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Summary 
A multi-state model is a way of describing a process in which a subject moves through a series 

of states in continuous time. The series of states might be the measurement of a disease for 

example in state 1 we might have subjects that are free from disease, in state 2 we might have 

subjects that have a disease but the disease is mild, in state 3 we might have subjects having a 

severe disease and in last state 4 we have those that die because of the disease. So Markov 

models estimates the transition probabilities and transition intensity rates that describe the 

movement of subjects between these states. The transition might be for example a particular 

subject or patient might be slightly sick at age 30 but after 5 years he or she might be worse. 

So Markov model will estimate what probability will be for that patient for moving from state 

2 to state 3. 

Markov multi-state models were studied in this thesis with the view of assessing the Markov 

models assumptions such as homogeneity of the transition rates through time, homogeneity of 

the transition rates across the subject population and Markov property or assumption. 

The assessments of these assumptions were based on simulated panel or longitudinal dataset 

which was simulated using the R package named msm package developed by Christopher 

Jackson (2014). The R code that was written using this package is attached as appendix. 

Longitudinal dataset consists of repeated measurements of the state of a subject and the time 

between observations. The period of time with observations in longitudinal dataset is being 

made on subject at regular or irregular time intervals until the subject dies then the study ends. 
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Opsomming 

’n Meertoestandmodel is ’n manier om ’n proses te beskryf waarin ’n subjek in ’n ononderbroke 

tydperk deur verskeie toestande beweeg. Die verskillende toestande kan byvoorbeeld vir die 

meting van siekte gebruik word, waar toestand 1 uit gesonde subjekte bestaan, toestand 2 uit 

subjekte wat siek is, dog slegs matig, toestand 3 uit subjekte wat ernstig siek is, en toestand 4 

uit subjekte wat aan die siekte sterf. ’n Markov-model raam die oorgangswaarskynlikhede en 

-intensiteit wat die subjekte se vordering deur hierdie toestande beskryf. Die oorgang is 

byvoorbeeld wanneer ’n bepaalde subjek of pasiënt op 30-jarige ouderdom net lig aangetas is, 

maar na vyf jaar veel ernstiger siek is. Die Markov-model raam dus die waarskynlikheid dat so 

’n pasiënt van toestand 2 tot toestand 3 sal vorder. 

Hierdie tesis het ondersoek ingestel na Markov-meertoestandmodelle ten einde die aannames 

van die modelle, soos die homogeniteit van oorgangstempo’s oor tyd, die homogeniteit van 

oorgangstempo’s oor die subjekpopulasie en tipiese Markov-eienskappe, te beoordeel. 

Die beoordeling van hierdie aannames was gegrond op ’n gesimuleerde paneel of longitudinale 

datastel wat met behulp van Christopher Jackson (2014) se R-pakket genaamd msm gesimuleer 

is. Die R-kode wat met behulp van hierdie pakket geskryf is, word as bylae aangeheg. Die 

longitudinale datastel bestaan uit herhaalde metings van die toestand waarin ’n subjek verkeer 

en die tydsverloop tussen waarnemings. Waarnemings van die longitudinale datastel word met 

gereelde of ongereelde tussenposes onderneem totdat die subjek sterf, wanneer die studie dan 

ook ten einde loop. 
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Chapter 1 

Introduction 
In this chapter, an overview of the research, the aim of the study as well as the structure of the 

thesis are presented.  

1.1 Overview of the thesis 

A multi-state model is a way of describing a process in which a subject moves through a series 

of states in continuous time. The series of states might be the measurement of a disease for 

example in state 1 we might have subjects that are free from disease, in state 2 we might have 

subjects that have a disease but the disease is mild, in state 3 we might have subjects having a 

severe disease and in last state 4 we have those that die because of the disease. So Markov 

models estimates the transition probabilities and transition intensity rates that describe the 

movement of subjects between these states. The transition might be for example a particular 

subject/ patient might be slightly sick at age 30 but after 5 years he/she might be worse. So 

Markov model will estimate what probability will be for that patient for moving from state 2 

to state 3. For more information please refers to chapter 2 (Multi-state models). 

Markov multistate models were studied with a view to assessing the assumptions of these 

models, such as homogeneity of the transition rates through time, homogeneity of the transition 

rates across the subject population and Markov property or assumption. The assumptions were 

studied in details. For more details about how to assess these assumptions please refers to 

chapter 4 (Model assessment). 

The assessments of these assumptions were based on simulated panel or longitudinal dataset 

which was simulated using the R package named msm package developed by Christopher 

Jackson (2005). The R code that was written using this package is attached as appendix. 

Longitudinal dataset consists of repeated measurements of the state of a subject and the time 

between observations. The period of time with observations in longitudinal dataset is being 

made on subject at regular or irregular time intervals until the subject dies then the study ends. 

For more information about longitudinal dataset please refers to chapter 5 (Data simulation and 

application).  

Stellenbosch University  http://scholar.sun.ac.za



Introduction 

 

2 | P a g e  
 

1.2 The aim of the thesis 

Multi-state modelling has developed as the technique of choice when modelling panel or 

longitudinal data – data that include units that are observed across two or more points in time. 

A continuous time stochastic process is assumed to govern the multi-state process through its 

transition probabilities and transition rates. Estimating these transition probabilities or rates of 

the stochastic process lies at the heart of multi-state modelling. Three assumptions that are 

typically made regarding the transition rates before fitting a multi-state model are: 

 

1) Homogeneity of the transition rates through time. 

2) Homogeneity of the transition rates across the subject population. 

3) The Markov assumption – the transition rates only depend on the history of the 

process through the current state. 

 

Various authors have put forward methods to assess these assumptions before fitting a multi-

state model. Unfortunately, as with many statistical techniques that have underlying 

assumptions, these methods are not always used to assess if these assumptions are valid before 

fitting a multi-state model. In this thesis, the results of a simulation study in which the 

importance of these three assumptions was assessed are presented. Simulated panel data sets 

are generated where these assumption are specifically violated. Standard multi-state model are 

then fitted to these data sets and the results obtained are discussed.  

 

1.3 Structure of the thesis 

Multi-state models has been discussed and explained in details in chapter 2 including its 

building blocks such stochastic process, transition probability and intensity matrix, Markov 

models, sojourn time, Model assumptions and Time homogeneous Markov model. In stochastic 

process the system enters a state, spends an amount of time called the sojourn time and then 

moves to another state where it spends another sojourn time, and so on. Transition probability 

and intensity matrix define probabilities and rates between the states for subject movements in 

the process.  A Markov model is defined by a set of states as well as set of transitions with 

associated probabilities. In time homogeneous Markov models, all transition intensities are 

assumed to be constant as functions of time. 
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In chapter 3, we introduced and explained the particulars of the multi-state models such as 

covariates as well model structures underlying in multi-state model. In this chapter we discuss 

in details the multi-state model features that can have significant influences in the model we 

fit. Model structure is defined by a set of states and a set of transitions with associated 

probabilities. 

The Markov property and the homogeneity assumptions are strong assumptions that may lead 

to biased estimates if violated; therefore, it is very important to assess and further investigate a 

multistate model once it has been fitted to the model. The assessment of the model such as 

model assumptions validation, assessment of covariates effect in the model as well as model 

assessment using formal and informal tools has been investigated further in chapter 4.  

The main purpose of this study was to assess the fit of model particular to assess or validate 

the Markov assumptions. In order to be able to assess those assumptions we firstly need a 

dataset that can be used to fit the model. Therefore with regard to this we will need to simulate 

a panel or longitudinal dataset that is suitable for Markov models. The last chapter 5 is 

concerned about simulation of dataset based on the Markov process, application of the 

simulated data to the model as well the representation of the results. 
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Chapter 2 

Multi-state models 
A multi-state model is a model for time to event data in which all subjects start in one state or 

possible more starting states and eventually may end up in one or more absorbing state(s). 

Alternatively it is a way of describing a process in which a subject moves through a series of 

states in continuous time.  Some subjects are censored before they reach an absorbing state 

(dead state). For multi-state model a longitudinal or panel dataset is observed and investigated.  

A panel dataset is the one that follows a given sample of n subjects over time and provides 

multiple observations on each subject in the sample.  Censored refers to the fact that some of 

subjects are dropped from the experiment which is highly expected since the subjects followed 

over time. Censored will cause problem in the study therefore it needs to be taken into account 

when modelling. When we considered a multi-state model, we want to investigate the effect of 

risk factors on the transitions through different states. In other words in multi-state modelling 

we study the relationships between the different predictors and the outcome (variable of 

interest). Variable of interest is the state each patient is in at each visit. Covariates must also be 

introduced in the model to assess their significant. In multi-state models the transition 

intensities (now explained in section 2.3) provide the hazards for movement from one state to 

another. These transitions intensities can be used to calculate the mean sojourn time in a given 

state. In this chapter, the stochastic process, the transition probability matrix, the transition 

intensity matrix, sojourn time, model assumptions, Markov models and time homogeneous 

Markov models are discussed in detail.     

2.1 Stochastic process  

A first order Markov process, ),(tX state that a stochastic process in which future knowledge 

about the process is provided only by the current state and is not altered with the additional 

knowledge of past states. This means that, the future state is independent of the past given the 

present state of the process (Ibe, 2009). That is, 

        

    11

002211

|

,,,|









nnnn

nnnnnn

xtXxtXP

xtXxtXxtXxtXP 
                  (2.1) 

In stochastic process the system enters a state, spends an amount of time called the sojourn 

time (sojourn time has been discussed in section (2.5)) and then moves to another state where 

it spends another sojourn time, and so on. A stochastic process changes over time in an 

uncertain manner and its model (that is stochastic model) has five components such as time t, 
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state s, activity (which depends on time), transition and stochastic process (a collection of 

random variables )(tX ). The time can be either continuous or discrete parameter. The random 

variable in stochastic process is denoted by )(tX  and it represents the measurement that has 

been observed at the particular state at a given time for the particular subject. For an example 

if the study is concerned about measuring the patient’s heart pulse during surgery then 

stochastic variable )(tX  will represents the occurrence of heartbeat at time t for that particular 

patient which is measured continuously. All the possible random variables )(tX  of stochastic 

process that are assumed are collected in a state space S where 

 KssssS ,,,, 321                  (2.2) 

If S , is discrete, the then process is called a discrete-state stochastic process. Similarly if S  

is continuous, then the process is called a continuous-state stochastic process. The set of 

parameters of the stochastic process is denoted by T  and it is usually a set of times. If T , is 

a countable set then the process is called a discrete-time stochastic process. If T , is an interval 

of real numbers then the process is called continuous-time stochastic process. If the Markov 

process is a discrete-time Markov process then the transitions occur at fixed points in time and 

we consider transition probabilities and if the Markov process is a continuous-time Markov 

process then the transitions can occur at any point in time and we consider transition rates.  

To describe the Markov process let S defined above denote a set of states then 

 The process moves successively from one state to another state having started in one of 

these states. 

 If the process is currently in state i, then it moves to state j with a transition probability 

of ijp (transition probability is discussed in the next section). The probability does not 

depend upon which states the process was in before the current state. 

 The process can remain in the state it is in and this occurs with probability .iip  

 The starting state defined in S is specified by the initial probability distribution, this is 

done by specifying a particular state as the starting state. 

 

The absorbing state i of a Markov process is the state i in which the process will never leave 

that state for an example state 2 (Dead state) in 2-state Markov model in chapter (3) section 
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(3.2) Figure (3.1). The Markov process is absorbing if it has at least one absorbing state and if 

from every state it is possible to go to an absorbing state. In a Markov process the state that is 

not absorbing is called transient. The first passage time of a certain state is  in S is the time t at 

which istX )( for the first time since the start of the process. The time of absorption of an 

absorbing state is the first passage time of that state. The recurrence time is the first time t at 

which the process has returned to its initial state. As the process progress over time t, the history 

of the observation of the process over the interval  t,0  will be generated, for an example the 

states previously visited, times of transitions etc.  

2.2 Probability transition matrix 

The transition probability matrix is the K x K matrix whose entry in row i and column j is the 

transition probability 
)(tP   and is denoted by 



























tPtPtP

tPtPtP

tPtPtP

tP

KKKK

K

K

()()(

)()()(

)()()(

)(

21

22221

11211









           (2.3) 

)(tP , denote transition probability matrix of a multi-state process at time t. The transition 

probability matrix (2.3) is a stochastic matrix because for any row i, 

 
j

ijp .1                                                                                                   (2.4) 

The entries of probability transition matrix (2.3) are defined in (2.26) and these entries define 

transition/movement probabilities of subjects through states. The matrix )(tP  (2.3) is the 

transition probability matrix with its elements gives the probability of being in state j at time t 

+ s, conditional on being in state i at time s. The transition is the movement from one state to 

another. The matrix P  is time dependent and to emphasize that, the transition probability 

matrix should be denoted as )(tP  but in time homogeneous intensities the dependence of P  on 

time will be omitted. In every transition probability matrix the probabilities must be greater 

than or equal to zero, and each row must sum to one that is  
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                                                                                      (2.5) 

 

and 

 KjiallforP
K

j

ij ,,1,1
1




 ,                                                              (2.6) 

To illustrate the transition probability matrix above let’s use practical example where the 

transition probability matrix is assumed to be 

























5.025.025.0

5.005.0

25.025.05.0

)(tP                                                                           (2.7) 

This is a 3-state model (model structures has been discussed in chapter (3) with rainy, nice and 

snow states respectively. As indicated above, each row must sum to one for an example row 1 

summation equals to 1 (0.5 + 0.25 + 0.25 = 1) and each probability must be greater than or 

equal to zero ( 25.012 P ).  

In case of an n-step state transition probability matrix, let )(npij  denote the conditional 

probability that the process will be in state j after exactly n transitions, given that it is presently 

in state i (Ibe, 2009). That is, 

 

 

,)1(

0

1

)0(

|)(

ijij

ij

mnmij

pp

ji

ji

p

iXjXPnp

























 

                                                                       (2.8) 

To illustrate this lets consider two-step transition probability )2(ijp , which is defined by  

 iXjXPp mmij   |)2( 2                                                                        (2.9) 

if ,0m then 

 KjiallforPij ,,1,0 
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.

)2(









k

kjik

k

ikkjij

pp

ppp

               (2.10) 

The summation is taken over all possible intermediate states k. This means that the probability 

of starting in state i and being in state j at the end of the second transition is the probability that 

we first go immediately from state i to an intermediate state k and then immediately from state 

k to state j. The )(npij , is the ijth  entry (that is ith row, jth column) in the matrix nP . That is, 



























)()()(

)()()(

)()()(

21

22221

11211

npnpnp

npnpnp

npnpnp

P

NNNN

N

N

n









                                                       (2.11) 

where N, represent the number of state. If n is equal to 1 then the above matrix is called one-

step probability matrix.  

The n-step transition probabilities can be obtained by multiplying the transition probability 

matrix by itself n times. To illustrate this, let 


















7.03.0

5.05.0

P                (2.12) 

Then 























































64.036.0

6.04.0

7.03.0

5.05.0

7.03.0

5.05.0
2 PPP

            (2.13) 

The 2P , is the 2-step transition probability matrix obtained using the definition in (2.2.2) above. 

From the 2-step transition probability matrix 2P , we obtain ,4.011 p ,6.012 p 36.021 p
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and 64.022 p  entries. The n-step transition probability matrix )(npij  does not depend on i  as 

n . This means that   jnXP   approaches a constant as n . If the limit exists in the 

Markov chains the limiting-state probabilities is defined as  

   NjjnXP j
n

,,2,1lim 


 .                          (2.14) 

If the limiting-state probabilities exist and do not depend on the initial state, then we have 










k

kjk

k

kjik
n

jij
n

p

pnpnp



 )1(lim)(lim

             (2.15) 

Letting the limiting-state probability vector  N ,,, 21  , results in 

.1









j

j

kjkj

P

p







                (2.16) 

If each column of transition probability matrix sum to 1 then the transition probability matrix 

is defined to be a doubly stochastic matrix, That is, 

 
i

ijp .1                   (2.17) 

This means that apart from each row sum to 1 also each column must sum to 1. If the transition 

probability matrix is a doubly stochastic matrix with the transition probabilities of a Markov 

chain with N states, then the limiting-state probabilities are defined by  

.,,2,1,
1

Ni
N

i                 (2.18) 

To illustrate the doubly stochastic matrix, let P be defined as 


















5.05.0

5.05.0

P                (2.19) 
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From this transition probability matrix P, it can be seen that each column sum to 1 and also 

each row sum to 1. The limiting-state probabilities exist and are given by  

 

,
2

1
21                   (2.20) 

since N= 2. 

2.3 Transition intensity matrix 

The intensity between two states i and j, is the rate of change of the probability ijP  in a very 

small time interval t . For the formal definition of intensity from state i to state j at time t 

please refer to definition (2.28) and also the entries in transition intensity matrix are defined by 

(2.28). All possible intensities between the various states are collected in the transition intensity 

matrix which is denoted by Q  with dimension of (K x K). For example, for the K states the 

transition intensity matrix would be 



























KKKK

K

K

Q

















21

22221

11211

)(             (2.21) 

The parameter  in (2.21) represents independent parameters and it is a vector of length b. 

)(Q  denote transition intensity matrix of a multi-state process. The transition intensity matrix 

(2.21) is used to define the multi-state model. The transition intensity matrix (2.21) again is 

also used to calculate the transition probability matrix (2.3) but definition of (2.3) is a 

complicated function of Q. So definition of (2.48 in chapter 2) can be used to calculate )(tP for 

given Q. The elements in each row of the transition intensity matrix (2.21) must sum to zero 

and off diagonal elements must be non-negative that is  





K

j

ij

1

0                           (2.22) 
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and jiforij  0  respectively. The elements in diagonal must be negative for all i is not 

equal to j that is  

 


ji ijii Kifor .,,1               (2.23) 

This implies that subjects in those states remain in their state while the off diagonals are rates 

in which subjects move to other states. The Q matrix (2.21) is called the transition intensity or 

rate matrix where each element (that is ij ) represent rate at which transitions are made from 

state i to state j.  For example, let K = 3, be the number of states of interest then to illustrate 

the conditions or constraints mentioned above for transition intensity matrix (2.21) we use the 

following transition intensities 3 x 3 matrix  































)(

)(

)(

)(

32313231

23232121

13121312







Q          (2.24) 

The off diagonals elements in transition intensity matrix (2.24) are rates at which subjects move 

into other states, while the diagonals elements are rates at which subject remain in their state 

that is  no progress to other state. 

2.4 Markov models 

A Markov model is defined by a set of states as well as set of transitions with associated 

probabilities. A Markov model is a multi-state model where the multi-state model is defined as 

a model for a stochastic process ( TttX ),( ) with a finite space 

 NssssS ,,,, 321                (2.25) 

and the multi-state process between the states is fully governed by a continuous time stochastic 

process (stochastic process has been discussed above in section 2.1) which is characterised 

through the transition probabilities between different states (Meira-Mechado, 2009) 

 stij FisXjtXPFtsP ,)(|)(),,(                         (2.26) 
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Definition (2.4.1) can also written as follows 









 sij Ftimeatistatetatjstatep ,0|Pr           (2.27) 

where sF  is the history of the observation of the process over the interval  t,0  that is 

generated and for tsSij  ,, . )(tX  in definition (2.4.1) denote the state being occupied at 

time t. Definition (2.26) denotes the probability of going to state j from state i in a period of 

time t. The transitions between the transient states occur with rates 
ij defined by 

 
t

FitXjtttXP t

t
ij








,)(|),(
lim

0
            (2.28) 

Alternatively definition (2.28) can be written as follows 

 

dt

Ftatistatedtttinjitransition t

dt
ij













,|,Pr

lim          (2.29) 

Definition (2.28) means that a subject in state i at time t will have moved to state j )( ij  by 

time tt   with probability ,)( ttij   and a subject in state i at time t will have moved out of 

the system (died) by time tt   with probability .)(0 ttj   The intensity represents the 

instantaneous risk of moving from state i to state j and both (2.26 & 2.28) depends on the 

history. The next state to which the individual moves, and the time of change, are governed by 

a set of transition intensities (2.28) for each pair of states i and j. The intensities may also 

depend on the time of the process t or time-varying explanatory variables tF .  

 

The Markov assumption (this assumption is discussed in next section 2.6) is implicitly present 

in definition (2.28).We estimate the transition probability matrix (2.3) from transition intensity 

matrix (2.21) using maximum likelihood estimation method (discussed in section 2.7.3) in 

order to fit the multi-state model to data and in this thesis will focus on time homogenous 

Markov models. The transition rate matrix is recovered from the data then we can derive 

transition probability matrix for any t we choose from the given transition intensity matrix rate. 

If transitions occurs at fixed points in time (discrete-time Markov chains) and then we work 
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with transition probabilities. If transitions occurs at any point in time (continuous-time Markov 

chains) and then we work with transition rates. 

2.5 Sojourn time 

In sojourn time the random variable (that is time spent by process X in the given subset of the 

state space in its nth  visit to the subset) is considered. Therefore the sojourn time of a process 

X in a subset of states will be an integer-valued random variable if X is a chain or real-valued 

one in the case of a continuous-time process (Rubino and Sericola, 1988). Sojourn time is the 

length of time the process X remains in the state being occupied at the time t. The sojourn times 

of a continuous-time Markov process in a state j are independent, exponential (geometrically 

distributed in case of discrete Markov process) random variables with mean 

ii1                  (2.30) 

or rate given by ii  and it can be expressed in terms of passage times between states in 

continuous-time Markov and semi-Markov chains (Cinlar, 1975).  

The other remaining elements of the ith row of transition intensity matrix (2.24) are 

proportional to the probabilities governing the next state after i to which the individual makes 

a transition. The probability that the subject’s next move from state i to state j is  

.iiij                   (2.31) 

The sojourn time and the new state depend only on state i and not on the history of the system 

prior to time t. Given that the current state is i, the sojourn time and the new state are 

independent of each other. Mean sojourn times describe the average period in a single stay in 

a state for an example we may want to forecast the total time spent healthy or diseased before 

death. To illustrate sojourn time and conditional probabilities consider the following transition 

intensity matrix 































8.08.00

5.07.02.0

02.02.0

Q             (2.32) 
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The transition intensity matrix (2.32) is a 3-state model and a subject that is currently occupying 

state 1 can only progress to state 2. A subject that is currently occupying state 2 can progress 

to state 1 or state 3. A subject that is currently in state 3 can make a move to state 2. The time 

the subject spends in state 1 before moving to state 2 (sojourn time) is  

52.011  ii                           (2.33) 

units of time and if observation times are measured in years then this means that it would be 5 

years. The time the subject spends in state 2 before moving to state 1 or state 3 is  

14.17.011  ii               (2.34) 

units of time that is a year and almost 2 months. The time a subject spends in state 3 before 

progressing to state 2 is 

25.18.011  ii                (2.35) 

units of time that is a year and almost 3 months.  

The conditional probability that a subject currently in state 2 can move to state 1 is  

29.07.02.0  iiij               (2.36) 

and the conditional probability that a subject currently in state 2 can move to state 3 is 

71.07.05.0  iiij  .             (2.37) 

 The conditional probability that a subject currently in state 3 can move to state 2 is 

0.18.08.0  iiij  .              (2.38) 

The conditional probability that a subject currently in state 1 can move to state 2 is 

0.12.02.0  iiij  .               (2.39) 

The mean sojourn times and conditional probabilities for the above transition intensity matrix 

(2.5.1) are summarised in the following matrix 
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























25.10.10

71.014.129.0

00.15

/ PS              (2.40) 

Above matrix (2.5.2) denote the sojourn/probability matrix ( PS / ) where the diagonal values 

represent the mean sojourn time and the off-diagonal values represents the conditional 

probabilities. From the above matrix (2.5.2) we can see that subjects in state 1 take longer time 

(5 years) to progress to state 2, from state 2 to state 3 take a year and one month. 

2.6 Model assumptions 

Different model assumptions can be made about the dependence of the transition rates on time 

(Meira-Macado, 2009). Markov property and the homogeneity assumptions are strong 

assumptions which may lead to biased estimates if violated, therefore it is very important to 

assess and further investigate a multi-state model once it has been fitted to the model (model 

assumptions assessment has been discussed in chapter 4). These assumptions include the 

following ones: 

2.6.1 Markov model assumption 

The Markov assumption state that the future progress only depends on the current state not on 

the past states and the current state should include all relevant history. This means that the 

transition times from each state are independent of the history of the process prior to entry to 

that state. To put it in simple terms Markov assumption simple means that to make the best 

possible prediction of what happens “tomorrow”, we only need to consider what happens 

“today”, as the “past” (yesterday) gives no additional useful information. The past history of a 

system plays no role in its future evolution, which is usually known as the “memoryless 

property of a Markov process” (Barbu & Limnios (2008)). This assumption applies to both 

discrete and continuous data. The Markov assumption is implicitly present in definition (2.28). 

The definition (2.26) and (2.28) can be simplified as  

 isXjtXPtsPFtsP ijjiiij  )(|)(),(),,(                                         (2.41) 

and 
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 
t

itXjtttXP
tFt

t
ijtij








)(|),(
lim)(),(

0
                                   (2.42) 

where ),( tij Ft is the transition rate of a multi-state process. In other words it is the 

instantaneous hazard/risk rate of progressing from state i to state j at time t, given the history 

.tF  

2.6.2 Semi-Markov assumption 

The semi- Markov assumption state that the future progress not only depends on the current 

state i, but also on the entry time into the current state j (Meira-Macado, 2009). The definition 

(2.26) and (2.28) under this assumption can be simplified as  

 iijtijjtiiij tisXjtXPPttsPFtsP ,)(|)(),,(),,(                       (2.43) 

and 

 
t

titXjtttXP
tFt i

t
iijtij








,)(|),(
lim)(),(

0
                             (2.44) 

2.6.3 Time homogeneous assumption 

Under this assumption intensities are constant over time, that is, independent of time t. This 

means the mechanism that is chosen to decide which transition to take is the same at all times. 

This assumption can be assessed with a likelihood ratio test. The definition (2.26) and (2.28) 

can be simplified as 

  )(,)0(|)(),0(),,( stptiXjstXPstPFtsP ijiijtij            (2.45) 

and 

 
t

iXjtXP
Ft

t
ijtij








)0(|)(
lim),(

0
                                              (2.46) 

2.7 Time homogeneous Markov model 

In time homogeneous Markov models, all transition intensities are assumed to be constant as 

functions of time, that is, independent of time t, see section (2.6). This assumption can be 

assessed with a likelihood ratio test (model assumptions assessment has been discussed in 

chapter 4. When intensities are treated as being time homogeneous then the dependency on 
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time can be removed. The transition probability matrix and transition intensity matrix discussed 

in section (2.2 and 2.3 respectively) form the building block of Kolmogorov equations that are 

used to yield unique solutions for probability matrix )(tP . 

2.7.1 Kolmogorov equations 

The Kolmogorov equations are used to derive the relationship between the transition intensity 

matrix Q and the transition probability matrix P. In other words the transition probabilities can 

be calculated from the intensities by solving the Kolmogorov differential equation. The 

relationship between the transition intensity and probability matrix involves canonical 

decomposition. The canonical decomposition was discussed by Kalbeisch and Lawless (1985). 

The Kolmogorov equations state that  

,)()( QtPtP
t





               (2.47) 

which yield unique/closed form solutions for )(tP and conditional on ,)0( IP    







0 !

)(
)(

r

r
Qt

r

Qt
etP               (2.48) 

Definition (2.48) is only valid with time homogeneous intensities. Q is the transition intensity 

matrix therefore P can be found from Q using Kolmogorov equations (2.48). The solution for 

the transition probabilities in terms of the transition intensities can be found using (2.53) but 

the solutions are complicated functions of the intensities and it is only practical to calculate 

them for simple models with small intensities that is Q’s. For example consider a progressive 

model (3-state 2-parameter model) where subjects can move only forward through the states. 

The last state is an absorbing state where subject cannot leave that state once entered it. 





























000

0

0

)( 2323

1212





Q              (2.49) 

For an example, the probability that a subject currently in state 1 at time 0 will be in state 3 at 

time t ( )(13 tP ) is given by 
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 1223

23122312

2312

13

1
)(

 


tt
eetP





             (2.50) 

2.7.2 Eigenvalue Decomposition for Q 

Solving (2.7.1.1) without the need to directly express the transition probabilities as functions 

of the transition rates can be accomplished with a canonical decomposition of Q (Kalbfleisch 

and Lawless, 1985). Let ki dd ,, be the distinct eigenvalues of Q and A be a K x K matrix with 

jth column the right eigenvector corresponding to ,jd  then 

,1 ADAQ                 (2.51) 

where 

 ,,, ki dddiagD                 (2.52) 

  .,,)( 11  AeediagAtP
tdtd k               (2.53) 

The transition matrix )(tP is related to the intensity matrix )(Q  by ))(exp()( tQtP  . 

Definition (2.53) is the relationship between transition probability matrix and transition 

intensity matrix. To illustrate transition probability matrix (2.53), let the transition intensity 

matrix be defined as 






















2121

1212





Q                     (2.54) 

Let 312   and 121   be the parameters associated with the transition intensity matrix 

defined in (2.54) then 






















11

33

Q                           (2.55) 

The eigenvalues of (2.55) are (0,-4) and the associated eigenvalues are  t1,1  and  t1,3 . 
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Therefore 















 


11

31

A                 (2.56) 

and  




















25.025.0

75.025.0
1A               (2.57) 

Then 

 

    
























tt

tt

Qt

ee

ee

etP
44

44

25.075.025.025.0

)75.0(75.075.025.0

)(           (2.58) 

where 

  11

00

1

!!




















  AAeA

r

Dt
A

r

ADAt
e Dt

r

rr

r

rr
Qt .           (2.59) 

To estimate the maximum likelihood estimates of parameters, the transition probabilities 

derivatives are required and are calculated in a similar way to (2.53). The matrix with entries 

uij tp   );( is obtain as 

,,1,
)( 1 buAAV

tP
u

u




 


              (2.60) 

with b the number of independent transition rates and uV  a K x K matrix with (i,j) entry 

 
 

,,

,,

)(

)(

jiteg

ji
dd

eeg

tdu

ii

ji

tdtdu

ij

i

ji








              (2.61) 

and 
u

ijg  the (i,j) entry in  AQAG u

u  1)(  ( Kalbfleisch and Lawless, 1985). 
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2.7.3 Maximum likelihood estimation 

The method of maximum likelihood estimation enables the unknown parameters in the model 

to be estimated. The maximum likelihood estimate is the number of transitions from state i to 

state j divided by number of overall transitions from state i to other states calculated from the 

transition probability matrix. Maximum likelihood estimates for a particular class of a model 

can be computed from transition probability matrix )(tP  (2.3), with (i,j) entry defined in (2.26) 

which depends on unknown parameters in Q (2.21) through the Kolmogorov relationship 

)exp()( tQtP   (Cox and Miller, 1965). Suppose we have the following transition intensity 

matrix Q 































3232

23232121

1212

0

)(

0

)(







Q            (2.62) 

Let  32232112 ,,,    denote the vector of intensities and the aim is to maximize the 

likelihood to obtain estimates of . To obtain the maximum likelihood estimates of , is 

accomplished by having the first and second derivatives of the likelihood function by 

considering the values of log-likelihood on grids of points. Let mttt  10  be the 

observation times for individuals in the sample and 
ijln  be the number of individuals in state i 

at 1lt and in state j at ,lt then the likelihood and log-likelihood functions are defined as  

  ,,)(
1 1.

1 
 












m

l

k

ji

n

llij
ijlttpL               (2.63) 

    
 


m

i

k

ji

llijijl ttpnL
1 1,

1 ,|loglog              (2.64) 

(Kalbfleisch and Lawless, 1985) , where   is defined as the vector of b independent unknown 

transition intensities defined in (2.21) and definition (2.64) can be viewed as the general form 

for any multi-state model and can be modified based on the type of data under study. 
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 The general form needs to be modified under the following conditions (Jackson, 2014): 

 Death state exist in the model 

 Exactly observed transition times 

 Censoring exist in the data 

The above conditions as well as Quasi-Newton (or scoring) procedure are further discussed 

below but firstly we start with the full likelihood. 

2.7.3.1 The full-likelihood 

Suppose i indexes n individuals in the dataset. The data for individual i consists of a series of 

time points  
iini tt ,,0   and corresponding states at these time points  )(,),( 1 iini tStS  .  An 

individual’s contribution to the likelihood is his or her path through the different states (Jackson 

et al., 2003).  Consider an observed pair of states, )( jtS and ),( 1jtS at times ., 1jj tt  Then the 

contribution to the likelihood from these two states is 

))((),( 11, jjiiji tttstPsL  
              (2.65) 

The (i,j) entry of (2.3) evaluated at 
jj ttt  1
. The full-likelihood is the product of all such 

terms 
jiL ,
 over all individuals and transitions which depend on the unknown transition matrix 

Q, which was used to determine )(tP . 

2.7.3.2 Death state exist in the model 

In studies where there is a death state, it is common to know the time of death, but the previous 

state before the death state is not always known. Let  

DtS j  )( 1
                 (2.66) 

be a death state, and then the contribution to the likelihood is summed over the unknown states 

m on the day before death 




 
Dm

mDjjiji ttmtPsL )(),( 1,              (2.67) 

The sum is taken over all possible states m which can be visited between )( jtS and D. 
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2.7.3.3 Exactly observed transition times 

If the times are exact transition times between the states, with no transitions between the 

observation times, then the contribution to the likelihood is 

  ),()()()( 11,   iijjiiji tststttstPsL              (2.68) 

since the interval stays in state )( jtS in the interval 
jt to 

1jt with a known transition at time

1jt . 

2.7.3.4 Censoring exist in the data 

If at the end of the study, it is known that a subject is alive but not in what state that subject is 

in, that observation has to be treated as a censored observation. The contribution to the 

likelihood of a censored observation is  

 


 
Cm

jjiji ttmtPsL ,),( 1,
              (2.69) 

with C defined as the known subset of states that the subject could have entered before being 

censored. 

2.8 Quasi-Newton (or scoring) procedure 

A quasi-Newton (or scoring) procedure is implemented to obtain the maximum likelihood 

estimates of   and estimates of the asymptotic covariance matrix. This procedure was 

proposed by Kalbfleisch and Lawless (1985). Let ,1 lll ttw where ,,,1 ml   then from 

(2.67) the first and second derivatives of the log likelihood is given as 


 










m

l

k

ji lij

ulij

ijl

u

u bu
wp

wp
n

L
S

1 1,

,,1,
)(

)(log
)( 




           (2.70) 

.
)(

)()(

)(

)(log

1 1,
2

22


  









 







 m

l

k

ji lij

vlijulij

lij

vuij

ijl

vu wp

wpwp

wp

wp
n

L 


      (2.71) 

Instead of directly using a Newton-Raphson algorithm and thus evaluating the first and second 

derivatives, a scoring device is used were the second derivatives are replaced by estimates of 

their expectations. This gives an algorithm that only requires the first derivatives of the log-
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likelihood. Let  ijlli ntN )( 1 denote the number of individuals in state i at time 1it . Taking 

the expectation of 
ijln conditional on )( 1li tN and noting that 

 




k

ji
vu

ij wp

1,

2

,0
)(


 gives 
















vu

L
E



log2  
.

)()(

)(

)(

1 1,

1
 









m

l

k

ji v

lij

u

lij

lij

li
wpwp

wp

tNE


           (2.72) 

This can be estimated by  


 












m

l

k

ji v

lij

u

lij

lij

li
uv

wpwp

wp

tN
M

1 1,

1 .
)()(

)(

)(
 )(


                                     (2.73)   

The )( lij wp and 
ulij wp  )(  terms in (2.70) and (2.73) are computed using (2.53) and (2.60) 

To obtain an estimate of  using (2.70) and (2.73), let 0  be an initial estimate of , )(S be 

the b x 1 vector ))(( uS and )(M be the b x b matrix )).(( uvM  An updated estimate 1 is 

obtained as 

),()( 0

1

001  SM              (2.74) 

Where it is assumed that )( 0M is nonsingular. This process is repeated with 1 replacing 0  

and with a good initial estimate, this produces  upon convergence (Kalbfleisch and Lawless, 

1985). 

2.9 Semi-Markov process 

The Markov assumption state that the future progress only depends on the current state not on 

the past states and the current state should include all relevant history. But this assumption 

imposes restrictions on the distribution of the sojourn time in a state, which should be 

exponentially distributed in case of continuous-time Markov process and geometrically 

distributed in case of a discrete-time Markov process. To overcome this, the Markov 

assumption must be relax in order to allow arbitrarily distributed sojourn times in any state and 

still have the Markov assumption but in a more flexible manner. The resulted process based on 

these two properties is called a semi-Markov process.  A semi-Markov process is concerned 

with the random variables that describe the state of the process at some time and it is also a 

generalization of the Markov process. A semi-Markov process is a process that makes 

transitions from state to state like a Markov process, however the amount of time spent in each 
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state before a transition to the next state occurs is an arbitrary random variable that depends on 

the next state the process will enter (Ibe, 2009). The semi-Markov chain can be described as 

follows; 

 The initial state 0i  is chosen according to the initial distribution  , 

 Then next visited state 1i is determined according to the transition probability matrix 

.p  

 And the chain stays in state 0i  for a time t determined by the sojourn time distribution 

in state 0i  before going to state 1i . 

2.9.1 Discrete-Time Semi-Markov processes 

 

In a discrete-time Markov process, the assumption is made that the amount of time spent in 

each state before a transition to the next state occurs is a unit time (Ibe, 2009). Let the finite-

state discrete-time random process be denoted by 

 

 KnX n ,2,1,0|                 (2.75) 

 

Here K reflects the number of states and let the state space be denoted by 

 

 KS ,,2,1,0                 (2.76) 

 

Let the probability of transitions between the two states be denoted by ,ijp where 

Sjip

p

ij

K

j

ij






,0

1
0                (2.77) 

 

The above conditions were also discussed in section (2.2). Let KTTTT ,,,, 210   denote the 

transition periods on the nonnegative real line such 

 

.0 210 KTTTT                 (2.78) 
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Let the interval be defined by 

 

.1 iii TTW                                                (2.79) 

This refers to waiting time or holding time in state Si ; before making the transition the 

process spends a waiting time
ijW . The 

ijW  is a positive, integer-valued random variable with 

the  

  ,2,1,)(  rrWPrp ijWij
             (2.80) 

 

It is assumed that the system spends at least one unit of time before making a transition that is  

 
0)0( 



ijW

ij

p

WE
                (2.81) 

for all i and j. By ignoring the times between transitions and focus only on the transitions then 

the resulting process will be Markov. If we include the waiting times then the process will no 

longer satisfy the Chapman-Kolmogorov equation. Thus 

 

,2,1)()(
0




rrpprp
K

j

WijWi ij
             (2.82) 

The mean waiting time in state i is given by 

KiWEpWE ij

K

j

iji ,,3,2,1)()(
0




            (2.83) 

 

Thus the discrete-time semi-Markov process is defined as the two-dimensional stochastic 

process 

 

  KnTX nn ,2,1,0|,                (2.84) 

 

if the following conditions are satisfied: 

 

  KnX n ,2,1,0|   is a Markov chain      

 

 
 

  ,,1,0,|,

,;,,,|,

1

01011













riXrWjXP

TTiXXXrTTjXP

nnn

nnnnn
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where nnn TTW  1  

 

2.9.2 Continuous-Time Semi-Markov process 

 

In a continuous-time Markov process, we assume that the amount of time spent in a state before 

a transition to the next state occurs is exponentially distributed (Ibe, 2009). Let the finite-state 

continuous stochastic process denoted by 

 

 0),( ttX                 (2.85) 

 

Here K is the number of states and let the state space defined as  

 

 KS ,,2,1,0                            (2.86) 

 

Assume that the process just entered state i at time t=0, then it chooses the next state j with 

probability ,ijp  where 

 

SjSip

p

ij

K

j

ij






,0

1
0                (2.87) 

 

The time 
ijW that the process spends in state i until the next transition has the PDF  

 

.0),( ttf
ijW                (2.88) 

The 
ijW is a random variable called the waiting time or holding time for a transition from i to j 

and it is assumed that  

 

  ijWE                 (2.89) 
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The time iW  that the process spends in state i before making a transition is called the waiting 

time in state i and its PDF is given by 

 

0)()(
0




ttfptf
K

j

WijW iji
               (2.90) 

 

The mean waiting time in state i is 

 

 



K

j

ijiji KiWEpWE
0

,,3,2,1)(              (2.91) 

 

 

Thus the continuous -time semi-Markov process is defined as the two-dimensional stochastic 

process 

 

  KnTX nn ,2,1,0|,                (2.92) 

 

if the following conditions are satisfied: 

 

  KnX n ,2,1,0|   is a Markov chain 

 

 
 

  ,0,|,

,,,,|,

1

01011









tiXtWjXP

TiTXXXtTTjXP

nnn

nnnnn 
 

where nnn TTW  1  
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2.10 Discrete-Time Markov chains  

Let the discrete-time stochastic process be defined by 

 ,2,1,0, kX k                (2.93) 

Then the above process is called a Markov chain (Ibe, 2009) if for all ,,,,, mkji  the following 

is true 

 
 

ijk

kk

kkk

p

iXjXP

mXnXiXjXP











1

021

|

,,,| 

            (2.94) 

The state transition probability is denoted by
ijkp . The 

ijkp  means that the conditional probability 

that the process will be in state j at time k immediately after the next transition, given that it is 

in state i at time k – 1. This is called a nonhomogeneous Markov chain. For homogeneous 

Markov chains the 
ijkp =

ijp  which means that the homogenous Markov chains do not depend 

on the time unit, which implies that  

 
 

ij

kk

kkk

p

iXjXP

mXnXiXjXP











1

021

|

,,,| 

            (2.95) 

The homogenous state transition probability 
ijp  satisfies the following condition: 

10

,,3,2,11





ij

j

ij

p

nip                (2.96) 

Then the Markov chain rule is as follows: 

 

 
 kiiiiiiiji

kkk

iXPpppp

XXiXjXP

kk








0

0211

123121

,,,,




            (2.97) 
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Thus, when we know the initial state 0X  and the state transition probabilities, we can evaluate 

the joint probability  

 .,,, 01 XXXP kk               (2.100) 

 

2.11 Continuous-Time Markov chains  

Let the stochastic process be defined by 

 0|)( ttX               (2.101) 

Then the stochastic process defined above is a continuous-time Markov chain (Ibe, 2009) if, 

for all 0, ts and nonnegative integers i, j, k, 





















isXjstXP

sukuXisXjstXP

)(|)(

0,)(,)(|)(

         (2.102) 

This means that the conditional probability of the future state at time t + s given the present 

state at s and all past states depends only on the present state and is independent of the past. 

The stochastic process defined above is said to be time homogenous or have time homogeneity 

property if 







 isXjstXP )(|)(  is independent of s. Time homogenous Markov chains 

have homogenous transition probabilities. Let 

 

 jtXPtp

isXjstXPtp

j

ij





)()(

)(|)()(
           (2.103) 

In the above probabilities, )(tp j  is the probability that a Markov chain is in state j at time t and 

)(tpij  is the probability that a Markov chain is presently in state i will be in state j after an 

additional time t. Thus, the )(tpij , are the transition probability functions that satisfy the 

following conditions 
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10

1)(

1)(











ij

j

ij

j

j

p

tp

tp

              (2.104) 

The Chapman-Kolmogorov equation for continuous-time Markov chain is defined as 

   









k

kjik

k

ij

sptp

ktXjstXPiXktXPstp

)()(

)(|)()0(|)()(

       (2.105) 

The first equation is due to the Markov property. 

 

If the transition probability matrix is defined then the Chapman-Kolmogorov equation becomes 

)()()( sPtPstP                (2.106) 

The amount of time spends by a continuous-time Markov chain in a state is called holding time 

and the holding time in state i is exponentially distributed with mean  

iv

1
               (2.107) 

The iv , is the rate at which the process leaves state i. After the expiration of holding time the 

process transit to another state with probability ,ijp  where 

 
j

ijp 1               (2.108) 

The 
iji pv represents the rate at which the process makes a transition to state j when in state i. 

Since the holding times are exponentially distributed, the probability that when the process is 

in state i a transition to state ij  will take place in the next small time t is .tvp iij   The 

probability that no transition out of state i will take place in t  given that the process is 

presently in state i is  

 


ij iij tvp1              (2.109) 

And the probability that it leaves state i in t  is 
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 


ii iij tvp               (2.110) 

The transition equations for state i for the small time interval are obtain as  










i

i

ij

jjij

ij

ijii

p

vppppv

1
 

The left side of the first equation is the rate of transition out of state i while the right side is 

the rate of transition into state i. This means that in the steady state the two rates are equal for 

any state in the Markov chain. 
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2.12 Conclusion 

In this chapter we discussed in details the stochastic process which governs the multi-state 

process through its transition probabilities and transition rates. In stochastic process the system 

enters a state, spends an amount of time then moves to another state where it spends another 

time. The time that a system spends in a state is called sojourn or mean time which is also 

discussed in this chapter. We also looked at the probability transition matrix and transition 

intensity matrix where both matrices indicate the probability and intensity rates of transition of 

subject through different states respectively. Markov models which is the set of states, 

transition rates and probabilities or a model for a stochastic process was also discussed in 

details.  

We discussed the model assumptions such as Markov model assumption which state that the 

future progress only depends on the current state not on the past states, semi-Markov 

assumption which state that the future progress not only depends on the current state but also 

on the entry time into the current state and time homogeneous assumption where the intensities 

are constant over time. We also looked at time homogenous Markov model particularly for 

Kolmogorov equations, Eigenvalue decomposition for transition intensity matrix and 

maximum likelihood estimation method. The Kolmogorov equations are used to derive the 

relationship between the transition intensity matrix and probability transition matrix, instead of 

solving the Kolmogorov differential equation to calculate the transition probabilities from 

transition intensities we use Eigenvalue decomposition and to estimate the unknown 

parameters in the model we use likelihood estimation method. 

We also discussed the Quasi-Newton or scoring procedure which is implemented to obtain the 

maximum likelihood estimates of the parameters and estimates the asymptotic covariance 

matrix. We discussed the semi-Markov process which state that the process makes transitions 

from state to state but the amount of time spent in each state before a transition to the next state 

occurs at arbitrary random variable that depends on the next state the process will enter. We 

also discussed in details discrete-time Markov chains and continuous-time Markov chains.        
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Chapter 3 

Multi-state model features 
In this chapter we discuss in details the multi-state model features that can have significant 

influences in the model we fit. The following features will be discussed below 

 Covariates 

 Model structure 

3.1 Covariates 

Explanatory variables can be included at each level of the model through generalized 

regressions in order to incorporate covariates (Christopher H. Jackson, 2005). Once the 

covariates are incorporated in the model, the interest is not only on the movement of subjects 

through different states but also on how these covariates influence this movement. Variables 

associated with transition intensities are assumed to have a multiplicative effect. Each transition 

intensity can have a separate set of covariate effects. These effects are introduced as covariates 

in the model via the transition intensities. That is they are included in the model by assuming 

that the transition intensities are functions of the covariates of interest and are of the form 

,,)( jiez ij
Tz

ij 


                (3.1) 

where z is a vector of covariates and 
ij  is the vector of regression coefficients corresponding 

to z. For example let KxKQ :  denote a transition intensity matrix as follows 


















00

1212 

Q                  (3.2) 

To incorporate the covariates into the model then the transition intensity matrix (3.2) for the 

model now become 
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
















00

)(

1212

1212

 
TT zz

ee

zQ                       (3.3)                   

 

The effect of covariate in the transition ji   is measured by the coefficient
ij . If transition 

intensity matrix (3.3) is considered for the model and definition (2.48) is used then the 

transition intensity matrix will depend on z and will be denoted by ),;( ztP with entries 

.,,2,1,),;( Kjiztpij   A proportional hazards model can be used to relate the transition 

intensities to covariates (Marshall and Jones, 1995) 

,)( ij
Tz

ijij ez


                (3.4) 

where z is a vector of covariates, 
ij  is the vector of regression coefficients corresponding to z 

and 
ij is the baseline transition rate. If covariates are included in the model, the parameter 

estimates of the covariate effects s' (in 3.4) can be used to calculate the hazard ratios ( e ) 

for each covariate in the model. The hazard ratios show what effect each covariate has on the 

different transition rates in the model. To illustrate this let the parameter 053.012   and 

parameter 3153.012   then transition intensity matrix (3.4) become 





















00

053.0053.0

)(

3153.03153.0 TT zz ee

zQ                      (3.5) 

where the 01 orz  . If 1z , the transition probability matrix for the transition intensity 

matrix defined in (3.5) become 







































t

ee

tP
00

053.0053.0

exp)(

3153.03153.0

          (3.6) 

For 1t  this result to 
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
















00

0379.09621.0

)1(P                 (3.7) 

This shows that transition intensities are affected by covariates. Sometimes covariates are 

observed at different times to the main response for an example in recurrent disease events. If 

this time variation is deterministic, for example age, the resultant process is a time 

inhomogeneous Markov model, even if the baseline intensities are not dependent on time. Then 

the transition intensities could be written as 

.))((
)( ij
Ttz

ijij etz


                  (3.8) 

The quasi-Newton MLE algorithm can be extended to estimate the coefficients of the 

covariates (Kalbfleisch and Lawless, 1985).  A separate canonical decomposition of  )(zQ  is 

required for each of the r distinct covariate vectors z in the sample. Let these be denoted by   

),,( 1 shhh zzz                   (3.9) 

1ihz                 (3.10) 

,,,1)),(()( rhzzQQ hijhh               (3.11) 

and lastly let 
)(h

ijln be the number of individuals with covariate values hz that are in state i at 1lt

and state j at lt .  

 

Then log-likelihood is 

),;(log)(log
1,

)(

11

hl

k

ji

ij

h

ijl

m

l

r

h

zwpnL 


            (3.12) 

where  

)).;(()exp()( hijnh ztptQtP               (3.13) 
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In definition of (2.70) we have the score vector which now involves the sum of r terms for each 

distinct covariate vector, 

),()( )(

1

 h
r

h

SS 


               (3.14) 

The baseline transition intensities and regression parameters of the covariates that need to be 

estimated are denoted by ),(    . )()( hS  is a b x 1 vector, where b is the total number 

of parameters to be estimated in , 

,,,1,
);(

);(log
)( )(

1,1

)( bu
zwp

zwp
n

L
S

hlij

uhlijh

ijl

k

ji

m

iu

h

u 






 






           (2.15) 

The Fisher scoring matrix )(M in the presence of covariates is given by the following 

),()( )(

1

 h
r

h

MM 


               (3.16) 

and this calculated using definition (2.73) for each h and definitions (2.53) and (2.60). Now the 

derivatives in (2.73) are with respect to each element in   and a separate diagonalisation is 

required of each .hQ  

3.2 Model structure 

The Markov chain model is defined by a set of states and a set of transitions with associated 

probabilities. Here the states are denoted by the rectangular box (with relevant state specified) 

and transitions probabilities denoted by a parameter ij where Kji ,1,  . With K, being 

the number of states in the model. The arrows indicate the path through the different states. 

Models with single arrows pointing in one direction are called unidirectional models which 

allow one direction transitions between some transient states. And those models with double 

arrows pointing in different direction are called bi-directional models which contain absorbing 

state (death state) but can allow transitions in either direction between some of the transient 

states. Depending on the specific data under investigation multi-state models are uniquely 

defined and the types of transitions allowed in a model have implications for inferences about 

the model. The features of a multi-state model structure that affect the model are considered in 

details below. 
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 Basic survival model 

 

Two states are considered here the first one being Alive (A) and the second being Dead 

(D). This is a unidirectional model consist of one simple chain states, subjects begin in 

Alive (A) state can only progress through the Dead (D) state. The aim here is to study 

the failure that causes a subject to end up in a Dead (D) state for an example if the status 

is an age of person denoted by (y) then we study the failure time T(y). The model 

describes the probability of moving from Alive (A) state to Dead (D) state at various 

points in time. Figure 3.1 illustrates 2-state basic survival model. 

 

 

Alive (A) 

12   

Dead (B)  

 

Figure 3.1 Basic survival model 

 

The corresponding transition intensity matrix for the above basic survival model in 

figure 3.1 has been shown below in (3.17) where 12  indicate the transition from state 

1 (Alive state) to state 2 (Dead state). In section (2.3) we indicated that each row 

elements of a transition intensity matrix must sum zero and each row of a Q matrix in 

(3.17) sum to zero. The second row of Q matrix in (3.17) contains zero elements since 

we don’t have transition from state 2 (Dead state) to state 1 (Alive state). This indicates 

that once the subject enters state 2 (Dead state) there’s no turning back or recovery. 

 


















00

1212 

Q              (3.17) 

 

 Multiple-decrement survival model 

 

Here we investigate the time of failure of a status denoted by (y) as in the basic survival 

model above, that is we study the failure of time T(y). As well as m causes that resulted 

in Withdraw (W) state and Dead (D) state. Three states are considered here the first one 
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being Alive (A), the second being Withdraw (W) and third Dead (D) state. This model 

is for life insurance where the contract between the subject and insurance can be 

terminated either by withdraw or die. The model describes the probability of moving 

from Alive (A) state to Withdrawn (W) state or from Alive (A) state to Dead (D) state 

at various points in time. Figure 3.2 illustrates 3-state multiple-decrement survival 

model. 

 

 

 

 12  

 

Alive (A 

                                                                 13  

 

Figure 3.2 Multiple decrement survival model 

 

The corresponding transition intensity matrix for the multiple decrement survival model 

in figure 3.2 has been shown below in (3.18) where 12  indicate the transition from 

state 1 (Alive state) to state 2 (Withdraw state) and 13  indicate transition from state 1 

(Alive state) to state 3 (Dead state).  

 

 

























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010

13121312 

Q            (3.18) 

 

 

 

 

 

 

Withdraw (W) 

 

Dead (B) 
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 Progressive Model 

 

In this model all states has only one possible transition into the state. This model is 

unidirectional where subjects can only move forward to the next state. Once the subject 

has left a state, it cannot return to previous state from the current state sitting in. An 

example of a progressive model is the three state chronic disease model where subjects 

begin in state 1 (healthy) from which they can only progress to state 2 (which is a 

diseased), from state 2 they may only progress to state 3. Here we have four states such 

as state one, state two, state three and state four. The last state is normally a death state 

once subject enters this state the subject can never leave that state. Figure 3.3 illustrates 

4-state progressive model. 

 

 

   

                                                        

                                                                          

Figure 3.3 Progressive model 

 

The corresponding Q transition intensity matrix for the progressive model in figure 3.3 has 

been shown below in (3.19) where 12  indicate the transition from state 1 to state 2, 23  

indicate transition from state 2  to state 3  and  34  indicate transition from state 3 to state 

4. State 4 is the absorbing state once subject enters this state can never leave this state.  

 
































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00
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3434
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



Q             (3.19) 

 

 

 

 

State 3 
34  State 2 

23  State 1 12  State 4  
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 Disability Model 

 

This model has four states such as Active (A), Disabled (d), Withdraw (W) and Dead 

(D). A person starts in active (healthy) state and then can die or become disable and 

then die. This model is use to model workers’ eligibility for various employee benefits. 

It is possible to return to the Active (A) state from Disabled (d) state. The model 

describe probabilities of moving among these various states such as moving back and 

forth between Active (A) state and Withdraw (W) state several times. Figure 3.4 

illustrates 4-state disability model. 

 

 

 

.......... 12                                                            

      

                     31           13                       21                                24  

                                                         14                                                      

                    

 

                                                                                   

Figure 3.4 Disability model 

 

The corresponding Q transition intensity matrix for the disable model in figure 3.4 has been 

shown below in (3.20) where 12  indicate the transition from state 1 (Active state) to state 

2 (Disable state), 21  indicate transition from state 2 (Disable state) back to state 1 (Active 

state) and so forth. Here subjects can be inactive by moving directly from active state to 

disable state, withdraw state or die (Dead state). Subject moved to disable state can also 

move from disable state to dead state and subject moved to withdraw state can be active 

again by moving from withdraw state back to active state.    

 

Disabled (d) Active (A) 

Withdraw (W) Dead (D) 
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 
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Q         (3.20) 

 

 Recurrent Model 

 

In recurrent model we have three states such as state one, state two and state three. 

Fortunately we don’t have termination state (Dead (D)). Subjects move more than once 

between the different states with a probability that the process will eventually return to 

a state is 1. The example of a recurrent model is the two state illness-recovery model 

where state 1 represents healthy and state 2 represents illness meaning that the subject 

can get ill then also can recover from illness going back to state 1 from state 2. Figure 

3.5 illustrates 3-state recurring model. 

 

 

State 1 

 

                                          12      21          31  13  

 

......... 23                                                                                     

                                                                                 32  

     

Figure 3.5 Recurring model 

 

The corresponding Q transition intensity matrix for the recurring model in figure 3.5 has 

been shown below in (3.21). Here the Q transition intensity matrix (3.21) has no absorbing 

state, subject can move repeatedly between the different states for example subject in state 

1 can move to state 2 and subject from state 2 can move back to state 1. 

State 3 State 2          
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Q           (3.21) 

 

 Competing Risk Model 

 

There are four states in this model such as Alive (A) state and the three Dead (D) states 

characterize by for an example Dead of heart disease state, Dead of cancer state and 

Dead of other causes. The three states are absorbing while the Alive (A) state is not. 

All transitions are from the Alive (A) state to the other three states. This model is 

concerned of different causes of death.  Figure 3.6 illustrates 4-state recurring model. 

 

 

 

Dead of heart disease 

                                                               12   

.......... 13                               

                                                                          

                                                 14  

                                                                          

       

Figure 3.6 Competing model 

 

The corresponding Q transition intensity matrix for the competing model in figure 3.6 has been 

shown below in (3.22) where 12  indicate the transition from state 1 to state 2, 13  indicate 

Dead of cancer Alive (A) 

Dead of other causes 
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movement from state 1 to state 3 and 14  show transition from state 1 to state 4. Here the 

transition intensity matrix Q has several absorbing states. Here the causes of death are studied 

simultaneously for example heart disease, cancer as well as other causes.   
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

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Q           (3.22) 

 

 Continuing Care Retirement Communities  

 

CCRC model has three states that include Healthy (H) state, Independent Living Unit 

(I) state, Skilled Nursing Facility (S) and Death (D). In this model subjects may move 

among various states mentioned above under this model. Model describes the 

probabilities of moving among these states at various points in time. Figure 3.7 

illustrates 4-state recurring model. 

 

12 23              

 

                               14                            24                                   34  

 

Death (D) 

 

Figure 3.7 CCRC’s model 

 

Facility (S) 

 

Independent 

Living Unit (I) 

Healthy (H) 
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The corresponding Q transition intensity matrix for the CCRC’s model in figure 3.7 has been 

shown below in (3.23). Here transitions are unidirectional meaning subjects move from the 

particular state to the next state no returning to the previous state.   
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Q         (3.23) 
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3.3 Conclusion 

 

In this chapter we discussed in details the covariates and model structure. Covariates are the 

explanatory variables that are incorporated to the model through the transition intensities. The 

effects of covariates are assumed to be multiplicative. Once the covariates are incorporated in 

the model, the interest is not only on the movement of subjects through different states but also 

on how these covariates influence this movement. The effect of covariate is measured by the 

regression coefficient. 

 

We considered in details the basic survival model, multiple-decrement survival model, 

progressive model, disability model, recurrent model, competing risk model and continuing 

care retirement communities model. Usually in basic survival model we have two states and 

unidirectional transition between the two states. The model describes the probability of 

transition from state 1 to state 2. In multiple-decrement survival model we have three states 

and this model is for life insurance where the contract between the subject and insurance can 

be terminated either by withdraw (state 2) or die (state 3) where state 1 is being alive.  

 

In progressive model the subjects can only move forward to the next state no returning to the 

previous state. An example of progressive model is the three state chronic disease model where 

subjects start at state 1 (healthy) from which they can only progress to state 2 (disease) then to 

state 3 (death). In disability model a person starts in active state (healthy) then can die or 

become disabling and then die. This model is use to model workers’ eligibility for various 

employee benefits. In recurrent model we don’t have death state. The example of a recurrent 

model is the two state illness-recovery model where state 1 represents healthy and state 2 

represents illness meaning that the subject can get ill then also can recover from illness going 

back to state 1 from state 2. 

 

The competing risk model is concerned of different causes of death. In this model all states are 

absorbing (death states) except starting state. For example there are four states in this model 

such as Alive (A) state and the three Dead (D) states characterize by for an example Dead of 

heart disease state, Dead of cancer state and Dead of other causes. And lastly the continuing 

care retirement communities’ (CCRC) model has three states that include Healthy (H) state, 
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Independent Living Unit (I) state, Skilled Nursing Facility (S) and Death (D). In this model 

subjects may move among various states. 
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Chapter 4 

Multi-state model assessment 
The Markov property and the homogeneity assumptions are strong assumptions that may lead 

to biased estimates if violated; therefore, it is very important to assess and further investigate a 

multistate model once it has been fitted to the model. Since the exact times of transition 

between the states are unknown it makes difficult to assess Markov assumption but the 

assumption of homogeneity of transition rates through time and across subjects can be assessed. 

For discrete time and continuous time Markov models these two assumptions can be assessed 

by modelling transition rates on observed covariates. The fit of the model can be checked by 

testing the specific assumptions of the model individually and by general goodness-of-fit tests, 

but continuous covariates, exact death times and irregular sampling times present additional 

challenges. The Markov models have the following assumptions that need to assessed or 

validated: 

1) Homogeneity of the transition rates through time 

2) Homogeneity of the transition rates across the subject population 

3) The Markov property or assumption 

 

The above assumptions are investigated in details below together with assessment of covariates 

effect in the model and the model fit assessment. 
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4.1  Model assumptions  

 

4.1.1 Homogeneity of the transition rates through time 

 

The key characteristic of time homogenous Markov models is that the transition 

intensities remain constant through time. This assumption can be tested using piecewise 

constant transition intensities, this was originally proposed by Faddy (1976) and Kay 

(1986). For piecewise constant intensities, the number and location of change points 

must be determined. The likelihood ratio test is used to test the assumption of constant 

rates through time and again the likelihood ratio test can be used to compare the 

piecewise constant model with homogenous model. As the alternative Kalbfleisch and 

Lawless (1985) suggest the fitting of parametric time-dependent model 

.t

ijij e                                             (4.1)  

The likelihood ratio test is performed on the hypothesis that  

0: 00 H                                         (4.2) 

to assess the homogeneity of the transition rates through time. If the null hypothesis is 

rejected based on p-value then we will conclude that intensities are constant across time, 

implying that the assumption of homogeneity of transition intensities across time is 

valid.  

 

4.1.2 Homogeneity of the transition rates across the subject population 

 

This assumption can be checked by including covariates and treatment indicators  

T

pxxx ),,( 1                              (4.3) 

on individuals in the modelling process. In this model the parameters can be re-

parameterized as  

 

x

ij

x

ij
ije





                             (4.4) 
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where x  is a binary variable with 0 and 1 values that is equivalent of dividing the 

population into two groups according to its value and Kji ,,2,1,  denote 

transitions rates in the model. As in homogeneity of the transition rates through time 

discussed above, the likelihood ratio test can be used to test 

 

.0:0 ijH 
                             (4.5) 

This can be used to test if the transition rates differ with regard to the two population 

groups. An overall likelihood ratio test of homogeneity can be obtained by comparing 

the overall log-likelihood with the sum of the log-likelihoods obtained from the two 

subpopulation groups. If there is a significant difference between the two population 

groups then assumption of homogeneity of the transition intensities across population 

groups has been violated. This will imply that the model is not perfectly fit for the data. 

Conversely, if no significant difference is found between the two groups in terms of 

transition intensities, assumption of homogeneity is valid. 

 

4.1.3 Markov property or assumption 

 

This assumption state that the future evolution only depends on the current state at time 

t. This implies that the history of the process is summarised by the state occupied at 

time t. The Markov assumption may be assessed by including covariates depending on 

the history. Markov assumption or property is the key to many analyses even when not 

appropriate it can provide a base case analysis against which to assess other model.  It 

seems impossible to assess this assumption because it is difficult to test the assumption 

explicitly for panel observed data in the absence of data on exact transitions. It is 

necessary therefore to undertake some interpolation before in order to estimate exact 

transition times. A method suggested by Kay (1986) involves creating data for the exact 

transition times between states using interpolation. A test can then be performed on this 

completed dataset to test the Markov assumption. For instance, consider a disease 

model where death is the absorbing state and which includes state 1 and state 2 and 

transitions between them is bi-directional (bi-directional means transition is in both 

directions). Let x  denote the time spent in state 2 during last sojourn (sojourn has been 

discussed in section (2.5)) from state 1.   
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To fit the model where intensity or rate is denoted by 12 is given by 

)(

012

xe                               (4.6) 

Then we set the hypothesis that  

 

0:0 H

                             (4.7) 

which would assess the Markov assumption that the transition intensity to death from 

state 1 is unaffected by the previous sojourn time. This method is applicable to test 

other Markov assumption but accuracy of any conclusions depends on the accuracy 

with which the exact transition times can be determined through interpolation.  

4.2 Covariates effect in the model assessment 

Explanatory variables can be included at each level of the model through generalized 

regressions in order to incorporate covariates (Christopher H. Jackson, 2005). Once the 

covariates are incorporated in the model, the interest is not only on the movement of subjects 

through different states but also on how these covariates influence this movement. Variables 

associated with transition intensities are assumed to have a multiplicative effect. Each transition 

intensity can have a separate set of covariate effects. These effects are introduced as covariates 

in the model via the transition intensities. That is they are included in the model by assuming 

that the transition intensities are functions of the covariates of interest and are of the form 

,,)( jiez ij
Tz

ij 


                (4.8) 

where z is a vector of covariates and 
ij  is the vector of regression coefficients corresponding 

to z. For example let KxKQ :  denote a transition intensity matrix as follows 
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



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
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1212 

Q                  (4.9) 

To incorporate the covariates into the model then the transition intensity matrix for the model 

now (4.9) become 
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So it is very important to assess the significance of these covariates in the model which is done 

by using the likelihood ratio and Wald test. 

4.3 Model fit assessment 

It is very important to assess model suitability once the model is fitted and the constraints has 

been complied, for instance the validation of underlying assumptions. To assess the fit of the 

multi-state model Person goodness-of-fit and informal model diagnostic tool can be used which 

are further investigated below. 

4.3.1 Informal diagnostic tool 

4.3.1.1 Prevalence counts 

Prevalence counts provide a more informal empirical measure of state occupancy which 

involves comparing the observed state occupancies at a fixed set of times with those 

expected under the fitted model. This method is applicable for exact death times and 

tries to eliminate problems of irregular observation times. Here of a table of observed 

and expected state occupancies at a sequence of times is constructed. In prevalence 

counts the intermediate states will be underestimated when the observed transitions 

imply the passing through of a series of states. The expected counts are calculated by 

summing the probability a subject is in the specified state given their initial state over 

all subjects who are under observation at the time of interest. A subject is under 

observation until their absorbing state. An indication of where the data deviate from the 

model is achieved by comparing the observed count uvO with the expected count uvE

for particular state u and time it using 

 

,
)( 2

uv

uvuv

uv
E

EO
M


              (4.11) 

where 

,),(,
l

liuluv ztPgE               (4.12) 
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where ug is the initial state (assumed known) and lz the covariate vector, subject l . A 

large value of uvM would indicate a poor fit (Gentleman at al. (1994)). Formal tests to 

determine whether the deviates observed are statistically significant are not possible 

because due the ad hoc interpolation of observed states and also the dependence 

between the rows of the tables. This shows that the prevalence counts can only be used 

as an informal measure of fit.  

4.3.2 Pearson goodness-of-fit test 

The Pearson-type- 
2  test is a procedure for testing parametric continuous-time panel 

observed multi-state Markov models. For balanced observations and when there are no 

continuous covariates, a test with an asymptotic 
2 null distribution can be found. Contingency 

table methods provide an assessment of overall fit of the assumed model. The model fit can be 

assessed by considering observed and expected transition frequencies either through a 

likelihood ratio test or the asymptotically equivalent Pearson  2  statistic. Assessing goodness 

of fit by prevalence counts involves estimating the observed prevalence at a series of points by 

some form of interpolation. This is applicable if observation times are close together. An 

alternative method of assessing goodness of fit is to construct tables of observed and expected 

numbers of transitions which leads to a formal test of goodness-of-fit which is similar to the 

Pearson 2  test for contingency tables.  This was proposed by Aguirre-Hernández, R. & 

Farewell (2002). The observed and expected numbers of transitions in each group are defined 

by 

   ))(,)(( 1, rtSstSIO ijjirscghlh
           (4.13) 

   ))(|)(( 1, rtSstSPE ijjirscghlh
           (4.14) 

where )(AI  is the indicator function for an event A and summation is over the set of transitions 

in the category defined by ,,,, gclh h over all individuals i. The Pearson-type test statistic is then 

given by 





rscghl rscghl

rscghlrscghl

n h

hh

E

EO
T

2)(
             (4.15) 
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The Pearson test statistic has a 2

pn distribution, where n-p is the number of independent cells 

in the table (n) minus the number of estimated parameters p. The observed transitions are 

realizations from a set independent but non-identical multinomial distribution, since the 

distribution of T is not exactly 2 . Aguirre-Hernández, R. & Farewell (2002) showed that 2

pn  

is a good approximation if there are no covariates in the model. For models with covariates, 

the null mean of T is higher than n-p, but lower than n, which implies that the lower and upper 

bounds for p-value of the statistic can be obtained from the 2

pn  and 2

n  distributions. To obtain 

accurate p-value, bootstrap procedure is required as described by Aguirre-Hernández, R. & 

Farewell (2002). Pearson goodness of fit requires an arbitrary grouping of the observations and 

it is implemented within R package msm including the modified test for exact death times.  
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4.4 Conclusion 

The focus in this chapter is to assess the multi-state model through model assumptions, 

covariates effect in the model and the fit of the model. Specifically we looked at the 

assumptions such as homogeneity of the transition rates through time, homogeneity of the 

transition rates across the subject population and the Markov property or assumption. The first 

assumption indicate that the intensity rates are constant through time, the second assumption 

also indicate that the intensity rates are homogeneous across subject population and the last 

one state that the future progress only depends on the current state not on the past states. The 

likelihood ratio test can be used to test the first assumption, the second assumption can also be 

tested using likelihood ratio test but including covariates and the last assumption can be tested 

by including the covariates depending on the history. 

 Covariates are the explanatory variables that are incorporated to the model through the 

transition intensities. The effects of covariates are assumed to be multiplicative. Once the 

covariates are incorporated in the model, the interest is not only on the movement of subjects 

through different states but also on how these covariates influence this movement. The effect 

of covariate is measured by the regression coefficient. To assess the significance of these 

covariates we employ likelihood ratio and Wald test. 

 

To assess the fit of the multi-state model we use Pearson goodness-of-fit and informal model 

diagnostic tool. The model fit can be assessed by considering observed and expected transition 

frequencies either through a likelihood ratio test or the asymptotically equivalent Pearson chi-

square statistics. Informal diagnostic tool involves prevalence counts where the observed state 

occupancies are compared with the expected occupancies under the fitted model.  
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Chapter 5 

Data simulation and application 
The main purpose of this study was to assess the fit of model particular to assess or validate 

the Markov assumptions. In order to be able to assess those assumptions we firstly need a 

dataset that can be used to fit the model. Therefore with regard to this we will need to simulate 

a panel or longitudinal dataset that is suitable for Markov models. Longitudinal dataset consists 

of repeated measurements of the state of a subject and the time between observations. The 

period of time with observations in longitudinal dataset is being made on subject at regular or 

irregular time intervals until the subject dies then the study ends. So in this chapter we discuss 

the data simulation and application. There are three Markov models assumptions that need to 

be validated or assessed and they are: 

1)  Homogeneity of the transition rates through time 

2) Homogeneity of the transition rates across the subject population 

3) The Markov property or assumption 

In this thesis I wrote an R code that simulate panel dataset where specifically these assumptions 

are violated. We will implement the first two assumptions that is Homogeneity of the transition 

rates through time and Homogeneity of the transition rates across the subject population by 

passing some parameters in R function written. The Markov property or assumption is already 

accommodated in the function whether you pass the parameters or not. For more information 

with regard to this assumption please refer to section (4.1) of this thesis.  

5.1 Models considered for simulation and application 

For the purpose of the simulation of data set the following transition intensity matrices 

corresponding to each multi-state model will be considered in details in this thesis and the 

corresponding transition intensity matrices will be used in data simulation and application.  

5.1.1 Four-state model 

This model is unidirectional where subjects can only move forward to the next state. 

Once the subject has left a state, it cannot return to previous state from the current state 
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sitting in. Let 12 , 23  and 34  denote transitions intensity between the states, then 

multi-state model is 

 

 

 

Figure 5.1 Four-state model 

 

The corresponding transition intensity matrix for the above model in figure 5.1 is                                      

































1000

00

00

00

3434

2323

1212







Q                                            (5.1)

              

To illustrate the transition intensity matrix specified in (5.1) let 8.0,4.0 2312    

and 6.034   then (5.1) become 



































1000

6.06.0.00

08.08.00

004.04.0

Q                                 (5.2)

                      

This is a four-state model where transitions are allowed between the 2 states from state 

1 to state 2, from state 2 to state 3 and from state 3 to state 4. The mean time spent in 

state 1 is  

5.24.011 11                   (5.3) 

the mean time spent in state 2 is 

State 3 
34  State 2 

23  State 1 12  State 4  
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25.18.011 22                  (5.4) 

 and the mean time spent in state 3 is 

66.16.011 33   .                 (5.5)

       

The probability that the subject’s next move from state i to state j is 

.iiij                    (5.6) 

So the probability of a subject move from state 1 to state 2 is  

14.04.01112                   (5.7) 

the probability of a subject moving from state 2 to state 3 is  

18.08.02223   .                (5.8) 

and the probability of a subject moving from state 3 to state 4 is  

16.06.03334                    (5.9) 

This implies that the probability of moving from a lower state to higher state is always 

possible.   

5.1.2 Three-state model 

Let 232112 ,,   and 32  denote transitions intensity between the states, then multi-

state model is 

State 1 
12  

State 2 
23  

State 3 

21  32  

 

Figure 5.2 Three-state model 

 

The corresponding transition intensity matrix for the above model in figure 5.2 is 
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 































3232

23232121

1212

0

0







Q                      (5.10) 

 

To illustrate the transition intensity matrix specified in (5.10) let 

4.0,4.0,4.0 232112    and 4.021   then (5.10) become 































4.04.00

4.08.04.0

04.04.0

Q           (5.11) 

 

The probability intensity matrix (5.11) denote a three-state model where transitions are 

allowed from state 1 to state 2, from state 2 to state 1, from state 2 to state 3 and from 

state 3 to state 1. The mean time spent in state 1 and state 3 is 

 5.24.011  ii               (5.12) 

and the mean time spent in state 2 is 

25.18.011  ii .              (5.13) 

The probability of the subject that it will move from state 1 to state 2 is  

14.04.0  iiij                (5.14) 

and the probability of the subject that it will move from state 3 to state 2 is 

14.04.0  iiij  .              (5.15) 

The probability of transitions from state 2 to state 1 or from 2 to state 3 is 

5.08.04.0  iiij  .              (5.16) 

This means that the probability of moving from a lower state to higher state is the same 

with the probability of moving from higher state to a lower state.   
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5.1.3 Four-state model 

Let 3432232112 ,,,,   and 43  denote transitions intensity between the states, 

then multi-state model is 

State 1 
12  

State 2 
23  

State 3 
34  

State 4 

21  32  43  

 

Figure 5.3 Four-state model 

 

The corresponding transition intensity matrix for the above model in figure 5.3 is 

 

 



































4343

34343232

23232121

1212

00

0

0

00









Q         (5.17) 

To illustrate the transition intensity matrix specified in (5.17) let 

4.0433432232112     then (5.17) become 

 





































4.04.000

4.08.04.00

04.08.04.0

004.04.0

Q          (5.18) 

 

The probability intensity matrix (5.18) denote a four-state model where transitions are 

allowed from state 1 to state 2, from state 2 to state 1, from state 2 to state 3, from state 

3 to state 2, from state 3 to state 4 and from state 4 to state 3. The mean time spent in 

state 1 and state 4 is  

5.24.011  ii               (5.19) 
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and the mean time spent in state 2 and state 3 is 

25.18.011  ii .              (5.20) 

The probability of the subject that it will move from state 1 to state 2 is  

14.04.0  iiij                (5.21) 

and the probability of the subject that it will move from state 4 to state 3 is 

14.04.0  iiij  .              (5.22) 

The probability of transitions from state 2 to state 1 or from 2 to state 3 is 

5.08.04.0  iiij  .              (5.23) 

The probability of transitions from state 3 to state 2 or from 3 to state 4 is 

5.08.04.0  iiij  .               (5.24) 

This means that the probability of moving from a lower state to higher state is the same 

with the probability of moving from higher state to a lower state.   
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5.2 Data simulation 

The R code for data simulation and application that was written is provided in the appendix; 

the code used the msm package developed by Jackson (2005). The R code simulated two 

datasets, one in which the above assumptions were specifically violated and one that used the 

simmulti.msm function in the msm package. The dataset using the simmulti.msm function was 

assumed to simulate data without violating the abovementioned assumptions. The dataset 

simulated by using the simmulti.msm function in the msm package had two parameters in this 

regard. The parameters were data and qmatrix. Data represented the data frame with an 

optional column named ‘subject’, which corresponded to subject identification numbers, and a 

mandatory column named ‘time’, representing observation time. The observation times were 

sorted according to individuals. The parameter qmatrix was the transition intensity matrix of 

the Markov process without covariate effect. For more information about the transition 

intensity matrix, please consult Section 2.3. For dataset simulation, the researcher used the 

following transition intensity matrices: 

 



























0.61-0.930.32

0.490.98-0.49

0.410.510.92-

1Q                                   (5.25) 

 



























0.96-0.750.21

0.250.90-0.65

0.250.250.50-

2Q                        (5.26) 
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

























0.70-0.250.45

0.751.00-0.25

0.250.751.00-

3Q                        (5.27) 

 

For each Q  we simulate two datasets, one using our defined R code where assumptions are 

violated and the other using msn package where assumptions are assumed to be not violated. 

To assess the importance of assumptions we will compare the transition intensity matrices, 

probability transition matrices, sojourn time and other statistic estimates between these two 

datasets. If for example transition rates do not differ very much then we can conclude that 

assumptions are not important otherwise assumptions are very important. Once the simulated 

datasets has been simulated using above three different Q ’s then following transition intensity 

matrices are fitted in each case 

 



























0.85-0.330.52

0.300.90-0.60

0.300.701.00-

11Q                         (5.28) 

 



























0.96-0.250.71

0.350.80-0.45

0.150.851.00-

22Q                         (5.29) 

The above mentioned two transition matrices ( 11Q  and 22Q ) were arbitrary chosen or defined 

for illustration purposes. To assess the assumption of homogeneity of the transition rates across 

the subject population 1Q , sample size of 100 ( 100n ), missed observations of (10 %) and 
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time period of ( 120  ) were used to simulate the first dataset, then 2Q , sample size of 200 (

200n ), missed observations of (10 %) and time period of ( 120  ) were used to simulate 

the second dataset and 3Q , sample size of 300 ( 300n ), missed observations of (10 %) and 

time period of ( 120  ) were used to simulated the third dataset. The sample size refers to the 

number of patients or subject investigated, missed observations refers to the fact that when a 

patient do a check-up on a monthly basis for example there will be some cases where he or she 

missed one of any month check-up and time period refers to the fact that subject will be 

observed monthly for one year. So under each of these cases we simulate two datasets, one 

using our defined R code where assumptions are violated and the other using msn package 

where assumptions are assumed to be not violated. Then to assess the importance of the 

assumption we fit 11Q  and 22Q  in each case and compare transition rates across different 

sample size ( n ) and also across different dataset. 

To assess the assumption of homogeneity of the transition rates through time we used the 

same describe above method but now the sample size ( n ) is held constant at 100n and 

the time period vary in each case, that is for 1Q  we use time period of ( 120  ), for 2Q  we 

use time period of ( 240  ) and for 3Q  we use ( 360  ). 

The Markov assumption state that the transition rates only depend on the history of the process 

through the current state. To assess this assumption the R code was written in such a way that 

it relax this assumption and transition rates were compared. The results has been shown from 

table 5.3 to table 5.6 and graphical representation has also shown in figure 5.4, 5.5, 5.6 and 5.7. 

The extracted dataset from the whole data is shown in table 5.1 below for illustration.    
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Table 5.1: Illustrate the simulated longitudinal dataset 

Subject Time (years) State Status/State 

1 0 1 Healthy 

1 1 3 Severe 

2 0 1 Healthy 

2 1 3 Severe 

3 0 1 Healthy 

3 1 3 Severe 

3 2 2 Mild 

3 3 1 Healthy 

3 4 2 Mild 

3 5 3 Severe 

3 6 3 Severe 

3 7 1 Healthy 

4 0 1 Healthy 

4 1 2 Mild 

4 2 1 Healthy 

4 3 3 Severe 

5 0 1 Healthy 

5 1 3 Severe 

5 2 1 Healthy 

5 3 2 Mild 

5 4 3 Severe 

5 5 1 Healthy 

5 6 2 Mild 

6 0 1 Healthy 

6 1 2 Mild 

6 2 3 Severe 

8 0 1 Healthy 

8 1 3 Severe 

8 2 1 Healthy 

9 0 1 Healthy 

9 1 2 Mild 

9 2 3 Severe 

9 3 1 Healthy 
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The above Table 5.1 can be also summarised in the following format: 

Table 5.2: Illustrate subject and observation times  

Subject 
0t  1t  2t  3t  4t  5t  6t  7t  8t  9t  10t  11t  12t  

1 1 3            

2 1 3            

3 1 3 2 1 2 3 3 1      

4 1 2 1 3          

5 1 3 1 2 3 1 2       

6 1 2 3           

8 1 3 1           

9 1 2 3 1          

 

The model is based on progression of a disease from individual subject.  The model to be fitted 

has three state: State 1 corresponds to those subject that are free from disease and is denoted 

by 1 or label Healthy, State 2 corresponds to those subject that have a disease but the disease 

is a minor and it is denoted by 2 or label Mild and State 3 corresponds to those subject that 

have a disease that is severe and it is denoted by 3 or label Severe. It is clear from the transition 

intensity matrices defined in (5.25, 5.26, 5.27, 5.28 and 5.29) and from table 5.1 that a subject 

or patient whose healthy (not ill) can get ill by moving from state 1 (Healthy) to state 2 (Mild) 

or to state 3 (Severe) this mean that the person can get very sick on the onset eg. person ate 

poison. The person can recover from state 3 (Severe) to state 1 (Healthy) or to state 2 (Mild). 

The patient can also move from state 2 (Mild) to state 3 (Severe). This transitions refers to 

recurrent model where subject can move to any of these states and move backward. This 

chapter is based on recurrent model and other models that are specified in this chapter their 

estimates has been monitored and analysed but their results are not shown here. The aim of 

Markov models is to estimate transition probabilities and transition intensities rates of the 

subjects between the two states and in this thesis we used R package called msm to estimate 

those probabilities. 
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5.3 Data application 

The models described in Section 5.1 were analysed by using the corresponding Q matrices 

defined in that section, and their results were monitored for comparison; unfortunately, it is 

impossible to show those results in this section as they are too numerous. Instead, the concern 

tried with the transition intensity matrices in definitions 5.25, 5.26, 5.27, 5.28 and 5.29. Here I 

try to assess the model fit using transition intensity matrices (5.28 and 5.29), meaning that I 

fitted and assessed the model using (5.28 and 5.29). Our aim here is to validate above 

mentioned assumptions defined in this chapter (5). Firstly the model was fitted using the msm 

function defined in msm R package and transition intensity matrices defined in (5.28 and 5.29) 

using the simulated data depicted above (Table 5.1). The model was fitted without the effect 

of any covariate. As mentioned in section 5.2 of this chapter two transition intensity matrices 

were used to fit the model in each case and the results were recorded. The aim here was to 

compare the transition rates for different scenarios as describe in the above section. For easy 

comparison the results were summarised in the following table (Table 5.3 to 5.6). 
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Table 5.3: Illustration of the results 

Fitting 11Q and 22Q transition matrices (three-state model) in different observations 

 Data simulation with 1Q  Data simulation with 2Q  Data simulation with 3Q  

 Missed observation (10 %) 

Time ( 120  ) 

Missed observation (10 %) 

Time ( 120  ) 

Missed observation (10 %) 

Time ( 120  ) 

  100n
 

200n
 

300n
 

Q
 

  
Assumptions 

violated 
Assumptions 
not violated 

Assumptions 
violated 

Assumptions 
not violated 

Assumptions 
violated 

Assumptions 
not violated 

Transition matrix estimates for 11Q  

11Q

 

11  
-1.288 -1.040 -0.478 -0.501 -0.984 -0.984 

12  
0.684 0.455 0.267 0.233 0.655 0.655 

13  0.604 0.586 0.211 0.268 0.329 0.329 

21  
0.637 0.616 0.636 0.680 0.237 0.237 

22  
-1.205 -1.082 -0.936 -1.014 -0.937 -0.937 

23  0.568 0.466 0.300 0.333 0.700 0.700 

31  0.216 0.330 0.227 0.315 0.428 0.428 

32  0.757 1.073 0.740 0.689 0.222 0.222 

33  -0.973 -1.404 -0.967 -1.004 -0.650 -0.650 

Transition matrix estimates for 22Q  

22Q

 

11  
-1.268 -1.052 -0.477 -0.502 -0.984 -0.984 

12  
0.648 0.456 0.266 0.231 0.655 0.655 

13  0.620 0.596 0.211 0.271 0.329 0.329 

21  0.619 0.589 0.635 0.696 0.236 0.236 

22  -1.164 -1.086 -0.936 -1.037 -0.937 -0.937 

23  0.545 0.497 0.301 0.341 0.701 0.701 

31  0.214 0.367 0.227 0.298 0.428 0.428 

32  0.752 1.074 0.740 0.731 0.222 0.222 

33  -0.966 -1.441 -0.967 -1.030 -0.650 -0.650 

Sojourn time estimates for 11Q  

11S  

11  
0.776 0.961 2.094 1.998 1.017 1.017 

22  
0.830 0.924 1.068 0.986 1.067 1.067 

33  1.028 0.712 1.034 0.996 1.539 1.539 

Sojourn time estimates for 22Q  

22S

 

11  
0.788 0.950 2.095 1.994 1.016 1.016 

22  
0.859 0.921 1.069 0.964 1.067 1.067 

33  1.035 0.694 1.034 0.971 1.538 1.538 
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Table 5.4: Illustration of the results – continued 

Fitting 11Q and 22Q transition matrices (three-state model) in different observations – continued 

 Data simulation with 1Q  Data simulation with 2Q  Data simulation with 3Q  

 Missed observation (10 %) 

Time ( 120  ) 

Missed observation (10 %) 

Time ( 120  ) 

Missed observation (10 %) 

Time ( 120  ) 

  100n  200n  300n  

Q    
Assumptions 

violated 
Assumptions 
not violated 

Assumptions 
violated 

Assumptions 
not violated 

Assumptions 
violated 

Assumptions 
not violated 

Probability matrix estimates for 11Q  

11P  

11P  
0.249 0.323 0.501 0.509 0.264 0.264 

12P  
0.376 0.404 0.299 0.267 0.292 0.292 

13P  0.374 0.274 0.201 0.224 0.444 0.444 

21P  
0.249 0.321 0.495 0.506 0.263 0.263 

22P  
0.377 0.404 0.303 0.270 0.290 0.290 

23P  0.374 0.274 0.202 0.225 0.447 0.447 

31P  0.249 0.323 0.489 0.502 0.264 0.264 

32P  0.377 0.404 0.306 0.272 0.289 0.289 

33P  0.375 0.274 0.205 0.226 0.447 0.447 

Probability matrix estimates for 22Q  

22P

 

11P  
0.248 0.322 0.501 0.510 0.264 0.264 

12P  
0.379 0.405 0.298 0.268 0.292 0.292 

13P  0.373 0.273 0.201 0.222 0.445 0.445 

21P  
0.248 0.322 0.495 0.506 0.263 0.263 

22P  
0.379 0.405 0.302 0.271 0.290 0.290 

23P  0.373 0.273 0.202 0.223 0.447 0.447 

31P  0.248 0.322 0.489 0.503 0.264 0.264 

32P  0.379 0.405 0.306 0.273 0.289 0.289 

33P  0.373 0.273 0.205 0.224 0.447 0.447 

-2 log likelihood estimates for 11Q  and 22Q  

11Q  
2 394.661 2 407.596 4 329.189 4 312.165 6 846.045 7 019.708 

22Q  
2 394.62 2 407.786 4 329.187 4 311.91 6 846.046 7 020.155 

Pearson statistic estimates for 11Q  and 22Q  

11Q
 

16.96 
(p = 0.423) 

15.81 
(p = 0.488) 

12.32 
(p = 0.778) 

17.19 
(p = 0.452) 

21.12 
(p = 0.232) 

18.33 (p = 0.37) 

22Q  
16.97 

(p = 0.424) 
16.06 

(p = 0.471) 
12.32 

(p = 0.778) 
16.92 

(p = 0.468) 
21.12 

(p = 0.232) 
18.81 

(p = 0.341) 
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Table 5.5: Illustration of the results 

Fitting 11Q and 22Q transition matrices (three-state model) in different time periods 

 
Data simulation with 1Q  Data simulation with 2Q  Data simulation with 3Q

 

 Missed observation (10 %) 

Time ( 120  ) 

Missed observation (10 %) 

Time ( 240  ) 

Missed observation (10 %) 

Time ( 360  ) 

  100n
 

100n
 

100n
 

Q
   

Assumptions 
violated 

Assumptions 
not violated 

Assumptions 
violated 

Assumptions 
not violated 

Assumptions 
violated 

Assumptions 
not violated 

Transition matrix estimates for 11Q  

11Q

 

11  -1.111 -0.956 -0.518 -0.530 -1.101 -0.886 

12  0.501 0.323 0.278 0.284 0.838 0.625 

13  0.610 0.633 0.241 0.247 0.262 0.261 

21  0.504 0.341 0.714 0.689 0.260 0.226 

22  -1.049 -0.836 -0.943 -0.954 -1.139 -0.982 

23  0.545 0.494 0.229 0.265 0.880 0.756 

31  0.267 0.469 0.275 0.302 0.494 0.430 

32  0.872 1.034 0.668 0.723 0.294 0.301 

33  -1.139 -1.503 -0.943 -1.025 -0.789 -0.731 

Transition matrix estimates for 22Q  

22Q

 

11  -1.111 -0.898 -0.519 -0.527 -1.108 -0.901 

12  0.501 0.368 0.268 0.283 0.851 0.646 

13  0.610 0.531 0.251 0.245 0.257 0.254 

21  0.505 0.330 0.724 0.687 0.254 0.228 

22  -1.050 -0.924 -0.933 -0.954 -1.130 -0.977 

23  0.545 0.594 0.209 0.267 0.876 0.749 

31  0.265 0.386 0.247 0.298 0.499 0.432 

32  0.873 1.109 0.654 0.726 0.286 0.291 

33  -1.138 -1.494 -0.901 -1.024 -0.784 -0.723 

Sojourn time estimates for 11Q  

11S  

11  0.900 1.046 1.929 1.886 0.908 1.129 

22  0.953 1.197 1.060 1.049 0.878 1.018 

33  0.878 0.666 1.060 0.975 1.268 1.368 

Sojourn time estimates for 22Q  

22S

 

11  0.900 1.113 1.926 1.896 0.903 1.110 

22  0.952 1.082 1.072 1.049 0.885 1.023 

33  0.878 0.669 1.109 0.976 1.275 1.383 
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Table 5.6: Illustration of the results – continued 

Fitting 11Q and 22Q transition matrices (three-state model) in different time periods – continued 

 Data simulation with 1Q  Data simulation with 2Q  Data simulation with 3Q  

 
Missed observation (10 %) 

Time ( 120  ) 

Missed observation (10 %) 

Time ( 240  ) 

Missed observation (10 %) 

Time ( 360  ) 

  100n  100n  100n  

Q    
Assumptions 

violated 
Assumptions 
not violated 

Assumptions 
violated 

Assumptions 
not violated 

Assumptions 
violated 

Assumptions 
not violated 

Transition matrix estimates for 11Q  

11P  

11P  0.263 0.290 0.510 0.504 0.265 0.280 

12P  0.403 0.442 0.290 0.298 0.306 0.306 

13P  0.334 0.268 0.200 0.198 0.429 0.414 

21P  0.263 0.289 0.508 0.502 0.265 0.278 

22P  0.403 0.444 0.292 0.300 0.306 0.305 

23P  0.334 0.268 0.200 0.198 0.430 0.416 

31P  0.263 0.289 0.503 0.498 0.265 0.280 

32P  0.403 0.443 0.295 0.302 0.306 0.305 

33P  0.334 0.268 0.203 0.200 0.429 0.416 

Probability matrix estimates for 22Q  

22P

 

11P  0.263 0.283 0.505 0.504 0.264 0.278 

12P  0.403 0.442 0.288 0.298 0.308 0.308 

13P  0.334 0.276 0.207 0.198 0.429 0.414 

21P  0.263 0.280 0.503 0.502 0.264 0.276 

22P  0.403 0.444 0.290 0.301 0.307 0.307 

23P  0.334 0.276 0.206 0.198 0.430 0.417 

31P  0.263 0.281 0.497 0.498 0.264 0.277 

32P  0.403 0.443 0.293 0.303 0.307 0.306 

33P  0.334 0.276 0.209 0.200 0.429 0.416 

-2 log likelihood estimates for 11Q  and 22Q  

11Q  2 418.014 2 384.42 4 302.814 4 298.525 7 051.181 6 952.542 

22Q  2 418.013 2 385.16 4 301.945 4 298.537 7 051.088 6 952.793 

Pearson statistic estimates for 11Q  and 22Q  

11Q  
24.38 

(p = 0.1) 
24.38 

(p = 0.200) 
19.05 

(p = 0.319) 
13.52 

(p = 0.577) 
20.79 

(p = 0.136) 
15.17 

(p = 0.377) 

22Q
 

24.38 
(p = 0.1) 

24.37 
(p = 0.200) 

18.14 
(p = 0.372) 

13.53 
(p = 0.577) 

20.71 
(p = 0.139) 

15.45 
(p = 0.363) 
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From table 5.3, 
11Q  and 

22Q were both fitted across 
1Q , 

2Q  and  3Q  which each Q (that is 
1Q

, 2Q  and 3Q  were used to simulate two different datasets. One using our defined R code where 

assumptions are violated (Assumptions violated from table 5.3) and the other using msn 

package where assumptions are assumed to be not violated (Assumptions not violated from 

table 5.3.1). Comparing transition intensity rates between 11Q  and 22Q  within the same dataset 

(for 1Q , 100n and time period of 120   ) we see that the transition intensity rates don’t 

differ too much (almost the same). This chapter is based on recurrent model where the subject 

or patient can move from state 1 (Healthy) to any state and move backward. Looking at 

transition rates under assumptions violated (for 1Q , 100n and time period of 120   ) we 

see that the estimated transition rate for moving from state 1 (Healthy) to state 2 (Mild) or to 

state 3 (Severe) is above 60 %. The estimated transition rate for moving backward (recovery) 

from state 2 (Mild) to state 1 (Healthy) is also above 60 % while the estimated transition rate 

for moving from state 2 (Mild) to state 3 (Severe) is just above 50 %.  

Comparing probability intensity rates between 11P  and 22P  for 11Q  and 22Q  within the same 

dataset we see that the transition probabilities don’t differ too much at all. In five years’ time 

the probability of moving from state 1 (Healthy) to state 2 (Mild) 0.376 (38 %) and the 

probability of moving state 1 (Healthy) to state 3 (Severe) is 0.374 (37 %).  Comparing the 

sojourn time between 11S  and 22S  for 11Q  and 22Q  within the same dataset we see no 

differences. The mean time spent in state 1 (Healthy) before moving to state 2 (Mild) is 0.900, 

the mean time spent in state 2 (Mild) before moving to state 3 (Severe) is 0.953 and the mean 

time spent in state 3 (Severe) before moving backward is (0.878). Looking at the -2Log-

likelihood Estimate for 11Q  and 22Q portions from table 5.4 we see that minus twice the 

maximised log-likelihood for 11Q  and 22Q  within the same dataset is the same. Looking at the 

Pearson Statistic Estimates for 11Q  and 22Q  portion within the same dataset we see that 

Pearson-type goodness-of-fit test for multi-state model for 11Q  and 22Q are similar. Since we 

have small Pearson statistics for both case and p-value is greater than 0.05 both models fit very 

well.  

Looking across 1Q , 2Q  and  3Q  from table 5.3 under (Assumptions violated) for 11Q  and 22Q  

we see that the estimated transition intensity rates, probability transition rates, sojourn time and 

statistics differs significantly. Also under (Assumptions not violated) the above estimates 
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differs significantly but looking between (Assumptions violated) and (Assumptions not 

violated) for each  Q we see differences but not clear enough but this has been shown by 

Prevalence vs Time plot (check figures below). Table 5.3 shows the results of assessing the 

assumption of homogeneity of the transition rates across the subject population. Based on this 

results we can conclude that if you ignore multi-state model assumptions you might 

overestimate or underestimate the transition rates or any estimates. This indicate that these 

assumptions are important and need to be considered when fitting a multi-state model. 

Table 5.5 show the results of assessing the assumption of homogeneity of the transition rates 

through time and the same interpretation describe above can be applied in this table. So this 

assumption is also important. The third assumption is already incorporated into the other two 

assumptions through the R code that was written, so the same interpretation is equivalent. 

Figure 5.4 and 5.5 shows the Prevalence vs Time plot for the model fitted using (Assumptions 

violated) and (Assumptions not violated) at time period of ( 120  ), sample size of 200n

and 10 % of missed observations to assess the importance of the assumption of homogeneity 

of the transition rates across the subject population. From figure 5.5 we have 100 % of patients 

who were healthy (state 1) at the beginning of the study but as we moving away from month 

zero to month two the number decrease to around 50 %. From state 2 ( Mild) at the beginning 

we had 0 % of patients but as we approach month two the number increase up to around 28 % 

and in state 3 (Severe) at the beginning we had 0 % of patients but as we approach month two 

the number increase up to around 20 %. In figure 5.4 where the assumptions were violated we 

can see that the plots differs significantly. So assumptions are very important. 
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Figure 5.4:  Prevalence vs Time plot when assumptions violated (testing assumption 1) 
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Figure 5.5: Prevalence vs Time plot when assumptions not violated (testing assumption 

1) 
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Figure 5.6 and 5.7 shows the Prevalence vs Time plot for the model fitted using (Assumptions 

violated) and (Assumptions not violated) at time period of ( 360  ), sample size of 100n

and 10 % of missed observations to assess the importance of the assumption of homogeneity 

of the transition rates through time. Again the same interpretation as above can be applied here. 

 

Figure 5.6: Prevalence vs Time plot when assumptions violated (testing assumption 2) 
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Figure 5.7: Prevalence vs Time plot when assumptions not violated (testing assumption 

2) 
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5.4 Conclusion 

In this chapter we coded an R code for data simulation. The R code simulate two datasets, one 

where the above assumptions are specifically violated and the other one using simmulti.msm 

function in msm package. The dataset using simmulti.msm function is assumed to simulate 

data without violating the above mentioned assumptions. For each Q  we simulate two datasets, 

one using our defined R code where assumptions are violated and the other using msn package 

where assumptions are assumed to be not violated. To assess the importance of assumptions 

we compared the transition intensity matrices, probability transition matrices, sojourn time and 

other statistic estimates between these two datasets. 

If for example transition rates do not differ very much then we can conclude that assumptions 

are not important otherwise assumptions are very important. Once the simulated datasets has 

been simulated using above three different Q ’s (that is 1Q , 2Q  and 3Q ) then 11Q  and 22Q

transition intensity matrices were fitted in each case. To assess the assumption of homogeneity 

of the transition rates across the subject population 1Q , sample size of 100 ( 100n ), missed 

observations of (10 %) and time period of ( 120  ) were used to simulate the first dataset, then 

2Q , sample size of 200 ( 200n ), missed observations of (10 %) and time period of ( 120 

) were used to simulate the second dataset and 3Q , sample size of 300 ( 300n ), missed 

observations of (10 %) and time period of ( 120  ) were used to simulated the third dataset. 

Then to assess the importance of the assumption we fitted  11Q  and 22Q  in each case and 

compared transition rates across different sample size ( n ) and also across different dataset. 

To assess the assumption of homogeneity of the transition rates through time we used the same 

describe above method but now the sample size ( n ) was held constant at 100n and the time 

period vary in each case, that is for 1Q  we use time period of ( 120  ), for 2Q  we use time 

period of ( 240  ) and for 3Q  we use ( 360  ). To assess Markov assumption the R code was 

written in such a way that it relax this assumption and transition rates were compared 

From table 5.3, 11Q  and 22Q were both fitted across 1Q , 2Q  and  3Q  which each Q (that is 1Q

, 2Q  and 3Q  were used to simulate two different datasets. Comparing transition intensity rates 

between 11Q  and 22Q  within the same dataset (for 1Q , 100n and time period of 120   ) we 

see that the transition intensity rates don’t differ too much (almost the same).Comparing 
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probability intensity rates between 11P  and 22P  for 11Q  and 22Q  within the same dataset we see 

that the transition probabilities don’t differ too much at all. Comparing the sojourn time 

between 11S  and 22S  for 11Q  and 22Q  within the same dataset we see no differences. 

Looking at the -2Log-likelihood Estimate for 11Q  and 22Q portion from table 5.3 we see that 

minus twice the maximised log-likelihood for 11Q  and 22Q  within the same dataset is the same. 

Looking at the Pearson statistic estimates for the 11Q  and 22Q  portions within the same dataset, 

one sees that the results of the Pearson goodness-of-fit test for multistate models are similar for 

11Q  and 22Q . Since we have small Pearson statistics for both case and p-value is greater than 

0.05 both models fit very well. Looking across 1Q , 2Q  and  3Q  from table 5.3 under 

(Assumptions violated) for 11Q  and 22Q  we see that the estimated transition intensity rates, 

probability transition rates, sojourn time and statistics differs significantly. Also under 

(Assumptions not violated) the above estimates differs significantly but looking between 

(Assumptions violated) and (Assumptions not violated) for each Q we see differences but not 

clear enough but this has been shown by Prevalence vs Time plot (check figures in section 5.3). 

Based on this results we can conclude that if you ignore multi-state model assumptions you 

might overestimate or underestimate the transition rates or any estimates. This indicate that 

these assumptions are important and need to be considered when fitting a multi-state model. 

 

 

 

 

 

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



Chapter 6 

 

79 | P a g e  
 

Chapter 6 

Summary 
In chapter 1 we discussed the overview, aim and structure of the thesis, particular the aim of 

the thesis is to analyse the importance of the model assumptions when modelling the multi-

state panel data. The multi-state model assumptions we analysed were homogeneity of the 

transition rates through time, homogeneity of the transition rates across the subject population 

and Markov assumption which state that the transition rates only depend on the history of the 

process through the current state. The assumptions were assessed by generating simulated 

datasets where the assumptions were specifically violated and assumptions were not violated 

then the model were fitted in each of the dataset.   

In Chapter 2, the stochastic process, the transition probability matrix, the transition intensity 

matrix, Markov models, sojourn time, model assumptions and time homogeneous Markov 

models were discussed. The stochastic process that governs the multistate process through its 

transition probabilities and transition rates was discussed in detail. In stochastic process the 

system enters a state, spends an amount of time then moves to another state where it spends 

another time. The time that a system spends in a state is called sojourn or mean time which is 

also discussed in chapter 2. The probability transition matrix and transition intensity matrix 

both indicate the probabilities and intensity rates of transition of subject through different states 

respectively. The set of states, transition rates and probabilities are known as Markov model 

was also discussed in chapter 2. These components can be considered as building blocks for 

multi-state model. 

In chapter 3 we discussed in details the covariates and model structure which also can be 

considered as building blocks for multi-state model. The model structure refers to the graphical 

representation of a model in terms of states and transitions between these states. The covariates 

on the other hand refers to the variable that is included to the model and assess its influence to 

the transition between the states. We considered in details in chapter 3 the basic survival model, 

multiple-decrement survival model, progressive model, disability model, recurrent model, 

competing risk model and continuing care retirement communities model. The results for these 

models were monitored and compared but the results that are shown in this thesis were the 
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results for recurrent model. The example of a recurrent model is the two state illness-recovery 

model where state 1 represents healthy and state 2 represents illness meaning that the subject 

can get ill then also can recover from illness going back to state 1 from state 2. 

The focus in chapter 4 was to assess the multi-state model through model assumptions, 

covariates effect in the model and the fit of the model. The likelihood ratio test can be used to 

test the first assumption, the second assumption can also be tested using likelihood ratio test 

but including covariates and the last assumption can be tested by including the covariates 

depending on the history. To assess the significance of covariates we employ likelihood ratio 

and Wald test. To assess the fit of the multi-state model we use Pearson goodness-of-fit and 

informal model diagnostic tool. The model fit can be assessed by considering observed and 

expected transition frequencies either through a likelihood ratio test or the asymptotically 

equivalent Pearson chi-square statistics. Informal diagnostic tool involves prevalence counts 

where the observed state occupancies are compared with the expected occupancies under the 

fitted model. 

After we looked in details of each components of multi-state model now it was time to fit the 

model and assess the importance of model assumptions and this was done chapter 5. In chapter 

5 an R code was written for data simulation.  The R code simulate two datasets, one where the 

above assumptions are specifically violated and the other one using simmulti.msm function in 

msm package in which we assumed that the above mentioned assumptions were not violated. 

After data simulation the models were fitted to each dataset and compared. Based on the results 

indicated in section 5.3, the multi-state model assumptions are very important and if you ignore 

them then you might underestimate or overestimate the estimates.   
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Appendix 

7.1 R code 

> #### The following function simulate data #### 

> #### based on violating Markov models assumptions #### 

> #### and based on using msm package (simmulti.msm function) #### 

> #### Then it fit the models using both dataset #### 

> #### to compare and assess the assumptions #### 

> simdata <- function(Q1,mis_obs,n,m,T,tg){ 

+        #### Set empty data #### 

+        nuldata <- NULL 

+        nuldata2 <- NULL 

+        #### Define transition matrix #### 

+        #### Q matrix is used to simulate the data ##### 

+        #### Q11 and Q22 are used to fit the model under selected Q #### 

+        if(Q1 ==1){ 

+           Q <- rbind(c(-0.92,0.51,0.41),c(0.49,-0.98,0.49),c(0.32,0.93,-0.61)) 

+           Q11 <- rbind(c(-1.0,0.70,0.30),c(0.60,-0.90,0.30),c(0.52,0.33,-0.85)) 

+           Q22 <- rbind(c(-1.0,0.85,0.15),c(0.45,-0.80,0.35),c(0.71,0.25,-0.96)) 

+           rownames(Q11) <- colnames(Q11) <- c("Healthy", "Mild","Severe") 

+           rownames(Q22) <- colnames(Q22) <- c("Healthy", "Mild","Severe") 

+        }else if(Q1 == 2){ 

+           Q <- rbind(c(-0.5,0.25,0.25),c(0.65,-0.90,0.25),c(0.21,0.75,-0.96)) 
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+           Q11 <- rbind(c(-1.0,0.70,0.30),c(0.60,-0.90,0.30),c(0.52,0.33,-0.85)) 

+           Q22 <- rbind(c(-1.0,0.85,0.15),c(0.45,-0.80,0.35),c(0.71,0.25,-0.96)) 

+           rownames(Q11) <- colnames(Q11) <- c("Healthy", "Mild","Severe") 

+           rownames(Q22) <- colnames(Q22) <- c("Healthy", "Mild","Severe") 

+        }else if(Q1 == 3){ 

+           Q <- rbind(c(-1.0,0.75,0.25),c(0.25,-1.0,0.75),c(0.45,0.25,-0.70)) 

+           Q11 <- rbind(c(-1.0,0.70,0.30),c(0.60,-0.90,0.30),c(0.52,0.33,-0.85)) 

+           Q22 <- rbind(c(-1.0,0.85,0.15),c(0.45,-0.80,0.35),c(0.71,0.25,-0.96)) 

+           rownames(Q11) <- colnames(Q11) <- c("Healthy", "Mild","Severe") 

+           rownames(Q22) <- colnames(Q22) <- c("Healthy", "Mild","Severe") 

+        } 

+        #### Simulate data based on violating Markov model assumptions ####    

+        for(k in 1:n){ 

+               num_of_obs <- round(runif(1,0,mis_obs),3) 

+               num_of_obs <- round((1-num_of_obs) * m) 

+               obs_times <- seq(1,m,1) 

+               times_for_subct <- sort(sample(obs_times,size=num_of_obs)) 

+               times_for_subct <- c(0,times_for_subct) 

+               nxt_state <- round(runif(1,1,dim(Q)[[1]])) 

+               nxt_state2 <- nxt_state 

+               j <- 1 

+               state <- c() 

+               for(i in 2: length(times_for_subct)){ 
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+                       time_diff <- times_for_subct[i] - times_for_subct[j] 

+                       P_matrx <- round(MatrixExp(Q,t=time_diff),3) 

+                       nxt_state <- c(rmultinom(1,1,prob=c(P_matrx[nxt_state,]))) 

+                       j <- j + 1 

+                       index <- which(nxt_state !=0, arr.ind = T) 

+                       nxt_state <- index 

+                       state[i] <- nxt_state    

+               } 

+               state <- c(nxt_state2,state) 

+               state <- state[!is.na(state)] 

+               data <- data.frame(subject=rep(k,num_of_obs+1), 

+               time=times_for_subct,state=state) 

+               datasim <- rbind(nuldata,data) 

+               nuldata <- datasim 

+               #### create data frame for simmulti.msm function #### 

+               data2 <- data.frame(subject=rep(k,num_of_obs+1),time=times_for_subct) 

+               simdata <- rbind(nuldata2,data2) 

+               nuldata2 <- simdata              

+      } 

+      #### Simulate data using simmulti.msm function #### 

+      simdata <- simmulti.msm(simdata,Q) 

+      #### Fit the model using data based on violaed assumptions #### 

+      model_viol_assump <-msm(state ~ time,subject=subject, 
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+      data=datasim,qmatrix=Q11) 

+      Q_matrix_viol_assump <- round(qmatrix.msm(model_viol_assump)$estimates,3) 

+      P_matrx_viol_assump <- round(pmatrix.msm(model_viol_assump,t=T),3) 

+      Mean_Time_viol_assump <- round(sojourn.msm(model_viol_assump),3) 

+      Pearson_viol_assump <- round(pearson.msm(model_viol_assump, 

+      timegroups=tg)$test,3) 

+      model_viol_assump2 <-msm(state ~ time,subject=subject, 

+      data=datasim,qmatrix=Q22) 

+      Q_matrix_viol_assump2 <- round(qmatrix.msm(model_viol_assump2)$estimates,3) 

+      P_matrx_viol_assump2 <- round(pmatrix.msm(model_viol_assump2,t=T),3) 

+      Mean_Time_viol_assump2 <- round(sojourn.msm(model_viol_assump2),3) 

+      Pearson_viol_assump2 <- round(pearson.msm(model_viol_assump2, 

+      timegroups=tg)$test,3) 

+      #### Fit the model using data based on simmulti.msm function #### 

+      model_with_assump <-msm(state ~ time,subject=subject, 

+      data=simdata,qmatrix=Q11) 

+      Q_matrix_with_assump <- round(qmatrix.msm(model_with_assump)$estimates,3) 

+      P_matrx_with_assump <- round(pmatrix.msm(model_with_assump,t=T),3) 

+      Mean_Time_with_assump <- round(sojourn.msm(model_with_assump),3) 

+      Pearson_with_assump <- round(pearson.msm(model_with_assump, 

+      timegroups=tg)$test,3) 

+      model_with_assump2 <-msm(state ~ time,subject=subject, 

+      data=simdata,qmatrix=Q22) 
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+      Q_matrix_with_assump2 <- round(qmatrix.msm(model_with_assump2)$estimates,3) 

+      P_matrx_with_assump2 <- round(pmatrix.msm(model_with_assump2,t=T),3) 

+      Mean_Time_with_assump2 <- round(sojourn.msm(model_with_assump2),3) 

+      Pearson_with_assump2 <- round(pearson.msm(model_with_assump2, 

+      timegroups=tg)$test,3)   

+      #### Compare the models #### 

+      compare_models <- round(lrtest.msm(model_viol_assump,model_with_assump),9)     

+      #### Plot the Prevalence vs Time for model based on assumption #### 

+      windows() 

+      plot.prevalence.msm(model_viol_assump,mintime=0, 

+      maxtime=m,legend.pos=c(6.2, 95)) 

+      par(oma=c(0,0,2,0)) 

+      title(main="Prevalence vs Time (0-36) (Assumptions violated) 

+      for Q3,Q11 & n=100 \n Missed observations = 10 %",font.main= 3,outer=T) 

+      #### Plot the Prevalence vs Time for model without assumptions #### 

+      windows() 

+      plot.prevalence.msm(model_with_assump,mintime=0, 

+      maxtime=m,legend.pos=c(6.2, 95)) 

+      par(oma=c(0,0,2,0)) 

+      title(main="Prevalence vs Time (0-36) (Assumptions not violated)  

+      for Q3,Q22 & n=100 \n Missed observations = 10 %",font.main= 3,outer=T) 

+      #### List and print the results #### 

+      list("Transition Matrix violated assumptions"=Q_matrix_viol_assump, 
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+      "Probability Matrix violated assumptions"=P_matrx_viol_assump, 

+      "Sojourn Time violated assumptions"=Mean_Time_viol_assump, 

+      "Pearson Statistic violated assumptions"=Pearson_viol_assump, 

+      "Transition Matrix with assumptions"=Q_matrix_with_assump, 

+      "Probability Matrix with assumptions"=P_matrx_with_assump, 

+      "Sojourn Time with assumptions"=Mean_Time_with_assump, 

+      "Pearson Statistic with assumptions"=Pearson_with_assump, 

+      "Compare Models"= compare_models) 

+ } 

> outputdata <- simdata(Q1=3,mis_obs=0.10,n=100,m=36,T=5,tg=2) 

> outputdata 
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