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Sammanfattning

En narfaltsgeneralisering av Friis transmissionsekvation har tidigare foreslag-
its i litteraturen. Med denna generalisering kan den émsesidiga kopplingen mel-
lan tva antenner berdknas som en viktad integral 6ver antennernas fjarrfaltsam-
plituder. I denna rapport anvéands ett variabelbyte for att ta bort singulariteten
i integranden och en normering av fjarrfaltsamplituden foreslas for att ta hansyn
till antennernas forluster. Den resulterande icke-singulédra integralen har imple-
menterats i ett datorprogram som kan anvandas for att berdkna kopplingen
mellan tva godtyckligt polariserade antenner givet antennernas fjarrfaltsam-
plituder och geometriska separation. Programmet har flera fordelar jamfort
med tidigare program som baserats pa néarfaltsgeneraliseringen av Friis trans-
missionsekvation. For det forsta kan detta program anvéndas for att berdkna
kopplingen mellan tva godtyckligt polariserade och orienterade antenner da tidi-
gare program har varit skrivna for linjéarpolariserade och polarisationsmatchade
antenner. Dessutom uppnas en hogre numerisk stabilitet eftersom den icke-
singuléra formen av integralen anvénds. Det demonstreras i flera exempel att
kopplingen som berédknats med detta program fér antenner som befinner sig i
varandras narfalt stammer vél 6verens med resultat som berdknats med kom-
mersiell mjukvara. Avslutningsvis underséks om denna nérfiltsgeneralisering
kan anvandas for att approximativt berdkna kopplingen mellan tva antenner pa
en elektriskt stor farkost.

Nyckelord: Narfalt, elektromagnetisk interferens, antenner



Abstract

A near-field generalization of Friis transmission equation has previously been
proposed in the literature. Using this generalization, it is possible to calculate
the mutual coupling between two antennas as a weighted integral over the an-
tenna far-fields. In this thesis, a change of variables is used to remove the singu-
larity in the integrand and a normalization of the antenna far-field is suggested
to take mismatch and thermal losses into account. The resulting non-singular
integral has been implemented in a computer program that can be used to cal-
culate the mutual coupling between two arbitrarily polarized antennas given
the antenna far-fields and the geometrical separation between the antennas.
The program has several advantages compared to previous programs based on
the near-field generalization of Friis transmission equation. Firstly, this pro-
gram can calculate the mutual coupling between two arbitrarily polarized and
oriented antennas whereas previous programs could only be used for linearly
polarized and polarization-matched antennas. Secondly, the advantage of the
non-singular form is the improved numerical stability. The mutual coupling
calculated using this program is demonstrated to agree well with results from
full three-dimensional simulations of antennas located in each others near-fields
using commercial software. Finally, we investigate for the first time if this inte-
gral relation can be used to calculate approximate values of the mutual coupling
between antennas on an electrically large vehicle.

Keywords: Near-field, electromagnetic interference, antennas
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Notation

The notation used in this thesis is consistent with the notation used in most
textbooks on electromagnetic theory, e.g. [1-3]. Hence, scalars are denoted
by italic letters (a, b, ¢, ...) and vectors are denoted by bold italic letters
(a, b, ¢, ...). The position vector is denoted by r and the wave vector is
denoted by k. Note also that k = |k| = 2n/A = w/c etc. Unit vectors are
denoted by @ = a/a. The azimuthal and polar angles in the spherical system of
coordinates are denoted by ¢ and 6 respectively. The imaginary unit is denoted
by i when the time convention e~** and by j when the time convention e/*? is
used.
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Chapter 1

Introduction

In order to accurately measure antenna properties in the far-field, the measure-
ment probe should be located at least a distance 2D? /) from the antenna under
test (AUT) where D is the diameter of the smallest sphere enclosing the radiat-
ing parts of the AUT and A is the wavelength [2,4]. This limitation can in many
cases be impractical, particularly for electrically large antennas such as array or
reflector antennas. A significant amount of research has therefore been aimed
at investigating if antenna far-field properties can be estimated from measure-
ments in the near-field. Kerns and Dayhoff [5] were the first researchers to do
an efficient transformation from the near-field to the far-field when scanning
the near-field in a planar geometry in front of the AUT [4]. The transformation
from near-field to far-field can today be done efficiently only for three scanning
area geometries: planar, cylindrical and spherical [4,6].

The inverse problem of finding the antenna near-fields given their far-fields
was given very little attention until Yaghjian [7] used the plane-wave scattering
matrix description of antennas [8,9] to show that it is possible to calculate the
near-field mutual coupling between antennas given only the antenna far-fields
and the geometrical separation between the antennas. This paper also demon-
strated that the method can be used to calculate the electric field strength in the
near-field region given only the antenna far-field. Further work showed excel-
lent agreement between measured and calculated electric field magnitudes in the
near-field region using this method [10]. Additional research has shown that it
is possible to locate the position of radome defects by reconstructing equivalent
currents from near-field measurements [11] and far-field measurements [12,13].

Another problem which can potentially be solved using far-field data is to
estimate the mutual coupling between antennas on electrically large vehicles.
Calculating the mutual coupling between antennas is a practically important
problem in the development of military aircrafts which typically have a large
number of closely placed antennas used for communication, GPS, radar and
electronic warfare. The number of antennas can reach up to 60 per aircraft [14].
There are several criteria for antennas installed on an aircraft. Firstly, their in-
stalled radiation patterns need to satisfy some criteria for beamwidth, sidelobe



level, polarization etc. Secondly, a good isolation, i.e. a small mutual coupling,
is required between certain antennas. In particular, a good isolation is required
between transmitting and receiving antennas in order to achieve a strong signal-
to-noise ratio (SNR) for received signals. Aircrafts are however electrically large
for frequencies around and above 2 GHz and vast computational resources would
therefore be required for solving the full three-dimensional problem of calculat-
ing the mutual coupling between antennas on an aircraft at high frequencies.
Many antennas, particularly for radar and electronic warfare applications, op-
erate in the frequency band 2 — 18 GHz and there is thus a demand for fast
methods to calculate the mutual coupling between antennas at high frequen-
cies. The aim of this thesis is therefore to develop an approximate method for
calculating the mutual coupling between antennas on electrically large vehicles
when the antenna far-fields are known.

Traditionally, the mutual coupling between two antennas in free space is
calculated using Friis transmission equation if the antenna separation is suffi-
ciently large for the antennas to be located in each others far-fields (see [15] or
e.g. [2]). There are however two main issues with using Friis transmission equa-
tion to calculate the mutual coupling between antennas on a vehicle. Firstly,
the antennas are often closely placed and near-field contributions to the mutual
coupling can not be neglected. Attempts have been made to extend the valid-
ity of Friis transmission equation to the near-field by taking into account the
gain reduction factor and an empirical coefficient [16]. Yaghjian proposed an
integral relation between the near-field mutual coupling and the antenna far-
fields [7]. This integral relation has been referred to as a near-field counterpart of
Friis transmission equation [17]. Friis transmission equation takes into account
the receiving and transmitting properties of the antennas in only one direction
whereas the near-field generalization takes these properties into account for all
directions. This near-field generalization is exact when neglecting multiple re-
flections and evanescent modes. Excellent agreement with measurements have
been found for linearly polarized antennas [17-20].

The second issue with using Friis transmission equation for antennas on a
large vehicle is that it does not take into account any surface currents induced
in the surface between the antennas. These currents can be taken into account
to some extent by using the installed far-fields when calculating the mutual cou-
pling between the antennas. In this thesis we therefore investigate if it is possible
to calculate approximate values of the mutual coupling between antennas on a
vehicle by using the installed far-fields as input to the integral from [7]. This
integral relation is exact in the near-field when neglecting multiple reflections
and evanescent modes and the approximation therefore lies only in the fact that
the antennas are not truly in free space. A major part of the work is focused on
the correct implementation of the results from [7] in a computer program here-
after referred to as the coupling program. This approximate method is finally
used for some example configurations and the results are discussed.

Two methods have been proposed for efficient computation of this integral.
The first method is based on the Fast Fourier Transform (FFT) and the second
method is based on a series expansion of the integral [7,18,19]. The resulting
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computer programs have previously only been evaluated for linearly polarized
antennas [17-20]. In this thesis we demonstrate that this integral relation is
valid also for antennas with an arbitrary polarization, provided that the an-
tenna far-fields are treated correctly. The integral relation in [7] is singular.
This singularity can be removed by calculating the integral using the previously
mentioned series expansion rather than by direct numerical integration [7,17].
However, this series expansion does not converge for very small antenna sep-
arations [7]. We therefore propose a novel change of variables to remove this
singularity and thus providing a greater numerical stability of the integral. This
modified integral relation, referred to as the non-singular coupling integral, is
demonstrated to have very good agreement with simulation results using the
commercial software CST Microwave Stuido [21]. Finally, we investigate if this
integral relation is useful for calculating the mutual coupling between antennas
on a large conducting vehicle.

The thesis is outlined as follows: Chapter 2 presents the theoretical aspects
of this work. The near-field generalization of Friis transmission equation from [7]
is presented in Section 2.1. By analyzing the integral in the far-field limit, we
arrive at an alternative derivation of Friis transmission equation in Section 2.2.
In this section, we also derive a normalization of the far-fields in order to take
thermal and reflection losses into account. The series expansion of this integral
is derived in Section 2.3 and the change of variables to remove the singularity
in the original integral is presented in Section 2.5. In Chapter 3, this integral is
calculated for some antenna configurations using analytical far-fields. Chapter
4 treats the problems encountered when using measured or simulated far-fields
rather than analytical far-fields. The mutual coupling between several antenna
types is calculated in the near-field region and a good agreement is found with
simulations using CST Microwave Studio. In Section 5.1 we demonstrate that
this integral relation can be used to calculate the mutual coupling as function
of frequency. Finally, the mutual coupling between two antennas on a large
conducting object is calculated in Section 5.2.



Chapter 2

Near-field generalization of
Friis transmission equation

2.1 The coupling integral

Consider a two-port network consisting of two antennas placed a distance P from
each other in free space according to Fig. 2.1 and Fig. 2.2. A global system
of coordinates is chosen such that the origin coincides with the position of one
of the antennas. The variables corresponding to this antenna are denoted with
index t (transmitter) whereas the variables of the other antenna are denoted
with index r (receiver). The voltage (or waveguide mode coefficient) into the
transmitting antenna is thus denoted by a; and the voltage out of the port of
the second antenna is denoted by b;. If the system is isolated and the receiving
antenna is terminated in a matched load, then |b.|?/|a;|? is the ratio of received
to transmitted power. This ratio is often referred to as the coupling ratio or the
mutual coupling between the antennas. Using the conventional scattering matrix
for a two-port network, this is equivalent to |Sa1|? [3]. Due to the reciprocity
theorem for two antennas [2] this is also equivalent to |S12|?. In order to reduce
the interference between two closely placed antennas, this ratio should be as
small as possible. In addition to the global system of coordinates introduced
in Fig. 2.2 there is also a local coordinate system used for each antenna. These
systems are referred to as Sy = {z, yt, 2, Ot} and Sy = {z), yr, 2r, O,} for
the transmitting and receiving antennas respectively and are presented in Fig.
2.1.

Consider now one antenna in a local coordinate system such that the antenna
is placed in 7 = 0. In the antenna far-field region, which is defined by kr > 1,
the electric field has the following general form:

E(r) =~ Vof (7) (2.1)

where the choice of sign in the exponential depends on the choice of harmonic
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time-dependence (e~ or e™7%! for 4+ and — respectively) [1,4]. This relation
is proven in Appendix B. Using (2.1), it is possible to uniquely describe the
electric far-field using the normalized vector far-field function:

£(60.6) = - lm 7B () (2.2)
where Vj is a constant of the dimension voltage. This function is commonly
denoted by both f(#) and f(k) in the literature depending on the context.
In order to avoid confusion over this notation, it is important to note that
by f(0,¢), f(#) and f(k) all refer to the normalized far-field as function of
the spherical angles for one choice of angular frequency, i.e. f(6,¢; w). This
frequency dependence is often omitted in order to use a short notation. The nor-
malized far-field f(0, ¢) describes the transmitting and receiving characteristics
of the antenna. In particular, if Vj is chosen equal to

VD—\/ / lim |’ E(r")|? sin 6’d6’d¢’ (2.3)
O r’—o00

where Q = {(0, ¢) € R%; 0 < 0 <7, 0 < ¢ < 2r} is the unit sphere, then
| £ (6, $)|? equals the antenna directivity D(6,¢) [2].
If the antennas in Fig. 2.2 are located in each others far-fields, the ratio of

received to transmitted power can be estimated using Friis transmission equation
(see [15] or e.g. [2]):

2 2
= = el NP = P06, 00D 00 (55 ) e A1 (24)
ag 47 P
where
ey = Loss factor for transmitting antenna
er = Loss factor for receiving antenna
I't = Reflection factor (S1;) for the transmitting antenna
I, = Reflection factor (S11) for the receiving antenna
fiy, = Unit polarization vector for the transmitting antenna
n, = Unit polarization vector for the receiving antenna
Dy = Directivity of transmitting antenna
D, = Directivity of receiving antenna

This relation can be understood intuitively. In particular, the factor (1/P)? is a
result of the power transmitted by the transmitting antenna spreading out over
a spherical surface. Some of the transmitted power is collected by the effective
area of the receiving antenna. This relation can be recognized as the “inverse
square law” that occurs in a large number of fields in physics. The distance 7
which is found from

(D)

A

where D’ is the diameter of the smallest sphere enclosing the radiating parts
of the antenna is often used as a “starting point” of the far-field [2,4]. When

rp=2 (2.5)
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calculating the mutual coupling between two antennas, the size of both the
receiver and the transmitter need to be taken into account and the following
condition is then sometimes used:

(D{ + D;)?
A

where D] and D) are the greatest dimensions of the transmitting and receiving
antenna respectively [7].

The conjugate in the polarization mismatch factor |, -7 |? in (2.4) is crucial
when defining right-hand circular polarization (RHCP) with the polarization
unit vector Arpcp = (é + ZQZ)) /v/2 and left-hand circular polarization (LHCP)
with Aipncp = (0 — id)/v/2 for the time dependence e~ and an outwards
propagating spherical wave. If the receiving antenna has RHCP and the trans-
mitting antenna has LHCP, the mutual coupling between them should be zero
when neglecting any unwanted cross polarization. This is only satisfied if the
conjugate in the polarization mismatch factor is present. Furthermore, note
that ﬁRHCP = ﬁEHCP'

By introducing the realized gain G, (2.4) may be written in the following
simple form [2]:

P> Pf = (26)

b 2

Qg

2
= G066, 0,00) (25 ) - 3T (2.7)

If the antennas are lossless and perfectly matched, then the directivity and the
realized gain of the antennas are equivalent and either could therefore be used
in (2.7).

A generalization of Friis transmission equation which is also valid in the
near-field (where the antenna separation is smaller than r;) was proposed by
Yaghjian in 7], based on the Plane-Wave Scattering Matrix Theory by Kerns [8].
This generalization will be introduced in this chapter and it will be evaluated
throughout this thesis. The harmonic time-dependence e~** was used in the
original literature and will therefore be used also in this section. The case where
the time-dependence is ™7« is discussed in Section 2.4.

According to Fig. 2.2, the antenna separation P is now divided into two
perpendicular components:

P=R+2d (2.8)
where R - 2 = 0. Similarly, the wave vector is given by k = K + v2 where
K = k& + kyg. From k? = K2 + 4?2 it follows that v = Vk2 — K2 where
k =27/\ =w/c. v is chosen real and positive for K < k. The integral relation
between the antenna far-fields and the mutual coupling from [7] is given by:

b _ ¢ wewdemﬂdz K

a kS ~ (2.9)

This integral relation will hereafter be referred to as the coupling integral. It has
been framed in a rectangular box in order to emphasize its importance in this
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thesis. The integral relation (2.9) is derived by neglecting multiple reflections.
Furthermore, it is valid for separation distances beyond “encroachment” i.e.
for separation distances sufficiently large to ensure that a plane perpendicular
to the z-axis may be placed between the two antennas in free space without
intersecting either antenna [7].

The coefficient —C” in (2.9) takes reflection losses into account. The nor-
malization of f, and f, has not yet been specified and the coefficient —C’ can
therefore be embedded in the dot product by choice of V. The resulting value
of Vp is derived in Section 2.2.

There are several strategies to evaluate the coupling integral (2.9) for sam-
pled (measured of simulated) far-fields. Firstly, note that this integral is in fact
a two-dimensional Fourier transform from the K-space to the R-space [7,22,23].
Hence, it is possible to rapidly calculate this integral for a set of values of R
using the Fast Fourier Transform (FFT) [24,25]. Another method is to express
the coupling integral as a series in spherical Hankel functions and spherical har-
monics [7,17]. Finally, it should be noted that the integral is only taken over
the visible part of the K-space, thus neglecting evanescent modes [2,7].

2.2 Asymptotic behavior of the coupling inte-
gral

In order for the coupling integral (2.9) to be a valid generalization of Friis
transmission equation, it needs to have the asymptotic behavior (2.4) in the
far-field limit kP > 1. The asymptotic behavior of this type of integrals may
be analyzed using the method of stationary phase [2,20]. By analyzing the
coupling integral in the asymptotic limit kP > 1 similarly to [20], we arrive at
an alternative derivation of Friis transmission equation in this section.

According to the method of stationary phase (see particularly Section 12.9.3
and Appendix VIII in [2]), integrals of the type

1 o0 o0 -
§(P) = H/ / X (ke ky)e® P d,dk, (2.10)

have the following asymptotic behavior in the the limit kP > 1:

LeikP
E(P) = (—1) 26 5 cosOp x(ksinfp cosdp, ksinfpsingp) (2.11)
™

In this asymptotic approximation we use k = kP, ie.

ky = ksinfp cos ¢p
ky = ksinfpsingp (2.12)
k., =~v=kcosfp

where 0p and ¢p are the polar and azimuthal angles describing P in the system
of coordinates from Fig. 2.2.



By including the invisible region of the integration domain in (2.9), we can
use (2.11) to analyze this integral in the asymptotic limit kP > 1:

b _ 1/ wemdemadz[(
ar  k Jkere ¥
ikP Py A
~ 2 (i) P cospp dr ) fi(P) (2.13)
kv
6ikP

kP

= —2rif (—P)- f(P)
Taking the square magnitude of this equation:

br

Qg

= (B) B @ A (2.14)

By comparing with (2.7) we find:

(Aﬂip) (4m)?| £, (= P)]P| £ (P)* = (4:}3) Gi(—P)G.(P) (2.15)
i.e. 2 X
£0,0)° = 1-G(0,9) (2.16)

The normalization (2.16) will be used through this thesis. Finally, comparing
with (2.3) it is clear that the following normalization should be used for lossless
and perfectly matched antennas:

|VO|2:/ /li_r>n°o|r'E(r')|QSin9’d9’d¢’. (2.17)
QT

2.3 Expansion of the coupling integral in spher-
ical harmonics and spherical Hankel func-
tions

An interesting property of the coupling integral (2.9) is that it satisfies the
Helmholtz equation (2.21) [7,17]. This will now be proven. The results and
derivations in this section follow from and expand upon [7,17]. The Laplacian
operator is defined as

0 0
OP; OF,

using Einstein’s summation convention [26]. Operating on (2.9) with the Lapla-
cian operator yields:

% (2.18)

as  kJg<r Y



where

, 9 o . . .
2 ik-P __ ki P _ (i1 \(ik. )tk P — _ 1.2 ik-P
Vpe =P aPie (ik;)(ik;)e k“e (2.20)
By substituting (2.20) and (2.9) into equation (2.19), we find
br
(V4 + k2)a— =0 (2.21)
t

and the proof is thus complete.
Let a function T'(kP) satisfy the Helmholtz equation (2.21). Then T'(kP)
may be expanded according to [1,27,28]:

9] l
T(kP) = Z Z aim Fy(kP)Yim (0p, ¢p) (2.22)
=0 m=—1
where
21 [ —m)! ,
Vi (6, 6) = ! Mpr(ws 6)cims (2.23)

are spherical harmonic functions and Fj is an arbitrary linear combination of
spherical Bessel functions j, and spherical Neumann functions n; of order {. In
many applications, it is useful to introduce the spherical Hankel functions of the
first and second kind respectively:

nY (kP) = j,(kP) + iny (kP)

hy? (kP) = jy(kP) — iny (kP) (2.24)

The usefulness of these functions lies in their asymptotic behavior in the limit
EP >
WV (kP) ~ (—i)H1ekP /P (2.25)
b (kP) ~ itle~*F JkP '

We now return to the asymptotic expression for the coupling integral (2.13):

b omif (LB £ ()
;tN_WZfr(_ ) - il )ﬁ-

From (2.21) and (2.22) we have
9] l
= =>"3" BinF(kP)P{"*(cos fp)e™*" (2.26)

It is clear that F;(kP) = hl(l)(kP) is required in order for (2.26) to have the
correct asymptotic behavior in the limit kP > [, i.e.

oo l . ;
br _\I+1 _ikP )
— = Z Z Blmwkipele(cos Op)emor (2.27)

10



By equating (2.27) and (2.13) in the asymptotic limit we find:

i) etk P ) R . eikP
Z Z Blm P (cos 0)e'™® = —2mif (—P) - Fi(P)7— (228)

=0 m=—1

By multiplying this equation by P:l”l (cos@p)e™ ™ ¢P and integrating over the
unit sphere, we can use the orthogonality of the associated Legendre functions
[1,28,29]

1

- " ) " " n+m)l 2
/0 P (cos0) P/ (cos ) sin 0df = [1 P (z)P™ (x)dx = En—m))‘%—i—l ni
(2.29)
and )
/ ei(m_m’)¢d¢ = 270 (230)
0
to find
1 271—&—1(n—m)!/27r /Tr . ” —imep
Bom = T 2 mam) dop ; d0psinfp P (cosfOp)e
fo(=P)- fi(P).
(2.31)

We can choose a system of coordinates such that the antennas are oriented
along the z-axis (Fig. 2.3) and we are therefore only interested in evaluating
this series expansion on the z-axis where R = 0. Using the identity

P} (cos(0)) = dmo (2.32)
we find
b
-t — (1)
2t e ngléo E Bph,,” (kd) (2.33)

where B,, = Bo:

m + 1
B, —in="t

™ 21
/ dop / dop f.(—P) - f,(P)P,(cosfp)sinfp (2.34)
0 0

The expansion (2.33) with coefficients (2.34) derived in this section is also found
in [7]. In order to implement this series expansion in a computer program it is
important to note that the normalization of the Legendre polynomials P, is the
same as (2.29) with m = 0.

There are some advantages to calculating the coupling integral (2.9) using
the expansion derived in this section. In particular, the integrand in the coupling
integral as given in the original literature is singular at v = 0, but the integrand
n (2.34) has no singular point. This method can therefore provide greater
numerical stability than straightforward integration of (2.9) as it is given in
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Figure 2.3: Illustration of two antennas in the configuration from Fig. 2.2. The
system of coordinates is chosen such that R = 0. The antennas are bounded by
hypothetical spheres with radii p, and p; respectively and may have arbitrary
orientation depending on the choice of normalized far-fields (f, and f, respec-
tively). O and O, are the origins of the local system of coordinates S; and
Sy

the literature. A novel method to remove the singularity in (2.9) is derived in
Section 2.5.
The expansion derived in this section is valid for separation distances greater
than [7]:
To = Pr + Pt (235)

where p, and p; are the radii of a sphere enclosing the sources in each antenna
according to Fig. 2.3. Together with the rule of thumb (2.5), it is clear that the
result from this series expansion is mainly interesting throughout the Fresnel
region (the radiating near-field):

2
prtp _d_ <D€+D§>

A A A

(2.36)

For numerical treatment of (2.33), it is necessary to truncate the series to a
sum with a finite number of terms (L < oo). The number of terms (modes)
required in the expansion is according to [7]:

L>k(pr +pt + ) (2.37)
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2.4 Changing the time dependence
The harmonic time-dependence e ™™ is assumed in (2.9). If the harmonic time-
dependence et7%t is used instead, the corresponding integral relation is found
by changing the sign in the complex exponential according to:

(br>+ - /“ ) f k)R (2.38)

Gt

where the + is used to emphasize that the time convention e*7“? is used. By
repeating the derivation from the previous section, the corresponding expansion
is found:

L
(br) — lim S (B,), h® (kd) (2.39)
at ) 4 p=o L=
where
T 2
(B, = (=25 [ e [ v £(=P) - £(PIP,(costp)sindr
(2.40)

2.5 Non-singular coupling integral

In order to integrate (2.38) using numerical methods, it is advantageous to
make a change of variables in order to remove the singularity in v = 0. Using
K?4~? = k? and v = k cos § we make the change of variables d?K = KdKd¢ =
—vdyd¢p = vk sin 8dfd¢ and arrive at the following expression

/2 27
(bf) :/ do do f.(—k)- f.(k)e /K Remikdcosb g gl (2.41)
+ 0

Qy 0

where K - R = (kR cos¢ + kRysin¢)siné. The singularity in the coupling
integral has thus been removed. This is, to the author’s best knowledge, a novel
result. This integral will hereafter be referred to as the non-singular coupling
integral (NSCI) and it will be evaluated for several antenna configurations
in the following chapters. It should be noted that the limits of integration
differ between the NSCI (2.41) and the coefficients in the corresponding series
expansion (2.40).

2.6 Some practical aspects of the coupling inte-
gral

The first step when calculating the integrals in this chapter is to calculate the
dot product f,(k)-f,(—k). It is however not always straightforward to calculate
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f.(—k) due to the negative sign in the argument of f.. For analytical far-fields,
we can simply use the following mapping

0—m—0

bmt (2.42)

ie. f.(=k)=f.(m—0,7+¢; w). In order to correctly evaluate the dot product
for sampled far-fields, we must first note that the receiving factor f.(—k) may
be written as f.(BAk) where BA = —I and I is the identity operator. In the
Cartesian system of coordinates, these operators may be expressed as

0 0 -1

1 00
A=|o -1 o], B=[0 1 0]. (2.43)
0 0 0 1

The first operator (A) corresponds to a rotation 180° around the z-axis whereas
the second operator (B) mirrors the vector Ak in the yz-plane. Hence, we have
decomposed the operator —I with respect to the unit vector &. We could choose
any unit vector instead of & and this decomposition is therefore not unique.
This decomposition will be discussed further in Section 4.4.

When a conducting object is placed a distance P from a transmitting an-
tenna, a current will be induced in this object [1,2]. This current will radiate
and if kP is small, then this will result in a perturbation of the antenna far-field.
This effect can in some cases be useful in antenna design. One such example is
the Yagi-Uda antenna where currents are induced in parasitic elements (direc-
tors and reflectors) which are placed strategically such that the radiated field
has an improved directivity [2]. Due to this effect, it is important to distin-
guish between the far-fields which are perturbed by the presence of the other
antenna and the far-fields which are not perturbed by the presence of the other
antenna when calculating the dot product in the coupling integral (2.9). In this
thesis, these far-fields will be referred to as perturbed and unperturbed far-fields
respectively. The perturbation of the far-fields is expected to increase as kP
decreases. It can in some cases be reasonable to use the unperturbed far-fields
to calculate the mutual coupling, particularly for large kP and for electrically
small or medium-sized antennas. In [17], the unperturbed far-fields were used
for medium-sized antennas for P > 0.2)\.
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Chapter 3

Calculating the coupling

integral using analytical
far-fields

In this chapter, we will see that the method described in the previous chapter
yields the correct results for some simple antenna configurations. We start by
considering antennas with well-known analytical far-fields where it is easy to
calculate the dot product in the coupling integral by using f.(—k) = f,.(7 —
0,7 + ¢) according to (2.42). Dipole antennas are treated in Section 3.1 and
circular aperture antennas are considered in Section 3.2.

3.1 Half-wavelength dipole antennas

3.1.1 Electric far-field of an arbitrarily oriented dipole an-
tenna

The electric far-field of a half-wavelength dipole can be found in the literature for
the special cases where the dipole is oriented along the z-axis [2], and along the y-
axis [17]. In this section, the electric far-field of a half-wavelength dipole oriented
in the general direction # is derived by analogy with [2]. Some inspiration
for this calculation has been taken from the lecture notes in the introductory
course on electromagnetic theory at KTH [30]. Assuming that the dipole has
the length h = A/2 and infinitesimal radius, the electric field can be calculated
as a weighted integral over the line current I along the axis defined by 7 [1,2,30]:

wr

dE(r,t) = 4"—% x (7 % ) %I (g’,t - Vj) dg’ (3.1)
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where 7’ = ¢'fi is the variable of integration along the axis defined by the
orientation . We assume the complex line current

I(f’,t— ’"_c’"/|> = Iysin (2; (— €' |)>exp( <t—|7'_c7'/|>> (3.2)

where & € [—h/2,h/2] and the harmonic time-dependence e/*? is assumed. The
current density is assumed to be zero outside the interval [—h/2, h/2] on the axis
defined by 7fi. Omitting the harmonic time-dependence as usual, the far-field
can now be calculated:
polo .,

7
4dmr

oo [ (i) G0 )

h/2
oo L Ao oA . 2m ﬁ et GRE P ge1
= jw——mo - X (# x f) /h/2 sin (/\ <2 €] ) e dé

I .
= jwEE2e i x (7 x A) Q(r)

E(r) ~ jw

(3.3)
where the far-field approximation

!
LT (3.4)
C C C

[ — ']
t——~

has been used. Using Euler’s formula, we note that the imaginary part of the
integrand is odd in & and will thus not contribute to the integral. Hence, the
remaining part of the integral is:

Qr) =

2 cos (gﬁ f)
7)?

k1—(fn- (3:5)

The electric far-field of a half-wavelength antenna oriented in the direction 7 is
thus L
cos (gn - 7“)

-,U’OIO—kr~ L
E(r) = jc J r><(r><n)71_(ﬁ.f)2

o (3.6)

where we note that w/k equals the phase velocity ¢ for every plane wave. For
. = 2 and i = g we have i - 7 = cos § and sin 6 sin ¢ respectively and the result
(3.6) can be simplified to the expressions found in [2] and [17]. By normalizing
the far-field we find

(3.7)

By substituting e~** for e7*? in the derivation above, it is readily shown that
(3.7) is valid for both choices of time dependence. The normalized directivity of
a half-wavelength dipole oriented along the direction 7 = (&4 4)/+/2 is plotted
in Fig. 3.1.

16



20 30 40

-50 " _40 -30 -20 -10 O 10
y X

Figure 3.1: Normalized directivity of a half-wavelength dipole oriented in the
direction 7o = (& + ) /v/2.

3.1.2 Mutual coupling between arbitrarily oriented half-
wavelength dipoles

The electric far-field of an arbitrarily oriented half-wavelength dipole antenna
was presented in the previous section. It is thus possible to calculate the mutual
coupling between two arbitrarily oriented dipole antennas by evaluating the
coupling integral (2.9). The first step is to calculate the dot product f.(—#) -
f(#) where the dipole orientations are given by 7, and 7 respectively.

Real dipole antennas always have a small amount of unwanted cross-polarization.
This results in a small mutual coupling between perpendicular dipoles (where
7,-fy = 0). This unwanted cross-polarization is not present in (3.6) and the cou-
pling between two perpendicular dipoles calculated using (3.6) should therefore
be identically zero. Note that there are several possible f.(—#)- f(#) for which
the coupling integral (2.9) equals zero. One obvious case is f,(—7) - f.(#) =0
for all #. Another case is when there is a symmetry in the dot product such

that
2

t0) = Fo(=7) - fo(7)do (3.8)

0
is zero. The function ¢(6) was introduced by Yaghjian in [7] and it will be used
also in Section 4.1.

In order to implement the dot product f.(—#)- f,(#) in a computer program,
it is useful to expand the vector triple product using the € — § identity, which
describes the relation between the alternating tensor e;;, and the Kronecker
delta 57;]‘ [1,26] :

€ijk€kim = 5il5jm — 6im6jl = a X (b X C) = (a . C)b — (a . b)c (3.9)
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Hence,

R R _ . cos (gﬁr f'r) . _ . Ccos (gﬁt Ty
r)” =Ty X r X Ny ~ ~ X X = ~
Frlre) - folre) = P (7 X ) 1— (A, -2 | (P x ) 1 — (7 - 7¢)?
B [cos (Za, - 7:) | [cos (Zae-7)] . . .. .
= 1_ ('ﬁzr TAr)Q 1— (ﬁt .f“at)Z ((rr nr)rr nr)
((Py - Tay) Py — Tay)
| cos (§Ry - 7) | | cos (5 - 7y)
T 1= (A )2 | | 1= (R - )2
((rr nr)(”gt'ﬁt)('ﬁr 'Ft)_(”qr‘ﬁr)(fr ﬁt)_(”qt'ﬁt)(ft ﬁr)+ﬁ‘1‘ ﬁ’t)
(3.11)
It is readily shown that # = —#, = #; and 7, - Ay = 0 results in ¢(f) = 0. This

can be seen in the two special cases in Fig. 3.2. Hence, the mutual coupling
is identically zero for perpendicularly oriented dipoles. This is an important
result since it shows consistency of the coupling integral (2.9) with our previous
knowledge of the mutual coupling between linearly polarized antennas with
perpendicular polarization.

Finally, the mutual coupling between two dipoles oriented along the y-axis
and separated a distance d along the z-axis is calculated. The dot product (3.11)
may be simplified to:

) . cos(Z sinfsin ¢)]” o, .o
fo(=7) - f.(7) = T— (snfsmo)? (1 —sin® @sin” ¢) (3.12)
The mutual coupling between two antennas was calculated as function of separa-
tion distance using the time domain solver in CST for 10 GHz. The results from
simulation, series expansion (2.33) and Friis transmission equation is found in
Fig. 3.3. Since we have not taken into account any perturbation of the fields due
to the presence of the second antenna when calculating (3.12), the unperturbed
far-fields are used. Vp was calculated according to (2.16) to take the antenna
losses into account. According to (2.35) we expect good agreement for d > 0.5\
which agrees well with Fig. 3.3. Furthermore, it is clear that the asymptotic be-
havior of the coupling integral also agrees well with Friis transmission equation
(2.4).
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Figure 3.3: Mutual coupling between two half-wavelength dipoles which are
parallel and separated along the z-axis according to the illustration.

3.2 Electrically large circular aperture antennas

The mutual coupling between two electrically large circular aperture anten-
nas was calculated using both the series expansion (2.39) and the non-singular
coupling integral (2.41). The results agree well with results found in the litera-
ture [7,20].
A circular aperture with radius p located in an infinite grounded plane in
z = 0 illuminated by the uniform aperture field E,(r) = Eyg has the following
far-field [2]:
kp? Ege=7k" <A s ) J1(2)

Osing + ¢pcosbcosp) ——= (3.13)

E(r)= >

,
where
Z =kpsind (3.14)

and Jp is the first-order Bessel function. The normalized far-field is thus given
by:

1V Ji1(Z)
0 = -—
£60.6) = 55

(gcosh — Zsinfsin @) . (3.15)

The apertures are assumed to be lossless and perfectly matched. V is therefore
calculated using (2.17). The antennas have the same radius and are oriented
such that f.(—7) = f,(#) = f(#). Noting that the far-fields are real-valued,
it is possible to calculate the dot product in the coupling integral according
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to f.(—%) - £f.(7) = |f(#)|*> = D(#)/(4r) where D is the directivity of the
aperture. The time-convention e/*! was used when deriving (3.13) and the
coupling integral should therefore be calculated using (2.39) or (2.41).

The mutual coupling between two electrically large circular apertures with
diameter 2p = 50X was calculated as function of the separation distance d
for the setup depicted in Fig. 2.3. The problem was first solved using the
series expansion (2.39). Note that the Legendre polynomials have the following
property [29]:

P.(—z) = (-1)"P,(z) (3.16)

ie. P,(cosf) is even (odd) around 6 = /2 if n is even (odd). D(0,¢) =
D(—6,¢) for this antenna, and consequently Bs,i11 = 0. The magnitude of
the nonzero coefficients in the expansion are presented in Fig. 3.5. The result
from the expansion is presented in Fig. 3.4. According to (2.5), reasonable
agreement with Friis transmission equation is expected for d/\ > 2(D/\)? =
5000. On the other hand, the expansion (2.33) is according to (2.35) valid for
d/X > (pr + pt)/A = 50. The results in Fig. 3.4 are in excellent agreement
with [7] and [20]. Furthermore, the number of modes required in this expansion
is in good agreement with (2.37).

The same problem was thereafter solved by numerical integration of the
NSCT (2.41). The agreement between the series expansion (2.39) and the NSCI
(2.41) is excellent (Fig. 3.6). The integrals (2.41) and (2.38) (or equivalently
(2.9)) are computationally expensive for large antenna separations due to the
rapidly varying exponential factor in the integrand. It could therefore be ad-
vantageous to use the series expansion (2.39) for large antenna separations.
Note however that a large number of terms are needed in this series expansion
according to (2.37) if the antennas are electrically large. For shorter antenna
separations, it is therefore faster to use the NSCI (2.41). Furthermore, the NSCI
(2.41) gives reasonable results for d < ro where the series expansion does not
converge according to (2.35).
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Figure 3.4: Mutual coupling between two circular apertures with diameter
2p = 50X in the configuration depicted in Fig. 2.3 as function of separation
distance d.
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Figure 3.5: Magnitude of the coefficients in the expansion (2.39) corresponding
to the results in Fig. 3.4.
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Figure 3.6: Comparison between the NSCI (2.41) and the series expansion
(2.39) for small antenna separations.
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Chapter 4

Calculating the coupling

integral using sampled
far-fields

The integrals encountered so far have some common properties. Most impor-
tantly, their respective integrands consist of f.(—k) - f,(k) multiplied by some
rapidly varying weight function p. Hence, the integrals are of the type

/ o(2)p(z)da (4.1)

where p is varying more rapidly than g in the integration variable(s) z. In
this chapter we consider the case where the antenna far-fields are given as a
sampled data set with a limited number of samples. According to the sampling
theorem [31], a larger number of samples is required in order to correctly sample
the integrand gp compared to sampling the relatively slowly varying function
g. The number of available samples in g is limited and it could therefore be
necessary to interpolate this function in order to achieve the required sample
spacing when sampling gp.

This chapter will address the problems of sample spacing, interpolation and
efficient numerical integration of integrals of the type (4.1). Finally, the non-
singular coupling integral (2.41) and the series expansion (2.39) will be calcu-
lated for some specific antenna types. Horn, spiral and helical antennas will
be considered. The electric far-fields of these antennas will be calculated using
CST Microwave studio and the results from calculating the coupling integral
with (2.39) and (2.41) will be compared with the mutual coupling calculated
using CST. More information about CST is found in Section 4.2. The unper-
turbed far-fields (see Section 2.6) will be used throughout this Chapter. Based
on these results, a step-by-step procedure for calculating the mutual coupling
between two arbitrary antennas designed in CST has been developed. This
procedure is described in Section 4.7.
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4.1 A hybrid method for efficient double inte-
gration

Using the terminology of [32], integrals of the type (4.1) belong to a class of
integrals with the self-explanatory name “difficult integrals”. These integrals
are difficult from a numerical point of view due to the rapidly varying integrand.
Initially, a two-dimensional trapezoidal rule was used to calculate the coefficients
in the expansion (2.39) for a predetermined sample spacing. For this purpose,
a Matlab function named trapz2D was developed. It was later found that an
integration with better quality could be achieved if the sampled dot product
is interpolated and an adaptive integrator such Matlab’s built-in dblquad or
quad2d is used. quad2d is sufficient for most practical problems, but it is still
of interest to investigate if there are any faster methods available. One such
method is presented in this section.

The integration over ¢ is the same for all coefficients (2.40) in the expansion
(2.39). Similarly for (2.41), only the integration over 6 needs to be repeated
when changing d while R = 0. We therefore start by calculating the following

integral:
2

t0) = A fo(=7)- fi(r)do. (4.2)

After calculating t(6), both (2.40) and (2.41) may be expressed as integrals over
only one variable (6). Since the integration over ¢ is only done once, a shorter
computational time will be required when evaluating several integrals.

The integration (4.2) is relatively simple from a numerical point of view for
most antennas and this integration can therefore be performed using one of
Matlab’s built-in integrators e.g. quad or quadl. The remaining integration
over @ is challenging due to the rapidly oscillating integrand, particularly for
large d in (2.41) and large n in (2.34). In these cases, a special method for
integration of rapidly oscillating functions called quade [32] has been used.

The coefficients (2.40) are independent and can thus be computed in parallel.
Similarly, it is possible to parallelize the evaluation of (2.41) for several antenna
separations d. This reduces the computational time on a computer with several
cores. In Matlab, this can be achieved by replacing the conventional for-loop
with a the parallel loop parfor [33].

4.2 Notes on CST Microwave Studio

The far-fields used when evaluating the dot-product f.(—k) - f,(k) are, with
the exception of the previously considered analytical fields, calculated using
the commercial software CST Microwave Studio [21] in this thesis. The main
advantage of using this type of software is that it also can be used to calculate
the mutual coupling between the considered antennas. The far-fields calculated
by CST are used as synthetic data and the mutual coupling calculated with CST
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will be used as a reference when evaluating the coupling program developed in
this thesis.

The aim of this section is to describe which settings in CST are appropriate
to use for the type of problems solved during this thesis. If inappropriate settings
are used, the required computational time can become excessive and in the worst
case, the solutions can be inaccurate. It is therefore a good habit to check that
the results do not change notably when changing the solver parameters. This
kind of sensitivity analysis can be used to identify unreliable solutions.

The time-domain solver (FDTD) is very well suited for a large class of prob-
lems. The main advantage in calculating scattering parameters using FDTD
is that the scattering parameters are found as a function of frequency whereas
most other methods only solve for one frequency sample at a time. There are
however some disadvantages in using FDTD to calculate the mutual coupling
between antennas if the antenna separation is large. Firstly, the computational
domain and consequently the number of mesh elements increases as the antenna
separation in increases. The distance between the antennas and the bounding
Perfectly Matched Layer (PML) must also be chosen with care when using
FDTD. The integral equation solver does not suffer from these problems and it
has therefore been used for the majority of problems in this thesis.

The integral equation solver in CST can be set to use either the Method of
Moments (MoM) or the Multi Level Fast Multipole Method (MLFMM). An
important setting for the integral equation solver is the solver order. The first
order is fast and sufficient for a large class of problems. The second order is
more accurate and has therefore been used when the results found using the
first order solver were not accurate enough.

Far-fields calculated by CST can be exported to ASCII files using the option
“Save as source”. An electric far-field exported from CST using this option are
hereafter referred to as Ecgsr and by default, the following normalization is
used [21]:

G(r) = - | Besr () /(1 W/m’) (43)
where Zy =~ 377 ) is the impedance of free space. It should be noted that
Ecgsr(r) is defined such that impedance mismatch and thermal losses have
been taken into account. From (2.16) we consequently find:

1

VZs\/1 W/m”

There is a built-in lower limit in the angular sample spacing when exporting the
far-fields from CST. This lower limit is set to 0.25°. This is not sufficient for
certain applications, particularly for electrically large antennas. Hence, a Visual
Basic macro was developed in order to export the far-field for smaller sample
spacings. A Matlab function was developed in order to import far-fields stored
in the ASCII files produced using this macro. See Appendix A for a complete
list of source code.

f(r) = EC’ST(T) (44)
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Figure 4.1: Mutual coupling between two circular apertures with diameter
2p = 10X calculated using the non-singular coupling integral (2.41) with far-
fields sampled with different sample spacings.

4.3 Sampling of far-fields

In this section we develop a guideline for sampling of far-fields by presenting a
simple numerical experiment. The mutual coupling between two circular aper-
ture antennas with the diameter 2p = 10\ was calculated as function of the
separation distance d using the non-singular coupling integral (2.41). The elec-
tric far-field (3.15) was sampled on a uniform grid with the sample spacings
5°, 2.5°, 1° and 0.25° respectively. The resulting dot product was interpolated
using a linear interpolation before evaluating the integral. The results for the
different sample spacings are presented in Fig. 4.1. The errors due to sparse
sampling are large for sample spacings greater that 1°. A sample spacing smaller
than 1° will therefore be used throughout this thesis when sampling far-fields
from antennas of this size or smaller. For larger antennas, a finer sample spacing
is required.

4.4 Mutual coupling between spiral antennas

In this section, we verify that the non-singular coupling integral (2.41) and
the series expansion (2.39) are correct for circularly polarized antennas. Spiral
antennas are easily designed to have circular polarization, and they also have
other desirable properties such as a large bandwidth and a low cross polarization
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[2]. The spiral antenna presented in Fig. 4.2 is well-matched (S1; < —10 dB) to
a 190 Q feed throughout the interval 2 — 18 GHz, which is important for several
radar applications. An absorbing layer is placed inside the cavity behind the
spiral where z < 0 and the main lobe is consequently directed in the positive
z-direction. The losses in this layer correspond to roughly 3 dB.

If a LHCP antenna is mirrored in the yz-plane, the result is a RHCP antenna
according to Fig. 4.2. The effect of the operator B from Section 2.5 is thus to
reverse the polarization of the antenna. Since fapncp = fiyycop (see Section 2.1),
this is equivalent to taking the complex conjugate of the far-field. In conclusion,
we have the following identity:

f(=k) = f(Ak)". (4.5)

Another spiral antenna is now added to the CST model according to Fig. 4.3.
The second antenna is created by making a copy of the transmitting antenna
rotated 180° around the z-axis. These antennas have the same polarization and
are therefore polarization-matched. The receiving antenna is finally translated
a distance d along the z-axis. Hence, the relation between the receiving and
transmitting far-fields is given by f.(Ak) = f,(k). Using (4.5), the dot product
in the coupling integral may be simplified according to:

Fo(k) - f.(=k) = fi(k)- f.(AR)" = fi(k) - fi(k)" = iGt(k) (4.6)
where we use AA =1 and the normalization (2.16).

As a comparison, we also simulate polarization-mismatched antennas in the
same setup. The receiving antenna is in this case created by mirroring the
original antenna in the yz-plane, and it is thereafter rotated 180° around the
x-axis similarly to the polarization matched case. The relation between the
receiver and transmitter far-fields is then f, (Ak) = f,(k)*. The dot product
coupling integral may now be simplified to:

Folk)- fo(=k) = fi(k)- f.(AR)" = fi(k)- fi(k) (4.7)

In order to evaluate the dot product in the coupling integral we need to
export both f,(k) and f,(—k) from the CST model before performing the inte-
gration in Matlab. When exporting the far-fields, it will be useful to introduce
the local system of coordinates presented in Fig. 2.1. O; and O, are chosen to
be in the center of each spiral. The phase shift between these two points is taken
into account by the complex exponential in the coupling integral and we should
therefore use far-fields which are expressed in their local system of coordinates
when calculating the dot product. It is therefore important to note that the
distance between the antennas, P, is defined as the distance between O; and
O,. The far-field of the transmitting antenna is exported in the local system of
coordinates which coincides with the global system of coordinates. According
to (4.5) we can export f.(Ak) from CST and thereafter apply the complex con-
jugate in Matlab rather than exporting f.(—k) from CST. It should be noted

28



Figure 4.2: Spiral antennas with (a) RHCP (b) LHCP. The system of coordi-
nates is marked in the center of respective figure.

that f, (Ak) is the field seen in the local system of coordinates S, when k is
expressed in the global system of coordinates.

The diameter of the spiral antenna is D’/A = 1.7 for 10 GHz. According
to (2.35), the expansion (2.33) is therefore valid for d > p, + p; = 1.7X and
according to the rule of thumb (2.5), Friis transmission equation is valid for
d > 5.8)\. Since the unwanted cross-polarization for this antenna is very low, we
expect the mutual coupling between polarization-mismatched antennas to be
well below the mutual coupling between polarization-matched antennas. The
mutual coupling calculated using CST is found in Fig. 4.4 at the center fre-
quency 10 GHz. The unperturbed far-field was sampled on a uniform grid with
a sample spacing of 0.5° and the resulting dot product was interpolated before
calculating the non-singular coupling integral and the coefficients in the series
expansion. An excellent agreement was found between the simulation results
and the non-singular coupling integral (2.41) for all separation distances and as
expected, the agreement with the series expansion (2.39) is excellent for separa-
tion distances d > 1.7\. It should be noted that the agreement is better for the
polarization matched case than the polarization mismatched case. This can be
explained by the fact that the unperturbed far-fields are used and the amount
of cross polarization of one antenna can change due to the presence of another
antenna located within the near-field.

Finally, we rotate the receiving antenna 30° around the x,-axis, i.e. the axis
which is parallel with & and passing through O,. Furthermore, we now calculate
the mutual coupling as function Ry, i.e. the antenna separation along the y-axis.
The configuration is presented in Fig. 4.5 and the polarization-matched case
is considered. The far-field of the receiving antenna f.(—k) can be calculated
using two different procedures. Using the first method, f(Ak) is exported from
CST in the post processing stage. f(Ak) is the far-field exported when using
the local system of coordinates S;. It is thereafter possible to calculate the dot
product f.(—k) - f,(k) using (4.5). The second method is to also mirror the
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Figure 4.3: Two spiral antennas facing each other in the configuration from
Fig. 2.2 with R = 0. The system of coordinates is placed according to Fig. 2.2.
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Figure 4.4: Mutual coupling between polarization-matched and polarization-
mismatched spiral antennas respectively at the center frequency 10 GHz. The
red rings are used to distinguish the curves corresponding to the two different
cases under consideration.
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Figure 4.5: Tlustration of antenna setup. Comparing with Fig. 4.3, the receiv-
ing antenna has been rotated 30° around the z,-axis and moved a distance R,
along the y-axis.

antenna in the yz-plane, i.e. to perform the operation B in CST. The non-
singular coupling integral (2.41) was used for both these methods. The results
corresponding to d = 5\ are presented in Fig. 4.6. As expected, an excellent
agreement with the simulation results was found for both methods.
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Figure 4.6: Mutual coupling between spiral antennas in the configuration from
Fig. 4.5.

4.5 Mutual coupling between horn antennas

In the previous section, we verified that (4.5) is valid for circularly polarized an-
tennas. Since a linear polarization may be decomposed into one LHCP compo-
nent and one RHCP component [2], this method should be valid also for linearly
polarized antennas. Two linearly polarized horn antennas oriented according to
Fig. 2.3 are presented in Fig. 4.7. These antennas are polarization-matched
and we can therefore use (4.6) when calculating the mutual coupling between
them.

The rectangular waveguide feed has a width of 25.4 mm (1 in) and height of
12.7 mm (0.5 in). Hence, the cutoff frequency is for the fundamental mode is
fero = ¢/(2-0.0254 m) = 5.91 GHz and the lowest cutoff frequency for higher
order modes is twice as large, i.e. 11.8 GHz [1,3]. The antenna operates in
the band where only the fundamental mode propagates, i.e. 5.91 — 11.8 GHz.
The mutual coupling (S21) between the antennas is calculated for the frequency
10 GHz using CST. The diameter of the aperture of the horn is D’ = 51 mm.
According to (2.35), the expansion (2.33) is valid for d > p. + p; = 1.7\ and
according to the rule of thumb (2.5), Friis transmission equation is valid for
d > 5.8)\. Hence, we can expect reasonable agreement between the simulation
in CST and the expansion (2.33) for separation distances greater than 1.7\

By performing a parametric sweep in the separation distance d, the relation
between S; and d was calculated with CST. The simulation was performed
with the direct MoM solver of the second order. d was chosen as the separation
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Figure 4.7: Two horn antennas in the setup presented in Fig. 2.3 with d = 3.

distance between the horn apertures. Only the far-field of the transmitter needs
to be exported from CST since (4.6) is used to calculate the dot product in the
coupling integral. The origin used when calculating the far-fields chosen in the
center of the aperture and the z-axis was directed according to Fig. 2.3 and Fig.
4.7. The unperturbed far-field was sampled on a uniform grid with a sample
spacing of 0.5° and the resulting dot product was interpolated before calculating
the non-singular coupling integral and the coefficients in the series expansion.
The mutual coupling calculated using CST, the non-singular coupling integral
(2.41), the series expansion (2.39) and Friis transmission equation are found in
Fig. 4.8. An excellent agreement was found between the simulation results and
(2.41) for all separation distances and as expected, the agreement with (2.39) is
excellent for separation distances d > 1.7)\.

4.6 Mutual coupling between two distinct an-
tennas with arbitrary polarization

Finally, we investigate a general case where the receiving and transmitting an-
tennas are of different type. An axial mode helical antenna was designed ac-
cording to the guidelines in [2]. This circularly polarized antenna was designed
to have a significant amount of cross polarization and it is therefore possible
to verify that the coupling program correctly takes the cross polarization into
account. A system of coordinates is chosen such that the helical antenna may be
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Figure 4.8: Mutual coupling between the horn antennas in Fig. 4.7 as function
of separation distance.

interpreted as the transmitting antenna using the notation from Fig. 2.3. The
system of coordinates is depicted in Fig. 4.9. It is clear from this figure that
there are several ways to choose Oy such that it coincides with the transmitting
antenna. Any of these possible choices can be used as long as the same origin
is used when calculating the distance between the antennas and calculating the
antenna far-fields. The mutual coupling between these antennas are calculated
as function of the separation distance d at the frequency 10 GHz and the results
are presented in Fig. 4.10. An excellent agreement was found between (2.41)
and the simulation results, particularly for the polarization-matched case.
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Figure 4.9: A spiral antenna (from Section 4.4) and an axial mode helical
antenna (with a coaxial port) with system of coordinates.
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Figure 4.10: Mutual coupling between the antennas in Fig. 4.9 for the polar-
ization matched and polarization mismatched cases respectively. The red rings
are used to distinguish the curves corresponding to the two different cases under
consideration.
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4.7 Overview of the coupling program

The results presented in this chapter have been used to develop a step-by-step
procedure for calculating the mutual coupling between two antennas from a
CST model. This procedure is described in this section. An overview of the
source code is found in Appendix A. The local systems of coordinates S; and
Sy described in Fig. 2.1 are used. The following procedure should be used to
calculate the mutual coupling:

i.

ii.

iii.

iv.

Export the far-field f,(k) in the system of coordinates S;. The macro
exportFF2.mcr or the CST Graphical User Environment (GUI) with the
“Save as source” option can be used to export the far-fields. According
to Section 4.3 and the examples considered in this section, 0.5° is an ap-
propriate sample spacing for medium-sized antennas. If there are far-field
monitors for several frequencies, then the macro will export the far-field for
all these frequencies.

Export f,(Ak) using the same method as in the previous step. The easiest
way to export f.(Ak) is to export the receiver’s far-field expressed in S;.

Find the antenna separation P as the distance between O, and Oy.

Open the coupling program in the Matlab editor. There are several different
versions according to Appendix A. Enter the antenna separation(s) P, the
file names for the far-field data sets and a filename for the output file.

Once the coupling program is finished, it saves the results to a .mat-file.
The results can finally be plotted by running the post processing script
postprocess.m.
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Chapter 5

Special problems

A step-by-step procedure for calculating the mutual coupling between antennas
in the near-field region was developed in the previous chapter. This procedure
will be used in this chapter to solve some special problems.

5.1 Mutual coupling as function of frequency

The mutual coupling between antennas has so far in this thesis been calculated
as function of the separation distance P. In practical applications, it is often
more important to know the mutual coupling as function of frequency f =
w/(2m) for some specific antenna separation. As will be seen in this section, it
is possible to use the step-by-step procedure developed in the previous chapter
to calculate the mutual coupling as function of frequency as well as a function
of separation distance. In order to calculate the mutual coupling as function
of frequency, we take advantage of the fact that the far-field is a function of
frequency. Hence, it is possible to calculate the mutual coupling as function of
frequency by running the coupling program for several far-fields corresponding
to different frequency samples. When doing this calculation, it is important to
remember that electrical distance between the antennas (kd) is also a function
of frequency.

As an example, consider a setup where the the receiving antenna in Fig.
4.3 has been replaced by a half-wavelength dipole which has been designed for
10 GHz and oriented along the z-axis. This is an interesting example since there
will be a global maximum in the mutual coupling at the resonance of the dipole
antenna (10 GHz). The results from simulation and direct integration of the
non-singular coupling integral (2.41) for d = 0.60 cm (0.20A for 10 GHz) and
d =6.0 cm (2.0A for 10 GHz) are presented in Fig. 5.1. Clearly, both (2.7) and
(2.41) agree well for d = 6.0 cm, but (2.41) gives a better estimation than (2.7)
for smaller separation distances.
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Figure 5.1: Mutual coupling between a spiral antenna and a half-wavelength
dipole separated by d = 0.60 cm (0.20A for 10 GHz) and d = 6.0 cm (2.0 for
10 GHz) respectively. The red rings are used to distinguish the curves corre-
sponding to the two different cases under consideration.

5.2 Mutual coupling between antennas on a large
conducting object

As a very simple model of two antennas on an aircraft, consider two antennas
placed on the electrically large conducting object in Fig. 5.2(a). The two an-
tennas are spiral antennas oriented such that the opening angle 2y between the
conducting planes is 90°. This example represents antenna configurations on
an aircraft where the antennas have visual contact. A similar problem for an
aircraft could be to calculate the mutual coupling between one antenna installed
on the tail of the aircraft and one antenna installed on the wing of the aircraft
such that there is visual contact between the antennas. The structure is electri-
cally large which means that a full 3D simulation requires a long computational
time.

The coupling integral is derived for two antennas in free space. This scenario
can be constructed from the considered geometry by removing a piece of the
conducting object according to Fig. 5.2(b). If the antennas have visual contact,
this will not notably affect the mutual coupling between the antennas or the
antenna far-fields, provided that the change in the geometry is made far enough
from respective spiral. With this approximation we can thus find an approx-
imate method for calculating the mutual coupling between the antennas that
is significantly faster than performing a full 3D simulation. A simulation using
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Figure 5.2: Spiral antennas on electrically large conducting planes which are
(a) connected and (b) in free space. The opening angle between the antenna
planes is 2x = 90°.

the time-domain solver (FDTD) in CST verified that the difference in mutual
coupling between the two cases (a) and (b) is small. The root mean square
(RMS) error between the two curves is only 2 dB according to Fig. 5.3.

The antenna separation in this simulation is d = 30 cm (10X for 10 GHz)
and we choose a system of coordinates such that R = 0 according to Fig. 2.3.
Since the conducting plane around each antenna is radiating, the effective size
of each respective antenna is much larger than the antenna itself and it is not
straightforward to define the radii p; and p, according to Fig. 2.3. Since these
antennas are much larger than the previously considered ones, we can not expect
to find a good agreement using Friis transmission equation at this considered
distance. Indeed, the RMS error using Friis transmission equation is 24 dB
according to Fig. 5.3.

There are several possible choices of far-fields when evaluating the NSCI
(2.41). One choice to use the far-field found from the simulation of the original
geometry (Fig. 5.2(a)). This far-field is referred to as the perturbed far-field.
Another choice of far-field is the far-field of the spiral antenna with its adjacent
conducting plane when the other is not present (i.e. one of the two disjunct
structures in Fig. 5.2(b)). Perturbed far-fields typically vary more rapidly in the
spherical angles than the unperturbed far-field. Hence, a smaller sample spacing
is required in order to correctly sample this far-field according to the sampling
theorem [31]. The mutual coupling was calculated for a total of 50 equidistantly
spaced frequency samples and a piecewise cubic spline interpolation was used
when presenting the results in Fig. 5.3. A reasonable agreement was found
between the mutual coupling calculated with CST and calculated with the NSCI
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(2.41) using both choices of far-fields. As can be seen in Fig. 5.3, using the
perturbed far-field rather than the unperturbed far-field does not improve the
estimation of the mutual coupling when sampling both far-fields with the same
sample spacing. The RMS error is 6 dB when using the perturbed far-fields and
4 dB when using the unperturbed far-fields.

0

-3 ‘ — Simulation (FDTD) of case (a)

:8 I I TR Simulation (FDTD) of case (b)
121 --- NSCI with perturbed far-fields
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Figure 5.3: Mutual coupling between the antennas in Fig. 5.2 calculated using
different methods.

Finally, we consider the geometry presented in Fig. 5.4 and calculate the
mutual coupling as function of the opening angle 2y between the antenna planes
for the center frequency 10 GHz. When 2y > 180°, the antennas no longer have
visual contact. There are several such configurations on an aircraft. A simi-
lar problem for an aircraft could be to calculate the mutual coupling between
antennas installed on on the respective wings of the aircraft such that the anten-
nas do not have visual contact. The conducting planes in this simulation were
chosen to be larger than in the preceding geometry presented in Fig. 5.2 where
d = 10\ for the center frequency 10 GHz. The antenna separation d varied from
10X for 2x = 0° to 30\ for 2y = 180°. The sample spacing 0.25° was chosen
when sampling the far-field and the resulting dot product was interpolated be-
fore calculating the integral. The results from multi level fast multipole method
(MLFMM) simulation using CST and numerical integration of the NSCI are
presented in Fig. 5.5. The number of surface elements in this simulation was
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roughly 80 -10% and each simulation (i.e. each MLFMM data point in Fig. 5.5)
takes roughly 24 — 50 hours to calculate on a modern workstation. The results
in Fig. 5.5 are therefore only presented for one single frequency. The numerical
integration of the NSCI (2.41) on the other hand takes only a couple of min-
utes to calculate when the evaluation is parallelized and the same workstation
is used.

A reasonable agreement was found between the simulation results and the
NSCI in both the region with visual contact and the region without visual
contact (Fig. 5.5). The RMS error using the NSCI is 9 dB whereas the RMS
error using Friis transmission equation is 24 dB. The number of data points
in Fig. 5.5 is very limited and only one frequency is considered. One should
therefore be careful when drawing conclusions based on Fig. 5.5. These results
will be discussed further in the following chapter.
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Figure 5.4: A vehicle similar to the one presented in Fig. 5.2 for some opening
angles 2y between the antenna planes.

0
_6 =~ Simulation (MLFMM) RMS error:
—124 —i= NSCI 9 dB
—18 \ == Friis transmission equation 24 dB
—24 i ] i i
-30 ~ Region with ! Region without
—36 ~visual contact 1 visual contact
42
m —48
= [ A
= —60 =
@ 66 NN T AN,
) AN
—78
_84 AN /
—90 //
—96
d/A ~NY
10 20 27.3 30 27.3 20 10
0° 60° 120° 180° 240° 300° 360°
2x

Figure 5.5: Mutual coupling between the antennas in Fig. 5.4 as function
of the opening angle between antenna planes 2y. The corresponding antenna
separations d have been marked in the figure.
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Chapter 6

Discussion and conclusion

The near-field generalization of Friis transmission equation (2.9) proposed by
Yaghjian [7] has been investigated in this thesis by considering a large number
of examples. A series expansion of this integral was derived for the time depen-
dence e7“! following [7]. The most important result in this thesis is the change
of variables which resulted in the non-singular coupling integral (2.41). Another
important problem which was solved in this thesis was how to calculate the dot
product f,.(—k)- f,(k) for sampled far-fields. It was shown in Section 4.4 that
this dot product can be evaluated using f,.(—k)- f.(k) = f,(Ak)*- f.(k). Hence,
the ratio of received to transmitted power between two antennas located in each
others near-field can be calculated as the square magnitude of the non-singular
coupling integral

/2 2m i .
(br) :/ do | do f.(Ak)*f(k)e K Remkdeostsing | (6.1)
+ 0 0

Qg

where f, and f, are the far-fields of the receiving and transmitting antennas
respectively, P = R + 2d is the antenna separation and K - R = (kR cos ¢ +
kR, sin¢)sind. This non-singular form of the coupling integral is, to the au-
thor’s best knowledge, a novel contribution of this work to the current litera-
ture. The time dependence e/“! is assumed in (6.1). A normalization of the
far-fields (2.16) was derived in order to take thermal and reflection losses into
account in (6.1). There are two main advantages in using (6.1) rather than
(2.38) from [7]. Firstly, this integral has greater numerical stability since it does
not suffer from the singularity in v+ = k, = 0. There is therefore no need to
truncate the integration domain further than K < k, as done in [7]. Secondly,
using f.(—=k)- f.(k) = f.(Ak)* - f.(k) it is possible to facilitate the evaluation
of the dot product, as done in (6.1).

The non-singular coupling integral (6.1) has been demonstrated to agree well
with simulation results for a large number of examples. In particular, a good
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agreement has been found for circularly polarized antennas. This is a significant
improvement compared to earlier computer programs which could only be used
for linearly polarized and polarization-matched antennas [18].

It has been demonstrated through several examples in Chapter 3 and Chap-
ter 4 that the non-singular coupling integral (6.1) is valid for smaller separation
distances than the series expansion (2.39). This is due the fact that the conver-
gence of the series expansion is limited by (2.35). It should however be noted
that (6.1) is computationally heavy for extremely large separation distances and
the series expansion (2.39) is advantageous in these cases. Furthermore, it was
demonstrated in Chapter 5 that it is possible to calculate the mutual coupling
as function of frequency using (6.1).

It has also been demonstrated that the non-singular coupling integral (6.1)
can be used to find approximate values of the mutual coupling between an-
tennas on vehicles. The approximation lies in the fact that the antennas are
not truly in free space. If measured or calculated antenna far-fields are avail-
able with an appropriate sample spacing (e.g. < 0.25°), then an estimation of
the mutual coupling can be found using this method. It was demonstrated in
the previous chapter that errors up to 9 dB can be expected using this method.
The computational time required to calculate (6.1) in the last example in Chap-
ter 5 was a few minutes on a modern workstation whereas the corresponding
full three-dimensional simulation required 24 — 50 hours per data point. This
extreme difference in computational time is the main advantage in using this
approximation.

The results in Fig. 5.5 indicate that a reasonable agreement is found also
when the antennas do not have visual contact. The number of data points in Fig.
5.5 is however very limited and only one frequency is considered. Further work
should therefore be aimed at investigating additional examples of aircraft-related
problems to see if a good agreement is found for additional cases where the
antennas do not have visual contact. Since it is expensive and time-consuming
to measure or calculate antenna far-fields with a small sample spacing, it is also
of interest to investigate methods to improve the integration performance for
sparsely sampled far-fields. Furthermore, it could be interesting to investigate
the effects of including evanescent modes in the integration domain. Finally,
the results from this thesis will be submitted to a scientific journal.

44



Index

Alternating tensor (e;;), 17
Aperture, circular, 20

ASCIL, 26, 51

Associated Legendre functions, 11

Bessel function, first order, 20
Bessel function, spherical, 10

Circular polarization (LHCP), 7

Circular polarization (RHCP), 7

Circularly polarized antennas, 27

Coupling integral, 8
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Far-field, perturbed, 13

Fast Fourier Transform (FFT), 8
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Friis transmission equation, 6
Fundamental mode in waveguide, 32
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Helmholtz equation, 9, 10
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Impedance of free space (Zy), 26
Integral equation solver, 26
Interface, 50

Interference, 4

Interpolation, 24

Inverse square law, 6

Kronecker delta (d;;) , 17

Laplacian operator, 10
Legendre polynomials, 11

Macro (CST), 26

Method of Moments (MoM), 26

Multi Level Fast Multipole Method (MLFMM),
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Multipole expansion, 53

Mutual coupling, 1, 4

Neumann function, spherical, 10
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Numerical integration of rapidly vary-
ing functions, 25

Numerical stability, 12

Orbital angular momentum operator,
54
Ordo, 54

Parallel computing, 25

PEC, 26

Perturbed far-field, 13
Polarization mismatch factor, 7

RMS error, 39



Sampling theorem, 24

Scattering matrix for two-port network,
4

Scattering matrix theory for plane waves
, 1

Special functions, 51

Spherical harmonics, 8

Spiral antenna, 27

Stationary phase, method of, 8

Time dependence, 13
Time-domain solver (FDTD), 26
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Appendix A

List of source code

The source code developed as part of this thesis has been organized using general
principles in computer science found in a large number of textbooks, e.g. [34]. All
important routines have been implemented as separate functions, thus creating
an interface between the user and each routine. Furthermore, the consistent use
of functions results in a clean source code where the same code is not repeated
unnecessarily. The source code developed as part of this thesis is organized in
a number of folders:

LIBRARY - This folder contains all functions that are commonly used in
this thesis.

DIPOLES - This folder contains the source code used in Section 3.1.

APERTURES - This folder contains the source code used in Sections 3.2
and 4.3.

HORNS - This folder contains the source code and data sets used in Sec-
tion 4.5.

SPIRALSPIRAL - This folder contains the source code and data sets used
in Section 4.4.

SPIRALHELIX - This folder contains the source code and data sets used
in Section 4.6.

SPIRALDIPOLE - This folder contains the source code and data sets used
in Section 5.1.

Each folder contains a README-file which is intended to give an overview of the
contents of each folder. The folder LIBRARY contains the following functions
and programs:
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Far-field data:

exportFF1.mcr - This CST Macro is used to export the electric far-field to
an ASCII file for an arbitrarily small sample spacing. The magnitude (dB)
and phase (deg) are exported separately for the 6 and ¢ polarizations.

exportFF2.mcr - This CST Macro is used to export the electric far-field
to an ASCII file for an arbitrarily small sample spacing. The real and
imaginary parts are exported separately for the 8§ and ¢ polarizations.

createFFminitors.mcr - This CST Macro is used to quickly create an
arbitrarly large number of far-field monitors.

loadFarField.m - This Matlab function is used to import far-fields which
are exported using exportFF2.mcr. This file also imports the frequency
from the ASCII file.

readline.m - This Matlab function reads one line from an ASCII file.
Hence, information can be quickly be extracted from large ASCII files
without loading the entire file.

removeheader.m - This Matlab function removes the header from a large
text file such that it can be loaded by the Matlab function load.

getData.m - This Matlab function is used to search ASCII files for relevant
data, which is useful when analyzing the result from a parametric sweep.

Special functions:

legendrePol.m - Legendre polynomials.

hankell.m - Spherical Hankel functions of the first kind.
hankel2.m - Spherical Hankel functions of the second kind.
sphericalbesselj.m - Spherical Bessel functions.
sphericalbessely.m - Spherical Neumann functions.

spharm.m - Spherical harmonic functions.

Visualization:

plotDirectivity3D.m - 3D directivity (or gain) plot in Matlab.

tikzdata.m - This function exports two vectors to an ASCII file in a
format which can be used by Tikz for Latex.

Coupling program:

CouplingProgramDirect.m- This program calculates the mutual coupling
between two antennas using the non-singular coupling integral (2.41).
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CouplingProgramSeries.m- This program calculates the mutual coupling
between two arbitrary antennas using the series expansion (2.39).

CouplingProgramSeriesFast.m - This program calculates the mutual
coupling between two arbitrary antennas using the series expansion (2.39)
and the fast method of integration from Section 4.1.

CouplingProgramFrequency.m - This program calculates the mutual cou-
pling between two arbitrary antennas as function of frequency using the
non-singular coupling integral (2.41).

postprocess.m - This script plots the results from the coupling program
together with the results from Friis transmission equation. The script can
also plot simulation results from CST in the same figures.
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Appendix B

On the normalized vector
far-field function f

The antenna far-fields can be represented by the normalized vector far-field
function f(#) according to (2.2). This normalization is motivated by the relation

efjk:r

lim E(r) =

r—00

Vof (7)

which holds for any electric field E(r) which is generated by a source bounded by
a sphere of radius R. This relation will now be proven. The time convention e/“?
is assumed in this appendix. E(r) can be expressed as a multipole expansion
in the exterior region r > R [1,27]:
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M E . . .
where al(m) and al(m) are some coeflicients and the vector spherical harmonic

functions are given by:
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X7,(0,0) = #Y 1 (0, 0) (B.4)
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where L = —j(r x V) is 7! times the orbital angular momentum operator. It
is well-known that the electric far-field does not have an #-component [1,2] and
the terms including X in (B.1) will therefore not contribute to the far-field.
In the antenna far-field region we thus have

%) l
m=> > [a%)wm1>h§2)<kr>xim<e,¢>

=1 m=—1

- iza® YD ( 3r) h§2)<kr)X?m<9,¢>]

(B.5)

Furthermore, the derivative of the spherical Hankel function in (B.1) may be
expanded (see e.g. [35]):
jlm/2

ih@)(kr) 7jkr (6

I — O((kr)2)> (B.6)

where Ordo is denoted by O. Substituting (B.6) and (2.25) into (B.5) yields:
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and the proof is thus complete. Finally, the normalized vector far-field function
can be identified:

[e's) l

Z Z l+1 lerlk ! |:alm)le( ) Zoal(E)le( ):| (B8)

=1 m=—1

54



	Introduction
	Near-field generalization of Friis transmission equation
	The coupling integral
	Asymptotic behavior of the coupling integral
	Expansion of the coupling integral in spherical harmonics and spherical Hankel functions
	Changing the time dependence 
	Non-singular coupling integral
	Some practical aspects of the coupling integral

	Calculating the coupling integral using analytical far-fields
	Half-wavelength dipole antennas
	Electric far-field of an arbitrarily oriented dipole antenna
	Mutual coupling between arbitrarily oriented half-wavelength dipoles

	Electrically large circular aperture antennas

	Calculating the coupling integral using sampled far-fields
	A hybrid method for efficient double integration
	Notes on CST Microwave Studio
	Sampling of far-fields
	Mutual coupling between spiral antennas
	Mutual coupling between horn antennas
	Mutual coupling between two distinct antennas with arbitrary polarization
	Overview of the coupling program

	Special problems
	Mutual coupling as function of frequency
	Mutual coupling between antennas on a large conducting object 

	Discussion and conclusion
	Index
	References
	List of source code
	On the normalized vector far-field function f

