi be the position of the ith city and Yj be the
jth point on the ring. The ring points are updated with the following equations,
where β and α are constant parameters and K is the scale parameter [5]:

∆Yj = ±
∑
i

wij(Xi − Yj) + βK(Yj+1 + Yj−1 − 2Yj), j = 1, . . . ,M (2.3.1)

wij =
φ(dXiYj , K)∑
k φ(dXiYk , K)

(2.3.2)

φ(d,K) = e−
2d2

2K2 (2.3.3)

dXiYj is the Euclidean distance between the city i and the point j on the ring
and wij is weight of city i to the point j. The �rst term in Equation 2.3.1 drives
the point towards the city and the second term tries to keep the neighbouring
points together. In order to solve the TSP the global minimum of the derivative
of the above equation needs to be calculated K → 0 and M/N → ∞, where
the energy function is de�ned as:

∆Yj = −K dE

dYj
(2.3.4)
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E = αK
∑
i

ln
∑
j

φ(XiYj, K) +
β

2

∑
j

(dYjYj+1
)2 (2.3.5)

It is stated that from an elastic net algorithm the average number of iterations
to converge in comparison to simulating annealing is about the same [5]. But
when you allow each point on a ring to match more than one city, when the
cities are su�ciently close, the elastic net can be superior to the simulating
annealing algorithm [5].

Figure 2.11: Evolution of The Elastic Net Over Time [5].

2.4 SUMMARY AND CONCLUSIONS

This chapter presents a brief introduction to elevator control possibilities and
provides some background information on the history of elevator technologies.
Mention is made to online vs. o�ine strategies and the implementation thereof.
Various machine learning concepts and arti�cial intelligence philosophies are
introduced throughout this chapter with the intent of implementing some of
them in an elevator application. Speci�c reference is made to Neural Networks,
Genetic Algorithms and Simulating Annealing.
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Chapter 3

ELEVATOR CONTROL:

INTRODUCTION TO

ARTIFICIAL INTELLIGENCE

3.1 INTRODUCTION TO ARTIFICIAL

INTELLIGENCE

Arti�cial intelligence (AI) is the discipline of machine intelligence and can be
divided into symbolic and computational intelligence. Symbolic intelligence
can be seen as the origin of machine logic that was created by man, in order to
establish a data representation and reasoning process for developing di�erent
AI applications [27]. The �rst instances of AI were to process information in
a vast and e�ective manner, but by imposing more complex problems for AI
machines to solve, the need for more advanced computational abilities were
required. We require machines to be able to learn, anticipate and adapt to
the immediate environment and not just to follow symbolic logic as previously
thought.

Intelligence has a strong link to the term cognition, which is de�ned as the
process whereby sensory input or information are processed, knowledge is ap-
plied and preferences are altered. In human psychology cognition refers to our
understanding and processing of information relative to a�ection, motivation
or preference [27]. Thoughts and awareness also have close relations to cog-
nition and intelligence. A human being has di�erent thought processes which
he/she uses to re�ect to the immediate and perceived reality, for example per-
ceptual, imagery, inspirational and abstract though processes. The easiest way
to replicate any of these processes would be with attempting to create abstract
thoughts in a machine. Abstract thoughts in humans are possible where there
is an interaction with an abstract concept and some sort of a language or
symbols to produce abstract thinking. Therefore machine thinking may be

25

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. ELEVATOR CONTROL: INTRODUCTION TO ARTIFICIAL

INTELLIGENCE 26

possible with a fully established symbolic logic structure and an abstract con-
cept de�nition. In terms of awareness or attention in the cognition process, it
plays an important role to ensure that the correct action or changes are made
when it is required. As with humans, machines operate mostly serially. Thus
it is important to execute each required function at the exact time it is needed
and to exit the function as soon as possible. The ability to loop and force the
machine to execute its functions continuously must be reduced, if we are ever
to create some kind of consciousness.

3.2 INTELLIGENT SINGLE ELEVATOR

CONTROL: GENERAL PHILOSOPHY

The intelligent single elevator control philosophy is based on the adoption of
the widely known Traveling Salesman Problem (TSP). In this case the trav-
eling salesman will be represented by the elevator car and the cities will be
the di�erent �oors. The main variations are for each �oor to be visited only
once in every �oor order instance and the starting �oor can be adjusted. The
position coordinates on the x- and y-axis which normally dictates the distance
calculations between the cities will be variables in this case and used in much
the same way. The variables will be used to get the best order of �oors with
the shortest �distance� or cost calculation from one �oor to another. Typical
types of distance calculations are given by [27]:

The Manhatten distance:

dij =
N∑
k=1

| Vik − Vjk | (3.2.1)

The Euclidean distance:

dij =

√√√√ N∑
k=1

(Vik − Vjk)2 (3.2.2)

The Minkowski distance:

dij = q

√√√√ N∑
k=1

| Vik − Vjk |q , q > 0 (3.2.3)

Where Vik and Vjk are the respective values of the k
th feature of case i and j,

also q is used as a variable generaliser instead of 1 or 2 as in Eq 3.2.1 and 3.2.2.
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The three main objectives for a vertical transportation system can be cate-
gorised into the following sections:

� Travel cost.

� Service level.

� Throughput maximisation.

These concepts will be thoroughly investigated throughout this thesis and im-
plemented with various variations throughout this elevator simulated model.
The concepts are all dynamic variables and can be set according to any pre-
de�ned criteria and are predominately linked to information that are received
from an elevator input system or directly from an updated database.

Travel costs are mainly categorised as power consumption and waiting times.
The power consumption of any electrical system has become very important in
present times, due to increasing electricity prices and limited energy resources.
The main objective in developing a more energy e�cient control system is to
reduce overall energy consumptions, but not to reduce the functionality and
e�ectiveness of the application. We will be developing an Intelligent Eleva-
tor Controller (IEC) that can make more intelligent decisions that take power
consumptions into consideration. The following is a summary list of possible
In�uences and/or dependencies in relation to power consumption:

� Elevator motor and the controller's technology and e�ciency ratings.

� Load (amount of weight traveling per instance).

� Number of stops.

� Direction.

� Counterweight settings.

� Standby and running times.

Further by measuring various waiting time parameters we will be able to com-
pare and optimise elevator functionality and e�ectiveness of the controller.
The IEC are to take waiting times into consideration when the optimal �oor
route is calculated, but also to be able to factor in probability and power
consumption in every decision. The following is a summary list of possible
in�uences and/or dependencies in relation to waiting times:

� Elevator con�guration and technology including motor rated speed.

� Equipment and passenger delays.
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� Tra�c distribution at landing �oors and inside the elevator car.

� Number of stops.

� Control philosophy.

� Maintenance.

An elevator application's main purpose is to transport people, which intro-
duces an important category, namely the service level of a system. Service
levels are directly related to the passenger's satisfaction and perception of an
e�cient elevator system. It is a subjective term and can vary from person to
person and is related to waiting time parameters, comfortability, safety and
user-friendliness.

Throughput maximisation can be generalised as the maximum amount
of passengers or goods that can be serviced in a time period. Usually through-
put maximisation is limited to various compromises as a result of the degree
of in�uences from other system objectives. Also the system is often controlled
by physical and safety (legislation) constraints as well.

In order to develop an intelligent elevator controller to satisfy the above ob-
jectives we need the system to behave less dynamically. The actual tra�c �ow
will always make the system behave in ununiformed patterns, but the system
can be more prepared to deal with the randomness to a certain degree. Thus
probability plays an important role in any control system that deals with in-
put information, which change continuously and where there is limited time to
respond to these input changes. We require that the IEC to have a few predic-
tion functions, in order to reduce ambiguity and minimise input uncertainties.
The following is a summary list of possible in�uences and/or dependencies in
relation to probability:

� Past tra�c distribution density and analyses.

� Floor importance (o�ces, manager's �oor, main landing �oor).

� Passenger behavioural information.

� Working environment dynamics.

� Building con�guration.
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3.3 ELEVATOR MODE PERSONALISATION

Normally a building owner has little in�uence on how each elevator is operat-
ing throughout her/her premises and has a limited perspective regarding any
user control functions. In the past user requirements were compiled and made
part of the control design requirements before the commissioning stage of any
new elevators. However any variations to the initial speci�cations are not eas-
ily incorporated and can be very costly, but priorities and set expectations do
change and need to be catered for. With a more developed Intelligent Elevator
Controller; the di�erent operating modes can be in�uenced by the user with
adjustable main and secondary objectives. The IEC should be able to process
the user input requirements together with the criteria weights to be able to
adjust the control parameters, with the aid of a graphical user interface (GUI).
Alternatively to create a more user friendly operating system, the system con-
straints and operations shall also be able to adapt and adjusted heuristically
throughout the operating cycle.

General elevator adjustable user modes can be de�ned by Table 3.1. The
suggested modes shall also be used as a feedback mechanism to provide the
user the required information about the current state of each elevator. For
example mode 0 (out of service) can either be implemented by the user to take
the elevator out of service if certain conditions are met; like car is empty and
stationary or the elevator mode can provide feedback that it is not in service
at the moment. Mode 1 allows the controller to prioritise power consumption
reduction when the cost function is implemented to generate the optimal eleva-
tor route. This mode can also be de�ned as the secondary objective when high
passenger demand is experienced and throughput maximisation takes priority.

Waiting times in terms of personnel being transported or goods being de-
livered should be de�ned di�erently. Thus modes 2 and 3 di�ers in terms of
the application requirements; if goods are predominantly being transported
by certain elevators then some settings can be adjusted accordingly. For in-
stance the doors can be kept open for longer periods; to allow for longer goods
transfers in and out of the elevator car and fewer stops between origin and
destination �oors are allowed; to reduce delivering times. It may also be fea-
sible to reduce the speed of the elevator car to a minimum if critical loads are
to be transported or to allow speci�c cars to be accessible only trough valid
authorisation; to avoid misuse of the goods elevators by passengers.

Some elevators can be designated to be used in emergency situations and is
set to the emergency mode, either primary or as a secondary function. These
elevators can be fully equipped with extra medical equipment or �re�ghting
apparatus and can be designated to speci�c �oors like the intensive care unit
(ICU) level at a hospital. The balanced mode is generally the default setting
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that will optimise waiting time, power consumption and throughput maximi-
sation by an e�cient dispatching control system. Some elevators can be put
on standby mode, which means that the elevator car is still utilised in high
tra�c demand states, but otherwise not in use if tra�c is low. The elevator
can be put on override mode if the building has an automated control system,
which will deactivate any external user control interfaces. The elevator can
then be put on a pre-programmed route or as required by an external input
system as in the case with a process manufacturing line. Lastly the mainte-
nance mode can be utilised in order to minimise elevator usage on a particular
elevator until maintenance is concluded. The maintenance mode can assist in
prolonging in-service time until moderately damaged cables can be replaced
or to avoid a problematic motor from overheating until its replaced.

Table 3.1: User Personalised Elevator Control Modes.

Mode Representation and Priority Criteria
0 Out of service
1 Power consumption
2 Waiting time: personnel
3 Waiting time: goods
4 Emergency
5 Balanced
6 Standby
7 Override
8 Maintenance

The notion behind an intelligent and personalised elevator controller is to be
able to choose between di�erent modes as soon as the user requirements change.
When a building has a number of elevators, the user should be able to de�ne
each elevator individually as required to suit the application and to optimise
each elevator more e�ectively without costly controller recon�gurations.

3.4 INTELLIGENT ELEVATOR GROUP

CONTROL

3.4.1 INTRODUCTION

The objective for an e�cient controller is to control each elevator car in the
group in such a way that will provide the best overall results in terms of
cost minimisation as well as balancing power consumption and throughput
maximisation. In terms of an arti�cial intelligent controller it is also important
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that there is a cognisance between the elevator cars and that each decision also
bene�ts the rest of the car movements.

3.4.2 VRP: TSP EXTENSION

After we have developed an e�cient TSP algorithm with a single elevator car
con�guration, we can easily utilise the same algorithm if more cars are added
to the con�guration. The optimal calculated route becomes the main route,
which are then divided into smaller tours and allocated to each available ele-
vator car to complete. Thus the Traveling Salesman Problem is extended into
the so called Vehicle Rooting Problem (VRP), where each car is dispatched
by the controller as required and receives a designated route to follow. Each
car in the group executes its own distinct route from the main tour separately
from the other cars. It can then be further extended to allow cars to extract
smaller tours from other active cars which have not completed their allocated
tour. Each tour have at least a start node, where passengers are picked up and
an end-node, where passengers are delivered to their destinations. One of the
constraints is to disallow an elevator car to extract end-nodes, but should only
extract smaller tours where passengers are still to be collected (start-nodes).

The main route can be split up into smaller segments by a number of tech-
niques for instance by clustering methods such as by the basic k-means, with
reference to Section: 7.2.1. The �oors in the pre-de�ned route can be grouped
together based on physical proximities and the number of groups can be op-
timally calculated. The optimal number of clusters should be equal or less
than the number of elevator cars in the group. Further it should then be
proven that by dividing the main route into smaller tours it is more optimal
than the initial calculations. Golden et al. [28] propose sequential search algo-
rithm with gain criterion to proof such divisions. Sequential search algorithm
is utilised to check overall gain if one node is deleted from another and itera-
tively repositioned to the existing nodes [28]. Sequential search relates directly
to edge-exchange and node-exchange neighborhoods to decompose routes into
smaller tours [28].

3.5 VARIATIONS AND CONSTRAINTS

Further the TSP and the VRP can be developed with more complex variants
to the basic de�nitions. These variants can have 3 additional constraints for
each elevator car and should be individually adjustable, namely load/capacity
constraints, time window constraints and passenger type constraints.
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Load constraints have to do with the rated weight/load and the maximum
available �oor area of each elevator car. As required by South Africa National
Standard (SANS) 50081-1 (EN 1-1:1998) clause 8.2 Table 1.1 with the rated
load per passenger estimated at 75kg. The elevator dispatching algorithm
should also take the ratio between the amount of passengers at a landing �oor
over the available car capacity at a set time period into account. This ratio
de�nes the maximum amount of trips required to service all the passengers at
that �oor, which in turn will in�uence the waiting time between consecutive
trips and also transportation cost to that �oor.

Time window constraints plays an important part in waiting time calcula-
tions. One of the primary objectives for the elevator controller is to minimise
the overall waiting time, which can be achieved by neglecting individual wait-
ing times by prioritising larger passenger groups. By means of a time window
constraint per passenger, we will also prevent that passengers are overlooked
by the dispatching algorithm. The ratio between the time between consecutive
and occupied �oor visits and the time window constraint need to be optimised
against the overall minimum waiting time. This creates a complex relationship
between the tra�c �ow rates and delivery route travelling times.

Passenger type constraints, also known as site-dependent VRP (SDVRP), are
where there are compatibility relations between passengers and the elevator
cars. For example passengers with special ability requirements can be routed
to use speci�c elevators which cater for their needs speci�cally and also pas-
sengers with goods are recommended or obligated to only use certain classi�ed
elevators. The passenger type constraint can also be used to implement pref-
erence between passengers, for instance some elevators will can give preference
to either permanent employees over visitors or vice versa, or prioritising VIP's
over the normal work force, depending on the organisation's user requirements.

A further variation to the general TSP and VRP can be investigated when
the �oor order constraints are reduced by allowing the various algorithms to
have the possibility of visiting the same �oor more than once in the same pro-
jected �oor order list. The length of the �oor order list is now a pre-de�ned
number of �oors and not limited to the total amount of �oors the elevator is
able to visit in the building. With this variation the computational require-
ments becomes much more complex, depending on the length of the required
�oor order list.
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3.6 INFORMATION RECONCILIATION

The IEC simulation requires continuous passenger information from all �oor
landings and elevator cars, to be able to provide an optimal �oor order for
elevator dispatching at the exact time it is required. The data required by
the controller can both be obtained and processed periodically or whenever
an external (or internal) event has triggered the required data to be collected.
When the data is collected periodically, let's say every few seconds, the con-
troller would refresh and reconsolidate all the available passenger information
and elevator car positions. Then the data is fed to the respective algorithm
classes or methods in order to get an optimal or preferred �oor order list.
When the controller is faced with an increase in computational requirements,
the controller also has the possibility to make use of an action listener philoso-
phy. This means that instead of executing the algorithms periodically we can
wait until a trigger or an event has occurred, which will indicate a possible
change in the previous collected data. When the action listener philosophy is
implemented instead of the polling philosophy; the total computational time
can be reduced considerably. Any changes to the collected data will require
either a total re-calculation of the planned �oor order or only an adjustment
to the existing planned route. The action listener philosophy also provide the
additional bene�t of a real time simulation unit and will more likely be imple-
mented in a real world elevator controller over the other philosophy. An event
can be anything from a change in passenger information (service requests),
elevator car locations, fault alarms, warning signals and safety device triggers.

3.7 SUMMARY AND CONCLUSIONS

We are investigating and employing di�erent machine learning techniques
throughout this chapter and the rest of the thesis, in order to improve the
computational and symbolic intelligence of the elevator control system. Fur-
ther we are attempting, throughout the development process, to invoke an
arti�cial consciousness or awareness in the elevator control system. The main
focus is to obtain the best possible decisions with the available resources and
limitations, but also to create an AI system that can provide results based on
its own arti�cial intellect and not necessarily with pre-programmed responses.
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Chapter 4

ELEVATOR POWER

CONSUMPTION

4.1 POWER CONSUMPTION PHILOSOPHY

In order to improve the elevator controller's decision making process, we need
to include power consumption data from the overall elevator con�guration into
the development of a more intelligent controller. To optimise power consump-
tion, the focus is shifted from the overall passenger waiting time reduction to
a reduction in transportation cost. There are a few philosophies or propos-
als, which can be implemented throughout the decision making process in an
attempt to reduce overall power consumption. However the overall controller
functionality and computational resources available should not be neglected or
impacted negatively.

The general philosophy is to create a general energy model for our elevator
con�guration, which are based on accurate and relevant energy consumption
estimations. The power consumption data can be theoretically calculated or
obtained through inductive reasoning with a well-established database, or by
actual energy measurements. This energy model is then used to estimate
the energy consumption for a chosen �oor route and compare the estimation
against other routes. This philosophy can be incorporated in the TSP as an
additional variable, where the shortest route is calculated between the set vari-
ables, which are power consumption and waiting time in this case.

Other philosophies can include small alterations to the actual elevator car
dispatching algorithm and decision making logic. For instance; if the �oors
which are located in close proximity of each other are serviced together, then
the traveling cost can be reduced. Especially in the case of group elevators,
where each elevator can be allocated to a designated portion of the �oors to
service. However deciding on which �oors to include on a route is a complex

34
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and non-trivial problem. Also it may be worth looking into if the controller
attempts to stretch the limitations set out be the waiting time philosophies.
The result can be positive in terms that we are keeping to our waiting time
limits and saving power in the same time. The opportunity arises where the
elevator controller can dispatch a car to a �oor at just the point where maxi-
mum passengers can be collected. Another scenario worth investigating is for
the controller to maximise the ratio between available space in the elevator
car and the amount of people waiting at the �oor. This can possibly avoid
having an elevator car traveling with almost no load and wasting power for
single passengers, but still taking waiting limits into account. The controller
can also be further limited in a more generalised way, for instance by reducing
the amount of allowed visits to all �oors throughout a time period, but still
keeping to the maximum allowed waiting time per passenger. The main objec-
tive for these small changes is to minimise the amount of trips to the required
�oors, but still be able to transport all waiting passengers to their respective
destinations in acceptable times.

4.2 ELEVATOR MODEL

The emphasis on total energy consumption shall now be shifted to smaller
facets, where a more focused approach is required. An energy model must be
established that indicate the in�uences various characteristics have on the total
energy consumption and then this data can be combined with an established
tra�c pattern and actual loads to simulate an accurate energy model.

4.2.1 ELEVATOR CONFIGURATION

There are numerous elevator con�gurations that can be found in the industry
at present, but they are mainly classi�ed according to their main purpose,
namely passenger, freights and dumbwaiter elevators. Elevators can also be
classi�ed as passenger-only elevators, because of inadequate lifting capacity
or for tra�c optimisation purposes as well as goods-only elevators, because
of possible inadequate ventilation in the elevator car. Dumbwaiter elevators
are small transportation boxes designed to carry lightweight freight, typically
being used in hospitals and hotels. An elevator con�guration is then further
classi�ed by its type of technology to transport the elevator car, namely trac-
tion, hydraulic or rack and pinion lifts.

In this thesis, we will however only be focusing on traction elevators, where
traction elevators refers to the contact between a suspension system and a
sheave. The suspension system is either ropes or cables with the number of
strands con�gurations for variable strength requirements. The sheave con�gu-
ration can be further divided between a system that uses a reduction gearbox

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. ELEVATOR POWER CONSUMPTION 36

Figure 4.1: Theoretical Geared Elevator Model

to connect the motor with the suspension system or a gearless machine where
the suspension system is directly attached to the rotor of the motor or via a
ratio speed reduction rope pulley system.

4.2.2 THEORETICAL GEARED ELEVATOR MODEL

Elevators are optimally used in terms of power consumption when there is a
perfect weight balance between the elevator car, counterweight and suspension
system. In this occurrence the driving machine is only required to overcome
the starting torque and to accelerate or decelerate the elevator car to its rated
speed or to bring the elevator car to a complete stop. The mechanical and
electrical losses included in the elevator con�guration are mainly the motor
copper and iron losses as well as friction and heat losses. The driving machine
must continuously overcome these losses as well as the ever present gravita-
tional forces in order to have a stable and responsive elevator control system.

Firstly we will be looking at the tension in the ropes created by the eleva-
tor con�guration and ultimately the moment of inertia created by the load
imbalances. If we neglect friction, compensation and spring abilities of the
ropes the following equations are introduced by Newton's 2nd Law:

Fcar = mcarg − TRopeTension (4.2.1)

Fcw = TRopeTension −mcwg (4.2.2)

There are 2 general forces applied to the sheave; one is due to the rope con�g-
uration and weight imbalances and the other is due to the applied or induced
motor torque. With the distance ds being diameter of the sheave. Let's say
mcar < mcw and the elevator car is required to move upwards, which means
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we require a nett torque in the anti-clockwise direction to overcome the load
imbalances on the sheave and as a result accelerates the load in the required
direction:

Tnett = Tm − (mcw −mcar)g
ds
2

(4.2.3)

The torque, which is an applied force to the elevator sheave, causes the sheave
to turn in the direction of the nett applied force. The greater the torque on the
sheave, the more rapidly the angular velocity of the sheave changes. According
to Chapman [29] �the torque on the sheave depends on the magnitude of the
applied force and the distance between the axis of rotation and the line of
action of the force�. The weight of the overall elevator con�guration is not of
importance here, because we are only interested in the load imbalances that
occur. The compensating chains have the same weight as that of the main
ropes and the counter weight is normally speci�ed to be the same weight as
the empty elevator car plus 45 to 50% of the rated car capacity. Thus an empty
elevator car and a full elevator car will have the most e�ect on the required
torque. The nett torque at the motor side with the inclusion of the gearbox
reduction ratio rg and the gearbox overall e�ciency percentage nf are:

Tnett = Tm − (mcw −mcar)
gds

2nfrg
(4.2.4)

With the reduction or step-down gearbox; the required torque from the motor
is e�ectively reduced with the mentioned ratio to overcome the load imbalances
and to accelerate the shaft up to the rated speed of the motor. The gearbox
e�ciency have a negative e�ect on the generated torque and power, with the
forward e�ciency nf often di�erent than the feedback or reverse e�ciency nr.
The overall inertia at the sheave can be given as the sum of the load inertia
and that of the sheave and the shaft,

Itot = Ishaft + Isheave + Iload, (4.2.5)

with

Iload =
d2s
4

(mcar +mcw). (4.2.6)

The total inertia being re�ected back through the high speed motor shaft is
reduced by square of the gearbox reducer ratio, thus:

Imotor shaft =
1

r2g
(Ishaft + Isheave +

d2s
4

(mcar +mcw)) + Ireducer (4.2.7)

In order to optimise the mechanical system we require the motor and the load
inertia's to be matched in order to have a stable system and to have e�cient
power transfer through the shaft. If the load inertia is large the required
motor torque is increased in order to match the overall system inertia and
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for the acceleration of the motor itself. The weight of the overall elevator
con�guration, including the elevator car, counterweight, cables, compensating
chain and the transported load will have an e�ect on the inertia of the system.
Torque and the overall inertia are related by T = αI where α is the rotational
acceleration, thus we can conclude with the following equation:

Tm − (mcw −mcar)
gds

2nfrg
=
α

r2g
(Ishaft + Isheave +

d2s
4

(mcar +mcw)) (4.2.8)

With convention being: upwards and counter-clockwise being taken as positive
values and vice versa. When the weight imbalances are in the same direction
as the required motor torque direction, the motor is being accelerating at an
increased rate and will reach its rated speed in a shorter time period. However
additional braking torque will be required once the speed must be reduced
again in order to bring the elevator car to a standstill, and much of the gener-
ated power is dissipated as heat through a breaking resister in the drive.

The mechanical power of the motor can be seen as the generated torque
times the angular velocity, with the motor slip taken into account: Pmech =
Tmws(1− s). Most of the mechanical power spent during acceleration periods,
where the motor slip is low and the optimal motor e�ciency point has not been
reached yet. At this period the generated torque is at its highest. With the
elevators application the motor is required to go through constant stoppages
and with load imbalances that varies almost every trip. It is to be investigated
that in order to be able to reduce the overall power consumption, we require
more information regarding the impact the amount of trips have on the system
power measurements as well as the load imbalances and the traveling times.

Calculating angular kinetic energy: With the conservation of energy princi-
ple, we can calculate the angular sheave inertia during the car acceleration
period at the load side by:

mgh =
mv2

2
+
Iw2

2
(4.2.9)

Where the potential energy changes of the di�erent masses are equal to the
kinetic energy of the moving load and the angular kinetic energy by the sheave.
When the elevator car is traveling at constant speed, there is no kinetic energy
changes, with the potential energy being drawn or absorbed by the system [30].

Calculating overall system e�ciency: The overall system e�ciency can be
estimated with the following equations by White [31]:

N =
FVc
75n

(4.2.10)

n = n1 · n2 · n3 (4.2.11)
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F = (mcar −mcw +mrated load)
1

CM
(4.2.12)

Where CM is the suspension ratio, Vc is the rated car speed, N , is the rated
output power in HP, n1,n2,n3, are friction pulley performance rate, friction
pulley benches performance rate and the worm screw performance rate respec-
tively. Where the empty car weight together with weights from the cables and
compensating chain can be estimated with [31]:

mcar = 1000 + 50 · rated number of passengers (4.2.13)

Calculating gearbox reduction ratio: The gearbox reduction ratio can be calcu-
lated by taking the ratio between the linear car rated speed and the translated
rotational motor speed [32] with,

ratio =
Vc

Vm
60

2π
= 9.55

Vc
Vm

, (4.2.14)

and the rotational motion through the gearbox is multiplied by rg and divided
by the sheave radius to get radians, thus we have:

rg =
dsVm

19.098Vc
(4.2.15)

Vc is the elevator car speed with the suspension ratio taken into account, in
m.s−1 and Vm is the rated motor speed in rpm.

4.3 MEASUREMENT AND VERIFICATION

4.3.1 M&V INTRODUCTION

The term namely, Measurement and Veri�cation (M&V), refers to a process
which validates the energy savings achieved by a project or a modi�cation.
Through the M&V process the actual �before� and �after� recorded data can
be analysed and compared to the theoretical and simulated results. Majuba
Power Station, where the elevator measurements have been taken for this The-
sis, is conducting a full elevator upgrade for all 25 traction elevators. The
elevator upgrade project includes new variable speed drives and new gearless
machines. The full upgrade will not be covered by the scope for this Thesis,
however we still conduct the �before� state results and attempt to predict the
future power consumption improvements. The M&V con�guration and proce-
dure for energy metering is illustrated by Figure 4.2, from Eskom Corporate
Technical Audit Department [6].
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The actual recorded data can then be processed into the following result cat-
egories:

� Total energy consumption over a predetermined period (1 year, 1 month,
1 week, 1 day, outage period, non-outage period, peak hours 17:00-19:00).

� Standby power in kW, standby hours per day, standby hours per year,
average trip running duration, number of trips, etc.

� Total energy consumption over one elevator cycle with various loads (0%,
25%, 50%, 75%, and 100%).

� Tra�c analysis over a predetermined period.

Figure 4.2: Measurement and Veri�cation Energy Metering Process [6].

4.3.2 ELEVATOR CYCLE SAMPLING

Actual energy measurements can be done by various procedures, either by
sophisticated energy measuring equipment with data recording abilities or by
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inexpensive ampere and voltage probe readings. Data sampling are carried out
for the purpose of creating an accurate representation of the measured power
signals. All the captured samples are stored into a database together with all
respective timestamps and accompanied information, which will become useful
later on. Required information is for example:

� Actual load, in terms of kg or number of people.

� Direction of travel.

� Actual elevator position during travel, including height above ground,
starting �oor, which �oors were passed, destination �oor.

The physical information in terms of the elevator car is captured manually for
the purpose of this Thesis, alternatively accelerometers, mass meters, altitude
meter and building management system feedback could have been utilised if
available, to make the measurement process more dynamic and often more
accurate.

All captured data is utilised for digital signal processing and data manipu-
lation. The processed data is illustrated by means of graphical representa-
tion and can be further processed by various machine learning algorithms into
meaningful information packages. The main purpose for collecting the various
samples and processing it into useful information is to improve the decision
making process of the elevator controller. The objective is to absorb all the
obtained information (training data) to develop an approximate energy model
and �nally incorporate the model into the controller control algorithms and
decision making processing unit. The energy model shall provide the required
results for all expected elevator travels together with the experienced loads.

4.3.3 DATA SAMPLING PROCEDURES

The OMICRON CMC 256 Plus was part of the monitoring equipment used
for data sampling. This equipment is normally implemented to test protec-
tion devices and for high precision calibration of measuring devices including
energy meters, power quality and phasor measurements devices. For the pur-
pose of this Thesis we used this equipment as a multi-functional multimeter
and transient recorder. The OMICRON device generates digital output from
the analog input signal samples, through its internal digital signal processing
(DSP) capabilities. The OMICRON CMC 256 Plus also provides additional
error correction algorithms and an accuracy oriented ampli�er to improve test
signals with low amplitudes [33]. Its accuracy is given with an error less
than 0.06% of the amplitude readings and an input impedance of 600kΩ and
5pF . Sampling frequency can be set to 28.44kHz, 9.48kHz, and 3.19kHz. The
software used in the application is the powerful Test Universe, version 3.0.
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Figure 4.3: Data Sampling with the OMICRON CMC 256-Plus Using Analog
Clamp-on's.

Figure 4.4: Data Sampling with the OMICRON CMC 256 Plus.
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Clamp-on CT probes were used to reduce the input values to comply with the
equipment input limitations. The probes had two range settings as follows:

� Range 1: 0 - 10 A 100 mV/A

� Range 2: 0 - 80 A 10 mV/A

The �rst procedure to obtain energy data samples, is by connecting the OMI-
CRON device at the main supply point in the switchgear room, at 9m level as
illustrated in Figure 4.3 and 4.4. The di�culty of this method is that the cable
length is measured at 80m between the measurement point and the machine
room and has a 16mm2 cross sectional surface area. Thus a voltage drop up to
3% is created across the installed power cable. The voltage drop o�set must be
taken into account with any energy calculations. The measured consumption
is a summation of the elevator motor, controller, protection, car extraction fan
and car lights. To obtain better results the di�erent components should be
extracted from the total consumption and analysed separately.

The second procedure is to take the measurements directly from the machine
room equipment, where voltage drop can be neglected and additional measure-
ment points are available. The software that was used to obtain and export
the data samples was WINDAQ version 2.85. Equipment for this procedure
included a DATAQ energy meter and 3 current probes with the following range
settings:

� Range 1: 0 - 2 A 100 mV/A

� Range 2: 0 - 20 A 10 mV/A

� Range 3: 0 - 200 A 1 mV/A

The third procedure is a more permanent set-up, where an energy meter con�g-
uration was build and connected to the main elevator supply at the machine
room for continuous data capturing and summation. The metering device
measures the power signals and then calculates the power consumptions on a
continuous basis. The energy consumption reading accumulates over time until
it is reset. For the general energy measurements the M&V process started with
the assembly of 5 energy measurement panels. The con�guration details and
the individual components were received from Asset Management Department
within Eskom. The panels were then assembled and connected via CT's and
VT's to each elevator's supply distribution board. The bill of material used in
panel assembly is listed in Table 4.1 with the energy meter general layout in
Figure 4.7 [7].
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Figure 4.5: Actual Energy Measurements taken at Unit 1 Machine Room.

Figure 4.6: AC/DC Clamp Adaptor Used for Current Measurements.

There are two options to consider; either ring type or split-core type CT's and
both are acceptable for measuring con�gurations. Ring type CT's can obtain
higher VA ratings than split-core types and are more accurate and cheaper
as well [6]. When using ring type CT's; the supply power must be isolated
for the cables to be disconnected and the CT's to be inserted over the cables.
According to the M&V guideline [6]: �CT's may never be open-circuited during
live conditions, for a high voltage may be induced over the secondary terminals
which can lead to electrical shock and/ or damage the CT.� With split-core
types the CT's can be installed over the cables, thus it can be done in live
conditions. The accuracy of a CT is normally increased when its VA rating is
limited [6], thus a 1A instead of a 5A Ring type CT was used for the purpose
of this Thesis. Burdening should also be taken into account when choosing the
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Figure 4.7: Measurement and Veri�cation Energy Measurement Panel Layout
[7].

correctly sized measuring cable. Burdening refers to the variations in supply
voltages and currents, any electrical equipment is designed to handle. If the
total burdening on CT's and VT's fall outside the designed burden the M&V
data will be inaccurate. Voltage drop between the energy meter and the CT's
and VT's must be less than the burden limitations on the equipment and is
therefore calculated by the following equation [6]:

Vdrop =
VDrop Value · A · Lcable

1000
(4.3.1)
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Table 4.1: Bill of Material of The Energy Measurement Panel [7].

ID Description
A Weidmuller Earth Terminal
B Surge Arrestor
C Hager MJN706 Double Pole Circuit Breaker
D C2194A Poweterm PTC Power Supply
E C2360b-11 Teleterm M2g
F Landis + Gyr 3-Phase 4-Wire Meter
G VT Test Block
H CT Test Block
J Spring Terminals
K Surge Arrestors
L Fuse Holders
M Spring Terminals
N Hager Siemens Grey (RAL7032) Mild Steel Enclosure 800x600x300

Chassis Plate For FL124A
Wall-Mount Brackets

Where the VDrop Value = 15.363 mV/A/m for a 2.5mm2 and 49.55 mV/A/m for
a 4mm2 cable, Lcable is the cable length in meters and A is the rated current.
According to [6] the voltage drop should not be higher than the accuracy class
index of the VT connected meter, which in this case is 0.5, thus a 2.5mm2

cable will su�ce for this application.

4.4 MOTOR DESCRIPTION

Table 4.2: Unit 1 Schindler Aux Bay 2-Speed Motor Nameplate Values

Description 18 pole conf. 4 pole conf.
Rated phase stator current 40 A 23 A
Rated line to line voltage 380 V 380 V
Rated stator frequency 50 Hz 50 Hz
Rated sync speed 333 rpm 1500 rpm
Rated power factor 0.83 0.83
Rated power 22 kW 10 kW

The motor utilised for the initial power consumption sampling and elevator
modelling is from Unit 1 Schindler Aux Bay elevator at Majuba Power Sta-
tion. The elevator motor is speci�ed as a 3 phase AC synchronous motor with
a 2 speed con�guration. The windings are connected to an external controller

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. ELEVATOR POWER CONSUMPTION 47

Figure 4.8: Schindler Aux Bay Elevator Drive Machine, Located at Majuba
Power Station, Unit 1.

which selects between either 333 rpm or 1500 rpm synchronous speeds. Each
speed setting has its own set of windings, where each is wound with 4 poles for
high speed and 18 poles for the low speed setting. (Sync speed = 120·frequency

poles
).

The motor has an open enclosure which allows for air cooling through vent
openings. Just to note: this type of enclosure is not the most optimal en-
closure to use for a power station which have a lot of contaminations in the
air. The casing is also only rated for an ingress protection (IP) of 21, which
only protect the motor against solid objects over 12.5mm and against liquids
ingress to the degree of 1 which is vertically falling drops of water or conden-
sation. Thus this motor is prune to overheating due to insu�cient cooling
and will cause insulation breakdown in the long run and increased running
currents. Higher power losses will be occurred by this motor as a result of
the additional heat loss occurred. In a typical coal powered power station
you would expect an IP rating of 67 which is totally enclosed. The motor
can have a non-ventilated enclosure where the heat is dissipated through the
enclosure by means of conduction or by having an external fan which blows
over the exterior of the motor to cool it down. The motor has a duty cycle
of S5, as classi�ed by the International Electrotechnical Commission (IEC),
which refers to an�intermittent periodic duty with electric braking: Sequential,
identical cycles of starting, running at constant load and running with no load
and no rest period� [34].
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The rated starting current ratio IA
IN

is given as 3.5 for direct on-line starting
and with a 50% e�ective duty cycle (ED).

%ED =
Braking time

Total time for complete operating cycle
· 100 (4.4.1)

With the total time for a complete operating cycle to be the summation of the
acceleration time to reach set speed, run time at set speed, deceleration time
to come to a complete stop and the time period the motor remains stopped.

Table 4.3: Theoretical Nameplate Motor Calculations.

Description Symbol Formula 4 pole conf.

Apparent 3 phase input power Sin
√

3UNIN 15138.12 VA
Active 3 phase input power Pin Sincosψ 12564.64 W

Reactive 3 phase power Qin

√
Sin

2 − Pin2 8443.49 VAR
E�ciency at rated speed η Pout

Pin
80 %

Stator angular speed ωsync πn1
1
30

157.08 rad.s−1

Rotor angular speed ωm πnr
1
30

150.8 rad.s−1

Slip speed ωslip ωsync − ωm 6.28 rad.s−1

Slip sn
ωslip
ωsync

0.04 rad.s−1

Torque at rated speed Te
Pout
ωm

66.34 Nm

Table 4.4: Unit 1 Aux Bay Elevator Actual Values and Measurements.

Symbol Description Value
VN Rated car speed 1 m.s−1

VC Contract speed 2 m.s−1

CM Suspension ratio 2 : 1
Vm Rated motor speed 1440 rpm
ds Sheave diameter 57 cm
rg Gearbox reduction ratio 43:2
mcar No load car weight 1690 kg
mcw Counterweight mass 2200 kg
lrope Total Rope length 210 (3 X70) m
mrope Rope mass 119.7 kg
Trope Actual breaking load of rope 82 kN
mrated Rated full load car weight 2690 kg
Iload Load inertia 315.9 to 397 kg.m2

n Overall system e�ciency 0.49
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Figure 4.9: Two Speed Motor Current Sampling.

Figure 4.10: Aux Bay U1 Elevator Motor Terminal Schematic.

The elevator car rated speed is con�rmed with Equation 4.2.14 and 4.2.15
with the sheave diameter and actual gearbox reduction ratio known. With
reference to Table 4.4 it is estimated that this speci�c elevator con�guration
has an overall energy e�ciency of about 49%. The objective of this Thesis is
to improve overall system e�ciency by improving elevator control techniques
by reducing transportation cost for the same passenger throughput. However
physical losses cannot be overcome by control philosophies, thus the eleva-
tor's mechanical and con�guration needs to be upgraded as well to optimise
energy e�ciency. The system e�ciency can be improved by upgrading the
geared-traction con�guration to the latest gearless machines with regenera-
tive variable speed variable frequency drives (VVVF), which can reduce power
consumption by 30% [35]. To establish the operation of the two speed eleva-
tor induction motor, measurements were taken at 3 di�erent terminal points.
With reference to Figure 4.9, waveform A refer to the current sampling taken
from the 4 pole winding input terminals at K1, see Figure 4.10 . Waveform B
refer to the 18 pole winding input terminals at K2 and waveform C refer to
the main supply to the Elevator control cubicle, which includes all auxiliary
power as well.
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Figure 4.11: Complete Torque-Speed Curve of a 3-Phase Induction Motor [8].

Figure 4.12: Two Speed Motor Winding Transitioning Period.

With reference to Figure 4.11 the two speed motor operates in di�erent states,
either in normal motor state at rated conditions, in a braking state or a gener-
ating state. When the motor is switched on the 4 pole windings are supplied
by closing the 3 phase contactor (K1) to provide a closed circuit power. The
initial direction of the motor, which results in the direction of the elevator
car, is controlled via by the upstream contactors K3 and K4 by swapping the
motor phases as required. The 4 pole winding con�guration is responsible to
accelerate the elevator car out of a stationary state into a rated speed state.
As the elevator car approach its destination �oor, the controller switches con-
tactors K1 and K2 simultaneously. The transitioning period between the two
con�gurations is shown in Figure 4.12 and lasts 42 milliseconds. The main
peak supply current is measured at 101.9 A with the 4 pole winding at 29.2 A
and the 18 pole starting current at 69.6 A.

During the transitioning period the motor goes into the braking state, when
the 18 pole windings are energised. The phases are con�gured in the opposite
direction to the 4 pole winding con�guration, thus causing the motor to be
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at a slip of 5.3 (333−(−1440)
333

) directly after switching. At this stage the rotor is
e�ectively running backwards in the opposite direction to the �eld, which is
known as plugging. The rotor will still receive electromagnetic power Pr from
the stator and together with the mechanical power Pm, dissipated as heat [8].
During plugging the motor is prone to overheating and experience very high
core losses which is not ideal from an energy e�ciency perspective.

The re�ective resistance R2

s
from the single-phase equivalent circuit in Fig-

ure 4.13, represents the e�ect of the mechanical load (shaft load and rotor
resistance) in relation to slip [9]. The power associated with R2 is the cop-

per losses in the rotor, whilst the power associated with R2(1−s)
s

is the actual
developed power, de�ned with [9],

Pm = Pgap − Protor = qI22 (
R2

s
)− qI22R2 , (4.4.2)

or equivalently

Pmech = qI22R2(
1− s
s

) , (4.4.3)

where q is the number of stator phases. The electromechanical power Pmech is
therefore positive with 0 < s < 1 and negative with s < 0 and s > 1. However
during plugging the torque will remain positive, because of higher electromag-
netic power; resulting in slowing down the rotor slip from 5.3 to just above zero.

If the direction of the rotating �eld were not reversed during the transitioning
period, the new slip would be -3.505 (333−1440

333
). By applying Equation 4.4.2

and 4.4.3 with a negative slip, the motor will have a surplus of electromechani-
cal power with fewer core losses. Thus the machine would have been operating
in the generating state and performed regenerative braking, where a negative
torque decelerates the motor, with the surplus kinetic energy reverted back
through the regenerative drive until the motor comes to a stationary position.
The latest elevator applications uses this potential regenerative capabilities to
put power back into the system and to o�set the elevator's auxiliaries.

After plugging the motor will attempt to go into the normal motor state and
accelerate to its second rated speed in the same direction of the �eld. However
before the actual rotor direction can be changed the supply to the motor is
removed by closing the motor supply contactor, thus stopping the elevator car
at this point. This means that the 18 pole winding con�guration were never
intended to provide a second speed for the elevator car, but rather utilised as
a braking mechanism for the elevator application. The additional pole pairs
in the same air gap as the 4 pole con�guration, will e�ectively increase the
required magnetising current in the core and will lead to a lower power fac-
tor at rated speed. During the transitioning period; the amount of �ux per
pole will be decreased because the total air gap �ux will now be divided by
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Figure 4.13: Single-Phase Equivalent Circuit For a Polyphase Induction Motor
[9].

9 pole pairs instead of only 2. A correctly sized 18 pole motor will deliver
much higher torque for the same output power with comparison to a 4 pole
motor, due to the lower turning speed. However the physical size of this motor
is less than you would normally expect with this number of pole pairs, thus
it can be assumed that the number of winding turns per pole pair as well as
the amount of active iron mass are less than required to bring this machine to
rated speed. This will result in a weakened air gap �eld and lower generated
torque capabilities.

There are another scenario in the elevator application where the motor can
enter the generating state other than bringing the elevator car to a stationary
position. When an unbalanced load is in the same direction as the elevator car;
the synchronous speed is exceeded, thus creating negative electromechanical
power with s < 0. Thus a negative torque will be applied at this point to avoid
an over-speeding condition and to bring the elevator car back to rated speed.

4.4.1 GRAPHICAL REPRESENTATIONS AND

TRENDING

The actual power consumption of the elevator application has been established
by the M&V process as described in this chapter. The format of the actual
samples is graphically illustrated by Figure 4.14 together with Table 4.5. The
sample length is with relation to the trip information provided by Table 8.3
and 8.4 as an example. The same can be done for all valid �oor landing per-
mutations in the up direction as well as the down direction. In the speci�c case
of the Aux Bay U1 elevator; we have 12 di�erent �oor combinations between
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0m, 9m, 16m and 20m landings. The valid �oor combinations are then further
extended to include load percentages, which are divided into fractions of 10
percentage points of the maximum load capacity. Thus we have 132 sample
points to consider.

Figure 4.14: Main Supply Current Sample for a 20m to 16m Elevator Cycle
Period.

Table 4.5: Current Sample Descriptions, Refer to Figure 4.14.

Symbol Description
A Acceleration
B Rated Speed
C Deceleration
D Reduced Speed
E Elevator Doors opening and closing
F Standby consumptions

When actual samples have to be recorded it is not always feasible to obtain all
permutations, for it can be time consuming and sometimes di�cult to conduct
during busy working environments. For 10 �oors the number of required sam-
ples already reach 900. With various machine learning techniques, the required
samples can be severely reduced to only a few representative samples. For the
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Table 4.6: Actual Measurements for 8 Persons Going Down From 20m to 16m
, Refer to Figure 4.14.

Current (Arms) Duration (sec) Voltage (Vrms) Power (W) Energy (J)
Floor height 20 - 16 20 - 16 20 - 16 20 - 16 20 - 16
Load 8 People 8 People 8 People 8 People 8 People
Acceleration period (A) 62.54 1.73 222 34,162 74,894
Rated speed period (B) 11.56 2.60 226 8,297 20,669
Motor 4 Pole period (A + B) 40.60 4.33 225 24,367 113,951
Deceleration period (C) 43.36 1.06 224 23,175 21,190
Reduced Speed period (D) 28.10 1.62 225 14,846 35,754
Motor 18 Pole period (C + D) 34.81 2.69 225 17,525 58,230
Full duration (A,B,C,D) 38.47 7.01 225 21,772 174,080
Doors closing (E) 3.08 4.85 226 1,498 7,091
Doors opening (E) 1.02 4.85 226 751 3,741

Table 4.7: Actual Measurements for 1 Person Going Down From 20m to 16m
, Refer to Figure 4.14.

Current (Arms) Duration (sec) Voltage (Vrms) Power (W) Energy (J)
Floor height 20 - 16 20 - 16 20 - 16 20 - 16 20 - 16
Load 1 Person 1 Person 1 Person 1 Person 1 Person
Acceleration period (A) 61.80 2.19 222 34,140 74,847
Rated speed period (B) 14.73 2.49 225 8,266 20,592
Motor 4 Pole period (A + B) 43.59 4.68 224 24,280 113,540
Deceleration period (C) 41.47 0.91 224 23,166 21,181
Reduced Speed period (D) 26.48 2.41 225 14,829 35,713
Motor 18 Pole period (C + D) 31.30 3.32 225 17,517 58,205
Full duration (A,B,C,D) 38.93 8.00 224 21,724 173,693
Doors closing (E) 2.66 4.73 226 1,497 7,088
Doors opening (E) 1.33 4.98 226 750 3,738

purpose of this case study, the actual samples have been utilised with conjunc-
tion with a created Neural Network to establish true trending and accurate
distribution patterns across the di�erent combinations and load percentages.
The developed Neural Network Energy Model is described in Section 2.3.5 and
Chapter 7.

With reference to Figure 4.15 the two speed motor supply currents are com-
pared to the distance travelled and the load imbalances of the elevator car,
counter weight and the subjected loads. It is clear that the distance travelled
don't have an in�uence on the 18 pole con�guration supply current, which
is used to decelerate and stop the elevator car before the destination �oor
is reached. However when the elevator car is empty and traveling in the up
direction; the highest current is noticed, as well as when it is at capacity trav-
eling downwards. This load imbalance is creating a higher moment of inertia
in the same travelling direction, thus higher current is required to overcome
the higher inertia to decelerate, as opposed to when the load imbalance is in
the opposite direction of travel. In contrast to this, the higher inertia reduces
the amount of generated torque required to reach the rated speed by the 4
pole con�guration, and increases the required input power when the load im-
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balance is working against the law of gravity. High rms supply currents are
experienced during short distance trips, irrespective of the direction, because
when the motor is accelerated high starting currents are expected, but just as
the motor is reaching rated speed the destination is almost reached and the
car is stopped. Thus the total rms supply current is lower at longer distances
where the time spend at rated speed reduces the overall current and input
power average for a trip, see Figure 4.16.

The elevator car running time is increased with distance travelled as expected.
However the time gradient with relation to distance is not a 1st order linear
model as seen in Figure 4.17. The order of complexity is increased by the
acceleration and deceleration of the motor with varying loads and distances.
Cogging torque is also experienced during the transitioning period of the dif-
ferent winding switching, thus estimating exact running times becomes very
complex. Also to be noticed is that if the elevator car is traveling downwards
and is heavier than the counter weight the running duration is reduced as a
result of supporting gravitational forces. With increased transported loads;
the overall elevator con�guration weight also increases, which results in higher
inertia as theoretically calculated in Section 4.2.2, with Equation 4.2.8.

4.5 SUMMARY AND CONCLUSIONS

The elevator power consumption philosophy was introduced in this chapter.
The general philosophy is to create an energy model for our elevator con�gu-
ration based on theoretical calculations and actual energy samples. The theo-
retical model included references to Newton's 2nd Law for the applied forces to
the sheave, which resulted in a nett torque. The overall inertia at the sheave
was given as the sum of the load inertia and that of the sheave and the shaft.
Further the in�uence of the gearbox was investigated and factored into the
overall system e�ciency. Kinetic and potential energy also made part of the
model where the elevator speed, suspension ratio and gearbox reduction ratio
were taken into account. The Measurement and Veri�cation (M&V) concept
was introduced where di�erent procedures to obtain the actual energy samples
were conducted and compared to each other. The best procedure was proven
to be the method where the measurements are directly taken from the machine
room equipment, where voltage drop can be neglected and additional measure-
ment points are available. The actual energy samples was then compared to
the theoretical calculations based on the rated nameplate values, as well as
the developed equations from this chapter. The overall system e�ciency was
concluded to be around 49%. The exact operations of the two speed motor
were discussed and directly concluded from the graphical representations and
compared to the equivalent single phase circuit equations.
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Figure 4.15: 18 Pole and 4 Pole Supply Current (rms) vs. Distance Travelled
and Load Percentages (0-100% of rated load per trip distance).
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Figure 4.16: Elevator Supply Current (rms) and Input Power vs. Distance
Travelled and Load Percentages (0-100% of rated load per trip distance).
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Figure 4.17: Elevator Running Time vs. Distance Travelled and Load Per-
centages (0-100% of rated load per trip distance).
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It was realised that each approach to create an accurate energy model had a
major shortcoming that needed to be addressed. With any theoretical model,
there are always uncertainties and unknown variables, which are most often
neglected and ignored. Thus exact equations becomes very di�cult to obtain
and to solve and the shortcoming with energy sampling, is that it is not al-
ways feasible to obtain all permutations, for it can be very time consuming
and sometimes di�cult to conduct during busy working environments. For ex-
ample for a 10 storey building, the number of required samples reaches 900 for
all known sample permutations. A solution to the identi�ed shortcomings can
be found with various machine learning techniques, where the required sam-
ples can be severely reduced to only a few representative samples. The actual
samples have been utilised in conjunction with a created Neural Network to
establish true trending and accurate distribution patterns across the di�erent
combinations and load percentages. The developed Neural Network Energy
Model is described in Section 2.3.5 and Chapter 7. With the implementation
of Neural Networks, the unknown variables can be accurately modelled with-
out the need to de�ne them.

The created energy model is then ultimately used to estimate the energy
consumption for any �oor order route and for accurately predicting the ac-
tual running times of an elevator car, without making any assumptions, as it
would have been the case with a theoretical model. The energy model can
then be incorporated in the TSP and the VRP later on in this Thesis, where
the shortest route is calculated between the possible �oor orders.
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Chapter 5

ELEVATOR PROBABILITY

THEORY

5.1 PROBABILITY PHILOSOPHY

The concept of probability can be incorporated throughout the development of
the AI controller. Any aspect of the decision making process, from the input
data to the optimal developed routes can be predicted to a certain extend. The
di�erence between a normal elevator controller and the AI controller, we are
developing, is that we are not only looking at present input data, but are also
interested in past and future information. We are to process previous collected
tra�c data and use it to estimate future tra�c occurrences. The controller
can bene�t from any additional information about future events and can use
this information to calculate possible routes or to dispatch a elevator proac-
tively in the direction of the expected tra�c. With probability factored in
and incorporated with the present available data, the elevator controller can
prioritise better between �oors and make more accurate decisions with the
available information.

After a fully functional probability model has been developed, it can be utilised
to create pre-planned elevator car responses to the probability of future passen-
ger requests. The correlated responses to the predicted tra�c pattern results
in pre-planned routes. The pre-planned routes can also be optimally utilised
to establish the starting positions for the elevator cars or to which �oor the
various elevator cars should be parked when going into standby-mode. Opti-
mal resting and starting positions are important to reduce the cost between
the initial position and the �oor which will be serviced next. Another use for
priori routes is to estimate the expected cost for a time period, either expected
transportation cost, number of trips or overall expected power consumption.

60

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. ELEVATOR PROBABILITY THEORY 61

By predicting future tra�c patterns we are also able to estimate when the
elevator will be in its least occupied time period and the duration, where it
will be most optimal to do routine maintenance on the speci�c elevator. As
well as establishing or recommending a time period when some elevators can
be switched o� completely, because of inactivity and the lack of future neces-
sities, with at least one elevator still kept on standby.

However with the dynamic nature of an elevator application, where tra�c �ow
is continuously changing, pre-planned routes can quickly di�er from the opti-
mal path to follow. Thus it is important to have error feedback and correction
between the planned and optimal routes as required.

5.2 FLOOR ORDER PROBABILITY

5.2.1 PTSP INTRODUCTION

Priori or pre-planned routes are de�ned as routes that speci�es an ordering
of all the possible �oors which need to be serviced for a time period or per
call instance. These routes create a proposed schedule for a time period and
can be used for regularity purposes. The �oors with neglectable passenger
demand probabilities do not need to be included in the planned route and can
be excluded from the di�erent algorithms to potentially reduce overall compu-
tational power requirements.

The Probabilistic Traveling Salesman Problem (PTSP) is similar to the classi-
cal TSP as described earlier but with service probabilities, assuming indepen-
dence between �oors. The PTSP is attempting to deal with the uncertainty
of routing problems, like nondeterministic cost calculations and uncertainty in
passenger demand at each �oor.

The Probabilistic Traveling Salesman Problem with Deadlines (PTSPD) can
be further classi�ed and implemented when additional time window constraints
are added to the problem. Jaillet [36] illustrates through his research that given
you have an optimal tour A for the general TSP and an alternative tour B.
The total length of tour A is calculated to be shorter than that of B with
the condition that every city is to be visited in the planned route. He then
goes on to proof that if one or more of the cities are not going to be visited
for whatever reason, there exists a more optimal route that should have been
followed. For instance let's give each �oor in route A and route B a proba-
bility of 0.5 (chance to be visited), then it can actually come to past that the
length of tour A is 30% more than that of route B. This same notion proved
by Jaillet [36] can be applied in terms of an elevator PTSP application, to
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generate the optimal �oor order with the probability of some �oors not being
visited taken into account.

We can compute the probabilities of not visiting a number of �oors in the
building for a given sequence. For a building with ever-changing passenger
demands throughout the day, it becomes important to take the service proba-
bilities into account when generating the planned routes for every elevator car
in the elevator group. For instance the event A, can be described as a �oor
that are not visited in a planned route, and can be de�ned with Bernoulli trail
probability,

P{event A: only k number of occurrences = (
n
p

)pk(1− p)N−k , (5.2.1)

with k the number of �oors being skipped in the planned route with length N
and probability to skip a �oor are set to be equal and given as p. The prob-
ability to skip a �oor is also statistically independent for the planned route.
For example let's say we have 8 �oors and a planned route length of 8, the
probability to skip a �oor is estimated at 0.4, thus: P (0) = 0.017, P (1) = 0.09,
P (2) = 0.21, P (3) = 0.28, P (4) = 0.23, P (5) = 0.12, P (6) = 0.04, P (7) =
0.01, P (8) = 0, 0007. The probability to skip for instance 3 or less �oors in a
planned route is given by P (0) + P (1) + P (2) + P (3) to be almost 60 %.

5.2.2 PTSP COMPUTATIONS

The probabilistic traveling salesman problem (PTSP) is de�ned as �nding the
optimal �oor order which will reduce the overall tour cost with a set of �oors
N = i|1, . . . , n with respective service probabilities P = pi|1, . . . , n [28]. Bayes'
theorem can be used together with the priori �oor probabilities, P (FX,Y ) to
establish the probability of servicing the next �oor, as illustrated in Figure 5.1

The Bayesian theorem connects the respective prior probabilities with the
posterior probabilities as follows:

P (Bi|A) =
(P (A|Bi)P (Bi)

P (A)
(5.2.2)

P (A) = P (A|B1)P (B1) + . . .+ P (A|Bn)P (Bn) (5.2.3)

Each step in the �oor order sequence is written in the format FX,Y , where the
X donates the position in the sequence and Y the respective �oor number. We
have X = 0, . . . , k , with k the total number of stops in the planned �oor order
sequence and Y = 0, . . . , N , with N the total amount of �oors. The respective
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Figure 5.1: Floor Order Probability Computations

transition probabilities are given as (P (FY |FX,Y ) and the posteriori probabili-
ties are P (FX,Y |FY ). For example in order to calculate the probabilities for the
next �oor in the sequence to be serviced, for instance the 2nd position in the
sequence, we have k = 1 and require prior probabilities: P (F1,0) to P (F1,N).
If the 1st position in the sequence was for example known to be �oor 3 before-
hand, the probabilities required are then: P (F1,0|F0,3) to P (F1,N |F0,3).

5.2.3 FLOOR ROUTING AMBIGUITY

Wherever there is possibility of ambiguity in the proposed �oor order, fuzzy
logic theory can be used to solve these problems. Ambiguity can arise when
there are maybe too many choices; for instance there are more than one route
that provides the same optimal calculated cost. With fuzzy logic the best route
can be chosen from one of the optimally perceived routes. Ambiguity can also
arise when there is a contradiction between decisions being made or between
available data that is in contrast with the prevailing occurrences. When clas-
si�cation problems are de�ned or analysed, often classes can overlap when the
features vector X = (x1, x2, · · · , xm), extend over more than one class. One
way to separate samples into classes is according to the probabilities of the
ambiguous classes. One method to choose a class ci is by choosing the max-
imum posterior probability, P (ci|x) ≥ P (cj|x) from general Bayesian theory,
see Equation 5.2.2 and 5.2.3. The decision function is then ri(x) = P (ci|x) in
this case and is proven to provide the minimum classi�cation error [27].
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5.3 EXPECTED REQUESTS

5.3.1 INTRODUCTION

The assumption were made that at any moment in time the controller know
how many people are waiting, at which �oor, how long and also each passen-
ger's destination �oor. What the controller doesn't know is any information
about future requests. A request, r is de�ned as, (τr, sr, dr), where τr is the
time the request is received, sr is the starting �oor and dr the destination �oor.
Let's make the assumption that the controller know the number of people cur-
rently present in the building and at which �oor level, then we can de�ne a
few population variables as follows:

� Oi represents the total population at �oor i and total building popula-
tion, O, which are not necessarily in the building,

� Ui represent the number of people that are currently on �oor i and U ,
the total actual population in the building,

� Ki can now present the population that have not reached �oor i and K
the total population that are not in the building or have not reached
their �oors, with Ki = Oi − Ui.

5.3.2 POISSON PROBABILITY

The probability to receive a request P (X) can be obtained by knowing the
respective Poisson arrival probability functions for each �oor. Let's assume
a passenger arrival rate of λi at each �oor i, with i = 1, · · · , N and N the
number of �oors. λi is de�ned as the average number of passenger arrivals per
�oor in a speci�c period T :

b = λT (5.3.1)

The general Poisson probability density f(x) and the Poisson probability
distribution F (x) are de�ned as follows for b > 0 [37]:

f(x) = e−b
∞∑
k=0

bk

k!
δ(x− k) (5.3.2)

F (x) = e−b
∞∑
k=0

bk

k!
µ(x− k) (5.3.3)

With the mean and variance de�ned as:

X̄ = b (5.3.4)

σx
2 = b (5.3.5)
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Figure 5.2: Poisson Probability Functions.

The above probability functions are used to provide a distribution model for
stochastic passenger arrivals at each �oor. Which means that the probabil-
ity for a speci�c time is zero, however as a result of a repeating phenomenon
called the Poisson process we are able to su�ciently describe the arrival pat-
terns. The �rst important property to notice is that the Poisson counting
process K(t); t > 0 has stationary increments, which means that the distribu-
tion of passenger arrivals only depends on the length of the interval, t and not
on the starting point t′. This means that FN(t′−t)(x) = FN(t′)(x)−FN(t)(x) for
every t′ > t [38]. The second property to notice is that all Poisson increments
are independent from each other, which means that each passenger arrival has
no in�uence on the probability of another passenger's arrival.

5.3.3 DIRECTIONAL PROBABILITIES

Through the Poisson process it is established that Ki(x) passengers are to be
arriving at a rate of λi at �oor i during an interval T. To provide more infor-
mation in regard to the possible traveling direction; it can be established that
each passenger would like to go up with a probability of ρi and down with a
probability of 1− ρi.
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The Poisson process has now been subdivided into two independent Poisson
processes with arrival rates of:

λi_up = ρiλi (5.3.6)

λi_down = (1− ρi)λi (5.3.7)

The number of expected destinations from �oor i with the number of passenger
arrivals; Ki(x) = Ki_up(x) +Ki_down(x), can be estimated as follows:

If the expected destinations are equally likely and uniform with 1
Ni

for ev-
ery passenger, with Ni the possible number of destination �oors. This means
that there are Ni = Ni_up +Ni_down possible destinations in the two directions
from �oor i. The probability that none of the Ki_up(x) passengers will be
going up to the same �oor is given by:

(1− 1

Ni_up

)
Ki_up(x)

(5.3.8)

The probability that at least one person from the Ki_up(x) passengers will be
going up to a speci�c �oor is then:

1− (
Ni_up − 1

Ni_up

)
Ki_up(x)

(5.3.9)

The expected number of di�erent destinations in the up direction from �oor,
i can now be estimated as:

E[Di_up] = Ni_up[1− (
Ni_up − 1

Ni_up

)
Ki_up(x)

] (5.3.10)

In the same way can the expected number of di�erent destinations in the down
direction from �oor, i can be de�ned as:

E[Di_down] = Ni_down[1− (
Ni_down − 1

Ni_down

)
Ki_down(x)

] (5.3.11)

The expected number of di�erent destinations from �oor i are now: E[Di] =
E[Di_down] +E[Di_up]. From the planned route it is already known how many
stops each elevator car will make from each �oor i depending on how many
�oors still to be visited in either direction. Thus together with the expected
number of destinations from future requests; the number of additional stops
have now been established.
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5.3.4 EXPECTED DISTANCE OF TRAVEL

The e�ects of future requests on any planned route are two-fold. The �rst
is that the elevator car is expected to make potentially more stops in order
to deliver the additional passengers to their destinations and the second is to
travel further up or down, before the direction of travel is reversed to continue
with the return route. The expected number of additional stops were discussed
in Section 5.3.3 and the expected additional distance to travel shall now be
provided.

When the rate of incoming requests has been established, the controller needs
to prepare how to deal with the future requests and to minimise their e�ect
on the already planned routes. The highest reversal �oor H can be estimated
from any �oor i as follows:

By using Equation 5.3.8, the probability that any of the passengers P =
Ki_up(x) will not travel higher than the jth �oor is given by:

(1− 1

Ni_up

)
P

· (1− 1

Ni_up − 1
)
P

· . . . · (1− 1

j + 1
)
P

(5.3.12)

with 1
Ni_up

, the probability that one passenger will go to �oor j, and Ni_up the

total number of �oors above the current �oor, thus Equation 5.3.12 is further
reduced to:

(
j

Ni_up

)
P

(5.3.13)

The probability that i is the highest �oor is given by:

(
j

Ni_up

)
P

− (
j − 1

Ni_up

)
P

(5.3.14)

The average highest reversal �oor H is then [1]:

H = Ni_up −
Ni_up−1∑
j=1

(
j

Ni_up

)
P

(5.3.15)

with unequal �oor populations or probabilities the average highest reversal
�oor H is de�ned as [1]:

H = Ni_up −
Ni_up−1∑
j=1

(

j∑
i=1

(
Ui
U

)
P

) (5.3.16)

where Ui is the population of �oor i and U is the total population above the
main landing and j is the highest �oor obtained starting at 1.
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It can also be de�ned that the lowest reversal �oor L can be estimated from
any �oor i with the probability that any of the passengers P = Ki_down(x) will
not travel lower than the jth �oor is given by:

L = Ni_down −
Ni_down−1∑

j=1

(
j

Ni_down

)
P

(5.3.17)

5.4 CAR CAPACITY PROBABILITY

The general TSP algorithm together with the VRP calculate the most optimal
route for each elevator car to execute, based on all known passenger requests.
These algorithms aim to generate a travel route which will reduce overall trav-
eling costs and throughput maximisation. However as soon as the elevator car
is dispatched, additional passenger requests are received as a result of contin-
uous passenger arrivals. If the new requests are from a �oor which is not on
the same planned route as the current elevator car, the controller has to make
a decision. Either the requests are added to the pre-planned route, or another
elevator car is send. In most cases the new requests will be serviced by the
nearest elevator car to reduce immediate transportation costs, but this will
mean that the previously available elevator capacity has now been reduced
and the original requests may not get serviced as planned. In this case the
controller should make provision for the possibility of future requests in the
planning stage, thus it should not allow the TSP algorithm to maximise the
elevator car capacity for a pre-planned route.

An event C is de�ned as the elevator car reaching its full rated capacity during
the execution of a pre-planned route when one or more additional requests are
received during the trip. By taking into account the probability of reaching the
car's capacity; it can result in a reduction in overall transportation cost and
number of return trips or stops, but at the cost of a possible increase in the
overall waiting time. The probability for event C, P (C), to occur depends on
its present available capacity and the calculated capacity at any point in the
pre-planned route. The less available capacity there is the higher the proba-
bility, P (C). It is noted that the available capacity is de�ned as the amount of
additional passengers that the elevator car can transport, which translates to a
theoretical number of additional requests that can be serviced. This translates
to P (C) which is calculated by summating the probability of receiving exactly
zero requests plus the probability of receiving exactly one request, etc. up to
the total number of requests that can be handled. Bernoulli trail probability,
Equation: 5.2.1, can be easily utilised to obtain the required result. However
the probability to receive a request must �rst be de�ned as well as the time
period the probability is valid for.
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In a 24 hour cycle, the controller should take into account the di�erent tra�c
patterns and passenger arrival rates as accurately as possible.

5.4.1 UP-PEAK EXPECTED REQUESTS

In up-peak mode the various elevator cars in the group start at the main land-
ing, delivering the passengers in the elevator cars to their destinations and
then returning back to the main landing. All additional requests originating
from other landing are ignored as far as possible to elevate the high passenger
demand at the main landing. The expected requests during the up-peak mode
will now be established based on exponential and independent passenger ar-
rivals.

Figure 5.3: Actual non-homogeneous Poisson Passenger Arrivals (adaption
from [10].
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Figure 5.4: Up-peak Passenger Arrivals (Generated Actuals vs. Predicted)

During the up-peak mode the arrival rate varies as a function of time based on
a tra�c �ow benchmark, taken from the Elevator Tra�c Handbook written
by Dr Gina Barney and is illustrated in Figure 8.1 [11]. However instead
of de�ning the passenger demand in terms of total building population, our
model will rather de�ne continuous arrival rates based on the non-homogeneous
Poisson process with time varying arrival rate λ(t). The Poisson counting

process, K(t); t > 0 can be now be de�ned as a distribution of K̃(t, τ) with
the number of arrivals in an interval (t, τ ] as follows [38]:

Pr{K̃(t, τ) = n} =
[m̃(t, τ)]ne−m̃(t,τ)

n!
(5.4.1)

Where

m̃(t, τ) =

∫ τ

t

λ(u) du (5.4.2)

The non-homogeneous Poisson process is thus de�ned with all the character-
istics of a Poisson process over a non-linear time scale K(t) = K(m(t)) for
each t [38]. The arrival rates will also change more abruptly in the peak tra�c
periods compared to the other tra�c states, thus to get a better representa-
tion of the rate changes, the time period must also be shorted or increased
together with the rate changes throughout the 24 hour cycle. The optimal
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time varying rate can be calculated with the use of spike density and spike
rate estimation methods. In our case each spike refers to a constant Poisson
rate for each predetermined time period. The predetermined time period are
established by representing the spikes with the use of the Histogram method;
the full range of the di�erent rates are divided into N bins of width 4 and
with the number of spikes si in the ith bin. The mean s and the variance v are
de�ned by Applegate [10] as:

s =
1

N

N∑
i=1

si (5.4.3)

v =
1

N

N∑
i=1

si − s (5.4.4)

With the cost function de�ned as:

C(4) =
2s− v
42

(5.4.5)

By iteratively changing the bin sizes and the Poisson rates, the cost function
should be minimised. The optimal bin size translates to the optimal time pe-
riod that best suited the Poisson rates for each tra�c period (tra�c state).
As illustrated in Figure 5.3 the passenger samples were generated with 12 dif-
ferent Poisson rates as a test case; which can be seen as the actual passenger
arrivals. The non-homogeneous Poisson rates can now be optimally calculated
by putting the actual arrivals through the spike rate estimator method. The
result in this case is that we only required 7 di�erent Poisson rates over the
up-peak period of 60 minutes. The calculated Poisson rates can now be used
to predict future up-peak passenger arrivals as illustrated by Figure 5.4. The
expected non-homogeneous Poisson rates during the up-peak period can be
improved by obtaining the average of all observed rates and continuously ad-
justing them. The rates can also be changed by means of a neural network
after each up-peak period and by a su�cient amount of initial test samples.
With 1000 iterations the calculated mean error between the generated actuals
and the predicted number of passenger arrivals for the entire up-peak period
was 8.64% with a variance of 43.16%. The same method can be followed for a
scalable period of time, where the actual passenger arrivals are recorded and
then represented by non-homogeneous Poisson rates with optimal histogram
bin sizes.

A neural probability model will be developed later in Chapter 7.3, which will
make use of the method presented in this Section. The optimal bin sizes of the
non-homogeneous Poisson rates are used as input neurons to train the Neural
Network to recognise and predict expected passenger requests for any tra�c
state.
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5.5 SUMMARY AND CONCLUSIONS

In this chapter a probability model has been developed based on the prob-
ability philosophy de�nition and various theoretical predictions. The basic
philosophy is to process previous collected tra�c data and use it to estimate
future tra�c occurrences to create pre-planned elevator car responses to the
probability of future passenger requests. The probabilistic traveling salesman
problem (PTSP) was de�ned, which is similar to the classical TSP, but with
service probabilities, assuming independence between �oors. The PTSP is
attempting to deal with the uncertainty of routing problems, like nondeter-
ministic cost calculations and uncertainty in passenger demand at each �oor.

References were made to well-known probability theorems like the Bernoulli
trail probability and the Bayesian theorem that connects the respective prior
�oor probabilities with the posterior �oor probabilities. The Poisson arrival
probability function was implemented, with λi de�ned as the average number
of passenger arrivals per �oor in a speci�c period T . The general Poisson
probability density f(x) and the Poisson probability distribution F (x) were
used to provide a distribution model for stochastic passenger arrivals at each
�oor. Which means that the probability for a speci�c time is zero, however as
a result of a repeating phenomenon called the Poisson process we are able to
su�ciently describe the arrival patterns.

Through the non-homogeneous Poisson process the directional and up-peak
expected requests could also be established. A technique was developed to
obtain the best suited Poisson rates for each tra�c period with the introduc-
tion of a cost function by Applegate [10]. The expected distance of travel and
the expected car capacity probabilities also contributes to the TSP algorithm
together with the VRP, to generate a travel route which will reduce overall
traveling costs and maximise throughput. A neural probability model will be
developed later in Chapter 7.3, in conjunction with the theoretical references
from this chapter.
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Chapter 6

WAITING TIMES

CONSTRAINTS

6.1 WAITING TIME PHILOSOPHY

Waiting time is a good indication of the functionality of an elevator and can be
used to compare di�erent control algorithms and methods against each other.
The basic philosophy of the controller is to �nd the most optimal route to
be able to minimise overall waiting time of all passengers. Waiting times can
be calculated from numerous compilations, such as from individual passengers
or from a number of passengers that are grouped together that suit the same
criteria. Groups of passengers that are easily classi�ed together are everybody
in the elevator car and at every landing �oor at a moment in time. Other
groups can be formulated from the passenger types: for instance visitors and
employees. Also in regard to functional importance like managers, VIP guest,
etc. Each passenger can also be represented by more than one group.

The philosophy of an intelligent elevator controller should not merely look
at minimising waiting time at all cost, but rather at the concept of time man-
agement. By putting emphasis on time management; di�erent priorities are
taken into account and enforces a degree of compromise between them. For
instance individual passengers or groups may have di�erent degrees of accept-
able waiting times as a result of an indi�erence or personal tolerance. The
controller should base its decisions on these tolerances and adapt accordingly
to user personalisation. Unfortunately the information required to distinguish
between personal tolerances are not readily available and require an Expert
System to establish unique passenger group waiting time requirements.

A few questions come to mind, in an attempt to create an Expert System
with regard to waiting time tolerances for example: Are general workers more
tolerant to waiting at an elevator than managers? Do guests show more pa-
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tience than permanent personnel? Are passengers waiting at higher �oors
more accepting to longer waiting times than passengers closer to ground �oor?
Are people waiting at a �oor that are close to their destination not the most
intolerant to waiting times, because they have an alternative option of taking
the stairs? Does the direction of travel have an in�uence on the acceptable
waiting times? How does the number of passengers waiting at a �oor have an
in�uence on waiting time perceptions? Do waiting time tolerances di�er for
the same person or group at various periods, for instance at lunch time or day
end?

6.2 BASIC WAITING TIME

CALCULATIONS

At a basic level we want to minimise the waiting time of each passenger or
group, subject to the space availability of the dispatched elevator. Thus we
want to minimise

N∑
j=1

cjxj , (6.2.1)

subject to,
N∑
j=1

aijxj ≤ bi , (i = 1, 2, . . . ,M) , (6.2.2)

with cj, the cost (waiting time) for each allowed or not allowed (0 or 1) passen-
ger xj and aij the amount of available resources (up to M) for each passenger
or group (up to N). Also bi, the budget or the allowed time limit for each
passenger or group. If more resources are required than aij > 0 or when the
passenger or group free up some resources then aij < 0 in a period i. If the
budget is increased then bi > 0 and a reduction results in bi < 0. The model
can be further extended by allowing passengers from the same �oor to be al-
lowed to travel together, if xj ≤ xi, and xi = 1 then xj = 1.

The total passenger waiting time (cost) can be estimated with the following
assessing calculations per passenger or group N with a projected �oor order
list {0, . . . , Dj}:

∆ttotal =

Dj∑
j=0

(∆tlanding + ∆tcar) (6.2.3)

cj =

Dij∑
j=0

Xj((tcar arrive j − tpassenger arrive j) + (tcar arrive at Dij
− tcar depart from Dij

))

(6.2.4)

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. WAITING TIMES CONSTRAINTS 75

Equation 6.2.4 can be further de�ned in terms of the time spend in the car
when the car is stationary (∆tstationary) and the amount of time spend in the
car while it is moving (∆tmoving ) to each passenger's �nal destination (Dij).

∆ttotal waiting =
N∑
i=1

Dj∑
j=0

Xij(tinitial− tij + ∆tmoving + (D+ 1)∆tstationary) (6.2.5)

Where tinitial is the initial time recorded for a pre-set �oor order as estimated
by the controller's dispatching method with j the order position in the order
list. tij is the time recorded when each passenger arrive at the landing �oor
with Xij the amount of passengers with the same arrival time Xij ≤ 0. j is
the position in the order list when the passenger or group (0, . . . , N) will be
picked up by the elevator car and Dj is the position in the order list where the
destination �oor is reached. ∆tmoving is calculated by the total distance the
car travels from the �oor of arrival and the destination �oor, times the rated
speed of the elevator car.

6.3 WAITING TIME CONJOINING

NETWORK

6.3.1 RADIAL BASE FUNCTIONS

The AI elevator controller is de�ned in such a way to make decisions across an
environment where the decision making process is based on multiple objectives
and constraints. The information with relation to the available alternatives to
the satisfaction of the objectives are required and the weight of each objective
must be de�ned. The end result from the various programmable and graphical
methods or philosophies can then be compared against the baseline computa-
tional philosophy of numerous iterations based only on passenger arrive times
with the same waiting time tolerances.

In an attempt to obtain a complete waiting time conjoining network or a rep-
resentation of one, we will make use of radial basis function (RBF) techniques.
An RBF network is based on the approximation of an arbitrary continuous
function from accumulated data points or from linear superposition of localised
basis functions [2]. The RBF network can be used for interpolation between
waiting time data points from various individuals and groups and presented
in a three dimensional space, neglecting time with t = 0. The purpose of a
RBF network is twofold, the one is to obtain a function that provides exact
interpolation between the input data points and the second to illustrate the
in�uence of each data point on all the other data samples. Each individual
passenger or any identi�ed passenger group can be represented by di�erent
localised functions φq(x) , with q = 0, . . . , N and N the number of functions.
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The overall RBF network is constructed by the superpositioning of these func-
tions, with weighing parameters, wkq required to obtain exact interpolation for
the test values k = 1, . . . , n:

Yk =
n∑
q=1

wkqφq(x) (6.3.1)

Yk represents a continuous di�erentiable surface, where every data point are
passed through.

There are numerous base functions φ(r, r0) to use, for example the multi-
quadric radial basis function:

φ(r, r0) =
√
r2 + r02 (6.3.2)

The inverse multiquadric radial basis function:

φ(r, r0) =
1√

r2 + r02
(6.3.3)

The thin-plate spline radial basis function:

φ(r, r0) = r2 log
r

r0
(6.3.4)

The Gaussian radial base function:

φ(r, r0) = e
− r2

2r20 (6.3.5)

Where r0 is the scaling factor and r, the radial separation.

6.3.2 EXPONENTIAL RBF TEST MODEL

In an attempt to implement the philosophy, where the elevator cars in the
elevator con�guration are visiting the closest �oors �rst, but also taking into
account the total waiting times per �oor. It can be illustrated by an example,
together with radial base function techniques and a test function to in�uence
the controller's decision making process. The Exponential RBF input values
x and y, are provided in Table 6.1 with the exponential function output values
z and summated interpolated values r. Each data sample x, y, z = t(x, y) is
represented with a base function φq(s) with q = 0, . . . , N and N the number of
data samples. The Gaussian radial base function together with the exponential
test function were used in this instance, because it proved to be the best suited
for this application. The exponential test function t(x, y) de�ned as,

t(x, y) = a1e
−a2xa3+a4ya5 + a0 , (6.3.6)
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Table 6.1: Exponential RBF Test Model Results.

Floor x y z = t(x, y) r = r(x)
1 0.1 0.001 0.990051 0.274
2 0.2 0.040 0.962343 0.307
3 0.3 0.080 0.919799 0.312
4 0.4 0.040 0.853508 0.302
5 0.5 0.0003 0.778801 0.297
6 0.6 0.0002 0.697676 0.309
7 0.7 0.080 0.61656 0.33
8 0.8 0.360 0.600255 0.34
9 0.9 0.400 0.522046 0.313
10 1.0 0.0001 0.367879 0.235

with ∀x ∈ [0, . . . , 1], ∀y ∈ [0, . . . , 1], scaling coe�cients a1, . . . , a5 > 0 and
o�set a0, which were implemented over the input data, see Table 6.1. For this
example the coe�cients are initially set as follows: a0 = 0, a1 = 1, a2 =
1, a3 = 2, a4 = 1, a5 = 2, and then further changed iteratively to adjust the
in�uence the input values have on the RBF system response. The y values
represent the total waiting time at each �oor, normalised across all �oors and
the x values represent the distance from the current position of the elevator
car. The distance is given as the amount of �oors from the elevator car divided
by the total number of �oors. For the purpose of this philosophy, the ratio be-
tween the distance to travel and the waiting time totals are minimised, in order
to identify the most relevant �oors to service which is also closer to the elevator
car at any moment. The results is given by Table 6.1 and illustrated by Fig-
ures 6.1 and 6.2. The Gaussian radial base function was used to obtain exact
interpolation between the provided data points with calculated weights: w =
[1.8233,−2.2001, 2.6798,−1.8873, 1.5579,−0.2822, 0.1047, 0.4144, 0.1244, 0.2816].

The variance or scaling factor σ, is set to 0.189, which is larger than the
typical separation between input data points, but smaller than the maximum
separation and is given by in Listing 6.1.

Listing 6.1: Gaussian Radial Base Function from Eq. 6.3.5

1 xyd = [ xd'; yd' ] ;
2 volume = prod ( max ( xyd , [ ] , 2 ) − min ( xyd , [ ] , 2 ) ) ;
3 r0 = ( volume / nd ) ^ ( 1 / 2 ) ;

Figure 6.1 illuminates the fact that the elevator car should service the closest
�oors and ignore the �oors which are further, even if the highest waiting times
are experienced at landings which are 8 and 9 �oors away. In some cases the
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Figure 6.1: RBF Graphical Illustrations: Waiting Time vs. Distance from
Elevator Car.

exact interpolation between data points fails to provide an intuitive reasoning
method, but can be further improved by summating all the interpolated y
values with the calculated radial base function. The result is a summated y
value for every distance x, divided by the number of samples nix, taken from
the RBF output values by ZI() in Listing 6.2.

Listing 6.2: Interpolated Waiting Times.

1 nix = 100 ;
2 k = zeros ( 1 , niy ) ;
3 for col = 1 : nix

4 for row = 1 : niy

5 k (1 , col ) = k (1 , col ) + ZI (row , col ) ;
6 end

7 end

8 k = (k . / nix ) ;

Figure 6.2 provides a few graphical representations from the exponential RBF
test model results provided by Table 6.1. The x − axis values represent the
number of interpolated samples which can be divided by the total number
of �oors to obtain the distance from the elevator car. The y − axis values
represent the summated values divided by the number of interpolated samples
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Figure 6.2: Exponential RBF Interpolant with Gaussian Radial Basis Func-
tion.
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nix. In this case nix is set to a value of 100, which acts as a normaliser for the
input values. The top left graph is plotted with reference to the exponential
RBF with linear interpolation and the top right graph is the 2D Gaussian
RBF representation of the results. The exact data sample points are plotted
in the bottom left �gure and the bottom right graph illustrates that the 8th

�oor from the elevator car should get priority over any other �oor, because of
the accumulated in�uence from all the other data points in the near vicinity.
In this instance the total waiting time at each �oor had a bigger in�uence
on the philosophy than the actual distance from the elevator car. By using
curve �tting methods, like MATLAB's Basic Fitting Toolbox, the accumulated
waiting times (y-values) can be obtained through a 6th degree polynomial
equation, r(x) given by:

r(x) = p1x6 + p2x5 + p3x4 + p4x3 + p5x2 + p6x + p7 (6.3.7)

where x̄ is centered at 50.5, σ = 29.011 and coe�cients:
p1 = 0.0073171
p2 = −0.004191
p3 = −0.054476
p4 = 0.0088988
p5 = 0.074638
p6 = 0.010553
p7 = 0.29758.

Based on the results from Equation 6.3.7 and Table 6.1, the controller can
priorities which �oors to visit �rst and which to ignore. In this case the values
are very close and indistinct, but other cases is clearer.

6.4 SUMMARY AND CONCLUSIONS

In this chapter the general waiting time philosophy was provided, which states
that the controller should be able to minimise overall waiting time of all pas-
sengers by establishing the most optimal route to follow for each car. The
concept of time management was also introduced, instead of just looking at
time minimisation techniques. An equation was developed for any projected
�oor order list to provide the expected passenger waiting time and to be used
in any TSP route costing calculations.

A waiting time conjoining network was developed, by implementing radial
base function (RBF) techniques. An RBF network is based on the approxi-
mation of an arbitrary continuous function from accumulated data points or
from linear superposition of localised basis functions [2]. The RBF network
is used for exact interpolation between waiting times from various individuals
and groups to illustrate the in�uence of accumulated waiting times across the
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building. The interpolated samples can be used by the controller to prioritise
between which one of the �oors to service next as a result of the accumulated
in�uence from surrounding �oors. It also resulted in the positioning of cars to
be in close proximity to the next �oor to service and the one after that. The
RBF network can also be used for dynamic zoning when a clustering algorithm
is implemented for destination dispatching purposes.
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Chapter 7

NEURAL NETWORK

ELEVATOR INTEGRATION

7.1 INTRODUCTION

When it comes to an elevator application, data is not always accurate or com-
plete and it creates a case of imprecision. With numerous algorithms and me-
thods available to dispatch elevator cars optimally, we do however still depend
on the availability of passenger information to have a successful elevator con-
trol application. The issue of uncertainty is addressed with probability, fuzzy
logic and Expert System theory as discussed in this Thesis, but also with the
help of neural networks. Neural networks are most often implemented to de-
liver three types of solutions, which is classi�cation, pattern recognition and
prediction.

The elevator controller application has a few classi�cation requirements through-
out data processing; for instance the present state of the elevator and the
available car capacity can be classi�ed against pre-set arrangements, see Sec-
tion 7.4. Other elements that requires classi�cation will be the respective
tra�c patterns and passenger demand intensities during a time period, see
Section 7.3. By using membership functions we can classify the fuzziness or
imprecise approximations of any discreet or continuous elements. Membership
functions can be obtained through numerous ways, for example by intuition,
inference, rank ordering, inductive reasoning, etc. [39]. Neural networks and
genetic algorithms are also e�ective ways of obtaining membership functions.
Well trained neural networks can be used for membership mapping of any of
the data points and can be e�ectively checked against a test set. GA is used
to obtain membership functions through obtaining the solutions with the best
�tness levels.

82
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Neural networks are usually required for applications that cannot be solved by
general logic programming functions. However in order to investigate a more
adaptive model of control, it requires the aid of machine learning techniques.
With changing tra�c patterns it is important that the system continuously
produce and implement better solutions to deal with the changing environ-
ment. Neural networks are implemented in Section 7.2 as a pattern recogni-
tion solution to develop an accurate energy model representation together with
accurate running time modeling against di�erent distances and load variations.
Neural Networks are also utilised to model the passenger distribution across
the building and to predict passenger demand throughout any scalable period
of time. The prediction model is created in Section 7.3. This chapter also
introduces automated reasoning principles in Section 7.5. The possibility of
an online testing platform can also be investigated, which can learn any new
algorithms and automatically reconsolidate when or if such algorithm should
be implemented to improve the ultimate performance of the controller.

7.2 NEURAL NETWORK ENERGY MODEL

Every elevator is unique in terms of its con�guration, energy signatures and
location. Theoretical variables are not the same from one elevator to the
next, with a lot of uncertainties like tension, friction, energy ine�ciencies with
mechanical, thermal and energy losses. This means that a theoretical model
is very di�cult to obtain and trending against various load conditions is not
always obtainable. However neural network techniques are e�ectively used
in this section to establish an accurate energy model representation of the
elevator application. The model is still unit speci�c, but is easier to obtain
and provide the best possible results.

7.2.1 ENERGY SAMPLE EXTRACTION

When creating an energy model; it is paramount to analyse the machine to-
gether with the changing load conditions. For the implementation of a su-
pervised neural network learning algorithm; each sample representation that
relates to a speci�c load condition is recorded and stored. Energy sample ex-
traction can be done by a trigger function, where the data recorder is activated
with a prede�ned activation event. In this case, the data is recorded at the
start of a current spike of 50% the rated current and stopped at 10% for a
duration of 1 second. The current signatures together with the accompanied
voltage signatures provide su�cient information about the system response to
the recorded load conditions. With association with the current and voltage
samples, we can further develop accurate time, power and energy consump-
tion models to be presented to either new and independent neural networks or
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to have additional neurons added to the existing neural network output layer
structure.

Each NN model can represent each sample as a whole, from the trigger point
to the end of the sample, or it can be divided as illustrated in Figure 4.14.
The bene�t to dividing each sample into di�erent sections are to provide more
information about the system response. It is possible that certain sections will
not have the same rate of change as other sections for di�erent load conditions
or previous hidden patterns can now be successfully extracted. To divide each
sample into sections are normally completed by additional triggers to identify
each notable amplitude change or to set a duration set point for each sec-
tion. However each of these approaches will proof to be unsuccessful with a
dynamic system where the system response is unknown during the sample ex-
traction phase. When the Expert Knowledge about the system is not available
we can implement a classi�cation technique used in various machine learning
applications, called k-means classi�cation. It allows us to choose the number
of sections or clusters, de�ned by the k variable, where each recorded data
point in the energy sample are sorted or collected in the various k clusters
they belong to. The bene�t to this technique is that it can be implemented
in any elevator application and it is not only subjected to a speci�c elevator
con�guration. It is important to have an adaptable system that can extract
samples from any elevator con�guration it is subjected to, in order to have a
degree of arti�cial intelligence and to allow it to create its own neural network
as accurately as possible.

The original samples were taken at a sampling frequency of 100 000 hertz
which were e�ectively divided between 6 data sampling channels (3 current
and 3 voltage probes), thus we have access to 16 666 data points per second
per channel. The acceptable sampling frequency fs should be greater than
double the signal bandwidth B, to avoid any sampling overlapping repetitions
[40]. The minimum sampling frequency is known as the Nyquist rate with
the corresponding sampling interval; Ts = 1

2B
called the Nyquist interval [40].

Thus we can down-sample the taken measurements by a factor of 160, which
is still above the Nyquist rate of 100 hertz in this speci�c application.

The k-means energy sample extraction process is illustrated with Figure 7.1.
During the initialise phase, the coordinates of the clusters are uniformly dis-
tributed across the total duration or total number of data points. The
kCluster_allocation() method then divides the provided data points be-
tween all the clusters, based on the cluster which is the closest distance from
the data point amplitude and keeps true to the data input pattern. After
every data point is allocated to a cluster, the coordinates of the clusters are
re-de�ned to minimise the total distance from all allocated data points. After
all data points have been allocated, the kMeans_cluster() method shu�es
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Figure 7.1: K-means Energy Sample Extraction Process.

the cluster positions as required, while calculating the means of every group
of points after each change. The method iterates until equilibrium occurs be-
tween all clusters or until the mean values have settled.

With final_allocation() method the �nal cluster coordinates are fed back
to the initialise() method and used as �data points� for the process to re-
peat. All allocated data points from the previous cycle are now represented by
the number of cluster positions used as new input data points. Initially a large
number of clusters are chosen and then by each iteration reduced, until the
required accuracy is obtained between di�erent sections of the energy sample.
In this case all the data points with similar rms values are grouped together,
with the constraint that data points are not to be taken out of position, to
retain the input pattern. From the voltage sample channels it is noticed that
only a single cluster is left after process execution, because the entire energy
sample can be de�ned with only one rms value across all data points; normally
in the range of 220 to 230V. The current channels were accurately divided be-
tween starting current, acceleration or deceleration and rated current stages.
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7.2.2 DATA PREPARATION

In order to create an arti�cial neural system based on the canonical neu-
ral computations of the human brain, it is paramount to replicate how the
brain process sensory input information. Based on studies from Carondini
and Heeger [41], the brain uses exponentiation and linear �ltering as a form
of pre-processing information. They stated that: �exponentiation are a form
of thresholding which allow the brain to maintain sensory selectivity, decorre-
lating signals and establishing perceptual choice together with linear �ltering
that refers to the weighted summation by linear receptive �elds� [41]. Pro-
vision is made for these observations by implementing 3 types of threshold
or activation functions, namely the Linear, Sigmoid and the Tanh functions.
These activation functions are used to scale the output of each neural layer
into the desired domain. The Sigmoid function only allows for positive values
to pass through and the Tanh function allows for both negative and positive
values to the output. The last two named functions allows the neural network
its non-linear capabilities in scaling the di�erent weight functions as required
to minimise output error. When the structure of the neural network is decided
upon, including the number of layers, activation function and type of neural
network, the input data together with the output training data needs to be
prepared to �t into the same domain. In this instance the input and output
data extractions are normalised to be in the range between −1 to 1 or between
0 to 1, depending on the threshold function.

As with exponentiation and linear �ltering of the human brain, there are a few
normalising methods to implement, which are in reality only scaling mecha-
nisms to be applied to the training data. These scaling techniques include:
Centralised scaling [42]:

Xi,−1 to 1 =
Xi − Xmax+Xmin

2
Xmax+Xmin

2

, (7.2.1)

where Xi are the ith data point, Xmin and Xmax the minima and maxima
among all data points respectively and Xi,−1 to 1 the data points normalised
between -1 and 1. MaxMin scaling can be completed with:

Xi,0 to 1 =
Xi −Xmin

Xmax −Xmin

(7.2.2)

Maximum scaling refers to each data point divided by the maxima among all
data points, which are further multiplied by 0.9 to represent the 90% Maxi-
mum scaling method or scaled together with an o�set. It is often useful to
represent data in the 0.1 to 0.9 range, to avoid the neural network of reaching
saturated weights at the minimum and maximum input values. An Expert
System scaling can also be implemented; where some pre-knowledge about the
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model is available and is used to create a bias in the input data set as required.
In our application the load input variable is biased around 0.5 for a balanced
load, where the counterweight is perfectly balanced with the car and its load.
As the elevator con�guration becomes unbalanced in the direction of travel;
the variable reaches a maximum of 1 or if unbalanced against the movement
of the car; the input variable are reduced to a minimum of 0.

Carondini and Heeger [41], also referred to a third type of canonical neural
computation, namely divisive normalisation; where the human brain computes
a ratio between the response of a single neuron and the summed activity of
a pool of neurons. To replicate this phenomena, 2 additional normalisers are
introduced, namely the Z-value method and the Multiplicative normalisation.
The former is de�ned with [42]:

Xi,σ =
Xi −Xs

σx,s
(7.2.3)

where Xi are the ith data point, Xs and σx,s the average and the standard
deviation of all the sample data points respectively. Xi,σ provides a Z-score;
which re�ects how many standard deviations from the average each data point
falls. Multiplicative normalisation is where each input Xi is scaled by a nor-
malisation factor [3]:

f =
1√∑n−1
i=0 X

2
i

(7.2.4)

Table 7.1: Output Normaliser Error Performance: Neural Network Output vs.
Training Data.

Output Normaliser IfullD TfullD PfullD EfullD

Maximum Value: 1.06 A 1.01 Sec 812.9 W 17040 J
Percentage: 2.67 % 3.82 % 3.66 % 4.16 %

90 % Maximum Value: 0.84 A 0.85 Sec 554.41 W 13758 J
Percentage: 2.12 % 3.24 % 2.5 % 3.36 %

MinMax Value: 0.79 A 0.91 Sec 433.74 W 11981 J
Percentage: 1.99 % 3.43 % 1.96 % 2.93 %

Z-value Value: 1.27 A 1.9 Sec 726.7 W 23975 J
Percentage: 3.2 % 7.21 % 3.276 % 5.86 %

Multiplicative Value: 1.290 A 0.95 Sec 550.34 W 15114.5 J
Percentage: 3.27 % 3.61 % 2.48 % 3.69 %

The various normalisation functions referred to in this section can be directly
applied to the training data, however some normalisers perform better than
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others as can be expected. With Table 7.1 the di�erent output normalisers
are compared with the use of a common input normaliser, namely the Expert
System normaliser. The root mean square (RMS) error, de�ned by Equa-
tion 7.2.5, is calculated for the data training set to obtain the rate of error
based on the ideal results [3]:

XRMS =

√√√√ 1

n

n∑
i=1

X2
i =

√
X2

1 +X2
2 +X2

3 + · · ·+X2
n

n
(7.2.5)

The RMS error percentage of the current IfullD, power PfullD and energy EfullD

output neurons are minimised with scaling normalisers. The input variables
are de�ned for the full duration (fullD) of a sample and are not divided into
clusters in this case. Before normalising, the values are close to each other,
which reduces the rate of change between the input values. By implementing
the MinMax normaliser; the output value ranges have been widened to max-
imise the sensitivity to the input changes. The duration output neuron TfullD,
also performs better by scaling the output values rather than standardising
them. The duration output neuron have a near linear response and should
only be resized to �t into the required neural network domain. The z-value
normaliser should be used when the mean and the variance of a data set is
more important to the system response and often stays constant for any stim-
ulus. The multiplicative normaliser is optimal if the data points are all close to
zero, where other normalisers will allow the synthetic component of the input
to dominate the smaller values [3].

The input normalisers are summarised by Table: 7.2, where the minimum,
maximum, average and standard deviations are provided after all input train-
ing data have been normalised by each normaliser. The bene�ts to normalising
the input variables are to allow all input variables to have the same dimen-
sionality and to be able to reduce input redundancy. It is important when
a neural network have multiple input variables, that one input variable does
not have an overbearing e�ect as a result of its larger values over variables
with smaller values. With reference to LeCun et al. [43], it is optimal to have
the covariance of the input variables the same and to have the variables un-
correlated if possible. With uncorrelated variables, the learning rate is faster,
where each variable have an independent e�ect on the output and this means
that the input neuron weights can also be changed independently. LeCun et
al. [43], also make mention that if the input variables are close to zero then
the convergence rate is usually faster.

The Centralised normaliser performs on par with the Expert System nor-
maliser, because it makes good use of the extended range between -1 to 1.
Because a positive input coe�cient can allow for a positive response to the
output variables and vice versa. In the elevator application the Centralised
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Table 7.2: Input Normalisation: Training Data Pre-processing.

Input Normaliser Direction (I1) Distance (I2) Load (I3)
Expert System: Max 1 1 0.71

Min 0 0.2 0
Average 0.5 0.5 0.3
StDev 0.5 0.29 0.19

Centralised: Max 1 1 1
Min -1 -1 -1
Average 0 -0.25 -0.17
StDev 1.01 0.72 0.53

MaxMin: Max 1 1 1
Min 0 0 0
Average 0.5 0.37 0.41
StDev 0.5 0.36 0.27

Maximum: Max 1 1 1
Min 0 0.2 0
Average 0.5 0.5 0.41
StDev 0.5 0.29 0.27

Z-value: Max 1 1.75 2.2
Min -1 -1.04 -1.55
Average 0 1.4E-16 -2.15E-16
StDev 1 1 1

Multiplicative: Max 0.15 0.19 0.22
Min 0 0.04 0
Average 0.08 0.09 0.09
StDev.S 0.08 0.05 0.06

normaliser accurately apply the di�erent coe�cients to the weight imbalances
and the direction of travel. Thus an input Expert System normaliser is not
crucial to have in this kind of application.

7.2.3 SAMPLE REPRESENTATION

The total amount of combinations of the input variables can be seen as a vector
space that form a n dimensional hypercube, where features are vertices and
form connections within the interconnected network. To train the network, a
percentage of data points is required to represent a large portion of the hy-
percube. The edge length en(p), from a fraction of data points p, within a n
dimensional space can give an indication of the e�ected space, and is de�ned
with [44]:

en(p) = p1/n (7.2.6)
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When the total amount of vector combinations, m are known, the distance
between data points can be calculated with [44]:

dn(m) =
1

2
(

1

m
)1/n (7.2.7)

It is ideal to have the data points closer to each other rather than to the edge
of the sampled data set, where connections are not well formed. However
the amount of training samples should be a good representation of all possible
combinations, but should be limited to avoid the neural network from building
the required connections and predictions for missing data points. The neural
network is also seen to train faster with limited training data points, at the
cost of accuracy. Also as a result of the dominant waveform created by the
neural network it is easier to classify outliers from the training data. Outliers
are data points that don't �t the general predicted pattern and can be a re-
sult of measurement mistakes or from out of the ordinary conditions. Outliers
should be removed from the training set, if the neural network seems unstable
and not capable of �ltering these anomalies automatically.

7.2.4 NEURAL NETWORK ENERGY MODEL

TRENDING AND CONCLUSIONS

The sample data that was used to plot Figure 4.15 in Section 4.4.1 was obtained
by separate measurement probes to obtain the 4 pole from the 18 pole winding
supply current. However the clustering method described in Section 7.2.1 suc-
cessfully extracted to 2 datasets from the main supply current samples as well.
Thus the k-means sample extraction method can be utilised to extract certain
sections from a main supply point as an alternative to any additional mea-
suring points normally required. The developed k-means sample extraction
method can also be used with the latest regenerative elevator con�gurations,
to establish accurate energy saving declarations from its regenerative capabil-
ities. This method can easily distinguish and extract a separate dataset for
every motor state provided by Figure 4.11.

With reference to Figure 4.16 the elevator supply current (in Arms) and power
consumption (in kW) were plotted against each respective travelled distance
and load percentage of the rated car capacity. The red and orange data points
represent the actual measured data and the blue and green continuous lines are
from the output neural layer. It is clear that the predicted values resemble the
actual measurements closely and that the neural network trending capabilities
are successfully utilised to model the application accurately with di�erent load
conditions. The same can be concluded with respect to the predicted running
times provided by Figure 4.17.
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Figure 7.2: Neural Network Supply Current and Power Consumption Pattern
Recognition.
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The three input variables which were used to train the elevator energy sig-
nature neural network are direction, distance and load. Each variable has a
distinct e�ect on the elevator system response prediction. The �rst variable is
of the categorical type, presented as a numeric binary set with 2 values. The
second and third input variables are of the numeric type and has an order and
a distance relation [44]. From the di�erent energy samples it became apparent
that we are not dealing with time-dependent data, but rather distance depen-
dent. The maximum and minimum distances being traveled between �oors,
create a local maxima and minima in the predicted waveforms. The elevator's
rope sheave creates a uniform circular motion projected in the vertical plane
as a simple harmonic motion. This occurrence is similar to the dynamics of a
pendulum or an extended/retracted spring mechanisms; where a sinus wave-
form is created when plotted against distance travelled. Thus it can be stated
that the distance input variable dictates the general pattern of the predicted
data, as seen in Figure 7.2. From the previous mentioned �gures it can be
seen that the direction and load input variables have an e�ect on the trending
of the output data, rather than the waveform itself. The trending that occurs
between the maxima and minima is justi�ed by the physical relationships of
the elevator con�guration as discussed in Section 4.4.1. Each relative distance
travelled can be seen changing from one cycle to the next as the load increases
from left to right in Figure: 7.2.

7.3 NEURAL NETWORK PASSENGER

DEMAND AND TRAFFIC STATE

CLASSIFICATION

7.3.1 INTRODUCTION

The concept of probability was introduced theoretically with reference to
Chapter 5, where the Poisson arrival distribution was presented. We also
made reference to the Probabilistic Traveling Salesman Problem (PTSP) with
directional and expected travel distance probabilities. We will now develop a
fully functional probability model, to be integrated with the Intelligent Eleva-
tor Controller. Neural Networks are utilised in this case to model the passenger
distribution across the building and to predict passenger demand throughout
any scalable period of time.
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7.3.2 NN PASSENGER ARRIVAL MODEL

With computer based controllers it is not di�cult to store all incoming re-
quests in a centralised database, together with the timestamp, arrival �oor,
destination and passenger identi�cation if available. Past requests can then be
recalled from the database for a period of time and reconciled into a passen-
ger demand distribution. The passenger arrival data points are summarised
into representative non-homogeneous Poisson rate intervals, with correspond-
ing cost function, mean and variance calculations by Equations 5.4.3, 5.4.4
and 5.4.5. When the passenger arrivals are extracted from the database, they
can be grouped according to similar characteristics for instance: per �oor (ar-
rival and destination �oors separately), direction, per zone (�oors grouped
together) or personal divisions. The result is optimal histogram representa-
tions of the passenger arrivals per group.

A Neural Network is developed for each histogram representation with the
following procedure: A number of input neurons is de�ned, let's make it 5
input variables for example. The input neurons will each receive a value of a
single histogram interval value, taken in the corresponding order starting from
the beginning of the extracted period. The output neuron receives the �rst
value after all the input neurons have been given values. In this case it is the
6th interval value. Thus the NN has just learned what the value is after the
speci�c sequence of values are provided. This procedure is iterated throughout
the histogram length by shifting the input and output neurons with an interval
each time. When all histogram intervals have been entered into the NN, this
correlates to one training epoch and should be repeated for a number of epochs
or if the required error rate is less than 5%.

As a result of the learning procedure the required tra�c patterns have been
formulated and can be used to predict future passenger arrival rates accurately.
In Figure 7.3 it can be seen how the elevator prediction model has learned a
5 day period and became very accurate in predicting future passenger arrival
rates. This speci�c NN was trained with only the directional characteristics of
the passenger arrivals summated across all the �oors. Various other predictive
networks have also been created to increase overall building tra�c demand
expectations and are summarised as follows:

� Per �oor tra�c distributions.

� Zone or cluster distributions.

� Calendar predictions.

� Personnel and visitor distributions.
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The next step is to incorporate the predicted passenger demand distributions
into the decision making process of the Intelligent Elevator Controller.

7.3.3 TRAFFIC STATE PREDICTION AND

CLASSIFICATION

With the assistance of an Expert System it is possible to accurately predict
the building 's passenger demand distributions and design the control philoso-
phies accordingly. However for most elevator installations a typical controller
is installed, with pre-programmed generic control philosophies. The generic
control settings are inherently linked to the di�erent elevator states and have
pre-programmed respond cards that link an algorithm to a tra�c state. Fig-
ure 8.1 in Section 8.1.2 is an example of such an Expert System that trig-
gers the controller's decision responds. Thus it is important to establish the
tra�c state for the elevator group as fast as possible in order to trigger the
pre-programmed control algorithm. Without a prediction model the typical
controller actually recognises an increase in passenger demand and then reacts
accordingly, but often the tra�c state has changed a while ago. With the use
of our NN prediction model we were able to predict when the tra�c state is
just about to change or at the exact moment it alters. Thus the controller
have a faster response time to tra�c pattern changes. With our on-line model
it is possible to predict the so-called up-peak state within one Poisson rate
interval, which in our case was set to 3 minutes; where all elevator cars were
immediately directed to the landing �oor.

A second advantage of a predictive model is to make con�dent alterations
to the generic control algorithms, in order to optimise elevator group control.
The di�erent networks are used coherently to de�ne a new approach to con-
clude dispatching decisions based on more relevant past experiences. The new
approach is able to change the control philosophy from week to week and re-
spond faster and more e�ectively to changes in the tra�c patterns throughout
the day. The competitiveness of the adaptable control algorithms improves
over time as it comes closer to optimal o�ine computational routes. The
adaptable control concept is explained as follows by means of the destination
dispatching (DD) algorithm that is triggered by the up peak state. The DD
algorithm as illustrated in Figure 8.11 did extremely well compared to other
control philosophies. The generic DD algorithm divides the building levels into
a number of equal zones from the landing �oor, which correlates to the number
of cars in the con�guration. Each car is then restricted to only travel between
its allocated zone and the main landing �oor. In the plotted �gure, the simu-
lated building population was equally distributed across all �oors, which best
suited the generic algorithm. But if a real life situation is created where the
building's population is only occupying 60 % of the building capacity, with the
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Figure 7.3: Non-homogeneous Poisson Passenger Arrival Rates, Actual vs.
Predicted for a 5 Day Period
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rest of the �oors used as storage, the performance of the generic DD doesn't
look that promising. By implementing the generic DD in this case; resulted in
multiple cars not being utilised, because the allocated zones was never serviced.

A situation can also be described for industrial type buildings, where you
have personnel shift change periods, which lasts up to an hour. The typical
Expert System doesn't make provision for these additional high tra�c demand
periods or any other out of the norm tra�c patterns. This means that there
are no generic response to optimise the elevator group control. However any
passenger demand changes can be quickly learned and adequately predicted by
a developed Neural Network prediction model without any user input. The de-
veloped NN model had a direct in�uence on the intelligent elevator controller's
performance improvements. This proves that any out of normal passenger de-
mand can be directed into a pattern and used to alter the control algorithms
accordingly. If a pattern cannot be established, it means that the out of normal
passenger demand should be treated as an anomaly and not in�uence future
control decisions.

7.4 CAR CAPACITY CLASSIFICATION

7.4.1 SMARTSTART EXPERT SYSTEM

The 3 online-dial-a-ride strategies that were presented in Section: 2.2, were
e�ectively implemented in our elevator control application. The Smartstart
strategy allows the server to respond to new requests and replan the optimal
route, based on all known information. Also it has the ability to deny any new
requests and e�ectively execute an ignore demand. The optimal point between
replan and ignore demands were obtained by trial and error for various elevator
con�gurations and for di�erent amount of cars in an elevator group. The
di�erent conversion points from Replan to Ignore are plotted in Figure 7.4, and
it illustrates the e�ect on the total accumulated waiting time as a percentage
of the maxima. The results seems relevant to most con�gurations that were
tested. The optimal range for minimum overall waiting time is when the car
load is between 20 % and 40 % of the rated full capacity. This suggest that
the Smartstart strategy setting should always be in this range, however with
additional system requirements; it becomes more complicated than to have a
default set point.

For optimal passenger comfortability in the elevator cars, the capacity set point
should be kept to a minimum. A low set point will also reduce the number
of stops per passenger from the origin �oor to their respective destination
�oors. In dense tra�c populations it is even possible to allow no additional
stops before arriving at the destination �oor, and can be easily implemented
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Figure 7.4: Smartstart Load Capacity Setting's E�ect on Overall Waiting Time

by the mentioned Smart-Start setting. During high tra�c periods, like up-
peak and down-peak tra�c patterns, the landing waiting time is reduced by
adjusting the capacity set point to a range between 50 % and 70 % of the rated
capacity. The accumulated time spend in the elevator cars will increase, but
more passengers are serviced at a time at the cost of personal comfortability.

7.4.2 NEURAL SMARTSTART MODEL

A general Smartstart Expert System were developed in Section 7.4.1 for typi-
cal elevator con�gurations and for most control algorithms. However an online
Neural Network enabled Smartstart system can be developed to know the most
optimal Smartstart settings for the given tra�c pattern and control algorithm.
A speci�c algorithm namely P1-C, was tested for a 24 hour cycle, 5 cars, 15
�oors and a population of a 1000 people, as illustrated by Figure 7.5. The
�gure illustrates that the optimal setting is not the same throughout the 24
hour cycle and should be changed dynamically to improve overall performance.
The optimal conversion points from Replan to Ignore was in contrast to the
Expert System from Figure 7.4 in terms of Ignoring any new requests if there
are 2 or more people in the car. After the up-peak tra�c state the optimal
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Figure 7.5: Dynamic Smartstart Load Capacity Setting's E�ect on Waiting
Time

conversion point is 7 and correlates to the Expert System however, 6 did not
perform well but was in fact a recommended value.

The Smartstart Neural Network is trained o�ine from the actual service re-
quest database or via the simulated tra�c generator. The optimal car capacity
set point is then calculated iteratively for a scalable duration by adjusting the
settings and comparing the output performance. To improve accuracy, the
car capacity set point is calculated for every point in time due to changing
passenger demands and tra�c states. This results in a NN that is trained
to deliver the best Smartstart setting for every Poisson passenger arrival rate.
The Intelligent Elevator Controller should train a Smartstart NN for every new
control algorithms that it receives and update it regularly when more recent
passenger demand patterns becomes available. When every control algorithm
has its own Smartstart NN stored on the main drive the system is ready for
online operation.

7.5 AUTOMATED REASONING WITH

NEURAL NETWORKS

7.5.1 INTRODUCTION

The process of making decisions based on past experiences translates to the
well-known �eld of case base reasoning (CBR) in AI. CBR is mostly based
on regulation and repetition principle, which states that certain actions will
be taken again under the similar conditions and would produce similar results
[27]. CBR in turn also de�ne Expert Systems, usually based on human ex-
pert knowledge, but we would rather look at past control decisions instead
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of implicitly de�ning every condition. Thus the unique learning abilities of
neural networks can be further utilised in an attempt to develop an arti�cial
conscience or awareness in the elevator control system. People usually use
prior knowledge to solve familiar problems and do not necessarily do any new
calculations for every required decision. Decisions made by the most e�cient
stand-alone elevator control system and the information that directed to that
decisions need to be continuously stored in a database for each speci�c elevator
controller. This case speci�c decisions can now be used as training and test
data to build a neural network. The controller can then utilise the trained
neural network to make quick and reliable decisions without the need to run
a full computational routine for every change in the tra�c compilation.

In order to ensure that the neural network controller still makes accurate and
optimal decisions, it has to be evaluated and re-trained as required. By re�ect-
ing on its own decisions and to be able to know when to be re-trained can be
seen as a form of cognitive awareness and reasoning. Thus the created neural
network will represent a part the arti�cial conscience of the controller we are
attempting to create.

7.5.2 NEURAL AUTOMATED REASONING HEAD:

ONLINE LEARNING

Existing and new control philosophies can be easily tested and compared o�-
line by any testing platform and by an elevator simulator, however we are
introducing the possibility of an online testing platform. An online testing
platform should be able to learn new control algorithm with the provided in-
struction set, respond cards and prede�ned conditions. Performance of the
control algorithm is then to be tested and compared against the known algo-
rithms. The notion of it to be an online exercise, means that the de�ning,
testing and comparison stages occur automatically while the controller is on-
line. This function of the controller will be known as the Neural Automated
Reasoning Head (NARH). The NARH uses key performance indicators with
previous score sheets for all trained algorithms to compare them to the newly
learned algorithm.

The NARH should recognise the current tra�c demand in the building and
then be able to select the best online control algorithm to handle the identi�ed
demand. The chosen algorithm is then applied to the unprocessed requests to-
gether with the requests still in the system to produce the most optimal route.
Thus we have two learning process for the newly proposed controller function.
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First the control algorithms are tested by o�ine simulations as conducted
in Chapter 8. The performance indicators, which are waiting time, power
consumption and throughput maximisation, are stored for every Poisson pas-
senger arrival rate across a time period. For every Poisson interval the best
algorithm can be chosen from the collected data. The chosen algorithm will be
the preferred algorithm for the speci�c passenger demand distributions it was
tested against. However, to establish what the best solution is for any possible
tra�c distribution that can occur online, requires a Neural Network (NN).

Figure 7.6: RBF Network Representing Building Passenger Demand for Dif-
ferent Time Periods.
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The input neurons that are required for the NN are the existing or simulated
tra�c demand in the building. It can be either the amount of people or accu-
mulated waiting time from all passengers that have not been serviced yet. The
accuracy of the NN is improved if the input information is not independent
data points like passenger arrivals, but rather from a conjoining network of
data. The building passenger demand is modelled with Radial Base Functions
(RBF) as discussed in Chapter 6 with either accumulated waiting time per �oor
or total amount of passengers waiting at each �oor. The data points collected
from each �oor are then interpolated with a Gaussian radial base function
integrated with an exponential test function provided by Equation 6.3.6. The
result is a representation of the collected data points and also their in�uence
on neighboring �oors. This method is iterated for every Poisson passenger ar-
rival rate period that is directly related to the simulated data that was used to
obtain the best control algorithms described in the previous paragraph. Thus
the input data for the NN is the RBF network for every Poisson interval and
the output used for supervised training is the best chosen algorithm for the
same interval.

Figure 7.6 illustrates di�erent RBF networks for di�erent time periods. The
graphs on the left side are the continuous di�erential surface for a time period
with an x-axis de�ned as normalised �oors and the y-axis as the normalised
interpolated data. The graphs on the right are the independent data points,
either normalised waiting time or amount of passengers plotted against the
normalised �oors. The �oors are normalised with their respective height or
distance as a percentage of the building height. For example the ground �oor
is 0 and the top �oor is 100% of the maximum height. Graph A was taken
just as the up-peak tra�c is arriving, graph B is in the middle of the up-peak
tra�c state, graph C is from a down-peak tra�c state and graph D represents
inter�oor tra�c.

7.5.3 SUMMARY

Each elevator group has generally one control algorithm implemented based
on its building tra�c environment and the company that installs it. The single
control algorithm or chosen philosophy has a few response instructions to deal
with the di�erent tra�c states, like up-peak, down-peak and inter�oor move-
ments, but it is preset and not adaptable to changing conditions. This section
has introduced a more adaptable approach, where the controller is trained
with multiple control algorithms and various simulated tra�c conditions. The
controller with the developed Neural Automated Reasoning model can now
establish the best algorithm for every period throughout the day.
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The main characteristics of the new approach can be summarised as follows:

� Controller is not limited to one control philosophy.

� The optimal control algorithm is automatically chosen and not pre-set
by a designer or Expert System.

� Control responses are not triggered by a tra�c state, but continuously
changing with the accumulated data network (RBF).

� Online learning is a possibility.

7.6 INTELLIGENT ELEVATOR

CONTROLLER SUMMARY AND

CONCLUSIONS

The known software structure for computer control provided by Figure 2.1,
was adapted into the Intelligent Elevator Controller (IEC) developed through-
out this Thesis, presented by Figure 7.7. Firstly a Neural Elevator Model is
developed throughout Section 7.2 with reference to Chapter 4. The Neural
Elevator Model provides accurate power consumption feedback and running
time predictions to be used in any cost function calculations, mostly for the
TSP and VRP optimisation algorithms. It is also used to provide feedback to
the user of the expected service time or car arrival time per �oor.

Secondly the Expert System of pre-programmed control algorithms are loaded
into the IEC, with compiled instruction sets, respond cards and conditions pre-
de�ned. A few examples of possible control algorithms are discussed through-
out Chapter 8, and are used to train the Neural Automated Reasoning Head
(NARH) as discussed in Section 7.5. The Expert System is based on several
years of Elevator development and proven control philosophies, and most are
undisclosed by the Original Equipment Manufacturer (OEM). However any
control algorithm can be fed into the system at any time, to ultimately im-
prove the IEC and are then included with the general training data. With
reference to Section 7.4 the provided control algorithms are further extended
into individual Neural Smartstart networks with optimised con�guration set-
tings.

As new requests are received they are fed into the Dynamic Service Request
Database (DSRD). The Neural Tra�c Distribution Network (NTDN) reads
the most recent requests from the database together with the newly unpro-
cessed requests and provides a predictive tra�c demand pattern. The Neural
Automated Reasoning Head recognises the input tra�c demand pattern and
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Figure 7.7: Intelligent Elevator Control Structure

selects the best online control algorithm that it has been trained with. The al-
gorithm is then applied to the unprocessed requests together with the requests
still in the system to produce the most optimal route as output data. Each
car then decodes the output data through its own interface output drives and
executes the instruction as required. The user also receives the output data
either through the BMS or at each landing console.

To conclude, the developed neural online models for projected waiting times,
probability networks and power consumption feedback were combined to form
a new Intelligent Elevator Controller (IEC) structure as opposed to the Expert
System approach, mostly used in present computer based elevator controllers.
The research �eld of neural network science, was successfully utilised and the
goal of creating an arti�cial intelligent (AI) controller was realised.
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Chapter 8

ELEVATOR CONTROL

SIMULATION

8.1 TRAFFIC GENERATION AND

COLLECTION

In order to implement and benchmark the intelligent elevator model created
in this research project, we require the input information from accurate tra�c
generation methods. A complete random generation method together with
two Expert System tra�c �ow generation methods shall be developed in this
Thesis to simulate deferent tra�c patterns for comparison purposes.

8.1.1 COMPLETE RANDOMISATION

The �rst simulated tra�c method is based on a complete tra�c �ow ran-
domisation. The tra�c generator class uses a randomise function namely
randInt() as de�ned by Listing 8.1. It creates a pseudo-random number
between the maximum and minimum input data from the java.util.Random
library and implements a seed which is set to the time of execution in nanosec-
onds accuracy. The nextInt() method is exclusive of the top value, thus
adding 1 is to make it inclusive. By using this method the time, number of
passengers and �oors can be randomly generated and stored into a database.

Listing 8.1: Complete Randomisation Function.

1 public int randInt ( int min , int max ) {
2 Random rand = new Random ( ) ;
3 rand . setSeed ( System . nanoTime ( ) ) ;
4 int randomNum = rand . nextInt ( ( max − min ) + 1) + min ;
5 return randomNum ; }

104
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However the randomise function limits the database to theoretical numbers and
is not reproducing any kind of human behaviour or tra�c patterns. In order
to generate more representative tra�c distributions we look to incorporate
more commonly recognised elevator tra�c patterns, namely an Expert System,
instead of relying on complete random sample generation.

8.1.2 EXPERT SYSTEM: BIASED TRAFFIC

PATTERNS

The second tra�c �ow generation method is based on a tra�c �ow bench-
mark, taken from the Elevator Tra�c Handbook, written by Dr Gina Barney
[11] and is illustrated in Figure 8.1. The tra�c �ow can be predominantly
classi�ed in the following groups: up peak, down peak, mid-day and inter�oor
tra�c �ows. The suggested passenger demand rate and the time of day when
each tra�c �ow grouping normally occurs will de�nitely di�er between dif-
ferent buildings, but the generalised curves can be adjusted as required. The
intelligent elevator control model is written in such a way that each identi�ed
tra�c �ow pattern is set to an adjustable ratio of the up peak values. These
ratios are adjusted after a pre-determined period to increase the accuracy of
the probability variable against actual tra�c �ows. As the up peak values dif-
fer from day to day, the model can adjust its probabilities accordingly without
necessarily changing the tra�c model. The standard templates are also taken
from Elevator Tra�c Handbook for the tra�c �ow groupings and are utilised
as the starting point for our simulation, where it can be adjusted throughout
the program execution as required.

The adjustable variables will be the period in which the di�erent patterns
occur and the de�ned building population. From the initial up peak curves
the following are estimated as being accurate: 53% of the population arrives
within 62.5% of the overall up peak period and 27% arrives in the last 37.5%
which e�ectively state that only 80% of the building population is occupying
the building at one time [11]. The same goes for the initial down peak curve
where period 3 is set to 1.6 times the up peak percentage population and al-
most linearly reduced until everybody is out of the building. The down-peak
period is considerably shorter that the up peak curve, because of generalised
human behaviour when it is time to leave. However this model does not regis-
ter or store the destination �oor information of passengers in the up-peak �ow,
so the down-peak �ow is generated randomly from any �oor. If the destination
�oors could have been recalled; the probability of the amount of passengers
also leaving the building from that speci�c �oors could have been increased.
Inter�oor tra�c pattern movements are classi�ed to be between 30% and 36%
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Figure 8.1: Passenger Demand Benchmark for a Typical Building [11].

of the building population in one hour [11]. To further de�ne the inter�oor
tra�c �ow's; we divide 40% of these passengers going up, 40% going down,
10% from main �oor up and from any �oor to the main �oor also to be 10% [11].

After the initial biased tra�c patterns have been de�ned, the actual random
arrival patterns can be established via the Poisson random generator as dis-
cussed in Chapter 5, Section 5.3.2. The 24 hour cycle can be generated in the
same way the expected up-peak tra�c pattern was created in Section 5.4.1
and extended to include the initial down-peak and inter�oor tra�c patterns
as well.

8.1.3 EXPERT SYSTEM: PASSENGER

PERSONALISATION EXTENSION

The third tra�c generator method to be implemented is an attempt to in-
crease the elevator's human interaction abilities in order to reduce the barrier
between the elevator control system and its passengers. In order to assist in
improving our probability curves and generation of real-world tra�c patterns;
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Figure 8.2: % Population vs. Period for a Typical Building [11].

more information is required about each passenger. Each passenger is classi-
�ed into groups namely either a visitor or a member of the company. Each
personnel has a name, a permanent workspace in the building and a work
schedule that is normally followed. A visitor to the building can also provide
information about the speci�c �oors he or she will be visiting and at what time.
Some companies are implementing the integrated access control (IAC) system
to their respective premises. This system works with a RFID tag, where per-
mission must be granted for any person who enters the building and various
rooms or areas inside the building and logs the timestamp of every activated
door. This system can be utilised further by placing these RFID receivers at
each elevator landing �oor to register the information about the person as in
practise by some elevator companies. The information is then to be used in
actual pattern classi�cation and compared to the simulated values.

Listing 8.2: Passenger Information Class De�nitions.

1 public class Personnel {
2 protected String NAME ;
3 protected String UNIQUE_NUMBER ;
4 protected int [ ] work_start_time ;
5 protected int [ ] work_end_time ;
6 protected Floor work_station ;
7 }
8

9 public class Visitor{
10 protected String NAME ;
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11 protected String ID_NUMBER ;
12 protected int [ ] visit_start_time ;
13 protected int [ ] visit_end_time ;
14 protected Floor visit_station ;
15 }

8.2 SINGLE ELEVATOR CONTROL

SIMULATION

8.2.1 GENERAL BASELINE TRAFFIC CONTROL

The baseline main method starts with utilising the present time and the moving
direction. Then the processor looks for the next �oor to service from the
next_floor_method(). When the �oor to service next is found, the controller
dispatches an elevator to that �oor and adds a delay to the overall time.
The variable delay or non-negative routing cost is estimated by Listing 8.3 or
obtained through the neural network energy model, provided in Section 7.2.

Listing 8.3: Routing Time Estimation for Unit 2 Aux Bay.

1 private final int doors_opening = 4.9*1000
2 private final int doors_closing= 4.9*1000
3 private int people_moving_in_out= people_count *1000
4

5 elevator_moving_time = distance_travelled /rated_speed ;
6 total_delay = doors_opening + doors_closing + ←↩

people_moving_in_out ;

To identify the next �oor to service, the following logic is used to write the
next_floor_method():

� Create and initialise passenger lists for each �oor and each car separately.

� Register all �oors where the directional buttons have been pressed.

� Register if the up or down button was pressed at the landing �oor.

� Add all passengers to their respective lists.

� Register all destinations where the destination buttons have been pressed
by people in the elevator car.

� Add passengers in car to the passenger destination list.
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If the elevator is going in the up direction, identify the landing �oors from the
current position to the top �oor. Service the closest �oor that satis�es the
following criteria: somebody pressed the up button or has reached this/her
destination �oor. If none of the identi�ed �oors were serviced then add the
following criteria: if any directional buttons were pressed or if the car is not
empty, service the closest �oor that satisfy the criteria from the current po-
sition to the ground �oor, or vice versa if the down directional button was
pressed. When a �oor is serviced, all passengers in the elevator car that has
reached their destinations are removed from the car passenger list and all pas-
sengers waiting at that respective landing �oor is added. After all passengers
were serviced, the waiting times at each landing and from the cars are then
calculated and documented to compare later with other tra�c control philoso-
phies.

8.2.2 TRAVELING SALESMAN PROBLEM

IMPLEMENTATION

8.2.2.1 GENERAL TRAVELING SALESMAN PROBLEM
THROUGH BRUTE FORCE

The general traveling salesman problem (TSP) is established through a Brute
Force (BF) programming philosophy; where every possible combination are
generated and stored in a list or an array. Every �oor can only be visited once
in a planned route by each elevator car and does not have any time window
constraints, however the number of elevator cars can be adjusted and each car
does have load capacity limitation. We can develop a simulation model trough
Brute Force as illustrated by Figure 8.3. With the initialise() method the
Traveling Salesman class Object is created which travels between 8 �oors
for example, that result to 40 320 di�erent iterations, where the combination
generator method checks that no �oors are repeated in a �oor order sequence.
Once the list of all combinations has been established; passenger samples are
collected through a database of Poisson generated randomised samples based
on a 24 hour Expert System cycle. These passenger samples are then released
to the controller in a so called real-time simulation to create an online rout-
ing problem, where future information is not available until it has come to past.

The two deterministic online transportation problem strategies, Ignore and
Replan, as mentioned in Section 2.2 have been implemented in this version
of the model. Where the Ignore strategy will continue with the planned
route, neglecting any new passenger requests and the Replan strategy would
re-calculate and provide the optimum route for every new request. Via the
get_floor_order_BF() function these two strategies are optimally combined
to reduce the total waiting times experienced by the passengers. When the
method requires for a Replan strategy to be executed, all combinations are
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Figure 8.3: General Traveling Salesman Problem Simulation Trough Brute
Force.

tested to obtain the best result (waiting times) by the cost function as de-
scribed in Section 6.2 and speci�cally Equation: 6.2.5. The best �oor sequence
becomes the most recent global planned route, where the elevator car then
proceeds to service the next planned �oor after the simulated delay was added
to the service time as required. The procedure to establish which strategy to
implement after each new request; is done via alternating the allowed capacity
of each elevator, meaning if the elevator car has reached a certain capacity
no alterations would be conducted to the planned route. The procedure is
discussed in Section 7.4.
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8.2.2.2 TSP WITH GENETIC ALGORITHM PROGRAMMING

In the �rst attempt to establish an intelligent tra�c control program; a genetic
algorithm is implemented. The traveling salesman class is initialised with the
following variables and steps which are an adaption from Heaton's earlier work
[3].

Table 8.1: The Traveling Salesman GA Class Initialisation.

Variable Value
int FLOOR_COUNT 4
int POPULATION_SIZE 50
double MUTATION_PERCENT 0.10
int MATING_POPULATION_SIZE POPULATION_SIZE/2
int FAVORED_POPULATION_SIZE MATING_POPULATION_SIZE/2
int CUT_LENGTH FLOOR_COUNT/5
int generation; 0

Step 1: Create the initial chromosomes up to the amount of the pre-de�ned
POPULATION_SIZE variable, where each chromosome is a di�erent order of the
pre-set number of �oors. Set the cut length which determines how much genetic
material to take from each �partner� when mating occurs. Set the mutation
percentage; meaning the percentage of the o�spring that will be mutated or
the probability that a mutation will occur.

Listing 8.4: Chromosome Decleration.

1 chromosomes [ i ] = new Chromosome ( floors , current_floor ) ;
2 chromosomes [ i ] . setCut ( cutLength ) ;
3 chromosomes [ i ] . setMutation ( TravelingSalesman .←↩

MUTATION_PERCENT ) ;

Step 2: Calculate the �tness of each chromosome by Listing 8.6. The �tness
or the cost of each chromosome is the summation of each Pythagorean distance
from one �oor to the next in the current chromosome de�ned �oor order list,
starting from the �rst �oor to the last planned �oor to be visited. The cost of
a chromosome determines its rank in terms of being able to mate and not to
be killed o�.
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Listing 8.5: Chromosome Fitness Calculation.

1 for ( int i=0;i<cityList . length−1;i++ ) {
2 double dist = floors [ cityList [ i ] ] . proximity_xyz ( floors [←↩

cityList [ i+1] ] ) ;
3 cost += dist ;
4 }

Listing 8.6: Proximity Function.

1 public int proximity_xy ( int x , int y ) {
2 int xdiff = xpos − x ;
3 int ydiff = ypos − y ;
4 return ( int ) Math . sqrt ( xdiff*xdiff + ydiff*ydiff ) ; }

Step 3: Sort or rank all chromosomes in ascending order based on their �t-
ness calculations. The �rst set of chromosomes will be classi�ed as genera-
tion zero and so on. The chromosomes are sorted by their cost, by method:
Chromosome.sortChromosomes(chromosomes,POPULATION_SIZE)

Step 4: Mate the chromosomes in the favoured population with all the other
chromosomes in the mating population. In this instance the favoured pop-
ulation are a quarter of the total population. The favoured population can
be seen as the mother chromosomes and the father chromosomes as any ran-
dom chromosome between zero and half the total population size. The mating
function is provided by Listing 8.7 [3].

Listing 8.7: Chromosome Mating Call Method.

1 for ( int i=0;i<favoredPopulationSize ; i++ ) {
2 Chromosome cmother = chromosomes [ i ] ;
3 int father = ( int ) ( 0 .999999* Math . random ( ) *( double )←↩

matingPopulationSize ) ;
4 Chromosome cfather = chromosomes [ father ] ;
5 mutated += cmother . mate ( cfather , chromosomes [ ioffset ] ,←↩

chromosomes [ ioffset+1]) ;
6 ioffset += 2;}

The mating function is implemented where the favoured �mother� chromo-
some mates with a random �father� chromosome and then returns the amount
of mutation that was applied. First a cut range is established between cut
point 1 and 2. Cut point 1 is de�ned as any �oor between zero and 80% of
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the total possible �oors and cut point 2 is de�ned as cut point 1 plus the
cut length. All the mother genes are copied over to o�spring 1 except the
genes in the cut range witch belongs to the father chromosome and the same
with o�spring 2, which get all the genes of the father chromosome except the
genes in the cut range which belongs to the mother. For a small probability de-
�ned with Math.random() < mutationPercent, mutation can be set to occur;
where random genes are swapped between the 2 sets of o�spring. The number
of mutated chromosomes are counted and later used to calculate the muta-
tion rate of the mating population as a whole. A new generation was created
as result of this step and copied over to the second half of the total population.

Step 5: The new generation is now moved from the second half of the pop-
ulation to the mating population where the �tness of every chromosome is
calculated again as in step 2 and 3. The mating population is now sorted
based on the �tness calculations. Out of this generation the best chromosome
can be found which represent the optimal TSP route for generation zero

This process is iterated, until either the required minimum cost between �oors
is reached from the best chromosome or when the best chromosome is consec-
utively found a number of times. The TSP was implemented symmetrically
at �rst, meaning that it the distance from city x to city y is the same as from
y to x, but it resulted in a system which is not conducted heuristically and
is very static in a problem solving perspective. The programming structure
does not allow for �oor variables to change once the process has started, which
means that ever-changing variables are not dynamically handled through-out.
For instance simulated delays and waiting times as a result of the �oor order
are not dynamically accounted for. To account for more spatial distance cal-
culations; an asymmetric TSP is established. Other less than optimal qualities
or shortcomings from the TSP were identi�ed after the TSP was implemented
with GA but without neural networks, for example:

� The TSP is structured in such a way that the �oor order is provided by
looking at the overall picture or the overall shortest distance to travel
between �oors. Thus if the whole �oor order is not carried out as cal-
culated, the result will be less than optimal. The conclusion is that this
technique is not suited to provide only single �oor recommendations.
Also the general TSP only looks at visiting each city ones in a trip, but
extended as required.

� The system requires a fully de�ned set of variables, where any changes
in the de�nition can have a major impact on the result. For example the
waiting time variable can either be de�ned in terms of average waiting
time per �oor or per person, maximum time a person has waited per �oor
or the summated waiting time per �oor. In this instance the program
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requires Expert Knowledge in order to de�ne the di�erent variables in
order to attempt a balance between the individual and the group require-
ments. This system can then rather be de�ned as an Expert System and
as a result; loses its genetic capabilities as originally intended.

� During normal elevator tra�c �ow's, excluding high midday, morning
and afternoon peeks, a lot of �oors have no tra�c registered and don't
need to form part of the �oor order calculation. This result in an often
simplistic TSP and can be often solved by only a few iterations. The ca-
pabilities of genetic algorithms without an ability to evolve are in reality
not utilised and not necessary in its current form.

� In the current TSP structure it will �ll up the elevator car towards its
full capacity as the elevator car moves from �oor to �oor, but there is
potential of �nding a more optimal solution of �lling up the car towards
its full capacity without overlooking other �oors until the car has space
again.

8.2.2.3 TSP WITH SIMULATED ANNEALING
PROGRAMMING

In an attempt to improve the traveling salesman problem, we will be imple-
menting the simulated annealing process via TSP_SimulatedAnnealing.class
to get the best path.

Step 1 is to create a random path for the traveling salesman by initialising a
random �oor order. With the following parameters:

Listing 8.8: TSP Simulated Annealing Parameters.

1 double START_TEMPERATURE = 10 ;
2 double STOP_TEMPERATURE = 2 ;
3 int CYCLES = 100 ;

Step 2 is to run the iterate() method until the cost calculated by the best
retained path is not improved over the amount of iterations set out by the
CountSame variable. During each iterate() method the �oor order is likely
to be changed slightly with the randomise() method according to the freedom
set out by the simulated annealing process. The simulated process is repeated
by the amount of cycles de�ned, where the �oor order is potentially changed
with each cycle. The freedom of the process is constrained to the start and
stop temperature ratio. The higher the starting temperature the more likely
is a larger change in �oor orders from one iteration to the next.
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After a few attempts of implementing this method the following can be con-
cluded with a measure of uncertainty:

� It seems that simulated annealing can only be implemented if the cost
calculations are between non-spatial variables. The process compares
di�erent sections of each path against each other in an attempt to reduce
the cost between cities, but it does not focus on improving the overall cost
of the entire path. Thus for example when variables like waiting times
are closely compared from one city to another; the traveling salesman
will visit them in quick succession, because they have similar waiting
times, but will not however visit them in the most optimal order to have
reduced overall waiting times.

� Additional research is required in order to prove that this method can
be used to improve the TSP for the elevator tra�c control application.

� It does not seem that the �rst city in the path will ever be changed by
the simulated annealing process. The iteration method only attempt to
draw all the cities closer to the �rst city in the path order; in an attempt
to reduce cost.

� A possibility to reduce the waiting time can be accomplished by com-
paring di�erent paths like in the case with GA, but without losing the
basic principles of simulated annealing. The basic idea of having various
levels of randomness and freedom to optimise the �oor order should be
retained.

8.2.3 ALGORITHMIC PERFORMANCE RESULTS

As mentioned before we are attempting to make the overall system less dy-
namic, in order have an actual system response that is closer to the optimal
and theoretical calculations. By means of a competitive ratio, we can have an
indication of how the various probability methods have decreased the system'
dynamism. The competitive ratio CrA for an algorithm A can be de�ned for
an instance I [28]:

CrA = sup
z(A, I)
∗z(I)

(8.2.1)

Where z(A, I) is the cost of the solution by the algorithm A and ∗z(I) the
cost of the optimal solution if all data of the instance I were available before-
hand. The dynamic system can also be described as an online system where
the input arrives in di�erent phases throughout the process. An o�ine system
is controlled with optimal o�ine algorithms, where all the required input data
are available from the �rst instance of the process. The competitive ratio can
thus be de�ned as the supremum cost of the online algorithm over the cost of
the o�-line algorithm.
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For the lower bounds of a probabilistic algorithm; we can calculate the com-
petitive ratio c, with Yao's principle:

EY [ALGy(σx)] ≥ c ·OPT (σx) (8.2.2)

Where ALGy : y ∈ Y are a set of the applicable deterministic online �oor
order sequences as per strategy, see Section 2.2, and σx : x ∈ X is a set of
possible requests sequences [16].

The expected cost of the deterministic online sequences with respect to a
probability distribution X is de�ned as [16]:

EY [ALG(σx)] =

∫
x

ALG(σx)dX (8.2.3)

The algorithmic performance results can be divided between the approxima-
tion performance and the competitive performance of the di�erent strategies
and techniques, as describes throughout this thesis. The di�erent machine
learning techniques are referenced by Table 8.2. We can calculate the approx-
imation ratio ρ as de�ned by [16].

ALG(I) ≤ p ·OPT (I) (8.2.4)

Where ALG(I) is a deterministic online �oor order sequence, see Section 2.2,
and OPT (I) is the optimal sequence if all requests were known before the
instance initiated.

Table 8.2: Algorithmic Performance Results for Single Elevator Control.

Machine Learning Techniques Approximation Ratio Competitive Ratio
Baseline 2.02 3.55
Brute Force 1.13 2.172
Genetic Algorithms 1.14 2.185

According to Krumke [16] , the Smartstart strategy is the best possible online
algorithm with a competitive ratio of 2, the BF and the GA algorithms imple-
mented in this section compares well with the stated benchmark for a single
elevator application. The baseline control being implemented by the present
con�guration, were proven to be the least competitive with a competitive ratio
of 3.55 and an approximation ratio of double that of the best possible solution.
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8.2.4 TRAVELING SALESMAN PROBLEM

IMPLEMENTATION RESULTS

In the �rst set of results a baseline was established to be used as a reference
point for the various elevator controller performance indicators. The baseline
refer to the basic controller decision making process that are still found in may
elevator installations, where passengers get serviced if their destination �oor is
in the same direction as the traveling elevator car. With the baseline there are
no implementation of any destination control, thus the controller only reacts
to directional buttons activated at the landings and from inside the car.

The traveling salesmen problem was simulated with the use of Brute Force
and Genetic Algorithm techniques and the key performance indicators were
throughput maximisation and waiting time reductions. The implementation
of the TSP resulted in a signi�cantly improvement on these 2 areas and was
proven to be superior against the baseline. The average waiting time spend at
the landings and in the car has improved by 30% with the Brute Force TSP
and 33% with Genetic Algorithm TSP. Time spend in the elevator car has not
improved against the baseline, because the TSP calculate overall waiting time
cost of all waiting passengers. This leads to higher waiting times in the car,
but lower waiting times experienced at the landings.

In Figures 8.5 and 8.6, it can be seen that the TSP handles peak tra�c peri-
ods more e�ectively than the baseline. The maximum accumulated amount of
passengers at one instance reached 70, where the BF TSP reduces this number
by 23%. When the maximum amount of people waiting at a time is divided
by the number of �oors in the elevator con�guration the �gures becomes more
acceptable, however when these �gures are realised at only a few �oors it be-
comes problematic. For instance during up-peak tra�c periods; it becomes
clear that additional elevator cars should be introduced into the elevator con-
�guration to be able to handle the building population. But for the purpose
of testing the di�erent controller strategies, the worst case tra�c patterns can
illustrate how each perform and where weaknesses are identi�ed.

Table 8.3: Passenger Average Waiting Time Results for a Worst Case Scenario.

Average Waiting Time Baseline TSP BF TSP GA.
In Car 2m 59s 2m 29s 2m 37s
At Landings 10m 54s 7m 39s 7m 19s
Total 13m 53s 10m 8s 9m 56s
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Figure 8.4: Passenger Waiting Times for a Worst Case Scenario: Baseline vs.
TSP BF vs. TSP GA.
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The best results provided by Table 8.3 for the BF TSP and GA TSP were by
implementing the Ignore on-line strategy when the available capacity in the
elevator car has reached 54% of the rated load capacity. Which means that
the planned route will be carried out regardless of incoming requests if there
are more than 6 people in the car. When more capacity becomes available
the optimal route is recalculated by the Replan on-line strategy and becomes
the newly established planned route for the TSP. The number of estimated
iterations initiated by Replan reached just under 24 million for the BF TSP
and about 7 million for the GA TSP. As a result of the use of machine learn-
ing techniques like Genetic Algorithms; the overall number of iterations and
computational time have been reduced considerably and have not e�ected the
performance negatively with comparison to the Brute Force approach.

Table 8.4: Elevator Controller Service Performance Results.

Baseline TSP BF TSP GA
Number of iterations <1k <24 000 k <7 000 k
Compilation time 8s 5m 28s 1m 41s
Number of services 746 708 706
Maximum waiting passengers 70 54 57

8.2.5 POTENTIAL SAVINGS: AN ACTUAL CASE

STUDY

A trip counter was installed at Aux Bay Unit 1 elevator at Majuba Power
Station; in order to correlate the expected tra�c density to the actual trip
data being measured. Illustrated by Figure: 8.7 the mid-day tra�c period for
11 Aug 2014 was recorded, which represented the lunch hour period for the
building's personnel. The recorded data summated to a power consumption
of 11.33 kilo watt-hour and 40 mega Joules. The elevator trip activity pattern
correlates strongly with the Poisson arrival distribution as expected.

Majuba Power Station has 6 similar single Aux Bay elevators, one in each
generating unit. With the general estimated personnel distribution and the
expected visitor rates for the station, the power consumption from these 6
elevators can be extracted from our simulation model based on the installed
control mechanisms and compared to the proposed TSP control philosophy.
Table 8.5 provides the developed Energy Model results for a 5 day period with
the Aux Bay U1 elevator con�guration, divided into 3 di�erent single elevator
control approaches. As a result of realistic population numbers, in contrast to
the worst case scenario tested previously, the performance improvements are
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Figure 8.5: Elevator Controller Service Performance (with Service Time) for a
Worst Case Scenario: Baseline vs. TSP BF vs. TSP GA.
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Figure 8.6: Elevator Controller Service Performance (with Service Count) for
a Worst Case Scenario: Baseline vs. TSP BF vs. TSP GA.
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Figure 8.7: Actual Trip counter for the lunch hour period (Aux Bay U1, 11
Aug 14)

not as high, but are still noticeable. The BF TSP and the GA TSP performed
relatively the same, because a 4 �oor route only produces 24 cost iterations
per Replan strategy. The TSP solutions improved the waiting times at the
landings by more than 24% and the total waiting time by 20% over the actual
installation results. However the power consumption over the 5 days were not
reduced by the TSP solutions, because waiting time had priority over energy
savings in this instance. It can be concluded that as a result of few �oors
and the close proximity of the �oors that any potential savings are neglectable
from the baseline case, however waiting times can still be improved.

The results from this simulation, also provides an indication of the usage of
the current elevators. For a 5 day period the elevator car was stationary for
86.3% of the time, with total running time reaching 16 hours and 28 minutes.
A total accumulated distance reached 46 km with a total power consumption
of 277 kilowatt-hour (kWh), which translates to an expenditure of R 408 with
R1.47 per kWh. With 6 similar elevators the projected expenditure for a year
is around R120 000, with 80 MWh, 1.3 million stops and 13 000 km expected
distance travelled.In Section 4.4 it was mentioned that if the elevator motor
had a di�erent con�guration; where the 18 pole windings were not con�gured
in the opposite direction to the 4 pole winding con�guration and the drive
had regenerative capabilities: The machine would have been operating in the
generating state and performed regenerative braking, where a negative torque
decelerates the motor, with the surplus kinetic energy reverted back through
the regenerative drive until the motor comes to a stationary position. The
actual minimum savings per trip was measured at 10.86% from 20 to 0m and
at a maximum of 65.12% from 16m to 20m, which measured at 31.79kJ and
140.74kJ respectively. However to get a more representative savings percent-
age, it has to be measured in context over a period of time. It was established
by the Energy Model that over the 5 day period; the 18 pole windings set con-
sumed 278 MJ from the total consumption of 985MJ. Thus it can be stated that
on average; 28.2% of the total energy consumed can be saved, as well as the
energy that can be reverted back into the system, to declare additional savings.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 8. ELEVATOR CONTROL SIMULATION 123

This concludes that by upgrading the control system we can improve over-
all waiting time performance by 20% and by upgrading the actual elevator
installation, the potential energy savings are more than 28% on average ex-
cluding the additional energy that can be reverted back into the system as
well.

Table 8.5: Energy Model Simulation Results for a 5 Day Period with Aux Bay
U1 Elevator Con�guration.

Total Baseline TSP BF TSP GA.
Stops 4748 4745 4727
Current 28.928 Arms 28.558 Arms 28.523 Arms

Running Duration 16h 29m 16h 49m 16h 47m
Power Consumption 277.517 kWh 280.182 kWh 279.367 kWh
Energy 985.869 MJ 996.625 MJ 993.506 MJ
Distance travelled 46 290 m 47 626 m 47 586 m
Expenditure R 407.95 R 411.868 R 410.669

Car Total WT 1d 22h 7m 1d 15h 42m 1d 16h 11m
Floor Total WT 3d 12h 13m 2d 15h 39m 2d 15h 43m
Total WT 5d 10h 20m 4d 7h 21m 4d 7h 54m

Avg. Car WT 0m 39s 0m 34s 0m 34s
Avg. Floor WT 1m 12s 0m 54s 0m 54s
Avg. Total WT 1m 52s 1m 29ss 1m 29s

8.3 ELEVATOR GROUP CONTROL

SIMULATION - WITHOUT

DESTINATION DISPATCHING

8.3.1 INTRODUCTION

In medium to high rise buildings, it is often required to have more than one
elevator available to handle the additional passenger demand requirements. A
multiple elevator con�guration introduces the terms known as group supervi-
sory control; where the controller is pre-programmed or pre-con�gured with a
speci�c control philosophy. Various group control techniques are in practice
today by well-known elevator manufactures, for example the Duplex/Triplex
system (THV), a �xed sectoring priority timed system (FS4), a �xed sectoring
common sector system (FS0), a dynamic sectoring system (DS), etc. [1]. These
techniques have been studied and proven to be successful for the technology
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that was available at the time. This Thesis does not cover these techniques in
detail, but would rather introduce new machine learning techniques to rein-
force the ideas behind them. The main principle behind an arti�cial intelligent
elevator is to avoid a set of structured conditions and pre-programmed response
classes. Therefore a more appropriate term than group supervisory control is
further used in this chapter, namely elevator car dispatching. Where the con-
troller is a multi-core processor and dispatches elevator cars based on optimal
route calculations and /or pre-programmed philosophies.

8.3.2 ELEVATOR CAR DISPATCHING

Elevator car dispatching are divided into two technology based control mech-
anisms. The �rst is where the passenger's destination �oor is either known
before the person enters the elevator car or after, but the designated car is not
indicated to the passenger at any time. Meaning when the car doors open; it
collects the waiting passengers and is not passenger speci�c. The second con-
trol mechanism is passenger-biased; where a speci�c car is allocated to each
passenger. This mechanism is referred to as destination dispatching (DD). A
bene�t to the �rst control mechanism is that route optimising is continuous
and does not have to be de�ned at the exact moment the passenger arrives.
However the controller has a more complex task of optimising a route for all
waiting passengers, rather than for individuals which are proven to require less
computational resources.

An Intelligent Elevator Controller (IEC) Graphical User Interface (GUI) are
presented by Figure: 8.8. The GUI is used as a graphical addition or resource
to represent di�erent elevator car dispatching algorithms with the same ele-
vator con�guration, namely a 15 �oor building with 5 elevator cars. For the
purpose of creating a controlled testing environment, the �oor landings are set
at; {0, 4, 8, 12, 16, 20 24, 28, 32, 36, 40, 44, 48, 52, 56} meters and the
elevator cars have a rated speed of 2.5 m.s−1 and the building population can
be changed as required.

8.3.2.1 VEHICLE ROOTING PROBLEM IMPLEMENTATION

The vehicle rooting problem (VRP) is an extension from the traveling sales-
man problem and has been introduced in Section: 3.4. When implementing a
Brute Force (BF) VRP algorithm; every permutation are considered between
the number of cars and the number of �oors. Each valid combination are gen-
erated and with the use of a cost function either rejected or implemented as the
optimal combination for the BF VRP dispatching algorithm. As an example;
let's say that the controller has received passenger requests from the following
landing �oors; 0, 4, 9, 14, where these landing �oors can be added to a single
elevator or divided between a maximum of 5 elevator cars. The total number
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Figure 8.8: Intelligent Elevator Controller Graphical User Interface (version
1.0): Medium Rise Building Con�guration.

of possible false combinations can be de�ned with Equation: 8.3.1 to be 4 845
in this case.

possible combinations =

(
landings · cars

landings

)
(8.3.1)

However the combination count from Equation: 8.3.1 includes true combination
duplicates, meaning the landing �oors are presented to the cars multiple times
just in di�erent order combinations. However the optimal route for each car
will be calculated later by the TSP algorithm, when new requests are added
to the planned routes. Another constraint is de�ned which states that when a
car has been allocated to a �oor, then the other cars should not visit the same
�oor. To remove the duplicates and to avoid the same landing �oors from
being visited twice, the following method is introduced; false VRP numbers
are generated between 1 and the amount of landings multiplied the amount
of cars, see Figure 8.9. The elevator cars are presented with combinations of
false numbers, which are also presented as binary generated numbers. These
numbers are then converted to the exact �oor numbers originally provided
with get_real_order_combinations() method, provided by Listing 8.9. The
total combination count have now been reduced from 4 845 to 625 for the
permutation possibilities between 4 �oors and 5 cars. Table 8.6 illustrates how
quickly the number of required computations increase with additional landing
�oors to visit, even as little as 6 �oors are proven to be a challenge.
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Table 8.6: BF VRP: Number of Calculated Steps for a 5 Car Con�guration.

Landings to visit False Combinations True Combinations
1 5 5
2 45 25
3 455 125
4 4845 625
5 53130 3125
6 593 775 15625
7 6 724 520 78 125
8 76 904 685 390 625
. . . . . . . . .
15 2 280 012 686 716 080 30 517 578 125

Figure 8.9: False VRP Combinations with Binary Representation (4 Landings
to Visit).

Listing 8.9: True VRP Combination Generator.

1 public int [ ] [ ] get_real_order_combinations ( Building ←↩
building , int [ ] valid_floors ) {

2 int [ ] valid_landings ;
3 int floor_count ;
4 int [ ] [ ] false_VRP_combinations ;
5 valid_landings = valid_floors ;
6 floor_count = valid_landings . length ;
7 false_VRP_combinations = this . valid_combinations ;
8 final_VRP_cars = new int [ false_VRP_combinations . length ] [←↩

valid_landings . length ] ;
9 real_VRP_combinations = new int [ false_VRP_combinations .←↩

length ] [ valid_landings . length ] ;
10 for ( int i = 0 ; i < false_VRP_combinations . length ; i++){
11 for ( int p = 0 ; p < floor_count ; p++){
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12 final_VRP_cars [ i ] [ p ] = ( ( false_VRP_combinations [ i ] [ p←↩
]−1) / floor_count

13 for ( int c = 0 ; c < floor_count ; c++) {
14 for ( int f = 0 ; f < floor_count ; f++) {
15 for ( int mult = 0 ; mult < CAR_COUNT ; mult++) {
16 if ( false_VRP_combinations [ i ] [ p ] == (c+1 + ←↩

mult*floor_count ) ) {
17 real_VRP_combinations [ i ] [ p ] = valid_landings [←↩

c ] ;
18 }}}}}}
19 return real_VRP_combinations ;
20 }

The brute force VRP algorithm presented in this section, requires tremendous
amount of computational capacity. For every valid VRP combination a TSP
algorithm extension is required per elevator car. This potentially translates to
a minimum of 15000 additional iterations for a 4 �oor BF VRP. The simulated
combination that provides the best solution based on a cost function is kept
and permanently allocated to each elevator car, where the rest of the combina-
tions are discarded. Even if a tread is created for every VRP combination and
its TSP extensions, it will proof to be unsuccessful if the number of requests
increase. A possible solution to reduce the number of calculations without
losing performance accuracy can be obtained by implementing a Genetic Al-
gorithm in much the same way as with individual traveling salesman problem
optimisations in Section 8.2.2.2.

8.3.3 UP-PEAK ELEVATOR CAR DISPATCHING

WITHOUT DD

The up-peak tra�c distribution is the most demanding period in a 24 hour
elevator cycle and is often used as the benchmark for comparing elevator dis-
patching algorithms. With reference to Figure: 8.10, Table: 8.7 and Table: 8.8,
the building population capacity is set to 500 people and the elevator con�gura-
tion is de�ned as earlier, see Figure: 8.8. The VRP algorithm from the previous
section is now tested and compared against various elevator car dispatching al-
gorithms. Dispatching algorithm P1-A uses the principle of rotating allocated
elevator cars between processed passenger requests. The idea is to keep all the
elevator cars moving continuously throughout the building, if the requests are
uniformly distributed then the cars will follow suit and vice versa. P1-B refer
to a dispatching algorithm that will provide the next available elevator in the
group. If none of elevator cars are in standby-state then the elevator car which
is least used, based on number of services, is allocated to the new request. P1-
C is similar to P1-B where the available elevator car is dispatched, but if none
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of elevator cars are in standby-state then the dispatching algorithm priori-
tise certain elevator cars. This will result in longer planned routes for certain
elevator cars and fewer total services for other. The baseline algorithms: P1-
A-Baseline, P1-B-Baseline, P1-C-Baseline, process requests in the same way
as their namesake, but simulates the old group supervisory system based on
the same directional logic as de�ned for a single elevator baseline simulation,
see Section: 8.2.1. With Baseline directional logic, the landing �oors are not
prioritised based on a cost function but rather dependent on the direction the
elevator car is traveling.

8.4 ELEVATOR GROUP CONTROL

SIMULATION - WITH DESTINATION

DISPATCHING

8.4.1 DESTINATION DISPATCHING VARIATIONS

The main philosophy for the destination dispatching (DD) system is when
each passenger indicates his/her destination �oor at arrival. The controller
will then designate a speci�c elevator to that passenger, which will not change
throughout the duration of the passenger's trip. This variation is for exam-
ple implemented by Schindler's PORT system. The system does very well in
high up-peak tra�c periods proven by Figure 8.11 and 8.12, but is not ideal
for other tra�c periods. This leads to further variations to be investigated
and compared against the main DD system. The BF-VRP can be extended
to be used with DD control mechanisms as well. It outperformed the best
non-computational DD and is a valid alternative to consider in practical ap-
plication with the aid of GA to reduce computational requirements.

A variation to the main DD system is possible; where the designated elevator
can alternate if a more optimal elevator has been identi�ed by the controller.
This means that while the passenger is waiting at the allocated car changes.
Another variation is similar to the previous one, where the designated car can
change, but in this variation; the passenger is required to physically move from
one elevator to another at some point in his/her journey if so required. For
example midway to the top �oor of a building the passenger can be requested
to swap elevators on route to the destination �oor. This variation shall oc-
cur if it is optimally required by the controller or when the physical elevator
shaft for that elevator does not reach the destination �oor in the case of high
rise buildings or underground facilities. The practical constraint is when the
designated elevator car is changed; the information must be e�ectively com-
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municated to the passenger. The communication can be done by giving each
passenger a temporary number when he/she arrives at the landing and then
the required information is displayed on a notice board. If an Integrated access
control (IAC) system is operational the passenger's information can be used
on the display board instead of a temporary number. If the passenger has
access to any mobile device or Bluetooth enabled device like the latest dig-
ital watch technology, the information can be readily available and updated
to each passenger's device. Another option and perhaps the best is that the
elevator car number can be adjusted as required through a LCD screen above
each elevator. For instance a passengers is directed to use elevator A to go
to �oor 65, but the physical location of designated elevator A can change in
any moment with its LCD display as required. With additional limitations
like not allowing the elevator number to change within 5 minutes of the ele-
vator car arrival, can reduce passenger confusion and abrupt changes by the
controller. With the third variation the passengers can be directed to travel
with whichever elevator is classi�ed as A all the way to the destination, even
if he/she must move between elevators throughout the journey.

8.4.2 VRP DESTINATION DISPATCHING

IMPLEMENTATION

In the case of multiple elevator cars being available for dispatching, we know
that the VRP techniques will attempt to cluster passengers at the same �oors
together as well as �oors which are in close proximity to each other to minimise
cost. Another possibility is to create a pre-established movement distribution
framework for one or more elevator cars. By doing this we can control the
designated elevator car movements and ensure that certain �oors are being
prioritised individually by certain elevator cars and not necessary by the con-
troller that is programmed by the various VRP techniques. Unfortunately by
prioritising certain �oors or passengers; will not have a positive impact on
traveling cost or overall waiting time optimisation. But it will produce a more
intelligent elevator controller that can emphasise customer satisfaction of cer-
tain passengers above overall e�ciency.

A case study for a building population capacity of 500 was simulated with
a few group control algorithms. Names for di�erent control algorithms are
de�ned as follows:

� P1: Refer to without destination dispatching (DD).

� BF VRP: Refer to a Brute Force Vehicle Rooting Problem algorithm or
A, B, C that are other non-computational algorithm generally in use.
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� GA2: Refer to Genetic Algorithm execution for the Traveling Salesman
Problem execution per car or baseline with the old directional philoso-
phies.

P1-BF-VRP-GA2 algorithm refers to the blue coloured plot in Figure 8.10
and executes the VRP computations for the simulated tra�c. The P1-VRP
algorithm performs well in comparison to the other elevator dispatching algo-
rithms without DD in the up-peak state. The improvement percentage, with
reference to the total waiting time, ranges from 7.7 % to 10.9 %. The Base-
line algorithms expectantly lacked performance, with the P1-C elevator car
dispatching algorithm performing the best from the tested non-computational
algorithm generally in use today.

However the VRP algorithm with DD was the most optimal mechanism to
implement in terms of service time. The destination dispatching algorithm
improves total waiting time of the BF-VRP without DD by 21.3 % and 27.4 %
from the baseline. The baseline landing waiting time was improved by 4 % and
the time spend in the car was improved by 36.9 %, see Table 8.7 and 8.8. With
DD-BF-VRP-GA2 the distance required to service the same amount of people
is more, because there are less people in the elevator car at a time. Servicing
less people at a time has resulted in 86 additional services from P1-VRP-BF.
This means that DD is not more energy e�cient than dispatching algorithms
without DD.

The building population is now increased to a 1000 people with the same
elevator con�guration as before. The normal dispatching algorithms were not
able to handle the high population demand versus the destination dispatching
which was still capable of reaching an acceptable performance, see Figure 8.11
and Figure 8.12. Where DD improved total waiting time by 70 % at the cost
of 86 additional services. When tra�c demand reaches a certain level, energy
considerations becomes irrelevant and passenger throughput maximisation be-
comes the dominating factor in elevator performance.
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Figure 8.10: Service Waiting Time Performance for an Up-peak Cycle (Build-
ing Population Capacity of a 500 People).
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8.5 SUMMARY AND CONCLUSIONS

The various machine learning techniques and AI concepts discussed through-
out this Thesis was implemented in this chapter. However to develop, test
and compare any new elevator control philosophies a fully functional testing
platform was created. The virtual environment for the elevator application
includes the relevant building dynamics together with simulated population
distributions. Three di�erent tra�c generators were implemented, namely a
Complete Randomisation method and two Expert System biased population
generators.

In the chapter three di�erent elevator control con�gurations were simulated,
namely single elevator car control, elevator group control without destination
dispatching (DD) and elevator group control with DD. Each con�guration in-
cluded di�erent control algorithms that were compared with each other and
with the newly developed control mechanisms.

In the single elevator car control simulation, we established a baseline from
an actual installation and proposed a few improvements to the control philos-
ophy by means of the Traveling Salesman Problem (TSP) solutions. The TSP
was implemented and tested with a couple of solution attempts, namely with
Brute Force (BF), Genetic Algorithms (GA) and by Simulated Annealing. Ac-
cording to Krumke [16], the best possible online algorithm has a competitive
ratio of 2 and the BF and the GA algorithms implemented in this section com-
pares well with the stated benchmark for a single elevator application, with
2.17 and 2.18 respectively. The baseline control being implemented by the
present con�guration, were proven to be the least competitive with a com-
petitive ratio of 3.55 and an approximation ratio of double that of the best
possible solution. The approach to solve the TSP with Simulated Annealing
was proven to be unsuccessful, because simulated annealing can only be imple-
mented if the cost calculations are between non-spatial variables. For a speci�c
test case we were able to reduce the number of calculation from 24 million by
the BF TSP to about 7 million for the GA TSP. Thus as a result of machine
learning techniques like Genetic Algorithms; the overall number of iterations
and computational time have been reduced considerably and have not e�ected
the performance negatively with comparison to the Brute Force approach.

An actual case study was conducted for Majuba Power Station which has
6 similar elevators spread out over the 6 generating units. Table 8.5 provides
the developed Energy Model results for a 5 day period. The TSP solutions
improved the waiting times at the landings by more than 24% and the total
waiting time by 20% over the actual installation results. However the power
consumption over the 5 days were not reduced by the TSP solutions, because
waiting time had priority over energy savings in this instance. The results
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Figure 8.11: Service Waiting Time Performance for an Up-peak Cycle (Build-
ing Population Capacity of a 1000 People).
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Figure 8.12: Service Passenger Count Performance for an Up-peak Cycle
(Building Population Capacity of a 1000 People).
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from the case study, also provided usage indicators, for example the elevator
car was stationary for 86.3% of the time and the total accumulated distance
reached 46 km with a total power consumption of 277 kWh. With 6 similar
elevators the projected expenditure for a year is around R120 000, with 80
MWh, 1.3 million stops and 13 000 km expected distance travelled. It was
also concluded that by upgrading the actual elevator installation to be able
to handle regenerative braking, the potential energy savings can be more than
28% on average excluding the additional energy that can be reverted back into
the system as well. The actual minimum savings per trip was measured at
10.86% from 20 to 0m and at a maximum of 65.12% from 16m to 20m, which
measured at 31.79kJ and 140.74kJ respectively.

A simulated case study for a building population capacity of 500 was sim-
ulated with a few elevator group control algorithms. During the up-peak state
the VRP without DD improved the baseline waiting time by 8 %. However
the VRP algorithm with DD was the most optimal mechanism to implement
in terms of service time but not in terms of energy e�ciency. The destination
dispatching algorithm improves total waiting time of the BF-VRP without DD
by 21.3 % and 27.4 % from the baseline. With DD-BF-VRP-GA2 the distance
required to service the same amount of people is more, because there are less
people in the elevator car at a time. Servicing less people at a time has re-
sulted in 86 additional services from P1-VRP-BF. This proves that DD is not
more energy e�cient than dispatching algorithms without DD. Destination
dispatching technology does very well in high up-peak tra�c periods proven
by Figure 8.11 and 8.12, but is not ideal for other tra�c periods. This leads
to further variations to be investigated and compared against the main DD
system. The BF-VRP was extended to be used with DD control mechanisms
as well. It outperformed the best non-computational DD in all the other tra�c
periods and is a valid alternative to consider in practical applications with the
aid of GA to reduce computational requirements.
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Chapter 9

CONCLUSIONS AND

RECOMMENDATIONS

9.1 SUMMARY

The work presented in this thesis focused on the potential of machine learning
solutions in relation to the elevator control application, where tra�c �ow is
controlled and directed according to certain control philosophies. The primary
objective for this thesis was to investigate the potential of a machine learning
solution and the relevancy of such technology in an elevator control applica-
tion. The aim was to establish how the research �eld of machine learning and
neural network science can be successfully utilised with the goal of creating an
arti�cial intelligent (AI) controller. The AI controller is to adapt to its existing
state and change its control parameters as required without the intervention
of the user.

The secondary objective for this thesis was to develop an elevator model that
represents every aspect of the real-world application. The model was to im-
prove the accuracy of existing theoretical and simulated models, by modulating
previously unknown and complex variables and constraints. The aim was to
create a complete and fully functional testing platform for developing new ele-
vator control philosophies and testing new elevator control mechanisms.

To achieve these objectives, the main focus was directed to how waiting time,
probability theory and power consumption can be optimally utilised by means
of machine learning solutions. The theoretical background was provided for
these concepts and how each subject can potentially in�uence the decision
making process. The reason why this approach has been di�cult to imple-
ment in the past, is possibly mainly due to the lack of adequate representation
for these concepts in an online environment without the continuous feedback
from an Expert System. As a result of this thesis, the respective online models

138
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for each of these concepts were successfully developed in order to deal with
the identi�ed shortcomings.

The developed online models for projected waiting times, probability networks
and power consumption feedback were then combined to form a new Intelligent
Elevator Control (IEC) structure as opposed to the Expert System approach
mostly used in present computer based elevator controllers.

9.2 THESIS CONTRIBUTION AND

ORIGINAL CONTENT

This thesis reiterated the importance of machine learning techniques in the
�eld of elevator control. An original software structure for computer based ele-
vator group control was introduced to incorporate the developed online models
for projected waiting time, probability networks and power consumption feed-
back. Combined with the computational routing mechanisms, in the form
of the Traveling Salesmen Problem (TSP) and the Vehicle Routing Problem
(VRP) solutions.

This thesis produced a more accurate and reliable approach to the cost function
calculations, mostly used for the TSP and VRP optimisation algorithms. A
Neural Elevator Model was developed to provide accurate power consumption
feedback and running time predictions based on the exact elevator con�gura-
tion responses.

Lastly this thesis developed an original testing platform and an elevator simula-
tor, where existing and new control philosophies can be tested and compared
o�ine. The possibility of an online testing platform was also investigated,
where a more adaptable controller is created, which can learn any new algo-
rithms on the go. The controller has the potential of automatically recon-
solidating when or if such an algorithm should be implemented and if it will
improve its current performance. To implement the online testing platform,
the concept of a Neural Automated Reasoning Head (NARH) was developed.
Any new control algorithm can be fed into the NARH together with its in-
struction set, respond cards and prede�ned conditions. In practice the online
NARH can potentially recognise an input tra�c demand pattern and then
selects the best online control algorithm that it has been trained with. The
chosen algorithm is then applied to the unprocessed requests together with the
requests still in the system to produce the most optimal route.
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9.3 CONCLUSIONS

A brief introduction to elevator control possibilities and background informa-
tion was provided in this thesis. Mention is made to online vs. o�ine strategies
and the implementation thereof. Various machine learning concepts and arti�-
cial intelligence philosophies were introduced with the intent of implementing
some of them in an elevator application. Speci�c references were made to Neu-
ral Networks, Genetic Algorithms and Simulating Annealing.

The general power consumption philosophy is to create an energy model for
our elevator con�guration based on theoretical calculations and actual energy
samples. The Measurement and Veri�cation (M&V) concept was introduced
where di�erent procedures to obtain the actual energy samples were conducted
and compared to each other. The best procedure was proven to be the method
where the measurements are directly taken from the machine room equipment,
where voltage drop can be neglected and additional measurement points are
available. The actual energy samples were then compared to the theoretical
calculations based on the rated nameplate values, as well as the developed
equations. The overall system e�ciency was concluded to be around 49% for
a speci�c test case: 2 speed motor geared traction machine. The exact opera-
tions of the two speed motor were discussed and directly concluded from the
graphical representations and compared to the equivalent single phase circuit
equations. It was realised that each approach to create an accurate energy
model had a major shortcoming that needed to be addressed. With any theo-
retical model, there is always uncertainties and unknown variables, which are
most often neglected and ignored. Thus exact equations are very di�cult to
obtain and to solve. The shortcoming with energy sampling, is that it is not
always feasible to obtain all permutations, for it can be very time consuming
and sometimes di�cult to conduct during busy working environments. For ex-
ample for a 10 storey building, the number of required samples reaches 900 for
all known sample permutations. A solution to the identi�ed shortcomings can
be found with various machine learning techniques, where the required sam-
ples can be severely reduced to only a few representative samples. The actual
samples have been utilised in conjunction with a created Neural Network to
establish true trending and accurate distribution patterns across the di�erent
combinations and load percentages. With the implementation of Neural Net-
works, the unknown variables can be accurately modelled without the need to
de�ne them. The created energy model was then ultimately used to estimate
the energy consumption for any �oor order route and for accurately predicting
the actual running times of an elevator car, without making any assumptions,
as it would have been the case with a theoretical model. The energy model
was successfully incorporated in the TSP and the VRP, where the shortest
route is calculated between the possible �oor orders.
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A probability model has been developed based on the probability philoso-
phy de�nition and various theoretical predictions. The basic philosophy is to
process previous collected tra�c data and to use it to estimate future traf-
�c occurrences to create pre-planned elevator car responses to the probability
of future passenger requests. The probabilistic traveling salesman problem
(PTSP) was de�ned, which is similar to the classical TSP, but with service
probabilities, assuming independence between �oors. The PTSP is attempt-
ing to deal with the uncertainty of routing problems, like nondeterministic
cost calculations and uncertainty in passenger demand at each �oor. Refer-
ences were made to well-known probability theorems like the Bernoulli trail
probability and the Bayesian theorem that connects the respective prior �oor
probabilities with the posterior �oor probabilities. The Poisson arrival prob-
ability function was implemented, with λi de�ned as the average number of
passenger arrivals per �oor in a speci�c period T . The general Poisson prob-
ability density f(x) and the Poisson probability distribution F (x) were used
to provide a distribution model for stochastic passenger arrivals at each �oor.
Through the non-homogeneous Poisson process the directional and up-peak
expected requests could also be established. A technique was developed to
obtain the best suited Poisson rates for each tra�c period with the introduc-
tion of a cost function. The expected distance of travel and the expected car
capacity probabilities also contribute to the TSP algorithm together with the
VRP, to generate a travel route which will reduce overall traveling costs and
maximise throughput. A neural probability model was also developed later in
the thesis, in conjunction with the relevant theoretical references.

The general waiting time philosophy was provided, which states that the con-
troller should be able to minimise overall waiting time of all passengers by
establishing the most optimal route to follow for each car. The concept of
time management was also introduced, instead of just looking at time minimi-
sation techniques. An equation was developed for any projected �oor order
list to provide the expected passenger waiting time and to be used in any TSP
route costing calculations. A waiting time conjoining network was developed,
by implementing radial base function (RBF) techniques. An RBF network is
based on the approximation of an arbitrary continuous function from accumu-
lated data points or from linear superposition of localised basis functions. The
RBF network was used for exact interpolation between waiting times from var-
ious individuals and groups to illustrate the in�uences of accumulated waiting
times across the building. The interpolated samples can be used by the con-
troller to prioritise between which one of the �oors to service next as a result
of the accumulated in�uence from surrounding �oors. It also resulted in the
positioning of cars to be in close proximity to the next �oor to service and the
one after that. The RBF network can also be used for dynamic zoning when
a clustering algorithm is implemented for destination dispatching purposes.
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When it comes to an elevator application, data is not always accurate or com-
plete and it creates a case of imprecision. The issue of uncertainty is addressed
with probability and Expert System theory as discussed in this thesis, but also
with the help of neural networks. Neural networks were implemented to deliver
three types of solutions, which is classi�cation, pattern recognition and predic-
tion. The elevator controller application had a few classi�cation requirements,
for instance to establish the present state of the elevator and the available car
capacity against pre-set arrangements. Other elements that required classi�-
cation were the respective tra�c patterns and passenger demand intensities
during a time period. By using membership functions it was proven that we
can classify the fuzziness or imprecise approximations of any discreet or con-
tinuous elements. Well trained neural networks were used for the membership
mapping of the data points and was e�ectively checked against a test set. With
changing tra�c patterns it is important that the system continuously produce
and implement better solutions to deal with the changing environment. Neu-
ral networks were implemented as a pattern recognition solution to develop
an accurate energy model representation together with accurate running time
modelling against di�erent distances and load variations. Neural Networks
were also utilised to model the passenger distribution across the building and
to predict passenger demand throughout any scalable period of time. Lastly,
automated reasoning principles were introduced and the possibility of an online
testing platform were investigated, which can learn any new algorithms and
automatically reconsolidate when or if such algorithm should be implemented
to improve the ultimate performance of the controller.

The various machine learning techniques and AI concepts discussed throughout
this thesis was implemented in the elevator control simulation chapter, where
a fully functional testing platform was created. The virtual environment for
the elevator application includes the relevant building dynamics together with
simulated population distributions. Three di�erent tra�c generators were im-
plemented, namely a Complete Randomisation method and two Expert System
biased population generators. Three di�erent elevator control con�gurations
were simulated, namely the single elevator car control, elevator group control
without destination dispatching (DD) and elevator group control with DD.
Each con�guration included di�erent control algorithms that were compared
with each other and with the newly developed control mechanisms. In the
single elevator car control simulation, we established a baseline from an actual
installation and proposed a few improvements to the control philosophy by
means of the Traveling Salesman Problem (TSP) solutions. The TSP was im-
plemented and tested with a couple of solution attempts, namely with Brute
Force (BF), Genetic Algorithms (GA) and by Simulated Annealing. According
to Krumke [16], the best possible online algorithm has a competitive ratio of
2 and the BF and the GA algorithms implemented compared well with the
stated benchmark for a single elevator application, with 2.17 and 2.18 respec-
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tively. The baseline control of the actual case study con�guration, were proven
to be the least competitive with a competitive ratio of 3.55 and an approxima-
tion ratio of double that of the best possible solution. The approach to solve
the TSP with Simulated Annealing was proven to be unsuccessful, because
simulated annealing can only be implemented if the cost calculations are be-
tween non-spatial variables. For a speci�c test case we were able to reduce the
number of calculations from 24 million by the BF TSP to about 7 million for
the GA TSP. Thus as a result of machine learning techniques like Generic Al-
gorithms, the overall number of iterations and computational time have been
reduced considerably and have not e�ected the performance negatively with
comparison to the Brute Force approach.

An actual case study was conducted for Majuba Power Station which has
6 similar elevators spread out over the 6 generating units. A simulation model
was created for a 5 day period, where the TSP solutions improved the waiting
times at the landings by more than 24% and the total waiting time by 20%
over the actual installation results. However the power consumption over the
5 days were not reduced by the TSP solutions, because waiting time had pri-
ority over energy savings in this instance. The results from the case study,
also provided usage indicators, for example the elevator car was stationary for
86.3% of the time and the total accumulated distance reached 46 km with a
total power consumption of 277 kWh. With 6 similar elevators the projected
expenditure for a year is around R120 000, with 80 MWh, 1.3 million stops and
13 000 km expected distance travelled. It was also concluded that by upgrad-
ing the actual elevator installation to be able to handle regenerative braking,
the potential energy savings can be more than 28% on average excluding the
additional energy that can be reverted back into the system as well. The ac-
tual minimum savings per trip was measured at 10.86% from 20 to 0m and
at a maximum of 65.12% from 16m to 20m, which measured at 31.79kJ and
140.74kJ respectively.

A simulated case study for a building population capacity of 500 was sim-
ulated with a few elevator group control algorithms. During the up-peak state
the VRP without DD improved the baseline waiting time by 8 %. However
the VRP algorithm with DD was the most optimal mechanism to implement
in terms of service time but not in terms of energy e�ciency. The destination
dispatching algorithm improves total waiting time of the BF-VRP without DD
by 21.3 % and 27.4 % from the baseline. With DD-BF-VRP-GA2 the distance
required to service the same amount of people is more, because there are less
people in the elevator car at a time. Servicing less people at a time has re-
sulted in 86 additional services from P1-VRP-BF. This proves that DD is not
more energy e�cient than dispatching algorithms without DD. Destination
dispatching technology does very well in high up-peak tra�c periods proven
by Figure 8.11 and 8.12, but is not ideal for other tra�c periods. This leads
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to further variations to be investigated and compared against the main DD
system. The BF-VRP was extended to be used with DD control mechanisms
as well. It outperformed the best non-computational DD in all the other tra�c
periods and is a valid alternative to consider in practical applications with the
aid of GA to reduce computational requirements.

9.4 RECOMMENDATIONS FOR FUTURE

WORK

The work presented in this thesis focused more on the potential of machine
learning solutions in relation to the elevator control application, rather than
the actual performance results. It is di�cult to compare any new control
algorithms with the baseline algorithms in practice today, because the exact
control functions are not always public knowledge. However the proposed solu-
tions did show great potential and should be investigated further. Alternative
variations and new machine learning solutions can also be implemented in the
elevator control application and require further investigation. The newly pro-
posed Intelligent Elevator Controller (IEC) software structure is still in the
infant stage and requires further development into a workable model for ac-
tual testing. The online testing platform concept shows great potential and
should be further developed. Lastly the principles and techniques that were
covered by this thesis can be extended to other control applications, especially
for online routing applications. Applications with varying loads can also ben-
e�t from the same energy modelling techniques presented in this thesis, for
example pump con�gurations and wind turbines.
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