
Gabriel Ferreira Teles Gomes

“Indirect Branch Emulation Techniques in Virtual
Machines”

“Técnicas para Emulação de Saltos Indiretos em
Máquinas Virtuais”

CAMPINAS
2014

i

ii

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Maria Fabiana Bezerra Muller - CRB 8/6162

 Gomes, Gabriel Ferreira Teles, 1985-
 G585i GomIndirect branch emulation techniques in virtual machines / Gabriel Ferreira

Teles Gomes. – Campinas, SP : [s.n.], 2014.

 GomOrientador: Edson Borin.
 GomDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Gom1. Sistemas de computação. 2. Máquinas virtuais. 3. Tradução binária

dinâmic. I. Borin, Edson,1979-. II. Universidade Estadual de Campinas. Instituto
de Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Técnicas para emulação de saltos indiretos em máquinas virtuais
Palavras-chave em inglês:
Computer systems
Virtual machines
Dynamic binary translation
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Edson Borin [Orientador]
Anderson Faustino da Silva
Sandro Rigo
Data de defesa: 07-07-2014
Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)

iv

Institute of Computing /Instituto de Computação
University of Campinas /Universidade Estadual de Campinas

Indirect Branch Emulation Techniques in Virtual
Machines

Gabriel Ferreira Teles Gomes1

July 07, 2014

Examiner Board/Banca Examinadora:

• Prof. Dr. Edson Borin (Supervisor)

• Prof. Dr. Sandro Rigo
IC - UNICAMP

• Prof. Dr. Anderson Faustino da Silva
DIN - UEM

• Prof. Dr. Luiz Fernando Bittencourt
IC - UNICAMP

• Prof. Dr. Fernando Magno Quintão Pereira
DCC - UFMG

1Financial support: CNPq (143517/2011-2) 2011–2012 / FAPESP (2011/16468-6) 2012–2013

vii

Abstract

Dynamic binary translation is an emulation technique commonly employed in the im-
plementation of virtual machines. One of the main sources of overhead that hinder the
applicability of dynamic binary translators is that caused by the emulation of indirect
branch instructions. This master thesis describes several techniques that try to improve
the performance and efficiency of indirect branch emulation in efficient virtual machines.
DynamoRIO is one of such machines and it implements features used by several of those
techniques. In this master thesis, we present current implementations of DynamoRIO,
modify its code to include two new techniques (Inline Caching and IBTC) and compare
it with other techniques described in the literature.

ix

Resumo

Tradução dinâmica de binários é uma técnica de emulação comumente utilizada na im-
plementação de máquinas virtuais. Neste contexto, a emulação de saltos indiretos é uma
das principais fontes de perda de eficiência, o que atrapalha a aplicabilidade de tradutores
dinâmicos de binários. Essa dissertação descreve diversas técnicas que tentam melhorar
o desempenho e a eficiência da emulação de saltos indiretos em máquinas virtuais efi-
cientes. O DynamoRIO é uma máquina virtual que se enquadra nessa categoria e que
utiliza características de diversas dessas técnicas. Nessa dissertação, nós apresentamos
a implementação atual do DynamoRIO, modificamos seu código para incluir duas novas
técnicas de emulação de saltos indiretos (Inline Caching e IBTC) e as comparamos com
outras técnicas descritas na literatura.

xi

Contents

Abstract ix

Resumo xi

1 Introduction 1
1.1 Philosophical Approach . 1
1.2 Technical Approach . 1
1.3 Dynamic Binary Translation Commons . 2
1.4 Same-ISA Process Virtual Machines . 3

2 An Overview of the DynamoRIO Infrastructure 4
2.1 The Emulation Manager . 4
2.2 Fragment Lookup . 5
2.3 Translation . 5
2.4 Patching . 6
2.5 Dispatch . 7
2.6 Fragment optimization . 7

3 A Detailed View of DynamoRIO 4.1 9
3.1 Hash Tables . 9
3.2 Fragment Lookup . 10
3.3 Translation . 11
3.4 Patching . 12
3.5 Emission . 12
3.6 Indirect Branch Lookup Routines . 13

4 Software Techniques for Indirect Branch Emulation 15
4.1 Indirect Branches in Static Translators . 15
4.2 Inline Caching . 15
4.3 Speculative Chaining . 16

xiii

4.4 Code expansion . 17
4.5 Indirect Branch Translation Cache . 17
4.6 Sieve . 18
4.7 Fast Returns . 19
4.8 Shadow Stack . 19
4.9 Return Cache . 20
4.10 Indirect Branches in DynamoRIO . 21

5 Implementation of the techniques 23
5.1 Inline Caching . 24
5.2 IBTC . 25

6 Related Work 28

7 Methodology and Results 36

8 Conclusion 43

Bibliography 45
Bibliography . 48

xv

List of Tables

2.1 Breakdown of the slowdown over native execution 8

4.1 Indirect branch emulation techniques . 22

7.1 Hit rates for the IBTC technique . 40

xvii

List of Figures

2.1 Dispatcher: the central hub of DynamoRIO 5
2.2 Fragment translation routines . 6
2.3 Schematic view of DynamoRIO . 7

3.1 Simulation of the open addressing collision mechanism 10
3.2 Internal fragment lookup routine . 11
3.3 Fragment emission loop snippet . 13
3.4 Shared Indirect Branch Lookup Routine 14

4.1 Inline Caching . 16
4.2 Speculative Chaining . 17
4.3 The Sieve . 19
4.4 Fast Returns . 20

5.1 API usage example . 24
5.2 Inline Caching implementation . 25
5.3 IBTC implementation . 27

7.1 Native execution and emulation with DynamoRIO 37
7.2 IBTC and Inline Caching . 38
7.3 Vanilla, Inline Caching, and IBTC . 39
7.4 Hit path removed from IBTC . 41
7.5 Basic blocks and Traces . 42

xix

Chapter 1

Introduction

1.1 Philosophical Approach
Software is the basis of modern society. It comes in many flavors: free or proprietary,
in the form of binaries or source code, simply compiled or optimized, with or without
graphical interfaces, interactive or autonomous. In any case, modern society depends on
it for more efficient management of resources and relations, faster communication and the
advance of science, just to name a few.

These are some of the aspects that make humanity free, as they allow us to control
nature to a certain extent, overcome great distances in less or no time, and create our own
version of what we call World. But the very technology that makes us free, also enslaves
us, because the software that supports all these activities can only run on the hardware
that it has been developed or compiled to.

Fortunately, our freedom is not entirely lost. Virtual machines are our allies in this
battle against the evils of hardware dependency. With virtual machines, programs can
run on computers that they have not been developed to. And although this ability usually
penalizes efficiency, we can employ software techniques to improve it and achieve near-
native execution performance.

1.2 Technical Approach
The key concept behind virtual machines is the act of emulation and the principal methods
used in it are interpretation and dynamic binary translation (DBT). Whether a virtual
machine should employ one or the other as emulation technique is a question of purpose.
As a matter of fact, some virtual machines employ both methods.

1

1.3. Dynamic Binary Translation Commons 2

Interpreters are simpler, more portable, and typically less efficient than dynamic binary
translators [34]. In interpretation, instructions in a program are emulated one at a time, in
a cycle that mimics the behavior of an actual hardware (i.e. instruction fetch, decode, and
execution, all in software). On the other hand, in dynamic binary translation, instructions
are analyzed and translated in chunks, then kept in memory – the “code cache” – for future
re-execution, possibly speeding up the execution.

However, DBT systems can only garner better efficiency when the execution frequency
of the translated code is high enough (i.e. the code is “hot”) to amortize the initial costs
of translation, which are higher than that of interpretation. And even if the translated
code is indeed hot, other factors contribute to the loss of emulation performance. One of
the greatest sources of overhead is the emulation of indirect branches.

Several techniques have been proposed to improve the emulation efficiency of indi-
rect branches. In his Ph.D. thesis [8], Derek Bruening presents the virtual machine Dy-
namoRIO and analyzes the impact on emulation efficiency caused by these techniques.
In this master thesis we present the current implementation of DynamoRIO, we provide
details about the way it emulates indirect branches, and we compare it to other techniques
described in the literature.

1.3 Dynamic Binary Translation Commons
Virtual machines based on DBT translate instructions from the emulated application
(“guest”) in bundles. Possible choices for bundling include dynamic basic blocks, traces,
and superblocks. We collectively refer to them as “fragments”. Dynamic basic blocks are
sequences of instructions that have a single entry-point and end in a single control transfer,
such as branches and calls. Superblocks expand this definition by allowing multiple exit-
points. Traces relax the constraints even further and allow both multiple entries and
exits.

Whichever units of processing a DBT employs, the translator parses the guest code
into fragments, translates, and saves them to the code cache. The complexity of the
actual process of translation depends on the architectures and operating systems of the
guest and the host and on their differences. However, all translators share the fact that
control transfer instructions must be patched in order to keep control within the virtual
machine.

As translated fragments are written to the code cache, the virtual machine transfers
control to them so that they can be executed. Since exits have been previously patched,
control always returns to the emulation manager. The emulation manager is the core of
the virtual machine. It is responsible for switching execution between already translated
fragments, fetching new chunks of guest code, and for translations per se.

1.4. Same-ISA Process Virtual Machines 3

Because guest code is discovered dynamically, fragments are stored in the code cache
in an order that does not reflect the organization of fragments in the guest code. Thus, the
emulation manager is responsible for keeping track of the locations of translated fragments
and of the correspondences between them and the guest code. A map table provides
this functionality and is implemented with hash tables in most virtual machines [34].
Whenever a fragment returns control to the emulation manager, it indicates the next
address that would be executed should the program be running natively. The emulation
manager then searches the map table for an existing translation and then decides if a new
translation must be created or if an existing one may be used to continue execution.

1.4 Same-ISA Process Virtual Machines
User-level programs depend basically on two interfaces to execute: part of the instruction-
set (ISA) and operating system calls. Process virtual machines provide these interfaces
to programs. Potentially, the interfaces presented to the guest application are different
than that used by the virtual machine itself, for instance, an emulator may run on top
of an x86 computer with Windows and present the ARM ISA with Android for mobile
application development.

But sometimes the purpose of a virtual machine is not to provide different interfaces
for the execution of programs, but to optimize and provide introspection for the execution.
DynamoRIO is one of such virtual machines developed for the x86 architecture. There
are two available versions of DynamoRIO, one for the Windows operating system and
other for Linux. In this master thesis we will use DynamoRIO to evaluate the efficiency
of indirect branch emulation techniques.

Our objective is to determine which indirect branch emulation technique, or combi-
nation of techniques, provides the best emulation performance for the SPEC CPU2006
benchmark suite. This master thesis is organized as follows: Chapters 2 and 3 present
the DynamoRIO infrastructure. Chapter 4 describes the functionality of several indirect
branch emulation techniques, then Chapter 5 describes how we implemented some of the
techniques in the code of DynamoRIO. Chapter 6 presents the related work. Finally,
Chapter 7 presents the experimental results and Chapter 8 concludes the master thesis.

Chapter 2

An Overview of the DynamoRIO
Infrastructure

DynamoRIO is a process virtual machine designed for the x86 architecture and is capa-
ble of emulating applications both on Windows and Linux. It employs dynamic binary
translation, rather than interpretation, as its emulation technique. Unlike other dynamic
binary translators (DBT), DynamoRIO spends little time translating from source to tar-
get architecture, since it is a same-ISA virtual machine. As a matter of fact, DynamoRIO
copies and pastes most of the code that it reaches. As usual, translated code is kept in
the code cache for future re-execution.

2.1 The Emulation Manager
The central hub of control flow in DynamoRIO is the “dispatcher”. It is reached at the
beginning of the execution and at every time that control leaves the code cache. Its main
loop is responsible for looking up if the current fragment of code that must be executed
has already been translated, or if it still needs to be. A couple of helper routines perform
this task, and if they fail to locate a fragment, they translate a new one. In either case, the
dispatcher then transfers control to the translated fragment in the code cache. No further
code is reachable in the dispatcher, and it will only be invoked again in the event of a
code cache exit. Figure 2.1 presents a simplified version of the dispatcher, in which the
fragment lookup, translation, and control transfer routines are located. It also contains a
routine that monitors the execution frequency of each fragment of code.

4

2.2. Fragment Lookup 5

1 vo id dispatch (dcontext_t * dcontext) {
2 fragment_t * targetf ;
3 targetf = fragment_lookup_fine_and_coarse (dcontext , ...)
4 do {
5 i f (targetf != NULL) {
6 targetf = monitor_cache_enter (dcontext , targetf);
7 break ;
8 }
9 i f (targetf == NULL)

10 targetf = build_basic_block_fragment (dcontext , ...);
11 } wh i l e (true);
12 dispatch_enter_fcache (dcontext , targetf)
13 ASSERT_NOT_REACHED ();
14 }

Figure 2.1: Dispatcher: the central hub of DynamoRIO

2.2 Fragment Lookup
Upon entry, the dispatcher calls fragment_lookup_fine_and_coarse, the lookup routine.
In DynamoRIO, information about every fragment that has ever been translated is kept in
central hash tables. Each entry in a table is composed of a guest and a translated address,
which form a pair of corresponding targets for control transfer instructions. The guest
address is used as input to the hashing function and as tag. When a match occurs, the
lookup routine returns the address of the corresponding translated fragment. Otherwise,
it returns an invalid address indicating that the fragment of code has never been reached
and that a new translation must be created for it.

2.3 Translation
Whenever the dispatcher is unable to find a translation for some piece of code, it starts
the creation of a new one. The function build_basic_block_fragment accomplishes this
action, as shown in Figure 2.1. The creation of the new translation begins with the partial
decoding of the instructions in the guest application and ends whenever a control transfer
instruction is reached. Since x86 has variable-length instructions, the decoding consists
of determining its opcodes and lengths. No further information, such as operands, needs
to be decoded. Only the raw bits are stored in the internal structures of DynamoRIO.

Every decoded instruction is then added to a linked list that represents the fragment
of code being translated. Even the last instruction – the control transfer – goes into the
list without patching. Figure 2.2 summarizes all the steps involved in the creation of

2.4. Patching 6

1 build_bb_ilist (dcontext_t *dcontext , build_bb_t *bb) {
2 wh i l e (true) {
3 i f (check_for_stopping_point (dcontext , bb))
4 break ;
5 i f (bb -> full_decode) {
6 bb -> cur_pc = decode (dcontext , bb ->cur_pc , bb ->instr);
7 instrlist_append (bb ->ilist , exit_instr);
8 } e l s e
9 bb -> cur_pc = decode_cti (dcontext , bb ->cur_pc , bb ->instr);

10 }
11 i f (!bb -> full_decode) {
12 non_cti = instr_create (dcontext);
13 instr_set_raw_bits (non_cti , non_cti_start_pc , ..);
14 instrlist_append (bb ->ilist , non_cti);
15 }
16 bb -> exit_target = get_ibl_routine (dcontext , ...);
17 instr_t * exit_instr = INSTR_CREATE_jmp (dcontext , bb -> exit_target));
18 instr_set_our_mangling (exit_instr , true);
19 instrlist_append (bb ->ilist , exit_instr);
20 client_process_bb (dcontext , bb);
21 mangle_bb_ilist (dcontext , bb)
22 }

Figure 2.2: Fragment translation routines. The translation of guest code happens in
several phases. This segment of code presents the decoding of instructions from the guest
into the intermediate representation.

a new fragment, apart from the last two instructions, which pertain to the patching of
control transfer instructions.

2.4 Patching
Patching happens potentially several times. First, the list is delivered to clients registered
through the API of DynamoRIO (register_bb_event and register_trace_event) to
handle the event of a fragment creation. There may be zero or more clients registered to
handle these events. After every registered client is given a chance to observe and modify
the instruction list, DynamoRIO calls its own patching routine, mangle_bb_ilist.

The mangling of control transfer instructions guarantees that the guest code is never
executed. For direct branches, DynamoRIO uses the block chaining technique [34], which
modifies all the targets of the branches, so that they always transfer control to translated
fragments of code in the code cache, or back to the emulation manager. Indirect branches,
on the other hand, have unlimited number of targets and may not be patched with the
block chaining technique. There are several types of such indirect control transfer, such as

2.5. Dispatch 7

context switch

BASIC BLOCK CACHE
non-control-flow
instructions

indirect branch
lookup

TRACE CACHE
non-control-flow
instructions

indirect branch
stays on trace?

dispatch

basic block builder trace selectorSTART

Figure 2.3: Schematic view of DynamoRIO

register-indirect branches, returns, and indirect calls. For each of them, DynamoRIO uses
customized routines to determine where control must be transferred to. These routines
are actually very similar to each other, in the sense that they receive a guest application
address and, in order to convert it to a code cache address, they access a hash table of
addresses correspondences.

2.5 Dispatch
Whether a new fragment had to be created, or had been found by the lookup routine, the
dispatcher transfers control to it. Potentially, control will reach the dispatcher again, but
as a new call. This process repeats until there is no more need to exit the code cache (for
instance, if the guest program enters an infinite loop) or until the emulation is terminated.

Figure 2.3 presents a schematic view of the components in DynamoRIO. It graphically
delineates the border between the code cache and the emulator. The components above
the gray block pertain to the DynamoRIO code base, whereas those below, pertain to
code emitted into the code cache.

2.6 Fragment optimization
Initially, DynamoRIO translates dynamic basic blocks. However, it also monitors the
execution of each block in order to identify regions of “hot-code” and further optimize
them. Optimization is achieved with the creation of larger segments of code, known as

2.6. Fragment optimization 8

System type crafty vpr
Basic emulation 300.0x 300.0x
+ basic block cache 26.1x 26.0x
+ link direct branches 5.1x 3.0x
+ link indirect branches 2.0x 1.2x
+ traces 1.7x 1.1x

Table 2.1: Breakdown of the slowdown over native execution

superblocks in the literature, but referred to as traces in the parlance of the DynamoRIO
community.

The trace building mechanism in DynamoRIO starts by marking certain basic blocks
as potential trace heads. Each of them receives a counter that is incremented upon each
execution of that block. When a threshold is reached, that block and every subsequent
block executed is added to the new trace, until an end-of-trace condition is reached [10].

Table 2.1 [10] depicts how the code caching, control transfer optimizations and trace
formation reduces the overhead of DynamoRIO emulation. When none of them are used,
the slowdown over native execution reaches a factor of several hundred. The use of a
fragment cache reduces the slowdown significantly. The linking of fragments and the use
of traces bring the execution times close to native execution.

Chapter 3

A Detailed View of DynamoRIO 4.1

DynamoRIO is a currently active open-source project, and still receives several contribu-
tions from its community of developers. In our project, we used DynamoRIO version 4.1,
which was the current version, by the time of the writing of this Thesis. This chapter
details the indirect branch handling mechanisms present in such version.

3.1 Hash Tables
As stated in Section 2.2, DynamoRIO maintains the correspondences between guest and
host addresses in hash tables. Shared hash tables keep track of the fragments shared
among threads in the emulated application, whereas private tables keep track of private
translations for each thread. Initially, every entry in the hash tables is empty. This means
that the composing fields tag_fragment and start_pc_fragment are set to NULL_TAG (0)
and to HASHLOOKUP_NULL_START_PC, respectively. The emulation manager fills the entries
with newly created fragments. But as it translates more fragments, the table starts to fill
up and entries start to collide. In order to avoid excessive collisions or capacity issues,
DynamoRIO doubles the size of the table, whenever the occupation rate reaches a defined
threshold.

Collisions are handled with the open addressing technique, i.e. colliding elements are
stored in the hash table itself, not in a linked-list. The insertion of an element in the
table begins with the generation of an index with a hash function. Afterwards, the table
is probed to check if that entry is empty or if it has already been occupied. If it is indeed
empty, the new element is simply added to the table, otherwise the index is successively
increased, until an empty slot is found. The increment function verifies if the successive
addresses do not overlap the boundaries of the table, and wrap-around if they do.

Figure 3.1 illustrates the insertion of a sequence of elements that cause a collision and
a wrap-around. Let the hash index be the modulo operation between the tag and the

9

3.2. Fragment Lookup 10

tag data
0: 0 0
1: 0 0

6: 0 0
7: 0 0
8: 0 1

... insert tags 10, 46, 86, and 6

tag data
0: 10 1st
1: 6 4th

6: 46 2nd
7: 86 3rd
8: 0 1

...

sentinel

Figure 3.1: Simulation of the open addressing collision mechanism

constant number 10, and let the order of insertion of elements be 10, 46, 86, and 6. The
first and second insertions do not cause collisions, as they are mapped to the previously
empty slots 0 and 6, respectively. The third and fourth insertions do cause collisions. The
open addressing technique walks through the collision chain and inserts the items in the
first empty slots that it finds, i.e. slot 7 and, after wrapping around the end of the table,
slot 1.

3.2 Fragment Lookup
In DynamoRIO, fragments may be either formed as dynamic basic blocks, or as the struc-
tures described as superblocks in Section 1.3. However, the developers of DynamoRIO
refer to the superblocks as traces. In order to avoid misunderstandings, we will use their
terminology throughout this master thesis. Separate hash tables are used to avoid un-
necessary collisions. Moreover, fragments might be private to a single thread, or shared
among them all. Therefore, the fragment lookup routine must search for the fragments in
all hash tables, according to the following precedence: private traces, private basic blocks,
shared traces, and, finally, shared basic blocks.

The process of looking up a fragment in the hash tables is straightforward. Figure 3.2
presents its code as it appears in DynamoRIO, with only few simplifications to make it
more clear. The code begins by applying the hash function and fetching an entry from
the table, in lines 7 and 8. If the tags match, the routine returns immediately. Otherwise
it walks through the collision chain until the tags match or until it finds an empty entry,
because empty entries indicate that the chain has ended.

Whether a hit occurs or not, a fragment_t structure is always returned. The calling
routine – i.e. the dispatcher – analyzes the returned object. An empty entry indicates

3.3. Translation 11

1 s t a t i c fragment_t
2 hashtable_fragment_lookup (dcontext_t *dcontext , ptr_uint_t tag ,
3 fragment_table_t * htable) {
4 fragment_t fe;
5 uint hindex ;
6
7 hindex = HASH_FUNCTION (tag , htable);
8 fe = htable ->table[hindex];
9 wh i l e (! ENTRY_IS_EMPTY (fe)) {

10 i f (tag == fe.tag)
11 r e t u r n fe;
12 hindex = WRAP_AROUND (hindex + 1, htable);
13 fe = htable ->table[hindex];
14 }
15 r e t u r n fe;
16 }

Figure 3.2: Internal fragment lookup routine. This code is located in the template file
hashtablex.h. We simplified it by removing code used for debug and statistics, and by
replacing template names properly.

that the lookup routine failed to find a translation, thus the dispatcher must start the
creation of a new one. Non-empty entries provide the dispatcher with the host address of
the translated fragment.

3.3 Translation
The translation of fragments happens in several phases: first, instructions are decoded
from the guest code, converted to an intermediate representation (IR), and stored in
instruction lists; afterwards, the instructions are patched by registered clients and by
DynamoRIO itself; finally, the patched instructions are emitted into the code cache. We
shall cover all but the patching of instructions in this section.

A loop performs the decoding of instructions from guest code into the IR. In each
iteration, the loop checks if the fragment must be terminated, or if it can grow further.
Several conditions are verified and force the decoding to stop, such as when too many
instructions have been added to the list, or when a control transfer or invalid instruction
is reached.

The intermediate representation of instructions in DynamoRIO comprises several levels
of codification [10]. Level 0 stores the minimum amount of information. As a matter of
fact, it stores only the raw bits of a sequence of instructions. Level 1 includes information

3.4. Patching 12

about the boundaries between instructions, whereas Level 2 includes both opcode and
eflags information. Operands are only decoded in Levels 3 and 4.

When DynamoRIO decodes instructions from the guest code, it tries to keep the
amount of decoded information to a minimum. Non-control-flow instructions are stored
as a single strip of raw bits (Level 0) in the list. On the other hand, control trans-
fer instructions are decoded up to Level 3, and appended as a single entry in the list.
This behavior can be modified, through the use of the flag full_decode, so that every
instruction is fully decoded (see Figure 2.2).

3.4 Patching
When DynamoRIO finishes the decoding of the fragment, it calls registered clients, so
that they have an opportunity to observe and modify the instruction list. Afterwards,
DynamoRIO applies its own patching routine to the list. As a matter of fact, in this
step DynamoRIO cares only about control transfer instructions. Direct and indirect calls,
far and indirect jumps, system calls, interruptions, and returns, each have a specialized
mangling function. These functions are named in a systematic manner, by adding the
prefix mangle_ to the type of instruction that it patches. For instance, interruptions are
mangled by mangle_interrupt.

When mangling system calls and interruptions, DynamoRIO only checks if their type is
supported. If it is not, DynamoRIO simply removes them and uses a basic interpretation
scheme. Direct calls are converted into a push of the return address. Indirect transfer
of control – i.e. returns, indirect calls, and indirect jumps per se – are removed and
have their target address stored in the register %ecx. This address will be used by the
appropriate routine described in Section 3.6.

3.5 Emission
During code emission, DynamoRIO iterates over the instructions in the instruction list
and emits them to the code cache, as executable code. Figure 3.3 presents the function
set_linkstub_fields, which performs the loop. For every instruction in the list, it
calls instr_encode, which actually writes the executable bytes to the code cache. The
function returns a pointer to the memory address where subsequent emissions should be
placed on.

3.6. Indirect Branch Lookup Routines 13

1 cache_pc set_linkstub_fields (* dcontext , *fragment , *ilist , ..) {
2 cache_pc pc;
3 instr_t *inst;
4
5 pc = FCACHE_ENTRY_PC (fragment);
6 f o r (inst = first(ilist); inst; inst = next(inst))
7 i f (instr_ok_to_emit (inst))
8 pc = instr_encode (dcontext , inst , pc);
9 r e t u r n pc;

10 }

Figure 3.3: Fragment emission loop snippet. Features the function instr_encode, which
is the function that actually writes the executable bytes to the code cache.

3.6 Indirect Branch Lookup Routines
So far, we have presented parts of the code in DynamoRIO that are written in the C lan-
guage. They are responsible for translation, interpretation, code emission, dispatch, and
fragment lookup. However, fragment lookup is critical to the execution performance [8],
thus it has an alternate implementation in DynamoRIO. Instead of invoking the dis-
patcher, the runtime places fast, specialized, lookup routines inside the code cache, en-
abling fragments to directly transfer control to other fragments even when emulating
indirect branches.

Figure 3.4 shows the assembly code of the optimized address translation routine for
indirect jump emulation. This code is responsible for iterating over the hash tables de-
scribed in Section 3.1. In label L0, the hash index is calculated, based on the target
address received through register %ecx. Block L1 checks if the target address matches
the contents of the hash table. If it does, a translation has been found, and the code in
label L2 restores the machine state and transfer the execution control to the translated
fragment. Otherwise, the algorithm iterates over the collision chain until it finds a trans-
lation, or until the chain is over. Block L3 checks for the end of the chain, whereas block
L5 checks if the hash table itself has ended. Blocks L4 and L6 increment the pointer to the
hash table entry and loop around. Blocks L7, L8, L9, L10, L11, and L12 prepare a return
to the dispatcher, because they are reached when a translation is not in the hash table.
Disabling the indirect branch lookup routine and forcing the control to be transferred
back to the dispatcher can be done in runtime, through the use of the runtime switch,
-no_ibl_link.

3.6. Indirect Branch Lookup Routines 14

1 L0:
2 movabs %eax ,%gs:0x0
3 lahf
4 seto %al
5 mov %ebx ,%gs:0x8
6 mov %ecx ,% ebx
7 and %gs:0x48 ,% ecx
8 add %ecx ,% ecx
9 add %ecx ,% ecx

10 add %ecx ,% ecx
11 add %ecx ,% ecx
12 add %gs:0x50 ,% ecx
13 L1:
14 cmp %ebx ,(% ecx)
15 jne <L3 >
16 L2:
17 mov %edi ,%gs:0 x58
18 mov %gs:0x20 ,% edi
19 mov 0x390 (% edi),% edi
20 mov 0x3d0 (% edi),% edi
21 incl 0xf0 (% edi)
22 mov %gs:0x58 ,% edi
23 mov %gs:0x8 ,% ebx
24 jmpq *0x8(% ecx)
25 L3:
26 cmpq $0x0 ,(% ecx)
27 je <L5 >
28 L4:
29 mov %edi ,%gs:0 x58
30 mov %gs:0x20 ,% edi
31 mov 0x390 (% edi),% edi
32 mov 0x3d0 (% edi),% edi
33 incl 0xf8 (% edi)
34 mov %gs:0x58 ,% edi
35 lea 0x10 (% ecx),% ecx
36 jmpq <L1 >
37 L5:
38 cmpq $0x1 ,0x8(% ecx)
39 jne <L8 >
40 L6:
41 mov %edi ,%gs:0 x58
42 mov %gs:0x20 ,% edi
43 mov 0x390 (% edi),% edi
44 mov 0x3d0 (% edi),% edi
45 incl 0x100 (% edi)
46 mov %gs:0x58 ,% edi
47 mov %gs:0x50 ,% ecx
48 jmpq <L1 >

49 L7:
50 mov %ebx ,%gs:0x8
51 mov (% ecx),% ebx
52 L8:
53 mov %ebx ,% ecx
54 mov %edi ,%gs:0 x58
55 mov %gs:0x20 ,% edi
56 mov 0x390 (% edi),% edi
57 mov 0x3d0 (% edi),% edi
58 incl 0xfc (% edi)
59 mov %gs:0x58 ,% edi
60 mov %gs:0x8 ,% ebx
61 add $0x7f ,%al
62 sahf
63 movabs %gs:0x0 ,% eax
64 L9:
65 mov %edi ,%gs:0 x18
66 mov %gs:0x20 ,% edi
67 mov %eax ,0 x38 (% edi)
68 mov %ecx ,0 x2d8 (% edi)
69 movabs $0x71311bd0 ,% eax
70 mov 0x38 (% edi),% ecx
71 mov %ecx ,%gs:0x0
72 mov %gs:0x10 ,% ecx
73 mov %gs:0x18 ,% edi
74 jmpq <out of range >
75 L10:
76 mov %edi ,%gs:0 x58
77 movabs %eax ,%gs:0x0
78 lahf
79 seto %al
80 mov %gs:0x20 ,% edi
81 mov 0x390 (% edi),% edi
82 mov 0x3d0 (% edi),% edi
83 incl 0x108 (% edi)
84 add $0x7f ,%al
85 sahf
86 movabs %gs:0x0 ,% eax
87 mov %gs:0x58 ,% edi
88 jmpq <L9 >
89 L11:
90 jmpq <L0 >
91 L12:
92 jmpq <L10 >
93 nop
94 nop
95 nop
96 nop

Figure 3.4: Shared Indirect Branch Lookup Routine code as emitted to the code cache.

Chapter 4

Software Techniques for Indirect
Branch Emulation

On lowly optimized virtual machines, fragments of translated code always return to the
emulation manager when they reach their ends. They do not try to translate any guest
address into a host address from within the code cache, instead they rely on the emulation
manager. On the one hand, this is the simplest mechanism to handle address translation,
on the other hand, it is also the slowest. Highly optimized dynamic binary translators
implement more advanced techniques of indirect branch emulation. The next sections
describe these techniques.

4.1 Indirect Branches in Static Translators
Virtual machines based on static binary translation, such as VEST and MXR [33], rely
on runtime support to translate indirect branch targets. During the static translation,
indirect jumps are converted into calls to the interpreter. These virtual machines continue
emulation using interpretation, until they reach a point in the program, for which there
is a known translation. Then, they transfer control back to the translations, avoiding the
low performance associated with interpretation. This process repeats indefinitely.

4.2 Inline Caching
The Inline Caching technique, also known as Indirect Branch Inlining [21], or Software
Indirect Jump Prediction [34] replaces any indirect jump instruction with a sequence
of tests that compare the target address of the jump with previously known targets –
for which a translation already exists in the code cache. When a hit occurs, control is

15

4.3. Speculative Chaining 16

1 mov ecx , <target > ; copy target to ecx
2 cmp ecx , <prediction 1> ; compare ecx with a predicted target
3 j e <translation 1> ; jump to the equivalent translation
4 cmp ecx , <prediction 2> ; compare ecx with another predicted target
5 j e <translation 2> ; jump to the equivalent translation
6 jmp <emulation manager > ; return to the emulation manager

Figure 4.1: Inline Caching

transferred to the equivalent translated fragment. Only when every test fail, control is
delivered to the emulation manager. Figure 4.1 illustrates the technique. The amount of
comparisons in the sequence varies across implementations.

Typically, the most frequent targets are inlined, thus the virtual machine must rely on
a profiling mechanism. The profiling phase might happen while code is being interpreted,
such as in virtual machines that use both interpretation and translation, or it might
happen after translation. In the later case, the already translated fragment needs to be
patched when the profiling threshold is reached.

Several authors [10,12,21,36] compare this technique to the Inline Caching mechanism
developed for the object-oriented language Smalltalk-80. In object-oriented languages it
is not always possible to determine, at compile time, to which class an object belongs,
neither which implementation of a method it should call. Deustch [15] describes how
Inline Caching finds the correct address of the implementation of a method in a class,
during runtime.

4.3 Speculative Chaining
The Speculative Chaining technique has few differences when compared to the Inline
Caching (Section 4.2). During translation, every indirect branch is simply converted into
an unconditional jump to the translated fragment of a known target of that branch. Since
it jumps speculatively, i.e. to a destination that is not guaranteed to be the correct one,
the target fragment must assert that the speculation holds. The verification is performed
by a comparison between the target address and a constant stored as immediate in the
code. Figure 4.2 illustrates the process.

This behavior is similar to the branch predictor in modern computer architectures,
in the sense that it tries to guess the destination address, before asserting that it is
correct. Branch predictors take advantage of this eager behavior by being able to fetch
code from the instruction memory earlier, whereas the Speculative Chaining technique
removes indirect jumps from the code, potentially rendering it better guessable by the
branch predictor in the underlying hardware.

4.4. Code expansion 17

...
jmp

predicted target

0x04000

0x04440

Guest code

...
mov ecx, <target>
jmp <translation>

cmp ecx, 0x04440
jne <manager>
...

Translated code
Figure 4.2: Speculative Chaining

4.4 Code expansion
Daisy [18] is a virtual machine based on binary translation that uses a unique technique
to emulate indirect branches. For each byte in the guest application, Daisy reserves N

bytes in memory to hold its translation. For instance, when N = 4 and a guest fragment
is composed of 12 bytes, the translation of that fragment will have 48 bytes available
to be fitted in. In order to convert a guest address into a host address, Daisy can use
Equation 4.1, where n is the target address of the jump, N is the expansion constant and
V LIW_BASE is a pointer to the beginning of the code cache. The ability to calculate
the translation address with a formula avoids all the overhead associated with address
lookups and the maintenance of map tables.

Address = n ∗ N + V LIW_BASE (4.1)

To the extent of our knowledge, no other virtual machine used code expansion. As
a matter of fact, even Daisy abandoned this idea in 2001 [17], on behalf of the more
conventional code cache organizations.

4.5 Indirect Branch Translation Cache
In the Indirect Branch Translation Cache (IBTC) technique, every fragment that ends
with an indirect jump is equipped with a small hash table of mappings between guest

4.6. Sieve 18

and host addresses. It is a cache of the global map table and holds only the particular
addresses that have been accessed by the indirect jump in the fragment. This arguably
reduces the collision rate of the hashing function, possibly leading to faster execution
times. Moreover, the hash table, though small, may also handle collisions. Whether it
uses linked-lists, open-addressing, or other collision handling mechanisms, depends on
implementation choices.

The indirect jumps themselves are converted into segments of code that compare
the target of the jump with the guest address in the table. When they match, control
is transferred to the equivalent host address. Otherwise, the collision chain is iterated
over until a match occurs or until the end of the chain is reached. Only when all the
comparisons fail, the IBTC technique gives up and falls back to the emulation manager.

Since the IBTC is a cache with limited size, indirect jumps with sufficient targets might
hit the maximum capacity of the table. When that happens, and control is transferred
back to the emulation manager, a translation might still exist for the target fragment.
Thus, the dispatcher searches the global map table. Only when the global search fails,
the dispatcher starts the translation of a new fragment.

4.6 Sieve
The Sieve can be thought of as a technique that uses instructions, rather than data
memory, to store the mappings of guest to host addresses. During translation, indirect
branch instructions are converted into jumps to chains of sieve buckets, which are tiny
segments of code responsible for comparing the target address of the indirect jump with
constants stored as immediate in the buckets themselves. When the addresses match,
execution control is transferred to the equivalent translated fragment, which have its host
address stored also as immediate in the code of the buckets.

Sieve buckets are arranged in chains, dynamically allocated as linked-lists. When the
address comparison in a bucket fails, the next bucket receives the control of the execution.
This process continues until a translation is found, or until the end of the chain is reached.
As usual, when the later happens, control is transferred to the emulation manager so that
it decides whether a translation already exists but could not be found by the technique,
or whether a new translation must be created.

The virtual machine maintains several sieve chains, which are selected by the result of
a hash function between the guest address and a predefined mask. Figure 4.3 illustrates
the process and structures related to the Sieve. This behavior is similar to the hash
tables used by IBTC and by the central map tables of DynamoRIO. The differences
reside in the facts that: the Sieve handles collisions with linked-lists, rather than with
open-addressing; it stores data as code; and it converts indirect jumps into direct branches,

4.7. Fast Returns 19

mov ecx, ebx
xor ecx, <mask>
add ecx, <table>
jmp ecx

hash function

jmp <manager>

jmp <sieve chain>
jmp <manager>
jmp <manager>
jmp <manager>

hash table

cmp ebx, <prediction 1>
je <translation 1>
jmp <bucket 2>

sieve bucket 1

cmp ebx, <prediction 2>
je <translation 2>
jmp <manager>

sieve bucket 2

...
cmp ebx, <target>
jmp <hash>

translation 1

...
cmp ebx, <target>
jmp <hash>

translation 2

manager

Figure 4.3: The Sieve

potentially rendering it easier for the branch predictor, on the underlying hardware, to
guess correctly.

4.7 Fast Returns
The Fast Returns technique handles the specific case of the emulation of return instruc-
tions. Typically, return instructions transfer the execution control to the address previ-
ously saved by the corresponding call instruction. This is a guest address, so the return
instruction cannot jump directly, instead it should translate and jump to a host address,
in the code cache. With Fast Returns, call instructions are modified so that they store the
address of the translation, i.e. a host address, instead of the guest address. This allows
of return instructions to be left untouched, during translation. Figure 4.4 illustrates the
technique.

This mechanism benefits performance, because it removes the necessity of an address
lookup. But it poses an issue to the emulation of the program, because it changes the
contents of the guest program memory and might modify the behavior of the execution,
thus violating transparency, and potentially leading to wrong results.

4.8 Shadow Stack
The Shadow Stack technique handles the emulation of return instructions, while still
maintaining transparency. During translation, call instructions are converted into seg-
ments of code that push the guest return address into the program stack, and also push

4.9. Return Cache 20

L1:
L2:

foo:

call foo

...
ret

Guest code

L1’:

L2’:

foo’:

push L2
jmp foo’
...

...
mov eax, ebp-4
<target resolution>
jmp <target>

Simple translation

L1’:

L2’:

foo’:

push L2’
jmp foo’
...

...
ret

Fast Returns

Figure 4.4: Fast Returns

the same guest address along with the host address of the corresponding translation, into
an alternative stack – the Shadow Stack. Since these steps do not touch data from the
application, this technique maintains transparency, avoiding errors in the execution of the
program.

On the other hand, return instructions cannot be left untouched. They are converted
into segments of code that pop an entry from the Shadow Stack, verify if the target
of the return instruction and the entry obtained from the stack match, and jump to the
corresponding translation when they do. When the addresses do not match, the emulation
falls back to the emulation manager, or to other indirect branch emulation technique.

Hazelwood and Klauser [20] describe the same technique, but name it differently, as
software RAS. Hiser et al. [21] also give an alias to the technique, RATS, for Return
Address Translation Stack.

4.9 Return Cache
The Return Cache technique maintains a hash table of recently used return targets, in
order to exploit the regularity of return instructions. During translation, call instructions
are converted into segments of code that store, into the hash table, the host address of
the return target, i.e. the address of a translation in the code cache. Afterwards they
jump to the translated body of the function. Return instructions are also modified so
that they jump to a host address loaded from the hash table, unconsidered of the validity
of the translation.

The hash table is indexed by a function of the call target, rather than of the return
target. Thus, multiple call points to the same function update the same entry with their

4.10. Indirect Branches in DynamoRIO 21

corresponding return site addresses. Return instructions in the function access the same
single entry in the hash table.

Since the return address of a function can change between the call and the return,
such as in recursive calls and in some glibc functions, a validation code is added to the
return site. The validation code compares the guest address obtained during execution
against a constant stored as immediate. The constant represents the guest address that
should have been taken if no changes to the return address had occurred. If the addresses
match, execution may continue, otherwise, a backup mechanism must be used. Usually,
this means falling back to the emulation manager.

4.10 Indirect Branches in DynamoRIO
Bruening showed in his PhD thesis, that DynamoRIO spends only 4.5% of the time in rou-
tines related to the translation of guest to host addresses. In order to do so, DynamoRIO
uses optimized lookup routines to translate the target guest address of indirect jumps into
host addresses in the code cache. During the translation of a fragment, indirect jumps are
converted into segments of code that store the target address of the jump into the register
ecx, then transfer control to the appropriate lookup routine. Section 3.6 describes how
the optimized routines look a target up in the mapping tables. They convert the target
address into a hash index, check for a match, and iterate over the collision chain when
the check misses. When a hit occurs, the routines transfer the execution control to the
target fragment in the code cache. Otherwise, they fall back to the dispatcher.

Each type of indirect branch, i.e. returns, indirect calls, and register-indirect jumps,
have a specialized routine. So do each type of fragment, i.e. basic blocks and traces, and
each level of thread-awareness, i.e. shared and private. Thus, there are several lookup
routines. However, these routines only differ in the fact that each of them searches in a
distinct hash table.

The IBTC is similar to this technique in two aspects. First, they use hash tables to
store the mappings of addresses. Second, they can handle index collisions in the hash
function. On the other hand, they differ in two aspects. First, the lookup routines of
DynamoRIO are shared among indirect branches, thus leading to less code being emitted
to the code cache, whereas in the IBTC, the translation of each fragment has its own in-
lined address resolution code. Second, the IBTC allocates extra memory for each indirect
branch, whereas in DynamoRIO, a single table is shared by several fragments.

The potential advantage of the IBTC technique is that collisions might be less frequent,
due to the fact that each indirect branch has its own hash table, and provided that the
tables are large enough to keep the collision rate low, though they may be smaller than
the global table. This potentially leads to better performance, since hits in the lookup

4.10. Indirect Branches in DynamoRIO 22

Technique Virtual Machine Class
Emulation Manager VEST, MXR, Shade, FX!32,

UQDBT, Bintrans, QEMU
Generic

Inline Caching Daisy, Dynamo Generic
Speculative Chaining Embra, Walkabout Generic
Code expansion Daisy Generic
IBTC Strata, Pin Generic
Sieve HDTrans, Pin Generic
Fast Returns Strata Return-specific
Shadow Stack FX!32, Pin Return-specific
Return Cache HDTrans Return-specific
DynamoRIO’s DynamoRIO Generic

Table 4.1: Indirect branch emulation techniques, their use throughout the literature,
and their classification. A generic technique is capable of handling any type of indirect
branch, whereas return-specific techniques may only be used in the emulation of return
instructions

routines happen faster. On the other hand, DynamoRIO consumes less memory, which
might also lead to better performance, since it produces less pressure in the processor
cache. Chapter 7 analyzes these trends.

Table 4.1 summarizes the techniques described in this chapter and correlates them to
the virtual machines presented in Chapter 6.

Chapter 5

Implementation of the techniques

Section 3.4 presents the points where code patching happens. Clients may register them-
selves to receive the opportunity to modify the code on the event of fragment creation.
When they do, DynamoRIO calls the registered routines before applying its own patches.
Ideally, we would insert our indirect branch emulation techniques using a client, but we
need access to functions from the DynamoRIO code base that are only accessible from
within DynamoRIO itself. Therefore, we apply our modifications right after the clients
return. The API of DynamoRIO provides a rich set of functions to ease code modification.
Five types of functions are particularly useful for our implementation:

Instruction decoding functions (instr_get_target and instr_get_src) ease the
parsing of jump targets. Both return the first operand of a jump instruction, which is its
target.

Instruction creation macros enable the creation of new instructions from scratch.
They receive the machine state as a parameter, followed by the list of desired operands.
For instance, the macro INSTR_CREATE_add creates a new add instruction.

Operand creation macros facilitate the creation of operand structures. These are
particularly useful, because they obviate the need to know details about immediate
and memory pointer representation on the x86 architecture. For instance, the macro
OPND_CREATE_INTPTR automatically determines how many bits are required to represent
an immediate.

Instruction list handling functions make it easy to iterate over the instruction lists
that DynamoRIO uses to form basic blocks and traces. They provide methods to get the
first and last instruction in a list, to append instructions and to remove them.

23

5.1. Inline Caching 24

1 instr_t *instr;
2 opnd_t target ;
3 opnd_t immed;
4
5 instr = instrlist_get_last (ilist);
6 target = instr_get_target (instr);
7 immed = OPND_CREATE_INTPTR (1);
8 dr_insert_clean_call (ilist , instr , routine , 2, target , immed);

Figure 5.1: API usage example.

Clean calls enable the use of code written in C while still executing code from within
the code cache. They prepare the calls by saving the processor context and loading a
new stack pointer. Afterwards they call the desired routines, and upon return, restore
the processor context.

Figure 5.1 shows an example of the use of the API routines. In it, we parse the target
of an instruction, create an immediate operand, and insert a clean call to a routine in C.

The implement of each emulation technique uses these functions and macros, and they
are contained in a single pair of code (.c) and header (.h) files. As a matter of fact, they
are all implemented in the same function, and selected through the use of preprocessor
conditionals. In this project, we evaluate two indirect branch emulation techniques: Inline
Caching and IBTC.

5.1 Inline Caching
The Inline Caching technique, described in Section 4.2, has two implementation parame-
ters: the amount of tests inlined in the code and whether translation happens before or
after the profiling of targets. In this project, we set the number of tests to one and trans-
lation to happen before profiling. As a matter of fact, since DynamoRIO never interprets
guest code, translation must happen before profiling.

Keeping the amount of tests to its minimum has one major advantage: the reduced
time spent in profiling when compared to multiple tests. Bala et al. [3] reduce the effort
applied to profiling with a scheme referred to as MRET (most recently executed tail)
that works as follows. Each loop head in the program is classified as a profiling point
and receives a counter. Every time that point is executed, the counter is incremented.
When a threshold is reached, the current state of the program is said to be hot, i.e.
frequently executed. The key concept behind the idea, is that when a path becomes hot,
it is statistically likely that the previous and next iterations were and will be hot, as well.

5.2. IBTC 25

1 init:
2 <save state (6 intructions)>
3 mov %ebx , % e d i
4 cmp %ebx , (GUEST_SLOT)
5 j ne profile
6 hit:
7 <restore state instructions (6 instructions)>
8 jmp (HOST_SLOT)
9 profile :

10 cmp (COUNTER), $THRESHOLD
11 j a stop
12 j b continue
13 c a l l update ; clean call to update , a function in C.
14 continue :
15 i n c (COUNTER)
16 mov (LAST), %ebx
17 stop:
18 <restore state (6 instruction) and fall back >

Figure 5.2: Inline Caching. Assembly code generated by the translation of a jump in-
struction. The original jump used register %edi as operand. The clean call is actually
composed of 43 instruction, apart from the C routine itself.

We extend this concept to our implementation, by adding a counter to the translation
of each indirect jump. Once the counter reaches a threshold, we use the last seen target
of the jump as a hot target, and we update the Inline Cache with the guest and host
pair of addresses. Figure 5.2 shows the assembly code generated by the translation of an
indirect jump.

5.2 IBTC
The IBTC technique, described in Section 4.5, consists of several hash tables, one for
each fragment, and of code that searches and updates these tables. The size of the table,
as well as the method used to handle collisions in the hash function, are implementation
dependent. As a matter of fact, collision handling is optional.

In our implementation, we set the cache size to 32 slots, and we handle collisions with
the open-addressing technique [14], in exactly the same way that DynamoRIO does with
its global hash tables of mappings, as described in Section 3.1.

Figure 5.3 shows the assembly code generated by the translation of an indirect jump
with the IBTC technique. In label init, the target of the jump is loaded into the registers
ebx and ecx. Afterwards, the hash index is calculated, based on the target address.
Finally, the IBTC table base is added to the hash index and stored into register ecx. Label

5.2. IBTC 26

retry checks if the jump target matches the current entry in the table, then transfers
control accordingly. When a hit occurs, the virtual machine state is restore and control
is transferred to the translation of the targeted fragment, which is stored in 0x4(%ecx),
i.e., the next word in the hash table. When a miss occurs, the code in label miss checks
if the chain is over, and falls back if it is. Otherwise, it must iterate over the collision
chain. Label used increments the table pointer and loops back to the label retry. Label
unused checks if the table itself is over, by checking if the entry is the sentinel, in which
case it also loops back to the beginning of the table and retries.

5.2. IBTC 27

1 init:
2 <save state (6 intructions)>
3 mov %ebx , % e d i
4 mov %ecx , %ebx
5 and %ecx , $MASK
6 s h l %ecx , 3
7 add %ecx , $TABLE_BASE
8 retry:
9 cmp %ebx , (% ecx)

10 j ne miss
11 hit:
12 mov %ebx , 0x4(% ecx)
13 mov %ecx , $HOST_SLOT
14 mov (% ecx), %ebx
15 <restore state instructions (6 instructions)>
16 jmp (HOST_SLOT)
17 miss:
18 cmp (% ecx), $0
19 j e unused
20 used:
21 add %ecx , $8
22 jmp retry
23 unused :
24 cmp 0x4(% ecx), $1
25 j ne fallback
26 sentinel :
27 mov %ecx , $TABLE_BASE
28 jmp retry
29 fallback :
30 c a l l update ; clean call to update , a function in C.
31 <restore state (6 instruction) and fall back >

Figure 5.3: IBTC. Assembly code generated by the translation of a jump instruction. The
original jump used register %edi as operand. The clean call is actually composed of 43
instructions, apart from the C routine itself.

Chapter 6

Related Work

Sites et al. [33] describe VEST and MXR, static binary translators that rely on runtime
support for the resolution of indirect branch targets. When an indirect jump is reached
during the execution of the translated code, a lookup is performed in the static table
of address mappings. If the address is found, control is directly transferred to the cor-
responding host target, which has been previously and statically translated. Otherwise,
the emulation continues using the interpretation technique, until it reaches a point in the
guest code to which a translation is known. The mechanisms used by the address lookup
are not clearly described in the paper.

Cmelik and Keppel [13] present Shade, a virtual machine for code translation and
introspection. It allows the user to monitor the execution of selected types of instructions,
and to select the level of detail the monitoring should be performed. Shade employs
dynamic binary translation to emulate guest code, and uses basic blocks, rather than
traces or superblocks, as its unity of translation. To each basic block, Shade adds a
prologue and an epilogue. The prologue is responsible for code introspection, whereas the
epilogue, for the chaining of basic blocks ended with direct branches. However, indirect
jumps always transfer control back to the emulation manager.

Bedichek [5,6] presents Talisman, a system virtual machine that uses interpretation as
its emulation technique. The main goal of Talisman is to model the memory management
unit (MMU) of processors, thus it keeps track of memory pages, as well as it handles the
conversion from virtual to physical addresses. Talisman pre-decodes pages, thus when a
control transfer instruction is emulated, the target address must be monitored in order
to determine whether the jump stays on the same page, or if it crosses pages boundaries.
When a direct jump stays on the same page, it is said to be an on-page branch. During
pre-decoding, on-page direct branches have their target address converted into a decoded
target. Off-page direct branches, on the other hand, does not receive similar treatment,
because Talisman must also verify if the targeted page is present in memory. Since the

28

29

target of indirect jumps in unknown during pre-decoding, they are treated as off-page
branches. Talisman keeps a target address cache for faster resolution of off-page branch
targets, which is flushed whenever a modification happens to the page tables.

Witchel and Rosenblum [39] present Embra, the first system virtual machine to em-
ploy dynamic binary translation. The authors observed that return instructions were
responsible for a large fraction of the total register-indirect branch count, and that the
register values were often the same, across executions. Thus, Embra uses the Speculative
Chaining technique, which chains blocks ended with indirect jumps as if they ended with
unconditional direct branches. Since the chaining is based on speculation, a validation
code is added to the target block which determines if the speculation was correct. If it
fails, the emulation manager of Embra receives the control of the execution for correct
address resolution.

Ebcioğlu and Altman present Daisy, a dynamic binary translator capable of translating
from several architectures to a VLIW machine. It is a system virtual machine that
efficiently handles interruptions. In its first version [18], the basic unity of translation was
a virtual memory page, which was translated into a region of memory four times larger
than the source. This allows of the use of the Code Expansion technique, described in
Section 4.4. Nonetheless, in 2001, the authors presented the new version of Daisy [17],
which replaced the page as unity of translation with the more conventional basic block.
Moreover, the new version abandoned the concept of Code Expansion and adopted the
Inline Caching technique with multiple, update-able, comparison tiers.

FX!32 [11, 22] is a binary translator that incrementally converts x86 binaries into
Alpha code. On the first time that an application is executed, FX!32 uses only the
interpretation technique. Meanwhile, it monitors the execution and generates profiling
logs. When the application is terminated, a resident process of FX!32 reads the log file,
which contains the addresses of executed basic blocks, and translates these blocks into
native Alpha code. This method does not guarantee that the entire code of the emulated
application is covered by translation, but it reduces the amount of code that must be
interpreted in future executions. Even though the targets of indirect branches do get
profiled and translated, FX!32 does not employ advanced techniques for regular register-
indirect branch target resolution, and always falls back to the emulation manager. On the
other hand, return instructions do have a special target resolution technique based on the
fact that procedure calls on the x86 and Alpha architectures behave in orthogonal ways.
Call instructions are converted into segments of code that push the return address onto
the program stack, in exactly the same way that the x86 hardware does, then jump to the
translated routine using the native call of the Alpha architecture. On Alpha computers,
the call instruction saves the return address into the ra register, which can then be used
by the return instruction. However, some applications modify the return address of a

30

procedure call, but the modification is only visible on the program stack and not in
the ra register. In order to avoid corrupted execution, FX!32 uses the Shadow Stack
technique.

Ung and Cifuentes [37] describe UQDBT, a framework for the generation of dynamic
binary translators. Its main goal is to ease the implementation of translators for diverse
architectures, through the provision of an architecture description language. UQDBT
does not use any special technique for indirect branch emulation, thus always falling back
to the emulation manager.

Bala et al. [3] present Dynamo, a dynamic binary translator that uses traces as its
basic translation unit. Traces enable the removal of return instructions, because a trace
may span the whole body of the function all the way until the return site. In Dynamo,
the target of indirect jumps are resolved by the Inline Caching technique. Additionally,
Dynamo maintains a cache of the global table of mappings, which it consults whenever
the Inline Caching fails. When both methods fail, the control of the execution is returned
to the emulation manager, which performs a full address lookup.

Bruening et al. [9] present a framework for dynamic binary optimization of Windows
applications. Through the use of a set of dynamic-link libraries (DLL), it takes control
of an application and optimizes traces of frequently executed code. Since it translates
between identical guest and host architectures, the actual process of translation consists
merely of the copy and paste of the instructions in a trace. Control transfer instructions
are an exception to this trend and must be patched in order to keep the control of the
emulation within the virtual machine. The framework uses the Speculative Chaining
technique to speed up the emulation of indirect branches. However, when it fails, control is
not immediately transferred to the emulation manager, because the framework maintains,
as well as Dynamo, a cache of the global table of address mappings, which it may use to
resolve the translation from guest to host addresses.

BOA is a VLIW architecture designed for the emulation of PowerPC code at high clock
frequencies [2,19]. The work has been inspired by the Daisy project [18], however its main
goal was to maximize the operating frequency of the VLIW, rather than the instructions
per cycle (IPC) count. BOA employs both interpretation and dynamic binary translation.
During interpretation, it collects profiling information, which it uses to detect frequently
executed portions of the guest application. In BOA, the basic translation unit is a trace
that may span indirect branches by following its most frequently executed target.

Scott et al. [29–32] present Strata, a framework for the generation of dynamic binary
translators. Throughout its development, the authors introduced two novel techniques for
the emulation of indirect branches. The IBTC technique, described in Section 4.5, can be
used for the emulation of any type of indirect branch. Nevertheless, the authors developed
Fast Returns, a technique specialized in the emulation of return instructions. Fast Returns

31

violates the concept of emulation transparency by replacing the guest return address of a
call instruction, with its corresponding translated address. This mechanism yields better
execution performance, but it does not work if the return address gets modified during
the procedure call. The authors argue that this is a violation of the SPARC ABI.

Patel and Lumetta [26] present rePLay, a hardware framework for dynamic binary
optimization of x86 applications. Its hardware can natively execute x86 instructions, and
it does so by forming long sequences of successively executed basic blocks, referred to
as frames. The formation of a frame is preceded by a profiling phase, which counts the
number of times that the targets of direct branches, indirect jumps, or return instructions
are taken. Once a threshold is reached, the selected basic blocks are grouped into a frame
and optimized. Additionally, control transfer instructions are converted into assertions
that verify if the execution stays within the frame, and abort it otherwise. rePLay relies
on speculative hardware in order to be able to recover a precise architectural state when
aborting the execution of a frame. It also features profiling hardware that stores the
execution count of both taken and not-taken path of direct branches. Indirect branches
and return instructions are also monitored, however only the most recently executed target
is stored by the profiling hardware. Thereby, direct and indirect branches are optimized
in a similar way, and since rePLay can natively execute x86 instructions, the resolution
of the target of indirect branches can be done trivially.

Probst [28] describes Bintrans, a dynamic binary translator generator based on an ar-
chitecture description language also developed by the author. The basic unit of translation
in Bintrans is a basic block, and it does not feature any special indirect branch emulation
technique, falling back to the emulation manager when it encounters such control transfer
instructions.

Cifuentes et al. [12] present Walkabout, a framework for the generation of dynamic
binary translators based on an architecture description language. Walkabout generated
translators initially emulate instructions using interpretation and profiling, until they
determine that some portion of the guest application is hot. Afterwards, they form traces
and optimize them for future re-execution. Indirect branches are emulated with the
Speculative Chaining technique.

Bruening et al. [10] present DynamoRIO, a dynamic binary optimization and intro-
spection system, based on Dynamo [3]. Both systems form traces for code optimization
and use the Inline Caching technique to resolve the target of indirect branches. However,
Dynamo inlines a single address comparison per branch, whereas DynamoRIO inlines
multiple comparison tiers. Furthermore, DynamoRIO features a target profiling mech-
anism that is able to update the comparison data, thus increasing the effectiveness of
the technique. In his Ph.D. thesis [8], Bruening discusses the use of the Shadow Stack
mechanism for the emulation of return instructions, but he discards it since it does not

32

provide better execution performance when compared to treating returns as generic in-
direct jumps. Finally, DynamoRIO implements the indirect branch emulation technique
based on central tables of mappings described in Section 3.6. It consists of small lookup
routines that perform an address lookup in the global tables from within the code cache,
and that may be either inlined for each indirect branch or shared among them all. Dy-
namoRIO is a currently active open-source project that received modifications in the last
ten years. A more recent version of it is described in Chapter 3.

Baraz et al. [4] describe IA-32 EL (Execution Layer), a dynamic binary translator that
applies distinct levels of optimization to distinct portions of the guest code and that never
relies on interpretation to detect hot regions. Initially, IA-32 EL treats every basic block
from the guest code as cold, i.e. not frequently executed, thus keeping the optimization
effort to its minimum. Besides, it inlines profiling code into each translation, in order to
monitor the execution frequency. Once IA-32 EL detects hot code, it forms fragments
longer than basic blocks and re-translates them with a higher optimization effort. The
authors state that the targets of indirect branches are resolved with a fast lookup in a
table of mappings, however they do not present details about the lookup, nor about the
profiling mechanisms.

Kumar et al. [24] present an upgrade to Strata [30] based on compile-time profil-
ing. Before the actual execution of the application, training inputs are used, in order
to generate profiling information. Afterwards, when actually emulating the application,
the profiling data is used, thus reducing the overhead related to runtime profiling. When
translating basic blocks, the system already knows, based on the profiling data, one target
of an eventual indirect jump, which it may then follow to form a trace. However, since
the target of the jump may vary during execution, the translator adds a segment of code
that verifies if the current and predicted targets are the same, similarly to the Speculative
Chaining technique.

Bellard [7] describes Qemu, a system virtual machine capable of emulating several
architectures. Qemu employs dynamic binary translation as its emulation technique and
it first converts fragments of code from the guest application into an intermediate repre-
sentation. Afterwards, it converts them into native code. The author states that adding
a new architecture to Qemu is similar to adding a new architecture to the GCC compiler.
The basic unit of translation in Qemu is a basic block and fragments ended with direct
branches may be chained. However, whenever the MMU emulator modifies the page ta-
ble, Qemu flushes all the chaining between basic blocks. The resolution of indirect branch
targets, although not addressed in the paper, always rely on the emulation manager, as
we could identify by code inspection.

Sridhar et al. [35,36] describe HDTrans, a dynamic binary translator that is performance-
efficient, although it does not employ any code optimization technique. One of the reasons

33

for its efficiency is the introduction of two novel indirect branch emulation techniques: the
Sieve, for register-indirect jumps, and the Return Cache for return instructions (see Sec-
tion 4.6 and Section 4.9).

Luk et al. [25] present Pin, a dynamic binary translator tuned for code instrumentation.
Pin employs two mechanisms for indirect branch emulation. First, the code generated by
the translation of a jump instruction iterates over small segments of code, similar to the
buckets in the Sieve technique (see Section 4.6). However the bucket chains are local
to each indirect jump, whereas in the original Sieve technique, the chains are global and
indexed by a hash function. When the bucket chains fail to find an address correspondence,
control is transferred to a routine that looks the target up in local tables, similar to the
IBTC.

Hazelwood and Klauser [20] describe the implementation of the ARM version of
Pin [25], and also discuss the resource shortage faced by developers of translators for
embedded systems, mostly due to memory constraints. Pin uses the IBTC technique for
the emulation of regular indirect branches and the Shadow Stack for return instructions.
However, the ARM architecture does not feature regular call and return instructions. In-
stead it provides a branch-and-link instruction that stores the return address in a link
register and requires returns to be implemented with regular register-indirect jump in-
structions. In order to enable the use of the Shadow Stack, Pin assumes that every indirect
jump might be a return and have them pop an entry from the Shadow Stack, even though
this could remove entries that would be useful later.

Wang et al. [38] present StarDBT, a dynamic binary translator tuned for the emulation
of home and business applications, such as Office Suites and Web Browsers. The authors
used the metrics wall time and duty cycle to characterize the response time of the emulated
applications, since long delays are easily noticed by the users. Since it translates between
similar architectures, namely IA-32 and Intel64, the translation effort may be reduced
to operations as simple as decoding and copying instructions. However, control transfers
must be patched. The emulation manager maintains a global table of guest to host address
translations, as well as a cache of the table. Indirect branches are converted into segments
of inline code that search this table for a correspondence and jump to it when a match
occurs, or fall back to the emulator, otherwise.

Dhanasekaran and Hazelwood [16] present a modification to the Inline Caching tech-
nique, which exploits the temporal locality of indirect branches targets. The authors
argue that for the benchmarks in the SPEC CPU2006 suite, whenever an indirect jump
target is executed, there is a 74% probability that the next execution of that same jump
will target the same address. Their algorithm consists of an update scheme that keeps
the most recently used (MRU) target of an indirect jump in the first position of the com-

34

parison chain of the Inline Cache. The results indicate an improvement in the hit rate of
the first comparison, for all benchmarks.

Payer and Gross [27] describe an adaptive scheme that tries to dynamically select the
best technique for each indirect branch in the emulated application. The scheme adds a
counter per indirect branch, which keeps track of the number of mispredictions caused
by the Inline Caching technique. When this number becomes higher than a threshold,
the Inline Cache is replaced with a hash table lookup. The authors also present a novel
technique, the Shadow Jump Table. In this technique, for the subset of the indirect jumps
that look as if they use a jump table (e.g. jump *addr(, %reg, 4)), a new jump table is
constructed that contains only the addresses of translated fragments. The indirect jumps
themselves are then converted into segments of code that check for the boundaries of the
table and use the new jump table as base.

Jia et al. [23] present SPIRE, an indirect branch emulation technique that completely
removes the translations from guest to host addresses, through the reuse of guest code
space. Indirect branches are left untouched and transfer control to the untranslated
guest code, however the SPIRE technique avoids the execution of such untranslated code
with a page-protection and an instruction-protection mechanism. Initially, every memory
page that holds guest code is marked as not-executable, thus triggering a software trap
whenever control is transferred to it. When that happens, SPIRE calculates the translated
address of the target and inserts a trampoline to it. In order to protect the rest of the
page, SPIRE populates the entire page, apart from the recently installed trampoline, with
software traps (e.g. INT3 instructions on the x86 platform).

Hiser et al. [21] present a detailed analysis of several indirect branch emulation tech-
niques. The authors conclude that no technique is absolutely better than the other, and
that the selection of the best technique is highly dependent on the underlying host archi-
tecture. They analyze the techniques IBTC, Sieve, Inline Caching, Shadow Stack, Return
Cache, and Fast Returns. We summarize their findings for each technique in the following
paragraphs.

Regarding return-specific techniques, i.e. techniques that are specialized in the emula-
tion of return instructions, the authors discovered that the Fast Returns technique always
outperforms the Shadow Stack and the Return Cache. Moreover, Fast Returns introduces
no overhead when compared to native execution. However, it does violate transparency,
as we described in Section 4.7. The remaining return-specific techniques provide poorer
performance results, but do not present the transparency issues that could lead to wrong
emulation results.

For the Sieve technique, the authors concluded that the only parameter that affects
performance is the number of Sieve Buckets available for emulation. They also show that

35

for the UltraSPARC architecture the optimal number of buckets is 1K, whereas for the
Pentium 4 Xeon and AMD Opteron architectures, this number is 16K.

Their analyzes of the Inline Caching technique revealed that an exact optimal number
of inlined targets does not exist, nevertheless, inlining 0 to 3 targets provides the best
performance results. Moreover, the authors discovered that profiling the targets of each
indirect jump before inlining, provides better results than naively inlining the first seen
targets. They also observed that for register-indirect jumps, profiling 30 executions is the
most beneficial option, whereas for indirect calls, inlining the first two targets provides
the best results.

For the IBTC technique, the authors show that inlining the lookup code into each
fragment or calling a shared lookup routine provides similar results. They also show
that handling collisions in the hash table with a replacement strategy, i.e. replacing
old entries with newer ones, yields better hit rates on subsequent queries, but does not
benefit performance. Finally, the authors compare the distributed approach of having
an individual cache with a centralized approach, where all the fragments share the same
hash table, and conclude that a shared table with inlined lookup code provides the best
results.

To achieve such results, Hiser et al. extended the Strata framework to include all
the above mentioned indirect branch emulation techniques. Strata would have been an
invaluable resource to our project, however, we learned that it is not Open Source anymore
and is owned by Zephyr Software LLC.

From the other virtual machines presented in Table 4.1, DynamoRIO, QEMU, and
HDTrans were still good options, because their source code is indeed available and they
run on x86 machines. The remaining virtual machines are either proprietary software or
designed for other architectures.

The disadvantage of QEMU lies on the fact that it adds more overhead to the emulation
than HDTrans and DynamoRIO do, thus potentially hindering our ability to evaluate the
gains provided by the indirect branch emulation techniques. The disadvantage of HDTrans
over QEMU and DynamoRIO lies on the facts that it does not have a currently active
community of developers and our efforts to make it work failed. Therefore, we decide to
use DynamoRIO. In our work, we analyze the IBTC and Inline Caching techniques and
compare them to the unique indirect branch emulation technique used in DynamoRIO.

Chapter 7

Methodology and Results

In this project we used SPEC CPU2006 [1] to evaluate DynamoRIO and the techniques
Inline Caching and IBTC. SPEC CPU2006 is a benchmark suite composed of compute-
intensive applications. It is designed to stress the system’s processor, memory subsystem,
and compiler. The applications in the suite are classified as integer or floating-point inten-
sive. Finally, the suite provides automated scripts to compile and execute the benchmarks.
In this project we use the integer subset and the automated scripts.

For each of the experiments described in Chapter 7, we prepare the environment for
the execution of the benchmarks by isolating the machine from the network, setting the
processor power states to maximum performance, and clearing eventual zombie processes.
Then, we invoke the automated scripts from SPEC CPU2006, which run each application
three times, with the reference input.

After the experiments are run, we collect the data produced by the automated scripts,
which automatically select which of the three iterations should be reported. The authors
of SPEC advocate that the median value of several runs is the most statistically repre-
sentative of the true central index of dispersion in computer science experiments [1]. We
abide to their recommendation.

All the experiments are run in a single machine, featuring a pair of Intel E5645 proces-
sors at 2.4 GHz, 32 GiB’s of RAM, and a 64-bits Ubuntu LTS 10.04 operating system. We
compile both SPEC and DynamoRIO with the GNU/GCC compiler, in its 4.4.3 version,
using the -O2 optimization flag.

The remainder of this chapter describes how we evaluate the techniques described in
Chapter 5, and DynamoRIO itself. We also present our experiments and their results, as
well as our analysis of the obtained results.

Figure 7.1 shows the overhead caused by emulation with DynamoRIO 4.1, in its vanilla
version, i.e. without modifications. DynamoRIO can be thought of as a Dynamic Binary
Optimizer, since it does not translate code between different architectures. Regardless,

36

37

401
.bz
ip2

429
.m
cf

445
.go
bm
k

456
.hm

me
r

462
.lib

qu
an
tum

464
.h2
64r
ef

471
.om

net
pp

473
.as
tar

483
.xa
lan
cbm

k

400

600

800

1,000

1,200
Ru

nn
in
g
tim

e
(s
)

Native Vanilla

Figure 7.1: Native execution and emulation with the vanilla version of DynamoRIO.

it adds overhead to the execution of all but one of the integer benchmarks in the SPEC
CPU2006 suite, due to indirect branches and eflag changes handling [10]. We set this
version of DynamoRIO as our baseline.

Initially, we compare the execution performance of the techniques IBTC and Inline
Caching. We do so by implementing them in the DynamoRIO framework and analyzing
the execution times of the benchmarks. We implemented two versions of the IBTC tech-
nique: in the first, the address lookup is performed inside a function written in C, whereas
in the second, it is implemented using the helper functions described in Chapter 5, thus
emitting code directly into the code cache. The later approach should benefit from the
fact that it does not need to prepare the execution of the C code, which involves saving
and restoring the context, as well as loading a safe and transparent stack pointer.

Figure 7.2 shows that the C version of the IBTC penalizes performance, when com-
pared to the version which emits code directly into the code cache, on four benchmarks:
hmmer, h264ref, omnetpp, and xalancbmk. It also shows that the Inline Caching technique
provides better results than the IBTC for the same benchmarks. Finally, it shows that for
the other benchmarks the resulting running times do not differ as much. We know that
the overhead in the C version is caused by the additional steps related to the save and
restore of the processor state, because nothing else has changed between the two versions
of the IBTC. But we cannot conclude anything about the differences between the IBTC

38

401
.bz
ip2

429
.m
cf

445
.go
bm
k

456
.hm

me
r

462
.lib

qu
an
tum

464
.h2
64r
ef

471
.om

net
pp

473
.as
tar

483
.xa
lan
cbm

k

1,000

2,000

Ru
nn

in
g
tim

e
(s
)

Inline Caching IBTC in the code cache IBTC in C

Figure 7.2: Emulation of indirect branches with the Inline Caching and IBTC techniques.
The Inline Caching implementation emits code directly into the code cache. One version
of the IBTC is also implemented that way, but it also has a version that calls functions
written in C.

and the Inline Caching versions. Before we make such conclusions, we shall examine how
the techniques Inline Caching and IBTC behave compared to the base implementation of
DynamoRIO, i.e. the vanilla version. Since the C version of the IBTC introduces higher
overhead, we discard it from our subsequent experiments.

Since DynamoRIO also implements its own indirect branch target resolution technique,
we compare its base implementation with the addition of the IBTC and Inline Cache
techniques. Surprisingly, the addition of the two never benefit performance. As a matter
of fact, they introduce overheads of up to 530%, as shown in Figure 7.3. We argue that the
addition of the Inline Cache and IBTC techniques to the DynamoRIO code base can be
thought of as an overlaying of techniques. Thus, they might interfere with other parts of
DynamoRIO, such as the hotness prediction algorithms, rather than just with its indirect
branch emulation technique.

Our first conjecture about the source of the overhead was that the caching of entries
in the local storage of the IBTC technique was not sufficiently large to hold the several
targets that an indirect jump might have, and that this could lead to the poor performance
results. In order to remove this uncertainty, we measured the hit rate of the techniques,
finding results as high as 99.99% and as low as 91.54%. Table 7.1 shows the hit rates and

39

401
.bz
ip2

429
.m
cf

445
.go
bm
k

456
.hm

me
r

462
.lib

qu
an
tum

464
.h2
64r
ef

471
.om

net
pp

473
.as
tar

483
.xa
lan
cbm

k

1,000

2,000

Ru
nn

in
g
tim

e
(s
)

Vanilla Inline Caching IBTC

Figure 7.3: Running times of the overlaying of the Inline Caching and IBTC techniques
to DynamoRIO.

the total number of executed indirect jumps. The lowest hit rate, for libquantum, happens
due to the reduced number of total indirect jumps executed, since the first execution of
each jump always misses. Therefore, the lack of space in the IBTC tables does not cause
low hit rates.

Still uncertain about the causes of the poor performance, we modified our implementa-
tion in order to determine if the lookup code was the sole responsible for the surprisingly
high overhead in the benchmarks hmmer, h264ref, omnetpp, and xalancbmk. The mod-
ification consists of removing the hit path of the IBTC technique, i.e. we still look the
guest target address up in the local caches, but we never follow the corresponding host
address. Even if a hit occurs, we fall back to DynamoRIO, as if we had not found the
target. Figure 7.4 shows that the running times of the four benchmarks were reduced
after this modification, which indicates that something else, other than the cache lookup
and update times, is also hindering performance.

Regardless, not following the hit path did not remove all the overhead from the emu-
lation, although it did remove the largest part of it. This means that the time spent in
the address lookup and in the table update is not negligible. Table 7.1 shows the absolute
number of indirect jumps executed by the benchmarks. Unsurprisingly, the benchmarks

40

Benchmark Misses Hits Hit rate (%)
401.bzip2 3287 5265054 99.93
429.mcf 133 1807573 99.99
445.gobmk 4717 13672112 99.96
456.hmmer 2165 719647704 99.99
462.libquantum 47 509 91.54
464.h264ref 6268 151560350 99.99
471.omnetpp 9350 3527523910 99.99
473.astar 1490 11007350 99.98
483.xalancbmk 9854 2800900967 99.99

Table 7.1: Hit rates for the IBTC technique

hmmer, omnetpp, and xalancbmk are the benchmarks with the highest count of indirect
jumps.

We based our second conjecture about the source of the overhead on the ability that
DynamoRIO has to translate code either as basic blocks or as traces. Section 3.2 describes
how DynamoRIO forms fragments of code from the guest application. First, it forms
basic blocks, which have a single entry-point and a single exit-point. Afterwards, when
it determines that a basic block is hot, it starts to form optimized traces, which are
collections of sequential basic blocks. We formulated that since we store references to
basic blocks in the local storage of the IBTC and Inline Caching techniques, we will never
jump to the optimized translations. DynamoRIO, on the other hand, actively updates its
global tables of mappings on the event of trace creation, thus benefiting from the more
optimized code.

There are two modifications to the IBTC and Inline Caching techniques that may pre-
vent them from using these unoptimized fragments. First, on the event of trace creation,
we could examine all the local caches, and replace old references to basic blocks with
references to newly created traces. Second, we could store only traces in the local caches.

The first approach diverts from the concept behind the IBTC and the Inline Caching.
These techniques act passively towards the event of basic block and trace creation, i.e.
they only update each local storage when the corresponding indirect jump is executed, and
only when a hit does not occur. The second approach, on the other hand, does not alter
the behavior of the techniques. In any case, our implementation of both aproaches shows
that they also do not provide performance enhancements over the base implementation
of DynamoRIO. Figure 7.5 shows that denying the insertion of basic blocks references in
our IBTC tables does reduce the overhead introduced by our implementation, but it does

41

401
.bz
ip2

429
.m
cf

445
.go
bm
k

456
.hm

me
r

462
.lib

qu
an
tum

464
.h2
64r
ef

471
.om

net
pp

473
.as
tar

483
.xa
lan
cbm

k

1,000

2,000

Ru
nn

in
g
tim

e
(s
)

Vanilla IBTC IBTC without hit path

Figure 7.4: Hit path removed from IBTC.

not yet fully explain the loss of performance when compared to the base implementation
of DynamoRIO.

Finally, we observe how overlaying DynamoRIO with the IBTC and the Inline Caching
techniques modifies the creation of traces. When we jump to the basic blocks pointed to
by the hit path of either the IBTC or the Inline Caching, we modify the addresses that get
selected as trace heads, as described in Section 2.6. This means that our implementation
of the Inline Caching and IBTC techniques has a side-effect on the hotness prediction
algorithms of DynamoRIO, which is fundamental to the performance of DynamoRIO [8].

We tried to tackle this issue with the use of the runtime options, disable_traces and
no_indirect_stub. However, the first option caused errors in most of the benchmarks,
whereas the second did not alter the results. We also tried to solve the issue by removing
from our caches the same fragments that DynamoRIO removes from theirs while building
traces. Several points in the code base of DynamoRIO perform fragment removal. We
inserted callbacks to our code in all of them, but this did not modify the performance
of the execution. Our last option would be to fully understand the hotness prediction
algorithms of DynamoRIO, and modify our techniques in order to take advantage from
it. Unfortunately, we could not follow this line of work, due to time constraints.

Our experiments helped reveal how two parts of the DynamoRIO code base (indirect
branch emulation and hotness prediction algorithms), that are apparently independent,

42

401
.bz
ip2

429
.m
cf

445
.go
bm
k

456
.hm

me
r

462
.lib

qu
an
tum

464
.h2
64r
ef

471
.om

net
pp

473
.as
tar

483
.xa
lan
cbm

k

1,000

2,000

Ru
nn

in
g
tim

e
(s
)

Vanilla IBTC (BBs and traces) IBTC (only traces)

Figure 7.5: Reduced overhead obtained by denying the insertion of Basic Blocks (BBs)
into the IBTC caches.

interfere with each other. We have shown how the indirect branch emulation technique em-
ployed by DynamoRIO correlates with the techniques described in the literature. Finally,
our experiments have enabled a deeper understanding of the code base of DynamoRIO.

Chapter 8

Conclusion

In this master thesis, we evaluate DynamoRIO and the indirect branch emulation tech-
niques Inline Caching and IBTC. DynamoRIO is a same-ISA process virtual machine that
employs dynamic binary translation as its emulation technique. In order to provide opti-
mized, near-native, execution performance, it features hotness prediction algorithms, as
well as two levels of translation complexity (basic blocks and optimized traces), and op-
timized techniques to transfer control between fragments without leaving the code cache.

We have experimented with register-indirect control transfers emulation techniques,
and observed that the built-in technique of DynamoRIO presents a major difference when
compared to the techniques Inline Caching and IBTC. The later techniques maintain
the mapping of guest to host addresses in small caches, individual to each indirect jump
location, whereas, DynamoRIO maintains global tables of mappings.

Initially, we thought that the distributed nature of the Inline Caching and IBTC caches
could benefit the performance of the indirect jumps emulation, because collisions in the
local hash tables would be less frequent than with shared global tables, thus leading to
faster hit times. But DynamoRIO solves this potential issue by increasing the size of its
global tables, whenever they reach a defined occupation threshold.

Moreover, since DynamoRIO translates code in two levels of complexity, it should
update the mapping tables whenever it switches between basic blocks and traces. The
centralized nature of the global tables of DynamoRIO is better suited for this task, because
it reduces the effort required by updates. When a basic block is converted into a trace,
DynamoRIO must search and update an entry only in its global mapping tables.

On the other hand, in the techniques Inline Caching and IBTC, a full update would
require searches in every table, which are as many as the total number of indirect jumps
executed by the guest application. Moreover, the Inline Caching and IBTC techniques
were primarily developed for dynamic binary translators with a single level of transla-
tion complexity. Hence, they are expected to act passively towards the translation of

43

44

fragments, and only actively update their entries on the event of the execution of the
indirect branch. We modified the IBTC technique by denying basic blocks in its local
caches, which did improve the execution performance, but still did not beat the built-in
technique of DynamoRIO.

Finally, our implementation of the Inline Caching and IBTC techniques produced an
undesired side-effect on the hotness prediction algorithms of DynamoRIO. By directly
jumping to the targeted basic blocks of indirect jumps, they modify the portions of the
guest application that are selected as trace heads, leading to poorer performance results.

Nonetheless, this master thesis have qualitatively described how DynamoRIO solves
potential issues posed by the emulation of indirect branches. It provides an up-to-date
documentation of a recent version of the framework, as well as it describes how the tech-
niques employed by DynamoRIO correlate with that described in the literature, rendering
it easier for future development of the research.

Bibliography

[1] SPEC: Standard Performance Evaluation Corporation.
http://spec.org.

[2] Erik Altman, Michael Gschwind, Sumedh Sathaye, Stephen Kosonocky, Arthur
Bright, Jason Fritts, Paul Ledak, Craig Agricola, and Zachary Filan. BOA: the
architecture of a binary translation processor. Technical report, IBM Research, 2000.

[3] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: a transparent
dynamic optimization system. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2000.

[4] Leonid Baraz, Tevi Devor, Orna Etzion, Shalom Goldenberg, Alex Skaletsky, Yun
Wang, and Yigal Zemach. IA-32 Execution Layer: a two-phase dynamic translator
designed to support IA-32 applications on Itanium-based systems. In Proceedings of
the IEEE/ACM International Symposium on Microarchitecture, 2003.

[5] Robert Bedichek. Some efficient architecture simulation techniques. In Proceedings
of the USENIX Technical Conference, 1990.

[6] Robert C. Bedichek. Talisman: fast and accurate multicomputer simulation. In
Proceedings of the ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, 1995.

[7] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In Proceedings of
the USENIX Annual Technical Conference, 2005.

[8] Derek Bruening. Efficient, transparent, and comprehensive runtime code manipula-
tion. PhD thesis, Massachusetts Institute of Technology, 2004.

[9] Derek Bruening, Evelyn Duesterwald, and Saman Amarasinghe. Design and imple-
mentation of a dynamic optimization framework for Windows. In Proceedings of the
ACM Workshop on Feedback-Directed and Dynamic Optimization, 2000.

45

BIBLIOGRAPHY 46

[10] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infrastructure for
adaptive dynamic optimization. In Proceedings of the International Symposium on
Code Generation and Optimization, 2003.

[11] Anton Chernoff, Mark Herdeg, Ray Hookway, Chris Reeve, Norman Rubin, Tony
Tye, S. Bharadwaj Yadavalli, and John Yates. FX!32: a profile-directed binary
translator. IEEE Micro, 1998.

[12] Cristina Cifuentes, Brian Lewis, and David Ung. Walkabout: a retargetable dy-
namic binary translation framework. In Proceedings of the IEEE Workshop on Binary
Translation, 2002.

[13] Bob Cmelik and David Keppel. Shade: a fast instruction-set simulator for execution
profiling. In Proceedings of the ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, 1994.

[14] Thomas Cormen, Clifford Stein, Ronald Rivest, and Charles Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2001.

[15] L. Peter Deutsch and Allan M. Schiffman. Efficient implementation of the Smalltalk-
80 system. In Proceedings of the ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, 1984.

[16] Balaji Dhanasekaran and Kim Hazelwood. Improving indirect branch translation in
dynamic binary translators. In Proceedings of the ASPLOS Workshop on Runtime
Environments, Systems, Layering, and Virtualized Environments, 2011.

[17] Kemal Ebcioglu, Erik Altman, Michael Gschwind, and Sumedh Sathaye. Dynamic
binary translation and optimization. IEEE Transactions on Computers, 2001.

[18] Kemal Ebcioğlu and Erik R. Altman. DAISY: dynamic compilation for 100% archi-
tectural compatibility. In Proceedings of the ACM IEEE International Symposium
on Computer Architecture, 1997.

[19] Michael Gschwind, Erik R. Altman, Sumedh Sathaye, Paul Ledak, and David Ap-
penzeller. Dynamic and transparent binary translation. Computer, 2000.

[20] Kim Hazelwood and Artur Klauser. A dynamic binary instrumentation engine for
the ARM architecture. In Proceedings of the International Conference on Compilers,
Architecture and Synthesis for Embedded Systems, 2006.

BIBLIOGRAPHY 47

[21] Jason D. Hiser, Daniel W. Williams, Wei Hu, Jack W. Davidson, Jason Mars, and
Bruce R. Childers. Evaluating indirect branch handling mechanisms in software
dynamic translation systems. ACM Transactions on Architecture and Code Opti-
mization, 2011.

[22] Raymond J. Hookway and Mark A. Herdeg. DIGITAL FX!32: combining emulation
and binary translation. Digital Technical Journal, 1997.

[23] Ning Jia, Chun Yang, Jing Wang, Dong Tong, and Keyi Wang. SPIRE: Improv-
ing Dynamic Binary Translation through SPC-Indexed Indirect Branch Redirecting.
In Proceedings of the International Conference on Virtual Execution Environments,
2013.

[24] Naveen Kumar, Bruce R. Childers, Daniel Williams, Jack W. Davidson, and
Mary Lou Soffa. Compile-time planning for overhead reduction in software dynamic
translators. International Journal of Parallel Programming, 2005.

[25] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instrumentation. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, 2005.

[26] Sanjay J. Patel and Steven S. Lumetta. rePLay: a hardware framework for dynamic
optimization. IEEE Transactions on Computers, 2001.

[27] Mathias Payer and Thomas R. Gross. Generating Low-Overhead Dynamic Binary
Translators. In Proceedings of the Annual Haifa Experimental Systems Conference,
2010.

[28] Mark Probst. Fast machine-adaptable dynamic binary translation. In Proceedings of
the IEEE Workshop on Binary Translation, 2001.

[29] Kevin Scott and Jack Davidson. Strata: a software dynamic translation infrastruc-
ture. Technical report, University of Virginia, 2001.

[30] Kevin Scott, Jack Davidson, and Kevin Skadron. Low-overhead software dynamic
translation. Technical report, University of Virginia, 2001.

[31] Kevin Scott, Naveen Kumar, Bruce R. Childers, Jack W. Davidson, and Mary Lou
Soffa. Overhead reduction techniques for software dynamic translation. In Proceed-
ings of the IEEE International Parallel and Distributed Processing Symposium, 2004.

BIBLIOGRAPHY 48

[32] Kevin Scott, Naveen Kumar, Siva Velusamy, Bruce Childers, Jack Davidson, and
Mary Lou Soffa. Retargetable and reconfigurable software dynamic translation. In
Proceedings of the International Symposium on Code Generation and Optimization,
2003.

[33] Richard L. Sites, Anton Chernoff, Matthew B. Kirk, Maurice P. Marks, and Scott G.
Robinson. Binary translation. Communications of the ACM, 1993.

[34] James E. Smith and Ravi Nair. Virtual Machines: Versatile Platforms for Systems
and Processors. Morgan Kaufmann, 2005.

[35] Swaroop Sridhar, Jonathan S. Shapiro, and Prashanth P. Bungale. HDTrans: a low-
overhead dynamic translator. ACM SIGARCH Computer Architecture News, 2007.

[36] Swaroop Sridhar, Jonathan S. Shapiro, Eric Northup, and Prashanth P. Bungale.
HDTrans: an open source, low-level dynamic instrumentation system. In Proceedings
of the International Conference on Virtual Execution Environments, 2006.

[37] David Ung and Cristina Cifuentes. Machine-adaptable dynamic binary translation. In
Proceedings of the ACM SIGPLAN Workshop on Dynamic and Adaptive Compilation
and Optimization, 2000.

[38] Cheng Wang, Shiliang Hu, Ho-seop Kim, Sreekumar Nair, Mauricio Breternitz, Zhi-
wei Ying, and Youfeng Wu. StarDBT: an efficient multi-platform dynamic binary
translation system. In Proceedings of the Conference on Advances in Computer Sys-
tems Architectures, 2007.

[39] Emmett Witchel and Mendel Rosenblum. Embra: fast and flexible machine simula-
tion. In Proceedings of the ACM SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems, 1996.

	Abstract
	Resumo
	Introduction
	Philosophical Approach
	Technical Approach
	Dynamic Binary Translation Commons
	Same-ISA Process Virtual Machines

	An Overview of the DynamoRIO Infrastructure
	The Emulation Manager
	Fragment Lookup
	Translation
	Patching
	Dispatch
	Fragment optimization

	A Detailed View of DynamoRIO 4.1
	Hash Tables
	Fragment Lookup
	Translation
	Patching
	Emission
	Indirect Branch Lookup Routines

	Software Techniques for Indirect Branch Emulation
	Indirect Branches in Static Translators
	Inline Caching
	Speculative Chaining
	Code expansion
	Indirect Branch Translation Cache
	Sieve
	Fast Returns
	Shadow Stack
	Return Cache
	Indirect Branches in DynamoRIO

	Implementation of the techniques
	Inline Caching
	IBTC

	Related Work
	Methodology and Results
	Conclusion
	Bibliography
	Bibliography

