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Abstract

Exploring the Topology of Complex Phylogenomic and

Transcriptomic Networks

D.A. Weighill

Institute for Wine Biotechnology,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MSc Wine Biotechnology (Computational Biology)

December 2014

This thesis involved the development and application of network approaches
for the construction, analysis and visualization of phylogenomic and transcrip-
tomic networks.

A co-evolutionary network model of grapevine genes was constructed based
on three mechanisms of evolution. The investigation of local neighbourhoods
of this network revealed groups of functionally related genes, illustrating that
the multi-mechanism evolutionary model was identifying groups of potentially
co-evolving genes.

An extended network de�nition, namely 3-way networks, was investigated,
in which edges model relationships between triplets of objects. Strategies for
weighting and pruning these 3-way networks were developed and applied to
a phylogenomic dataset of 211 bacterial genomes. These 3-way bacterial net-
works were compared to standard 2-way network models constructed from the
same dataset. The 3-way networks modelled more complex relationships and
revealed relationships which were missed by the two-way network models.

Network meta-modelling was explored in which global network and node-by-
node network comparison techniques were applied in order to investigate the
e�ect of the similarity metric chosen on the topology of multiple types of
networks, including transcriptomic and phylogenomic networks. Two new net-
work comparison techniques were developed, namely PCA of Topology Pro�les
and Cross-Network Topological Overlap. PCA of Topology Pro�les compares
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ABSTRACT iv

networks based on a selection of network topology indices, whereas Cross-
Network Topological Overlap compares two networks on a node-by-node level,
identifying nodes in two networks with similar neighbourhood topology and
thus highlighting areas of the networks with con�icting topologies. These net-
work comparison methods clearly indicated how the similarity metric chosen
to weight the edges of the network in�uences the resulting network topology,
consequently in�uencing the biological interpretation of the networks.
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Uittreksel

Exploring the Topology of Complex Phylogenomic and

Transcriptomic Networks

(�Exploring the Topology of Complex Phylogenomic and Transcriptomic Networks�)

D.A. Weighill

Instituut Wynbiotegnologie,
Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MSc Wyn Biotegnologie

Desember 2014

Hierdie tesis hou verband met die ontwikkeling en toepassing van netwerk
benaderings vir die konstruksie, analise en visualisering van �logenomiese en
transkriptomiese netwerke.

'n Mede-evolusionrê netwerk model van wingerdstok gene is gebou, gebaseerd
op drie meganismes van evolusie. Die ondersoek van plaaslike omgewings van
die netwerk het groepe funksioneel verwante gene aan die lig gebring, wat
daarop dui dat die multi-meganisme evolusionêre model groepe van potensi-
eele mede-evolusieerende gene identi�seer.

'n Uitgebreide netwerk de�nisie, naamliks 3-gang netwerke, is ondersoek, waarin
lyne die verhoudings tussen drieling voorwerpe voorstel. Strategieë vir weeg en
snoei van hierdie 3-gang netwerke was ontwikkel en op 'n �logenomiese datastel
van 211 bakteriële genome toegepas. Hierdie 3-gang bakteriële netwerke is met
die standaard 2-gang netwerk modelle wat saamgestel is uit dieselfde datastel
vergelyk. Die 3-gang netwerke het meer komplekse verhoudings gemodelleer
en het verhoudings openbaar wat deur die tweerigting-netwerk modelle gemis
is.

Verder is netwerk meta-modellering ondersoek waarby globalle netwerk en
punt-vir-punt netwerk vergelykings tegnieke toegepas is, met die doel om die
e�ek van die ooreenkoms-maatstaf wat gekies is op die topologie van verskeie
tipes netwerke, insluitend transcriptomic en �logenomiese netwerke, te bepaal.

v

Stellenbosch University  http://scholar.sun.ac.za



UITTREKSEL vi

Twee nuwe netwerk-vergelyking tegnieke is ontwikkel, naamlik �PCA of Topo-
logy Pro�les� en �Cross-Network Topological Overlap�. PCA van Topologie
Pro�ele vergelyk netwerke gebaseer op 'n seleksie van netwerk topologie in-
dekse, terwyl Cross-netwerk Topologiese Oorvleuel vergelyk twee netwerke op
'n punt-vir-punt vlak, en identi�seer punte in twee netwerke met soortgelyke
lokale topologie en dus lê klem op gebiede van die netwerke met botsende
topologieë. Hierdie netwerk-vergelyking metodes dui duidelik aan hoe die oor-
eenkoms maatstaf wat gekies is om die lyne van die netwerk gewig te gee, die
gevolglike netwerk topologie beïnvloed, wat weer die biologiese interpretasie
van die netwerke kan beïnvloed.
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Chapter 1

Introduction and Aims

1.1 Network Models and Evolution

Evolution is a heterogeneous process which can occur through various mecha-
nisms. Point mutations which occur in coding regions may cause an amino acid
change which may change the functionality of the resulting protein. Genes can
also undergo duplication or deletion [1]. Duplication results in multiple copies
of the same gene, allowing divergence of the duplicated genes through further
mutation, possibly even evolving new functions [1]. Evolution can also occur
through the evolution of gene expression regulation [2]. This involves point
mutations, duplications or deletions which occur in the regulatory regions of
genes or in separate regulatory elements.

These various models and mechanisms of evolution have previously been stud-
ied in isolation through the use of network models. Networks are useful tools
for the analysis of biological systems. Being inherently complex, biological
systems require the simultaneous modelling of many di�erent components in
order to properly represent the system. Networks allow for this level of com-
plexity to be represented in that they model the interactions and relationships
between components of a complex system in a pairwise manner, and represent
the whole underlying system in an abstract form [3]. In a sense, networks
make use of the advantages of reductionism, quantifying relationships between
components of a system on an individual, pairwise manner, but still account
for the overall complexity of the system by reconnecting all the components
through their pairwise relationships.

What makes networks particularly useful is that they not only provide a plat-
form for representing complex systems, but also an intuitive approach for the
visualization of complex systems in the form of nodes connected by edges, and,
in addition, a wealth of analysis methods can be applied to data represented
as a network, such as clustering algorithms [4] and topological descriptors [5].

1
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CHAPTER 1. INTRODUCTION AND AIMS 2

Networks have previously been applied in the modelling of these various mech-
anisms of evolution. Speci�c types of networks, namely trees, have been widely
used to model evolution through point mutation through the construction of
phylogenetic trees. Phylogenomic networks on the other hand, model the
evolutionary relationships between organisms [6] often based on gene family
content, a measure based on the evolutionary mechanism of gene duplication.
Networks have also been used in the �eld of transcriptomics, in which they can
be used to represent similarities between the expression pro�les of genes [7].
Evolution through gene expression regulation has been investigated through
cross-species co-expression analysis, identifying modules of co-expressed genes
conserved across species [8].

One very widely used network analysis method is the extraction of groups of
highly connected nodes, called modules. Depending on what kind of objects
and relationships the network is modelling, these modules can have many dif-
ferent interpretations and uses. For networks in which nodes represent genes
and edges model the similarities between genes based on sequence similarity,
modules of highly connected genes can be interpreted as gene families [9]. In
gene co-expression networks where nodes represent genes and edges model the
similarity between expression pro�les of genes, modules of highly connected
nodes represent groups of co-expressed genes which are potentially function-
ally related [7].

Networks are clearly very useful tools in representing, analysing and visu-
alizing complex systems. Thus, the exploration and development of new types
of network methods and new network-based approaches is a useful endeavour
in biological data analysis.

1.2 Aims

This thesis focuses on the development and application of new network ap-
proaches for the analysis of omics datasets, in particular, genomic and tran-
scriptomic datasets. These datasets are large and complex in nature, and
require analysis and visual representation before biological interpretations can
be extracted. The aims of this thesis were to investigate new network ap-
proaches which combine networks resulting from di�erent data types, investi-
gate extended network de�nitions apart from the standard network structure
of modelling pairwise relationships, and develop methods for network meta-
modelling - the comparison of network models.

1. Network models have previously been applied separately to model dif-
ferent mechanisms of evolution, namely evolution by gene expression

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION AND AIMS 3

regulation through cross-species co-expression analysis [8], evolution by
point-mutation through Evolutionary Rate Covariation [10; 11] and evo-
lution by gene duplication through gene family analysis [6; 12]. However,
to our knowledge, a combined network model representing these three
mechanisms of evolution simultaneously has not been created. The �rst
aim was to: construct modules of co-evolving grapevine genes in terms
of these three mechanism of evolution; determine an approach for com-
bining these three types of network modules into a super-network; and
mine this super-network for functional insights.

2. Hypergraphs [13] are generalized graphs which do not restrict the edges
to only modelling pairwise relationships. To our knowledge, these struc-
tures have not yet been applied in the �eld of phylogenomics. The second
aim was to: investigate and develop an extended network de�nition (3-
way networks) based on that of a hypergraph in which edges in a network
model the relationships between triplets of objects; to investigate and de-
velop weighting and pruning strategies for 3-way networks; apply these
3-way networks to a phylogenomic dataset of 211 bacterial genomes;
and to compare the resulting 3-way networks to standard 2-way network
models.

3. The �nal aim was to explore network meta-modelling (the comparison of
network models) and to develop new approaches for network comparison
on a whole-network level and on a node-by-node level.

1.3 Summary

Networks are useful structures for the representation, analysis and visualiza-
tion of complex systems, and have been successfully applied in various areas
of biology. This Master's study involves the development and application of
new network approaches in the �elds of evolution, phylogenomics and tran-
scriptomics, exploration of the application of extended network de�nitions,
and tools and approaches for comparing network models. These approaches
include network-based analysis, as well as utilization of the intuitive visualiza-
tion techniques which accompany the use of network models.
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Chapter 2

Literature Review

2.1 Introduction

Networks are useful tools for understanding complex systems, and have been
widely used to represent and investigate complex systems across many �elds,
including biological networks, communication networks and citation networks
[1]. Biological systems are inherently complex, their individual components
almost never operating in isolation. Understanding biological systems thus
cannot be achieved through pure reductionist approaches involving studying
the components of the system in isolation [2]. Network theory has provided
the tools necessary to represent and visualize systems as a whole, accounting
for complexity, yet allowing for resolution on a local and global scale. This
review will cover the basic underlying principles of network theory and its
roots in graph theory, how networks can be constructed, weighted, pruned
and clustered and the various methods and metrics needed to do so. Ways in
which networks can be numerically described through topological descriptors
will then be reviewed. Lastly, applications and uses of networks in the �elds
of phylogenomics and transcriptomics will be discussed.

2.2 Network Theory

2.2.1 Overview

Networks are very useful tools which have been used increasingly to represent
complex systems. They involve a certain reductionist-like approach in that
they allow one to break a system down into individual parts called nodes and
model the relationships between nodes in a pairwise manner. These relation-
ships are called edges and are represented as lines drawn between the nodes.
The overall complex system is then reconstructed by piecing together the over-
all network of nodes connected by edges [2]. Since the whole system is pieced
back together, networks are also non-reductionist and allow the system to be

1
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examined as a whole as opposed to examining all of the parts in isolation.

2.2.2 Basic Graph Theory

Network Theory has its roots in the mathematical �eld of graph theory. A net-
work can be de�ned mathematically as a graph, which is a structure consisting
of nodes connected by edges. This can be formalized as follows: A graph G is
de�ned as

G = (V,E) (2.2.1)

where V is a set of nodes and E is a set of edges [3]. Networks can be repre-
sented visually by drawing the nodes as circles and labelling them, and then
connecting the nodes by drawing lines between them, representing the edges.
For example, consider a graph where

V = {A,B,C,D,E, F,G},

E = {{A,G}, {A,B}, {B,G}, {G,F}, {F,C}, {C,D}, {D,E}, {E,C}}.
This graph is represented visually in Figure 2.1a.

Another representation of a graph is the adjacency matrix. This is a nu-
merical representation in which the rows and columns of the matrix represent
nodes and each entry aij in the adjacency matrix is de�ned as [3]:

aij =

{
1 if ∃ eij ∈ E (2.2.2)

0 if 6 ∃ eij ∈ E (2.2.3)

Simply put, an entry in the adjacency matrix will be one if there is an edge
present between the two corresponding nodes and 0 otherwise. The adjacency
matrix of the graph in Figure 2.1a is shown in Figure 2.1b. This numerical
representation of a graph is necessary to utilize computational algorithms on
networks.
An extension to the de�nition of a graph is that of a weighted graph in which
each edge is assigned a number, or weight [4]. This weight can be interpreted in
many ways depending on what the weights are and how they were calculated.
For example, the weights could represent a measure of similarity between the
objects of interest (nodes) and thus quantify the similarity between pairs of
objects in a system. Weighted graphs can also be represented in matrix form.
The matrix associated with a weighted graph is called a weighted adjacency
matrix. For each pair of nodes i and j, the entry aij in the weighted adjacency
matrix A is the weight wij associated with the edge eij [5]. For an adjacency
matrix A with associated with a graph G, each entry aij in A is de�ned as:

aij =

{
wij if ∃ eij ∈ E (2.2.4)

0 if 6 ∃ eij ∈ E (2.2.5)
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Figure 2.1: An Example Network. (a) Visualization of the network drawn
as nodes (circles) connected by edges (lines) (b) The corresponding unweighted
adjacency matrix.

2.3 Similarity Metrics

2.3.1 Overview

Networks are often constructed to represent the similarities and relationships
between objects within biological systems. Often, objects are represented as
a vector of quantities. For example, when constructing gene co-expression
networks, objects (genes) are represented by expression pro�les (discussed fur-
ther in Section 2.10). Networks are thus often constructed by performing an
all-vs-all comparison of a set of objects of interest by calculating the similar-
ity between all pairs of vectors representing the objects. In order to do this,
similarity metrics are needed to provide a measure of similarity between two
vectors. Various similarity metrics exist which all quantify di�erent aspects of
similarity.

2.3.2 Pearson Correlation Coe�cient

Pearson's Correlation Coe�cient was �rst introduced by Karl Pearson in 1895
[6] and is a very widely used correlation metric. Pearson's correlation coe�-
cient r between two variables X and Y can be expressed as

r =

∑
i(Xi − X̄)(Yi − Ȳ )√∑

i(Xi − X̄)2
∑

I(Yi − Ȳ )2
(2.3.1)

where X̄ and Ȳ are the means of variables X and Y respectively. Pearson's
correlation coe�cient takes on values between -1 and 1 and measures the linear
association between two vectors [7]. Equation 2.3.1 can be expressed in an
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alternative form giving Pearson's correlation coe�cient of vectors X and Y in
terms of the covariance of the two vectors, scaled by their standard deviations
(Equation 2.3.2).

r =
Cov(X, Y )

SXSY
(2.3.2)

where Cov(X, Y ) is the covariance ofX and Y and SX and SY are the standard
deviations of X and Y respectively [7].

2.3.3 Spearman Correlation Coe�cient

Spearman's Correlation Coe�cient [8] rs for variables X and Y has a formula
similar to the Pearson Correlation Coe�cient except that instead of using the
actual values of the entries in the vectors, the ranks of the entries in the vectors
are used. For vectors X and Y , let Ri denote the rank of value i in X, and let
Qi denote the rank of value i in Y . The Spearman Correlation Coe�cient is
then given by

rs =

∑
i(Ri − R̄)(Qi − Q̄)√∑

i(Ri − R̄)2
∑

i(Qi − Q̄)2
(2.3.3)

where R̄ and Q̄ are the means of rank variables R and Q respectively [9]. The
Spearman Correlation Coe�cient measures the monotonicity of two vectors,
i.e. to what extent do the values in the vector increase as the values in the
other vector increase. Unlike the Pearson Correlation Coe�cient, it does not
measure the extent of a linear relationship between the two vectors. [9].

2.3.4 Jaccard's Index

Jaccard's Index is a similarity index which was originally referred to as the
�Coe�cient of Community� [10]. It was developed to quantify the similarity
between the plant species content of two areas. It is easily de�ned in terms of
set intersects. Given two sets A and B, Jaccard's Index J(A,B) is de�ned as
[10]:

J(A,B) =
|A ∩B|
|A ∪B|

(2.3.4)

Jaccard's Index can also be de�ned in terms of vectors. Let the two sets be
two binary vectors, X and Y . Jaccard's Index J(X, Y ) can then be de�ned in
terms of inner products as [11]:

J(X, Y ) =
〈X, Y 〉

〈X,X〉+ 〈Y, Y 〉 − 〈X, Y 〉
(2.3.5)

Jaccard's Index takes on values in the range of 0 to 1.
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In order to apply Jaccard's Index to non-binary vectors, a vector X of in-
tegers can easily be converted to a binary vector XB as follows:

XBi =

{
1 if Xi ≥ 1

0 if Xi = 0
(2.3.6)

2.3.5 Cosine

The Cosine similarity of two vectors X and Y simply involves taking the cosine
of the angle between the two vectors (Equation 2.3.7),

Cosine Similarity = cos(ΘXY ) (2.3.7)

where ΘXY is the angle between vectors X and Y . This equation can also be
written in inner-product form, in which the cosine of the angle between two
vectors is expressed in terms of the inner product of the vectors, divided by
their norms [12] (Equation 2.3.8).

cos(ΘXY ) =
〈X, Y 〉
||X||||Y ||

(2.3.8)

Cosine similarity takes on values between 0 and 1 [12], assuming that both
vectors contain only positive values. This is the case with most biological
data.

2.3.6 Sørensen Index

The Sørensen Index [13] (also known as the Dice Coe�cient [14]) is a similarity
index which was developed for ecological purposes and (similar to Jaccard's
Index) is also based on set intersections. For two sets A and B the Sørensen
Index S(A,B) is de�ned as:

S(A,B) =
|A ∩B|
|A|+ |B|

(2.3.9)

Where |A| is the number of elements in A and |B| is the number of elements
in B. The Sørensen Index can also be formulated in terms of vector algebra.
For two binary vectors X and Y the Sørensen Index S(X, Y ) is de�ned as:

S(X, Y ) =
2〈X, Y 〉∑
i xi +

∑
i yi

(2.3.10)

=
2 min(X, Y )∑
i xi +

∑
i yi

(2.3.11)

where xi is the i
th element of X and yi is the i

th element of Y .
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2.3.7 Czekanowski Index and Bray-Curtis Index

The Czekanowski Index is quantitative version of the Sørensen index. For
vectors X and Y the Czekanowski Index is de�ned as [15]:

Cz =

∑
i 2 min(Xi, Yi)∑
i(Xi + Yi)

(2.3.12)

where Xi is the i
th element of X and Yi is the i

th element of Y . The similarities
between the forms of Equations 2.3.11 and 2.3.12 is easy to see, indicating the
relationship between the Czekanowski Index and the Sørensen Index.

The Bray-Curtis [16] Index is often confused with the Czekanowski Index [15].
Although the Bray-Curtis Index has the same form as the Czekanowski In-
dex (Equation 2.3.12) the underlying normalization assumptions are di�erent.
The Bray-Curtis Index assumes that all vectors are normalized by the total
sum of each vector, i.e. the sum of all the entries in a vector is 1. Thus the
Bray-Curtis Index BC(X, Y ) simpli�es to [16; 15]:

BC(X, Y ) =

∑
i 2 min(Xi, Yi)∑
i(Xi + Yi)

(2.3.13)

=
2
∑

i min(Xi, Yi)∑
iXi +

∑
i Yi

(2.3.14)

=
2
∑

i min(Xi, Yi)

1 + 1
(2.3.15)

=
2
∑

i min(Xi, Yi)

2
(2.3.16)

= min(Xi, Yi) (2.3.17)

2.3.8 Canberra Distance

The Canberra distance Cb(X, Y ) is a distance metric described as being the
complement of Czekanowski's Index, and de�ned as [17]:

Cb(X, Y ) =

∑
i |Xi − Yi|∑
i(Xi + Yi)

(2.3.18)

As mentioned, the Canberra distance is the complement of the Czekanowski
Index [17]. This means that

Cb(X, Y ) = 1− Cz(X, Y ) (2.3.19)

or, equivalently that
Cz(X, Y ) = 1− Cb(X, Y ) (2.3.20)

This can be derived as follows:
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1− Cb(X, Y ) = 1−
∑

i |Xi − Yi|∑
i(Xi + Yi)

(2.3.21)

=

∑
i(Xi + Yi)−

∑
i |Xi − Yi|∑

i(Xi + Yi)
(2.3.22)

=

∑
i ((Xi + Yi)− |Xi − Yi|)∑

i(Xi + Yi)
(2.3.23)

Notice that Equation 2.3.23 has the same denominator as the Czekanowski In-
dex in Equation 2.3.12. Thus, in order to show that 1−Cb(X, Y ) = Cz(X, Y ),
we need to show that the numerators of Equation 2.3.23 and 2.3.12 are equal.
To do this, consider the diagram in Figure 2.2. Assume that for a given i,
Xi > Yi. Then, ∑

i

((Xi + Yi)− |Xi − Yi|) = 2Yi. (2.3.24)

Similarly, if for a given i, Yi > Xi. Then,∑
i

((Xi + Yi)− |Xi − Yi|) = 2Xi. (2.3.25)

Thus, combining the above two cases,∑
i

((Xi + Yi)− |Xi − Yi|) = 2 min(Xi, Yi), (2.3.26)

which is indeed the numerator of Equation 2.3.12. Thus, The Czekanowski
Index Cz(X, Y ) is the complement of the Canberra distance Cb(X, Y ) related
as 1− Cb(X, Y ) = Cz(X, Y ).

2.3.9 Jaccardized Czekanowski Index

The Jaccardized Czekanowski Index [18] is a new similarity metric which at-
tempts to formulate a quantitative version of Jaccard's Index in the same
sense that the Czekanowski Index is a quantitative version of the Sørensen In-
dex. The Jaccardized Czekanowski Index is derived as follows [18]: First, the
Jaccard Index J is related to the Sørensen Index S by the following equation:

S =
2J

J + 1
(2.3.27)

Rearranging Equation 2.3.27 to make J the subject of the equation yields:

J =
S

2− S
(2.3.28)
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Figure 2.2: Canberra Distance vs. Czekanowski Similarity A visual
aid in the relatedness of the Czekanowski similarity index and the Canberra
distance.

Replacing the Sørensen Index S in Equation 2.3.28 with the Czekanowski Index
Cz thus yields a quantitative version of Jaccard's Index called the Jaccardized
Czekanowski Index:

JCz =
Cz

2− Cz
(2.3.29)

The Jaccardized Czekanowski Index was then found to not be novel, but is
actually the same as the Ruºi£ka Index developed in 1958 [19].

2.3.10 Maximum Information Coe�cient

The Maximum Information Coe�cient (MIC) between two vectors X and Y
is a similarity metric which, unlike the Pearson Correlation Coe�cient, can
detect non-linear correlations. The MIC is calculated as follows: Consider a
set of ordered pairs (xi, yi) where xi is the i

th value in X and yi is the i
th value

in Y . A partition is then created on the ordered pairs (xi, yi). This can be
visualised as plotting a scatterplot of X vs Y , as drawing a grid m × n on
this scatter plot, partitioning the points ((xi, yi) pairs) into blocks. Grids of
di�erent dimensions are drawn. Each grid results in a characteristic probability
distribution of each variable, allowing the Mutual Information of the variables
to be created. The Maximum Information Coe�cient is the maximum Mutual
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Information Coe�cient obtained across all grids of all dimensions considered
[20; 21].

2.4 Network Pruning Methods

When a network is constructed using a particular similarity metric to quantify
similarity between objects, the result is an all-against-all complete network
in which each node is connected to all other nodes by weighted edges. Net-
work pruning methods are approaches for removing the lower-weighted or less
signi�cant edges in the network, thus ideally leaving behind only the signi�-
cant, true relationships in the system and screening out noisy, low weighted
relationships. Various pruning approaches will be outlined brie�y below.

2.4.1 Hard and Soft Thresholding

One approach for network pruning is called thresholding. Zhang et al. pro-
posed two types of thresholding, namely hard thresholding and soft thresh-
olding [22]. Hard thresholding involves setting a minimum similarity cuto�
and removing all edges with a weight lower than that cuto�. This reduces the
number of edges in the network, and thus information can be lost [22]. Soft
thresholding involves the use of a soft thresholding function, which increases
the relative weight of highly weighted edges and decreases the relative weight
of low-weighted edges. An example of a soft thresholding function f is [22]:

f(wij) = wβij (2.4.1)

This approach avoids loss of information, but does not help to reduce the
number of edges which can be necessary when dealing with networks with a
large number of nodes and edges.

2.4.2 Maximum Spanning Tree

Another method of network size reduction is to prune it to a backbone of
maximum weight, namely a Maximum Spanning Tree (MST). MSTs can be
calculated by �rst inverting the weights (similarity measures) of the edges,
thus converting them into distance measures, and then applying a Minimum
Spanning Tree (MiST) algorithm. A MiST is tree spanning all nodes of a
given network which has minimum weight [23]. There are many algorithms
for computing MiSTs. A common algorithm is Dijkstra's Algorithm, which
constructs a MiST for a given network as follows [24]:

1. Select an arbitrary starting node a as the �rst node in the tree.

2. For each unvisited node x which is a neighbour to the tree, calculate the
distance from a to x through the tree, with only one edge not present in
the tree connecting x to the tree.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. LITERATURE REVIEW 10

3. Add the node x with the shortest distance from a to the tree.

4. Repeat steps 2 and 3 until all nodes are added to the tree.

2.4.3 Disparity Filter

The Disparity �lter is an alternative network pruning method aimed at ex-
tracting the network backbone of statistically signi�cant edges i.e. those edges
carrying a statistically signi�cant proportion of the connectivity of a node [25].
The null model probability density function for weights of edges connected to
a node of degree k is given by

p(x)dx = (k − 1)(1− x)k−2dx (2.4.2)

For a given node i of degree k, each edge ij connecting i to a neighbour j has
normalized weight pij. The probability αij of obtaining a weight larger than
or equal to pij according to the null model is:

αij = 1− (k − 1)

∫ pij

0

(1− x)k−2dx (2.4.3)

Edges for which αij is smaller than a chosen probability threshold are consid-
ered to carry a signi�cant proportion of a node's weight and are included in
the backbone [25].

2.5 Network Topology Measures

Once networks have been constructed for a certain set of objects of interest
within a system using a particular similarity metric and have been pruned to
select for most highly weighted edges, the networks will exhibit certain topolo-
gies. Network topology can be described quantitatively through a number of
network properties or network measures [26]. These measures quantify local
properties of individual nodes within a network as well as topological proper-
ties of the entire network as a whole.

2.5.1 Node-based Topology Measures

The following network measures are de�ned per node or per node pair for a
given network, and include adjacency, connectivity, maximum adjacency ratio,
topological overlap, TOM-connectivity, clustering coe�cient, betweenness and
e�ciency, as de�ned below.
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2.5.1.1 Adjacency

For two nodes i and j, the adjacency aij is the entry ij in the adjacency matrix
of the network. In an unweighted network aij will be 1 if nodes i and j are
connected by an edge and 0 otherwise. In a weighted network, aij will be equal
to the strength of the connection (i.e. the edge weight) between nodes i and j
[22].

2.5.1.2 Connectivity

The connectivity ki for a node i is de�ned as [26]:

ki =
∑
j 6=i

aij (2.5.1)

where aij is the adjacency of nodes i and j. It is an indication of how well con-
nected a node is to the network. For an unweighted network the connectivity
ki of node i is the number of edges connected to node i, i.e. the degree of the
node. For a weighted, the connectivity of node i it is the sum of the weights
of the edges connected to node i.

2.5.1.3 Maximum Adjacency Ratio

The Maximum Adjacency Ratio (MARi) for a node i is an extension of the
connectivity of a node and is de�ned as [26]:

MARi =

∑
j 6=i(aij)

2∑
j 6=i aij

(2.5.2)

MAR describes the extent to which a node has strong connections with its
neighbours. Assuming that the network edges have weights between 0 and 1,
the Maximum Adjacency Ratio obtains a maximum value of 1 when all the
connections of a node have the maximum weight of 1 [26].

2.5.1.4 Topological Overlap

The Topological Overlap ωij between two nodes i and j quanti�es how con-
nected two nodes are by taking into consideration the direct connection be-
tween the nodes and indirect connection via neighbours of the nodes [27], and
is de�ned as [22]:

ωij =
(
∑

u aiuauj) + aij
min(ki, kj) + 1− aij

(2.5.3)

where aiu and auj are adjacencies and ki and kj are the connectivities of nodes
i and j respectively [22]. In an unweighted network, the term

∑
u aiuauj will

equal the number of neighbours shared between nodes i and j. Consider two
nodes i and j with ki < kj. For an unweighted network, the topological overlap
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ωij will be equal to 1 if every neighbour of i is also a neighbour of j and if aij
is equal to 1. Put simply, this means that for the topological overlap between
two nodes i and j to be one, all neighbours of the node with smaller degree
need to be neighbours of the node with larger degree, and the nodes i and
j need to be directly connected. For the topological overlap to be zero, the
nodes must not be connected and they must have no common neighbours [22].

2.5.1.5 TOM-based Connectivity

The TOM-connectivity of a node is based on the topological overlap between
nodes and is de�ned as [22]:

ki =
∑
j 6=i

ωij (2.5.4)

where ωij is the topological overlap (Equation 2.5.3) between nodes i and j.
A node will thus have a high TOM-Connectivity if it has a high topological
overlap with its neighbours, i.e. a node is connected to and shares a lot of
neighbours with its neighbours [22].

2.5.1.6 Clustering Coe�cient

The Clustering Coe�cient [28] for a node is a measure which indicates the local
structure around the node, in particular how densely connected (cliquish) the
node and its neighbours are [26]. For an unweighted network, the Clustering
Coe�cient Ci for a node i is de�ned as the number of edges present in the
neighbourhood around node i over the total possible number of edges is that
neighbourhood:

Ci =

∑
l 6=i
∑

m6=i,l ailalmami

ki(ki − 1)
(2.5.5)

The Clustering Coe�cient reaches its maximum value when each pair of a
node's neighbours are connected to each other [26]. Zhang et al. (2005) ex-
tended the Clustering Coe�cient to apply to weighted networks [22]:

Ci =

∑
l 6=i
∑

m6=i,l ailalmami

(
∑

l 6=i ail)
2 −

∑
l 6=i(ail)

2
(2.5.6)

2.5.1.7 Betweenness

The Betweenness of a node i is the number of shortest paths between other
pairs of nodes which run through node i [29]. This measure could indicate the
importance of the node and how much it would a�ect the network should it
be removed [29].
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2.5.1.8 E�ciency

The E�ciency Eij of a path between two nodes i and j is calculated as the
inverse of the length of the shortest path between two nodes[30]:

Eij =
1

dij
(2.5.7)

where dij is the length of the shortest path between nodes i and j. The shorter
the path between two nodes, the more e�cient the path. If no path between
nodes i and j exists in the graph, the distance dij between nodes i and j is
de�ned to be dij =∞ and thus the e�ciency Eij = 0 [30].

2.5.2 Global Network Topology Measures

The following network measures are global network measures which are cal-
culated for a network as a whole and not on an individual node or node pair
level, and include density, centralization, heterogeneity, path length and degree
correlation.

2.5.2.1 Network Density

The Density D of a network is a quanti�cation of how densely connected the
network is. For an unweighted network, Network Density is de�ned as the
fraction of the number of edges in the network divided by the total number of
possible edges given the number of nodes [31]:

D =
s

n(n− 1)
(2.5.8)

where s is the number of edges in the network and n is the number of nodes
in the network. Network density can easily be extended for weighted net-
works and can be calculated as the mean of all the o�-diagonal entries in the
adjacency matrix [32]:

D =

∑
i ki

n(n− 1)
(2.5.9)

=

∑
i

∑
j 6=i aij

n(n− 1)
(2.5.10)

where ki is the connectivity of node i and aij is the entry ij in the adjacency
matrix of the network.

2.5.2.2 Network Centralization

Network Centralization measures the extent to which there is a point in the
network which is more central than all other points [33]. It obtains a maximum
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value of one when the network has a star topology (very centralized) and 0 if
the connectivity of each node in the network is the same, for example a square
[26]. The Centralization C of a network is de�ned as [32]:

C =
n

n− 2

(
kmax
n− 1

−DN

)
(2.5.11)

where n is the number of nodes in the network, kmax is the maximum con-
nectivity of the network and DN is the network density.

2.5.2.3 Network Heterogeneity

Network heterogeneity H quanti�es how much the connectivity of the nodes
in the network varies throughout the network in terms of the variance of the
connectivities [31] and is de�ned as [32]:

H =

√
var(k)

mean(k)
(2.5.12)

where var(k) is the variance in the connectivity of the network and mean(k) is
the mean connectivity of the network. A very heterogeneous network will have
a large variation in the connectivities of the nodes whereas in a homogeneous
network, connectivity will be evenly distributed throughout the network.

2.5.2.4 Path Length

The Path Length of a network is the average length of all shortest paths
between pairs of vertices [28].

2.5.2.5 Degree Correlation

The Degree Correlation quanti�es how correlated the degrees of neighbouring
nodes are. Assortative networks arise if nodes of high degree are mostly con-
nected to other nodes of high degree, whereas disassortative networks arise
when nodes of high degree are mostly connected to nodes of low degree [29].

2.5.3 Measures Derived from Gene Co-expression

Networks

Horvath and Dong (2008) used a gene co-expression network as a platform to
develop network measures. The nodes of the network represented genes, and
the edges represented co-expression of the genes across a number of microarray
experiments. A selection of network signi�cance measures were derived from
these gene co-expression networks [26].
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Gene Signi�cance was de�ned as the correlation between the expression pro�le
of a gene and some biological trait of interest. This measure could be used to
identify genes potentially impacting a trait of interest. Network signi�cance
was then simply de�ned as the average gene signi�cance. Hub Gene Signi�-
cance was de�ned in order to quantify the relationship between gene (node)
connectivity and gene signi�cance and was de�ned as the gradient of the line
obtained from linear regression of Gene Signi�cance and Connectivity. Cen-
troid Signi�cance was de�ned as the signi�cance of the centroid of the network.
The centroid can be determined in a number of di�erent ways, for example it
can be de�ned as the node with the highest connectivity. Centroid Conformity
was then de�ned per node as the weight of the edge between the node and the
centroid [26].

2.6 Clustering Algorithms

Network modules can be de�ned as highly connected sub-graphs within a
network [26]. There are a number of di�erent methods for identifying net-
work modules. Hierarchical clustering, K-means clustering, Markov clustering,
Topological Overlap Clustering, Link Clustering, Graphlet-based clustering
and Jaccard Clustering will be discussed below.

2.6.1 Hierarchical Clustering

Hierarchical clustering is a type of clustering which results in a tree like struc-
ture or dendrogram. Cutting the dendrogram at di�erent levels then results in
di�erent clusterings of the set of data points [34]. There are two main classes
of hierarchical clustering algorithms, namely agglomerative and divisive. Ag-
glomerative clustering begins with each object in its own cluster and then
iteratively merges closest clusters based on a distance measure until all points
are in one cluster. Divisive clustering does the opposite, beginning with all
data points in one cluster and iteratively dividing clusters in two until all points
are in their own individual clusters. This approach is much more computa-
tionally intensive than agglomerative clustering and thus is much less used [34].

The general algorithm for agglomerative hierarchical clustering is as follows:
All objects/data points begin in their own individual clusters. A distance ma-
trix is then constructed specifying the distances between all pairs of clusters.
The two clusters closest to each other (corresponding to the minimum entry
in the distance matrix) are merged, and the distance matrix is updated to
contain the distances between all pairs of the new clusters. This process of
merging clusters and updating the distance matrix is repeated until all points
are in one cluster [34].
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There are various di�erent hierarchical clustering methods which di�er in the
way they calculate the distance between clusters. These methods fall into
two classes, namely linkage methods and geometric methods [34; 35]. When
determining the distance between two clusters, linkage methods calculate the
distances between all pairs of points within the two clusters in question, and
chose the distance between those two clusters as either the minimum distance
(in the case of single linkage clustering) or the maximum distance (in the case
of complete linkage clustering) [34]. Geometric methods involve calculating
the distance between the centroids of clusters [34].

2.6.2 K-means Clustering

K-means clustering is a clustering method developed by J. Macqueen in 1967
[36]. Unlike other clustering algorithms, it requires, as a parameter, the num-
ber of resulting clustersK, hence the name of the algorithm [36]. Consider a set
of n objects to be clustered using k-means clustering, each object represented
by a vector. The k-means algorithm begins by creating K initial centroids
representing preliminary clusters. Each object to be clustered is then assigned
to the cluster of its nearest centroid [37]. The value of each centroid c̄k is then
recalculated as the average of all objects in its cluster. This process of reas-
signing objects to their nearest centroids and recalculating centroids is then
repeated until the cluster compositions no longer change [37].

2.6.3 Markov Clustering

The Markov Cluster Algorithm (MCL) is a graph based clustering algorithm
which clusters the nodes of a graph into non-overlapping groups using a process
called �ow simulation [38; 39]. Clustering occurs through the execution of a
series of matrix operations (namely expansion and in�ation) performed on
the adjacency matrix of the network. Random walks of increasing length
are simulated though the network by the expansion operator. Walks of high
probability are encouraged and walks of low probability are removed by the
In�ation operator. This eventually results in groups of nodes connected by
walks of high probability [39; 38]. This is illustrated by Figure 2.3 [38].
The MCL algorithm consists of the following steps:

1. The weighted adjacency matrix of the network to be clustered is normal-
ized by column resulting in a stochastic matrix in which each entry ij
represents the probability of travelling from node j to node i [39].

2. The expansion operator E where E(A) = A×A is applied to the matrix
A.
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Figure 2.3: Visualization of the MCL process. Repeated rounds of ex-
pansion and in�ation promote paths strong �ow and remove paths of weak
�ow, resulting in clusters. (From [38].)

3. The in�ation operator (rth entry wise matrix power or Hadamard power)
is applied to the resulting matrix, and the columns are renormalized
making the matrix stochastic again.

4. Steps 2 and 3 are iteratively repeated until the matrix is doubly idempo-
tent, i.e. further rounds of expansion and in�ation have no e�ect on the
matrix [38].

The parameter r (the power to which the entries in the matrix are raised
in the In�ation operator) is called the in�ation parameter and e�ects cluster
granularity [38; 40]. A high in�ation index will result in more, smaller clusters
(high granularity) whereas a low in�ation index will result in fewer, larger
clusters (low granularity) [38; 40; 39].

2.6.4 Topological Overlap Clustering

Zhang and Horvath (2005) constructed modules in a gene co-expression net-
work using what is called a Topological Overlap Matrix. Instead of de�ning
modules as groups of genes (nodes) with highly correlated expression pro�les,
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they de�ned modules as groups of genes (nodes) which have a large topolog-
ical overlap. This was done by constructing the Topological Overlap Matrix
(TOM) which contains the topological overlap values for each pair of nodes.
Hierarchical clustering is then performed on this matrix where the distance
between two nodes i and j is de�ned 1 − ωij, grouping genes into modules
based on their topological proximity, not purely expression pro�le [22].

2.6.5 Link Clustering

Link clustering [41] is a network-based clustering algorithm which involves
clustering the edges (links) of a graph into groups using hierarchical clustering.
For two edges eik and ejk, the similarity between those two edges S(eik, ejk) is
de�ned as the Jaccard overlap between the neighbourhoods of nodes i and j
[41]:

S(eik, ejk) =
n(i) ∩ n(j)

n(i) ∪ n(j)
(2.6.1)

where n(i) is the set of nodes containing node i and its neighbours. The edges
are then clustered using hierarchical clustering. Each edge cluster gives rise
to a node cluster containing the nodes connected by all the edges in the edge
cluster. The node clusters resulting from this edge clustering approach can be
overlapping, allowing a node to be present in more than one cluster [41].

2.6.6 Graphlet-Signature-Similarity-Based Clustering

Kuchaiev et al. (2011) developed the network analysis software package GraphCrunch
2, which clusters the nodes of a network into modules based on the local topol-
ogy of the nodes, in particular, their graphlet signature. Graphlets (Figure 2.4
[42]) are unique, connected networks with a small number of nodes. The
Graphlet Degree Vector or Signature of a node is a pro�le vector of a node's
presence in graphlets in the network. Nodes are clustered into modules using
the k-medioids algorithm (a variant of the k-means clustering algorithm) based
on the similarity between their signature vectors [43].

2.6.7 Jaccard Clustering

Jaccard clustering involves the use of a modi�ed Jaccard similarity metric to
cluster a network into modules. For each pair of nodes i and j in a network,
the modi�ed Jaccard coe�cient is calculated as

Jij =
C

A+B − C
(2.6.2)

where C is the number of nodes connected to both i and i, A is the number
of nodes connected to node i and B is the number of nodes connected to node
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Figure 2.4: Graphlets. All possible 3, 4 and 5 node graphlets. (From [42].)

j. A threshold is set, and nodes connected by a Jaccard coe�cient larger than
this threshold are considered in the same cluster [44; 45].
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2.7 Network Comparison and Network Overlap

2.7.1 Clustering Comparison

A clustering C is a partition of a set of objects consisting of non-overlapping
sets of objects [46]. These sets are called clusters. There are many algorithms
which generate clusterings on a data set which have been discussed above.
There are various metrics which can be used to compare clusterings. Several
metrics are based on counting pairs of elements and how often pairs of elements
fall in the same cluster or in di�erent clusters [47]. An example of a pair
counting metric is the Jaccard index for clustering overlaps. The Jaccard
overlap between two clusterings Ci and Cj is calculated as [47; 48]:

J(Ci, Cj) =
N11

N11 +N01 +N10

(2.7.1)

where N11 is the number of pairs of elements (x, y) which are in the same
cluster in Ci and Cj, N10 is the number of pairs of elements (x, y) which are in
the same cluster in Ci but not Cj and N01 is the number of pairs of elements
(x, y) which are in the same cluster in Cj but not Ci.

Other clustering overlap measures include those based on mutual information.
These measures quantify the extent to which information about one cluster-
ing provides information about another clustering [48]. It is derived from the
entropies of two clusterings as follows:

Let S denote the sample space of n objects. Let Ci and Cj denote clusterings
of S. The Normalized Mutual Information between two clusterings Ci and Cj
is de�ned as [47]:

NMI(Ci, Cj) =
I(Ci, Cj)√
H(Ci)H(Cj)

(2.7.2)

where I(Ci, Cj) is the Mutual Information between clusterings Ci and Cj,
H(Ci) is the entropy of Ci and H(Cj) is the entropy of Cj. The Mutual
Information between two clusterings I(Ci, Cj) and the entropies H(Ci) and
H(Cj) and are de�ned as [48]:

I(Ci, Cj) =
∑
a

∑
b

P (a, b) log2

(
P (a, b)

P (a)P (b)

)
(2.7.3)

H(Ci) = −
∑
a

P (a) log2 (P (a)) (2.7.4)

H(Cj) = −
∑
b

P (b) log2 (P (b)) (2.7.5)
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where a is a cluster in clustering Ci and b is a cluster in clustering Cj. P (a) is

de�ned as |a|
n
, P (b) is de�ned as |b|

n
and P (i, j) is de�ned as |a∩b|

n
.

Entropy (Equations 2.7.4 and 2.7.5) is a measure of the amount of uncertainty
present in a clustering. This is best understood by the following thought ex-
periment: Consider a clustering of n points, and consider picking an arbitrary
point from any cluster. Assuming each point has an equal chance of being
picked, the probability of the point being in cluster k of size nk is nk

n
[48].

If there is only one cluster in the clustering, then nk

n
= 1 causing the en-

tropy (uncertainty) to be zero (Equations 2.7.4 and 2.7.5). Thus if there is
only one cluster, there is no uncertainty/information present in the clustering.
However, if the clustering contains more clusters with a more non-trivial prob-
ability distribution, the entropy (and information present in the clustering)
increases. Mutual information is then derived from entropy, calculated as the
information shared between two clusterings.

2.7.2 Network Pro�le Comparison

Another approach for comparing networks is implemented in a method called
NetSimile [49]. This approach compares networks based on their topologies.
For a set of networks to be compared, a selection of network topology measures
are calculated for each network. These measures are compiled into a signature
vector for each network. Network comparison then simply reduces to calculat-
ing the Canberra Distance between the network's signature topology vectors
[49].

2.8 Orthology Detection

2.8.1 Overview

Orthology detection involves the detection of orthologs for a group of species
[50]. The determination of these groups of equivalent genes called gene families
is required before many phylogenomic analyses can be performed. Orthologs
are de�ned as genes which arose through the process of speciation whereas
paralogs are genes which arose through a process of gene duplication [51].
Together, orthologs and paralogs fall under the category of homologs - genes
which are evolutionarily related and share a common ancestor [51]. Inparalogs
speci�cally refer to paralogs which arose from a very recent gene duplication
event and are thus still very similar. A variety of orthology detection methods
exist to detect these evolutionary relationships between genes and generally
fall into two classes, namely tree-based methods and graph-based methods [50].
The tree-based methods involve the construction of phylogenetic trees (e.g.
LOFT [52], RIO [53], OrthologID [54]) or evolutionary distance matrices (e.g.
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COCO-CL [55]) in order to detect orthologs and paralogs. Graph-based meth-
ods usually involve the quanti�cation of sequence similarity between genes,
construction of a network and subsequent clustering of the network using a
clustering algorithm (e.g. OrthoMCL [56], TribeMCL [39], InParanoid [57]).

2.8.2 LOFT

LOFT (Levels of Orthology From Trees) is an orthology detection algorithm
which discriminates between orthologous and paralogous relationships while
attempting to retain some of the hierarchical nature of these relationships as
they are detected from phylogenetic trees [52]. LOFT assigns numbers called
�levels of orthology� to each gene, indicating hierarchical orthologous and par-
alogous relationships between then genes. In this case, LOFT is applied to
already existing COGs (Clusters of Orthologous Groups) in order to illustrate
the increased resolution provided by LOFT numbers.

The LOFT algorithm proceeds as follows [52]: A gene tree is constructed
for an orthologous gene family (in this case COGs) by performing a multiple
sequence alignment using Muscle [58] and then constructing a phylogeny using
the neighbour joining method. The species overlap rule is used to label each
node in the gene tree as either a speciation event or a gene duplication event:
A node is declared to be a speciation event if the sets of species on each branch
from that node are disjoint, i.e. they share no species. If the branches resulting
from the node in question have any species in common, the node is declared
to represent a gene duplication event. Levels of orthology numbers are then
assigned to each all genes from the tree. Genes separated by only speciation
events have the same LOFT numbers, whereas gene duplication events cause
an extra level to be added to the LOFT numbers (Figure 2.5 [52]).

The LOFT numbers allow the hierarchical nature of orthologs detected from
gene trees to be represented. LOFT also aids in the visualization of these
orthologous relationships by colouring the di�erent levels of orthology within
a gene tree [52].

2.8.3 RIO

RIO (Resampled Inference of Orthologs) is an orthology detection method
which detects orthologs of a given query sequence through the use of a phylo-
genetic tree [53]. RIO proceeds as follows: A query sequence of interest q is
input and is assigned to a pfam family using HMMER. The query sequence
is then aligned to the multiple sequence alignment of that family obtained
from pfam. This multiple alignment is then bootstrap resampled a number of
times (usually 100) and a phylogenetic tree constructed for each bootstrapped
alignment. The resulting bootstrapped gene trees are then compared with a
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Figure 2.5: Levels Of Orthology Numbers generated by LOFT. Hier-
archical LOFT numbers assigned to genes from a section of COG4565. Red
square nodes represent gene duplication events and green diamond nodes rep-
resent speciation events are represented as green diamonds. (From [52].)

species tree to label each node as either a gene duplication event or a speciation
event. Each gene g in the tree is then assigned a bootstrap score indicating
the number of resampled trees in which g is orthologous to the query gene q
(Figure 2.6) [53].

2.8.4 OrthologID

OrthologID [54] uses a combination of sequence similarity and tree-based ap-
proaches to detect orthologs from completely sequenced genomes. An all-vs-all
BLAST is performed to calculate the sequence similarity between all pairs of
genes from sequenced genomes, resulting in a network. Edges with an E-value
greater than 1× 10−20 are removed, as well as edges where the aligned region
of the shorter sequence is less than 80% of the length of the longer sequence.
Gene families are then considered as the connected components of this BLAST
hit network [54]. Sequences within gene families are then aligned using MAFT
and a maximum parsimony tree calculated using PAUP*. Orthologs are then
identi�ed and characteristic amino acids of each family identi�ed using the
CAST algorithm. These characteristic amino acids are highlighted in the Or-
thologID visual interface (Figure 2.7) [54].
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Figure 2.6: RIO Bootstrap Scores. A simple example in which RIO is used
to determine orthologs of a human gene using 4 bootstrap resamples. (From
[53].)

2.8.5 COCO-CL

COCO-CL (Correlation Coe�cient based Clustering) [55] is an orthology de-
tection method developed to be run as a re�nement step on already existing
homologous gene families. It determines orthology based on the correlation
between the evolutionary history of genes. Given the protein sequences of
genes in a homologous gene family, COCO-CL proceeds as follows: A mul-
tiple sequence alignment is constructed using ClustalW and an evolutionary
distance matrix D calculated from the resulting alignment. Each column Vi
in D is thus a vector of evolutionary distances between protein i and all other
proteins in the family. The Pearson Correlation Coe�cient is then calculated
between all pairs of vectors Vi and Vj resulting in a correlation matrix C in
which each entry cij is the Pearson correlation coe�cient between the evolu-
tionary distance vectors Vi and Vj. Each correlation value cij is then replaced
with the value 1− cij, converting them from similarity measures into distance
measures, and the columns of the resulting correlation matrix (each column
representing a gene) are clustered using single linkage hierarchical clustering,
resulting in a tree [55]. The last step of the hierarchical clustering in which the
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Figure 2.7: OrthologID Interface. The visual interface of OrthologID show-
ing the charactieristic amino acids for a family highlighted in red. (Modi�ed
from [54].)

last two remaining clusters C1 and C2 are merged is used to label that node as
either a speciation or gene duplication event, using a procedure very similar
to the previously described species overlap rule. A score σ is calculated as:

σ =
S

min(SC1 , SC2)
(2.8.1)

where SC1 is the number of species present in C1, SC2 is the number of species
present in C2 and S is the number of species present in both SC1 and SC2 . If
σ = 0, the node is considered a speciation event. If σ ≈ 1 then the node is
considered a gene duplication event [55].

2.8.6 COGs

COGs (Clusters of Orthologous Groups) are groups of orthologous genes and
paralogs which are orthologous to other genes within the cluster [59]. COGs
are constructed for a set of genomes by comparing all pairs of proteins us-
ing BLAST. For each gene, the best BLAST hit in every other genome is
determined. Triangles of best BLAST hits are then formed as the building
blocks of the COGs (Figure 2.8A). COGs are then formed by merging trian-
gles which share a common edge. COGs are available as a resource in the
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Figure 2.8: Clusters of Orthologous Groups (a) A Best Hit Triangle, the
building block of COGs (b) COG constructed by merging triangles. (Modi�ed
from [59].)

COG database [60] which has been updated to include eukaryotic genomes
[61], archaea [62; 63] and viruses [64].

2.8.7 TribeMCL

TribeMCL is protein clustering algorithm which constructs homologous pro-
tein families based on sequence similarity [39]. TribeMCL takes as input the
sequences of a set of proteins to be clustered into gene families, which are
then compared pairwise using BLAST. E-values of reciprocal BLAST matches
are then averaged, the negative logarithm taken and a similarity matrix con-
structed in which each row and each column represents a protein and each entry
ij is the sequence similarity Sij between protein i and protein j calculated as:

Sij = − log10(E-valueav) (2.8.2)

where E-valueav is the average reciprocal BLAST E-value between proteins i
and j. Columns of this matrix are then normalized, thus turning it into a
column stochastic matrix. This matrix can be viewed as a probability net-
work in which each node represents a protein and edges represent similari-
ties/transition probabilities between proteins. The Markov Cluster Algorithm
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Figure 2.9: TribeMCL Flow diagram of the TribeMCL pipeline. (From [39].)

(MCL - see Section 2.6.3) [38] is then used to cluster this network into mod-
ules. Each resulting module is interpreted as a protein family. This process is
summarized in Figure 2.9 [39].

2.8.8 InParanoid and MultiParanoid

InParanoid constructs orthologous protein families consisting of orthologs and
inparalogs between the genomes of two species [65]. Sequence similarity be-
tween all pairs of proteins in two genomes is computed using BLAST, and the
bit scores of reciprocal hits are averaged resulting in a similarity score for each
pair of proteins. A bitscore cuto� of 50 and and a percentage overlap cuto� of
50% is applied. Orthologous families are then constructed as follows: For each
protein, the best reciprocal BLAST hit is determined. These best reciprocal
hits are considered seed orthologs for the clusters and inparalogs are added into
these clusters if their similarity score to one of the seed orthologs is greater than
or equal to the similarity score of the two seed orthologs. This is illustrated in
Figure 2.10 [65]. Various rules are then applied to merge/delete/divide over-
lapping clusters (summarised in Figure 2.11 [65]) resulting in the �nal clusters.
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Relative con�dence scores ranging from 0% to 100% are assigned to inpar-
alogs quantifying their relative similarity to the main ortholog where 100% is
assigned to the main ortholog and 0% is assigned to the inparalog in the clus-
ter that is furthest away from the main ortholog. This is illustrated in Figure
2.12 [65].

MultiParanoid was written as an extension of InParanoid to enable orthol-
ogous families to be constructed across multiple genomes as opposed to only
two genomes [57]. Orthologous groups of proteins are constructed for all pairs
of species using InParanoid, and clusters sharing seed orthologs are merged.

Figure 2.10: InParanoid Clustering. Seed orthologs (A1 and B1) form the
centers of clusters and inparalogs clustered around orthologs if they have a
similarity score greater than or equal to the similarity between the two seed
orthologs. (From [65].)

2.8.9 OrthoMCL

OrthoMCL [56] is an orthology detection algorithm similar to TribeMCL in
that it uses sequence similarity to construct a BLAST hit network and clusters
this using MCL. It also however uses some of the best hit principles introduced
in InParanoid to prune the network before clustering.

The OrthoMCL pipeline is summarised in Figure 2.13 [56]. The algorithm be-
gins by taking as input the protein sequences for a set of completely sequenced
genomes. An all-vs-all BLAST is performed to quantify the sequence similar-
ity between all pairs of proteins. Potential orthologs and inparalogs are then
identi�ed from the BLAST E-values [56; 66]. Inparalogs are identi�ed as intra-
species matches above the E-value and Percentage Match cuto�s who have the
best match with each other when compared to matches with all other proteins
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Figure 2.11: InParanoid Cluster Merging. Approaches for merging, delet-
ing or dividing overlapping clusters around seed orthologs. (From [65].)

from all other species. Orthologs are identi�ed as inter-species matches be-
tween two species which are above the E-value and percentage match cuto�s
and have the best match with each other when compared with matches with
proteins from the other species in question. Coorthologs are identi�ed as genes
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Figure 2.12: InParanoid Con�dence Scores. Range of con�dence scores
assigned to inparalogs indicating their relative similarity to the main ortholog.
(From [65].)

in di�erent species which are linked by a composition of orthology and inpar-
alogy as illustrated in Figure 2.14. Inparalog, ortholog and coortholog pairs
are then assigned a weight calculated as follows:

Weight = − log10(E-valueav) (2.8.3)

where E-valueav is the average of the reciprocal E-values of the two proteins
in question. Inparalog weights are normalized by the average weight for that
particular species whereas ortholog and coortholog weights are normalized by
the average weight for that particular species pair [56; 66]. The resulting pairs
of orthologs, inparalogs and coorthologs are then represented as a network
and clustered using MCL. The resulting clusters are interpreted as orthologous
protein families.

2.8.10 Orthology Detection Method Comparison

A comparison study of various orthology detection methods was performed by
Chen et. al in 2007 using latent class analysis [67]. Di�erences in the results
of a selection of tree-based and graph-based orthology detection methods were
analysed and the false negative (FN) and false positive (FP) rates of the meth-
ods were estimated. The resulting sensitivity and speci�city of the methods
is shown in Figure 2.15 [67]. In general, orthology detection methods seemed
to exhibit a trade-o� between sensitivity and speci�city. Tree-based methods
(for example, RIO) had a higher FN rate but a low FP rate, whereas homol-
ogy/graph based methods (for example, KOG) showed the opposite - a lower
FN rate and a higher FP rate. OrthoMCL and InParanoid showed the most
optimal combination of sensitivity and speci�city, being closest to the origin
in the sensitivity-speci�city plot (Figure 2.15) [67].
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Figure 2.13: OrthoMCL Pipeline. Flow diagram for the OrthoMCL
pipeline. (From [56]).

Figure 2.14: Coorthologs. Coorthologs re�ned as genes in two di�erent
species which are connected transitively through an orthologous relationship,
indicated by solid black lines, and an inparalogous relationship,indicated by
dotted black lines. (From [67].)
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Figure 2.15: Estimated Sensitivity and Speci�city. The false negative
(FN) rate and false positive (FP) rate of di�erent orthology detection methods
estimated using latent class analysis. (From [67].)
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2.9 Whole-Genome Phylogenomic Networks

2.9.1 Overview

Phylogenomics is a �eld which can be seen as a combination of genomics and
the study of evolution [68]. It involves the investigation of the evolutionary
relationships between organisms based on whole genome information as op-
posed to a single or a small subset of genes [69]. Examples of di�erent types of
phylogenomic networks including whole genome phylogenies, networks of gene
sharing and co-evolution networks will be discussed below.

2.9.2 Whole-Genome Phylogenies and Gene Sharing

Networks

Phylogenies are a speci�c type of network (directed acyclic graphs, or trees)
which are used to represent the evolutionary relationships between species [70].
Traditionally, phylogenies were constructed using a single ortholog from each
species. This results in a phylogeny which re�ects the evolutionary history
of a single gene within the species in question and not the evolutionary rela-
tionships between each species as a whole. Thus, using di�erent genes results
in di�erent phylogenetic trees [71]. With the increased availability of fully
sequenced genomes, phylogenies can be constructed based on whole genomes
(for example, see [72]). Constructing phylogenies using genome-scale data has
been found to result in more accurate species trees [71]. There are several
ways in which whole-genome scale phylogenies have been constructed. Phy-
logenies can be constructed from whole genome data by determining a set of
genes, concatenating the sequences into a �super-gene alignment" [73] and then
constructing a species tree from the resulting concatenated alignment. Alter-
natively, a species tree can be constructed from each aligned set of orthologs,
resulting in a species tree for each ortholog family, and then calculating a con-
sensus tree [73].

Genome-scale phylogenies have also been constructed based on gene family
content of the species in question. This is done by constructing gene families
across the species, constructing a binary vector for each species consisting of
1's and 0's where a 1 represents the presence of that particular gene family in
the species and a 0 represents the absence of the gene family in the species.
These vectors are then compiled into a matrix of gene family content and a
phylogeny is constructed from this matrix [74] [75].

Phylogenies can also be constructed based on shared gene content of the
species in question. Similarity between pairs of genomes is de�ned as the
fraction of shared orthologs between those two genomes and a standard phy-
logeny construction algorithm such as the Neighbour Joining method is then
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applied [76]. SHOT is an example of a webserver which constructs phylogenies
based on shared gene content [77]. This method was applied to 50 complete
genomes across the tree of life and re�ected a topology very similar to that
of the SSU rRNA phylogeny. However, the particular local topology around
C. elegans, Homo sapiens and Drosophila melanogaster was more similar to
the traditional phylogeny constructed from morphological characteristics and
phylogenies constructed from protein data than it was to the SSU rRNA phy-
logeny [77].

The process of evolution does not always lend itself to a tree-like structure
(vertical inheritance) because of phenomena such as hybridization, duplica-
tions and lateral gene transfer [69]. This more complicated view of evolution
consisting of vertical and horizontal inheritance is better represented by a net-
work [69].

Gene sharing networks are phylogenomic networks which model the similar-
ity between species in terms of how many genes are shared between pairs of
species [69]. Kloesges et al. used a network-based approach to investigate
shared gene content of 329 proteobacteria [78]. Genomes for proteobacteria
were obtained and genes were clustered into gene families based on sequence
identity using TribeMCL. Similarity between species (nodes of the network)
was then calculated as the number of gene families present in both species.

Halary et al. [79] constructed a gene-sharing network in which each node rep-
resented a genome (either cellular, plasmid and phage genome) and each edge
represented shared gene content between the two genomes it connected (Figure
2.16 [79]). This network revealed that shared gene content is mostly separate
between what they call di�erent "DNA vehicles" (either a cellular chromosome
(green nodes), plasmid (purple nodes) or phage (red nodes) genome). As il-
lustrated in Figure 2.16 [79], it can be seen that most connections are between
DNA vehicles of the same type.

2.9.3 Co-evolution Networks

Gene co-evolution networks have been used in the prediction of protein-protein
interactions [80]. Interacting proteins, be they physically interacting or simply
functionally related, are thought to co-evolve. This signature, called Evo-
lutionary Rate Covariation (ERC), is identi�ed as similarities between the
phylogenetic trees of interacting proteins across species [81]. The original
method to detect ERC is called the Mirror Tree Method [82]. In short, the
Mirror Tree Method calculates ERC between two proteins as a value between
0 and 1. Given two proteins, orthologs of those proteins are determined using
BLAST and multiple sequence alignments are constructed for each ortholog
group. Distance matrices are calculated from these alignments, containing the
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Figure 2.16: Shared Gene Network. Network of gene sharing for various
organisms. Each node represents a genome. Green nodes represent cellular
genomes, purple nodes represent plasmid genomes and red nodes represent
phage genomes. Nodes are connected based on shared gene content. (From
[79].)

evolutionary distances between all pairs of proteins within each alignment.
Co-evolution of the two protein sequences is then determined as the Pearson
Correlation of the two distance matrices [82]. This method gives rise to a
number of false positives. Thus, a number of adapted Mirror Tree methods
have been developed. One such adaptation, called ContextMirror, looks at
each pair of potentially co-evolving proteins in the context of the complete
co-evolutionary network of all proteins under consideration, instead of just the
co-evolution signature between two individual proteins (Figure 2.17) [80]. The
method begins in the same fashion as the original Mirror Tree Method, as for
each protein in a species, orthologous proteins in other species are identi�ed.
A multiple sequence alignment is then constructed for each protein family and
an evolutionary distance matrix is constructed from each multiple alignment.
The similarity between the phylogenetic trees of two proteins is then calcu-
lated as the Pearson Correlation Coe�cient of their two distance matrices.
In the original Mirror Tree Method, these correlation values would be taken
as the ERC value. ContextMirror however includes an extra step in which
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Figure 2.17: ContextMirror Method. Flow diagram for the ContextMirror
Method. (From [80].)

a co-evolutionary network is constructed where the nodes represent proteins
and the edges represent the correlation between their evolutionary distance
matrices. This co-evolutionary network can be represented as a square ma-
trix in which each row/column represents a protein and each entry represents
the correlation between the distance matrices of the proteins in the respec-
tive row/column. A second round of correlation is then performed, calculating
the Pearson Correlation Coe�cient between all pairs of rows of this matrix.
This calculates the co-evolutionary signal between two proteins by looking
at the similarity between their co-evolutionary contexts within the whole co-
evolutionary network, and not simply the similarity between their individual
phylogenetic trees [80]. This method resulted in a higher accuracy in the pre-
diction of protein-protein interactions than the original Mirror Tree Method
[80].

2.10 Transcriptomic Co-expression Networks

2.10.1 Overview

Grouping genes together based on similarity between their expression pro�les
has been found to result in groups of genes with similar function [83]. The
underlying assumption is that genes which are co-expressed are potentially
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co-regulated and thus may be involved in related functions. Networks have
become widely used in gene co-expression analysis and a selection of examples
of the use of network methods in gene co-expression analysis is discussed in
this section.

2.10.2 Weighted Gene Co-expression Network Analysis

Zhang and Horvath (2005) introduced a pipeline for network-based analysis
of gene co-expression called Weighted Gene Co-expression Network Analysis
(WGCNA) [22]. Gene expression data is often structured as a matrix in which
each row i represents a gene and each column j represents an experimental
condition and each entry ij represents the expression level of gene i under con-
dition j. Each row thus represents the expression pro�le of a di�erent gene.
The �rst step in constructing a gene co-expression network is to choose a de�-
nition of expression pro�le similarity and select a similarity metric to quantify
that de�nition of similarity [22]. A common similarity metric used for gene
co-expression analysis is the Pearson Correlation Coe�cient. This similarity
metric is then used to calculate the expression pro�le similarity between all
pairs of genes. A thresholding strategy must then be chosen, which can involve
hard thresholding or soft thresholding. The result is a square matrix in which
rows and columns represent genes and each entry ij represents the thresholded
similarity between the expression pro�les of gene i and gene j. This matrix
can be viewed as a gene co-expression network in which nodes represent genes
and edges represent expression pro�le similarity between the genes.

The co-expression network is then clustered into groups of nodes exhibiting
topological similarity within the network. This is done by constructing the
Topological Overlap Matrix [22] in which each entry ij is the topological over-
lap ωij between genes i and j in the co-expression network. After converting
each entry in the topological overlap matrix from a similarity measure to a
distance measure (dij = 1 − ωij) the resulting topological overlap network is
clustered into modules of co-expressed genes using hierarchical clustering [22].

2.10.3 Cross-Species Co-expression

Gene co-expression analysis can be combined with phylogenomic information
to compare gene expression modules across species [84]. This involves con-
structing a gene co-expression network for each species of interest. Clustering
of the resulting network will result in gene expression modules. Gene family
information can then be used to link genes in di�erent species through homolo-
gous or orthologous relationships, thus providing a link between co-expression
modules in di�erent species (Figure 2.18) [84]).

One such approach, which uses sequence-based homology information to al-
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Figure 2.18: Co-expression Module Comparison. General pipeline for the
determination of co-expression modules conserved across species. (From [84].)

low co-expression module comparison across 7 plant species, is PlaNet [85].
For each plant species, a gene co-expression network was constructed where
the similarity measure used to quantify similarity between expression pro�les
was the Highest Reciprocal Rank, determined from Pearson Correlation Coef-
�cients [85]. The co-expression network was then clustered into co-expression
modules. Co-expression modules were compared across species using the Net-
workComparer pipeline [85]. This involves linking the expression modules
through genes in the same gene family (Pfam). Given a particular gene of in-
terest in a particular species, the gene family from Pfam containing that gene
is determined. The Node Vacinity Network (NVNs) is then determined for
each gene in the Pfam family. NVNs are then compared by how similar their
Pfam content is. Similar NVNs are then used to identify similar co-expression
modules across species [85].

2.10.4 Joint Clustering of Co-expression Networks

Various approaches exist which use additional data besides gene expression
pro�le similarity to cluster genes into functional modules. Ulitsky and Shamir
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Figure 2.19: MATISSE Gene Modules. Nodes are clustered into modules
based on topological connectedness in the interaction network indicated by
solid black lines and expression pro�le similarity indicated by dotted grey
lines. (From [86].)

(2007) described an approach in which they identi�ed network modules by
using a combination of topological measures and high throughput data. Their
method, MATISSE (Module Analysis via Topology of Interactions and Similar-
ity SEts) makes use of an interaction network (for example a gene interaction
network) and its topology as well as gene co-expression similarity information
and uses a statistical approach to identify modules as connected subnetworks
of the interaction network in which the genes also have a high similarity. This
ensures that the genes within a module will have similar regulation, and also
be topologically connected in terms of interaction with other genes (Figure
2.19) [86].

MATISSE was tested on the combined protein-protein and protein-DNA in-
teraction network of the yeast S. cerevisiae. Expression pro�les of genes under
di�erent environmental conditions related to osmotic stress were also used.
Similarity scores between genes were calculated as the Pearson Correlation
between the expression pro�les of the genes. MATISSE, as well as clustering
by expression similarity was used to identify modules within the interaction
network. Functional annotation enrichment was then performed, and modules
constructed using MATISSE had higher enrichment than modules constructed
purely from expression data [86].

Another approach for the clustering of gene expression networks using extant
biological information is called Co-clustering [87]. This approach involved the
development of a joint distance metric which considered the distance between
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two genes in a metabolic network and the distance between two genes based
on their expression pro�le similarity. The distance dm(i, j) between two genes
in a metabolic pathway was de�ned as the shortest path between the nodes in
the KEGG metabolic network. The distance de(i, j) between two genes i and
j based on expression pro�le similarity was de�ned was de = 1− p(i, j) where
p(i, j) is the Pearson Correlation Coe�cient between the expression pro�les of
gene i and gene j. The combined distance ∆(i, j) function was then de�ned
as [87]:

∆(i, j) = 1− 0.5×
(

1

1 + e−a(dm(i,j)−b) +
1

1 + e−c(de(i,j)−d)

)
(2.10.1)

Hierarchical clustering was then used to cluster genes into functional modules
based on the above joint distance metric [87].

2.11 Conclusions

It is evident that networks are very versatile structures. Nodes can represent
any object of interest, and the edges can model many di�erent types of rela-
tionships between objects of interest. These relationships can be quanti�ed in
many di�erent ways through the use of di�erent similarity metrics. Network
structure and topology can also be described in a quantitative manner, facil-
itating the comparison of networks. Once networks have been created, there
are a variety of pruning and clustering approaches to extract information from
the networks, be those groups of similar nodes (resulting from clustering) or
only the most highly weighted edges in the system (resulting from pruning).
These network structures have been successfully used to represent complex
biological systems. They have proven to be useful tools for the �elds of phy-
logenomics and transcriptomics in providing representation, analysis methods
and visualization strategies for these complex systems.
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Chapter 3

Multi-Mechanism Co-Evolutionary

Networks Reveal

Functionally-Related Genes

D. Weighill, M. Vivier and D. Jacobson

As submitted for publication in PLoS Computational Biology, currently un-
dergoing peer review.

3.1 Abstract

Gene evolution does not occur through a single, simple, homogeneous process
but rather occurs through several interconnected mechanisms, all of which
are subjected to selective pressure. To date, no genome-wide study has yet
been performed which investigates all three of these mechanisms of evolution
simultaneously. Networks are useful structures for representing complex rela-
tionships and are thus ideal for modelling biological systems. Networks are
also convenient for the integration of multiple omics data types, since they can
be readily clustered, merged and compared. This study uses a module-based
network construction approach in order to investigate plant gene co-evolution
based on three di�erent mechanisms of evolution, using both genomic and
transcriptomic data.

Here we present the use of networks to identify and represent sets of pro-
tein encoding grapevine genes that appear to be co-evolving by one or more
evolutionary mechanisms. Analysis of the resulting networks shows that gene
co-evolution takes place in the scope of both biotic and abiotic selective pres-
sures that seem to select for the co-evolution of genes that have related molec-
ular and/or biological functions.

1
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This network-based view of evolution gives new insights into the likely evolu-
tionary relationships between genes, explains how selective pressures can act
on pleiotropic networks of interconnected functions and provides new oppor-
tunities for the inference of functions for unannotated genes. This appears to
be the �rst genome-wide study to address these three mechanisms of evolution
simultaneously. Plant functions which were previously known to be function-
ally related appear to be co-evolving via several di�erent mechanisms. The
network-based method presented here provides a novel way to view the evolu-
tion of an organism and leads to new functional and evolutionary insights.

3.2 Author Summary

Plants form a crucial part of the world's ecosystems and food web. How evo-
lution a�ects plants thus impacts both our local and global environments as
well as our food supply. Here we report a unique network-based approach
to study the evolution of plants whilst considering three evolutionary mech-
anisms simultaneously. 793,113 genes across 26 plant genomes were analysed
for patterns of co-evolution via one or more mechanisms and the results pre-
sented as a co-evolution network. This network-based view of evolution gives
new insights into the likely evolutionary relationships amongst genes and pro-
vides new opportunities for the inference of functions for unannotated genes.
Genome-wide evolution underpins virtually every biological phenomena. Thus,
this approach has implications in nearly every branch of plant biology.

3.3 Introduction

Grapevine is one of the most widely cultivated plants in the world [1] and its
domestication and importance to human heritage stretches back to Neolithic
times [2]. Thus, in addition to the traits selected for during the evolution of
wild predecessors by environmental factors, domesticated grapevine has been
under human selective pressure for the past 10,000 years. Since domestica-
tion, grapevine has often been propgated vegetatively, and thus its genome
has been more likely to accumulate deletions and insertions [3]. As such, the
Vitis vinifera genome has a considerable number of large gene families which
have probably been stabilised by human selective pressure and vegetative prop-
agation.

3.3.1 Evolutionary Mechanisms

Gene evolution does not occur through a single, simple, homogeneous process
but rather occurs through several overlapping mechanisms [4]. For simplicity's
sake, consider three interconnected mechanisms of evolution, namely evolution
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by point mutations, by gene duplication or deletion and evolution by gene reg-
ulation.

Point mutations that are nonsynonymous substitutions, insertions or deletions
within the coding regions of a gene can result in the change of an amino acid
at that particular site, potentially causing a change in the functionality of the
resulting protein. In the presence of a selective pressure, point mutations that
provide a selective advantage may become �xed, whereas those that are detri-
mental may be lost.

Evolution can occur on the scale of gene families through gene duplication
and deletion that has previously been described as gene birth-and-death evo-
lution [5]. Genes are �born" through gene duplication, and �die" either by be-
ing deleted from the genome or from accumulating so many detrimental point
mutations that they are no longer functional [5] and become pseudogenes [6].
Gene duplication can occur in several ways, including unequal crossing over,
retroposition and whole chromosome or genome duplication [6]. Duplicate
genes are an important driver of evolution as one member of the pair of dupli-
cated genes can perform its original function while the other is free to diverge,
possibly providing an evolutionary advantage to the organism. Some gene du-
plication events lead to the duplicated gene becoming �xed if there is a speci�c
advantage to having more of that gene product [6]. Subfunctionalization can
also occur when both the original and duplicated gene diverge, resulting in
each gene performing a part of the function of the original gene [6]. Alterna-
tively, duplicate genes can also diverge to give rise to new functions [6], giving
the organism the ability to perform a function that it could not perform before.

Finally, evolution can also occur by altered regulation of gene expression,
rather than by a change in the number or function of genes. This can arise
from point mutations in gene regulatory segments, intron-exon splice sites [4]
or mutations that will a�ect the stability of mRNA [7]. A good example of
the convergence of evolutionary mechanisms in grapevine is the evolution of
white berry cultivars. An ancestral gene duplication resulted in two copies of
the MYBA gene which regulate anthocyanin production. Subsequent retro-
transposon insertion in one MYBA gene and point mutations in the other in-
activated these regulatory elements and thus prevent anthocyanin biosynthesis
resulting in white berries [8]. Alternatively, as we have shown previously, this
can occur with changes in the expression levels of speci�c transcription factors
[9]. Gene expression can also be a�ected by microRNAs and epigentic factors.
Thus, as discussed above, mutations occurring in non-coding, regulatory re-
gions of DNA are also potential drivers of evolution, even though they do not
directly a�ect protein functionality.
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3.3.2 Modeling Evolutionary Mechanisms

3.3.2.1 Point Mutations

Point-mutation-based models of evolution that result in nonsynonymous sub-
stitutions, insertions or deletions in coding regions have previously been used
to predict protein-protein interactions. The Mirror-Tree method was �rst ap-
plied as a method for predicting protein-protein interactions by Pazos and
Valencia [10] for which they used the metric of co-evolution developed by
Goh et al. [11]. In order to identify putative co-evolving genes across a set
of gene families, the Mirror-Tree method involves constructing a multiple se-
quence alignment for each family, calculating evolutionary distances between
the genes in each alignment and unfolding the resulting evolutionary distance
matrix into a phylogenetic pro�le for each gene. Gene co-evolution is then cal-
culated as the Pearson correlation coe�cient between the phylogenetic pro�les
[10]. This measure of co-evolution, sometimes called Evolutionary Rate Co-
variation (ERC), was then used to predict whether proteins were potentially
interacting or not. Protein pairs with a high ERC value are thought to be
potentially interacting. This method was found to have a high sensitivity but
low speci�city, producing a large number of false positives [10; 12]. An adapted
version of the Mirror-Tree method was proposed by introducing a projection
operator to remove information related to phylogenetic relationships between
species from the phylogenetic vectors that resulted in a signi�cant decrease
in the amount of false positives [12]. ERC has also been shown to not only
indicate protein interactions but also related protein functions [13] and thus
suggests that ERC can also be used as a measure of protein co-evolution.

3.3.2.2 Gene Family Pro�les

Gene family pro�les are vectors indicating the presence of gene families across
species. These gene family pro�les have been used to construct phylogenies
based on gene family content [14] and correlation or similarity between these
pro�les has been used to identify proteins that are potentially functionally
related [15; 16]. However, these pro�les have previously been viewed as simple
binary vectors that indicate the presence or absence of a gene family in a
species but leaving out any information about the size of a gene family in each
species. Our current study used gene family pro�les containing the size of each
gene family in each of 26 plant genomes and calculated the co-evolution of gene
families as the correlation between these non-binary gene family pro�les.

3.3.2.3 Co-expression

Co-expressed genes are often functionally related and can be de�ned as the
similarity (often Pearson Correlation) between the expression pro�les of pairs
of genes [17]. Microarray data available from many experiments can be com-
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bined to construct expression pro�les across a wide variety of experimental
conditions. Modules of co-expressed genes can be detected by constructing a
gene co-expression network and then applying a clustering algorithm [17].

3.3.2.4 Co-evolution

Correlation of genome variants, be it gene duplications, point mutations or
regulatory changes, would seem to be likely to occur as a result of a selective
pressure. For example, biotic stress will be very likely to act as a selective
pressure on many genes in the complex set of defense response pathways. As
such, one would expect to see several correlations between the evolution of
genes involved in plant defense. In addition, genome variants, regardless of
the mechanism by which they are created, may be viewed as a selective pres-
sure in their own right. For instance, variants that are selected for in bacteria
that lead to drug resistance are often associated with a �tness penalty to the
bacteria. However, they are selected for under a more extreme selective pres-
sure (cell death) by the presence of a drug. It is often found that the �tness
penalty incurred in obtaining drug resistance is a selective pressure for muta-
tions in other genes that in turn compensate for the �tness penalty of the �rst
mutation [18]. On a limited scale, such compensatory evolution (via point
mutations) has also been shown to occur in plants [19; 20]. In this fashion
one could expect that many genome variants will show correlations with each
other as one variant becomes a selective pressure for another variant. Our pri-
mary hypothesis in this study is that such evolutionary correlations exist and
are re�ected in the genomes and transcriptomes of plants. Furthermore, we
hypothesize that correlations that re�ect co-evolution will be focused around
(and informative of) speci�c molecular and biological functions. As such, the
genome-wide study of co-evolution within and across di�erent mechanisms is
likely to not only provide new evolutionary insights but could also serve as an
important source of functional inference for gene functions and further eluci-
date pleiotropic patterns present in plant genomes.

With this in mind, we have de�ned gene co-evolution in terms of three broad
mechanisms of evolution. Genes can be co-evolving in terms of (1) having
similar point mutation rates, (2) being members of gene families that are cor-
related across species and (3) having similar gene expression pro�les. These
three models of co-evolution have been addressed previously to some extent
but typically in isolation [21; 12; 17]. Our study aims to investigate these three
models simultaneously.

To our knowledge, these three mechanisms of evolution (point mutations, gene
duplication/deletion and gene expression regulation) have not been simulta-
neously investigated in a genome-wide study of gene co-evolution. This study
aims to investigate the co-evolution of grapevine genes using a module-based
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network model encompassing all three mechanisms of evolution. We believe
that this approach can be useful for both functional inference for sets of genes
as well as providing better understanding of the evolutionary patterns in any
organism. In this paper we have focussed on grapevine as it is an economi-
cally important species that is not a model organism. One of the challenges of
studying a non-model organism is that there is typically less functional infor-
mation known about genes and thus genome-wide hypothesis generation and
experimental result interpretation is more di�cult. As such, this method's
ability to bring together multiple lines of evidence for gene co-evolution and
mine the information available from other sequenced plant genomes in order
to do functional inference is particulary attractive in a non-model organism
such as grapevine.

3.4 Results and Discussion: Evolutionary

Mechanism Interplay

As shown in Figure 3.1, modules of co-evolving genes in grapevine (V. vinifera)
were constructed based on three mechanisms of evolution. Gene co-expression
modules were constructed in order to represent genes that are potentially co-
evolving in terms of their regulation of gene expression. Gene family correlation
modules were constructed that represent gene families with distinct molecular
functions that nevertheless appear to be co-evolving through gene duplica-
tion and deletion. Lastly, evolutionary rate covariation (ERC) modules were
constructed that represent genes that are co-evolving in terms of having co-
varying point mutation rates [12]. For each pair of evolutionary mechanisms
an overlap network was constructed in which the nodes represent co-evolution
modules and the edges represent enriched overlaps between these evolutionary
modules. Overlaps were quanti�ed by the Jaccard index [22] and enrichment
was determined using the hypergeometric test with multiple hypothesis cor-
rection. The resulting networks were visualized in Cytoscape [23]. Figure S1
shows the overlap network between the ERC modules and the co-expression
modules, Figure S2 shows the overlap network between the ERC modules and
the gene family modules and Figure S3 shows the overlap network of the co-
expression modules and the gene family modules. In each case, blue nodes
represent co-expression modules, pink nodes represent ERC modules and yel-
low nodes represent gene family modules. Node sizes are scaled by the number
of genes in that particular co-evolution module.

In each of these networks a node represents a set of genes that are co-evolving
in terms of a single mechanism of evolution and an edge represents a set of
genes that are co-evolving in terms of two mechanisms of evolution. For ex-
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Figure 3.1: Methods Summary. Summary of the work�ow used for con-
structing the co-evolution networks.

ample, an edge between a co-expression module and a gene family correlation
module represents a set of genes that appear to be co-evolving in terms of
their transcriptional regulation, but are also members of gene families that ap-
pear to be co-evolving through gene duplication or deletion. The presence of
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edges signi�es genes that are potentially co-evolving in terms of more than one
mechanism of evolution, showing an interplay and overlap between di�erent
evolutionary mechanisms. However, the presence of large hub nodes connected
to many other nodes suggests that genes that are co-evolving in terms of one
mechanism can be split into several subsets that are also co-evolving in terms
of the other mechanisms of evolution.

In order to investigate the interplay between all three mechanisms of evolution
simultaneously, a combined co-evolution network (Figure 3.2A) was created
by merging the three separate co-evolution networks. This scale free network
(see Figure S4), which contains 19,137 grapevine genes, was visualised, queried
and explored in an interactive Cytoscape session as a method for hypothesis
generation. The number of gene pairs that are co-evolving in terms of di�er-
ent evolutionary mechanisms are shown in Figure 3.2B. The number of genes
that are present in all three kinds of co-evolutionary modules, in two kinds
of modules and in single kinds of modules are summarised in Figure 3.2C.
The Gene Ontology (GO) [24] is commonly used to provide a uni�ed view of
the functional annotations of gene products and, as such, includes over 39,000
standardised terms that are used to annotate the molecular functions, bio-
logical processes and cellular locations of genes in sequenced genomes. The
genes in each co-evolution module were annotated with Gene Ontology terms
thus allowing the functions of potentially co-evolving genes to be investigated.
Local topologies of the network were investigated by selecting a node and per-
forming a breadth-�rst search with a distance of one or two hops from the
starting node. For all nodes present in a subnetwork found by such a breadth-
�rst search, the genes were extracted and GO term enrichment was performed
on that subset of genes (node enrichment view) using GOEAST [25]. Enrich-
ment was also performed on the set of genes present in the edges of the same
subnetwork (edge enrichment view).

The GOEAST enrichment results are shown in Figures S7-S16. Several subnet-
works were found to be enriched in molecular and biological functions that are
known to functionally interact within the cell, such as defense-related functions
or synthesis and transport functions. The fact that functionally interactive
genes were found to be enriched in speci�c neighbourhoods of the network is
indicative that our model is identifying functionally interacting genes that ap-
pear to be co-evolving around shared selective pressures. From an evolutionary
point of view this makes sense as abiotic and biotic selective pressures would
be expected to exert in�uence on the evolution of a range of functionally inter-
active genes. Four such subnetworks and their locations in the co-evolutionary
network are shown in Figure S5, and will be discussed as examples.
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Figure 3.2: Combined Co-evolution Network. (A) Network of signi�cant
overlaps between all three types of co-evolution modules. This network was
constructed by merging the networks from Supplementary Figures S2, S3 and
S4. Each node represents a module of potentially co-evolving genes: Blue nodes
represent gene co-expression modules, pink nodes represent ERC modules and
yellow nodes represent gene family modules. Edges (lines between nodes)
represent signi�cant overlaps between co-evolution modules. (B) Number of
grapevine gene pairs that are co-evolving in terms of 1, 2 and 3 mechanisms
of evolution. (C) Number of grapevine genes that are evolving in terms of 1,
2 and 3 mechanisms of evolution.

3.4.1 Defense response co-evolution

Subnetwork 1. The �rst subnetwork (Figure S5 A) consists of a central gene
family correlation module (yellow node) intersecting with several co-expression
modules (blue nodes) and one ERC module (pink node). The node enrichment
view of this subnetwork showed enrichment in several GO terms, including
defense response, apoptosis and cellulose biosynthetic process. The edge en-
richment view of this subnetwork also showed enrichment in apoptotic process
and cellular glucan metabolic process. Thus the node and edge enrichment
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views showed much of the same enriched functions, even though the subset
of genes in the edges is considerably smaller than the subset of genes in the
nodes. Cell wall construction and defense-related functions were also enriched
in this subnetwork when excluding the gene family module as well as when
examining the gene family module in isolation. As such, the enrichment in
this subnetwork is not being driven by a single node. The functions enriched
in this subnetwork seem to be related to a theme of plant defense. Apart from
known defense responses, such as apoptosis, cell wall construction functions,
including cellulose biosynthesis, are also enriched in this subnetwork, which
would also seem to �t into the plant defense theme as plants are known to
modify their cell walls as a defense response to invading microbes. Examples
of such modi�cations include the cross-linking of structural proteins present in
the cell wall [26] and ligni�cation [27]. Although the function of lignini�cation
was not enriched in this subnetwork based on GO terms (and thus did not
appear in the GO term enrichment) several genes were found to be orthologs
of A. thaliana laccase-like genes, which are known to be involved in lignin
biosynthesis. Thus, even though it was not seen in the GO enrichment view of
this subnetwork, lignini�cation is present in this subnetwork and �ts in with
the defense theme. Furthermore, it has previously been shown that changes
in cellulose biosynthesis can activate lignin synthesis and defense responses
through jasmonate, ethylene and other signaling pathways [28] and enhances
disease resistance [29].

Subnetwork 2. The second subnetwork (Figure S5 B) consists of a central
co-expression module (blue node) surrounded by several gene family modules
(yellow nodes), ERC modules (pink nodes) and one other co-expression mod-
ule. The node enrichment view of this subnetwork showed several enriched
functions, including several GO terms related to chromosome organization
and nucleosome assembly, cell wall macromolecule catabolic process, monoter-
pene biosynthetic process, terpenoid transport, chitin catabolic process and
response to other organisms. The edge enrichment view of this subnetwork
also showed enriched functions in terpenoid transport and nucleosome assem-
bly and extended the set of functions found in the node enrichment view to
include cellulose biosynthetic process, plant hypersensitive response, defense
response to virus, response to bacterium, response to ethylene stimulus, re-
sponse to jasmonic acid stimulus, response to salicylic acid and response to
various other compounds.

In order to investigate whether a combined set of functions enriched in both
the node view and the edge view of a subnetwork would reveal a more com-
plete and detailed set of functions, MultiGOEAST [25] was used to combine
and compare the enrichment results from the edge enrichment and node en-
richment views of this subnetwork (Figure S11). Yellow rectangles represent
GO terms that are enriched in both the edge and the node view, green rect-
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angles represent GO terms only enriched in the edge view and red rectangles
represent GO terms only enriched in the node view. From Figure S11, it can
be seen that although the enriched functions are sometimes overlapping, the
node view and the edge view provide many related but non-overlapping func-
tions. Clearly, a more complete picture emerges by interpreting the nodes and
edges as combined sets of enriched functions.

The main functions found in this subnetwork and how these functions relate
to each other are summarised in Figure S6 A. This subnetwork also appears
to have a defense-related theme. Direct defense-related functions include de-
fense responses to viruses and bacteria, as well as plant-type hypersensitive
response. Cell wall construction functions were also enriched in this subnet-
work and, as explained for subnetwork 1, these could also be defense-related.
Chitin catabolic process could be an indication of plant chitinases, which are
known to be involved in plant defense against fungi by digesting the chitin in
fungal cell walls [30; 31]. Response to various signalling hormones were also
enriched, including jasmonic acid, ethylene and salicylic acid. All three of
these hormones are known to be involved in activating plant defense responses
[32]. The pathways of these three hormones are also known to interact, causing
crosstalk [32].

Terpenoid synthesis and terpenoid transport functions are both enriched in
this subnetwork and jasmonic acid is also known to stimulate the produc-
tion of terpenoids [33]. Because of this functional link between jasmonic acid
and terpenoid synthesis, it is perhaps not surprising that these two functions
seem to be co-evolving. Terpenoids also play a role in defense response and
disease resistance in plants [34; 35], possibly further explaining the presence
of terpenoid synthesis-related functions in the same co-evolution module as
other defense-related functions. It also makes sense that terpenoid synthesis
and terpenoid transport functions could be co-evolving, since a change in the
regulation of terpenoid synthesis could itself act as a selective pressure with re-
gards to the terpenoid transport needs of a cell. It is notable that the grapevine
genome contains a very large family of terpene synthases with 69 putatively
functional genes [36]. This is roughly twice as many terpene synthases than
has been seen in any other plant genome to date [37].

Epigenetic functions such as nucleosome assembly, DNA packaging and DNA
conformational change were enriched in this subnetwork along with defense
and stress related functions. These epigenetic and defense functions were also
enriched in this subnetwork when excluding the central co-expression module,
and when looking at the central co-expression module in isolation. Epigenetic
regulation is known to play a role in gene expression regulation under stress
conditions [38]. Thus, all the functions mentioned above, which, according to
our model, are co-evolving via three di�erent mechanisms, are known to be
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functionally related in plants with evidence from previous studies.

3.4.2 Protein translation, transport and degradation

co-evolution

Subnetwork 3. The third subnetwork consists of a central ERC module inter-
secting with several co-expression modules and gene family modules (Figure
S5 C). Using biological process GO enrichment, the node enrichment view
of this group includes many functions related to the control of protein levels
and localisation in the cell, including proteolysis, gene expression, translation,
tRNA metabolism, vesicle-mediated transport and protein transport. Edge
enrichment adds to this theme and shows enrichment in protein deneddyla-
tion, intracellular protein transport and ribosome biogenesis. From the cellu-
lar component GO hierarchy, the edge enrichment view also includes "clathrin
adaptor complex" that forms part of the coat of protein transport vesicles and
aids in the protein transport process [39]. The combined node and edge enrich-
ment views thus suggest that functions related to protein synthesis, transport
and degradation appear to be co-evolving. Ribosome biogenesis and tRNA
metabolism are clearly functionally linked as they are the machinery required
for protein translation. There is literature evidence to suggest that there is
a functional link between protein degradation and translation, which is re-
lated to the quality control of proteins in the Endoplasmic Reticulum [40].
The combination of the node and edge enrichment views also provides a more
complete picture than either of the two views in isolation. This suggests that
components of these processes could have co-evolved via separate mechanisms
whilst speci�c key elements may have co-evolved via multiple evolutionary
mechanisms.

3.4.3 Stress response and developmental gene

co-evolution

Subnetwork 4. The fourth subnetwork consists of a central gene family mod-
ule surrounded by several co-expression modules and ERC modules (Figure S5
D). The node enrichment view includes functions such as pentacyclic triter-
penoid biosynthetic process, (1-3)-beta-D-glucan biosynthetic process, ter-
penoid transport, plant-type cell wall modi�cation, plant-type cell wall bio-
genesis, various response functions including response to hormone stimulus,
response to chitin, response to water deprivation, response to salt stress, re-
sponse to light stimulus, as well as several developmental functions. The edge
enrichment view complements the node enrichment view with functions related
to trehalose biosynthesis, xylan catabolism, defense response to fungus, and
hyperosmotic stress.
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The combined node and edge enrichment views seem to indicate that functions
related to abiotic and biotic stress responses appear to be co-evolving. The
main related functions enriched in this subnetwork are summarised in Figure
S6 B. Again, the two functions of terpenoid synthesis and terpenoid trans-
port are enriched in the same neighbourhood, suggesting the evolutionary link
between these two functions. Terpenoids are thought to play a role in plant
defense responses, potentially explaining why the terpenoid related functions
appear alongside defense-related functions [34; 35]. The (1-3)-beta-D-glucan
biosynthetic process could also be a defense-related process as callose, a beta-
1,3-glucan polymer, is a component of the papilla, a cell wall apposition that
is a protective layer formed by a plant at the site of a fungal attack [41; 42].
Trehalose biosynthesis is also related to plant defense, as it elicits plant defense
responses [43] and is also involved in abiotic stress response [43]. In addition,
trehalose has been associated with resistance to salt stress and drought stress
[44]. This is also supported by the enrichment of response to salt stress and re-
sponse to water deprivation functions in the same neighbourhood as trehalose
biosynthesis. Cell wall modi�cation is also related to plant defense response as
plants are known to modify their cell walls in order to strengthen them against
pathogenic attacks including structural protein crosslinking and ligni�cation
[26; 27].

A plant is e�ectively constantly monitoring its environment and responding
appropriately, whether that response is growth or defence or stress response.
When plants respond to biotic and abiotic stress it is known that, although
the origins of the signals may be distinct, there is considerable overlap in the
resulting signalling cascades. Plant defence responses often involve modi�ca-
tion of the cell wall. Similarly, the growth and development of a plant also, by
necessity, requires changes to the cell walls of tissues that are expanding and or
transforming into di�erent developmental stages. Terpenoids are also known
to play roles in both plant defence, signalling and development. It would seem
likely then that there could be considerable overlap in the signaling machinery
to be used in this process of environmental monitoring and responses. This
would be consistant with what we are seeing in Subnetwork 4 which contains
elements of all of these functions. This concept of the co-evolution of signaling
cross-talk is explored further below with gene-based subnetworks.

In all of the subnetworks discussed above, the node enrichment and edge en-
richment views give non-identical yet related and often quite complementary
information about enriched functions. Looking at the node enrichment view
or the edge enrichment view in isolation would not give as complete a picture
of co-evolving and related functions as the combined view does. This sug-
gests that there are certain cellular functions that co-evolve through distinct
individual mechanisms of evolution, while some functions are co-evolving via
multiple evolutionary mechanisms.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. MULTI-MECHANISM CO-EVOLUTIONARY NETWORKS

REVEAL FUNCTIONALLY-RELATED GENES 14

3.4.4 Gene-based subnetworks

There seems to be a mixture of functions related to biotic and abiotic stress in
subnetwork 4, suggesting crosstalk between these responses. There is literature
evidence that supports the idea of interactions and crosstalk between wound-
ing, biotic and abiotic stresses and hormone responses in plants, often through
the hormones abscisic acid, salicylic acid, jasmonic acid and ethylene [45; 46].
Although these hormone response functions are not individually enriched in
this subnetwork, there are modules within this subnetwork that are annotated
with these hormones that may well explain the presence of both biotic and abi-
otic stress response functions. In order to explore this further, a selection of
GO-terms related to these functions were chosen and a GO-gene network was
constructed in which nodes represent genes in subnetwork 4 annotated with at
least 2 of these GO terms and edges linked genes to these GO-terms (Figure
S17). The di�erent categories of functions (e.g. hormone responses and sig-
nalling, abiotic stress responses, abiotic stress responses and actual physical
defense responses) group together well within this network and seem to form
a quasi-pathway of stress response, starting with general hormone signalling
at the top of the network, followed by more speci�c (abiotic or biotic) stress
response signalling (which includes crosstalk) and ending with actual cellular
responses such as cell wall modi�cation or cell death at the bottom of the
network. The presence of genes linking these di�erent functions supports the
hypothesis of the co-evolving stress response functions present in subnetwork
4. Figure S18 shows a subnetwork of this quasi-pathway within 2 edges of the
GO-term �defense response to bacteria". This is a zoomed in view of the genes
that are linking the di�erent GO functions and thus putatively accounting for
the apparent crosstalk. Many of these genes are kinases involved in signalling,
such as the cystein rich receptor-like protein kinase CRK10 (VV00G16870,
VV03G01940, VV02G09070 and VV10G07230), which links "defense response
to bacterium" to "response to salicylic acid stimulus, and the histidine ki-
nase AHK4 (VV01G05500 and VV01G04890), which links defense responses
(to bacteria and fungus) to response to abiotic stresses (salt stress and water
deprivation). Transcription factors are also present in this network causing
crosstalk between functions, including WRKY40 (VV09G00130), which con-
nects response to wounding, response to salicylic acid stimulus and response to
bacteria and fungus, and MYB91 (VV08G14530), which connects response to
salicylic acid, auxin and jasmonic acid, response to bacteria and fungi as well
as response to salt stress. Another view of this network is shown in Figure S19,
in which genes are connected to the modules in which they are present. From
this network one can see that these genes are well connected through all three
types of co-evolution modules, again suggesting considerable co-evolution of
these cross-talking stress response functions. A combined view constructed by
merging the gene-go network and the gene-module network is shown in Figure
S20.
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Functionally related subnetwork linkages The defense-related theme seemed
to be present in multiple subnetworks, namely subnetworks 1, 2 and 4 (Figures
S4 A, B and D, respectively). In order to investigate whether these subnet-
works had some spatial link in the combined network, the subnetworks were
concatenated and mapped back to the combined overlap network. When look-
ing at the location of these subnetworks in the combined overlap network,
they were adjacent. (Figure 3.3). It is thus not surprising that they share
some functional similarities.

In order to better understand the functional interactions amongst subnetworks
1, 2 and 4 (Figure 3.3), GO-terms that were shared between the nodes present
in the sections linking the three adjacent subnetworks together were identi-
�ed and used to create a GO-gene network as described above. The resulting
network is shown in Figure 3.4. InterPro annotations and descriptions of A.
thaliana orthologs were then assigned to each gene in this network. If one
examines the GO term nodes in Figure 3.4, it is apparent that the main func-
tions linking the three subnetworks are defense- and stress-related functions
found in each of the individual subnetworks, including cellulose biosynthesis,
apoptosis, response to jasmonic acid, defense response, response to wound-
ing and response to salt stress. This explains the presence of these related
functions in these three separate subnetworks and indicates that edges within
this co-evolutionary network provide plausible functional links. At the top
of Figure 3.4, genes are annotated as being involved in responses to vari-
ous stresses (abiotic and biotic) and response to hormones. At the bottom,
the genes are associated with an actual defense response, namely apoptosis.
Thus, this network seems to represent a broader putative pathway that be-
gins with response to various stresses followed by the subsequent signalling
cascade leading to the end result: apoptosis as a defense response. This
is supported by the InterPro and A. thaliana ortholog description annota-
tions. Genes near the top of the network are annotated as protein kinases,
such as MEKK1 and AHK4 (VV12G05950 and VV12G09480 respectively),
which are known to be involved in signal transduction, and a histone deacety-
lase HDA6 (VV17G01160), which could play a role in epigenetic regulation of
transcription. Also present are genes annotated as speci�c transcription fac-
tors related to plant defense, including WRKY33 and WRKY40 (VV08G06390
and VV09G00130 respectively). At the bottom of the network, many of the
genes are annotated as coding for disease-resistant proteins. For example,
VV07G02940, VV12G06830 and VV00G25990 all contain the NB-ARC do-
main, which the Interpro annotation indicates is involved in signalling related
to apoptosis. Grapevine gene IDs are Plaza V. vinifera IDs and gene names
are those of the closest Arabidopsis ortholog.
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Figure 3.3: Linked Subnetworks. Subnetworks 1, 2 and 4 combined to pro-
duce a connected network. All three of these subnetworks showed enrichment
in defense-related functions and are in close proximity in the combined overlap
network.

3.4.5 Networks as Models of Evolution

Networks are very useful mathematical structures that are capable of repre-
senting complex biological relationships and have been used successfully for a
wide variety of tasks, including the identi�cation of gene families [47; 21] and in
studying gene expression [48; 49; 50]. Networks consist of a set of nodes (drawn
as circles in our networks) representing a set of objects of interest and a set of
edges (drawn as straight lines between two nodes) representing relationships
between these objects. In our study we have used nodes to represent mod-

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. MULTI-MECHANISM CO-EVOLUTIONARY NETWORKS

REVEAL FUNCTIONALLY-RELATED GENES 17

Figure 3.4: Quasi-pathway. Network of the main functions present in the
links between subnetworks 1, 2 and 4 and the genes associated with those
functions. Purple nodes represent genes, green nodes represent GO terms.
Edges link GO terms to genes associated with those terms or link GO terms
in close proximity in the GO hierarchy.

ules (sets) of potentially co-evolving genes based on a particular mechanism of
evolution. Edges represent overlaps between these modules, thus indicating a
possible interplay between di�erent evolutionary mechanisms. Networks have
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proven to be an excellent tool for a study of evolution as they can easily be
clustered, merged, compared, queried and manipulated both mathematically
and visually. Furthermore, as an abstract model, networks seamlessly handle
the use of multiple data types. GO enrichment performed on local network
topologies of the combined co-evolution network was used to reveal the main
functions of co-evolving grapevine genes.

A module-based network construction approach allowed for three di�erent
mechanisms of evolution to be combined into a single evolutionary model for
grapevine. GO annotation of the network and enrichment analysis of sub-
networks allowed for putatively co-evolving functions to be identi�ed. The
combination of the node and edge enrichment views provided more complete
pictures of co-evolving functions than either of the two views in isolation and
points towards functional elements that are predominantly co-evolving via a
single evolutionary mechanism and a subset of key genes that are co-evolving
by multiple mechanisms. Many of the functions that appear to be co-evolving
in the four subnetworks used as examples in this paper are already known to
be functionally related and have substantial literature support. This would
seem to support the validity of this network-based method as a useful model
of evolution. This network model can easily be extended to other species and
can be used for further hypothesis generation in a systematic fashion across
all network topologies. As such, this approach has the potential to signif-
icantly improve our understanding of the evolution of grapevine as well as
other species.

It is possible that there is bias in the portion of the evolutionary network
attributable to gene expression patterns as many of the transcriptome studies
in grapevine have focused on biotic or abiotic stress responses. Furthermore
the majority of the publicly available transcriptome data for grapevine was pro-
duced with the A�ymetrix microarray which covers roughly half of the genes
in the grapevine genome. These are the limitations of working with non-model
species for which the data is more limited. However, the approach taken here
combines data from multiple perspectives and the networks discussed include
genes that were identi�ed as co-evolving by other mechanisms besides gene
regulation and, as such, we believe that the networks are reasonably robust to
these sorts of potential biases.

Frequently, thirty percent of protein-encoding genes found in the genomes
of eukaryotes are either unannotated or annotated as proteins of unknown
function. This represents a signi�cant challenge to our quest to understand an
organism as a complex system of interacting molecular and biological functions.
However, as we have shown, the network topologies in our evolutionary model
correspond to related/interacting functions. Thus, this evolutionary network
can be used as a new method by which to do guilt-by-association/functional
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inference hypothesis generation for the 3600 grapevine genes of unknown func-
tion present in the network. This should, for example, help in determining
phenotypes to look for in gene deletion/silencing or over-expression studies of
genes of unknown function.

3.5 Materials and Methods

3.5.1 Co-evolution Module Construction

Modules of co-evolving grapevine genes were constructed separately assum-
ing three models of evolution, namely evolution by gene duplication (gene
family correlation modules), evolution by gene expression regulation (gene
co-expression modules) and evolution by point mutations (Evolutionary Rate
Covariation modules). A summary of the work�ow used to construct these
modules is shown in Figure 3.1.

3.5.1.1 Gene Family Correlation Modules

26 translated plant genomes were obtained, of which 25 (including grapevine)
were downloaded from Plaza (version 2.5) [51] and the potato genome was
downloaded from the Solanaceae Genomics Resource
[http://solanaceae.plantbiology.msu.edu/]. Gene families were constructed across
these 26 plant genomes using our newly developed Parallel-OrthoMCL (de-
scribed elsewhere), a parallel version of the OrthoMCL software package [21],
allowing gene families to be identi�ed across much larger sets of genomes. A
species-family matrix (SF-matrix) was constructed in which the columns rep-
resented plant species and rows represented gene families, such that entry ij
was the number of genes in gene family i present in species j. Gene families
that were correlated across species were then determined by calculating the
Pearson correlation coe�cient between all pairs of rows of the SF-matrix using
mcxarray [52] and applying an absolute threshold of 0.8. Modules of corre-
lated gene families were then constructed by clustering the resulting thresh-
olded network using MCL [52]. These modules were subsequently pruned to
remove all non-grapevine genes, resulting in modules of correlated grapevine
gene families.

3.5.1.2 Gene Co-expression Modules

472 microarray experiments using the Grapevine A�ymetrix Genechip were
downloaded from Gene Expression Omnibus and processed using RMA [53].
Co-expression was then calculated as the Pearson correlation coe�cient be-
tween the expression pro�les of the probes [52]. An absolute threshold of 0.8
was applied and the resulting thresholded network was clustered using MCL
[52] in order to create co-expression modules. Probes were mapped to their
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corresponding genes in order to produce modules of co-expressed grapevine
genes.

3.5.1.3 Evolutionary Rate Covariation Modules

Modules of genes with similar evolutionary rates were constructed using the
Mirror-Tree method adapted with the projection operator [12]. A `minimal
gene family' was constructed around each grapevine gene by selecting the
best ortholog or co-ortholog of that gene in each of the 26 plant species used
in Parallel-OrthoMCL. A minimum family size threshold of 5 was applied.
The amino acid sequences of the resulting gene families were aligned using
MUSCLE [54]. The evolutionary distances between genes within each family
were calculated using the ProtDist program from the PHYLIP package [55],
resulting in a distance matrix for each grapevine gene. The distance matrices
were then unfolded into phylogenetic vectors vi. All phylogenetic vectors were
then normalised by their standard deviation, and the average phylogenetic
vector was calculated as:

vav =
1

m

m∑
i=1

vsi
||vsi ||

(3.5.1)

where vsi is a phylogenetic vector normalised by standard deviation and ||.|| is
the euclidean norm [12]. The projection operator in equation 3.5.2 was applied
to each of the original phylogenetic vectors.

εi = vi − vav〈vi, vav〉 (3.5.2)

The evolutionary rate covariation between grapevine genes was then calcu-
lated as the Pearson correlation coe�cient between all pairs of the projected
phylogenetic vectors εi using mcxarray [52]. An absolute threshold of 0.9 was
applied, after which the thresholded network was clustered using MCL [52].
The resulting clusters represent modules of grapevine genes with similar evo-
lutionary rate covariation signatures.

3.5.2 Module Overlap and GO Enrichment

For each pair of evolutionary mechanisms, the module overlap was calculated
between all pairs of modules using the Jaccard Index. For two sets A and B,
the Jaccard Index JAB is de�ned as the size of the intersection of the two sets,
divided by the size of the union of the two sets (Equation 3.5.3).

JAB =
|A ∩B|
|A ∪B|

(3.5.3)

In the case of overlaps between ERC modules and gene family modules, inpar-
alogs were excluded from intersections. This resulted in an overlap matrix for
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each pair of evolutionary mechanisms, in which the columns represented co-
evolutionary modules from one mechanism, rows represented co-evolutionary
modules from another mechanism, and entry ij represented the jaccard overlap
between modules i and j. The right tailed Fisher exact test was used to iden-
tify signi�cant module overlaps. This was performed using a customized Perl
program which made use of the Text::NSP::Measures::2D::Fisher Perl mod-
ule from CPAN (http://www.cpan.org/). When testing the null hypothesis
"module i is not enriched in module j, the p-value was calculated as:

p =

(
R
x

)(
T−R
C−x

)(
T
C

) (3.5.4)

where x is entry ij, R is the sum of row i, C is the sum of column j and T is
the sum of all entries in the matrix. The Holm-Bonferroni method was used
for multiple hypothesis correction [56]. An intersection cut-o� of 2 was the
applied. Networks were then constructed from the signi�cant module overlaps
and visualized in Cytoscape [23]. A combined co-evolution network was con-
structed by merging the three co-evolution networks constructed for pairs of
evolutionary mechanisms. GO terms for the grapevine genes were downloaded
from Plaza (version 2.5) [51] and mapped onto their corresponding modules.
GO enrichment was performed on subsets of genes in local neighbourhoods of
the combined co-evolution network using GOEAST [25]. For each subnetwork
in question, two sets of genes were extracted using a customized Perl script,
speci�cally, the genes present in the nodes as well as the genes present in
the edges. GO term enrichment was performed on each of these sets of genes,
called node enrichment and edge enrichment, respectively [25]. MultiGOEAST
was used to compare the GOEAST results from the node enrichment and edge
enrichment views of a subnetwork.

3.5.3 Module-GO-Term Network Construction

A GO-term network was constructed to investigate the functions present in
the nodes and edges linking these subnetworks 1, 2 and 4. (Figure S21). Each
module was connected to nodes representing GO terms associated with that
module. GO terms were also linked if they were within a distance of 2 from
each other in the GO hierarchy.

3.5.4 Gene-GO-Term Network Construction

The main functions linking subnetworks 1, 2 and 4 were selected as the cen-
tral GO term nodes in the Module-GO-Term network (Figure S21), namely
response to salt stress, cellulose biosynthetic process, defense response to bac-
terium, response to wounding, response to jasmonic acid stimulus, response to
abscisic acid stimulus, apoptotic process and defense response. Genes which
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were present in subnetworks 1, 2 and 4 which were annotated with at least 2
of these terms were then selected. A network was constructed in which each
node represented either a gene (purple nodes) or GO-terms (light green nodes)
(Figure 3.4). GO-terms were connected to genes annotated with that term,
and GO-terms were also linked if they were within a distance of 2 from each
other in the GO hierarchy. Grapevine InterPro annotations as well as the
Arabidopsis gene descriptions were downloaded from Plaza (version 2.5) [51].
Grapevine genes were annotated with the descriptions of their Arabidopsis or-
thologs, as determined by Parallel-OrthoMCL. The genes in this network were
then assigned InterPro annotations and gene descriptions where possible.
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Figure S1: Co-expression-ERC Co-evolution Network. Network of
signi�cant overlaps between co-expression modules (blue nodes) and ERC
modules (pink nodes). Edges represent signi�cant overlaps between the co-
expression modules and the ERC modules.
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Figure S2: ERC-Gene family Co-evolution Network. Network of signi�-
cant overlaps between ERC modules (pink nodes) and gene family correlation
modules (yellow nodes). Edges represent signi�cant overlaps between the ERC
modules and gene family modules.
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Figure S3: Co-expression-Gene family Co-evolution Network. Network
of signi�cant overlaps between co-expression modules (blue nodes) and gene
family correlation modules (yellow nodes). Edges represent signi�cant overlaps
between the co-expression modules and gene family modules
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Figure S4: Distributions (A) Power Law Distrbution (B) Degree Distribution
for the combined co-evolution network. A property of scale-free networks is
that their degree distribution follows a power-law distribution. This �gure
illustrates that the combined co-evolution network is scale-free, since its degree
distribution is similar to the power law distribution.
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Figure S5: Subnetworks. (A) Subnetwork 1 consists of a central gene fam-
ily correlation module (yellow node) intersecting with several co-expression
modules (blue nodes) and one ERC module (pink node). (B) Subnetwork 2
consists of a central co-expression module (blue node) surrounded by several
gene family modules (yellow nodes), ERC modules (pink nodes) and one other
co-expression module. (C) Subnetwork 3 consists of a central ERC module
intersecting with several co-expression modules and gene family modules. (D)
Subnetwork 4 consists of a central gene family module surrounded by several
co-expression modules and ERC modules.
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Figure S6: Co-evolving Functions. Summary of the related functions which
are enriched in (A) subnetwork 2 and (B) subnetwork 4. Arrows indicate
relationships for which there is previous literature evidence as referred to in
the text.
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Figure S7: Node Enrichment View: Subnetwork 1. GOEAST results for
the node enrichment view of subnetwork 1. Yellow rectangles indicate enriched
GO terms. Arrows indicate relationships between terms in the Gene Ontology
and are red if both terms are enriched, black if one of terms connected by the
arrow is enriched or dashed if nether term connected is enriched.
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Figure S8: Edge Enrichment View: Subnetwork 1. GOEAST results for
the node enrichment view of subnetwork 1. Yellow rectangles indicate enriched
GO terms. Arrows indicate relationships between terms in the Gene Ontology
and are red if both terms are enriched, black if one of terms connected by the
arrow is enriched or dashed if nether term connected is enriched.
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Figure S9: Node Enrichment View: Subnetwork 2. GOEAST results for
the node enrichment view of subnetwork 2. Yellow rectangles indicate enriched
GO terms. Arrows indicate relationships between terms in the Gene Ontology
and are red if both terms are enriched, black if one of terms connected by the
arrow is enriched or dashed if nether term connected is enriched.
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Figure S10: Edge Enrichment View: Subnetwork 2. GOEAST results for
the node enrichment view of subnetwork 2. Yellow rectangles indicate enriched
GO terms. Arrows indicate relationships between terms in the Gene Ontology
and are red if both terms are enriched, black if one of terms connected by the
arrow is enriched or dashed if nether term connected is enriched.
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Figure S11: Combined Enrichment View: Subnetwork 2. Multi-
GOEAST results combining the node enrichment view and edge enrichment
view of subnetwork 2. Yellow rectangles represent GO terms which are en-
riched in both the edge and the node view, green rectangles represent GO
terms only enriched in the edge view and red rectangles represent GO terms
only enriched in the node view. Arrows indicate relationships between terms
in the Gene Ontology and are red if both terms are enriched, black if one of
terms connected by the arrow is enriched or dashed if nether term connected
is enriched.
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Figure S12: Node Enrichment View: Subnetwork 3. GOEAST results for
the node enrichment view of subnetwork 3. Yellow rectangles indicate enriched
GO terms. Arrows indicate relationships between terms in the Gene Ontology
and are red if both terms are enriched, black if one of terms connected by the
arrow is enriched or dashed if nether term connected is enriched.
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Figure S13: Edge Enrichment View: Subnetwork 3. GOEAST results for
the node enrichment view of subnetwork 3. Yellow rectangles indicate enriched
GO terms. Arrows indicate relationships between terms in the Gene Ontology
and are red if both terms are enriched, black if one of terms connected by the
arrow is enriched or dashed if nether term connected is enriched.
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Figure S14: Node Enrichment View: Subnetwork 4. GOEAST results for
the node enrichment view of subnetwork 4. Yellow rectangles indicate enriched
GO terms. Arrows indicate relationships between terms in the Gene Ontology
and are red if both terms are enriched, black if one of terms connected by the
arrow is enriched or dashed if nether term connected is enriched.
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Figure S15: Edge Enrichment View: Subnetwork 4. GOEAST results for
the node enrichment view of subnetwork 4. Yellow rectangles indicate enriched
GO terms. Arrows indicate relationships between terms in the Gene Ontology
and are red if both terms are enriched, black if one of terms connected by the
arrow is enriched or dashed if nether term connected is enriched.
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Figure S16: Combined Enrichment View: Subnetwork 4. Multi-
GOEAST results combining the node enrichment view and edge enrichment
view of subnetwork 4. Yellow rectangles represent GO terms which are en-
riched in both the edge and the node view, green rectangles represent GO
terms only enriched in the edge view and red rectangles represent GO terms
only enriched in the node view. Arrows indicate relationships between terms
in the Gene Ontology and are red if both terms are enriched, black if one of
terms connected by the arrow is enriched or dashed if nether term connected
is enriched.
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Figure S17: Hormone Crosstalk Quasi-Pathway Network of genes present
in subnetwork 11 (purple nodes) which are connected to at least 2 of selected
GO-terms (light green nodes). This network indicates the crosstalk between
biotic and abiotic stress responses through hormone signalling on a gene level,
as suggested by the enrichment in subnetwork 4.
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Figure S18: Breadth �rst search Subnetwork of Figure S17, constructed
by selecting all nodes within a breadth �rst search of length 2 from the node
"defense response to bacteria".
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Figure S19: Crosstalk Gene-Module Network Network of genes (purple
nodes) from Figure S18 connected to co-evolution modules in which they are
present. In the case of gene family modules, genes are connected to the gene
families in which they are present, and the gene families are connected to
the gene family modules in which they are present. Yellow nodes represent
gene family modules, light orange nodes represent gene families, blue nodes
represent co-expression modules an pink nodes represent ERC modules.
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Figure S20: Merged Crosstalk NetworkMerged gene-go network from Fig-
ure S18 and gene-module network from Figure S19. Purple nodes represent
genes, light green nodes represent GO-terms, yellow nodes represent gene fam-
ily modules, light orange nodes represent gene families, blue nodes represent
co-expression modules an pink nodes represent ERC modules
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Figure S21: Linking Nodes. Network of nodes linking subnetworks 1, 2 and
4. Yellow and blue nodes represent co-expression and gene-family modules
respectively, and green nodes represent GO-terms.
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Table S1: Plant Genomes. List of plant genomes used for gene family
construction, and their associated three letter code for OrthoMCL analysis,
common names and genome download source.

Species Name Code Common Name Source

Lotus japonicus lja Legume Plaza
Medicago truncatula mtr Nitrogen Fixating Legume Plaza
Glycine max gma Soybean Plaza
Malus domestica mdo Apple Plaza
Fragaria vesca fve Strawberry Plaza
Manihot esculenta mes Cassava Plaza
Ricinus communis rco Caster Oil Plant Plaza
Populus trichocarpa ptr Black Cottonwood Tree Plaza
Arabidopsis thaliana ath Arabidopsis thaliana Plaza
Arabidopsis lyrata aly Arabidopsis lyrate Plaza
Carica papaya cpa Papaya Plaza
Theobroma cacao tca Cocoa Tree Plaza
Vitis vinifera vvi Grapevine Plaza
Oryza sativa ssp. japonica osa Rice Plaza
Oryza sativa ssp. indica osi Rice Plaza
Brachypoium distachyon bdi Grass Plaza
Sorghum bicolor sbi Sorghum Plaza
Zea mays zma Maize Plaza
Selaginella moellendor�i smp Lycophyte Plaza
Physcomitrella patens ppa Moss Plaza
Ostreococcus lucimarinus olu Algae Plaza
Ostreococcus tauri ota Algae Plaza
Micromonas sp. RCC299 mrc Algae (picophytoplankton) Plaza
Volvox carteri vca Algae Plaza
Chlamydomonas reinhardtii cre Algae Plaza
Solanum tuberosum pot Potato SGR
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4.1 Abstract

We present and develop the theory 3-way networks, a type of hypergraph in
which each edge models relationships between triplets of objects as opposed to
pairs of objects as done by standard network models. We explore approaches
of how to prune these 3-way networks, illustrate their utility in comparative ge-
nomics and demonstrate how they �nd relationships which would be missed by
standard 2-way network models using a phylogenomic dataset of 211 bacterial
genomes.

4.2 Author Summary

Genomes contain the information underlying the molecular functions of an or-
ganism. One way to compare the entire genomes of di�erent organisms is to
compare their gene-family content pro�les which is e�ectively a comparison
of their functional potential. Standard networks, when used to model phy-
logenomic similarities, are not capable of capturing some of the underlying
complexity of the relationships between genomes. In order to address this, we
have developed a new three-way similarity metric and constructed three-way

1
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networks modelling the relationships between 211 bacterial genomes. We �nd
that such three-way networks �nd cross-species genomic similarities that would
have been otherwise missed by simpler models such as standard networks.

4.3 Introduction

Network models are a useful reductionist approach for modelling complex sys-
tems. Networks involve representing a collection of objects as nodes, and
representing relationships between those objects as edges. Thus, networks
model a system in a pairwise manner, breaking a system down into individual
parts (nodes), modelling relationships between pairs of these individual parts
(edges) and then reconstructing the system as a network [1]. However, mod-
elling a system based on only pairwise relationships biases the model against
more complex relationships that may exist in the system. To this end, we
introduce a new ternary network de�nition, namely 3-way networks based on
the concept of hypergraphs. 3-way networks model the relationships between
triplets of objects instead of pairs of objects. The concept of calculating the
similarity between objects three at a time is not a novel concept [2; 3; 4] and
general hypergraphs [5] have previously been used in certain areas of biology,
including metabolic modelling, gene expression and RNA interaction studies
[6; 7; 8; 9; 10]. However, to our knowledge, this is the �rst time that the con-
cept of 3-way networks has been applied in the �eld of comparative genomics.

In this study, we develop the theory around 3-way networks in terms of ab-
stract de�nition, weighting 3-way networks and pruning 3-way networks. We
develop a new 3-way metric for the weighting of 3-way edges. We then apply
a 3-way network model to a set of 211 bacterial genomes, modelling the simi-
larities between the bacteria on a whole genome scale, (based on gene family
content), and compare the resulting 3-way networks to those obtained using
standard 2-way network models.

4.4 Results and Discussion

4.4.1 De�nition of 3-way Networks

A network, or graph, G is an ordered pair, de�ned as

G = (V,E) (4.4.1)

where V = {v1, v2, ..., vn} is a set of n nodes and E = {e1, e2, ..., em} is a
set of m edges [11]. In this case, nodes represent a certain set of objects of
interest and edges can be interpreted as relationships between these objects. In
particular, edges represent pairwise relationships and thus are de�ned (for an
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undirected network) as pairs of nodes. With the aim of modelling higher order
relationships than simply pairwise relationships, we de�ne 3-way networks as
network models of ternary relationships, i.e. relationships between triplets of
objects. 3-way networks are de�ned by replacing the previous de�nition of an
edge as a set of 2 nodes by a set of 3 nodes. Thus a 3-way network is a type
of hypergraph [5]. This can be formalized with the following de�nition:

De�nition 1. A 3-way network is a graph G = (V,E) where V = {v1, v2, ..., vn}
is the set of nodes and E = {e1, e2, ..., em} is the set of edges. Each edge ei is
de�ned as a set of 3 nodes, ei = {vx, vy, vz} where x, y, z ∈ {1, 2, 3, ...,m}.

Graphically, each 3-way edge is a line connecting 3 nodes, which can be in-
terpreted as a relationship between 3 objects. An example of a 3-way net-
work with 5 nodes, V = {v1, v2, v3, v4, v5} and 2 edges, E = {e1, e2} =
{{v1, v2, v3}, {v3, v4, v5}} is shown in Figure 4.1a.

4.4.2 Weighted 3-way Networks

4.4.2.1 3-way Sørensen Index

In a normal 2-way network, each edge can be assigned a weight indicating
the strength of the relationship between the two nodes the edge is connecting.
This concept can easily be extended to a 3-way network, in which an edge
weight will indicate the strength of the relationship between the 3 nodes the
edge is connecting. For a 3-way network, this requires a similarity metric
which quanti�es the similarity between 3 objects at a time. Assuming that
each object is represented by a vector, a similarity metric which quanti�es the
similarity between 3 vectors is needed. The Sørensen Index [12] is a similarity
metric which quanti�es the overlap between the features of pairs of objects.
Let X and Y be two objects and let each object be viewed as a set of features.
The Sørensen Index S(X, Y ) is de�ned as:

S2(X, Y ) =
2|X ∩ Y |
|X|+ |Y |

(4.4.2)

where |X| is the number of features of object X, |Y | is the number of features
of object Y and |X ∩ Y | is interpreted as the number of features shared by
object X and object Y [13]. If objects are represented by vectors, the Sørensen
Index between two vectors X and Y can be expressed as:

S2(X, Y ) =
2
∑

i min(XBi, YBi)∑
i(XBi + YBi)

(4.4.3)

where XB and YB are binary vectors de�ned as:

XBi =

{
1 ifXi ≥ 1

0 ifXi = 0
(4.4.4)
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Figure 4.1: 3-way Edges and Intersections (a) A small, 3-way network
consisting of 5 nodes v1, v2, v3, v4 and v5 and two 3-way edges e1 and e2. Edge
e1 connects nodes v3, v4 and v5 and edge e2 connects nodes v1, v2 and v3. (b)
Venn diagram for a 3-way intersection of species. a is the number of families
present in species A, b is the number of families present in species B, c is the
number of families present in species C, ab is the number of families present
in species A and species B, ac is the number of families present in species A
and species C, bc is the number of families present in species B and species C,
abc is the number of families present in species A, B and C, ā is the number
of families present only in species A, b̄ is the number of families present only
in species B and c̄ is the number of families present only in species C.
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YBi =

{
1 if Yi ≥ 1

0 if Yi = 0
(4.4.5)

An extension of the Sørensen Index exists for calculating the similarity be-
tween triplets of objects. This metric was originally developed for quantifying
the similarity between the species content of di�erent biological samples [2].
Generally, for each triplet of objects A, B, and C, each represented by a vector,
the three-way Sørensen index can be de�ned as:

S3(ABC) =
3

2

(
ab+ ac+ bc− abc

a+ b+ c

)
(4.4.6)

where a is the number of features present in object A, b is the number of
features present in object B, c is the number of features present in object
C, ab is the number of features present in object A and object B, ac is the
number of features present in object A and object C, bc is the number of
features present in object B and object C and abc is the number of features
present in object A, B and C [2]. These variables can be visualized on a venn
diagram (Figure 4.1b).
The 3-way Sørensen Index can also be expressed in vector format as follows:

S3(X, Y, Z) =
3
2

∑
i (min(XBi, YBi) + min(XBi, ZBi) + min(YBi, ZBi)−min(XBi, YBi, ZBi))∑

i(XBi + YBi + ZBi)
(4.4.7)

4.4.2.2 3-way Czekanowski Index

A quantitative version of the Sørensen Index is called the Czekanowski Index
[14]. For two vectors X and Y , the Czekanowski Index is de�ned as:

C2(X, Y ) =
2
∑

i min(Xi, Yi)∑
i(Xi + Yi)

(4.4.8)

Notice that the equation is the same as that of the Sørensen Index in vector
format, except that the original vectors are used and not binary vectors. The
Czekanowski Index thus considers the size of the overlaps between features
of an object and not simply the presence or absence of features. Using the
same structure as the 3-way Sørensen Index, we extended the Czekanowski
Index to a 3-way form. For 3 vectors X, Y and Z, we have de�ned the 3-way
Czekanowski Index between the three vectors as:

C3(X, Y, Z) =
3
2

∑
i (min(Xi, Yi) + min(Xi, Zi) + min(Yi, Zi)−min(Xi, Yi, Zi))∑

i(Xi + Yi + Zi)
(4.4.9)
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4.4.3 Pruning 3-way Networks

Many approaches used to prune edges from a network such as Maximum Span-
ning Tree (MST) algorithms and clustering algorithms are designed for stan-
dard 2-way networks and are not directly applicable to 3-way networks. How-
ever, certain approaches are easily transferable to 3-way networks, namely
thresholding and best-edge selection.

4.4.3.1 Thresholding

Thresholding can easily be transferred from a standard 2-way network to a 3-
way network. Thresholding is one of the simplest ways to prune any network.
A threshold is set and edges with a weight below the chosen threshold are
removed. In order to determine a justi�able threshold for a 3-way Sørensen
network we have developed the following theorem:

Theorem 1. If the intersection of three objects abc is zero (i.e. there is no
feature present in all three objects), then S3(ABC) ≤ 3

4
.

Proof. If abc = 0, then

S3(ABC) =
3

2
.
ab+ ac+ bc− abc

a+ b+ c

=
3

2
.

ab+ ac+ bc− abc
2(ab+ ac+ bc) + ā+ b̄+ c̄

=
3

2
.

ab+ ac+ bc

2(ab+ ac+ bc) + ā+ b̄+ c̄

There are two cases to consider.

Case 1: If ā, b̄ and c̄ are all equal to 0, then

S3(ABC) =
3

2
.

ab+ ac+ bc

2(ab+ ac+ bc) + ā+ b̄+ c̄

=
3

2
.
ab+ ac+ bc

2(ab+ ac+ bc)

=
3

2
.
1

2

=
3

4

Thus if abc = 0 and ā, b̄ and c̄ are all equal to 0 then S3(ABC) = 3
4
.

Case 2: If ā, b̄ and c̄ are all greater than zero 0 (they cannot be less than
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zero, since there cannot be a negative number of features associated with an
object), then

2(ab+ ac+ bc) + ā+ b̄+ c̄ > 2(ab+ ac+ bc)

Therefore, S3(ABC) =
3

2
.

ab+ ac+ bc

2(ab+ ac+ bc) + ā+ b̄+ c̄

<
3

2
.
ab+ ac+ bc

2(ab+ ac+ bc)

=
3

4

Thus if abc = 0 and ā, b̄ and c̄ are all greater than zero 0, S3(ABC) < 3
4
.

Combining these two cases, we can conclude that if abc = 0, S3(ABC) ≤ 3
4
.

A similar thresholding strategy can be adopted for the 3-way Czekanowski
Index. We need the following:

Lemma 1. Given integers a, b and c, the following relation holds:

min(a, b) + min(a, c)−min(a, b, c) ≤ a (4.4.10)

We now prove a theorem similar to Theorem 1, but relating to the 3-way
Czekanowski Index.

Theorem 2. Given 3 species X, Y , and Z, if there is no gene family present
in all 3 species, then C3(XY Z) ≤ 3

4
.

Proof. If there is no gene family present in all 3 species X, Y and Z, then∑
i min(Xi, Yi.Zi) = 0. Therefore,

C3(X, Y, Z) =
3
2

∑
i (min(Xi, Yi) + min(Xi, Zi) + min(Yi, Zi)−min(Xi, Yi, Zi))∑

i(Xi + Yi + Zi)

=
3
2

∑
i (min(Xi, Yi) + min(Xi, Zi) + min(Yi, Zi))−

∑
i (min(Xi, Yi, Zi))∑

i(Xi + Yi + Zi)

=
3
2

∑
i (min(Xi, Yi) + min(Xi, Zi) + min(Yi, Zi))∑

i(Xi + Yi + Zi)

Using Lemma 1, this can be expanded as:

C3(X, Y, Z) =
3
2

∑
i (min(Xi, Yi) + min(Xi, Zi) + min(Yi, Zi))∑

i(Xi + Yi + Zi)

≤
3
2

∑
i (min(Xi, Yi) + min(Xi, Zi) + min(Yi, Zi))

2
∑

i (min(Xi, Yi) + min(Xi, Zi) + min(Yi, Zi))

=
3

4

Thus if
∑

i min(Xi, Yi.Zi) = 0, then C3(X, Y, Z) ≤ 3
4
.
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Thus the minimum justi�able threshold for 3-way Sørensen and 3-way Czekanowski
networks is 0.75.

4.4.3.2 Best Edges

Another simple way to prune a network is to select for each node, the best x
edges connected to that node, i.e. select the x edges with the highest weight
for each node. This is easily done by taking a list of all edges connected to a
given node, ranking them by weight from highest to lowest, and then selecting
the top x edges. This approach does not depend on the de�nition of the edge.
It is directly transferable from the concept of a 2-way network to the concept
of a 3-way network.

4.4.4 Phylogenomic Networks of Bacterial Genomes

Gene families were calculated across a dataset consisting of 211 bacterial
genomes using TribeMCL [15] and gene family content pro�les constructed
for each bacterial species. Various phylogenomic 2-way similarity, 3-way simi-
larity and gene family enrichment networks were then constructed in order to
investigate the relationships between the bacterial species based on gene family
content and to compare the e�ect of 3-way networks as opposed to 2-way net-
works. These networks are described below. In each network, nodes represent
bacterial species and edges represent similarities between species based on 2-
way or 3-way similarity between their gene family content pro�les, or represent
connections between species based on shared gene family enrichment.

4.4.4.1 3-way and 2-way Sørenesen Networks

The concept of 3-way networks was developed in order to attempt to model
more complex relationships that would otherwise be missed by pairwise rela-
tionships. To this end, the de�nition of an edge was extended to represent a
ternary relationship, i.e. a relationship between 3 nodes. In order to quan-
tify these ternary relationships, a 3-way similarity metric was chosen, namely
the Sørensen Index. This allowed �high order similarities" or similarities be-
tween more than two species to contribute to our interpretation. The 3-way
Sørensen Index was used to quantify the similarity between all triplets of bac-
terial species, based on their gene family content. Applying a threshold of 0.76
allowed us to select for edges which we were sure had a contributing factor of
the 3-way intersection and not simply a high intersection between pairs of
species (See Theorem 1). This thresholded network can be seen in Figure S1.
Large coloured nodes represent bacterial species and the combination of the
small white nodes and the grey 2-way edges represent 3-way edges. Certain
genera were selected and those bacterial species nodes coloured according to
genus. (The default node colour was grey, thus grey nodes are not all in the
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same genus). The 3-way network was also pruned by selecting only the best
and second best edge for each node. This best-edge 3-way Sørensen network
can be seen in Figure 4.2.

Networks were also constructed using the standard 2-way Sørensen Index and
pruned using a best edge approach and a Maximum Spanning Tree (MST)
approach. For the best edge approach, the best and second best edges were
selected for each node. The resulting network is shown in Figure 4.3a.

A Maximum Spanning Tree is a useful approach for sparsifying a network
by isolating the `backbone' of the network as the shortest tree spanning all
nodes which has maximum weight. The Sørensen MST can be seen in Figure
4.3b.

The 3-way networks in Figure 4.2 and Figure S1 have an interesting struc-
ture. In each network, nodes of the same colour group together, indicating
that the genera group together well. The network shown in Figure 4.2 es-
pecially seems to show an interesting middle ground between connectedness
and modularity. There are generally many connections within genera, but also
some connections between genera. In contrast to this is the 2-way Sørensen
MST shown in Figure 4.3b. This view of the network shows no modularity
as the genera do seem to group together, but there are no connections within
the genera indicating how similar the species within genera are. The 2-way
Sørensen best edge network (Figure 4.3a) was constructed by selecting only the
best and second best edges for each node from the standard 2-way Sørensen
network. It would appear that this 2-way best edge network is overly sparse,
and does not give much information about the connectedness between genera.
It would seem that the genera are also not as well grouped as in the 3-way
best-edge network.

4.4.4.2 3-way and 2-way Czekanowski Networks

A new 3-way metric was developed called the 3-way Czekanowski Index. It is
an extension of the standard 2-way Czekanowski Index [16] in the same way
that the 3-way Sørensen Index [2] is an extension of the original 2-way Sørensen
Index [13]. A 3-way network was constructed using the 3-way Czekanowski
Index and pruned in the same way described above for the 3-way Sørensen
network. The thresholded 3-way Czekanowski network and the best-edge 3-way
Czekanowski network can be seen in Figures S3 and 4.4 respectively. Networks
were also constructed using the standard 2-way Czekanowski Index and can
be seen in Figure's 4.5a and 4.5b.
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Figure 4.2: Best-Edges 3-way Sørensen Network. 3-way Sørensen net-
work pruned by selecting the best and second best edge for each node. Nodes
represent bacterial species and edges represent similarity between triplets of
bacterial species based on gene family content, quanti�ed using the 3-way
Sørensen Index. Nodes are coloured according to genus. Default colour is
grey.

4.4.4.3 Gene Family Enrichment Networks

In order to get another perspective on the relationships between the bacteria
species based on gene families, a gene family enrichment network was con-
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structed (Figure 4.6). In this network, large, coloured nodes represent bacte-
rial species and small white nodes represent gene families which are enriched in
more than one species as determined using Fisher's Exact Test [17]. Each gene
family node is connected to the species in which the gene family is enriched.
It can clearly be seen that the genera group together well in this network.
Shared enriched families thus seem to be a competent measure of species sim-
ilarity. This network also allows us to target gene families which seem to be
distinguishing characteristics of small groups of species.

4.4.4.4 Network Comparison

The 3-way Sørensen networks often support the interpretations of the 2-way
networks. However, in some cases, the 3-way networks give new information
which di�ers from that of the 2-way networks. A selection of examples will be
discussed.

Clostridium-Bacillus Cluster The cluster of red and light blue nodes in
the 3-way Sørensen network (Figure 4.2) and the 3-way Czekanowski network
(Figure 4.4) consist of Clostridium species (light blue nodes) and Bacillus
species (red nodes). Figure 4.7a and 4.7b show subnetworks containing these
two clusters, and it is clear that, in both the Sørensen 3-way network and
the Czekanowski 3-way network, there are a number of 3-way edges connect-
ing species within and between those two genera. When looking at the same
two genera in the 2-way Sørensen and 2-way Czekanowski networks (Figures
4.3a, 4.3b, 4.5a and 4.5b) there is no evidence of any particular link between
these 2 genera. In the 2-way Sørensen MST (Figure 4.3b) the two genera are
close together, but there are no edges between them. In the 2-way best edge
Sørensen network (Figure 4.3a) these two genera are in two completely separate
modules, giving no indication whatsoever that they are connected or similar.
Similar patterns are seen in the 2-way Czekanowski MST (Figure 4.5b) and
the 2-way best edge Czekanowski network (Figure 4.5a). When looking at the
shared enriched gene family network (Figure 4.6) the Clostridium and Bacillus
species are topologically close together. The Clostridium and Bacillus species
as well as their neighbouring gene families were selected as a subnetwork from
the family enrichment network and can be seen in Figure 4.7c. It is apparent
that the Clostridium and Bacillus species share several enriched gene families.
The 3-way Sørensen and 3-way Czekanowski networks seem to be picking up a
relationship between the two genera which is not seen in the 2-way networks,
which is further supported by the gene family enrichment data.

Gene families which were enriched in both genera, and present in at least
3 species were selected for further analysis. The genes in these gene families
were then compared against all Clostridium and Bacillus proteins in NCBI us-
ing BLAST [18; 19]. Many of the genes identi�ed were related to sporulation.
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Clostridium and Bacillus species are known to sporulate and there is liter-
ature evidence for the conservation of various sporulation genes across these
two genera [20]. Sporulation is a process which involves the production of
endospores, which are dormant and highly resistent to environmental stresses
[20]. Examples of genes in these gene families enriched in both Bacillus and
Clostridium species were abrB and gerKA, which are known to be involved in
sporulation in Bacillus species [21].

Another gene family enriched in both Clostridium and Bacillus species con-
tained genes with polysaccharide deacetylase functions, in particular, the gene
pdaB. There is literature evidence for the requirement of polysaccharide deacety-
lases for sporulation in Bacillus subtilis, in which pdaB mutants were unable
to properly maintain their spores in the later stages of sporulation [22]. The
pdaA gene has also been found to be neccesary for spore germination in B.
subtilis [23]. The enrichment of this family in both Clostridium and Bacillus
species along with the other sporulation families could suggest a similar role
of deacetylases in the sporulation of Clostridium species.

We also found that another gene family enriched in both Bacillus and Clostrid-
ium species contained genes related to chemotaxis, namely a methyl accept-
ing chemotaxis protein. Chemotaxis and sporulation are oppositely regulated
processes and are both regulated by the major sporulation regulating protein
Spo0A [24]. Thus, it would appear that even though Bacillus and Clostridium
are quite distant phylogenetically, they share a set of sporulation related pro-
tein families which appear to be detected by 3-way networks, and are missed
by simpler 2-way networks quantifying only 2-way relationships.

Brucella Partitioning Species in the genus Brucella can be found as light
orange nodes. In the Sørensen MST and the Czekanowski MST (Figures 4.3b
add 4.5b respectively), this genus is split into two groups, one group containing
B. canis, B. abortis and B. ovis (Group 1), and the other group containing
B. melitensis and B. suis (Group 2) . These same separate groupings are also
seen in the best-edge 3-way Sørensen network (Figure 4.2) and best-edge 3-
way Czekanowski network (Figure 4.4). Thus using di�erent 2-way and 3-way
similarity metrics, the Brucella species partition in the same way. Figure 4.8a
and b show the neighbourhoods within one 3-way edge of the Brucella species
in the best edge Sørensen network and the best edge Czekanowski network re-
spectively. Figure 4.8c is a subnetwork of the enrichment network (Figure 4.6)
showing all nodes within a radius of 2 of the Brucella nodes. From Figure 4.8
the same groupings of the genus can be observed, thus this separation of the
genus can be seen with whole gene family pro�les, as well as with gene family
enrichment. These groupings are di�erent to the divergence previously found
in the Brucella genus, in which B. abortus clustered nearer to B. melitensis
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and B. suis clustered nearer to B. canis [25]. These di�erent groupings of the
Brucella species could be due to the fact that the phylogeny constructed in [25]
was based on SNPs and is therefore a point mutation-based view of evolution,
whereas our phylogenomic networks are constructed with gene families, and
are thus a gene duplication/deletion-based view of evolution.

From Figure 4.8 a and b, it can be seen that both the 3-way Sørensen and
3-way Czekanowski networks group Brucella ovis, Brucella canis and Brucella
abortus with members of the Bartonella genus. This is supported by the gene
family enrichment view in Figure 4.8c. Figure 4.8a and b also suggests a rela-
tionship between Group 2 Brucella species and Ochrobactrum anthropi. This
is also seen in the gene family enrichment view. Of the 3-way networks, only
the Czekanowski network suggests that Group 2 of Brucella species, namely
Brucella suis and Brucella melitensis group together with members of the
Bordetella genus. This is also seen in the gene family enrichment view in Fig-
ure 4.8c. None of the 2-way networks suggested this connection. The 2-way
MSTs (Figures 4.3b and 4.5b) show the proximity of Group 1 to theBartonella
species and the proximity of Group 2 to O. anthropi, however they do not sug-
gest the link between Group 2 Brucella species and Bordetella species. The
2-way best edge networks (Figures 4.3a and 4.5a) only show the connection
between Group 2 and O. anthropi. They show none of the relationships sug-
gested by 3-way networks between Group 1 and Bartonella species, and Group
2 and Bordetella species.

Rhodobacter Separation Consider the genus Rhodobacter in the above
networks (two medium blue nodes). In the Sørensen MST (Figure 4.3b) these
two nodes are neighbours. This is also seen in the best edge Sørensen net-
work (Figure 4.3a). However, in both Czekanowski 2-way networks (Figures
4.5b and 4.5a), these two Rhodobacter species are not neighbours. The 3-way
Sørensen and 3-way Czekanowski networks (Figures 4.2 and 4.4) place these
nodes quite far apart. Figure 4.9a and b show the neighbourhoods within one
3-way edge of Rhodobacter species in the 3-way Sørensen network and 3-way
Czekanowski network respectively. From this �gure, it can be seen that the
nodes are in separate neighbourhoods. This is also seen in the enriched family
view in Figure 4.9c. This �gure shows the species which share at least one en-
riched family with Rhodobacter species. Both Sørensen and Czekanowski best
edge 3-way networks thus pick up a separation between the two Rhodobacter
species which is supported by the gene family enrichment data and not found
by the 2-way Sørensen networks.

Combination View: Rhodobacter and Brucella species A further ex-
amination of Figures 4.8 and 4.9 shows that there seem to be overlaps be-
tween the Brucella groupings in Figure 4.8 and the Rhodobacter groupings
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in Figure 4.9. Figure 4.10 shows the neighbourhood around Brucella species
and Rhodobacter species in (a) the 3-way best edge Czekanowski network and
(b) the gene family enrichment network. Group 1 Brucella species cluster
with Bartonella species and Rhodobacter capsulatus and Group 2 Brucella
species cluster with Bordetella species, Ochrobactrum athropi and Rhodobac-
ter sphaeroides. This amount of detail in groupings of species was not found
in any of the 2-way networks.

Combined 2-way and 3-way Networks Merging the 3-way best edge
Sørensen network (Figure 4.2) and the 2-way Sørensen MST (Figure 4.3b) re-
sults in an interesting network which is shown in Figure S4. This network
combines the modularity of the 3-way network showing the connections within
genera and a few cross-genera connections with the MST which shows the over-
all connections across genera. This combined 2-way and 3-way Czekanowkski
network (Figure S5) was also constructed by merging the 3-way best edge
Czekanowski network (Figure 4.4) and the 2-way Czekanowski MST (Fig-
ure 4.5b). These combination networks provide an interesting, �best of both
worlds� view. They combine the connectedness and simplicity of an MST,
which allows for no modularity, but forces all nodes to connected to the net-
work, and the modularity and complex relationships provided by the 3-way
networks which show a mixture of within-module connection and inter-module
connections, and show relationships missed by standard 2-way networks.
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Figure 4.3: 2-way Sørensen Networks (a) 2-way Sørensen Best Edges Net-
work (b) Maximum Spanning Tree (MST) of the all-vs-all Sørensen network.
Nodes represent bacterial species and edges represent similarity between pairs
of bacterial species based on gene family content, quanti�ed using the 3-way
Sørensen Index. Nodes are coloured according to genus. The same node colour
key as in Figure 2 applies.
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Figure 4.4: Best-Edges 3-way Czekanowski Network 3-way Czekanowski
network pruned by selecting the best and second best edge for each node.
Nodes represent bacterial species and edges represent similarity between
triplets of bacterial species based on gene family content, quanti�ed using
the 3-way Czekanowski Index. Nodes are coloured according to genus. The
same node colour key as in Figure 2 applies.
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Figure 4.5: 2-way Czekanowski Networks (a) 2-way Czekanowski
Best Edges Network (b) Maximum Spanning Tree (MST) of the all-vs-all
Czekanowski network. 3-way Sørensen network pruned by selecting the best
and second best edge for each node. Nodes represent bacterial species and
edges represent similarity between pairs of bacterial species based on gene
family content, quanti�ed using the 3-way Sørensen Index. Nodes are coloured
according to genus. The same node colour key as in Figure 2 applies.
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Figure 4.6: Shared Enriched Families Network of bacteria species con-
nected through shared enriched gene families. Small, white nodes represent
gene families, coloured nodes represent bacterial species coloured by genus.
Edges connect gene families to species in which they are enriched.
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Figure 4.7: Clostridium and Bacillus subnetwork. Subnetworks contain-
ing the Clostridium and Bacillus species selected from (a) 3-way best edge
Sørensen Network (b) 3-way best edge Czekanowski Network (c) Gene family
enrichment network.
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Figure 4.8: Clustering within Brucella genus. Subnetworks containing
Brucella species constructed by selecting Brucella species and all neighbouring
species nodes from (a) 3-way best edge Sørensen Network (b) 3-way best edge
Czekanowski Network (c) Gene family enrichment network.
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Figure 4.9: Separation of Rhodobacter species. Subnetworks contain-
ing Rhodobacter species constructed by selecting Rhodobacter species and all
neighbouring species nodes from (a) 3-way best edge Sørensen Network (b)
3-way best edge Czekanowski Network (c) Gene family enrichment network.
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Figure 4.10: Rhodobacter and Brucella species. Subnetworks contain-
ing Brucella and Rhodobacter species constructed by selecting Brucella and
Rhodobacter species and all neighbouring species nodes from (a) 3-way best
edge Czekanowski Network (b) Gene family enrichment network.
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4.5 Conclusions

3-way networks were explored for their use in comparative genomics and their
utility in modelling more complex relationships. These networks, when used to
model the phylogenomic relationships between 211 bacterial species revealed
relationships between the species which were not found when using standard
2-way network models. A potential limitation of this approach of using 3-way
networks is their combinatorial complexity. With larger datasets, calculating
the similarity between all possible triplets of objects will require a large amount
of compute power. However, with the appropriate High Performance Comput-
ing resources, these networks will be a useful tool for comparative genomics in
order to model and reveal complex relationships.

4.6 Materials and Methods

4.6.1 Bacterial Gene Family Construction

Gene families were constructed using the TribeMCL pipeline [15]. An all-vs-all
protein BLAST [18] was performed on the translated genomes of 211 bacterial
species. The Perl script orthomclBlastParser from the OrthoMCL package
[26] was then used to parse the Blast results in order to select only the best
Blast match per gene pair. For each gene pair ab, a score Sab was calculated
as [15]:

Sab = log2

(
Eab + Eba

2

)
(4.6.1)

where Eab and Eba are the E-values for the reciprocal BLAST hits between gene
a and gene b. This resulted in a network in which each node represented a gene
and each edge ab represented the similarity between the two nodes (a and b)
which it connects, weighted by the similarity score Sab. MCL was then applied
using an in�ation value of 2 to cluster the network into gene families [27]. From
the resulting gene families, a matrix was constructed called the Species-Family
(SF) matrix, in which the rows represented bacterial gene families constructed
using TribeMCL, and columns represented bacterial species, and each entry ij
represented the number of genes in gene family i present in species j.

4.6.2 3-way Network Construction

The 3-way Sørensen Index and the 3-way Czekanowski Index was used to
quantify the similarity between each triplet of species. Let Xi and Yi and Zi
represent the ith element in columns X, Y and Z of the SF-matrix (i.e. the
number of members of gene family i in species X species Y and species Z
respectively. Let XB, YB and ZB be the binary vectors associated with vectors
X, Y and Z respectively. For each triplet of species (X, Y, Z) the Sørensen
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Index was calculated using Equation 4.4.7 and the Czekanowski Index was
calculated using Equation 4.4.9. This resulted in a Sørensen 3-way network
and a Czekanowski 3-way network. Using Theorem 1, any threshold set above
0.75 will exclude any 3-way relationships with no 3-way intersection contribu-
tion. Thus, a threshold of 0.76 was applied to each network and visualized in
Cytoscape [28]. These networks can be seen in Figures S1 and S2. Cytoscape
can only visualize 2-way networks in the sense that it can only handle edges
connecting 2 nodes. To our knowledge, no visualization software exists for
3-way networks. Thus, the 3-way network had to be transformed such that it
could be visualized in Cytoscape. To do so, each 3-way-edge was represented
by a node with degree 3, connected to the bacterial species nodes which the
3-way-edge connected. In the transformed network, each node thus either rep-
resented a bacterial species or a 3-way edge (referred to as an `edge-node'). A
close-up of these 3way-edges can be seen in Figure S3.

A best-edge approach was also used to prune the 3-way networks. For each
bacterial species node, the best and second best edges (edges with the highest
and second highest weight) were selected. A network was constructed and
transformed into a format which can be visualized in Cytoscape as described
above. The resulting networks can be seen in Figures 4.2 and 4.4.

4.6.3 2-way Network Construction

The standard 2-way Sørensen and 2-way Czekanowski Indices were used to
quantify the similarities between all pairs of species. Let Xi and Yi represent
the ith element in column X and column Y in the SF-matrix (i.e. the number
of members of gene family i in species X and species Y respectively. Let XB

be the binary vector associated with vector X and YB be the binary vector
associated with vector Y . For each pair of species (X, Y ) the Sørensen Index
was calculated using Equation 4.4.3 and the Czekanowski Index was calculated
using Equation 4.4.8. These networks were pruned using two approaches,
namely a Maximum Spanning Tree and best edge selection. Each Maximum
Spanning Tree was calculated by converting the network from a similarity
network into a distance network by inverting the edge weights i.e. for each
edge weight w the inverted edge weight w′ was calculated as

w′ = 1− w.

AMinimum Spanning Tree algorithm was then applied to the distance network
using the Dijkstra algorithm from the Graph Perl Module (Jarkko Hietaniemi,
http://www.cpan.org/). This was performed by using the Perl program for
MST construction as used in [29]. For best edge selection, the best and second
best edge for each node was selected based on edge weight. These pruned
networks were visualized in Cytoscape [28] and can be seen in Figures 4.3a,
4.3b, 4.5a and 4.5b.
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4.6.4 Combined 2-way and 3-way Network Construction

For both the Sørensen Index and the Czekanowski Index, the union of the
3-way best-edge network and the 2-way MST was calculated, resulting in a
combined network model. These can be seen in Figures S4 and S5.

4.6.5 Gene Family Enrichment

Fisher's exact test [17], followed by Holm-Bonferroni multiple hypothesis cor-
rection [30] was used to determine enrichment of gene families within species.
This was performed using a customized Perl program which made use of the
Text::NSP::Measures::2D::Fisher Perl module from CPAN (http://www.cpan.org/).
A p-value cuto� of 0.05 was used. Gene families which were enriched in more
than one species (so-called shared-enriched families) were selected and a new
network was constructed in which each node represented either a bacterial
species or a gene family, and each edge connected a gene family to bacterial
species in which it was enriched. The species were coloured according to their
genera. The network was visualized in Cytoscape [28] (Figure 4.6).
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4.10 Supplementary Material

The following supplementary material contains a proof of Lemma 1, and several
supplementary Figures.

4.10.1 Lemma 1

Given integers a, b and c, the following relation holds:

min(a, b) + min(a, c)−min(a, b, c) ≤ a (4.10.1)

Proof. There are 6 cases to consider.

Case 1: If a ≤ b ≤ c then:

min(a, b) + min(a, c)−min(a, b, c) = a+ a− a
= a

≤ a

Case 2: If a ≤ c ≤ b then:

min(a, b) + min(a, c)−min(a, b, c) = a+ a− a
= a

≤ a

Case 3: If b ≤ c ≤ a then:

min(a, b) + min(a, c)−min(a, b, c) = b+ c− b
= c

≤ a

Case 4: If b ≤ a ≤ c then:

min(a, b) + min(a, c)−min(a, b, c) = b+ a− b
= a

≤ a

Case 5: If c ≤ b ≤ a then:

min(a, b) + min(a, c)−min(a, b, c) = c+ b− c
= b

≤ a
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Case 6: If c ≤ a ≤ b then:

min(a, b) + min(a, c)−min(a, b, c) = c+ a− c
= a

≤ a
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Figure S1: Thresholded 3-way Sørensen Network Network constructed
by setting a 0.76 threshold for the 3-way Sørensen Network, and removing all
3-way edges below this threshold.
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Figure S2: Thresholded 3-way Czekanowski NetworkNetwork con-
structed by setting a 0.76 threshold for the 3-way Czekanowski Network, and
removing all 3-way edges below this threshold.
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Figure S3: 3-Way Edges Close-up of a section of the thresholded 3-way
network showing the 3-way edges. Large, coloured nodes represent bacterial
species, whereas small white nodes and their respective 3 edges represent 3-way
edges connecting the bacterial nodes.
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Figure S4: Union Sørensen MST and Sørensen 3-way Best Edge Net-

work. Network constructed by taking the union of the Sørensen 3-way Best
Edge Network (Figure 2) and the Sørensen MST (Figure 3b).

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. 3-WAY NETWORKS: APPLICATION OF HYPERGRAPHS FOR

MODELLING INCREASED COMPLEXITY IN COMPARATIVE GENOMICS32

Figure S5: Union Czekanowski MST and Czekanowski 3-way Best

Edge Network Network constructed by taking the union of the Czekanowski
3-way Best Edge Network (Figure 4) and the Czekanowski MST (Figure 5b).
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Chapter 5

Network Meta-Modelling:

Similarity Metric Comparison

D. Weighill and D. Jacobson

5.1 Introduction

Meta-modelling involves creating models of models in order to compare the
outcomes of a model when di�erent parameters are used. Network models in-
volve modelling the similarity between pairs of objects of interest [1]. A param-
eter of such a network model could be the similarity metric chosen to quantify
the similarity between nodes in order to weight the edges. Many similarity
metrics exist, and were developed to quantify di�erent aspects of similarity.
Thus, using di�erent similarity metrics to construct a network model should
result in di�erent results and thus a�ect the end biological interpretation.

This study focuses on network meta-modelling, exploring a selection of ap-
proaches for the comparison of networks. In particular, network models of
particular datasets constructed using di�erent similarity metrics will be com-
pared in order to investigate the e�ect the choice of similarity metric has on
the resulting network topology.

5.2 Results and Discussion

5.2.1 Overview

Two types of datasets were used for the exploration of network comparison ap-
proaches. The �rst dataset on which Clustering and Network Topology Pro�le
Comparisons were performed, was a large grapevine microarray dataset, con-
sisting of 472 microarray experiments, each containing 16602 probesets. The

1
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co-expression networks generated from this dataset were very large, contain-
ing thousands of nodes and edges. The second type of dataset included the
fully sequenced genomes of 71 fungi and 211 bacteria. The networks resulting
from these two datasets were smaller and simpler, allowing visual inspection
of the results of a new network comparison technique we developed, namely
Cross-Network Topological Overlap.

5.2.2 Metric Comparison though Network Topology

Pro�les and Clustering Comparison

7 similarity metrics, namely the Pearson and Spearman Correlation Coe�-
cients, Jaccard, Sørensen, Czekanowski, SPS indices and Euclidean similar-
ity (Table 5.1) were used as measures for gene co-expression across several
grapevine microarray experiments. The SPS (Stringent Proportional Similar-
ity) Index is a metric we created by modifying the Czekanowski Index (also
known as Proportional Similarity Index [2]) with the aim of creating a simi-
larity metric which was still a quantitative overlap index like the Czekanowski
Index, but is more stringent, in that vectors have to be more similar in quan-
titative overlap in order to achieve the same score as with the Czekanowski
Index.

The distributions of the co-expression values for each metric are shown in
Figure 5.1. It is evident that the di�erent similarity metrics have very di�erent
distributions, however, certain patterns do come forward. The Jaccard and
Sørensen distributions are similar. This can be expected, since both of these
metrics are based on set overlaps. For two sets A and B, the set overlap
formulation of the Sørensen Index So(A,B) and the Jaccard Index J(A,B)
are de�ned as [5]:

So(A,B) =
2|A ∩B|
|A|+ |B|

(5.2.1)

J(A,B) =
|A ∩B|
|A ∪B|

(5.2.2)

The Sørensen and Jaccard Indices are related to each other by the following
equation [5]:

So =
2J

J + 1
(5.2.3)

This relationship is re�ected in the distributions in that the Jaccard distribu-
tion is skewed, having a longer right tail than the Sørensen distribution.

The Pearson and Spearman distributions are very similar. This does seem
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Table 5.1: Similarity Metrics. De�nitions of similarity metrics. X and Y are
vectors of length n. XB and YB are the binary vectors associated with vectors
X and Y respectively, R and Q are the rank vectors associated with vectors
X and Y respectively, D(X, Y ) is the Euclidean distance between vectors X
and Y and 〈X, Y 〉 is the inner product of vectors X and Y .

Similarity Metric Formula

Pearson Correlation [3] P (X, Y ) =
∑

i(Xi−X̄)(Yi−Ȳ )√∑
i(Xi−X̄)2

∑
i(Yi−Ȳ )2

Spearman Correlation [4] Sp(X, Y ) =
∑

i(Ri−R̄)(Qi−Q̄)√∑
i(Ri−R̄)2

∑
i(Qi−Q̄)2

Sørensen Index [5] So(X, Y ) =
2
∑

i min(XBi,YBi)∑
i(XBi+YBi)

Jaccard Index [5; 6] J(X, Y ) = 〈X,Y 〉
〈X,X〉+〈Y,Y 〉−〈X,Y 〉

Czekanowski Index [7; 2] Cz(X, Y ) =
2
∑

i min(Xi,Yi)∑
i(Xi+Yi)

SPS Index SPS(X, Y ) = 1− 1
n

∑
i
|X2

i −Y 2
i |

X2
i +Y 2

i

MIC [8] Maximum Mutual Information

Euclidean Similarity E(X, Y ) = 1− D(X,Y )
maxX,Y (D(X,Y ))

logical since both are correlation coe�cients with similar formulation (Table
5.1) and both measure to what extent the elements of two vectors follow the
same pattern, the di�erence being that Pearson measures the linear relation-
ship between two vectors and Spearman, being less stringent, measures the
monotonic relationship between two vectors.

The SPS and Czekanowski distributions are similar in that they follow the
same pattern of in�ection points, however, the SPS distribution is �atter, hav-
ing less of a spike on the right side of the distribution, indicating that it is
indeed more stringent and the Czekanowski Index.

5.2.2.1 Network Topology Pro�le Comparison

A network comparison method based on the principles of NetSimile [9] was
developed, allowing the comparison of a set of networks in a pairwise man-
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Figure 5.1: Distributions. Frequency distributions of co-expression values
for each of the similarity metrics when applied to the grapevine microarray
expression dataset.
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ner. This method involved the calculation of several topology indices for each
network. Local indices are calculated per node, and include clustering coef-
�cients, connectivities, scaled connectivities and maximum adjacency ratios.
Global indices are calculated for a network as a whole, and include maximum
connectivity, density, centralization, heterogeneity and degree correlation (See
Table 5.2). These topology indices form the variables in a topology pro�le
for each network. Perl programs were written in order to calculate a series of
local and global topology indices for a given set of networks and to construct
topology pro�les for these networks. Certain Perl programs made use of the
Statistics::Basic Perl Module (Paul Miller, http://www.cpan.org/). The topol-
ogy pro�les form the rows of a matrix in which each row represents one of the
input networks and each column represents a network topology index. Four
di�erent topology pro�le matrices were created with di�erent sets of variables,
namely:

1. Weighted global indices

2. Unweighted global indices

3. Weighted local indices

4. Unweighted local indices

These topology pro�les can be further compared using multivariate methods
such as Principal Components Analysis (PCA). In order to further investigate
the relationships between and the e�ect of di�erent similarity metrics on net-
work topology, our network comparison method was used to compare grapevine
co-expression networks generated using the 7 di�erent similarity metrics. Each
co-expression network was pruned to maintain only the top 1 % of edges. This
pruning strategy was applied instead of a hard thresholding approach because
the metrics have such varied distributions (Figure 5.1).

Global and local topology indices were then calculated for each network. This
resulted in the 4 topology pro�le matrices described above, each of which was
analysed with PCA. The score plot for the weighted local index matrix is
shown in Figure 5.2a. SPS-metric and Czekanowski Index cluster together, as
do Pearson and Spearman Correlation Coe�cients and Søresen and Jaccard
Indices. Intuitively, these groupings seem logical. Pearson and Spearman Cor-
rlation are both correlation coe�cients and are calculated in a similar manner,
except that Spearman uses ranks instead of actual variable values. Sorensen
and Jaccard Indices are both set overlap measures and are calculated in a
similar manner and thus would be expected to be similar. Lastly, the SPS
Index was derived from the Czekanowski Index and thus it makes sense that
they are similar. The score plot for the weighted global index matrix is shown
in Figure 5.2c. Similar groupings of metrics are seen in this score plot. It is
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Table 5.2: Network Topology Indices. De�nitions of network indices [10;
11], where i and j are nodes, aij is the adjacency of nodes i and j, S is the
vector of degrees of all source nodes and T is the vector of degrees of all target
nodes.

Topology Index De�nition

Local Indices

Connectivity ki =
∑

j 6=i aij

Scaled Connectivity kscaledi =
∑

j 6=i aij

kmax

Maximum Adjacency Ratio MARi =
∑

j 6=i(aij)2∑
j 6=i aij

Clustering Coe�cient CCi =
∑

l6=i

∑
m6=i,l ailalmami

(
∑

l6=i ail)
2−

∑
l6=i(ail)

2

Global Indices

Maximum Connectivity kmax = max(ki)

Density DN =
∑

i

∑
j 6=i aij

n(n−1)

Centralization CN = n
n−2

(
kmax
n−1

−DN

)
Heterogeneity HN =

√
var(k)

mean(k)

Degree Correlation Pearson(S, T )

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. NETWORK META-MODELLING: SIMILARITY METRIC

COMPARISON 7

interesting to note that the number of variables in the topology pro�le matrix
in which the variables are local indices is vastly greater than that which the
variables are global indices. Since local indices are calculated for each node
and there are thousands of nodes in each network, the number of variables in
the local index topology pro�le matrix is very large. However, global indices
are calculated only once per network, thus there are only 5 variables in the
global index topology pro�le matrix. It is interesting that even though there
are far fewer variables in the global index topology pro�le matrix than the local
index topology pro�le matrix, both give similar groupings in their respective
PCA score plots.

In general, the score plots resulting from PCA of the matrices with unweighted
indices as variables (Figure 5.2b and 5.2d) have similar but tighter groupings
than those resulting from PCA of matrices with weighted indices as variables
(Figures 5.2a and 5.2c). The Jaccard and Sørensen scores are in fact iden-
tical in both score plots resulting from using unweighted indices as variables
(Figures 5.2b and 5.2d).

5.2.2.2 Network Clustering Comparison

The 7 pruned similarity networks were all clustered using MCL [12] and the
resulting clusterings were compared using three clustering comparison metrics,
namely Average-Maximum Overlap, Jaccard Overlap and Normalized Mutual
Information (see Methods). This resulted in three all-vs-all networks in which
each node represented a similarity metric and each edge represented similar-
ity between those two similarity metrics, based on how similar the clusterings
of the two respective co-expression networks were. These three clustering
comparison networks are show in Figure 5.3. All three clustering comparison
approaches give similar results. From the thickness of the edges, it can be seen
that the Pearson network clustering is most similar to the Spearman clustering,
Jaccard is most similar to Sørensen, SPS is most similar to Czekanowski and
Euclidean is quite di�erent from all other metrics. These are the same group-
ings which were seen in the Score Plots resulting from PCA of the network
topology pro�les and suggested by the distributions of the metrics.

5.2.3 Metric Comparison through Network Merging

and Cross-Network Topological Overlap

Phylogenomic networks were constructed in order to represent the evolution-
ary relationships and similarities between 71 fungal species and 211 bacterial
species based on gene family content. For the fungal dataset, 8 similarity met-
rics were used to calculate the similarity between the gene family content of
71 fungal species. A similar procedure was performed to calculate the similar-
ity between the gene family content of 211 bacterial species, using 7 di�erent

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. NETWORK META-MODELLING: SIMILARITY METRIC

COMPARISON 8

Figure 5.2: Score Plots: PCA of Topology Pro�les. Score plots resulting
from PCA of the topology pro�le matrices in which variables are (a) weighted
local topology indices, (b) unweighted local topology indices, (c) weighted
global topology indices and (d) unweighted global topology indices. Scores of
the Jaccard and Sørensen Index networks in (b) and (d) are identical, thus
their points in the score plots are superimposed and cannot both be visualized
or labelled.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. NETWORK META-MODELLING: SIMILARITY METRIC

COMPARISON 9

Figure 5.3: Clustering Similarity. Each node represents a network (in par-
ticular a gene-co-expression network) constructed using a particular similarity
metric as the measure of gene co-expression. The similarity between these 7
similarity metrics (nodes) is quanti�ed by calculating the similarity between
the MCL clusterings of these networks through the use of (a) Maximum Av-
erage Clustering Overlap, (b) Jaccard Clustering Overlap and (c) Normalized
Mutual Information between clusterings. Edge thickness corresponds to the
weight of the edges based on the particular clustering similarity measure.
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similarity metrics.

This resulted in 8 fungal MSTs and 7 bacterial MSTs in which each node
represented a species (either fungal or bacterial) and each edge represented
similarity between the gene family content of the two species the edge con-
nected, quanti�ed using a particular similarity metric. In the fungal MSTs
(Figure 5.4), nodes were coloured according to high order taxonomic groupings,
whereas in the bacterial MSTs (Figure 5.5), nodes were coloured according to
genus. From the MSTs, it can be seen that, in general, all similarity metrics
seem to group the species within their taxonomic groupings or genera. Thus,
globally, the choice of similarity metric does not make much di�erence. How-
ever, locally, the choice of similarity metric does result in di�erent topologies.
In order to better visualize this, all fungal MSTs and all bacterial MSTs were
merged into two Union MSTs, one for fungi (Figure 5.4i) and one for bacteria
(Figure 5.5h). These merged views give a good visualization on how much the
similarity metrics agree on a global and a local scale. The presence of multiple
edges between nodes indicates that multiple similarity metrics place these two
nodes adjacent in their respective MSTs. From the Union networks in Figures
5.4i and 5.5h, it can clearly be seen through the colour distributions that these
similarity metrics generally agree on a global scale, grouping species within
their taxonomic/genera groupings. However, the similarity metrics do di�er
on a local scale. This is illustrated by the connections between nodes which
are present in only a few of the MSTs.

5.2.3.1 Cross-Network Topological Overlap

Topological Overlap [14] is a network measure which quanti�es the extent to
which two nodes within a network are connected through direct connections
between the two nodes and indirect connections through shared neighbours
of the two nodes. We extended this concept and introduce a formulation of
Topological Overlap, called Cross-Network Topological Overlap, which calcu-
lates the topological overlap between nodes in di�erent networks, quantifying
the similarity between the neighbourhoods of two nodes in di�erent networks
(Figure 5.6). Selecting best-hits for a node in another network thus selects
nodes which are topologically most similar to that node. This provides a
node-by-node based approach for comparing networks.

Consider two networks, A and B. Let Ai denote the i
th node in network A and

Bj denote the jth node in network B. We de�ne Cross-Network Topological
Overlap (CNTO) in a directional manner. Let CNTO(Ai, Bj) be the CNTO of
node Ai onto node Bj. Then, the two directional CNTOs are de�ned as:
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Figure 5.4: Fungal Gene Family Content MSTs. Each MST shows the
similarity between the gene family content of fungal species, each calculated
using a di�erent similarity metric. In each network, each node represents
a fungal species and each edge represents similarity between the gene family
content of two species calculated using a di�erent similarity metric, namely (a)
Czekanowski Index (b) SPS Index (c) Euclidean Similarity (d) Jaccard Index
(e) Maximum Information Coe�cient (f) Pearson Correlation Coe�cient (g)
Sorensen Index (h) Spearman Correlation Coe�cient. (i) shows a union of
the MSTs in (a)-(h). Species nodes are coloured according to their taxonomic
groupings. All networks were visualized in Cytoscape [13].

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. NETWORK META-MODELLING: SIMILARITY METRIC

COMPARISON 12

Figure 5.5: Bacterial Gene Family Content MSTs. Each MST shows the
similarity between the gene family content of bacterial species, each calculated
using a di�erent similarity metric. In each network, each node represents a
bacterial species and each edge represents similarity between the gene family
content of two species calculated using a di�erent similarity metric, namely
(a) Pearson Correlation Coe�cient (b) Czekanowski Index (c) SPS Index (d)
Spearman Correlation Coe�cient (e) Euclidean Similarity (f) Jaccard Index
(g) Sorensen Index. (h) shows a union of the MSTs in (a)-(g). Species nodes are
coloured according to their genus. All networks were visualized in Cytoscape
[13].
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Figure 5.6: Cross-Network Topological Overlap Subnetworks of the neigh-
bourhood of node i in two hypothetical networks are shown. Solid edges rep-
resent edges within a network, and dashed edges represent edges constructed
to link each node with its corresponding node in the other network.

CNTO(Ai, Bj) =
nAi,Bj

+ dAi,Bj

kAi
+ 1

(5.2.4)

CNTO(Bi, Aj) =
nAi,Bj

+ dAi,Bj

kBj
+ 1

(5.2.5)

where nAi,Bj
is the number nodes which are neighbours of both Ai and Bj, kAi

is the connectivity of node Ai, kBj
is the connectivity of node Bj and dAi,Bj

de�ned by:

dAi,Bj
=

{
1 if i = j

0 if i 6= j
(5.2.6)

Thus, the directed CNTO will be equal to 1 if the two nodes are in fact the
same node, and if they share all their neighbours. The symmetrical CNTO
of two nodes is then de�ned as the average of the two respective directional
topological overlaps.

In order to investigate this new CNTO measure and how it can be used to
compare networks, we applied it to compare the phylogenomic MSTs as these
networks were simple and small enough that the output could be visually in-
spected.
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CNTO was used to compare the Jaccard and Sørensen fungal MSTs, as well
as the Pearson and Sørensen fungal MSTs. The Pearson and Sørensen net-
works were chosen for comparison because these metrics have very di�erent
de�nitions and were shown to result in very di�erent network topologies when
applied to the transcriptomic dataset. For a given pair of MSTs, A and B, the
CNTO was calculated for all pairs of nodes i and j in which i is a node in A
and j is a node in B. For each node i in a MST A, the node(s) in MST B with
the highest topological overlap with node i were selected. Pairwise CNTO
networks were then constructed. These networks contained two copies of each
node, one from each of the two MSTs being compared, and each node is con-
nected to the node(s) from the other MST with which they have the highest
CNTO. The CNTO networks for the comparison of the Jaccard and Sørensen
MSTs and the Pearson and Sørensen MSTs can be seen in Figure 5.7a and
5.7b respectively. These networks very clearly show the degree of similarity in
the topologies of two networks. Figure 5.7a illustrates that the topologies of
the Jaccard MST and the Sørensen MST are identical, since each node from
the Jaccard MST (black bordered nodes) connects only to its corresponding
node in the Sørensen MST (grey bordered nodes) with CNTO = 1. Figure
5.7b illustrates the similarities and di�erences in the topologies of the Pearson
and Sørensen MSTs. Certain nodes are topologically similar between these
two MSTs (illustrated by the pairs of nodes at the bottom of the network in
Figure 5.7b), however, the disagreement of the two similarity metrics is shown
largely in the top half of the network.

In order to illustrate how CNTO selects the most topologically similar node
in another network, consider the three labelled nodes in Figure 5.7b. The
network shows that the nodes in the Sørensen MST most topologically sim-
ilar to the species node Capaspora owczarzaki in the Pearson MST are Lod-
deromyces elongisporus and Schizosaccharomyces octosporus. The position
of Capaspora owczarzaki in the Pearson MST is illustrated in Figure 5.8a.
The only information we have topologically about this node is that it is a
neighbour of the node Schizosaccharomyces japonicus. Thus, logically, the
most topologically similar nodes in the Sørensen MST should be neighbours
of Schizosaccharomyces japonicus. Consider the Sørensen MST in Figure
5.8b. Neighbours of Schizosaccharomyces japonicus are either Schizosaccha-
romyces octosporus, Lodderomyces elongisporus or Cryptococcus neoformans.
CNTO chose Schizosaccharomyces octosporus and Lodderomyces elongisporus
as more topologically similar than Cryptococcus neoformans, since their de-
grees are lower, thus have a higher fraction of shared neighbours with Capas-
pora owczarzaki than Cryptococcus neoformans does.
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Figure 5.7: CNTO Networks: Comparison of Fungal MSTs. CNTO
networks resulting from the comparison of fungal MSTs. Each node represents
a fungal species from a MST corresponding to one similarity metric and is con-
nected to the node(s) in a MST from another metric with which it has the high-
est CNTO. (a) CNTO network from the comparison of Jaccard and Sørensen
fungal MSTs. Black-bordered nodes represent fungal species nodes from the
Jaccard MST and grey bordered nodes represent fungal species nodes from
the Sørensen MST. (b) CNTO network from the comparison of Pearson and
Sørensen fungal MSTs. Black-bordered nodes represent fungal species nodes
from the Pearson MST and grey bordered nodes represent fungal species nodes
from the Sørensen MST. Solid edges represent CNTO = 1 (nodes are identical
and share all their neighbours) while dashed edges represent CNTO < 1.
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Figure 5.8: Pearson and Sørensen Fungal MSTs Fungal MSTs in which
nodes represent fungal species and edges represent similarity between the gene
family content of species quanti�ed using (a) the Pearson Correlation Coe�-
cient and (b) the Sørensen Index.
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Figure 5.9: Union of Pearson and Sørensen MSTs. Merged Sørensen and
Pearson fungal MSTs from Figure 5.8.

As illustrated, for a given node in a particular network, CNTO selects the
node(s) in a corresponding network with the most similar topological sur-
roundings in terms of fraction of shared neighbours. CNTO networks like
those in Figure 5.7 reveal di�erent information than would be gained from
simply merging the two networks being compared. For example, consider the
merged fungal Sørensen MST and Pearson MST shown in Figure 5.9. This
merged view gives an indication of shared edges, but does not easily show
which nodes are most topologically similar in terms of shared neighbours as is
shown by the CNTO networks.

MSTs, in general, have very simple topologies. They have no cycles and are
very minimalistic in topology. They were chosen as example networks to de-
velop and explore this method of network comparison because of their sim-
plicity and ease of visualization. In order to explore the results of this method
on networks with more complex topology, the Pearson and Sørensen all-vs-
all bacterial networks were pruned to maintain the top 2.5% of edges. The
resulting networks can be seen in Figure 5.10. These networks have more
complex topologies than the MSTs, having a much larger variance in node
connectivities. CNTO was then calculated between all pairs of nodes in these
two pruned networks, and a CNTO network constructed (Figure 5.11). This
network clearly indicates the di�erences in the local topologies of nodes in the
two pruned bacterial networks being compared.
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Consider the labelled nodes in Figure 5.11. The species nodes in the Sørensen
bacterial network (Figure 5.10b) most similar to Lactobacillus acidophilus in
the Pearson bacterial network (Figure 5.10a) are Enterococcus faecium and
Lactococcus lactis. The common and uncommon neighbours of these nodes are
illustrated in Figure 5.12. On the left hand side of each panel is the node in
question, Lactobacillus acidophilus connected to its neighbours in the Pearson
bacterial network in (Figure 5.10a). On the right hand side of each panel is
a node from the Sørensen bacterial network (Figure 5.10b) connected to its
neighbours. The neighbours shared between Lactobacillus acidophilus from the
Pearson network and the node from the Sørensen network in the right panel
are enclosed in a rectangle. This Figure illustrates why the CNTO measure se-
lected Enterococcus faecium and Lactococcus lactis in the Sørensen network as
more topologically similar to Lactobacillus acidophilus in the Pearson network,
than its equivalent node, Lactobacillus acidophilus, in the Sørensen network.
As can be seen in Figure 5.12, Lactobacillus acidophilus from the Pearson
network shares proportionally many more neighbours with Enterococcus fae-
cium and Lactococcus lactis in the Sørensen network than with Lactobacillus
acidophilus from the Sørensen network.
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Figure 5.10: Pearson and Sørensen Pruned Bacterial Networks Pruned
phylogenomic networks in which nodes represent bacterial species and edges
represent similarity between the gene family content of bacterial species quan-
ti�ed using (a) the Pearson Correlation Coe�cient and (b) the Sørensen Index.
Nodes are coloured according to genus. These networks are pruned to maintain
only the top 2.5% of edges.
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Figure 5.11: CNTO Network: Pearson and Sørensen Bacterial Net-

works Comparison of the pruned bacterial networks in Figure 5.10 through
CNTO. Black bordered nodes represent nodes from the pruned Pearson bacte-
rial network (Figure 5.10a) and grey bordered nodes represent nodes from the
pruned Sørensen bacterial network (Figure 5.10b). Each node is connected to
the node(s) in the other network with which it has the highest CNTO. Solid
edges represent CNTO = 1 (nodes are identical and share all their neighbours)
while dashed edges represent CNTO < 1.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. NETWORK META-MODELLING: SIMILARITY METRIC

COMPARISON 21

Figure 5.12: Shared Neighbours Neighbours of Lactobacillus acidophilus in
the Pearson network, as shown in Figure 5.10a, which are shared with nodes
in the Sørensen network, as shown in Figure 5.10b, are illustrated within this
Figure. Lactobacillus acidophilus and its neighbours in the Pearson network
are shown on the left hand side, nodes in the Sørensen network and their
neighbours are shown on the right hand side, and neighbours shared between
the node on the left and the node on the right are enclosed in rectangles.
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5.3 Conclusions

In this study, di�erent similarity metrics were applied to construct networks
from three di�erent datasets, and the e�ect of di�erent similarity metrics on
the resulting network topology was investigated through various network com-
parison approaches. Two new network comparison approaches and one existing
approach were investigated, including PCA of network topology pro�les, Cross
Network Topological Overlap and Clustering Comparison [15]. It is evident
from all of these investigations that the similarity metric chosen can have a
large impact on the topology of the resulting network. These di�erences in
network topology also carry through to the results of further analysis, such
as clustering. The choice of similarity metric could thus greatly impact the
resulting biological interpretation of the networks. A potential limitation of
using network topology measures to compare networks is that certain topol-
ogy measures, such as shortest path, are computationally time consuming to
calculate and may become infeasible for very large networks. However, with
the appropriate High Performance Computing resources, they can be applied
to larger networks.

The fact that di�erent similarity metrics will result in di�erent biological in-
terpretations can be exploited as an advantage. Since each similarity metric
describes and quanti�es a di�erent aspect of similarity, the use of multiple sim-
ilarity metrics will provide multiple perspectives on the data, each of which is
valuable. An agglomerative approach in which many di�erent similarity met-
rics are used to gain di�erent perspectives and insights into a dataset is thus
appealing.

Furthermore, with the Cross-Network Topological Overlap method that we
have presented here, it is relatively easy to identify the portions of the net-
work which are a�ected by the choice of similarity metric. This approach pro-
vides di�erent information than would be gained from merging two or more
networks being compared. CNTO speci�cally highlights areas of the networks
with con�icting topologies in a node-based manner, connecting nodes to their
most topologically similar nodes in another network, whereas network merg-
ing is an edge-based approach, simply revealing shared edges between the two
networks.

5.3.1 Future Work

This ability of CNTO to highlight and zoom in on these areas of interest is a
very useful attribute, especially when comparing large networks. In addition,
CNTO potentially has broader applications to network comparisons in a wide
variety of real-world networks, including communication networks, transport
networks and social networks. This approach can be applied to compare any
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kind of network, and highlight the areas of these networks which have con�ict-
ing topologies. The further application of CNTO in the comparison of various
types of networks is suggested for future work.

5.4 Methods

5.4.1 Metric Comparison though Network Topology

Pro�les and Clustering Comparison

5.4.1.1 Co-expression Similarity Network Construction

472 grapevine A�ymetrix microarray experiments were downloaded from Gene
Expression Omnibus and normalized using RMA [16]. In the resulting expres-
sion matrix E, the columns represented microarray experiments, rows repre-
sented probesets and each entry Xi represented the log2(expression) value of
probeset X in experiment i. Seven metrics were then used to calculate the
similarity (�co-expression") between all pairs of probesets.

Let X and Y denote rows of the expression matrix E corresponding to the
expression pro�les of genes x and y respectively. Let XB and YB denote the
binary vectors corresponding to X and Y , calculated as:

XBi =

{
1 if Xi ≥ X̄

0 if Xi = 0
. (5.4.1)

where XBi is the i
th entry of XB and X̄ is the mean of X. Seven similarity

metrics (de�ned in Table 5.1) were then calculated between all pairs of genes.
The Pearson and Spearman Correlation Coe�cients and Czekanowski, SPS
and Euclidean Distance Indices were calculated using the original vectors, and
Sørensen and Jaccard Indices were calculated using the binary vectors de�ned
in Equation 5.4.1. The mcxarray program from MCL-Edge [12] was used to
calculate the Pearson and Spearman correlation coe�cients. Customized Perl
scripts were written to calculate the other similarity metrics. This resulted in
7 similarity networks (one for each similarity metric) in which each node repre-
sented a probeset and each edge represented similarity between the expression
pro�les of the probesets the edge was connecting, according to a particular sim-
ilarity metric. These similarity networks were subsequently pruned to maintain
only the top 1 percent of edges, including reciprocal edges but not including
self-loops.

5.4.1.2 Metric Distribution Construction

A distribution was constructed for each similarity metric using a bin size
of 0.05. All similarity metrics with a range of 0 to 1 (Sørensen, Jaccard,
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Czekanowski and SPS Indices and Euclidean Similarity) thus had 20 bins.
Pearson and Spearman Correlation Coe�cients have a range of -1 to 1 and
thus needed 40 bins.

5.4.1.3 Network Comparison through Topology Indices

For each of the 7 pruned co-expression networks, a series of network topology
indices were calculated. Weighted versions of the topology indices use the ac-
tual similarity value as the weight of the edges, whereas unweighted topology
indices do not acknowledge edge weights, only the presence or absence of edges
in the pruned networks.

The weighted and unweighted versions of the following global (whole-network)
indices were calculated for each of the co-expression networks:

1. Density

2. Centralization

3. Heterogeneity

4. Degree Correlation

5. Maximum Connectivity

The following weighted local (node-based) indices were calculated for each
node in each network:

1. Clustering Coe�cient

2. Scaled Connectivity

3. Connectivity

4. Maximum Adjacency Ratio

The same unweighted local indices were calculated for each network, with the
exception of Maximum Adjacency Ratio, which is meaningless in the context
of an unweighted network.

Topology pro�le matrices were then constructed in which each row represents
one of the input networks and columns represent topology indices. Four topol-
ogy pro�le matrices were constructed which the variables were weighted lo-
cal indices, unweighted local indices, weighted global indices and unweighted
global indices, respectively. PCA was performed on these matrices using Qlu-
core (Qlucore AB, 2008, [17]).
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5.4.1.4 Network Comparison through Clustering Comparison

The pruned similarity networks were clustered using MCL [12]. This produced
a clustering (a set of clusters) for each similarity network. Perl scripts were
then written to compare all pairs of clusterings using three measures, namely
Average-Maximum Overlap, Jaccard Clustering Overlap and Normalized Mu-
tual Information.

Let Ci and Cj be two clusterings. Then, the Average-Maximum Overlap be-
tween clusterings Ci and Cj was calculated as follows: For each pair of clusters
(a, b) where a ∈ Ci and b ∈ Cj, the Jaccard Index was calculated as

J(a, b) =
|a ∩ b|
|a ∪ b|

(5.4.2)

This results in the matrix in which the rows represent clusters from cluster-
ing Ci, columns represent clusters from clustering Cj and each entry (a, b) is
the Jaccard overlap of a from clustering Ci and b from clustering Cj. The
maximum value of each row is then taken, representing the �best hit" overlap
for each cluster in clustering Ci. The average of these maxima is then taken,
giving a score for how similar clustering Ci is to Cj. The matrix is then trans-
posed and the process repeated, since this similarity score is not symmetric. A
network was then created in which each node represented a co-expression net-
work (constructed using a speci�c similarity metric) and each edge represented
the Average-Maximum Overlap score between the clusterings of the two nodes
(networks) the edge is connecting. The network was visualized in Cytoscape
[13] and can be seen in Figure 5.3a.

The Jaccard clustering overlap between clusterings Ci and Cj was calculated
as [18]:

J(Ci, Cj) =
N11

N11 +N01 +N10

(5.4.3)

where N11 is the number of pairs of elements (x, y) which are in the same
cluster in Ci and Cj, N10 is the number of pairs of elements (x, y) which are in
the same cluster in Ci but not Cj and N01 is the number of pairs of elements
(x, y) which are in the same cluster in Cj but not Ci. A network was created in
which each node represented a co-expression network (constructed using a spe-
ci�c similarity metric) and each edge represented the Jaccard overlap between
the clusterings of the two nodes (networks) which the edge is connecting. The
network was visualized in Cytoscape [13] and can be seen in Figure 5.3b.

The normalized Mutual Information clustering overlap between clusterings Ci
and Cj was calculated as [15]:
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NMI(Ci, Cj) =

∑
a

∑
b P (a, b) log2

(
P (a,b)
P (a)P (b)

)
√∑

a P (a) log2 (Pa)
∑

b P (b) log2 (Pb)
(5.4.4)

where a is a cluster in clustering Ci, b is a cluster in clustering Cj, P (a) is

de�ned as |a|
n
, P (b) is de�ned as |b|

n
and P (a, b) is de�ned as |a∩b|

n
. The Normal-

ized Mutual Information was calculated between all pairs of the 7 clusterings
(one for each co-expression network) and a network was constructed in which
each node represented a co-expression network (calculated using a speci�c sim-
ilarity metric) and each edge represented the normalized mutual information
between the clusterings of the two nodes (networks) connected by that edge.
The resulting network was visualized in Cytoscape and can be seen in Figure
5.3c.

5.4.2 Metric Comparison through Network Merging

and Cross-Network Topological Overlap

Two datasets, one consisting of the fully sequenced genomes of 71 fungal species
(downloaded from the Broad Institute [http://www.broadinstitute.org/]
and the Saccharomyces Genome Database
[http://www.yeastgenome.org/download-data], and the other consisting of
the fully sequenced genomes of 211 bacterial species (downloaded from NCBI,
[http://www.ncbi.nlm.nih.gov/]) were used obtained, and gene families
constructed.

5.4.2.1 Gene Family Construction

Gene families were constructed across 71 fungal species using a parallel version
of OrthoMCL [19]. Gene families were constructed across the 211 bacterial
species using TribeMCL [20]. TribeMCL constructs less stringent families
than OrthoMCL does, however, TribeMCL is faster, and was thus chosen for
the larger dataset of 211 bacterial genomes. In both cases, an in�ation value
of 2 was used during the MCL [12] clustering step. All families of size 2 or
less were excluded from further analysis. From the resulting gene families,
two matrices (named Species-Family Matrices or SF-matrices) of gene family
content pro�les were constructed, one containing fungal gene family pro�les
and the other containing bacterial gene family pro�les. In both matrices, each
column represented a species, each row represented a gene family and each
entry ij represented the number of genes in gene family i present in species j.

5.4.2.2 Phylogenomic Network Construction and Pruning

The similarity between the gene family content of all pairs of fungal species
was calculated using 8 di�erent similarity metrics. Let Xi and Yi represent
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the ith element in column X and column Y in the SF-matrix (i.e. the number
of members of gene family i in species X and species Y respectively. Let XB

be the binary vector associated with vector X and YB be the binary vector
associated with vector Y , calculated as:

XBi =

{
1 ifXi ≥ 1

0 ifXi = 0
(5.4.5)

Eight similarity metrics (de�ned in Table 5.1) were then used to calculate the
similarity between the gene family content of all pairs of fungal species X and
Y . Pearson and Spearman Correlation Coe�cients, MIC, Euclidean Similarity
and Czekanowski and SPS Indices were calculated using the original vectors,
and the Sørensen and Jaccard Indices were calculated using the binary vectors
de�ned in equation 5.4.5.

The same procedure was performed to calculated the similarity between all
pairs of bacterial species, however, in this case, only 7 similarity metrics were
used, as the MINE package which is used to calculate MIC failed to run on
the bacterial dataset because of memory limitations.

The mcxarray program from MCL-Edge [12] was used to calculate the Pearson
and Spearman correlation coe�cients. The MINE Java program [8] was used
to calculated the Maximum Information Coe�cient.

Applying each of these similarity metrics yielded 8 all-vs-all similarity net-
works for the fungal dataset and 7 all-vs-all similarity networks for the bacte-
rial dataset in which each node represented a species and each edge represented
the similarity between the two species which the edge connected based on the
particular similarity metric. The all-vs-all networks were then pruned by calcu-
lating a Maximum Spanning Tree (MST) for each similarity network using the
Perl program for MST construction used in [21]. This Perl program calculates
MSTs by converting each edge weight w from a similarity value to distance
value w′ = 1− w and calculating a Minimum Spanning Tree on the resulting
distance network using the Dijkstra algorithm from the Graph Perl Module
(Jarkko Hietaniemi, http://www.cpan.org/). The resulting fungal MSTs were
visualized using Cytoscape [13] and are shown in Figure 5.4 and the bacte-
rial MSTs are shown in Figure 5.5. The fungal species nodes were coloured
by their taxonomic groupings determined using the NCBI Taxonomy Browser
[22]. Bacterial species nodes were coloured according to genus. The default
colour is grey, thus the colour grey does not indicate any speci�c genus or
taxonomic grouping.

Two other pruned networks were created from the all-vs-all Sørensen and Pear-
son bacterial networks. Each of these networks were pruned by selecting the
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top 2.5% of edges (not including reciprocal edges or self-loops).

5.4.2.3 MST Merging

The two Union MSTs (Figures 5.4i and 5.5h) were constructed by merging
all fungal and bacterial MSTs, respectively, using the Cytoscape Advanced
Network Merge Plugin.

5.4.2.4 Cross-Network Topological Overlap Networks

The Cross-Network Topological Overlap was calculated between all pairs of
nodes for a selection of pairs of networks, namely:

1. Jaccard Fungal MST vs. Sørensen Fungal MST

2. Pearson Fungal MST vs. Sørensen Fungal MST

3. Pearson Bacterial pruned network vs. Sørensen Bacterial pruned network
(networks pruned to maintain only the top 2.5% of edges).

Pairs of nodes which shared no neighbours across two networks in question
were excluded. For each node, the nodes in the other network with the high-
est topological overlap were selected, and the resulting CNTO networks were
visualized in Cytoscape [13].
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Chapter 6

Conclusions and Future Work

6.1 Concluding Remarks

In this work, new network approaches were investigated and applied to genomic
and transcriptomic datasets. In particular, approaches for merging networks
into combined models, application of extended network de�nitions and net-
work meta-modelling approaches for network comparison were investigated,
developed and applied.

In addressing Aim 1 of the study, an approach for constructing a multi-
mechanism co-evolutionary network was developed and applied, resulting in
a multi-mechanism co-evolutionary network for grapevine. This combined co-
evolutionary network was constructed by determining modules of co-evolving
grapevine genes for the di�erent mechanisms, (point mutations, gene dupli-
cation and deletion, and gene expression regulation) and subsequently linking
these modules through module overlaps. To our knowledge, this was the �rst
time these three mechanisms of evolution had been modelled simultaneously in
a single network model. Exploration of local neighbourhoods of this combined
co-evolutionary network revealed groups of functionally related genes, suggest-
ing the success of the model in bringing together potentially co-evolving genes
based on multiple mechanisms of evolution.

An extended network de�nition (3-way networks) of the standard network
model was investigated in which edges were chosen to model relationships be-
tween triplets of objects instead of pairs of objects. This appears to be the
�rst time this has been used in the �eld of phylogenomics. Approaches for con-
structing, weighting and pruning 3-way networks were investigated and applied
to a phylogenomic dataset of 211 bacterial genomes. These 3-way networks
were compared to standard 2-way phylogenomic networks constructed from the
same dataset. The 3-way networks enabled the quanti�cation and modelling
of more complex relationships than possible with the 2-way networks, and re-
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vealed relationships missed by the standard network models. This development
and application of 3-way networks to a phylogenomic dataset addressed Aim 2.

The last aim of this work was addressed through the exploration of network
meta-modelling techniques and the development and application of two new
network comparison approaches, namely PCA of network topology pro�les and
Cross-Network Topological Overlap (CNTO). PCA of network topology pro-
�les provided a global approach for comparing a number of networks, whereas
CNTO allowed for a node-by-node comparison of pairs of networks, highlight-
ing areas of the networks with con�icting topologies. The application of these
new network comparison approaches as well as already existing approaches
(such as clustering comparison [1]) in network meta-modelling of similarity
metrics allowed valuable insights to be gained into the e�ect of di�erent simi-
larity metrics on network topology. The development and application of net-
work meta-modelling techniques ful�lled Aim 3 of this work.

6.2 Future Work

The work done in this Master's study has scope to be extended in many ways.
We would like to extend the co-expression analysis to construct modules of
co-expressed genes which are conserved across species. This will allow us to
extend the model to contain many more species. We would also like to explore
di�erent, more advanced approaches for the construction of the ERC modules,
such as ContextMirror [2].

The application of 3-way networks to larger phylogenomic datasets, as well
as other types of data such as transcriptomic and microbiomic datasets is
another target for future work. We would also like to further extend 3-way
networks to quantify even higher order relationships, such as 4-way relation-
ships and, eventually, n-way relationships. These models could then also be
combined into general hypergraph network models in which edges can model
the similarity between an arbitrary number of objects.

The meta-modelling approaches we developed are applicable to various kinds of
networks. We would like to apply these methods to network comparisons from
a variety of �elds and investigate how these network meta-modelling techniques
can give insights into the underlying systems the networks are modelling.
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