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Abstract 

Hydrocyclones are stationary separating machines that separate materials based on 

centrifugal separation and are widely used in chemical engineering and mineral processing 

industries. Their design and operation, compact structure, low running costs and versatility all 

contribute to their applications in liquid clarification, slurry thickening, solid washing and 

classification. With any of these operations, the overall profitability of the process relies on 

the effective control of the process equipment. However, in practice, hydrocyclones are 

difficult to monitor and control, owing to the complexity and difficulty in measuring internal 

flows in the equipment.  

Several studies have indicated that hydrocyclone underflow images can be used to monitor 

process conditions. The research described in this thesis considers the use of image analysis 

to monitor particle size and solids concentration in the underflow discharge of a 

hydrocyclone. 

The experimental work consisted of laboratory and industrial-based case studies. The 

laboratory cyclone used was a 76 mm general laboratory cyclone. A Canon EOS 400D digital 

camera was used for the underflow imaging. Image features such as pixel intensity values, 

underflow discharge width and grey level co-occurrence matrix (GLCM) were extracted from 

the images using MATLAB Toolbox software.  

Linear discriminant analysis (LDA) and neural network (NN) classification models were used 

to discriminate between different PGM ore types based on features extracted from the 

underflow of the hydrocyclone. Likewise, multiple linear regression and neural network 

models were used to estimate the underflow solids content and mean particle size in the 

hydrocyclone underflow. 

The LDA model could predict the PGM ore types with 61% reliability, while the NN model 

could do so with a statistically similar 62% reliability. The multiple linear regression models 

could explain 56% and 40% of variance in the mean particle size and solids content 

respectively. In contrast, the neural network model could explain 67% and 45% of the 

variance of the mean particle size and solids content respectively. For the industrial system, a 
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100% correct classification was achieved with all methods. However, these results are 

regarded as unreliable, owing to the insufficient data used in the models.  

Keywords: Hydrocyclone, image features, classification, co-occurrence matrix, image 

analysis  
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Opsomming 

 

Hidrosiklone is stasionêre skeidingsmasjiene wat materiale skei op grond van sentrifugale 

skeiding en word algemeen gebruik in die chemiese ingenieurswese en mineraalprosessering 

industrieë. Hul ontwerp en werking, kompakte struktuur, lae bedryfskoste en veelsydigheid 

dra by tot hul gebruik vir toepassings in vloeistofsuiwering, slykverdikking, vastestof 

wassing en klassifikasie. In enige van hierdie prosesse hang die oorhoofse winsgewendheid 

van die proses af van die effektiewe beheer van die prosestoerusting. In die praktyk is 

hidrosiklone egter moeilik om te monitor en beheer weens die kompleksiteit en 

moeilikheidsgraad daarvan om die interne vloei in die apparaat te meet. 

 

Verskeie studies het aangedui dat hidrosikloon ondervloeibeelde gebruik kan word om die 

proseskondisies te monitor. Die navorsing beskryf in hierdie tesis maak gebruik van 

beeldanalise moniteringstegnieke om die ertstipes en grootte- verspreidingsgebiede/ klasse 

van die ondervloei afvoerpartikels te bepaal. Sodoende word ‘n grondslag gelê vir verbeterde 

sikloon monitering en beheer. 

 

Die eksperimentele werk het bestaan uit beide laboratorium en industrieel-gebaseerde studies. 

Die laboratorium sikloon wat gebruik is, was ‘n 76 mm algemene laboratorium sikloon. ‘n 

Canon EOS 400D digitale kamera is gebruik om die hidrosikloon ondervloei beelde vas te 

vang. Beeldeienskappe soos beeldelement intensiteitswaardes, ondervloei afvoerwydte en 

grysvlak mede-voorkoms matriks is onttrek uit die beelde deur gebruik te maak van 

MATLAB Toolbox sagteware. 

 

Lineêre diskriminantanalise (LDA) en neural netwerk (NN) klassifikasiemodelle is gebou om 

te onderskei tussen die verskillende PGM ertse en gebaseer op veranderlikes wat afgelei is uit 

beelde van die ondervloei van die sikloon. Net so is daar ook gebruik gemaak van lineêre 

regressie- en neural netwerkmodelle om die vasestofkonsentrasie en gemiddelde 

partikelgrootte in die ondervloei van die sikloon te beraam. 

 

Die LDA model kon die PGM ertstipes met 61% betroubaarheid voorspel, terwyl die neural 

netwerkmodel dit kon doen met statisties dieselfde betroubaarheid van 62%. Die lineêre 
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regressiemodelle kon onderskeidelik 56% en 40% van die variansie in die gemiddelde 

partikelgrootte en vastestofkonsentrasie verduidelik. In teenstelling iermee, kon die neurale 

netwerkmodel 67% en 45% van die variansie in die gemiddelde partikelgrootte en 

vastestofkonsentrasie verduidelik. In die nywerheidstelsel kon beide tipe modelle perfekte 

onderskeid tref tussen die partikelgroottes wat gemeet is op opeenvolgende dae van die 

bedryf van die siklone. Hierdie resultate is egter nie betroubaar nie, a.g.v. die beperkte 

hoeveelheid data wat beskikbaar was vir modellering. 

 

Trefwoorde: Hidrosikloon, beeldeienskappe, klassifikasie, grysvlak mede-voorkomsmatriks, 

beeldanalise. 
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Nomenclature 

a) Symbols  

xC  = Corrected efficiency for a particle of size class x   

TE = Total efficiency in the hydrocyclone 

F = Hydrocyclone feed stream mass flow rate 

f  = Known function of the covariate vector 

xf  = Fraction of the feed stream particles in size class x   

xG = Grade efficiency for a particle of size class x  

i,j = Co-occurring pair in GLCM 

M  = Total mass flow rate 

fM  = Mass flow rate for the feed 

oM  = Mass flow rate for the overflow products 

uM  = Mass flow rate for the underflow products 

N = Number of grey levels in the image 

xo  = Fraction of the overflow stream particles in size class x  

Pij = Co-occurring probability of elements i,j in GLCM 

xu

 

= Fraction of the underflow stream particles in size class x   

U = Hydrocyclone underflow mass flow rate 

x  = Particles’ size class  

1y ,
2y  = Hydrocyclone flow ratio 

  = vector parameter in a linear regression method formula 

 = Parameter vector of disturbance terms in a non-linear regression formula 

σ
2
 = Variance  

μ = Mean of grey level co-occurrence matrices 

  = Vector of disturbance term in a non-linear formula 

  = random error in non-linear formula 
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iY  = Non-linear model responses 

*Y  = vector of observations of dependent variable 

γ  = Grand mean of the dependent variable 

 

b) Acronyms  

AES = Acoustic Emission Sensor 

BFGS = Broyden-Fletcher-Goldfarb-Shanno, a neural network training algorithm 

CCD = Charge-Coupled Device (CCD Camera) 

CCD = Counter Current Decantation (CCD circuit in mineral processing industry) 

CFD = Computer Fluid Dynamic 

ECT = Electrical Capacitance Tomography 

EIT = Electrical Impedance Tomography 

EOS = Electro-Optical System 

ERT = Electrical Resistance Tomography 

ISO = International Standard Organization 

JPEG = Joint Photographic Experts Group 

LDA = Linear Discriminant Analysis  

MCA = Multiple Classification Analysis  

MER = Merensky ore 

MLP = Multilayer Perception   

MLR = Multiple Linear Regression 

MPS = Mean Particle Size  

O/F = Overflow 

PC = Personal Computer 

PGM = Platinum-Group Metals  

PLAT = Plat Reef ore 

PPE = Personal Protective Equipment 

PSD = Particle Size Distribution 

RF = Random Forest  

RUL = Rössing Uranium Ltd  
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R/S = Rotoscoop 

UG2 = Upper Ground Reef 2 (ore) 

U/F = Underflow 

VHSC = Video Home System Camcoder 
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Chapter 1: Introduction 

This chapter introduces the hydrocyclone as well as its use and significance in the mineral 

processing industries. It outlines the importance of the monitoring and proper control of this 

device and evaluates monitoring techniques. From this evaluation, the potential of the use of 

image analysis methods for the online monitoring of the hydrocyclone is illustrated. 

Furthermore, the project objectives, scope and thesis layout are also outlined. 

 

1.1 The hydrocyclone in mineral processing industries 

The ore processed in mineral processing and chemical industries consist of valuable minerals 

and gangue which need to be separated, both chemically and physically, in order to extract 

the minerals of interest. Hydrocyclones are primarily used for particle size separation as well 

as the solid/liquid separation of minerals, rendering them vital to these processes (Wills, 

2006). They are ubiquitous in mineral processing industries, replacing large mechanical spiral 

and rake classifiers. The wide use of cyclones by industry is due to their simplicity, 

versatility, low maintenance cost and small size as opposed to other equipment (Bergstrom & 

Vomhoff, 2007; Napier-Munn et al., 1996).  

Furthermore, hydrocyclones
1
 are commonly used in closed-circuit grinding operations 

(Napier-Munn et al., 1996) but are also used in de-sliming, de-gritting and thickening (Wills, 

2006). Apart from chemical engineering and mineral processing, hydrocyclone applications 

have been extended to several industries such as oil refineries, petrochemical and textile 

industries, and many others (Janse van Vuuren, 2011; Svarovsky, 1984).  

Hydrocyclones are operated either as a single unit, in series, or in parallel depending on the 

specific application in the process. They are used to improve overall recoveries in 

clarification, to simultaneously produce thicker underflows and clearer overflows, to sharpen 

the classification/sorting and for washing solids (Svarovsky et al., 2001b). The performance 

of a single unit can be improved by multiple cyclones. 

                                                 
1

 The words, hydrocyclone and cyclone are interchangeably used in this thesis. 
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1.1.1 Hydrocyclone monitoring and control in grinding circuits 

This section illustrates the significance of hydrocyclone monitoring and control in grinding 

circuits. This project focused on the application of the hydrocyclone in the context of 

grinding and washing circuits.  

A hydrocyclone requires proper monitoring of its operation for it to deliver the desired 

products. Therefore, it is critical in grinding circuits to maintain optimum cyclone operations, 

as the overall grinding efficiency depends on the hydrocyclone performance. Satisfactory 

hydrocyclone performance can be achieved by having the appropriate control measures in 

place (Daniel, 2011). This in turn aids the determination of the circuit performance, and 

consequently the overall process product. Janse van Vuuren (2011) emphasised the 

importance of controlling the hydrocyclone operations in order to reduce the energy 

consumption caused by poor cyclone performance. In addition, hydrocyclone performance 

optimisation is the best and easiest way of improving grinding and mill throughput (Kawatra 

et al., 2002; Napier-Munn et al., 1996). 

The classification hydrocyclone is used to select material to pass to the next phase of the 

process which could be the next size reduction, or a beneficiation stage e.g. floatation, 

leaching or gravity concentration (Napier-Munn et al., 1996). As such, efficient cyclone 

operation is crucial in maintaining downstream product efficiencies.  

 

1.1.2 Hydrocyclone monitoring and control in washing circuits 

Another application of the hydrocyclone is in washing circuits where the dissolved minerals 

of interest are washed off the barren solids material. The hydrocyclone overflow is 

transported downstream for further processing. Figure 1-1 shows a diagram of the washing 

circuit studied. 
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Figure 1-1: The washing circuit diagram (redrawn from Rössing, 1995) 

 

The correct hydrocyclone operation states are essential for the required product efficiency of 

a specific process. Different mineral processes may require varying hydrocyclone operating 

parameters like: separation size, wash flow rate, inlet pressure, etc. Maintaining these 

parameters would thus produce high cyclone product efficiencies. This calls for proper 

monitoring of the operation states that eventually leads to adequate control of the 

hydrocyclone performance.  

 

1.2 Overview of hydrocyclone monitoring and control 

The hydrocyclone has a critical influence on mineral processing operations. Despite this, it is 

often neglected in industry. Due to its versatility, robustness and simple nature to operate, 
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people may tend to neglect the unit’s required overall maintenance and the necessity for its 

optimum operating conditions. In addition, hydrocyclone modelling is difficult due to the 

complexity of its flow (Napier-Munn et al., 1996). As a result, the modelling is often not 

performed. 

Although the hydrocyclone operation advantages far outweigh its disadvantages, the 

complexity of its inner flow makes it difficult to control. Therefore, more research work is 

continuously being conducted to fully understand this flow and the hydrocyclone operational 

variables in terms of fluctuating hydrocyclone feed conditions (Machado, 1992).  

Multiple investigations have been carried out which attempt to put hydrocyclone control 

measures in place. However, due to a poor understanding of fluid dynamics, hydrocyclone 

performance management greatly depends on theoretical and empirical modelling methods 

(Dyakowski & Williams, 1993; Gutiérrez et al., 2000; Hararah et al., 2010; Janse van 

Vuuren, 2011). Limitations to these modelling methods demonstrate the requirement for 

hydrocyclone operational monitoring as an alternative measure of hydrocyclone control.  

1.2.1 Empirical and theoretical modelling 

Modelling of hydrocyclone performance is hindered by its complex fluid mechanism and this 

is due, in part, to multiple phases (liquid, air and solid particles) as well as the turbulent flow 

inside the hydrocyclone (Hsieh & Rajamani, 1991). This complexity makes it difficult for 

one model code to be applied directly without modifications. Therefore theoretical and 

empirical models are at times combined to attain the desired results (Kraipech et al., 2006). 

Of the two models, empirical models are commonly applied to the hydrocyclone, with Lynch 

and Rao (1975) models being the first commonly used, and Plitt (1976) and Nageswararao 

(1995) the most recently applied. These empirical models work well only over a range of 

hydrocyclone conditions and they use material specific constants (Janse van Vuuren, 2011; 

Wills, 2006). 

Theoretical models are highly dependent on either hydrocyclone operating conditions, 

designs or sizes. For each particular model, a specific hydrocyclone geometry or operating 

condition is required. These models cover a wider range of operation in comparison to the 

empirical ones, and hence are more useful tools. Furthermore, Computational Fluid Dynamic 

(CFD) hydrocyclone modelling found a wide application in the field and it is used to provide 
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solutions for the theoretical models (Wills, 2006). However, the CFD consumes high 

computer power and much time. Therefore the use of empirical models are preferred or the 

combination of both models (Nageswararao et al., 2004). 

1.2.2 Process conditions monitoring techniques 

Changes in hydrocyclone operating conditions alter its performance (Bradley, 1965; Sripriya 

et al., 2007). The ability to control hydrocyclone operation could address this issue, ensuring 

smooth running and improved performance of the device. Since this is not presently 

attainable, online monitoring is used to oversee changes in cyclone operating conditions. 

Studies done using online monitoring approaches (Galvin & Smitham, 1994; Gutiérrez et al., 

2000; Hou et al., 1998; Williams et al., 1999) yielded some recommendations as to 

alternative methods of monitoring hydrocyclone operating conditions. Although many 

techniques were proposed, sensing techniques proved to be the most practical as they provide 

real-time process information.  

Hydrocyclone operating states give information concerning the cyclone’s performance and 

are used to identify faulty conditions in the hydrocyclone. These operating states could be 

improved for control scheme developments. Three hydrocyclone operating states can be 

inspected. These are: normal state, spray-shaped state and roping shape, with the roping 

shape indicating the separation inefficiencies. 

The methods used for the process state monitoring mainly focused on the study of the air core 

shape and this used electrical impedance tomography, electrical resistance tomography, 

ultrasound tomography and data acquisition card as sensor techniques (Gutiérrez et al., 2000; 

Hararah et al., 2010; Krishna et al., 2010; Neesse and Dueck, 2007a; Williams et al., 1999). 

Other methods were used to study the operating states on internal solids concentration 

(Dyakowski & Williams, 1996; Galvin & Smitham, 1994; Gutiérrez et al., 2000; Hou et al., 

2002; Neesse et al., 2004b). Furthermore, sensor techniques and mechanical detection 

methods were used to determine operating states from underflow discharge shapes 

(Dyakowski & Williams, 1996; Galvin & Smitham, 1994; Gutiérrez et al., 2000; Hou et al., 

2002; Neesse et al., 2004b).  

Hydrocyclone underflow monitoring was also studied using image analysis (Petersen et al. 

(1996); Janse van Vuuren, 2011), and a laser-optical measuring device as used by Neese et al. 
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(2004b). These methods proved to be more viable and robust as well as less invasive and of 

lower equipment cost in comparison to the techniques mentioned in the previous paragraph. 

Furthermore, they revealed a correlation between the underflow discharge shapes and the 

hydrocyclone operating conditions. Images of the hydrocyclone underflow were studied to 

investigate the hydrocyclone underflow discharge particles in order to form a basis of 

improved monitoring and control of a hydrocyclone. 

 

1.3 Project objectives 

The main aim of this research project was to determine whether image analysis can be used to 

estimate particle sizes and solids loadings in hydrocyclone underflows. This was done in 

order to form a basis for improved monitoring and control of the hydrocyclone and in so 

doing to reaffirm the viability of image analysis as an online monitoring technique. 

 

1.4 Project scope 

In order to achieve the objectives of this research project, a thorough review was completed 

of past and present studies of online monitoring and control of hydrocyclones. This review 

was done in parallel to experimental work that aimed to collect photographic images and the 

associated particle size measurements for a laboratory hydrocyclone. An industrial-based 

cyclone system was also studied in the same way. Ultimately, an image processing 

methodology was developed by the use of MATLAB software that aimed at image feature 

extraction and the additional use of STATISTICA Software, to assess the relationship 

between the underflow image features and particle sizes.  

 

1.5 Thesis layout 

This thesis is comprised of seven chapters which are laid out as follows: The first chapter 

introduces the use and importance of the hydrocyclone in mineral processing industries. It 

outlines the importance of its monitoring and control. Furthermore, the monitoring techniques 

used to study the hydrocyclone operating states are discussed. Moreover, the objectives and 

scope of the project are presented.  
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The second and third chapters give a review of the hydrocyclone and its monitoring. Chapter 

two provides some background information on the hydrocyclone, briefly discussing its theory 

and the factors affecting its performance efficiency. Chapter three concentrates on online 

monitoring techniques, whereby an overview is provided of the past and present work that 

employed online monitoring.  

The fourth chapter presents the methodology used in this research project. The experimental 

procedures performed and their layouts are described here. Furthermore, the underflow 

images and manual sample analysis are defined in chapter five, whereas the results are 

presented and discussed in the sixth chapter. The concluding chapter summarises the findings 

of this research followed by the reference and appendices sections. 

 

Chapter Summary 

The hydrocyclone is ubiquitous and important in mineral processing industries and its control 

is therefore essential. Though the hydrocyclone is versatile and simple to operate, the 

complexity in its flow behaviors makes it difficult to control and model. Due to this, 

hydrocyclone monitoring techniques are alternatively used to determine the cyclone operating 

states. Many techniques studied are expensive, fragile, time consuming and invasive sensing 

methods.  

However, an alternative sensing technique was identified that proved to be robust and viable 

for use in the processes. It used image analysis to monitor the operating states of the cyclone. 

The objective of this study was formulated with this approach in mind where image analysis 

was used to relate hydrocyclone underflow particle sizes to corresponding underflow image 

features.  
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Chapter 2: Hydrocyclone Theory and  

Literature Review  

This chapter presents the theoretical knowledge concerning the hydrocyclone, giving a brief 

description of hydrocyclone types, basic cyclone design, mode of operation and flow 

structure. It further describes the factors affecting the hydrocyclone performance efficiency 

as well as the influence of operating variables on the hydrocyclone operation conditions.  

 

2.1 Hydrocyclone definition 

Hydrocyclones are stationary and continuously operating, classifying equipment that separate 

materials using centrifugal forces to hasten the settling rate of particles (Wills, 2006). They 

are designed for separation of particles in liquids. These devices are small in size, simple in 

structure; there is nothing adjustable inside the cyclones. Furthermore, they are cost effective 

and have low residence time (Svarovsky, 1984). Due to less mechanical maintenance 

required, hydrocyclones are manageable devices in industry.  

Although there are advantages to using hydrocyclones, there are also some disadvantages as 

stipulated by Svarovsky (1984). These include:  

 Inflexibility –they are not adjustable according to flow fluctuations. 

 Limitations to their separation performance in terms of sharpness of cut-range, of 

operating cut size and clarification power.  

 They require routine spigot maintenance. 

 They have optimal operation at low viscosity. 

However, some of the shortcomings can be circumvented by hydrocyclone adjustments and 

improvements of operation conditions, though this normally comes at an additional cost. 

 

2.2 Types of and basic design structure of a hydrocyclone 

There are several types of hydrocyclones with different design structures to fit their specific 

applications and operations. For example, the water injected hydrocyclone, the air-sparged 

hydrocyclone with a solid core and a thick-wall vortex finder and the conventional 

hydrocyclone (Chu & Luo, 1994; Maurice et al., 2003). The hydrocyclone used in this study 
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is the conventional one. Moreover, hydrocyclone application is determined by its design and 

operation because there are particular requirements and targets for every application 

(Svarovsky, 1984). 

A typical hydrocyclone consists of a cylindrical section with a tangential feed inlet and an 

overflow pipe connected to the plate covering the top of the cylindrical part. To this section a 

conically shaped section with an opening at its apex
2
 is joined to it (Wills, 1997). Figure 2-1 

illustrates this description and it shows the basic features of a conventional hydrocyclone as 

used for the experimental work of this research project.  

 

Figure 2-1: A digital image of a laboratory hydrocyclone showing its typical parts  

In addition to a widely used and accepted conventional hydrocyclone illustrated above and 

other (Chu & Luo, 1994) hydrocyclone types, a new type of hydrocyclone referred to as an 

axial-flow hydrocyclone was made to address the issue of complex hydrocyclone inner flow 

behavior. This hydrocyclone functions similarly to the conventional one with the exception of 
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a guided vane that causes a flow to rotate at high speed. Figure 2-2 illustrates the axial flow 

hydrocyclone as redrawn from Zhen-Bo et al. (2011).  

 

Figure 2-2: Typical structure of axial-flow hydrocyclone (Zhen-bo et al., 2011) 

 

2.3  Hydrocyclone operation and flow structure 

There are no internal moving parts in a hydrocyclone. Thus, the centrifugal forces together 

with the feed flow rate promote the separation of the feed contents inside. The slurry is fed 

into the cyclone via a feed inlet, entering in a tangential flow that creates a spiral pattern. This 

flow creates a vortex, by the impact of a vortex finder, that prevents the short-circuiting of 

feed to the overflow and so achieves separation by size, density and shape (Wills, 1997; 

Svarovsky, 1984).  

Separation of particles in the hydrocyclone is due to the flow pattern which is subjected to 

two forces; a centrifugal and drag force. The centrifugal force accelerates the particles, 

allowing them to separate according to different sizes and specific gravity. This force causes 

the faster settling particles to move outward to the lower velocity walls of the cyclone and 

eventually leave the hydrocyclone through the underflow orifice. On the contrary, the drag 

force causes the slower settling particles to move towards the low pressure zone across the 

cyclone axis (Wills & Napier-Munn, 2005; Bergstrom & Vomhoff, 2007). These particles are 

then carried upward via the vortex finder and exit the hydrocyclone through the overflow 
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orifice. Figure 2-3 illustrates the inward and outward forces acting on the particles in the 

hydrocyclone.  

 

Figure 2-3: Forces acting on orbiting particle in hydrocyclone 

 

An axial air core is another feature of flow structure according to which hydrocyclones 

operate (Napier-Munn et al., 1996). The air core is formed in the center of the hydrocyclone 

due to a strong vortex motion of high pressured tangential feed. The air can also be sucked in 

through the spigot or introduced by bubbles in the feed (Hararah et al., 2010; Neesse & 

Dueck, 2007a). 

 

2.4 Hydrocyclone separation efficiency   

Efficiency of hydrocyclone separation is associated with the type and/or design of 

hydrocyclone with its related application and how it is operated. Thus, it is not a 

characteristic of the hydrocyclone itself but a fractional efficiency (Rietema & Verver, 1961). 

The cyclone efficiency greatly depends on the particle size (Bradley, 1965; Svarovsky, 1984). 

It is commonly determined by the use of a partition or tromp curve. In a tromp curve, the 

weight percentage or fraction of each feed particle size is related to the same size fraction 

passing through an apex (Wills, 2006).  

Hydrocyclone separation efficiency can be influenced by the ratio of underflow to throughput 

and may be improved by increasing the feed throughput and sustaining a steady flow. 

 

Radius of orbit particle

Motion of particle

Drag forceCentrifugal force

Stellenbosch University  http://scholar.sun.ac.za



Chapter 2: Hydrocyclone Theory and  

Literature Review 

12 

 

2.5 Hydrocyclone operating state characteristics 

As can be expected, the underflow characteristics of the hydrocyclone (the underflow width 

in particular), is influenced by the flow phenomena inside the hydrocyclone. Broadly 

speaking, a distinction can be made between dilute flow, transition flow and dense flow 

separation in the apparatus. Typical features that indicate these operating states are the 

sediment mass stored in the conical part of the hydrocyclone, the formation of the air core 

and the shape of the underflow discharge (Neesse et al., 1991; Neesse et al., 2004b). In the 

following subsections the characteristics of each operating state are detailed. Table 2-1 

summarises the conditions found in each operating state whereas Figure 2-4 and Figure 2-5 

visualise the various operating states, schematically and by digital images. 

Table 2-1: Conditions of hydrocyclone operating state characteristics  

 

 

2.5.1 Dilute state flow  

The dilute flow state is the condition with low solids content in the feed. It displays a spray or 

umbrella-shaped discharge from the underflow. Figure 2-5B illustrates this flow state as 

viewed from the laboratory device.  

In dilute flow separation air is sucked through the spigot to the center of the hydrocyclone 

forming a continuous air core towards the overflow. Very thin sediment is formed along the 

walls of the hydrocyclone and this allows for the formation of an extended air core. In 

addition, high particles content are recovered at the underflow including more fines that 

would otherwise report to the overflow (Wills, 2006).  

 

Dilute Flow Separation Dense Flow Separation Transition State  

(favored Separation) 

Continuous air core Reduced air core length and 
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High solids recovery and 

solid content 
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shaped 
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part-reduce solids recovery 

 

More fines to the underflow 

due to low solid 

concentration in feed 
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2.5.2 Dense flow state  

Changing the solids concentration in the hydrocyclone feed stream affects the density and 

viscosity of the internal slurry, which then alters the pressure drop, cut size and separation 

efficiency (Maurice et al., 2003).  

At high feed solids concentration, sediment of solids is stored in the conical region of the 

hydrocyclone. These solids are partially forced upward to the overflow reducing the solids 

reporting to the underflow, thus increasing coarse particles recovered to the overflow. This is 

a negative effect known as the short-circuiting of the particles (Braun & Bohnet, 1990). The 

discharge size would be similar to that of the apex orifice and assumes rope-shaped flow due 

to the deposit of solids around the spigot (Neesse et al., 1991). Figure 2-5C illustrates this 

flow state.  

As the hydrocyclone continues to operate at dense flow, the air can no longer pass through 

the underflow. This causes the instability of the air core and/or eventually terminates it. When 

the air core is terminated, it has an undesirable effect on the separation efficiency because the 

solid particles short-circuit through the overflow. The extension of this operation can lead to 

system blockage. Dense flow state can be used to monitor the hydrocyclone operation as it 

indicates a problematic state.   

2.5.3 Transition flow state 

The transition flow state (Figure 2-5A) rapidly changes between rope and spray flow states 

and is thus described as a combined discharge. The air core keeps oscillating due to the 

sediment residue in the hydrocyclone; however it is at a favourable rate. The monitoring of 

this state is of interest since the separation effects during this operation state are desired. 

These include the advantages of high solid content in the underflow as well as high solids 

recovery.   
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Figure 2-4: Schematic diagram of the operating states of the hydrocyclone (redrawn from 

Neesse et al. 2004) 

 

 

Figure 2-5: Underflow images showing the operating states, (A) combined or transition (B) 

spray-shaped & (C) rope-shaped discharges 

 

Chapter Summary 

The hydrocyclone is a classifying device that uses centrifugal forces to separate particles 

depending on dimension, shape and density. The centrifugal force causes the air core to be 
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formed at the centre of the hydrocyclone further complicating the flow within the cyclone and 

thus making it difficult to control its parameters. The performance of a hydrocyclone is 

strongly affected by design and operating variables. Operating variables include the fluid and 

particle properties, inlet pressure and flow rate, and the solid concentration of the feed. With 

these operating variables, the hydrocyclone may operate in either a dilute flow state, 

transition or dense flow state. Of these three, the transition state is desired whereas the dense 

flow state is seen as troublesome and should be avoided.     
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Chapter 3: Hydrocyclone Online Monitoring 

Previous chapters highlighted the essential need for hydrocyclone monitoring and control. 

This chapter discusses some of the monitoring techniques studied. The methodology, utility, 

viability, application as well as the measured components of each technique are presented.  

 

3.1  The importance of online monitoring  

The condition of the hydrocyclone underflow discharge can be used as a visual indication of 

hydrocyclone operation. This can then be used heuristically to indicate the operating states. 

However, this is not a reliable monitoring method as a specific underflow discharge condition 

may be judged as different operating states by different people based on their individual 

observations. Therefore, it is necessary to automate the monitoring of plant equipment.  

Online monitoring is one of the growing techniques in industry due to its effectiveness in 

measuring and giving current operation status information. Hydrocyclone online monitoring 

is one of the methods used to apply automated control in processes (Petersen, 1998). It is 

used to monitor cyclone operation in order to sustain the optimum conditions. A 

hydrocyclone is at its optimum level when it attains a minimum amount of fines going to the 

underflow while maximising the underflow solids recovery (Neesse et al., 2004a). 

The underflow is found to be the only externally visible feature of the hydrocyclone that can 

be measured (Petersen, 1998). Underflow discharge features are some of the best parameters 

used to monitor hydrocyclone operation conditions due to their relation to the internal flow of 

the hydrocyclone. They indicate the operation state of the cyclone (Gutiérrez et al., 2000; 

Janse van Vuuren, 2011; Neesse et al., 2004b; Petersen et al., 1996; van Deventer et al., 

2003; Williams et al., 1999). In addition, spray profile measurements can be used to 

determine the underflow rate and be related to hydrocyclone performance (van Deventer et 

al., 2003).  

 

3.2 Monitoring techniques  

Multiple studies involving hydrocyclone sensor monitoring techniques have been conducted. 

These studies showed that monitoring of the cyclone states needs correct measurements to 
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obtain successful observations (Petersen et al., 1996; Svarovsky, 1984; Neesse et al., 2004a). 

For a technique to be judged as a good monitoring technique, the following requirements 

should be met (Neesse et al., 2004b): 

 Sensitivity 

 Non-invasiveness 

 Online sensing with sampling time less than 1 second 

 Robustness 

 Cost-effectiveness 

In addition to the above mentioned requirements, a technique should be free of hazards from 

high energy radiation as well as capable of making rapid measurements in fast moving, dense 

slurries/powders (Williams et al., 1992). Monitoring techniques should also require less 

maintenance and little modifications to the current set-ups (Janse van Vuuren, 2011). 

Sensor techniques used to monitor hydrocyclones are applied to measure various operating 

conditions (Galvin & Smitham, 1994; Gutiérrez et al., 2000; Hou et al., 1998; Williams et al., 

1999). The following subsections summarise some of these studied techniques. Table 3-1 

outlines these techniques with their respective sources and measured components. This table 

also provides the method sampling frequencies as well as some comments on the method 

application.  
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Table 3-1: Hydrocylone monitoring techniques in summary 

  

 

Mechanical detector Hulbert, 1993 • Underflow discharge angle -
• Exposed to mechanical wear

• Frequent replacement required

Gravimetric method (Load 

cell)
Neesse et al., 2004

• Hydrocyclone weight 

(Mass of solids content)
-

• Gives direct & rapid determination of operating state

• However, not recommended - signals superimposed due 

to flexible connections

Tomographic monitoring

X-Ray Galvin & Smitham, 1995 • Solids distribution within hydrocyclone
20 seconds exposure 

time

• Non-intrusive but procedure needs refinement and has

• Too long exposure time

Ultrasound Schlaberg et al., 2000 • Air core position and size -
• Method implementation too complex

• Sensor number limited to transducers & hydrocyclone size

Electrical Impedance 

Tomography

Williams et al., 1997

Gutiérrez et al., 2000

• Air core size and shape

• Solids distribution within hydrocyclone
500 frames/sec

• Short sampling time 

• Good for on-line control, e.g. fault detection 

• Underflow discharge to maximize throughput

Electrical Resistance 

Tomography

Williams et al., 1999

Williams et al., 1999

Dyakowski & Williams, 1996

West at al., 2000

• Air core size, location and shape

• Solids concentration within hydrocyclone
100-200 frames/sec

• Can successfully be applied and operated

• Good for fault,& spigot wear detection  

• However, can be intrusive

Electrical Capacitance 

Tomography
Williams et al., 1995 • Underflow discharge shape 100 frames/sec

• Safe, rapid & low cost

• Preferential for controlled cyclone series

• High speed image

Acoustic monitoring

Williams et al., 1996

Hou et al., 1998

Hou et al., 2002

Neesse et al., 2004

• Feed pressure

• Feed solids concentration

• Underflow discharge oscillation

~2000 readings/sec

• Simple, effective, low cost, non-intrusive & non-invasive

• Promising control & optimization for cyclone performance

• However, not good for oscillation measurement

Ultrasound monitoring Olson & Waterman., 2006 • Underflow discharge oscillation -
• Effective method

• Detects fault conditions of the hydrocyclone

Image analysis monitoring

Videography

Petersen et al., 1996 

Petersen, 1998

Castro et al., 1996

Janse van Vuuren, 2011

• Underflow discharge spray angle

• Air core diameter

• Underflow discharge width

~ 30 frames/sec
• Practical monitoring method

• Good for on-line process control

Laser-optical Neesse et al., 2004 • Underflow discharge shape -
• An indirect non-intrusive method

• Gives clear difference of discharge shapes

Digital processing Krishna et al., 2010 • Air core diameter - • A robust, practical and  non-intrusive method

Monitoring technique used CommentsSampling frequencyMeasured elementReference

Stellenbosch University  http://scholar.sun.ac.za

Stellenbosch University  http://scholar.sun.ac.za



Chapter 3: Hydrocyclone Online Monitoring 

19 

 

3.2.1 Tomographic monitoring technique 

“Tomographic techniques produce cross-sectional ‘slice images’ depicting the spatial 

variation in a physical parameter based on sets of boundary measurements” (Tapp et al., 

2003). They are advantageous in that, they non-invasively provide information from within 

the complex structure of a device (Dyakowski et al., 2000). The following sections shortly 

present some of the tomographic techniques used in hydrocyclone monitoring. 

i. X-ray monitoring 

X-ray tomography, a non-intrusive radiographic technique was employed to determine 

magnetite-particles’ concentration distribution in a dense medium cyclone (Galvin & 

Smitham, 1994). In this study, magnetite was used as a high density medium. The dense 

medium cyclone operates with manipulated densities by adding a medium to the feed (Janse 

van Vuuren, 2011).  

 

Figure 3-1: X-ray photograph of magnetite slurry with specific gravity of 1.6 (Galvin and 

Smitham, 1994), permission of reuse granted by Elsevier. 
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Galvin & Smitham (1994) highlighted some advantages of understanding the concentration 

distribution of operating cyclones. This includes its usefulness in device design and operating 

improvement, and it provides the ability to validate more complex CFD simulations. X-ray 

images of the cyclone were recorded at different feed density values. The set-up of Galvin & 

Smitham (1994) used an X-ray plate that was fastened behind the cyclone with a source focal 

distance of 750 mm from the cyclone. The images obtained were analyzed with a Quantimet 

Image Analyzer in order to determine the particle density across the cyclone diameter at three 

different locations. Figure 3-1 shows an X-ray image of a 30 mm diameter glass 

hydrocyclone. 

Although the particle distribution was observed, the technique still requires some 

improvements because it focused only on magnetite particles. So, other components need to 

be tested as well. It further requires a long exposure time of 20s sampling time. The 

calibration method and signal-to-noise ratio also need improvement.  

ii. Electrical impedance tomography  

Electrical impedance tomography (EIT) is a technique that can measure hydrocyclone 

internal flow dynamics without being affected by the nature of the process environment 

(Gutiérrez et al., 2000; Williams et al., 1997). These authors used this method to measure the 

air core size and the solids concentration in the hydrocyclone, incorporating operating states 

monitoring as well.   

The experimental set-up involved 16 plate electrodes externally attached to the outside of the 

hydrocyclone body in a single horizontal plane close to the feed inlet. Figure 3-2 illustrates 

the electrode location on the hydrocyclone. Images of the underflow discharge were captured 

to monitor the hydrocyclone operating states, hence correlating them to the EIT results.  
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Figure 3-2: Location of the electrode plane on the hydrocyclone  

(redrawn from Gutiérrez et al., 2000) 

The results showed the expected outcomes (detailed in authors cited by Williams et al., 

1995b) that the air core decreases with an increase in solids concentration. In terms of the 

operating states, it was observed that the air core size is related to the underflow discharge 

types. The spray discharge indicates the existence of the air core whereas the rope discharge 

shows the disappearance of the air core.  

These observations thus suggest the viability of the EIT technique in hydrocyclone state 

monitoring. The EIT technique is non-intrusive and fast (taking measurements at a rate of one 

frame per 2 milliseconds). It is thus found to be suitable for fault detection and could be used 

in computer fluid dynamics (CFD) simulations making it fit for online control.  
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Underflow
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iii. Electrical resistance tomography  

Electrical resistance tomography (ERT) is used for the electrical conductivity reconstruction 

of the internal part of a device and like other tomographic techniques; it is well suited to the 

monitoring of complex flow structures (Dyakowski et al., 2000; West et al., 2000; Williams 

et al., 1995b; Williams et al., 1999). 

The above cited authors did a study using the ERT method to monitor the air core 

characteristics within a hydrocyclone. The experimental set-up was comprised of ERT 

sensors in 8 planes of 16 disc-shaped electrodes each (a single plane was used in the study of 

Williams et al., 1995). These experiments were performed in both laboratory and industrial 

hydrocyclones. The eight planes of disc shaped electrodes were fabricated into a resin mould, 

which Figure 3-3 (A) illustrates. 

 

Figure 3-3: Illustrations of A- the sensor electrodes and B-the ERT images (reused from 

Willians et al., 1995 with permission from Elsevier) 

The findings of this technique showed that the technique was able to identify the conductivity 

distribution of the three different fault conditions. The fault conditions were set as roping 

discharge, spigot detachment and underflow blockage, refer to Figure 3-3 (B) for images.  

Furthermore, these studies revealed that the ERT technique can be used to provide online 

information of the respective parameters. Like EIT, it is good for fault and spigot wear 

detection and can be successfully applied to the process. The ERT method is however 

intrusive as modification to the current device could be required depending on the installation 

A

B
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procedure of the technique. In regard to the air core measurements, results revealed that its 

values may be overestimated at times when the air core is at the center of the hydrocyclone.  

iv. Electrical capacitance tomography  

A brief discussion of electrical capacitance tomography (ECT) is given in Williams et al. 

(1995a) in which the performance of a dewatering hydrocyclone was measured by imaging 

the underflow discharge. In this experiment, a 12-electrode capacitance sensor was installed 

at two vertical planes in the underflow section. Figure 3-4 shows the planes, A-A and B-B.  

 

Figure 3-4: Electrical capacitance sensor mounted to hydrocyclone underflow (redrawn from 

(Williams et al., 1995a)) 

The results were recorded as discharge profiles between the two electrodes of different sizes 

and shapes. From these profiles it was observed that it is possible to quantify the oscillation 

of the spray due to the high speed sampling rate of approximately 100 frames per second.  

The ECT technique is shown to be portable, and suitable for harsh and realistic operating 

conditions (Williams et al., 1995a). In addition to these advantages, the device can be used to 

detect problematic hydrocyclone conditions like underflow blockage. It is safe and has low 

cost which has made it the most used technique in hydrocyclone series monitoring. However, 

it requires further improvement in the area of background noise (Neesse et al., 2004b). 

v. Ultrasound tomography 

An ultrasound tomography technique was employed by Schlaberg et al. (2000) and West et 

al. (2000) to monitor the air core formation, its size and location within the hydrocyclone. 

This was done by modifying the hydrocyclone and by fitting a ring of 16 ultrasonic 

transducers on its exterior top part. Figure 3-5 illustrates this set-up. 

A

B

Underflow 

discharge

Capacitance 

sensor

A

B

Stellenbosch University  http://scholar.sun.ac.za



Chapter 3: Hydrocyclone Online Monitoring 

24 

 

 

Figure 3-5: Modified hydrocyclone with attached ring of 16 ultrasonic transducers (reused 

from Williams et al., (1995) with permission from Elsevier) 

The images obtained were of 50 X 50 pixels resolution and taken at the rate of six frames per 

second. From these images it was observed that the size and location of the air core can be 

ascertained.  

The ultrasound tomography technique was shown to be a better monitor of the air core in 

harsh conditions in comparison to optical techniques. It is robust and can be improved by 

increasing the number of transducers used, depending on the size of the transducers and the 

hydrocyclone. The method was however found to be too complex for use in industrial 

operations.  

3.2.2 Mechanical detector 

The mechanical detector is a mechanical device that measures the shape of the hydrocyclone 

underflow discharge (Hulbert, 1993). Hulbert (1993) invented and patented this method in 

which a hydrocyclone was modified by mounting a pivoting arm near the apex. The pivoting 

arm was protected from rough discharges by an attached abrasion resistant tip. In addition, an 

angle detector was used to measure the angle of the attached tip that in turn indicates the 

angle of the underflow discharge. An experiment where this method was used was performed 

on an industrial milling circuit hydrocyclone.  

Ring of ultrasonic 
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Hydrocyclone
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The mechanical detection technique is one of the least studied methods of the hydrocyclone 

monitoring techniques outlined in this study. This could be due to its set-up that exposes it to 

extensive mechanical wear caused by its contact with the running discharges of the underflow 

(Hulbert, 2010 cited in Janse van Vuuren, 2011).  

3.2.3 Gravimetric method 

Accumulation of solids in a hydrocyclone depends on the amount of solid in the feed as well 

as the feed solids size distribution. The gravimetric method was studied by Neesse et al. 

(2004b) to determine the amount of solids accumulated inside the hydrocyclone. This set-up 

involved the installation of a load cell with the hydrocyclone attached to a feed distributor, 

and flexible connections used at the feed inlet and vortex finder. Figure 3-6 illustrates this. 

 

 

Figure 3-6: Hydrocyclone weight determination by using a weighing cell (redrawn from 

Neesse et al., 2004b) 

The gravimetric method provides a direct and fast determination of the operating state of the 

cyclone and it indicates the dependency of hydrocyclone weight on feed solids concentration. 

Despite the mentioned conclusions, this method still needs to be modified due to the problem 
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of signals being superimposed by disturbances caused by flexible connections. This problem 

can however be addressed by special computer software.  

3.2.4 Acoustic monitoring  

i. Acoustic emission monitoring to hydrocyclone conical section 

Operating hydrocyclones vibrate, causing the flow structure inside the hydrocyclone to be 

more turbulent. This may be due to the eccentrical and unstable movement of the air core and 

discharged rope in dense flow separation, the impact of particles and the highly turbulent 

vortex motion inside the cyclone (Janse van Vuuren, 2011; Neesse & Dueck, 2007b; Neesse 

et al., 2004b; Sripriya et al., 2007). 

A study by Hou et al. (2002) was done where a PC-based acoustic signal processing system 

was used to monitor hydrocyclone performance and feed properties. A similar study was also 

previously carried out by Hou et al. (1998). In their work, a single 190 KHz piezoelectric 

passive acoustic sensor was used to monitor fine silica slurries in a cyclone. This sensor was 

attached to the outside of the conical part of a 125 mm diameter hydrocyclone in a circulating 

circuit. The data was acquisitioned and processed in a 12-bit system equivalent to digital 

conversion card, comprised of a Pentium 133 MHz PC and signal processing and control 

software.  

Results showed that various operating parameters respond differently, emitting distinctive 

acoustic signals. It further indicated that the acoustic technique can successfully be used for 

hydrocyclone fault detection, routine online performance monitoring and performance 

optimisation. This was determined based on a laboratory case study and the quantification of 

the relationships between different hydrocyclone operating parameters. The acoustic signal 

data was analysed by using multivariate statistical analysis techniques.  

ii. Acoustic emission monitoring of hydrocyclone underflow discharge 

Another study using acoustic emission monitoring was done by Neesse et al. (2004b) where 

the sensor attached to the outside of the hydrocyclone near the spigot was used to determine 

the underflow discharge shapes by measuring the hydrocyclone oscillation. The results 

obtained indicated that a rope-shaped discharge can be categorized as high amplitudes in low 
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frequency and are damped at higher frequencies. In contrast, spray-shaped discharges show 

vibrations at higher frequencies (100 – 600 Hz).     

Major operating states could be identified from the acoustic spectrum. However, further 

research is required to better understand the acoustic signal emitted by the device. This 

research would include the installation of a robust set-up.  

The acoustic emission sensor (AES) was found to be a non-intrusive, non-invasive, simple, 

operative, and low cost technique that can be used for online monitoring of hydrocyclone 

efficiency (Hou et al., 2002). In addition, it is fast with the ability to take about 2000 readings 

per second. Therefore the AES technique seems practical and is a promising technique for 

hydrocyclone performance optimisation and control. However, this method still requires 

more investigation before it can be considered for industrial use.  

3.2.5 Ultrasound monitoring 

The ultrasound hydrocyclone monitoring technique is a newly studied method done and 

patented by Olson & Waterman (2006). In this study, “the ultrasonic sensor with a peak 

frequency response at approximately 40 kHz” (Olson & Waterman, 2006) was used. The 

sensor was attached to the splash skirt that was then fitted on the spigot of a hydrocyclone. 

This technique aimed to measure the shape of the underflow for the detection of roping 

conditions in the device.  

The results obtained indicated that the operating states could be identified via a vibration 

monitor (Janse van Vuuren, 2011). Vibration amount was observed to reduce with a decrease 

in the size of the underflow discharge. Therefore ultrasound monitoring could be used as a 

control measure for hydrocyclone operating conditions.  

3.2.6 Image analysis monitoring  

Image analysis is mostly done by studying the pixel values of images, either as whole images 

or in fragments. The most used method is looking into statistics like mean, maximum and 

minimum pixel values. Eigenvalue decomposition methods like Principal Component 

Analysis (PCA) and texture analysis are also useful (Tapp et al., 2003; Daniel, 2011).  

The following sections outline some of the image analysis methods previously used to 

monitor the hydrocyclones. 
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i. Image analysis of the air core 

A videography image analysis was employed to measure the hydrocyclone air core diameter 

in a pilot plant (Castro et al., 1996). This involved the cyclone modification whereby the 

device was cut open at the top to fit in a light for air core visibility.  

The outcome showed that using video to monitor the air core can be possible as the air core 

was clearly visible in the images obtained. By incorporating air core diameter; a semi-

empirical model was set-up for the pilot plant. 

ii. Image analysis of hydrocyclone underflow angle   

The underflow discharge is an externally visible parameter that can be measured to monitor 

hydrocyclone operations and its angle can be used as control for the hydrocyclone operation 

conditions (Petersen et al., 1996). This technique has been employed by the cited author 

where videographic image analysis was used to monitor the underflow discharge angle. The 

discharge angle can in turn be used for hydrocyclone feed condition monitoring.  

The set-up of this study involved the digitisation of video images using a VHSC (Video 

Home System Camcorder) video camera. Images were processed on a personal computer 

(PC) installed with a frame grabber. The video camera was directed to the underflow at about 

50 cm away to eliminate discharge splashes on the camera lens. Figure 3-7 illustrates the 

principle of imaging the hydrocyclone underflow as indicated by Petersen et al. (1996). The 

experiments were done in laboratory and industrial hydrocyclones.  

 

Figure 3-7: Illustration of hydrocyclone underflow videographic imaging (permission of use 

granted by Elsevier) 

Van Deventer et al. (2003) did a follow-up study and combined the spray measurements with 

empirical and theoretical modelling to develop a soft sensor that could be used for the process 

parameter predictions. 
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The observations of this study showed that the spray angle profile can be used as an 

indicating tool for the operating parameters (flow rate, inlet pressure and particle cut size) of 

the hydrocyclone. It was further suggested that this technique can successfully be employed 

as the hydrocyclone online controller, proposing the possibility of a machine vision system at 

large as a viable online controller.  

Although this technique was shown to be robust and viable for industrial process monitoring 

purposes, the author mentioned that it was computationally limited at the time of the study. 

Hence, the images were discretely analysed instead of using continuous data analysis. 

iii. Image analysis of the discharge shape - Optical detection  

In the work of Neesse et al. (2004b), a laser-optical device was used to obtain images of the 

discharge shapes of the hydrocyclone underflow. A two-dimensional laser beam was directed 

towards the underflow and the reflection of the beam recorded with a Charged Coupled 

Device (CCD) camera. Figure 3-8 illustrates this. The analysis of data was done with PC-

supported pattern recognition.  

 

Figure 3-8: Laser optical detection monitoring set-up (redrawn from Neesse et al., 2004b) 

The results showed that different laser segment lengths and background line distances 

indicated the discharge shapes as shown in Figure 3-8, making it possible for the dilute and 

dense flow separations to be identified.  

v

Laser picture

Dilute flow 

separation

Laser

Camera

v

Dense flow 

separation

Background 

line

Projection 

line

Stellenbosch University  http://scholar.sun.ac.za



Chapter 3: Hydrocyclone Online Monitoring 

30 

 

Furthermore, advantages of this method were highlighted as being an indirect and non-

invasive method, having the necessary hardware well formulated, being cost effective and 

being useful for rough operating conditions. It is therefore suggested that the laser-optical 

technique can be used as a remote sensing monitoring technique to address harsh condition 

operations.  

iv. Image analysis based on digital processing technique 

Krishna et al. (2010) did some recent work on image analysis (the digital signal sensor 

technique) in which a data acquisition card was used to identify and predict the hydrocyclone 

air core diameter from the online actual data. 

A transparent Perspex hydrocyclone with a cylindro-conical structure was used for the 

experiment. To the conical section of the hydrocyclone, a central solid rod was inserted to 

eliminate the formation of the air core. Digital images of the formed air core were collected. 

This was made possible by the transparency of the hydrocyclone as shown in Figure 3-10. 

These images were processed in ‘ImageJ’ image processing software. The set-up includes a 

computer equipped with the National Instruments’ data acquisition card that collects the live 

data from the pressure transmitter (a new type of online sensor). The pressure transmitter was 

connected to the overflow pipe, underflow pipe and central part of the hydrocyclone 

respectively, and it continuously measured the pressure.  

Furthermore, the data collected was processed in MATLAB software to determine the 

formation of the air core within the hydrocyclone and to calculate the air core diameter. The 

illustration in Figure 3-9 shows a schematic diagram of the connection system of the data 

acquisition card as shown by Krishna et al. (2010). During data collection, the noise data was 

picked up and this was corrected by using the noise-average elimination method by 

smoothing the signals using an ‘Immediate Trigger’. 
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Figure 3-9: Illustration of online data collection via data acquisition card (Krishna et al., 

2010) 

The results showed that the air core can be accurately identified and predicted using this 

technique. Figure 3-10 shows the well-developed air core as can be seen through the 

transparent hydrocyclone. An alarm that indicates the formation of the air core during the 

hydrocyclone operation was also developed in the MATLAB code. The pressure was found 

to vary at different hydrocyclone positions with the pressure measured at the center being the 

highest and that from the overflow being the least. It was stated that since some of the 

hydrocyclones might not have a spigot, the connection of the sensor to the overflow can then 

be considered.  

 

Figure 3-10: Transparent hydrocyclone showing a stable air core. 

 (Permission of re-use granted by Elsevier) 
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The predicted values of the air core diameter were in agreement with the experimental 

results. Therefore, it was suggested that this technique could be used in many mining and 

mineral processes as it was confirmed to be robust, practical and non-intrusive. 

v. Image analysis of the underflow width 

Another recent image analysis study conducted is that of Janse van Vuuren et al. (2011) that 

was an extension of the work of Petersen et al. (1996) and van Deventer et al. (2003). It was 

performed on a pilot plant hydrocyclone using a video camera to record the underflow 

discharge. This investigation focused on detecting the hydrocyclone operating conditions by 

monitoring the shapes of the underflow to infer the underflow width. The underflow width 

was determined from a horizontal line sliced across an image as shown in Figure 3-11.   

 

Figure 3-11: Illustration of the holizontal line used to determine the underflow width (Janse 

van Vuuren et al., 2011) 

The set-up of this experiment was similar to the set-up described in this thesis as the same 

unit was used (refer to section 4.2). The differences between the two set-ups were the 

additional light source and a video camera that was attached to the side of the mixing tank in 

the work of Janse van Vuuren et al. (2011).  

The results showed that underflow width from videographic images could be used to identify 

different hydrocyclone operating conditions. Although some problems can arise in regard to 

the foreground noise, the technique proved to successfully address the issue of background 

and random noise, as well as system vibration. This could be done by performing image 

Stellenbosch University  http://scholar.sun.ac.za



Chapter 3: Hydrocyclone Online Monitoring 

33 

 

enhancement and motion threshold. The observations further indicated that the technique can 

practically be applied in industrial processes as it is able to meet the requirements stipulated 

on page 168, with 30 frames per second sampling rate. 

Further work is currently being done to study the possibility of this technique being used for 

measureable estimation of hydrocyclone performance. This includes the work described in 

this thesis which aims to further confirm the technique’s viability and robustness. 

  

3.3 Evaluation of monitoring techniques 

A summary of the above mentioned monitoring techniques is presented here and Table 3-2 

displays tabulated notes, highlighting the advantages and disadvantages of each specific 

technique as well as its practicability in industries.  
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Table 3-2: Hydrocyclone monitoring techniques evaluation 

 

Advantages of the technique Disadvantages of the technique Practical Limited

Mechanical detector
• Exposed to wear due to contact with underflow

• Hydrocyclone modification required
X

Gravimetric method • Method requires further investigation X

Tomographic monitoring • Advantageous in complex structures • Complex installation for industrial use 

X-Ray • Non-intrusive

• Limited study done

• Long sampling time 

• Method needs further improvement

Ultrasound • Good in harsh operating environment • Hydrocyclone modification required

Electrical Impedance 

Tomography

• Not sensitive to process environment nature

• Viable, fast and non-intrusive

• Can be used as fault detector and in CFD simulations

Electrical Resistance 

Tomography

• Provides essential on-line information

• Can be used as fault detector

• Can successfully be applied

• Can be intrusive

Electrical Capacitance 

Tomography

• Good in harsh operating environment

• Can be used as fault detector

• Portable, safe and cost effective

• Background noise recorded

Acoustic monitoring

• Good fault detector and routine on-line performance monitor

• Good for performance optimization

• Non-intrusive, non-invasive, simple setup & effective method

• Cost effective

• Further investigation required X

Ultrasound monitoring

• Simple setup & data interpretation method

• Fast sampling rate

• Practicable method

X

Image analysis monitoring Robust, industrial suitable, non intrusive, economical

Videography

• Viable, robust, 

• Can be used as on-line controller

• Fast sampling rate

• Hydrocyclone modification required for air core 

monitoring

Laser-optical • Non-invasive and cost effective

Digital processing • Robust, practical and non-intrusive

Monitoring technique
Use in industry 

X

X

Comments 
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Though a mechanical detector could successfully identify the underflow shapes, its use in 

industry is limited by the extensive mechanical wear that is caused by its contact with the 

underflow discharge. Likewise, the gravimetric method’s practicability in industrial use is 

limited since this technique still requires modification to minimise the disturbances caused by 

the flexible connections.  

Tomographic techniques have many advantages as good monitoring techniques and meet 

most of the requirements as stipulated on page 16, with the exception of X-ray tomography 

that requires a lengthy exposure time. In regard to the operating states, West et al. (2000) 

have pointed out the complexity of setting up the tomographic monitoring methods in 

industrial hydrocyclones that decreases their application in industrial processes.  

Although the acoustic monitoring techniques were found to be effective for hydrocyclone 

optimisation and control, they also need further investigation prior to their application in 

industry. Hence, they still remain experimental and the “expertise knowledge on the correct 

placement of the sensor determines the techniques’ robustness” (Janse van Vuuren, 2011). 

The ultrasound monitoring technique on the other hand seems viable. Although the splash 

skirt used in the experimental set-up explained in section 3.2.5 may be exposed to the 

underflow discharge, the sensor is effective and can be a good indicator of the faulty 

conditions in a process. The arrangement of this technique allows for simple data 

interpretation and set-up.   

Image analysis in regard to air core determination is seen as ineffective as major modification 

to the hydrocyclone is required. However, the underflow discharge image analysis is 

identified as a potential technique for operating conditions monitoring. From the previous 

studies (Petersen et al., 1996, Neesse et al., 2004 and Janse van Vuuren et al., 2011) on the 

monitoring of hydrocyclone operating states by image analysis, practical monitoring systems 

were developed whereby these states could be successfully identified.  

The ultrasound monitoring and image analysis techniques were identified as potential 

hydrocyclone monitoring techniques due to their insensitivity to harsh conditions and 

usefulness in fault detection. However, image analysis is given preference above the 

ultrasound monitoring technique as it assists in the visible observation of the underflow 

discharges. Image analysis is also advantageous in that a wide range of data sets can be 
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extracted because of the possibility of obtaining the whole image as an output (Janse van 

Vuuren, 2011).   

From the above mentioned evaluation, the image analysis monitoring technique was proposed 

as the monitoring system to be used in the work of this thesis. Digital images were used to 

study the underflow particle sizes as a basis of underflow discharge monitoring, extending on 

the work done by Janse van Vuuren (2011).  

 

Chapter Summary 

Hydrocyclone monitoring provides real-time information that could be useful in the 

implementation of device control measures. This however requires that the monitoring 

techniques meet the requirements for better monitoring as outlined by Neesse et al. These 

requirements include that a technique should be sensitive, easy to use, non-invasive, cost 

effective, with a sampling time of less than 1 second, robust and accompanied by little 

modification to the current set-up. Most of the monitoring techniques were found to be 

somewhat unsuited to practical use as the past studies indicated that they do not meet the 

above requirements. Of the monitoring techniques evaluated in this chapter, the ultrasound 

monitoring technique and image analysis of the underflow discharge, were identified as those 

that could be of practical use in the harsh conditions of hydrocyclone operations. However, 

image analysis is given preference over the ultrasound technique due to its ability to visually 

observe the underflow and interpret these observations through analysis of the obtained 

image data. In this light, image analysis was proposed as a technique to be used in the work 

reported in this thesis to determine the underflow particle sizes.  
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Chapter 4: Experimental Methodology  

To achieve the objective of this research project, experimental work was done as mentioned 

in chapter 1. This chapter describes the procedures followed as part of the experimental 

work. It includes safety & health aspects concerning the experiments that were carried out, 

the set-up of the laboratory equipment and plant-hydrocyclones, as well as the methodology 

used.  

 

4.1 Health and safety aspects of the experimental work  

Work that is completed at the expense of the health and/or safety of the worker can be 

regarded as unsuccessful. Hence, the safety and health of both the worker and instruments 

were given high priority in this project. The main safety concerns for both the laboratory and 

the plant were the elevated equipment and the rotating stirrer. The uncovered hydrocyclone 

outlet discharge boxes in the plant process also posed a fall hazard.  

With regards to health issues, dust and noise in both the laboratory and the plant set-up were 

the main concerns. Chemical fumes resulting from high pressure discharge of slurry into the 

discharge boxes of the plant set-up also posed health hazards. In the laboratory, dust was 

generated during sample preparation and also during addition of ore to the mixing tank. The 

personal protective equipment (PPE) used to mitigate these hazards are listed below: 

 Body protection (safety overalls) 

 Safety goggles, safety boots, hand gloves and ear plugs 

 Dust mask 

The elevated experimental set-up increased the risk of falling for both the tools that were 

used and the operator. Since this set-up consisted of running machines, the pump and the 

stirrer, care was taken to prevent the trapping of tools in running machines, especially during 

sampling. In order to minimise risks proper housekeeping was carried out, which also 

contributed to data integrity and aided the successful completion of the entire project. This 

involved thorough cleaning of the equipment to prevent cross contamination between 

different ore types and particle sizes and to improve hydrocyclone performance.  
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4.2 Laboratory experimental set-up  

The experiment was carried out using a general laboratory hydrocyclone set-up which 

involved a recirculation system; refer to appendix A.1, V for the equipment specifications. It 

consisted of a hydrocyclone suspended on a mixing tank so that both the overflow and the 

underflow streams discharged in the same mixing tank. The two streams were mixed by a 

stirrer and pumped back to the hydrocyclone inlet by a centrifugal pump. The only 

measurable parameter on this system was the inlet pressure that was 55-97 kPa for the first 

set of experiments and 145-159 kPa for the second set. The inlet pressure was dependent on 

the solid content into the system. The feed flow rate was reconstituted from the overflow and 

underflow sampling time since there was no flow meter. A schematic diagram in Figure 4-1 

illustrates the hydrocyclone setup. 

 

Figure 4-1: A schematic diagram of the hydrocyclone set-up  
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Digital images of the underflow discharge were captured with a Canon EOS 400D digital 

camera. Since the underflow discharges inside a mixing tank, the camera was positioned in 

such a way that it was not obstructed by the tank. Figure 4-2 shows the position of the camera 

stand and how the underflow was positioned in the mixing tank.  

 

Figure 4-2: Illustration of the camera positioning  

 

4.3 Laboratory experimental method 

Description of case studies, equipment used, sample preparation as well as a detailed 

experimental procedure is presented in this section. Step-by-step methods of the experimental 

procedures are found in Appendix A.1. 

4.3.1 Ore samples preparation and experiments description   

The ore material used for the experiments was obtained from the Bushveld Igneous Complex 

which is a main source of platinum-group metals (PGM) in South Africa. These ores were 
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primarily extracted from the Upper Ground 2 (UG2) and Merensky mining horizons or reefs 

(Lidell et al., 1986).  

4.3.2 Equipment setting 

The Canon EOS 400D camera settings were kept at the resolution of 1600 ISO (International 

Standard Organization) emulsion sensitivity. Images were captured in a raw mode as well as 

in Joint Photographic Experts Group (JPEG) format. A tripod was used to maintain a single 

position for the camera during the same run and to obtain better quality images which would 

have been a challenge if it was held by a person.  

4.3.3 Equipment start-up procedure 

The mixing tank was half-filled with water after which the system and the stirrer were 

activated. The flow of water was used as the system fault check and as maintenance of 

recirculation. For every different ore run, the system was run with pure water for about 5 

minutes prior to addition of sample. 

4.3.4 Experimental procedure 

Although there were different experiments with varied conditions, as explained in the sample 

ore preparation section, the experimental set-up and procedure was the same for all 

experiments. The altered variables were the particle sizes and ore types only and each ore size 

material or type was run separately. The ore material was slowly added to the mixing tank to 

prevent choking the system as well as to assist in the agitation of the slurry. In total, 15 

completely independent runs were conducted with the PGM slurries in the laboratory 

hydrocyclone. During each of these runs, the solids loading was increased in incremental 

steps. The table below shows the cyclone run conditions, runs 13 – 15 is a repetition of 10 – 

12, carried out for the reason of increasing data. 
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Table 4-1: Experimental ore conditions per individual runs 

Cyclone 

Test 
Ore Type 

Particle Size (50% 

feed passing) µm 

Feed Solids 

Loading % 

Run 1 Plat Reef 241 16.1 

Run 2 Merensky Reef 300 16.3 

Run 3 UG2 197 16.1 

Run 4 Plat Reef 41 16.1 

Run 5 Merensky Reef 59 16.3 

Run 6 UG2 41 16.1 

Run 7 Plat Reef 1189 13.0 

Run 8 Merensky Reef 276 13.0 

Run 9 UG2 251 13.0 

Run 10 Merensky Reef 710 10.9 

Run 11 Merensky Reef 210 10.6 

Run 12 Merensky Reef 75 10.6 

Run 13 Merensky Reef 710 10.9 

Run 14 Merensky Reef 210 10.6 

Run 15 Merensky Reef 75 10.6 

The underflow discharges were visually observed for any variation between different feed 

states. Similarly, the physical appearances of the images were also noted prior to analysis of 

data via the image analysis technique. 

The samples were collected from the underflow and overflow streams and were dried in the 

oven overnight. With each sample, the sampling time and mass (wet) were recorded. Solids 

percentage was thus determined and the PSD analysis was performed by using a Saturn 

DigiSizer Laser Particle Size Analyzer as well as sieve screens. The mean or median particle 

sizes of underflow discharge were calculated / extrapolated from the PSD results. This was in 

turn included as an input data set.  

Underflow images were captured, and transferred to a standard PC. Image preprocessing was 

done by enhancing the image contrast and/or removing the background in the Microsoft 

office Picture Manager and then transferring it into MATLAB. Images were analysed on 

MATLAB Software using the image toolbox in order to extract the image features and then 

to determine the association between these features and the underflow particle sizes.  
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4.3.5 Equipment shut down procedure 

A proper shut down procedure was followed at the end of every run. The slurry needed to be 

diluted before draining and a thorough water rinse through the system was done.  

 

4.4 Industrial/Plant –based study 

Investigations were done in an uranium ore processing plant (RUL mine) situated along the 

coastal area of western Namibia. This section is a description of the industrial case study. A 

layout of the hydrocyclone circuit and set-up in the plant is given including the explanation of 

the investigation procedure.  

4.4.1 Motivation for the industrial case study 

A plant-based case study was done in order to study the effectiveness of the underflow image 

analysis in a processing plant as well as to fill some gaps found in the laboratory cyclone 

study.  

The gaps identified were:  

 In the laboratory set-up, there was no changing in the ore running into the system; the 

industrial processing plant would always have undesirable materials that can 

contribute to the complexity of images taken.  

 To apply image monitoring to the industrial hydrocyclone underflow discharges by 

carrying out an observational experiment.  

4.4.2 RUL hydrocyclone circuit 

Hydrocyclones in the RUL plant are found in the washing section of the plant. They are used 

to separate sands from the slimes that at this stage contain dissolved uranium in an acidic 

solution. The hydrocyclone underflow (sands > 210 µm) is washed in a two-stage procedure 

and then conveyed to tailings as waste. Alternatively, the cyclone overflow (slimes < 210 

µm) is pumped to the counter current decantation (CCD) circuit. In the CCD section, more 

solids are removed from the slurry and the solution is further processed downstream. Figure 

4-3 shows the process flow of the processing plant highlighting the circuit where the 

hydrocyclones are found (the block highlighted in blue).  
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Figure 4-3: RUL processing plant flow diagram 

 

a) Hydrocyclones set-up 

There are two modules in this plant section. Each module comprises of ten hydrocyclones in 

parallel arranged in two rows of five each. Figure 4-4 illustrates this and also shows the first 

and last hydrocyclone in one row. 
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Figure 4-4: RUL hydrocyclones plant/circuit layout indicating the first and last cyclone in a 

sequence 

 

The parallel arrangement of hydrocyclones aids in accommodating the amount of tonnages 

required for the operation. They receive the feed from a 10-way pulp distributor. This makes 

it impossible to isolate one cyclone and have it run on different conditions as done with the 

laboratory experiments. The cyclone layout is made in such a way that the feed (leached 

pulp) enters the hydrocyclone and discharges into the underflow and overflow discharge 

boxes (Rössing, 1995). These outlets are all discharging to different sections and there is no 

circulation of the material in the system. Figure 4-5 illustrates the layout described and Figure 

4-4 shows the hydrocyclones arrangement in the RUL plant.  

Stellenbosch University  http://scholar.sun.ac.za



Chapter 4: Experimental Methodology 

45 

 

 

Figure 4-5: RUL hydrocyclones plant/circuit layout (redrawn from Rössing, 1995) 

From Figure 4-5, the feed flow to the cyclones can be summarized in this manner: The 

leached slurry from the leaching section enters a leached slurry distributor where it meets 

with the washing solution and is pumped to the cyclones. In the hydrocyclones, the separation 

of slimes (product) and sands (waste) is performed; the overflow is pumped to the CCD 

circuit and then proceeds to the downstream sections. However, the hydrocyclone underflow 
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is further washed of the uranium-containing solution and then transported via sands conveyor 

to tailings as waste.    

b) RUL hydrocyclone description  

The hydrocyclones found in RUL are 660 mm big (refer to appendix A.2 for detailed 

dimensions). The maximum tonnages each module can receive is approximately 520 t/h and a 

barren wash rate of 20 m
3
/min. The feed inlet pressure to each hydrocyclone is approximately 

60 kPa to allow for normal cyclone operation. A project focused on improving the cyclone 

efficiency is currently being carried out and is partly addressing the issue of low pressure 

with big cyclones. For this study, all descriptions remained as such except for the mills 

throughput (tonnages) that was kept at 480 t/h for both cases. Figure 4-6 and Figure 4-7 show 

a typical hydrocyclone found in the RUL washing circuit.   

 

Figure 4-6: Illustration of a RUL hydrocyclone (redrawn from Rössing, 1995) 

 

 

Figure 4-7: RUL hydrocyclones in a sequence as well as a zoomed-in individual cyclone  
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c) Monitoring the hydrocyclone  

Inadequate monitoring of hydrocyclone operation such as those of RUL would lead to > 210 

µm materials being sent to the CCD circuit and cause sanding of the thickeners that could 

result in inefficient operation. Roping conditions may occur due to solids sedimentation at the 

underflow section or high solids concentration in the cyclone feed. The effect of roping is that 

sand will report to the hydrocyclone overflow and be pumped to the CCD circuit resulting in 

the above mentioned negative effect. In addition, poor sand/slime split may result when the 

feed inlet pressure is not well monitored. Therefore, it is critical that hydrocyclones should be 

well monitored to prevent the mentioned unfavourable conditions. 

4.4.3 Description of industrial/plant-based case study 

Plant material was investigated by looking at the hydrocyclone underflow discharges as well 

as the underflow discharge image features. A more detailed explanation of how these were 

analysed is found in the next chapter. The investigation field of this study was the uranium 

mining plant (RUL plant) and two case studies were done. The study was conducted on the 

plant hydrocyclones as an in-line test and the cumulative 50% finer particle size for the 

cyclone feed was 63 µm and 80 µm respectively for the two case studies. From the PSD, it 

was shown that these data sets had different size distributions of finer particles, but a similar 

coarser size distribution.  

4.4.4 Hydrocyclone underflow discharge manual sampling  

The hydrocyclones were evaluated as to whether they were well conditioned based on spigot 

inspection and the appearance of their discharges. One of the best conditioned hydrocyclones 

was selected for sampling. From this hydrocyclone, two sets of data were collected in two 

days, one set for each day. These two sets could give slightly different results, but it was not 

expected to be too different because the same parameters were used for their normal process 

operation. The same hydrocyclone was used for the manual sampling and for the image 

collection.  

  

Eight samples in total were taken from each stream (the underflow and overflow) of the 

hydrocyclone. For each sample the moisture analysis and sample screening for the PSD were 

performed. The solid concentration for each underflow discharge sample was determined by 

recording the wet (slurry) and dry mass of the samples obtained. The formula used was  

Stellenbosch University  http://scholar.sun.ac.za



Chapter 4: Experimental Methodology 

48 

 

 100 x 
 masswet 

massdry 
 = % Solids         (4–1) 

The solids content in the underflow discharge was found to be in the range of 73% - 76% for 

RUL samples.  

PSD analysis was used to determine the mean underflow particle sizes and in turn to predict 

the particle sizes in the regression model. PSD was analysed by using sieve screens as well as 

the laser particle size analyser and the results generated formed part of the dataset.  

4.4.5 Hydrocyclone underflow image collection  

After a proper camera set-up was established, the underflow discharge images were captured. 

These images were transferred to a standard PC and processed as described in section 4.3.4 

and in detail in Chapter 1:.  

The RUL hydrocyclone set-up posed some difficulties with image capturing. The major 

problems were identified as:  

 The discharging of hydrocyclones into the underflow boxes complicated the image 

taking since the spigot was inside the box. In Figure 4-8, the fitting of the spigot into 

the discharging box (A and B) and the discharge box opening (C) are shown.  

 

 

Figure 4-8: Illustration of fitting of; (A) the spigot onto the underflow box, (B) the underflow 

box opening and (C) the spigot seen from the opening 

 

 Difficulty positioning the camera: As seen from Figure 4-8 (B), the opening of the 

underflow box was obstructing the vision to the spigot, thus the positioning of the 

(B)
(A)

(C)
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camera was made difficult. However, proper assessment of the area made the 

imaging possible. 

 Blurred image clarity: The slurry enters the box at a high pressure and sometimes 

this creates a lot of fumes. The fumes cover the underflow discharge and blur the 

images as can be seen in Figure 4-9. 

 

Figure 4-9: Fumes blurred the RUL hydrocyclone underflow discharge image  

 

 Ergonomics: Due to the elevated underflow box and the size of the platform, there 

was a potential hazard of falling into the box or off the platform. 

 Camera safety: The high pressured slurry entering the discharge box can lead to 

spillages (uranium-acidic content) over the camera and this could corrode and 

damage it. So, extra care was taken. There was also a real possibility of the 

camera falling into the uncovered box whilst in the process of setting it up, or of 

the camera falling off the platform to the ground. 

 Limited study time frame did not allow an excellent camera set-up to be 

established; however the temporary improvements made were sufficient.  

Although there were some shortcomings as mentioned above, the improvements that were 

made mitigated them and allowed the successful completion of the study.  
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4.5 Monitoring technique requirements 

In Chapter 1: a number of monitoring techniques were evaluated and image analysis was 

indicated as one of the techniques that met the hydrocyclone monitoring requirements as 

shown by Petersen et al. (1996); Neesse et al. (2004b); Krishna et al. (2010) and Janse van 

Vuuren et al. (2011). This section outlines the specifications of the monitoring equipment 

used for this work with regards to the requirements of hydrocyclone monitoring.  

For sensitivity the Canon EOS 400D camera was used at the resolution settings of 1600 ISO. 

To obtain clear high quality images and best shots, a Canon Speedlite 580EXII flash with 50 

mm flash range was added. The camera takes images at a rate of 3 frames/sec. 

The use of the tripod and the flash kept the camera at a distance away from the splashes yet 

allowed the camera to focus on the spigot by using its zooming ability. This monitoring 

system is non-intrusive as no modification was necessary to the existing hydrocyclone set-up. 

It is also robust and not sensitive to mechanical wear. Although a cyclone set-up may hinder 

the process of imaging as was observed with the RUL processing plant, little and inexpensive 

modifications may be effective to solve this problem. This monitoring system is also cost 

effective since the monitoring equipment is not expensive. 

 

Chapter Summary 

This chapter described the methodology used in this study. It has highlighted the importance 

of risk assessment prior to any test work. The major risks identified were the elevation of the 

hydrocyclones, housekeeping, dust, fumes and the ergonomics. The laboratory set-up 

involved a standard laboratory hydrocyclone with a recirculation system that allowed the 

underflow and overflow streams to discharge in a mixing tank to be used as feed for the 

hydrocyclone. The ore used for the experiments were PGM samples from a Bushveld Igneous 

Complex in South Africa. These were the Merensky, UG2 and Platinum reef materials of 

about 50 kg each per case study and 15 experimental case studies were carried out.  
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The plant investigation on the other hand used an in-line uranium material from a RUL 

processing plant in Namibia. Hydrocyclones at the RUL plant are found in a washing circuit 

and are used to separate waste sand from the slimes containing dissolved uranium. Hence 

their monitoring is critical to prevent loss of uranium along with the waste material. Two case 

studies were done with the aim of comparing the effectiveness of image analysis monitoring 

in an industrial operation to its application in laboratory cases. Though there were a few 

limitations associated with the underflow imaging procedure in the plant, small and 

inexpensive modifications could successfully mitigate them.  

For both the laboratory and plant studies, the underflow samples were collected for the 

analysis of solids percentage and PSD. These analytical results formed part of a dataset in 

addition to the underflow image features. Image analysis was performed with the MATLAB 

image toolbox. The monitoring system used a Canon EOS 400D camera with a Canon 

Speedlite 580EXII flash that allowed for better quality images to be taken. The camera takes 

3 frames per second and it is non-intrusive, robust, and cost effective. This makes it suitable 

as a good hydrocyclone monitoring device for an underflow monitoring system.  
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Chapter 5: Data Analysis 

This section outlines the analysis of data obtained as explained in chapter 4. It gives an 

overview of the analytical methodology which covers the image processing and manual 

sample analysis. The chapter further presents the description of the data set and variables as 

well as the analysis methods used. In this document, underflow discharge images and 

underflow images are used interchangeably. 

 

5.1 Analytical methodology 

Regression and classification models were used to assess the relationship between the 

underflow image features and the mean particle size and solids content. The classification 

methods that were used included linear discriminant analysis (LDA) and multilayer 

perceptron neural networks. The classification analysis of data was performed in 

STATISTICA software, whereas the MATLAB NN toolbox software was used for the 

regression model.  

Figure 5-1 gives an overview of the analytical methodology used. It shows the procedure 

followed to analyse the data obtained from the underflow samples as well as from the 

underflow images. A stepwise analytical procedure is found in Appendix A.1 - I.  
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Figure 5-1: A flow diagram of the analytical methodology 

ANALYTICAL METHODOLOGY

       The flow diagram below illustrates the analytical procedure from sample & image data preparation 

          to data classification as done in image processing tool in MATLAB and/ STATISTICA Software
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5.2 Hydrocyclone underflow discharge image analysis 

Image analysis is the way of obtaining useful information from an image based on different 

image properties (Prats-Montalbãn et al., 2011). In this research, the image property used was 

mostly texture, where numerical values of the image features were extracted. The reason for a 

focus on textural features, was that the particle size and solids concentration in the slurry was 

observed to have an effect on the appearance of smoothness in the underflow. Colour on the 

other hand, appeared to be less reliable an indicator of the particle size of the flow, ore type. 

More work would be required to quantify these observations, which were not considered in-

depth, as it fell beyond the scope of the present work.  

Image processing begins with pre-processing to rid images of unwanted background and 

noise before the image analysis can be done successfully. For this work, hydrocyclone 

underflow discharge images of different feed conditions were processed with MATLAB, 

using an image processing tool as indicated in Figure 5-1. Appendix B: presents the 

MATLAB programming code used for explained image feature extraction. 

The following sections describe the two methods used to extract numerical variables from the 

raw underflow images, namely image texture analysis and the underflow width extraction 

methods.   

5.2.1 Underflow image texture analysis method 

Among many definitions, image texture can be defined as a repeating pattern of local 

variation in image intensity which is characterized by spatial distribution of colours or 

intensities in an image (Berberoglu et al., 2007; Bharati et al., 2004; Tuceryan & Jain, 1998). 

The texture analysis method is used in a variety of applications like classification, 

segmentation and synthesis (Bharati et al., 2004; Tuceryan & Jain, 1998; Prats-Montalbãn et 

al., 2011). Although quite a number of textural features have been proposed, they are 

dependent on each other, as stated by Tomita & Tsuji (1990) cited in Tuceryan and Jain 

(1998). According to Bharati et al. (2004) and Prats-Montalbãn et al. (2011), texture analysis 

differs in approach depending on the method used. The method could be statistical, structural, 

model-based or transform-based.  
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In this research, the extracted image features were based on the statistical pattern recognition 

methods. These textural features were extracted using a grey level co-occurrence matrix 

(GLCM) and were in a numerical form.  

a) Gray level co-occurrence matrix  

 “For an image, GLCM is a second order statistical method that distributes the co-occurring 

grey levels of two pixels at a given offset” (Aldrich et al., 2010; Marais, 2010). It is broadly 

used to characterize the texture of images. The GLCM uses statistical measures and it is also 

widely accepted as an image feature extraction method (Rodriguez-Galiano et al., 2012). A 

variety of statistical measures extracted from the GLCM can give unique information about 

spatial relationships of pixels in an image as well as the neighbouring grey level dependence 

matrix (Aldrich et al., 2010; Marais, 2010).  

The GLCMs were calculated from a rectangular slice of an image as shown in Figure 5-2, see 

appendix B.2 for the MATLAB code used to extract the numerical data for these features. 

Red rectangles in this figure represent the area of interest from which the image textural 

features were extracted. The slices were taken from the inside area of the discharge for noise 

reduction purposes. This was determined in such a way that they do not lie in the downward 

curving region where the image starts changing features. Slicing of images was done at 

different image settings after the images went through the contrast and brightness 

enhancements. These include RGB, grey scale and threshold image settings as illustrated in 

Figure 5-2 A, B and C respectively.  

 

Figure 5-2: Image settings where GLCMs were extracted, (A) RGB image, (B) gray-scale 

image, (C) threshold image 

From the three image settings, the analysis showed that only the grey-scaled settings could be 

used due to the complexity of working with colour (RGB) and threshold images. The colour 

(C)(B)(A)
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images use three values for one pixel which then complicates the analysis unlike one value in 

grey-scaled images. Threshold application generates too extreme values, either zeros (white) 

or ones (black), which caused complexity in further analysis. This could be due to some 

inconsistency in the lighting of images, and was observed more with the RUL images. With 

the above limiting factors in RGB and threshold, it was decided to rather make use of grey-

scaled image settings.  

b) Gray level co-occurrence matrix statistical measures 

The GLCM statistical measures used were entropy, energy, homogeneity, contrast and 

correlation. The calculations were done with a built-in function in the MATLAB software. In 

all the GLCM statistics formulas the i,j is the co-occurring pair, Pij is the co-occurring 

probability of the i,j elements in GLCM and N is the number of grey levels in the image.  

i. Entropy  

In a GLCM, entropy measures the local deviations of values, thus reflecting how repeatable 

grey level pairs are in an image (Clausi & Zhao, 2002). An image with a higher degree of 

repetition amongst the grey level pairs tend to have high entropy values and this is mostly 

found within the fine particle images, with a few exceptions dependent on the particle size 

ranges. The following formula calculates the entropy feature. 

ijij

N

ji

PPEntropy )ln(
1

0,








(Correlation, 2012)      (5–1) 

ii. Contrast 

The contrast feature is calculated using the formula (5–2) and it measures the brightness 

difference between a pixel and its neighbour across the image, it also measures texture 

smoothness. 

2
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iii. Correlation 

In a correlation feature, linear dependency of grey level in an image is measured (Marais, 

2010). It shows how correlated a pixel is to its neighbour and is calculated by: 
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iv. Energy 

The energy features measure the evenness or uniformity of an image and its value is small for 

non-uniform images. It is calculated using the following formula: 
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         (5–6) 

v. Homogeneity 

Lastly, the homogeneity statistics measures the closeness of the elements in the GLCM to the 

GLCM diagonal. The following formula calculates homogeneity. 

2
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μ = the GLCM mean (being an estimate of the intensity of 

all pixels in the relationships that contributed to the GLCM) 

 σ
2
 = the variance of the intensities of all reference pixels in 

the relationships that contributed to the GLCM 
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5.2.2 Underflow width extraction method 

The underflow width is the number of pixels between the underflow edges along the 

horizontal line within the interval search limits (Janse van Vuuren, 2011). An appropriate 

horizontal line was sliced for each image as shown in Figure 5-3.  

 

Figure 5-3: Illustration of the underflow width extraction method 

 

A certain underflow width was determined in such a way that after slicing a horizontal line, a 

data cursor was used to get the pixel numbers between the underflow edges (A to B points as 

illustrated in Figure 5-3). The horizontal line was determined using a theoretical spray profile 

such that the line lies in the region of flat downward sloping. This area is between the initial 

upward curved region and the downward curving regions. For more details on this, Janse van 

Vuuren et al. (2011) can be consulted.  

The values obtained from the underflow width were combined with other extracted features 

to form a dataset and were further analysed.  

 

5.3 Description of the data set and variables  

The numerical variables from sample analysis and the underflow image features are defined 

here. The data values for all variables were normalized so that they ranged between 0 and 1.   

A B
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The consolidated data set for this research comprised 10 variables and 340 observations, as 

indicated in Appendix A.3.II. The data set was made up of combined data from the calculated 

hydrocyclone underflow PSD (mean particles size) and solids content, and the cyclone 

underflow image features. The data obtained from experimental work on the industrial plant 

have also been included in the consolidated data set (designated by Ore Type = RUL), but 

these data were analyzed separately, as conditions between the laboratory and industrial 

setups were not comparable.  

The variables that were used for analysis and modeling are summarized in Table 5-1. They 

consisted of one categorical and two continuous response variables, as well as seven predictor 

variables. The categorical response variable represented the ore type and could assume any of 

the four values Merensky, Platreef, UG2 or RUL (where in the case of the industrial data). 

The two continuous response variables were the mean particle size (MPS) and the solids 

content of the underflow slurries. The seven predictor variables were derived from the images 

of the underflow and were the underflow width, homogeneity, entropy, correlation, standard 

deviation of the pixel intensities, energy and contrast, as previously described in more detail.  

Table 5-1: Variables used in data analysis of the PGM ores. 

Variable Type Variable Range 

Response 

Categorical Ore Type Merensky, Platreef, UG2 (RUL) 

Continuous 
MPS (µm) 97-1400 

Solids (%) 6-32 

Continuous Predictor 

Underflow Width (pixels) 332-936 

Homogeneity 0.84-0.95 

Entropy 0.27-1.00 

Correlation 0.86-0.97 

St Dev Pixel Intensity 22-76 

Energy 0.07-0.41 

Contrast 0.10-0.44 

 

5.4 Classification analysis 

Classification models were built with the categorical response variable as output and the 

seven continuous predictor variables as input. For this purpose, Fisher’s linear discriminant 
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analysis (Nagpaul, 2009) and (nonlinear) neural network models were used. Generally, a non-

linear method is observed to have an advantage over the linear method due to its ability to 

separate closely spaced data (Khashei et al., 2012; Kone and Karwan, 2011). These two 

approaches are described in more detail below.  

5.4.1 Linear discriminant analysis method 

The LDA method is a widely applied supervised classification method that is simple in use 

and very effective. It is used to determine a variable that can distinguish two or more groups 

as well as to predict the classification cases with regard to the mean of a variable 

(STATISTICA, 2012). The basic idea is to project the variables onto a lower-dimensional 

plane, so that separation of the different groups in the data is maximized on the projection 

plane. Classification is then done by identifying the boundaries between the different groups 

in the discriminant score space. In this investigation, linear functions were used to do this. 

Linear discriminant analysis reduces classification problems to linear identification 

constituents by transforming them into discriminant functions that separate data into classes. 

It further estimates the coefficients of these functions. A discriminant function minimizes the 

misclassification rate according to the training data set and classifies new observations. For a 

certain problem, the effectiveness of the classification process depends on the performance of 

its discriminant function (Khashei et al., 2012). 

5.4.2 Automated Neural Network analysis method 

Neural networks are non-parametric or weakly parametric models that can identify complex 

relationships between variables. Multilayer perceptron neural networks comprise and input 

layer of process units or neurons that distribute the data to one or more hidden layers and 

finally an output layer. Each of these layers consists of process units or neurons with 

weighted incoming connections. Each neuron is also associated with a simple activation 

function (typically sigmoidal), that transforms the data before it is passed on to the next layer 

or presented as the output of the network. Adjustment of the weights is done by means of a 

training process and essentially the network can be seen as a set of weighted basis functions 

that are fitted to the data (Muhamad and Deravi, 1994;  STATISTICA, 2012). Figure 5-4 

shows a typical layout of the neural network showing an input, a single hidden and an output 

layer. 
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Neural networks and multilayer perceptrons in particular, are widely applied techniques and 

it has been successfully used in many fields (Khashei et al., 2012). In classification problems, 

a neural network model assigns a class to a certain set of input variable (Berberoglu et al., 

2007) and during training its weights are adjusted iteratively until the misclassification of the 

training data is minimized.  

 

Figure 5-4: A schematic diagram of a neural network with three inputs, five hidden neurons 

and three outputs. 

An example of the use of neural networks as classifiers was the content-based image 

classification that was constructed for various image features by using a NN back-

propagation learning algorithm (Park et al., 2004). These authors used the images on the 

internet and found that neural networks have the potential to be used as an automatic 

classification system for images of this type. In their work, textural image features were 

extracted by wavelet transform and sliding window-based feature extraction. These textural 

features included contrast, diagonal moment, energy, entropy, homogeneity, second diagonal 

moment and uniformity. The overall classification rate for this experiment was 79.2% 

correct.   

5.5 Regression analysis  

Regression is defined as a statistical tool for the investigation of best relationships between 

variables. A commonly used regression technique is multiple regression analysis whereby a 

single variable is related to a set of variables. “Multiple regression allows additional factors 

to separately enter the analysis and estimate the effect of each factor. It is valuable for 

quantifying the impact of various simultaneous influences upon a single dependent variable” 

(Sykes, n/a).  

Input 

layer

Hidden 

Layer

Output 

Layer
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In a regression equation, a dependent variable is estimated as a function of a number of 

independent variables, an error term, as well as corresponding parameters (Bello, 1995; 

Sykes, n/a; Um et al., 2011). The equations (5–8) and (5–9) for the linear (multiple 

regression) and the non-linear regression methods respectively have mathematical forms

  kk xxxY ...221

*
       (5–8) 

nixfY iii ,...,1),(          (5–9) 

In equation (5–8), the symbols *Y ,  ,  , and x  represents the vectors of observations of 

dependent variable (n x 1), parameter (k x 1), disturbance terms (n x 1) and the (n x k) matrix 

of observations of independent variables. n is the number of observations (Constantinides & 

Mostoufi, 2000). 

The definitions of the symbols in equation (5–8) are; 
iY  as the responses, f is a known 

function of the covariate vector 1x  = ( 1x 1, . . . , 1x k)
T
 and the parameter vector (θ1, . . . , θ 

p)
T
, and i are random errors (Smyth, 2002). 

Two approaches towards predicting the continuous response variables (MPS and solids %) 

from the set of predictor variables were considered, namely multiple linear regression 

analysis and neural networks. Refer to sections 5.5.1 and 5.4.2 for a brief explanation of these 

methods respectively.  

5.5.1 Multiple linear regression analysis method 

Multiple linear regression (MLR) method is used to model the linear relationship between a 

dependent variable and one or more independent variables. It predicts the values of a 

dependent variable given a set of explanatory variables. In MLR it is assumed that Y is 

directly related to a linear combination of the explanatory variables, hence it models the 

linear relationship. This analysis is based on least squares where the model is fit such that the 

sum-of-squares of differences of observed and predicted values is minimized (Tranmer & 

Elliot, 1998). 
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5.5.2 Neural Network (NN) regression analysis method 

In terms of regression problems, the NN method can be used to relate a number of input 

variables with a set of target variables. It was therefore used to predict the underflow particle 

mean sizes using the observed dependent variable data. For the interpretation of results, the 

mean squared error (MSE) and R
2
 were assessed. The MSE is the mean of the squared 

deviation between the actual and the estimated values which accounts for the bias as well as 

the error difference. R
2
 evaluates the variation percentage of the actual data that is explained 

by the predicted data. Thus, knowing the MSE and R
2
, the model performance can be 

evaluated.  

A Neural Network method is applied in many regression problems. An investigation similar 

to this study was carried out by Ko & Shang (2011) and it focused on the determination of 

particle size distribution using a Neural Network-based soft sensor to model the image 

uniformity. The outcome from this investigation indicated that the proposed methodology can 

provide reliable particle size calculation, and could be used for online measurement of 

particle size. This procedure together with the resulting neural network-based soft sensor that 

uses particle images was shown to be applicable to mineral processing operations for 

analysis, monitoring and control (Ko & Shang, 2011).  

In this report, the NN analysis was performed using an automatically MATLAB software 

GUI generated script with modifications. A 3-fold cross validation was executed and the best 

performer of the three networks was selected to run the model using the independent test 

data. This was defined as the network with the highest performance rate and least error 

values. The MATLAB scripts used for the analysis are given in appendices B.3 and B.4. 

 

Chapter Summary 

The data was analysed by classification and regression methods. The regression analysis 

formed only a basis for further research in this field due to the nature of the work that was 

done and the scope of this work. Therefore, the major conclusions are made based on the 

classification analysis results. The methods used to classify data were the LDA and NN 
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methods, whereas MLR and NN were the regression methods. In both the classification and 

the regression analyses the non-linear and linear model results were compared.  

Additionally, the variables were a combination of categorical classes, the calculated values 

from the underflow samples and the underflow image features in numerical values. The 

categorical classes were the ore types and the particle size classes, whereas the calculated 

data was the MPS plus solids content. The categorical variables were used in classifying the 

data, and the calculated data were used in predicting the particle sizes. Furthermore, the 

image features variables were the underflow width, pixel intensity values and the GLCM 

statistics. The statistics included the energy, entropy, contrast, correlation and homogeneity. 

For the regression model, the input variables used were the underflow width, pixel intensity 

values and the GLCM statistics.  
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Chapter 6: Results and Discussion 

The previous two sections explained the experimental and analytical methodologies of this 

research. In this chapter the results obtained thereof are presented and discussed. These 

include the findings from the exploratory analysis, the classification of data and the 

prediction of the hydrocyclone underflow particle sizes distribution. 

 

6.1 Classifying underflow image features  

Classification models were built to assess the ability of the image features to discriminate 

between the different platinum ore systems. These could not easily be distinguished by 

observation, as the ores could not be differentiated by colour. In addition, the data obtained in 

industry were also analysed, this time to distinguish between mean particle sizes. In this case, 

classification was almost trivial (100% classification could be obtained), owing to the 

differences in the operating conditions between the two classes of particle size data. 

6.1.1 LDA models 

The classification rate for the laboratory data set when grouped per ore type was 61% 

accurate overall. This is a relatively poor classification rate, but nonetheless better than what 

would be obtained with a random classifier. Figure 6-1 illustrates these results on a scatter 

plot of canonical roots. As it can be seen from this graph, there is considerable overlap 

between the scores associated with the different classes. This showed similar observation to 

that made by physical assessment of the underflow.  

Furthermore, the data set from the industrial hydrocyclone system was separately classified 

according to the underflow particle size classes. The two sets of data differed in median 

particle size as they were collected on different days, which meant that process conditions 

could not be controlled completely. Hence, for classification purposes, the data sets were 

divided into (212 µm) and (318 µm) size classes. Due to the time limit and difficulty 

capturing the cyclone underflow images, this data set consisted of 20 observations (images) 

for each set only. The rest of the image frames could not be used.  
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Figure 6-1: A graph of canonical roots illustrating the classification of the laboratory 

hydrocyclone data set according to the ore type category  

 

Figure 6-2: Scatterplot of Intermediate1 (212 µm) against Intermediate (318 µm) as 

categorized by Observed Squared Mahalanobis Distances from industrial hydrocyclone 

system data set 

As mentioned previously, the classification results indicated that there was clear distinction 

between the two data sets with a 100% classification success rate, as indicated in Figure 6-2. 
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Even so, more experimental work would be required to draw more general conclusions with 

regard to the application of the methodology in the specific industrial setup. 

6.1.2 Neural network classification models 

For the comparison of the linear classification model with the non-linear model, the results 

from the neural network analysis are presented here. These outcomes are reported in the same 

order as the LDA results in the previous section.  

The error function for the NN classification analysis was kept as the sum of squares. In 

addition, the training algorithm used was the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

technique (its parameters are given in the tables of presented results). Furthermore, the 

network employed various hidden neurons like hyperbolic tangent (tanh) or identity and the 

output neurons were mostly the softmax activation function. Other (logistic sigmoid and 

exponential for hidden nodes; identity, tanh and exponential for output nodes) activation 

functions also attained favourable outcomes. A specific summary of networks are given for 

each set of results in its respective results table.  

The best neural networks which were selected out of the five active networks for each 

analysis are highlighted in all the tables of results presented. Table 6-1 shows the networks 

and the respective analysis performance for the laboratory data ore type category. The table 

shows the optimal structures of the single hidden layer multilayer perceptrons (all with seven 

input nodes and three output nodes), the error function that yielded the optimal model, as well 

as the activation functions of the hidden nodes of the neural networks. 

Table 6-1: The view of networks retained from the laboratory cyclone data classification 

analysis with NN method, categorized by ore type. The best and selected network is 

highlighted 

 

 

Categorising the laboratory cyclone data set by the ore types showed that the total 

classification rate was 62.2% on average based on the validation data. This is similar to what 

Index Net. name
Training 

perf.
Test perf.

Validation 

perf.

Training 

algorithm
Error f

Hidden 

activation

Output 

activation

1 MLP 7-9-3 64.3 68.9 62.2 BFGS 16 Entropy Exponential Softmax

2 MLP 7-8-3 80.5 77.8 62.2 BFGS 37 Entropy Logistic Softmax

3 MLP 7-12-3 90.0 77.8 60.0 BFGS 69 Entropy Tanh Softmax

4 MLP 7-4-3 68.1 51.1 66.7 BFGS 0 Entropy Exponential Softmax

5 MLP 7-6-3 67.6 57.8 60.0 BFGS 0 Entropy Tanh Softmax
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could be obtained with the linear discriminant model. The Merensky ore type could be 

distinguished more readily from the other two ore types, as indicated by the data in Table 6-2.  

Table 6-2: Summary of the laboratory cyclone data classification categorised by ore types, 

total percent classified highlighted   

 

6.2 Predicting the particle size and solids % of the underflow 

images 

The results of multiple linear regression (MLR) and non-linear regression analyses with 

multilayer perceptrons were evaluated to determine the relationship of the underflow image 

features to the underflow particle sizes and solids loading. This was done for the laboratory 

hydrocyclone system only. The industrial system data set could not be modelled efficiently 

due to insufficient data (only two values for the response variable). As a consequence, 

industrial data analysis was excluded from this modelling.   

6.2.1 Linear regression 

The results from the MLR model showed that R
2
 statistics values of approximately 0.558 and 

0.403 was obtained for the laboratory system as predicted by the mean particle size (MPS) 

and solids content respectively. This indicated a poor fit of data to the model and the use of 

linear regression models was not considered further.  

6.2.2 Neural network models  

The network employed was comprised of the linear transfer function (purelin), and as a 

predictor function, the linear output nodes. A total of 300 image frames were used for this 

analysis; 240 images trained the data by a 3-fold cross validation analysis and 60 images 

were used as the independent test data. The output variables were the MPS and solids % or 

content which were predicted from these image features: underflow width and standard 

deviation of the pixel intensity values as well as the GLCM statistical features (entropy, 

energy, homogeneity, contrast and correlation).  

Net. name  Merensky Plat Reef UG2 All data

Total 180.0 60.0 60.0 300.0

Correct 164.0 41.0 46.0 251.0

Incorrect 16.0 19.0 14.0 49.0

Correct (%) 91.1 68.3 76.7 83.7

Incorrect (%) 8.9 31.7 23.3 16.3

3. MLP 7-12-3
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A feed forward multilayer perceptron (MLP) network with 7-10-3 architecture was the 

optimized network used to predict the discharge particles after having run a number of trials 

with the training data. MLP is able to use different activation functions and to efficiently train 

them to any function. Thus it can be applied to both linear and non-linearly separable data. To 

the contrary, a single unit perceptron can only be applied to patterns that can be linearly 

separated. Therefore, the MLP architecture was used in this analysis since it was not known a 

priory in which type of data relationship these image features were. This prevented the risk of 

applying a linear architecture to non-linear data which would result in an unsuccessful data 

fit. 

 

Figure 6-3: The Neural Network Regression-Fit for the laboraratory hydrocyclone system 

data, with the mean particle sizes as the predictor 

The findings of the optimized MLP on the test data used for the prediction of the output 

variables indicated that the R values were 0.817 and 0.673 for the MPS and solids content 

respectively. The closer the value of R is to 1, the better the model (the predicted and the 
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observed variables have a closer relationship). Refer to Figure 6-3 and Figure 6-4 test graphs. 

The R
2
 values for the MPS and solids content were 0.667 and 0.453 respectively. From these 

results, it is clear that the laboratory data poorly fit the NN model with both the mean PS and 

with the solids content output variables. With both predictors the results were poor, with the 

MPS showing a better outcome than the solids content. 

Therefore, it could be concluded that it was more difficult to predict the solids content than to 

predict the MPS, using the laboratory data presented in this thesis.  

 

Figure 6-4: The Neural Network Regression-Fit for the laboraratory hydrocyclone system 

data, with solids loading as the predictor 

To further evaluate the goodness of fit to the models, the predicted and observed values for 

the two output variables, mean particle size (mean PS) and solids %, were compared. The 

results indicated that the predicted values of the mean PS were closer to the experimental 

values in comparison to the solids loading. Refer to Figure 6-5 for the comparison plots of 

predicted versus observed values for the mean PS and solids % validation data of the 

laboratory cyclone systems. 
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Figure 6-5: Illustration of the observed values versus predicted values of the mean particle sizes (A) and solids loading (B) as obtained from the laboratory 

hydrocyclone system 
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The model performance was compared to the data and it showed that both output variables 

were closely correlated with the average standard deviation of ±0.0736 and ±0.0355 for the 

mean PS and solids content respectively. Figure 6-6 presents this correlation.  

 

Figure 6-6: Illustration of the correlation between the y-validation predicted and y-data  

for mean PS (A) and solids content (B) 

 

Chapter Summary 

Visual observation and underflow image pixel intensity values were used for the exploratory 

study. It was used to test the sub-hypothesis which stated that different particle sizes of the 

hydrocyclone underflow discharges can be distinguished. The results proved this statement 

correct as the particle sizes was correctly classified. These results set the basis for further 

investigations carried out during the rest of the study described in this thesis.  

The laboratory data categorisation results obtained by performing the linear (LDA) and non-

linear (NN) models showed similar results. However, the outcomes of NN classification 

analysis were slightly better than with the LDA. The successful classification rate from the 
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NN model was 84% and 92% for the ore type and particle size class categories. In contrast, 

LDA outcomes were 61% and 79% respectively. A linear model would therefore be sufficient 

to correctly discriminate between the particles of different sizes. However, ore types could 

only be non-linearly distinguished. 

The industrial data was only classified according to the particle size classes since the ore type 

was the same (uranium ore type) and a 100% classification rate was achieved. This outcome 

suggests that a feasibility image analysis study could be conducted on industrial cyclone 

systems.  

With regard to the underflow particles prediction, only laboratory data was analysed due to 

the insufficiency of industrial data. The results thereof showed that the particles information 

could hardly be explained in both linear and non-linear models. In the linear model, the 

predictors (Y) only explained the input variables by about 56% and 40% with mean PS and 

solids content respectively. Besides, non-linear models yielded a % variance of 67 and 45 

respectively. However, the non-linear model performed better in comparison to the linear 

model. The test R
2
 values attained were 0.667 and 0.453 with the mean PS and solids content 

output variables for the non-linear and linear methods respectively. This is an improved 

performance of model fit from linear to non-linear model.   

Ultimately, the conclusion made is that, although the non-linear model obtained better results 

in comparison to the linear model, the cyclone underflow particles could not successfully be 

correlated to the underflow image features. Furthermore, extensive research is required to 

gain a good understanding of the influence that this monitoring system could have in the 

industrial environment. This is however outside the scope of the work described in this thesis. 

The aim for the industrial-based study was only to establish a feasibility study of image 

analysis to RUL cyclones. This can be conducted with a few modifications to the current 

hydrocyclone set-up.  

  

Stellenbosch University  http://scholar.sun.ac.za



74 

 

Chapter 7: Conclusions  

The previous chapter presented and discussed the observations made from the investigations 

of the research. In this chapter the conclusions from these findings are reported. These 

conclusions were made in the light of the objectives of the project and knowledge obtained 

from the literature in this study field. The recommendations for future work are also 

reported.  

 

7.1 Results 

7.1.1 Classification of cyclone underflow particles 

As the prior chapters have highlighted, the main focus of this research was to use image 

features of the underflow from the hydrocyclone to predict ore type, particle sizes and solids 

loadings of the underflow. Linear (LDA, ML) as well as nonlinear (NN) models were used 

for this purpose.  

a) Laboratory cyclone system 

The LDA results showed that the ore type could be classified approximately 61% correctly. 

All image feature variables contributed to these analyses, except for the underflow width. The 

overall conclusion here is that discrimination between the different ores was only partially 

successful, as could be expected for these ores that had a similar appearance.  

b) Industrial hydrocyclone system 

The industrial data which was only classified by particle size achieved a 100% correct 

classification rate with both the LDA and NN models. However, these data were too few to 

allow any conclusions to be drawn from these results.  

7.1.2 Predicting the cyclone underflow particles 

Quantitative prediction of the mean particle size and solids content of the underflow of the 

hydrocyclone was likewise moderately successful, if the response variable variance explained 

by the models is considered as the criterion.   
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Linear models could explain 56% and 40% of the variance in the mean particles size and 

solids content respectively. In contrast, the nonlinear models (neural network) could explain  

0.67 and 0.45 of the variance of the mean  particle size and solids content in the underflow of 

the hydrocyclone.  

These results are not definitive, and further studying would be required to better evaluate the 

hypothesis that image variables could be used to characterize the mean particle size (or cut 

size) and solids concentration in the underflow. This could be done by deriving more 

informative image variables in the first place, as the grey level dependence matrix methods 

may not necessarily have been the most suitable approach to extracting features from the 

image data, despite its comparatively widespread use in other mineral processing 

applications. 

 

7.2 Possible practical limitations of the cyclone underflow image 

capturing  

There were some physical constraints related to the image capturing during the industrial 

study and the major ones identified include: 

 Discharging of the hydrocyclone underflow inside a discharge box. A camera needs to 

be situated at an appropriate location such that it takes images of the underflow 

discharge at an angle suitable for better and quality image capturing. This can be 

obstructed if the hydrocyclone does not discharge to the open, as in the case of RUL 

cyclones.  

 Variability in ore type and color: The influence of the differences in the types and 

color of the ore was identified as one of the major problems. This is problematic as it 

can be difficult to make immediate corrections while the plant is in operation due to 

the feed on a stock pile. In addition, dark/black colored ore types are difficult to 

analyze due to the edges of the underflow not clearly distinct from the background. 

Depending on the image features extracted from the underflow images, these features 

can be interrelated as shown in the global sensitivity (NN) and variable correlation 

values of R
2
 (LDA) and could influence the classification outcome. 

Stellenbosch University  http://scholar.sun.ac.za



Chapter 7: Conclusions 

 

 

7.3 Recommendations 

In chapter 4, some negative conditions were highlighted while conducting the industrial study 

cases including the obstruction of vision to the hydrocyclone spigot. It is thus recommended 

that the opening of the discharge box/sump be big and well positioned to allow for the best 

location of the camera.   

More data from an industrial hydrocyclone set-up need to be collected to gain a better 

understanding of the constant changes in the operation states that are experienced during 

hydrocyclone operation. In addition, having more data would improve the model which 

would assist in a better understanding of the hydrocyclone underflow particles and image 

analysis. Additionally, more measurable parameters (inlet and outlet stream parameters) 

could improve the fit of data to the model. 

Sampling of the underflow discharges and taking underflow images simultaneously would 

yield information on the same discharged particles. Hence underflow images would be 

compared with the exactly corresponding samples. The current set-up did not allow for this 

modification to be made. 

Lastly, it is suggested that a set-up that automatically captures images at a set frequency 

should be used as this would result in a better study of subsequent images. 
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Appendix A: Experimental Details 

 

A.1 Experimental procedure 

This part consists of the step-by-step procedures of experimental methods. 

I. Experimental set-up and sample preparation 

A stepwise procedure of the sample preparation is shown below: 

1. Obtain an ample quantity of sample to be prepared. 

2. Ensure that the sieve machine is functional and insert an 850 µm sieve plate.  

3. Sieve sample. 

4. Change sieve plate to 100 µm. 

5. Using the sample prepared in step 2, sieve the samples through a sieve machine. 

6. Collect both the oversize (+100) and undersize (-100) material. 

7. Mix both samples thoroughly. 

8. Sample a portion from the oversize sample.  

9. Using a rotary splitter, split sample from step 7 to at least a sample of 200g. 

10. Do a sub-sieve test for the sample prepared in step 8, to have an idea of what material is 

to be fed into the hydrocyclone.  

11. Put the rest of the sample in step 8 back into the bulk sample. 

12. From each sample prepared in step 5, weigh out a sample to be used to run the 

experiment (in this case, 40kg and 33kg for first and second experiments respectively). 

13. The samples are ready to be used. 

The following is a step-by-step procedure for using the camera: 

1. Set up the tripod in the direction of the spigot. 

2. Attach the camera on the tripod and adjust it to clearly view the spigot. 

3. Set the camera to the programmed settings (ISO 1600 and Large and Raw images). 

4. Attach the additional flash to the camera. 

5. By taking test pictures, zoom in and out to capture closer and clear images as well as to 

locate the best shot angle of the underflow discharge. 

6. If step 5 is showing satisfactory results, delete the testing images. 
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7. The camera is ready, start the photo session. 

 

II. Start-up procedure 

1. Ensure that the mixing tank valve is closed before filling the tank with water. 

2. Turn on the stirrer of the mixing tank. The stirring motion will aid in maintaining 

particle suspension in the water. 

3. To allow the circulation of water through the system, close the drain valve, while 

opening the pump- and mixing tank valves. Switch the pump on immediately after this, 

to avoid the pump running dry.  

 

III. Operating procedure 

1. Allow the water to circulate for 5 minutes in order to attain steady state. 

2. Take pictures of the underflow discharge.  

3. Add the ore to the circulating fluid by slowly emptying the bucket into the mixing tank. 

Excessive splashing is minimised in this manner. 

4. Allow an extra 10 minutes for the system to reach steady state. 

5. During the course of the experiment, minimise physical movement on the structure on 

which the set-up is mounted. Any movement on the structure causes excessive vibration 

of the hydrocyclone and the digital camera. The camera may fall or the pictures could 

be blurred. 

6. Take pictures of the slurry underflow discharge, taking a time period of about 20 

minutes. After the picture session, take samples of both the overflow and the underflow 

discharge streams. 

7. Each run follows the same procedure from sample preparation to shut-down procedure. 

 

IV. Shut-down procedure 

1. On completion of the last run, disband the digital camera set-up and put it away.  

2. Commence with cleaning the hydrocyclone system. While cleaning the system, the ore 

may settle in the piping and cause blockages. To reduce the likelihood of blockages, 

dilute the circulating fluid with water. 

3. When the fluid is sufficiently dilute, start emptying the mixing tank by opening the 

drain valve. Continue to add water to the mixing tank.  
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4. Collect the fluid in a large container to allow the settling of the ore particles. This also 

permits the overflow of water to the floor drain.  

5. Once the majority of particles are flushed from the system, switch off the pump. 

6. Hose the remainder of the particles from the mixing tank. Close the mixing tank valve 

when the tank is completely clean and empty. 

7. Flush the pump and piping system through the openings adjacent to the drain valve. 

8. Close the drain valve on completion of washing. 

9. Clean the floor area of the experiment.  

 

V. Laboratory hydrocyclone specifications 

The laboratory cyclone dimensions are provided in this section: 

 Cyclone diameter: 76 mm 

 Vortex finder diameter: 75 mm 

 Feed inlet diameter: 53 mm 

 Spigot diameter: 32 mm 

 Cyclone length: 130 mm 

 

A.2 RUL hydrocyclone specification 

The RUL hydrocyclone dimensions are: 

Hydrocyclone diameter: 660 mm   

Spigot diameter: 150 mm  

Vortex finder: 250 mm  

Feed inlet diameter: 115 mm  

Hydrocyclone length: 482mm  
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A.3 Data analysis 

I. Analytical methodology 

The following section outlines a stepwise procedure for data analysis (image processing and 

sample analysis) from the sampling point and/or image capturing. 

a) Manual sampling 

1. Take underflow discharge samples, note the sampling time. 

2. Weigh wet samples, note the mass and dry the samples. 

3. Weigh dried samples and calculate the wet content to get the solid percentage. 

4. Do a sieve test to get the PSD of the samples. 

5. Compile a table of solid percentages and PSD data and combine this with image 

features to run the classification analyses. 

 

b) Cyclone underflow digital images 

1. Capture the underflow discharge images using the high speed camera (400D Canon 

camera used for this research). 

2. Upload images to a standard computer (PC). 

3. By using suitable image software, enhance the images to attain similar brightness and 

contrast settings. The Microsoft Office Picture Manager was used in this work. 

4. Export images to MATLAB Software for further processing.  

5. Select images to be processed.  

6. By the use of the MATLAB Image Processing Tool, convert images to grayscale. 

7. Select the area of interest from the images where the features would be extracted. 

Different slice positions were selected for different experiments or cyclone runs due 

to slight changes in them which may complicate image processing. 

8. Extract image features, such as pixel intensity values, gray level co-occurrence matrix 

(GLCM) and underflow width. 

9. From GLCMs, further extract the statistical features which are: entropy, contrast, 

correlation, energy and homogeneity. 

10. Export the statistical features extracted in step 9 together with pixel intensity values 

and underflow width to the table of data created in a). 

Stellenbosch University  http://scholar.sun.ac.za



Appendices 

 

 

11. Use the data in the table that is now comprised of sample data and image features data 

to do a classification analysis. Do this after the data is normalised or standardised to 

have values in a similar scale.  

12. In STATISTICA / MATLAB Software, run classification analysis using LDA and 

Automated Neural Network methods. 

13. Similarly, using MATLAB Toolbox / STATISTICA Software, run a regression 

analysis with Neural Network methods. 

 

II. Consolidated Data Set 

Table A-1: Consolidated Data Set with Data Normalized between 0 and 1.  

Sample ID 
(observations) 

Response Variables 
Predictor Variables 

Discrete Continuous 

Ore 
Type 

Mean 
PS 

Solid % 
Homo-
geneity 

Under-
flow 

Width  
Entropy 

Correla-
tion 

Pixel Intensity 
STDDEV 

Energy Contrast 

Exp1MC-001 MER 0.2348 0.2487 0.4166 0.3167 0.8035 0.8318 0.5872 0.1271 0.4355 

Exp1MC-002 MER 0.3217 0.2015 0.6337 0.4240 0.9521 0.6433 0.2946 0.4038 0.2416 

Exp1MC-003 MER 0.2782 0.2436 0.7450 0.3677 0.9913 0.8076 0.3723 0.4106 0.1629 

Exp1MC-004 MER 0.2348 0.2487 0.5975 0.3115 0.9757 0.9137 0.6119 0.1421 0.2655 

Exp1MC-005 MER 0.3217 0.2015 0.6365 0.3104 0.9961 0.8844 0.5383 0.2101 0.2411 

Exp1MC-006 MER 0.2782 0.2436 0.5019 0.3292 0.9649 0.8964 0.6280 0.1265 0.3257 

Exp1MC-007 MER 0.2348 0.2487 0.5730 0.3552 0.9521 0.7265 0.3759 0.3315 0.2809 

Exp1MC-008 MER 0.3217 0.2015 1.0000 0.3667 1.0000 0.8204 0.2648 0.7927 0.0000 

Exp1MC-009 MER 0.2782 0.2436 0.5856 0.3104 0.9649 0.8896 0.5737 0.2135 0.2756 

Exp1MC-010 MER 0.2348 0.2487 0.3835 0.2479 0.8570 0.8949 0.7028 0.0804 0.4398 

Exp1MC-011 MER 0.3217 0.2015 0.6721 0.3667 0.9521 0.7273 0.3515 0.3545 0.2224 

Exp1MC-012 MER 0.2782 0.2436 0.6100 0.2927 0.9649 0.9065 0.6037 0.2363 0.2703 

Exp1MC-013 MER 0.2348 0.2487 0.6597 0.3292 0.8803 0.9153 0.5934 0.2437 0.2422 

Exp1MC-014 MER 0.3217 0.2015 0.6594 0.3854 0.9521 0.9280 0.6203 0.2165 0.2305 

Exp1MC-015 MER 0.2782 0.2436 0.4961 0.3354 0.7050 0.9439 0.7486 0.1243 0.3476 

Exp1MC-016 MER 0.2348 0.2487 0.6258 0.2167 0.9757 0.8930 0.5620 0.2574 0.2462 

Exp1MC-017 MER 0.3217 0.2015 0.4183 0.2229 0.6261 0.9413 0.8111 0.0954 0.4301 

Exp1MC-018 MER 0.2782 0.2487 0.5432 0.1938 0.8803 0.8023 0.4831 0.3904 0.3215 

Exp1MC-019 MER 0.2348 0.2015 0.6954 0.2917 0.9757 0.7546 0.3627 0.4636 0.2047 

Exp1MC-020 MER 0.3217 0.2436 0.7644 0.2854 0.9913 0.8233 0.4089 0.5711 0.1521 

Exp1MF-021 MER 0.0065 0.3282 0.6646 0.5167 0.9373 0.6505 0.2872 0.4546 0.2335 

Exp1MF-022 MER 0.0064 0.2071 0.7259 0.5125 0.9961 0.7248 0.3326 0.4693 0.2160 

Exp1MF-023 MER 0.0071 0.2163 0.8360 0.3167 0.9845 0.8173 0.3548 0.5407 0.1213 

Exp1MF-024 MER 0.0065 0.3282 0.7642 0.4917 0.9990 0.7763 0.3564 0.4616 0.1709 

Exp1MF-025 MER 0.0064 0.2071 0.7854 0.5083 0.9913 0.7492 0.3267 0.4460 0.1638 

Exp1MF-026 MER 0.0071 0.2163 0.9194 0.4375 0.9521 0.6533 0.1734 0.7331 0.0474 

Exp1MF-027 MER 0.0065 0.3282 0.8080 0.4958 0.9961 0.8230 0.3796 0.4799 0.1489 

Exp1MF-028 MER 0.0064 0.2071 0.8080 0.4802 1.0000 0.8170 0.3380 0.4679 0.1285 

Exp1MF-029 MER 0.0071 0.2163 0.8113 0.4823 0.9521 0.7787 0.3332 0.5662 0.1391 

Exp1MF-030 MER 0.0065 0.3282 0.7354 0.4500 0.9845 0.7737 0.3790 0.4575 0.2109 

Exp1MF-031 MER 0.0064 0.2071 0.7829 0.5094 0.9990 0.7404 0.3150 0.6028 0.1605 

Exp1MF-032 MER 0.0071 0.2163 0.6960 0.5083 0.9961 0.7705 0.3688 0.4433 0.2071 

Exp1MF-033 MER 0.0065 0.3282 0.8071 0.5500 0.9961 0.7620 0.3332 0.5173 0.1587 

Exp1MF-034 MER 0.0064 0.2071 0.8432 0.4760 0.9961 0.7730 0.3248 0.7909 0.1167 

Exp1MF-035 MER 0.0071 0.2163 0.8017 0.4500 1.0000 0.7686 0.3447 0.5933 0.1600 

Exp1MF-036 MER 0.0065 0.3282 0.8580 0.4083 0.9845 0.7479 0.2748 0.5900 0.1004 

Exp1MF-037 MER 0.0064 0.2071 0.7241 0.4625 0.9649 0.7941 0.3792 0.3860 0.1857 

Exp1MF-038 MER 0.0071 0.3282 0.7755 0.4250 0.9961 0.7536 0.3226 0.4789 0.1540 
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Exp1MF-039 MER 0.0065 0.2071 0.6731 0.5042 0.9913 0.6896 0.3199 0.4725 0.2307 

Exp1MF-040 MER 0.0064 0.2163 0.7910 0.4958 0.9961 0.7663 0.3339 0.5560 0.1530 

Exp1PC-041 PLAT 0.2588 0.0796 0.7108 0.3208 0.9204 0.9036 0.5362 0.2048 0.2010 

Exp1PC-042 PLAT 0.2225 0.2505 0.4380 0.3542 0.8314 0.9050 0.7036 0.1053 0.4120 

Exp1PC-043 PLAT 0.2447 0.3610 0.5219 0.3083 0.8803 0.8780 0.5987 0.1320 0.3401 

Exp1PC-044 PLAT 0.2588 0.0796 0.1479 0.2958 0.2419 0.9265 0.9477 0.0175 0.6978 

Exp1PC-045 PLAT 0.2225 0.2505 0.7374 0.3000 0.8803 0.9796 0.7133 0.2819 0.1885 

Exp1PC-046 PLAT 0.2447 0.3610 0.2396 0.3917 0.6670 0.8998 0.7965 0.0434 0.5669 

Exp1PC-047 PLAT 0.2588 0.0796 0.4141 0.3302 0.7404 0.9222 0.7648 0.0584 0.4367 

Exp1PC-048 PLAT 0.2225 0.2505 0.2880 0.2833 0.6261 0.9406 0.8816 0.0222 0.5303 

Exp1PC-049 PLAT 0.2447 0.3610 0.5020 0.2844 0.7732 0.9582 0.8034 0.0823 0.3591 

Exp1PC-050 PLAT 0.2588 0.0796 0.6873 0.3125 0.9204 0.8347 0.4494 0.3283 0.2205 

Exp1PC-051 PLAT 0.2225 0.2505 0.2457 0.3260 0.4304 0.8639 0.7437 0.0563 0.6142 

Exp1PC-052 PLAT 0.2447 0.3610 0.2811 0.3708 0.6670 0.8979 0.7856 0.0498 0.5593 

Exp1PC-053 PLAT 0.2588 0.0796 0.5529 0.3427 0.8570 0.9072 0.6632 0.2323 0.3315 

Exp1PC-054 PLAT 0.2225 0.2505 0.5173 0.3458 0.9015 0.8782 0.5924 0.1714 0.3297 

Exp1PC-055 PLAT 0.2447 0.3610 0.5199 0.3708 0.9373 0.8288 0.5251 0.2148 0.3323 

Exp1PC-056 PLAT 0.2588 0.0796 0.3504 0.2938 0.7050 0.8796 0.7015 0.1163 0.4857 

Exp1PC-057 PLAT 0.2225 0.2505 0.2273 0.3042 0.6261 0.8366 0.6916 0.0597 0.6020 

Exp1PC-058 PLAT 0.2447 0.0796 0.7879 0.3583 1.0000 0.7682 0.3318 0.5161 0.1365 

Exp1PC-059 PLAT 0.2588 0.2505 0.3532 0.3583 0.6261 0.9071 0.7542 0.0788 0.4782 

Exp1PC-060 PLAT 0.2225 0.3610 0.7204 0.2625 0.9913 0.8547 0.4477 0.3716 0.1828 

Exp1PF-061 PLAT 0.0076 0.2077 0.9378 0.4250 0.9913 0.7509 0.2387 0.6031 0.0337 

Exp1PF-062 PLAT 0.0054 0.2065 0.8184 0.4865 0.9990 0.8551 0.3919 0.4216 0.1137 

Exp1PF-063 PLAT 0.0095 0.2137 0.8534 0.5458 0.9757 0.8592 0.3774 0.4697 0.0977 

Exp1PF-064 PLAT 0.0076 0.2077 0.8585 0.5667 0.9990 0.8361 0.3611 0.4579 0.0858 

Exp1PF-065 PLAT 0.0054 0.2065 0.8488 0.4573 0.9913 0.8187 0.3347 0.4782 0.0913 

Exp1PF-066 PLAT 0.0095 0.2137 0.9435 0.4375 0.9521 0.7001 0.1944 0.6147 0.0291 

Exp1PF-067 PLAT 0.0076 0.2077 0.8619 0.4625 0.9521 0.7880 0.3047 0.4683 0.0842 

Exp1PF-068 PLAT 0.0054 0.2065 0.8809 0.4708 0.9990 0.8881 0.4022 0.3949 0.0729 

Exp1PF-069 PLAT 0.0095 0.2137 0.8310 0.4250 0.9990 0.7642 0.2958 0.4785 0.1056 

Exp1PF-070 PLAT 0.0076 0.2077 0.9084 0.5083 0.9757 0.8376 0.3285 0.4731 0.0545 

Exp1PF-071 PLAT 0.0054 0.2065 0.8947 0.4625 0.9757 0.8356 0.3407 0.4501 0.0682 

Exp1PF-072 PLAT 0.0095 0.2137 0.8693 0.4417 0.9990 0.8703 0.3890 0.4192 0.0802 

Exp1PF-073 PLAT 0.0076 0.2077 0.9162 0.4542 0.9845 0.8183 0.2883 0.4685 0.0480 

Exp1PF-074 PLAT 0.0054 0.2065 0.8809 0.4542 0.9913 0.8198 0.3200 0.4906 0.0713 

Exp1PF-075 PLAT 0.0095 0.2137 0.9391 0.4990 0.9649 0.7651 0.2384 0.5979 0.0329 

Exp1PF-076 PLAT 0.0076 0.2077 0.8861 0.4719 0.9961 0.8814 0.3904 0.4629 0.0691 

Exp1PF-077 PLAT 0.0054 0.2065 0.8033 0.4375 0.9913 0.8637 0.4205 0.4130 0.1208 

Exp1PF-078 PLAT 0.0095 0.2077 0.9082 0.4448 0.9845 0.9013 0.4047 0.4277 0.0536 

Exp1PF-079 PLAT 0.0076 0.2065 0.9352 0.4917 0.9961 0.8167 0.2868 0.4988 0.0372 

Exp1PF-080 PLAT 0.0054 0.2137 0.8940 0.4667 0.9649 0.7650 0.2565 0.5822 0.0643 

Exp1UC-081 UG2 0.2020 0.1038 0.3111 0.3167 0.7404 0.8427 0.6611 0.0844 0.5265 

Exp1UC-082 UG2 0.2037 0.1052 0.4585 0.3083 0.8570 0.7726 0.4909 0.1958 0.3914 

Exp1UC-083 UG2 0.2177 0.1253 0.3308 0.3958 0.6670 0.8719 0.7105 0.0818 0.5212 

Exp1UC-084 UG2 0.2020 0.1038 0.7533 0.4458 0.9961 0.8161 0.3851 0.3865 0.1606 

Exp1UC-085 UG2 0.2037 0.1052 0.0000 0.3208 0.1686 0.7952 0.8127 0.0161 1.0000 

Exp1UC-086 UG2 0.2177 0.1253 0.1659 0.3667 0.3722 0.8607 0.8020 0.0295 0.7259 

Exp1UC-087 UG2 0.2020 0.1038 0.6131 0.4292 0.4846 0.8853 0.6001 0.3888 0.3132 

Exp1UC-088 UG2 0.2037 0.1052 0.5815 0.3708 0.7732 0.6051 0.3260 0.3740 0.3301 

Exp1UC-089 UG2 0.2177 0.1253 0.1801 0.3375 0.0000 0.8604 0.8220 0.0275 0.7659 

Exp1UC-090 UG2 0.2020 0.1038 0.4509 0.3917 0.5822 0.8734 0.6693 0.1022 0.4480 

Exp1UC-091 UG2 0.2037 0.1052 0.2522 0.3792 0.3096 0.7649 0.5923 0.1300 0.6090 

Exp1UC-092 UG2 0.2177 0.1253 0.4229 0.4042 0.6670 0.6895 0.4467 0.2251 0.4505 

Exp1UC-093 UG2 0.2020 0.1038 0.2100 0.3083 0.3722 0.7617 0.6246 0.0918 0.6720 

Exp1UC-094 UG2 0.2037 0.1052 0.4817 0.3542 0.8314 0.7838 0.5096 0.1955 0.4086 

Exp1UC-095 UG2 0.2177 0.1253 0.2440 0.3125 0.3096 0.8600 0.7905 0.0545 0.7051 

Exp1UC-096 UG2 0.2020 0.1038 0.5056 0.3833 0.7050 0.7355 0.4733 0.2709 0.4220 

Exp1UC-097 UG2 0.2037 0.1052 0.3377 0.3583 0.5351 0.8423 0.6862 0.0807 0.5754 

Exp1UC-098 UG2 0.2177 0.1038 0.5620 0.3542 0.7404 0.8475 0.5744 0.1838 0.3731 

Exp1UC-099 UG2 0.2020 0.1052 0.3356 0.2875 0.0885 0.9229 0.9163 0.0845 0.6606 
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Exp1UC-100 UG2 0.2037 0.1253 0.3104 0.3292 0.5822 0.7793 0.6096 0.1297 0.6027 

Exp1UF-101 UG2 0.0013 0.1855 0.7347 0.4833 1.0000 0.7756 0.3845 0.3811 0.2099 

Exp1UF-102 UG2 0.0009 0.1685 0.6126 0.4500 0.9649 0.7827 0.4570 0.2642 0.3210 

Exp1UF-103 UG2 0.0000 0.1685 0.6182 0.5375 1.0000 0.8549 0.5340 0.2125 0.2951 

Exp1UF-104 UG2 0.0013 0.1855 0.7266 0.4958 0.9913 0.9401 0.6144 0.1780 0.2029 

Exp1UF-105 UG2 0.0009 0.1685 0.5945 0.5167 0.9990 0.7980 0.4708 0.2261 0.3138 

Exp1UF-106 UG2 0.0000 0.1685 0.7194 0.5208 0.9913 0.9585 0.6581 0.1549 0.1959 

Exp1UF-107 UG2 0.0013 0.1855 0.7251 0.4667 1.0000 0.8206 0.4346 0.3507 0.2085 

Exp1UF-108 UG2 0.0009 0.1685 0.6522 0.5333 0.9757 0.8921 0.5609 0.1877 0.2549 

Exp1UF-109 UG2 0.0000 0.1685 0.6706 0.5250 0.9961 0.8553 0.4957 0.2741 0.2447 

Exp1UF-110 UG2 0.0013 0.1855 0.6358 0.4917 0.9990 0.8075 0.4615 0.2621 0.2793 

Exp1UF-111 UG2 0.0009 0.1685 0.6376 0.4750 0.9845 0.8780 0.5567 0.2118 0.2780 

Exp1UF-112 UG2 0.0000 0.1685 0.7154 0.5458 0.9757 0.8400 0.4519 0.2415 0.2184 

Exp1UF-113 UG2 0.0013 0.1855 0.5895 0.5542 0.9521 0.9630 0.7694 0.1014 0.3024 

Exp1UF-114 UG2 0.0009 0.1685 0.6328 0.5167 0.9913 0.8177 0.4688 0.2928 0.2677 

Exp1UF-115 UG2 0.0000 0.1685 0.6122 0.5625 0.9990 0.8011 0.4757 0.2722 0.3187 

Exp1UF-116 UG2 0.0013 0.1855 0.6252 0.5167 0.9015 0.8141 0.4792 0.2546 0.2875 

Exp1UF-117 UG2 0.0009 0.1685 0.5535 0.4667 0.9757 0.8403 0.5337 0.1736 0.3291 

Exp1UF-118 UG2 0.0000 0.1855 0.6354 0.5292 0.9649 0.8422 0.4828 0.2746 0.2507 

Exp1UF-119 UG2 0.0013 0.1685 0.5566 0.5375 0.9649 0.8148 0.5159 0.2099 0.3485 

Exp1UF-120 UG2 0.0009 0.1685 0.6104 0.5083 0.8314 0.8630 0.5379 0.1774 0.2858 

Exp2MC-121 MER 0.3092 0.1236 0.3814 0.3000 0.8803 0.7986 0.5645 0.1246 0.4673 

Exp2MC-122 MER 0.2748 0.1111 0.3187 0.3917 0.8035 0.8259 0.6617 0.0734 0.5746 

Exp2MC-123 MER 0.2589 0.1341 0.0934 0.2583 0.8803 0.8503 0.8466 0.0107 0.8394 

Exp2MC-124 MER 0.2618 0.1119 0.2152 0.3083 0.8035 0.8443 0.7189 0.0490 0.6517 

Exp2MC-125 MER 0.2796 0.1548 0.1962 0.4083 0.8570 0.8195 0.7371 0.0455 0.7177 

Exp2MC-126 MER 0.3092 0.1236 0.3871 0.4229 0.7732 0.7448 0.5102 0.1676 0.5039 

Exp2MC-127 MER 0.2748 0.1111 0.2123 0.2625 0.9521 0.8126 0.6665 0.0605 0.5995 

Exp2MC-128 MER 0.2589 0.1341 0.3345 0.2667 0.8035 0.6312 0.4582 0.2046 0.6017 

Exp2MC-129 MER 0.2618 0.1119 0.3420 0.3333 0.8314 0.6417 0.4502 0.1983 0.5494 

Exp2MC-130 MER 0.2796 0.1548 0.5264 0.2500 0.9204 0.7170 0.4262 0.2555 0.3694 

Exp2MC-131 MER 0.3092 0.1236 0.3619 0.2375 0.8570 0.7046 0.4572 0.1925 0.4491 

Exp2MC-132 MER 0.2748 0.1111 0.5361 0.3500 0.9015 0.8862 0.6123 0.1850 0.3317 

Exp2MC-133 MER 0.2589 0.1341 0.3252 0.2333 0.9015 0.6364 0.4099 0.2061 0.4698 

Exp2MC-134 MER 0.2618 0.1119 0.4007 0.3292 0.7732 0.6746 0.4341 0.2167 0.4530 

Exp2MC-135 MER 0.2796 0.1548 0.4729 0.2917 0.8035 0.9258 0.7322 0.1383 0.3864 

Exp2MC-136 MER 0.3092 0.1236 0.4182 0.3167 0.9757 0.7615 0.5018 0.1900 0.4391 

Exp2MC-137 MER 0.2748 0.1111 0.1220 0.2594 0.7050 0.7729 0.6197 0.0774 0.6353 

Exp2MC-138 MER 0.2589 0.1341 0.3722 0.2375 0.8035 0.7501 0.5122 0.1786 0.4749 

Exp2MC-139 MER 0.2618 0.1119 0.5153 0.3625 0.9521 0.8049 0.5174 0.1762 0.3664 

Exp2MC-140 MER 0.2796 0.1548 0.5992 0.3292 0.9015 0.9246 0.6627 0.1444 0.2960 

Exp2PC-141 PLAT 0.1939 0.1164 0.4844 0.3625 0.7732 0.8213 0.5526 0.1676 0.3947 

Exp2PC-142 PLAT 0.1635 0.1022 0.2451 0.2073 0.7050 0.7429 0.5807 0.1277 0.6320 

Exp2PC-143 PLAT 0.2314 0.1125 0.4058 0.1875 0.7732 0.7452 0.5238 0.2097 0.4999 

Exp2PC-144 PLAT 0.1730 0.0923 0.4205 0.3542 0.6670 0.8171 0.5820 0.1791 0.4657 

Exp2PC-145 PLAT 0.2100 0.1107 0.3718 0.2000 0.4304 0.7556 0.5390 0.1686 0.5227 

Exp2PC-146 PLAT 0.1939 0.1164 0.3826 0.2219 0.8035 0.8543 0.6407 0.1054 0.4604 

Exp2PC-147 PLAT 0.1635 0.1022 0.3808 0.3000 0.2419 0.8637 0.7331 0.1013 0.5901 

Exp2PC-148 PLAT 0.2314 0.1125 0.5305 0.3635 0.8035 0.8584 0.5950 0.1581 0.3742 

Exp2PC-149 PLAT 0.1730 0.0923 0.2396 0.4031 0.3722 0.8579 0.7713 0.0486 0.6794 

Exp2PC-150 PLAT 0.2100 0.1107 0.2338 0.3115 0.5822 0.8496 0.7145 0.0548 0.6014 

Exp2PC-151 PLAT 0.1939 0.1164 0.3865 0.2219 0.8570 0.8507 0.6228 0.1014 0.4378 

Exp2PC-152 PLAT 0.1635 0.1022 0.1645 0.2260 0.5822 0.7766 0.6537 0.1013 0.6995 

Exp2PC-153 PLAT 0.2314 0.1125 0.6654 0.3802 0.8314 0.7707 0.3869 0.2972 0.2390 

Exp2PC-154 PLAT 0.1730 0.0923 0.3949 0.3458 0.7732 0.7710 0.5534 0.1978 0.5211 

Exp2PC-155 PLAT 0.2100 0.1107 0.7012 0.3719 0.9649 0.8958 0.5304 0.2007 0.2068 

Exp2PC-156 PLAT 0.1939 0.1164 0.5636 0.2010 0.9373 0.7603 0.4193 0.2379 0.3000 

Exp2PC-157 PLAT 0.1635 0.1022 0.3434 0.2802 0.5822 0.9607 0.9109 0.1192 0.4972 

Exp2PC-158 PLAT 0.2314 0.1125 0.4154 0.2542 0.7050 0.9279 0.7885 0.0693 0.4645 

Exp2PC-159 PLAT 0.1730 0.0923 0.3569 0.4281 0.5822 0.9054 0.7575 0.0597 0.4935 

Exp2PC-160 PLAT 0.2100 0.1107 0.5757 0.3792 0.9204 0.8593 0.5602 0.1517 0.3270 
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Exp2UC-161 UG2 0.2322 0.0066 0.3617 0.4740 0.8035 0.7881 0.5903 0.1394 0.5418 

Exp2UC-162 UG2 0.3091 0.0271 0.3526 0.4177 0.3722 0.8763 0.7620 0.0599 0.5949 

Exp2UC-163 UG2 0.2473 0.0027 0.6357 0.4677 0.9204 0.7661 0.4166 0.2781 0.2872 

Exp2UC-164 UG2 0.2204 0.0058 0.4219 0.4542 0.5822 0.6701 0.4377 0.2105 0.4715 

Exp2UC-165 UG2 0.1818 0.0000 0.4013 0.4750 0.6261 0.8240 0.5864 0.1373 0.4498 

Exp2UC-166 UG2 0.2322 0.0066 0.5693 0.3917 0.5351 0.9474 0.7797 0.0811 0.3760 

Exp2UC-167 UG2 0.3091 0.0271 0.2912 0.3583 0.5351 0.8312 0.6807 0.1358 0.5975 

Exp2UC-168 UG2 0.2473 0.0027 0.4631 0.4000 0.6261 0.8709 0.6657 0.1033 0.4519 

Exp2UC-169 UG2 0.2204 0.0058 0.3770 0.4667 0.5351 0.7580 0.5810 0.1579 0.5975 

Exp2UC-170 UG2 0.2322 0.0000 0.3331 0.4885 0.4846 0.7320 0.5457 0.1540 0.5836 

Exp2UC-171 UG2 0.3091 0.0066 0.1873 0.4469 0.5351 0.8352 0.7275 0.0469 0.6764 

Exp2UC-172 UG2 0.2473 0.0271 0.3324 0.4969 0.2419 0.8386 0.6552 0.1115 0.5423 

Exp2UC-173 UG2 0.2204 0.0027 0.1938 0.4135 0.2419 0.7606 0.7083 0.1021 0.8803 

Exp2UC-174 UG2 0.2322 0.0058 0.5629 0.4625 0.8035 0.6260 0.3480 0.3461 0.3476 

Exp2UC-175 UG2 0.3091 0.0000 0.2197 0.4344 0.8035 0.8077 0.6541 0.0812 0.6191 

Exp2UC-176 UG2 0.2473 0.0066 0.4444 0.4292 0.4304 0.8667 0.6799 0.1279 0.4969 

Exp2UC-177 UG2 0.2204 0.0271 0.5831 0.4417 0.4846 0.8019 0.5325 0.1830 0.4078 

Exp2UC-178 UG2 0.2322 0.0027 0.3938 0.4875 0.6261 0.6860 0.4825 0.1981 0.5325 

Exp2UC-179 UG2 0.3091 0.0058 0.4909 0.4094 0.5351 0.8726 0.6473 0.1326 0.4290 

Exp2UC-180 UG2 0.2473 0.0000 0.3652 0.4750 0.5822 0.7829 0.5742 0.1405 0.5299 

Exp3MC-181 MER 0.8374 0.0782 0.1758 0.2375 0.1686 0.9293 0.9450 0.0000 0.6861 

Exp3MC-182 MER 0.5936 0.1101 0.3262 0.0542 0.2419 0.8559 0.7526 0.1294 0.6602 

Exp3MC-183 MER 0.8374 0.1227 0.6735 0.3667 0.8035 0.8601 0.5252 0.1946 0.2750 

Exp3MC-184 MER 0.5936 0.1143 0.6438 0.1927 0.9015 0.9204 0.6263 0.1560 0.2620 

Exp3MC-185 MER 0.5936 0.1092 0.6200 0.2833 0.0885 1.0000 0.9410 0.1310 0.3301 

Exp3MC-186 MER 0.8374 0.0782 0.5243 0.3177 0.5822 0.9431 0.7494 0.0816 0.3475 

Exp3MC-187 MER 0.5936 0.1101 0.5953 0.2083 0.5822 0.7522 0.4138 0.2583 0.3021 

Exp3MC-188 MER 0.8374 0.1227 0.6276 0.2250 0.8035 0.8486 0.5227 0.2077 0.2921 

Exp3MC-189 MER 0.5936 0.1143 0.5781 0.2292 0.7404 0.9023 0.6126 0.1918 0.3006 

Exp3MC-190 MER 0.5936 0.1092 0.3042 0.1688 0.2419 0.9525 1.0000 0.0423 0.6472 

Exp3MC-191 MER 0.8374 0.0782 0.3994 0.1260 0.5822 0.9155 0.7631 0.0543 0.4567 

Exp3MC-192 MER 0.5936 0.1101 0.2906 0.1958 0.4304 0.8707 0.7686 0.0758 0.6349 

Exp3MC-193 MER 0.8374 0.1227 0.3200 0.1094 0.6261 0.9732 0.9736 0.0448 0.5315 

Exp3MC-194 MER 0.5936 0.1143 0.3073 0.1000 0.5351 0.9166 0.8011 0.0335 0.5220 

Exp3MC-195 MER 0.5936 0.1092 0.4790 0.0510 0.4846 0.9813 0.9670 0.0809 0.4533 

Exp3MC-196 MER 0.8374 0.0782 0.4444 0.2292 0.7050 0.8943 0.7198 0.0790 0.4704 

Exp3MC-197 MER 0.5936 0.1101 0.4099 0.1958 0.8803 0.8004 0.5434 0.1405 0.4259 

Exp3MC-198 MER 0.8374 0.1227 0.5512 0.0927 0.8570 0.8799 0.5808 0.1818 0.3111 

Exp3MC-199 MER 0.5936 0.1143 0.3871 0.0458 0.4846 0.8401 0.6797 0.1245 0.5661 

Exp3MC-200 MER 0.5936 0.1092 0.3429 0.0000 0.5822 0.8135 0.6427 0.1437 0.5737 

Exp3MF-201 MER 0.0438 0.0707 0.4843 0.4792 0.8803 0.7917 0.5087 0.1946 0.3836 

Exp3MF-202 MER 0.0763 0.0787 0.5465 0.4927 0.8035 0.7287 0.4286 0.2582 0.3647 

Exp3MF-203 MER 0.0763 0.0670 0.5054 0.5635 0.9521 0.5624 0.3115 0.3419 0.3557 

Exp3MF-204 MER 0.0763 0.0707 0.5961 0.4760 0.9649 0.7392 0.4030 0.2991 0.3023 

Exp3MF-205 MER 0.0763 0.0787 0.5840 0.4135 0.8803 0.7815 0.4572 0.2375 0.3216 

Exp3MF-206 MER 0.0438 0.0670 0.7618 0.4927 0.9990 0.8996 0.4878 0.2402 0.1518 

Exp3MF-207 MER 0.0763 0.0707 0.4163 0.4802 0.8570 0.7309 0.4868 0.1740 0.4641 

Exp3MF-208 MER 0.0763 0.0787 0.5188 0.4417 0.9649 0.6349 0.3527 0.3128 0.3516 

Exp3MF-209 MER 0.0763 0.0670 0.5398 0.5208 0.9757 0.7434 0.4280 0.2428 0.3315 

Exp3MF-210 MER 0.0763 0.0707 0.5744 0.4625 0.6261 0.7457 0.4386 0.3312 0.3451 

Exp3MF-211 MER 0.0438 0.0787 0.5995 0.5167 0.9757 0.6381 0.3231 0.3844 0.2916 

Exp3MF-212 MER 0.0763 0.0670 0.5962 0.5292 0.8570 0.8004 0.4598 0.3266 0.2965 

Exp3MF-213 MER 0.0763 0.0707 0.4808 0.4583 0.9015 0.6990 0.4188 0.2458 0.3893 

Exp3MF-214 MER 0.0763 0.0787 0.6710 0.5083 0.9521 0.4504 0.2061 0.5288 0.2402 

Exp3MF-215 MER 0.0763 0.0670 0.4993 0.5125 0.8314 0.8874 0.6440 0.1474 0.3852 

Exp3MF-216 MER 0.0438 0.0707 0.5060 0.4375 0.9015 0.7831 0.4816 0.2121 0.3553 

Exp3MF-217 MER 0.0763 0.0787 0.4814 0.4406 0.6670 0.8792 0.6531 0.1521 0.4146 

Exp3MF-218 MER 0.0763 0.0707 0.2972 0.5375 0.4304 0.7908 0.6048 0.1034 0.5669 

Exp3MF-219 MER 0.0763 0.0787 0.5040 0.4083 0.7732 0.8241 0.5734 0.1715 0.4330 

Exp3MF-220 MER 0.0763 0.0670 0.5072 0.4292 0.6670 0.8064 0.5405 0.1695 0.4166 

Exp3MI-221 MER 0.3349 0.0785 0.4233 0.3542 0.3722 0.9132 0.7792 0.0775 0.5005 
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Exp3MI-222 MER 0.2795 0.0773 0.3323 0.4458 0.4846 0.9628 0.9985 0.0113 0.5962 

Exp3MI-223 MER 0.2795 0.0908 0.3445 0.4344 0.4304 0.8778 0.7485 0.0592 0.5738 

Exp3MI-224 MER 0.2795 0.0604 0.3095 0.4385 0.7050 0.8209 0.6241 0.0961 0.5216 

Exp3MI-225 MER 0.2795 0.0738 0.2979 0.4667 0.6670 0.7727 0.5985 0.1201 0.5967 

Exp3MI-226 MER 0.3349 0.0785 0.5277 0.4385 0.8570 0.7247 0.4202 0.2457 0.3489 

Exp3MI-227 MER 0.2795 0.0773 0.5392 0.3885 0.8035 0.8911 0.6330 0.1338 0.3528 

Exp3MI-228 MER 0.2795 0.0908 0.3803 0.3813 0.6261 0.8374 0.6164 0.1113 0.4693 

Exp3MI-229 MER 0.2795 0.0604 0.2833 0.4917 0.3722 0.8156 0.6773 0.0793 0.6408 

Exp3MI-230 MER 0.2795 0.0738 0.3793 0.5083 0.5822 0.8885 0.7488 0.0668 0.5320 

Exp3MI-231 MER 0.3349 0.0785 0.3962 0.3792 0.7404 0.8684 0.6601 0.1130 0.4550 

Exp3MI-232 MER 0.2795 0.0773 0.2767 0.5042 0.3722 0.7769 0.5973 0.1170 0.5804 

Exp3MI-233 MER 0.2795 0.0908 0.4095 0.4292 0.4846 0.8490 0.6479 0.1093 0.4916 

Exp3MI-234 MER 0.2795 0.0604 0.6312 0.5000 0.9373 0.8511 0.5168 0.2040 0.2849 

Exp3MI-235 MER 0.2795 0.0738 0.7379 0.5177 0.9845 0.7845 0.3699 0.3213 0.1785 

Exp3MI-236 MER 0.3349 0.0785 0.3639 0.4417 0.6261 0.9639 0.9636 0.0204 0.5401 

Exp3MI-237 MER 0.2795 0.0773 0.5394 0.5125 0.4304 0.7665 0.4673 0.2064 0.3616 

Exp3MI-238 MER 0.2795 0.0908 0.2972 0.5458 0.8035 0.7745 0.5891 0.1103 0.5712 

Exp3MI-239 MER 0.2795 0.0604 0.4434 0.4792 0.5822 0.8755 0.6876 0.0948 0.4832 

Exp3MI-240 MER 0.2795 0.0738 0.4832 0.4344 0.5822 0.8995 0.6494 0.0928 0.3584 

Exp4MC-241 MER 1.0000 0.1142 0.7579 0.0906 0.8570 0.9256 0.5620 0.2815 0.1828 

Exp4MC-242 MER 0.8374 0.1088 0.8394 0.2208 0.9961 0.9190 0.4796 0.2831 0.1113 

Exp4MC-243 MER 0.8374 0.0904 0.7185 0.3208 0.9373 0.9555 0.6584 0.1929 0.2117 

Exp4MC-244 MER 1.0000 0.1142 0.6424 0.3813 0.9015 0.9276 0.6415 0.1324 0.2642 

Exp4MC-245 MER 0.8374 0.1088 0.7844 0.2802 0.8314 0.9097 0.5209 0.2270 0.1700 

Exp4MC-246 MER 0.8374 0.0904 0.6886 0.2667 0.8035 0.9393 0.6622 0.1412 0.2495 

Exp4MC-247 MER 1.0000 0.1142 0.7113 0.2594 0.9649 0.8672 0.4881 0.2675 0.2114 

Exp4MC-248 MER 0.8374 0.1088 0.6958 0.2458 0.9204 0.7967 0.4274 0.2873 0.2444 

Exp4MC-249 MER 0.8374 0.0904 0.8743 0.2917 0.9913 0.8134 0.3244 0.4407 0.0915 

Exp4MC-250 MER 1.0000 0.1142 0.7472 0.2750 0.9845 0.6721 0.2837 0.4255 0.1987 

Exp4MC-251 MER 0.8374 0.1088 0.5058 0.3333 0.8570 0.9825 0.8971 0.0385 0.3690 

Exp4MC-252 MER 0.8374 0.0904 0.6229 0.1792 0.5822 0.8644 0.5821 0.1985 0.3489 

Exp4MC-253 MER 1.0000 0.1142 0.7051 0.1042 0.6261 0.9131 0.5985 0.1720 0.2591 

Exp4MC-254 MER 0.8374 0.1088 0.7755 0.1906 0.9204 0.8016 0.3791 0.3525 0.1678 

Exp4MC-255 MER 0.8374 0.0904 0.7272 0.3458 0.7732 0.7905 0.3935 0.3755 0.2172 

Exp4MC-256 MER 1.0000 0.1142 0.8304 0.3333 1.0000 0.7616 0.2965 0.4256 0.1116 

Exp4MC-257 MER 0.8374 0.1088 0.6852 0.2542 0.8803 0.9373 0.6409 0.1609 0.2372 

Exp4MC-258 MER 1.0000 0.1142 0.7414 0.1469 0.9204 0.8603 0.4674 0.2746 0.2034 

Exp4MC-259 MER 0.8374 0.1088 0.7835 0.2375 0.9649 0.5014 0.1974 0.8204 0.1654 

Exp4MC-260 MER 0.8374 0.0904 0.6424 0.3042 0.8314 0.8816 0.5542 0.2527 0.2715 

Exp4MF-261 MER 0.0438 0.0787 0.6213 0.4750 0.9521 0.7578 0.4114 0.2613 0.2797 

Exp4MF-262 MER 0.0438 0.0640 0.6557 0.5010 0.9015 0.7112 0.3709 0.3310 0.2747 

Exp4MF-263 MER 0.0438 0.0628 0.5525 0.4844 0.7404 0.8236 0.5404 0.3093 0.3769 

Exp4MF-264 MER 0.0438 0.0787 0.6015 0.4583 0.9649 0.7788 0.4422 0.2827 0.3019 

Exp4MF-265 MER 0.0438 0.0640 0.6694 0.6167 0.9990 0.6116 0.2876 0.4182 0.2530 

Exp4MF-266 MER 0.0438 0.0628 0.6459 0.4990 0.9845 0.7023 0.3511 0.3735 0.2567 

Exp4MF-267 MER 0.0438 0.0787 0.4822 0.4469 0.6670 0.7885 0.5563 0.1796 0.4786 

Exp4MF-268 MER 0.0438 0.0640 0.7218 0.4250 0.8803 0.6473 0.3015 0.4018 0.2383 

Exp4MF-269 MER 0.0438 0.0628 0.8316 0.5208 0.9521 0.4679 0.1820 0.6615 0.1546 

Exp4MF-270 MER 0.0438 0.0787 0.8145 0.5531 0.9845 0.6928 0.2794 0.5184 0.1489 

Exp4MF-271 MER 0.0438 0.0640 0.6747 0.5427 0.8803 0.8595 0.5301 0.2470 0.2740 

Exp4MF-272 MER 0.0438 0.0628 0.7256 0.4917 0.9373 0.8509 0.4806 0.2612 0.2301 

Exp4MF-273 MER 0.0438 0.0787 0.5066 0.5385 0.8803 0.7815 0.5110 0.2111 0.4078 

Exp4MF-274 MER 0.0438 0.0640 0.5901 0.5344 0.7732 0.8093 0.5278 0.2160 0.3809 

Exp4MF-275 MER 0.0438 0.0628 0.7320 0.4917 0.9521 0.8319 0.4418 0.2565 0.2229 

Exp4MF-276 MER 0.0438 0.0787 0.7533 0.5073 0.9204 0.7375 0.3729 0.4595 0.2427 

Exp4MF-277 MER 0.0438 0.0640 0.5050 0.2583 0.8314 0.4579 0.2905 0.3982 0.4123 

Exp4MF-278 MER 0.0438 0.0787 0.7061 0.5469 0.9373 0.6134 0.2996 0.4596 0.2631 

Exp4MF-279 MER 0.0438 0.0640 0.6826 0.6292 0.9521 0.7803 0.4054 0.3031 0.2554 

Exp4MF-280 MER 0.0438 0.0628 0.5728 0.5000 0.8314 0.7687 0.4691 0.2579 0.3627 

Exp4MI-281 MER 0.1502 0.0493 0.6917 0.4375 0.9521 0.6770 0.3250 0.4190 0.2442 

Exp4MI-282 MER 0.1221 0.0528 0.8017 0.4833 0.9961 0.4979 0.1903 0.7229 0.1575 
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Exp4MI-283 MER 0.0763 0.0391 0.4583 0.3875 0.7732 0.6938 0.4386 0.2253 0.4320 

Exp4MI-284 MER 0.1502 0.0493 0.8094 0.4281 0.9649 0.6330 0.2449 0.5070 0.1431 

Exp4MI-285 MER 0.1221 0.0528 0.6627 0.4292 0.9913 0.8410 0.4837 0.2414 0.2516 

Exp4MI-286 MER 0.0763 0.0391 0.5467 0.4260 0.8035 0.8483 0.5531 0.1686 0.3407 

Exp4MI-287 MER 0.1502 0.0493 0.8036 0.4542 0.9845 0.7570 0.3271 0.4163 0.1547 

Exp4MI-288 MER 0.1221 0.0528 0.8437 0.4458 0.9961 0.4269 0.1242 0.6588 0.1125 

Exp4MI-289 MER 0.0763 0.0391 0.7335 0.4833 0.9521 0.6865 0.3188 0.4347 0.2190 

Exp4MI-290 MER 0.1502 0.0493 0.5843 0.3833 0.7404 0.7786 0.4588 0.2343 0.3373 

Exp4MI-291 MER 0.1221 0.0528 0.6561 0.4250 0.8035 0.6892 0.3516 0.4188 0.2701 

Exp4MI-292 MER 0.0763 0.0391 0.7222 0.4188 0.9913 0.5045 0.2279 0.6467 0.2235 

Exp4MI-293 MER 0.1502 0.0493 0.5031 0.4375 0.7404 0.8362 0.5838 0.1446 0.4166 

Exp4MI-294 MER 0.1221 0.0528 0.6274 0.4625 0.9204 0.7017 0.3598 0.3182 0.2758 

Exp4MI-295 MER 0.0763 0.0391 0.5426 0.3750 0.8035 0.7439 0.4464 0.2384 0.3606 

Exp4MI-296 MER 0.1502 0.0493 0.6472 0.4333 0.8570 0.8098 0.4510 0.2354 0.2592 

Exp4MI-297 MER 0.1221 0.0528 0.7219 0.4833 0.9015 0.7377 0.3545 0.3727 0.2254 

Exp4MI-298 MER 0.1502 0.0493 0.7355 0.4375 0.9757 0.5150 0.2206 0.6060 0.2143 

Exp4MI-299 MER 0.1221 0.0528 0.7684 0.4792 0.8314 0.7800 0.3564 0.3593 0.1771 

Exp4MI-300 MER 0.0763 0.0391 0.6518 0.4625 0.9204 0.7466 0.3823 0.2933 0.2567 

Exp5RU-301 RUL 0.1221 0.9662 0.9575 0.4802 0.6261 0.4533 0.0755 0.7708 0.0193 

Exp5RU-302 RUL 0.1221 0.9513 0.9198 0.4708 0.7404 0.5569 0.1250 0.6154 0.0437 

Exp5RU-303 RUL 0.1221 0.9513 0.9483 0.4750 0.7404 0.5533 0.1227 0.6612 0.0253 

Exp5RU-304 RUL 0.1221 0.9689 0.8967 0.4625 0.7404 0.5747 0.1464 0.5648 0.0587 

Exp5RU-305 RUL 0.1221 0.9513 0.8406 0.4875 0.7732 0.5019 0.1482 0.5713 0.0952 

Exp5RU-306 RUL 0.1221 0.9662 0.9002 0.3708 0.9521 0.5860 0.1735 0.6515 0.0587 

Exp5RU-307 RUL 0.1221 0.9513 0.9062 0.4792 0.7404 0.3290 0.0896 0.8467 0.0526 

Exp5RU-308 RUL 0.1221 0.9513 0.7808 0.5708 0.8570 0.2331 0.0791 0.6953 0.1345 

Exp5RU-309 RUL 0.1221 0.9689 0.8394 0.4833 0.7404 0.0284 0.0578 1.0000 0.0960 

Exp5RU-310 RUL 0.1221 0.9513 0.8995 0.5083 0.7404 0.3160 0.0986 0.8983 0.0571 

Exp5RU-311 RUL 0.1221 0.9662 0.8372 0.4917 0.6670 0.0000 0.0320 0.9655 0.0974 

Exp5RU-312 RUL 0.1221 0.9513 0.8483 0.4958 0.7404 0.2625 0.0813 0.8473 0.0900 

Exp5RU-313 RUL 0.1221 0.9513 0.8824 0.4958 0.7050 0.2729 0.0457 0.7975 0.0679 

Exp5RU-314 RUL 0.1221 0.9689 0.9151 0.5167 0.9521 0.6209 0.1971 0.8049 0.0485 

Exp5RU-315 RUL 0.1221 0.9513 0.9221 0.4667 0.5822 0.1817 0.0000 0.8364 0.0423 

Exp5RU-316 RUL 0.1221 0.9662 0.7797 0.4667 0.9015 0.7996 0.3486 0.3395 0.1354 

Exp5RU-317 RUL 0.1221 0.9513 0.8317 0.4500 0.7732 0.6862 0.2540 0.5225 0.1010 

Exp5RU-318 RUL 0.1221 0.9513 0.8404 0.4667 0.9015 0.6856 0.2416 0.5416 0.0959 

Exp5RU-319 RUL 0.1221 0.9662 0.7869 0.4708 0.9204 0.7309 0.2989 0.4667 0.1308 

Exp5RU-320 RUL 0.1221 0.9513 0.7218 0.4958 0.9649 0.6890 0.3017 0.4850 0.1741 

Exp6RU-321 RUL 0.2004 0.9875 0.8962 0.9250 0.8314 0.7830 0.2754 0.4095 0.0590 

Exp6RU-322 RUL 0.2004 1.0000 0.8477 1.0000 0.8803 0.8080 0.3253 0.3630 0.0904 

Exp6RU-323 RUL 0.2004 0.9943 0.8123 0.9292 0.9015 0.7236 0.2702 0.4158 0.1133 

Exp6RU-324 RUL 0.2004 0.9875 0.8859 0.9042 0.8314 0.7611 0.2633 0.4143 0.0657 

Exp6RU-325 RUL 0.2004 1.0000 0.9457 0.9583 0.7404 0.6879 0.1754 0.5076 0.0270 

Exp6RU-326 RUL 0.2004 0.9943 0.9488 0.9458 0.8314 0.8051 0.2651 0.4285 0.0250 

Exp6RU-327 RUL 0.2004 0.9875 0.8722 0.9750 0.8803 0.7930 0.2942 0.3796 0.0746 

Exp6RU-328 RUL 0.2004 1.0000 0.9574 0.9750 0.7404 0.7303 0.2047 0.5178 0.0194 

Exp6RU-329 RUL 0.2004 0.9943 0.9155 0.9583 0.9015 0.7641 0.2455 0.4349 0.0465 

Exp6RU-330 RUL 0.2004 0.9875 0.8544 0.9875 0.9373 0.7608 0.2817 0.4285 0.0861 

Exp6RU-331 RUL 0.2004 1.0000 0.8267 0.9292 0.9015 0.7618 0.2954 0.4069 0.1040 

Exp6RU-332 RUL 0.2004 0.9943 0.9314 0.9583 0.7404 0.7230 0.2128 0.5003 0.0362 

Exp6RU-333 RUL 0.2004 0.9875 0.8575 0.9125 0.9015 0.7523 0.2730 0.4112 0.0841 

Exp6RU-334 RUL 0.2004 1.0000 0.8349 0.9208 0.9015 0.7655 0.2908 0.3718 0.0987 

Exp6RU-335 RUL 0.2004 0.9943 0.8795 0.9292 0.9015 0.8327 0.3273 0.3534 0.0698 

Exp6RU-336 RUL 0.2004 0.9875 0.8387 0.9708 0.9015 0.7561 0.2826 0.3791 0.0963 

Exp6RU-337 RUL 0.2004 1.0000 0.8158 0.9125 0.9015 0.6563 0.2268 0.4534 0.1111 

Exp6RU-338 RUL 0.2004 0.9943 0.8115 0.9458 0.9015 0.7338 0.2780 0.3937 0.1138 

Exp6RU-339 RUL 0.2004 0.9875 0.8351 0.9250 0.9015 0.7307 0.2678 0.4360 0.0986 

Exp6RU-340 RUL 0.2004 1.0000 0.8753 0.9458 0.7404 0.5622 0.1527 0.5533 0.0726 
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Appendix B: Program Coding 

This part outlines the main codes used in MATLAB Software for the extraction of image 

features.  

 

B.1 Pixel intensity values  
  
dirname = 'F:\MATLAB\Th Images\Big slice 1'; 

fnames = dir(fullfile(dirname,'*.JPG')); 

  

for n=1:size(fnames,1) 

    fprintf('Processing %s\n',fnames(n,1).name)  % informative message to 

command line 

     

% select the image to process 

    im{n} = fnames(n,1).name; 

     

% Read image 

    I = imread(im{n}); 

    Igray = rgb2gray(I); 

     

% select the slice position 

    rowInd = 590:1200; 

    colInd = 1620:1785; 

    slice = Igray(rowInd,colInd); 

     

    sliceMatrix(n,:)=reshape(slice,1,[]);  

    save('PixInt-InSlice-IgrayBS1.mat', 'sliceMatrix'); 

end 
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B.2 GLCM statistics  

  

dirname = 'C:\Users\foibe\Documents\MATLAB\April-to final\RUL2'; 

fnames = dir(fullfile(dirname,'*.JPG')); 

  

for n=1:size(fnames,1) 

    fprintf('Processing %s\n',fnames(n,1).name)  % informative message to 

command line 

     

    % select the image to process 

    im{n} = fnames(n,1).name; 

     

% Read image 

    I = imread(im{n}); 

    Igray = rgb2gray(I); 

     

% select the slice position 

    rowInd = 980:1236; 

    colInd = 1760:1857; 

    slice = Igray(rowInd,colInd); 

     

    sliceMatrix(n,:)=slice(:); 

    save('PixInt-SmallSlice-IgrayRUL2.mat', 'sliceMatrix'); 

    

% Create the GLCMs. Call the graycomatrix function specifying the offsets. 

    glcms = graycomatrix(slice);   

    glcmMatrix(n,:)=(glcms(:)); 

     

% Derive statistics from the GLCMs using the graycoprops function... 
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    stats = graycoprops(glcms); 

    statsMatrix(n,:)=(stats(:)); 

 

% Derive Entropy from GLCMs 

    E = entropy(glcms); 

    EntropyMatrix(n,:)=(E(:)); 

    save('GLCMDefstats-Entropy-SmlInSlice-IgrayRUL2.mat', 

'glcmMatrix','statsMatrix','EntropyMatrix'); 

     

% show the image with the slice position super-imposed 

    imshow(Igray); 

    hold on 

    plot([colInd(1) colInd(end) colInd(end) colInd(1) colInd(1)],... 

        [rowInd(1) rowInd(1) rowInd(end) rowInd(end) rowInd(1)],... 

        '.-r','LineWidth',1); 

    saveas(gcf,sprintf('%s_Igrayslice.fig',im{n})); 

    saveas(gcf,sprintf('%s_rgbslice.emf',im{n})); 

    close all 

    end 

  

S=statsMatrix; 

  

cols = size(S(1).Contrast,2); 

rows = length(S); 

  

% data per feature 

    contrastMat = zeros(rows, cols); 

    correlMat = zeros(rows, cols); 

    energyMat = zeros(rows, cols); 
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    homogMat = zeros(rows, cols); 

  

for n = 1:size(S,1); 

    E = S(n); 

    contrastMat(n,:) = E.Contrast; 

    correlMat(n,:) = E.Correlation; 

    energyMat(n,:) = E.Energy; 

    homogMat(n,:) = E.Homogeneity; 

end 

 

save('GLCMDef Stats-IgrayRUL2-SmallSlc.mat', 'contrastMat','correlMat', 

'energyMat','homogMat'); 

  

% Calculate standard deviation for each stats measure 

    Con = std(contrastMat); 

    Cor = std(correlMat); 

    Ene = std(energyMat); 

    Hom = std(homogMat); 

  

% Calculate standard deviation for each size entropy 

    sRUL2 = std(EntropyMatrix); 

  

save('GLCMDef Stats StdDev-IgrayRUL2-SmallSlc.mat', 'Con','Cor', 

'Ene','Hom','sRUL2'); 

 

B.3 Neural Network function used in cross validation 
 

function results = myNeuralNetfun(xtrain,ytrain,xtest,ytest) 

  

% Solve an Input-Output Fitting problem with a Neural Network 
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% Script generated by NFTOOL 

% Created Thu May 31 16:36:11 GMT+02:00 2012 

 

% TRANSPOSE INPUT: 

    xtrain = xtrain'; 

    ytrain = ytrain'; 

    xtest = xtest'; 

    ytest = ytest'; 

  

% Create a Fitting Network (TRAIN ARCHITECTURE): 

    hiddenLayerSize = 10; 

    net = fitnet(hiddenLayerSize); 

  

% Choose a Performance Function 

% For a list of all performance functions type: help nnperformance 

    net.performFcn = 'mse';  % Mean squared error 

  

% Choose Plot Functions 

% For a list of all plot functions type: help nnplot 

    net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 

  'plotregression'}; 

  

% TRAIN THE NETWORK: 

    [net,tr] = train(net,xtrain,ytrain); 

 

% TEST THE NETWORK: 

    ypred = net(xtest); 

  

% EVALUATE TEST RESULTS: 
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    rsq = corr2(ytest,ypred); 

    error = gsubtract(ytest,ypred); 

    performance = perform(net,ytest,ypred); 

 

% Plots 

% Uncomment these lines to enable various plots. 

    figure, plotperform(tr) 

    figure, plottrainstate(tr) 

    figure, plotregression(ytest,ypred) 

    figure, ploterrhist(error) 

 

% PACKAGE RESULTS: 

    results = struct('net','ypred','error','rsq','tr','performance' );  

    results.net = net; 

    results.ypred = ypred; 

    results.error = error; 

    results.rsq = rsq; 

% results.r2 = r2; 

    results.tr = tr; 

    results.performance = performance; 

end 

 

B.4 Cross validation and Neural Network 

 
% DIVIDE DATA into training and independent validation data 

    load('LabRegressData.mat') 

    numObs = length(DATA); 

    rs = randperm(numObs); 

    valselection = round(0.2*numObs); % 20% of data 
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    valindices = rs(1:valselection); % first 20% 

    trainindices = rs(valselection+1:end); % last 80% 

    valDATA = DATA(valindices,:); 

    trainDATA = DATA(trainindices,:); 

 

% Specify x and y training data 

    xtrain = trainDATA(:,3:9); 

    ytrain = trainDATA(:,2); 

    xval = valDATA(:,3:9); 

 

    yval = valDATA(:,2); 

    xval = xval'; 

    yval = yval'; 

 

% TRAINING: Partition Data 

    c = cvpartition(ytrain,'kfold',3); 

    disp (c) 

    cvfnc =  

@(xtrain,ytrain,xtest,ytest)myNeuralNetfun2013(xtrain,ytrain,xtest,y

test); 

    crossvalResults = crossval(cvfnc,xtrain,ytrain,'partition',c); 

 

% VALIDATION 

    rsq = horzcat(crossvalResults.rsq); 

    [bestRsq,bestInd] = max(rsq); 

    bestNet = crossvalResults(bestInd).net; 

    yval_pred = bestNet(xval); 

    ytrain_pred = bestNet(xtrain); 
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