Development of a pipeline for patient
specific finite element modelling of the
left ventricle of the human heart

MBAH CHRAMEH FRU

Master of Science Thesis
Stockholm, Sweden 2014

Development of a pipeline for patient
specific finite element modelling of the
left ventricle of the human heart

MBAH CHRAMEH FRU

Master’s Thesis in Scientific Computing (30 ECTS credits)
Master Programme in Scientific Computing (120 credits)
Royal Institute of Technology year 2014

Supervisor at KTH was Johan Jansson

Examiner was Michael Hanke

TRITA-MAT-E 2014:67
ISRN-KTH/MAT/E--14/67--SE

Royal Institute of Technology
School of Engineering Sciences

KTH SCI
SE-100 44 Stockholm, Sweden

URL: www.kth.se/sci

Abstract

In order to perform simulations of the human heart using a heart
finite element solver developed at the Computational Technology
Laboratory at KTH with a data set provided by Philips consist-
ing of surface meshes of a whole heart, the surface mesh has to be
converted to a volume mesh. The conversion is manual and time
consuming. Therefore the purpose of this thesis is to develop al-
gorithms and software tools for automatic generation of a finite
element model in the form of a volume mesh of the left ventricle
of a human heart based on the available Philips data set. The
developed model can be used for the simulation of blood flow by
solving the Navier—Stokes equations. The method used for gen-
erating the model is based on deformation of an a priori finite
element volume mesh to fit the extracted inner wall surface mesh
of the left ventricle, from the aforementioned data set. The defor-
mation is done by solving a nonlinear partial differential equation
(PDE) using the finite element method.

The method starts with the characterization of an external field
that describes the distance from the target surface mesh, and
then uses this external field as a component of the total force
responsible for deforming the object. The method is validated
in three space dimension by deforming a sphere into an ellipsoid.
For this test case, two implementations of the PDE were tested
and evaluated.

The method was then applied to the above mentioned Philips
data set. The report summarizes the findings and proposes im-
provements for the future work.

Utveckling av arbetsflode for patientspecifik finit
element modellering av vanster kammare pa
manskligt hjarta

Sammanfattning

For att utfora simuleringar av ett manskligt hjarta med hjilp av
en finita elements hjirtlosare pa Computational Technology La-
boratory pa KTH, med data fran Philips innehallande ytnét fran
ett helt hjarta, kravs att ytnitet omvandlas till ett volymnat.
Omvandlingen gors fér hand och tar mycket tid. Syftet med den
har uppsatsen ar darfor att utveckla algoritmer och mjukvaru-
verktyg for automatisk generering av finita elementmodellen i
form av ett volymnét av ett ménskligt hjdrtas vinsterkammare
baserat pa tillgdnglig data fran Philips. Den utvecklade metoden
kan anvédndas for blodflédessimulering genom att 16sa Navier-
Stokesekvationerna. Metoden som har anvints for att genere-
ra modellen baseras pa deformering av ett férut bestdmd finit
elementnét for att passa ytnédtet pa vdnsterkammarens uttagna
innervigg fran Philips data. Deformeringen gérs genom att losa
en ickelinjar partialdifferentialekvation med hjilp av finita ele-
ment metoden.

Metoden borjar med karaktédriseringen av ett yttre falt som be-
skriver avstandet fran det énskvérda ytnétet och sedan anvander
detta yttre falt som en del i den totala kraften som ansvarar fér
objektets deformering. Metoden har verifierats i tre rymddimen-
sioner genom att en sfér deformeras till en ellips. I detta fall tes-
tades och utvirderades tva implementeringar av partialdifferenti-
alekvation. Sedan applicerades metoden pa den tidigare ndmnda
datan fran Philips. Rapporten sammanfattar upptéckterna och
foreslar framtida forbattringar.

Contents

1 Introduction

2 Methods
2.1 Introduction.
2.2 Forcefield
2.3 Model Deformation
2.4 Numerical implementation

2.4.1 Finite Element method for the Eikonal equation
2.4.2 Finite Element method for the force field equation
2.4.3 Finite Element method for the elasticity equation

3 Software

4 Results
4.1 Introduction.
42 Results.

5 Application

5.1 Automated patient specific data extraction

5.2 Mesh generation
5.3 Gradient vector flow computation

6 Conclusion
Appendices

Bibliography

25

27
27
27

35
36
38
38

43

43

45

Chapter 1

Introduction

The human heart is one of the most important organs which is responsible for the continu-
ous blood supply to all parts of the human body [29, 30]. It is a three dimensional muscular
structure consisting of four chambers namely, the right and left atrium, and the right and
left ventricle. The left ventricle receives oxygenated blood from the lungs and pumps it to
the body while the right ventricle receives oxygen deficient blood from the body and pumps
it to the lungs. The flow of blood into the ventricles is controlled by valves which allow the
blood to flow only in one direction at a given time [14]. Problems pertaining to the heart
can sometimes be fatal, in fact, it has been shown that heart disease is one of the major
causes of death in the Western world [27] and [12]. For the cases where heart disease does
not lead to death, the geometry and function of the heart might change as a result of the
disease [18]. These changes over time differ from person to person. Accordingly, an impaired
functionality of the left ventricle might lead to an abnormal cardiac cycle [18]. Therefore
understanding the dynamics of the heart (which includes structural changes over a cardiac
cycle, systole and diastole, and blood flow) is crucial. The aforementioned understanding
can be achieved by studying non-invasive methods.

Concerning non—invasive imaging modalities such as phase contrast MRI (magnetic res-
onance imaging), Doppler ultrasound imaging and computed tomography (CT), at the
moment, none of them can be used for obtaining detailed quantitative information about
the dynamics of the heart [18] for the following reasons:

With respect to Doppler imaging, it is a non-invasive procedure that is used to measure
blood flow through the blood vessels by sending high frequency sound waves to the
region of interest, where the waves are reflected back upon hitting red blood cells. This
type of imaging differs from regular ultrasound imaging in that in regular ultrasound
imaging, only images of the tissue are produced and no information about blood flow
is obtained. It has been reported by [18] that for Doppler ultrasound imaging, the
angle between the ultrasound beam and blood flow (see [26]) becomes an impediment
when measuring the received signal.

For the case of phase contrast MRI, it relies on the fact that a uniform motion of
tissue (for example the heart) in a magnetic field gradient causes a change in phase of
the magnetic resonance signal [22]. This phase change is proportional to the velocity
of the tissue. Conventional MRI produces three dimensional images for diagnostic
purposes but is void of information pertaining to blood flow and tissue movement. As

CHAPTER 1. INTRODUCTION

mentioned by [18] the disadvantage of phase contrast MRI is due to the fact that it
takes time to get the signal and its spatial resolution is small compared to CT.

Computed tomography (CT) is an imaging method which uses X-rays and computer
processing to generate an image of tissue density in cross-sections through the patient’s
body. It is a very fast imaging method and has a high spatial resolution [4]. However,
the radiation produced by CT scans is high and not suitable for the purpose of getting
an image from a healthy person since there is an increased risk of developing cancer
in future.

Despite these limitations, the inclusion of a mathematical model geared towards Com-
putational Fluid Dynamics (CFD) to compliment the non-invasive methods has been in
continuous development by many authors. As explained in [21], mathematical models have
the advantage of gaining profound insights of physiological mechanisms which may not be
measured easily. Also, it may help to clarify certain concepts where ambiguity arises due
to subjective definitions and interpretations [21]. CFD deals with the prediction of the
behaviour of fluids and the effects of fluid motion past objects by solving numerically a set
of partial differential equations that describe the flow [11]. Usually, these equations with
appropriate boundary conditions are set up on a mesh, which is a representation of a do-
main of interest that is partitioned into finite elements [6]. The obtained solutions consist
of velocity and pressure at each mesh point at a given time.

Since human anatomy varies from person to person, mesh generation has to be patient
specific and is typically done in a computational multi-stage approach consisting of: seg-
mentation of medical image, surface mesh generation, volume mesh generation and mesh
optimization [25]. This approach has to be carried out such that the generated mesh should
be valid, geometrically accurate, smooth and have an appropriate mesh quality [25].

Remarkable results have been obtained using CFD to simulate blood flow in the left ven-
tricle of the human heart [18, 28]. In this framework, CFD approaches can be grouped into
two categories [8, 28], namely: a prescribed method and fluid-structure interaction (FSI).
The former makes use of an equation to specify the boundary of the patient specific data
acquired from one of the medical imaging methods mentioned earlier while the latter takes
into account the interaction of heart muscles (structure) with the internal (or in some other
cases, external) blood flow (fluid) and depicts more realism than the former [28]. In the
context of FSI, it can either be done in a monolithic fashion or by solving the equations for
fluid flow and structure deformations separately and couple them together by updating the
boundary conditions at the interface between structure and fluid, iteratively. In the mono-
lithic approach, the equations for fluid flow and structure deformation are solved together
without decoupling.

Combining the ideas in the preceding section to develop a patient specific model for the
left ventricle, which can be helpful in diagnosis, has been a challenge. This is due to the
many time consuming manual steps involved from acquiring raw data (images) to creating
a model [20]. Some authors have used different approaches to automate this process by
using a generic model. In fact, Philips [31] has developed a patient specific model of the
whole heart composed of surface meshes that can be generated from any medical imaging
method. They started with a generic model of the heart and adaptively matched it to the
three dimensional images of the patient [31], while in [23], they had an a priori model of
an object. This object is in the form of an image to be segmented. This a priori model
is defined such that it has the same topology, geometry and elastic characteristics as the
object. The model is then put into the image data where a fictitious force field deforms the

model by pulling its boundaries towards the image edges until it reaches equilibrium. The
fictitious force is known as gradient vector flow (GVF) [32]. It is derived by minimizing
a certain energy functional of the image data. After achieving the preceding phases with
the aforementioned model, it can now be used for tracking the heart motion in the cardiac
cycle and extracting useful parameters such as volumes, local stresses and strain. However
this method is tailored to MRI data. An approach which has not yet been tested is to use
the Philips heart model and an a priori model for the automatic generation of a patient
specific heart model. The novelty of this project lies in the fact that the GVF will be
used on the Philips heart model to construct an external force field. Although the Philips
heart model is not an image, it has internal surfaces which makes it suitable to use the GVF.

The advantages of the gradient vector flow approach are: It does not depend on initializa-
tion and it is able to capture boundaries [23, 32]. This approach is particularly interesting
with respect to the existing heart solver code under development at the Computational
Technology Laboratory at KTH. To use the solver with an available data set from Philips,
consisting of surface meshes of time snapshots of a whole human heart, the model has to be
converted to a volume mesh before it can be used. The process of conversion is manual and
laborious. Thus, this calls for an automated process. The automation is done by deforming
the a priori model in the form of a volume mesh by solving a non linear partial differential
equation using a finite element method.

Therefore, the purpose of this work is to develop algorithms and software tools such that
patient specific data based on the Philips heart model, can be automatically deformed
into a finite element model wherein the Navier—Stokes equations can be solved to simulate
blood flow in the left ventricle of the heart, using an existing heart solver code. The
tools and algorithms should work in a parallel computing environment because they will
be developed using FEniCS-hpc software. FEniCS-hpc takes a weak form of a partial
differential equation as input and generates a solver which is automatically parallellized.
One of the components of FEniCS-hpc which aids the parallelization is Dolfin-hpc. In
Dolfin-hpc a mesh is automatically distributed and Dolfin-hpc contains parallel libraries for
linear algebra. This means that each processing element (core) will have a copy of only the
portion of the mesh for which it can carry out computations. In the chapters that follow,
Chapter 2 lays the ground for the theoretical aspects of the model deformation, Chapter 3
gives a brief introduction to the software and Chapter 4 presents results of the test case.
Chapter 5 presents applications and results with some discussions, and Chapter 6 highlights
what has been achieved in this work and what lies ahead.

Chapter 2

Methods

2.1 Introduction

In order to create a patient specific left ventricle model from a generalized model, based on
the Philips heart model, the generic model has to be adjusted or deformed automatically
to fit the data. This deformation is achieved by an external force field constructed from the
data. This chapter introduces how an elastic object in an external force field is deformed.
The characteristics of the external force field is described, and thereafter how the external
force field causes the object to deform. The resulting equations are then solved using a
finite element method.

2.2 Force field

The external force that will be used in deforming an elastic object is based on the gradient
vector flow (GVF) force field [23, 32]. Although the gradient vector flow field is derived
from images by a minimization of a certain energy functional [32], in this project there are
no images involved. Instead, the GVF is derived from a general domain exhibiting regions
of interest like boundaries or internal surfaces. Let € be an open bounded domain of R?
and 99 its boundary. The GVF in is defined as a vector field (external force field) U
obeying

aV?U — |[Vf?(U—-Vf) =0 in Q,

(2.1)
U =0 on 09.

With
f:Q—R,

a real valued function and « a parameter which accounts for the balance between the first
term and the second term of equation (2.1): if there are irregularities in the domain,
increasing « smooths out these irregularities. In [32], f is referred to as the edge map
function. The edge map function is in principle an edge detection method which identifies
significant discontinuities of gray level of an image [7]. In this project, f is chosen to have
similar properties as the edge map function, with the goal to identify the boundary of the
heart model. These properties include:

e V[has vectors pointing towards the boundary and are normal to the boundary at
the boundaries. This will cause the model’s boundary undergoing deformation to
converge to the target boundary.

CHAPTER 2. METHODS

e Vf has a large magnitude only in the immediate vicinity of the boundary.

e In a homogeneous region (for example, the inner part of the left ventricle), Vf is
almost zero.

Therefore f is chosen as

1 —g($7 Y, Z)2

o) = o (120, (2.2
where g(z, vy, z) measures the distance from the boundary to the center of the domain, that
is g(z,y,) = 0 on the boundary, and ¢ (full width at half maximum) is a parameter which
determines how wide or thin the boundary is.

In general, when an analytical expression for distance is not possible to derive from complex
geometries (like the left ventricle), the solution to the Eikonal equation (equation (2.3)) can
be used to get the distance, function g(z,y, 2) :

Vg(z,y,2)| =1 (z,9,2) in Q

2.3
gx,y,2) =0 (z,y,2) on 0N (2:3)

Some observations can be made from equation (2.1) such as: if |V f| is very small, the force
field is dominated by V2U term, corresponding to a Poisson problem, giving an almost
constant field U. If |V f] is very large the second term becomes pronounced, and equation
(2.1) is solved by setting U = V f. Thus equation (2.1) enforces the condition that U should
be equal to the gradient of f at the immediate vicinities of the boundary, and it also ensures
that the field U vary slowly far into the domain (homogeneous) regions. To solve equation
(2.1), we seek the steady-state solution of the diffusive process [32]:

9y _ aV*U — (U - Vf)|Vf? in Q,

ot (2.4)
U =0 on 99.

2.3 Model Deformation

In this section, deforming the object (which is in the form of a volume mesh) is described in
terms of a time dependent non-linear partial differential equation (PDE). First, a general
description of the PDE will be given followed by connecting the mesh quality to the PDE.
Consider that the mesh is modelled as an isotropic elastic object, having an external force
field (described in the previous section) acting on it and €2, 9 represents the mesh and its
boundary respectively. Also let T = [0, T] C R be the time domain. There exists two types
of forces acting on the object, namely the force field which acts on the whole domain and
a force acting on the boundary of the object due to stress [15],

0: QO x T — R®xR3,
which is of the form o - n, where n is normal to the surface. The stress, is given by
o =2ue, (2.5)

where e: @ x T — R3 x R? is the strain given by e =1 - B, B: Q@ x T — R3 x R? with
B=FF7 F: QxT — R3xR3 represents the deformation gradient given by F = I+ Vw,
I is the identity matrix, w : Q x T — R3 is the displacement vector, and

2.3. MODEL DEFORMATION

is the elastic modulus. E and v are Young’s elastic modulus and Poisson’s ratio respec-
tively. Young’s modulus tells us how stiff the object is and the Poisson’s ratio expresses
the propensity of the object to shrink when stretched. The deformation gradient can be
interpreted as a mapping, from cells in a reference mesh to a current mesh configuration
after the mesh has undergone a deformation. The deformation gradient evolves during the
deformation process and so does the stress. According to [10], this evolution is given by

JOF

with initial condition Fy = F, F is the deformation gradient with respect to a scaled
equilateral reference cell having the maximum mesh quality @, given by @ = 1 and u :
Q x T — R3 the displacement velocity vector. The mesh quality is defined to be

d|[F |7
= 2.7
@ det(F)?2 27)
where d is the dimension of the mesh and ||F|| is the Frobenius norm defined as
IF| = trace(FFT). (2.8)

F is computed at a current state and the stress (equation (2.5)) is updated accordingly
since B also evolves in time. The evolution of B (see [10]) is via

B
%—t = VuB + Bvu’. (2.9)

The total force on the object is obtained by summing up external forces and contact forces
F=1/[o- ndr+/ uds, (2.10)
0 Q

where U is the external force obtained by solving equation (2.4) and I' = 9€2. From Newton’s
second law (change in momentum per unit time), F can be expressed as fQ pwd(), where p
is the density, W is the rate of change of velocity and the integral indicates the sum of all
particles in the body occupying a volume df) and mass pdf).

Thus equation (2.10) becomes

/deQZ/ o-ndI‘+/UdQ (2.11)
Q oN Q

Applying the divergence theorem on the first term on the right hand side, yields

/Qp\'i/dQ = /(V -0+ U)dQ2 (2.12)
Q

At equilibrium, the forces balance out, giving

/(pW—V-a—U)dQ = 0,
Q
from which follows that
pw = V.04U (2.13)

CHAPTER 2. METHODS

Therefore with appropriate boundary conditions, the Elasticity PDE reads (dropping the
density since it acts like a scaling factor)

w=V-.o+U, in QxT
oc=2u(I-B) in, QxT
c-n=g on 0N xT (2.14)
W = g2 on JQxT
W =gy in Q for t=0
W =g3 in Q for t=0

Where g1 : 2 x T — R? and g2 : @ x T — R3 correspond to the Neumann and Dirichlet
boundary condition respectively, g4 : 2 — R3 is the initial condition on the displacement
which corresponds to the initial mesh configuration and gg : 2 — R3 is the initial condition
on the rate of change of the displacement (velocity). If go = 0, then the boundary of the
object is not allowed to move. Equation (2.14) is solved with a two step procedure. First
calculate U by evolving equation (2.4) and then inserting it in equation (2.14). In Chapter
3, the implementation of this solution algorithm will be discussed.

For a discrete setting, we discretise the domain) by the mesh which is partitioned into
finite set of cells, K, with non overlapping interiors such that UK = . The cells are usually
of polygonal shapes such as tetrahedral. The Ly norm quality of each cell in the mesh is
given by

\@&=A¢m (2.15)

with dx being cell dimension. To see how the mesh quality is influenced by updating the
mesh with w from equation (2.14), we study the energy of the body since the stationary
solution of equation (2.14) corresponds to the minimum energy (potential).

The energy functional is given by

E(W) = FEelastic T Fexternal (216)

1
*O’i'ei‘dQ
/Q 2 J=v)

Eelastic

but O35 = K€

1
Eelastic - / §,Uzeij 61’de
Q
1
Eela,stic = /*Htrace(eTe)dQ
Q2
bute = I-B
1
Eolastic = / 5utrace((l—B)T(I—B))dQ (2.17)
Q

For each cell in the mesh

1
FEelastic = Z/iutrace((I—B)Q)dQ
KeQ /K

1
Z / Pl trace(I — 2B + B'B)dQ
keq”K

1 T
I;)/K e [trace(I) — 2 trace(B) + trace(B' B)] d(2 (2.18)

2.4. NUMERICAL IMPLEMENTATION

From the definition of Frobenius norm

|F|| = y/trace(FFT) = \/trace(B)

From equation (2.7), neglecting the normalisation and scale factors, one obtains

2
Q = HF”F
= trace(B) (2.19)
Note that
BB = (FFO)TFF”
FFTFF?
= B? (2.20)

trace(B) is computed from equation (2.18) and using equation (2.15), the following is ob-
tained

lQll,, = /K Qde

/ trace(B)?dz (2.21)

Computing trace(B) by minimizing equation (2.18), the cell quality is evaluated as illus-
trated by equation (2.21). Thus, when at equilibrium equation (2.18) acts as a smoother
by giving high stiffness to cells with low @ value.

The creation of the mesh goes through the following steps.

1: while t < T do
2: Compute the solution to the Eikonal equation, g(z,y, z)

3: Compute: f(z,y,z2) = a\}ﬁ exp (_g(;£’2)2)

4: Solve: 20 = aV?U — |Vf|?(U — Vf) with BC condition

5. Solve: w=V.0+U

6: Check for convergence by examining the change in volume of the mesh
7. if no change in volume then

8: break

9: end if

10: t+ = timestep
11: end while

2.4 Numerical implementation

Equations (2.3), (2.4) and (2.14) are solved numerically by the finite element method. As
mentioned in [8], finite element methods possess a strong mathematical base which employs
measuring an a posterior estimate of the error, which is a corner stone for adaptive meth-
ods.

Consider an arbitrary domain, Q@ C R* d = 2or3, of a given problem. This domain is
assumed to be discretized by the mesh mentioned above. A local function space, V, is
defined on each cell with a set of rules assigned to the functions in V. These local function

CHAPTER 2. METHODS

spaces are then used in constructing a global function space, V},, known as the finite element
space. Typically, the finite element discretization steps are:

1. Derive a weak formulation. This entails multiplying the equation to be solved by an
appropriate test function and integrating to obtain a weak formulation. The space of
the test functions is taken to be the Solobev space given by

Hy(Q) := {v € L*(Q) | Vv € L}(Q), v]sq = 0}

where

L3(Q) := {v]| (/Q |v|2dQ>é < oo}

Vv is the gradient of v. The finite element solution is then sought from a finite element
space, V;, C H}(Q), build from a local function space on each cell of the mesh.

2. Obtain an algebraic system. The solution to be computed known as the trial function,
is expressed as a linear combination of basis functions on each element in the domain.
Each basis function has a compact support either across neighbouring element (for
continuous finite element) or within an element (discontinuous finite element). The
linear combination is then substituted in the weak formulation with the test functions
chosen as the basis functions yielding a discretized weak formulation which could be
a linear or a non linear algebraic system.

3. Next step involves evaluation of the integrals representing the weak formulation using
a reference coordinate system.

4. Solving the algebraic system.

2.4.1 Finite Element method for the Eikonal equation

To solve equation (2.3) numerically, we use the continuous Galerkin’s method of degree one
(¢G(1)) (using Lagrange elements), with Newton’s method since it is a non linear partial
differential equation. The ¢G(1) method is defined by using continuous trial and test func-
tions of degree one. As noted in [5], the addition of artificial viscosity smooths out the
discontinuity in regions where the gradient of the solution is less than one. Adding artificial
viscosity is at the expense of accuracy but a gain in stability. This idea is used in this
numerical scheme as follows;

Squaring both sides of equation (2.3) and adding an artificial viscosity term, 8Ag, where (3
is a small constant proportional to the mesh size h, and g is the finite element solution, the
following is obtained

BAg +|Vg|* =1 (2.22)
Multiplying equation (2.22) with a test function, v € H}(£2), and integrate
(BAg, v) + ([Vg[*, v) = (1, v), (2.23)
where

mm:Awm

10

2.4. NUMERICAL IMPLEMENTATION

Using integration by parts on the first term of equation (2.23) and applying boundary
conditions on the test function gives

(BVg, Vo) + (IVgl*, v) = (1, v) (2.24)

To derive Newton’s method, let
9=9o+0dg (2.25)

where ¢, is a know approximation of g and dg is a correction term. Substituting into
equation (2.24)

(BV (g0 + 9g), Vv) + (|V(go + ag)‘za v) = (1,v)
(BVgo + Vg, Vv) + (‘(v.go)z + (vag)Q +2Vg, Vg, v) = (1,v)

The absolute value sign can be dropped since it has been ensured that it is always positive
by squaring it

(BVgo, Vv) + (BV3g, Vo) + ((Vgo)* + (VIg)* + 2V g,Vg), v) = (1, v)
(BV 4o, Vv) 4+ (BV0g, Vv) 4+ ((Vgo)?, v) + ((Vg)?, v) + (2Vg,VIg, v) = (1, v) (2.26)
Dropping higher order terms in dg in equation (2.26), that is the term ((V9g)?, v), to get
(BVgo, Vo) + (BV3g, Vu) + ((Vgo)?, v) + (2Vg,VIg, v) = (1, v), Yv € Vi (2.27)

Equation (2.27) is solved for dg and the Newton’s method is used to update g according to
equation (2.25).

Let V}, C H}(2) be a space of continuous piecewise linear functions on . Replacing g, with
U?, (Ug € V4), the finite element approximation for equation (2.27) reads, find U € V,
such that

(BVUR, V) + (BVOU, Vv) + (VU2)?, v) + (2VULVOU, v) = (1, v), Yv € Vj, (2.28)
Taking the basis of the space to be {¢;};* with n; interior nodes, then setting v = ¢; and
6Uh = Zaj¢j

j=1

where «; are the unknowns to be computed, thus equation (2.28) becomes

(BVUR, Véi)+ Y aj(BV;, Vi) +((VUR)?, ¢i)+ > aj(2VUIV G5, ¢i) = (1, ¢1) (2.29)

j=1 =

Equation (2.29) is an algebraic equation, which can be written as

> ai(BVe;, Vo) +)_a;2VURVe;, ¢:) = (1, ¢:) = (BVUR, Vi) = ((VUR)?, ¢:) (2.30)

Jj=1 j=1
Let o .

a(gj.d) =Y a;(BVe;, Véi) + Y a;(2VUIVS;, ¢:)

Jj=1 Jj=1

11

CHAPTER 2. METHODS

be the bilinear form and
L(d)l) = (17 ¢l> - (BVU}?7 V¢l) - ((VU£)27 ¢l)

be the linear form. The following Algorithm 1 which is adapted from [15] will be used to
implement equation (2.30) in the software FEniCS-HPC. For more about FEniCS-HPC, see
chapter 3.

Algorithm 1 Newton’s Iteration

1: choose a starting guess U,go) and a tolerance value €
2: for k=0,1,2,... do
3. Assemble a®(¢;, ¢;) and LF(¢;)

4: solve the system a*a® = LF

5. update UFT! = UF + U} where OUF = i ako;
{check stopping criterion}

6: if ||OUf|| < € then

7 Break

8 end if

9: end for

12

2.4. NUMERICAL IMPLEMENTATION

2.4.2 Finite Element method for the force field equation

Equation (2.4) is solved by a pseudo-time stepping approach to a steady state solution.

8U o 2 - _ 2 1
5 =eVU—(U-V)Vf} inQ (2.31)
U=0 on aQ

The method of discretization is done by semi-discrete approach. In this method, equation
(2.31) is first discretized in space using a finite element method then a discretization in
time. Multiplying equation (2.31) by a test function v (which is a vector, depending only
on space and satisfies the Dirichlet boundary condition v =0 on 9f) and integrating, gives
the weak form

U
ot’
Consider the first term on the right hand side of equation (2.32)

v)a = (aV2U,v)q — (U,v|VSf]?)a + (VF,vIVFHa (2.32)

(aV?U,v) = /aVzU-de
Q

a[(VU -n) - v]pq — /Q VU - VvdQ]. (2.33)

Since there is homogeneous Dirichlet boundary conditions for v, the first term of equation
(2.33) disappears, and the equation becomes
(aV?U,v)q = —a/ VU - Vvde)
Q
= —a(VU, Vv)q (2.34)
Substituting equation (2.34) into equation (2.32) one gets

(%7?7V)Q = _Oé(VU, VV)Q — (U7V|Vf|2)g + (vf,V‘Vf|2)Q (235)

For stability reasons, the backward Euler method is used for discretization in time of equa-
tion (2.35). Let Uy, Uy_; and At denote the solution at the current time, the solution at
the previous time and the time step (assume constant) respectively, then

ou U, —Upy

(Evv)ﬂ = (T’ v)a
1 1
= E(Ukav)ﬂ - E(Uk—l’v)ﬂ (2.36)

Using equation (2.36) in equation (2.35), yields the following
1 1

— (U, v)o — Al

A (Uit ¥)a = =a(VUs V) — (U vV o + (T£.VIV)0 (2:37)

Multiplying both sides with At and putting all terms with Uy on the left side and terms
without Uy on the right side gives

(U, v)a + Ata(VUy, Vv)g + AU, v|VF|?)a = (Ur_1,v)a + At(VF, VIV)a (2.38)

13

CHAPTER 2. METHODS

Equation (2.38) is implemented in the software FEniCS-hpc (see Chapter 3). The finite
element method for equation (2.38) reads, find a U} € V}, such that

(UR,v) + Ata(VUL, Vv) + AUR, VIV f?) = (Up_,v) + AUV V|V fP), Vv € Vi

(2.39)
Where V}, is a finite element space. With the bilinear and linear forms;
agvr(U,v) = (UL v)+ Ata(VUL, Vv) + AU}, vV £]?)
Lovr(v) = (Ui_1,v) + AUV V[V (2.40)

The abstract problem can be defined as, find UZ € Vpsuchthat agyp(U,v) = Lagyr(v), Vv €
V. Both forms depend on f.

Stability analysis

To ensure that the computed solution of equation (2.32) is stable, we perform the following
stability analysis. From equation (2.35), choosing v =U

ou

5 Ve =—a(VU, VU)q - (U, UIVf)a+ (VL UV)e (2.41)

(

Using the definition of the Ly norm , we have that |u/|* = ||u||i2 = (u, u) and that

ou ou

(EaU)Q = o UdQ
ou 18U2
but U5 = 57
19U
- /5 ot ds
_ 2
N 28t/U s
- 28t(U Ua
= o (2.42)
Using equation (2.42) in equation (2.41)
10 9 9 9
55 I0I° = =a[VUJ” = (U, [Vf[2U)q + (Vf1*V £, U)g
10
55 [0 = =al[VUI” = (Vf]U, [Vf[U)a + (V/IVf, UIVS])a
19) T) T (2.43)
[sarorata [voas [CivnoPa= [(9795 09
0

T
:/ /|Vf|Vf .U |V | dQdt
0 Q

14

2.4. NUMERICAL IMPLEMENTATION

Applying Cauchy’s inequality ([g- fdz < ([|f[>dz)? ([|g|*dz)?) on the term on the right
hand side of equation (2.43)

/OT/QWfo UV fldQt < (/OT/Q|Vf|Vf|2det>% (/OT/Q|UVf|2det>

(2.44)
For a, b, e € Rt then ab < iaQ + §b2, for any € > 0. To prove this, use the fact that
0 < (a — eb)? then

1
2

0 < a? — 2eab + €2b?
2¢ab < a® + €2b?
1 €
b< —a?+ =b? 2.4
ab< -a + 50" (2.45)
which is Young’s inequality. Applying equation (2.45) on equation (2.44) gives

1 /T e [T
27/ /|\Vf\vf|2d(2dt+§/ /|U\Vf\|2dﬂdt
0 Q 0 Q

1 7 e [T
oo [VAP S [AU (20
€Jo 0

IA

T
/ /|Vf|Vf .UV f|dQdt
0 Q

IN

T
/ /lVf|Vf .UV f|dQdt
0 Q

Equation (2.43) can now be written as

Tl) 9 T 9 T 9 1 T 5
| smloidcea [IvoPas [vaorta < [ivavs®a
0 0 0 €Jo

" 2 (2.47)
+ 5 [o a
0

1 T r € 17 1
SO +a [1901 des [IvAUI =D < o [119719517 e+ 510017
0 0 €Jo

Choosing 0 < € < 2 the term fOT VAU (1 - 5)dt will be a positive quantity. Thus, at
the final time T the solution will always be less than the initial condition plus a positive
finite quantity fOT | [VfIVf1?dt (from the definition of f, it is a bounded function).

Error estimation

The error estimation is formulated in terms of a posteriori error estimation based on duality.
Equation (2.31) is known as the primal problem and can be written as

%—?—aVQU—s—U\VfF = V/fIVfP?
9
(E—WQHW\Z)U = V/VIP
AU=y (2.48)

where A =2 — aV?+|Vf|? and g = Vf|V f[%.
Introducing the dual problem with dual solution ¢ continuous over the time interval T =

[Ov tN]
¢

—E—av2¢>+¢|w|2:¢ in QxT

¢=0 onI'xT,

(2.49)

15

CHAPTER 2. METHODS

with initial condition ¢(.,¢x) = 0. Equation (2.49) can be written as

At =1, (2.50)

where A* = — 2 — aV?2 4+ |Vf[?, and ¢ is data.

The quantity (e, ¥) gives a measure of the error in the domain . If ¥ = 1 then (e, 1)
becomes the measure of the average error over the whole domain. Let M be a function
of e (where e = U — UF, with U representing the exact solution of equation (2.48)). The
estimation of M gives the bound on the error. To build an adaptive framework, M can
be used to identify parts (elements) of the mesh that need refinement based on high errors
that those parts produce.

For simplicity a two dimensional case is considered which can be extended to a three di-
mensional case. Let the time interval T, be partitioned such that 0 = <ty <t3<...<
ty = T and let T} = [t;_1, t;] be a representation of a sub-interval within the given time
interval. Defined M as

M) = [vy
- e 90 o1 gV P

ot
N 06
= > [[e aVioe s colviands (251)
T Jo Ot
=171
But
—0¢ /[Oe]
—edQdt = — + S dt| dQ
/TL/Q ot c Q deln T1¢)8t
—9¢ / ! / / de
——edQdt = — [pe];_, dQ2 + —dQdt
/Tl/Q ot o []l 1 7 Q¢8t
and

/ / —aeV2pdQdt = / / aVe - VodQdt
T, JQ T, JQ

Substituting the above expression in equation (2.51)

N
_ Oe 2 l
M(e) _E/T,,/Q%frwe'w“ww det—/ﬂ[d)e]l_ldQ, (2.52)

where [¢e]§71 = (¢e);—(¢e);—1. That is the difference between ¢e evaluated at the boundary
of each time sub-interval T;. Applying the Galerkin orthogonality together with linear
interpolation (r¢ € V},) in time and space

N
de
M(e) = —7m¢p)— +aVeV(p — =
@=3 [[[(o-75 +avevo -0 -

(6 —)|V f2dt + /Q (6 — 7d)el]_, d

16

2.4. NUMERICAL IMPLEMENTATION

Applying integration by parts on each element in 2 and using e = U — U¥, equation (2.53)
becomes

:Z // ¢ — 1) (U —UF) — (¢ — m¢)aVZ(U — UF)
=11

+ (U = U) (¢ — m) |V f|2dQdt + / (¢ — mp)aV (U — U’,ﬁ)]mi g (2.54)

Ty
+ /Q (6 — o) (U - UL, a0

Also, let the contribution from the facets of the cells in the mesh be J(U%), with J(U¥) =
le [—7m9)aV(U — Uk)]aﬂi dt. Note that in one dimension, J(U¥) = 0, since p—7¢ = 0,
at the facets (nodes) but in two dimensions it is non zero. However we consider the diffusive
term aV2U to be of less importance, and to simplify the estimate we omit the J(UZ) term
in the estimate. Thus equation (2.54) becomes

ZZ// ¢ — 1) [U Uk — aV2U + aV2UL — (U — UF) V2] dQadt

=1 =1

/Q (6 7é)(U - UL, a0

ZZ/ /Q,(¢ ~76) [0~ aV?U + UIV/? - (aU} - V2U}, + US|V /[2)] aoat

=1 i=1
. k
+/Q[<¢ $(U—UL)]_ a0

Using equation (2.48)

ZZ//) [g—(aU’“ VU + UG |V)| ddt

=1 i=1

+/Q[<¢—7r¢><v U] ao

Also the residual is given by R(UF) = g — (aUF — V2U¥ + U¥|V£|?)

ZZ/ / (¢ — 7)) R(U})dQdt

1=1 =111 /¢ (2.55)
- k
+ [o= ro)U -0, a0

. . . S l
Since U is a continuous function in time, we have [U],_; =0,

therefore [U Uk]l L [Uk]l 1
Applying Cauchy-Schwarz inequality on equation (2.55)

&) <O S RN o 16 = 7621
I=1 i=1 (2.56)

l
+ H [Uz]lq‘ L2(Q) [(¢ - ”‘ﬁ)LIHLz(Q)

17

CHAPTER 2. METHODS

Where J; = Q; x T} is a space time element. It can be shown that (see [6, 15])
||¢_7T¢||L2(J”) < C(kl Hd)HL2(]zl) +h12 HVQ(bHLZ(J”)) (257)

Applying equation (2.57) to equation (2.56), the following is obtained

N m
M) < OSSR oy (B Il 2y + 229262)
=1 i=1 (2.58)
o s R 3 ([T

iz

L2()

where k; =t — t;_1.

18

2.4. NUMERICAL IMPLEMENTATION

Plot of (R(U),0) vs mesh size

(RU).0)

10° L - X
10° 107

mesh size, h

(a) Error estimation with respect to mesh size. (b) Square mesh with number of vertices, v =
2215, made up off triangular elements.

Figure 2.1: A plot of (R(U), ¢) against mesh size h in Figure (2.1a). The mesh used to
compute the error estimate is shown in Figure (2.1b).

U primal
0.0257629

(a) Computed primal solution (b) Computed dual solution

Figure 2.2: Figure shows the primal computed solution and the dual computed solution in a
square domain.

To illustrate the a posteriori error estimate, the dual solution ¢, is computed from equation
(2.49) using a finite element method with quadratic basis functions and the primal solution
is computed with linear basis function as shown in Figure (2.2b) and Figure (2.2a). f was

chosen as
) 1 . 0.3 — /22 + y?
b = — X - - a=-0 b
4 oV 2 P 252

with & = 0.5 and a = 0.2 on a square domain as shown in Figure (2.1b). The reason
for choosing different basis functions for the dual solution and primal solution is to avoid
having a zero a posteriori error estimate. From Figure (2.1), (R(U¥),¢) decreases as the
mesh is uniformly refined . To test the concept of adaptive refinement, the cells of the mesh
where the error is bigger than a tolerance value set as 0.001 were located and refined. In
this case, refinements were done locally. Figure (2.3) shows how some portions of the mesh
were refined when the error (R(U¥), ¢) was bigger than 0.001.

19

CHAPTER 2. METHODS

(a) number of vertices, v = 2215 (b) number of vertices , v = 8697

(¢) number of vertices, v = 34465 (d) number of vertices v = 137217

(e) number of vertices, v = 547585 (f) number of vertices, v = 2187780

Figure 2.3: The figure shows a square mesh with successive refinements.

20

2.4. NUMERICAL IMPLEMENTATION

2.4.3 Finite Element method for the elasticity equation

To maintain the same time stepping scheme with the external field computed above, equa-
tion (2.14) has to be rewritten as a coupled system. Using the variable u which represents
the displacement velocity as before, that is u = dd—‘:’, equation (2.14) with its given boundary
and initial conditions as before, becomes

u=V-c+U (2.59a)
dw
_ = 2~
ks (2.59b)

The velocity is first computed using equation (2.59a) and then the displacement is computed
using equation (2.59b) with the known velocity at each time step. That is equation (2.59b)
is discretized as follows;

w, — Wp_1 = Atu,
W, = W,_1 + Atu,,, (2.60)

where u,, is the finite element solution obtained from solving equation (2.59a), w,, and
w,—1 are the current and previous displacements.
The semi-discrete approach on equation (2.59a) is as follows;
Multiplying equation (2.59) by a test function v, with v € V},, depending on space only,
and integrating,

(0, v)a=(V-0, v)o+ (U, v)q (2.61)

Note that

3. 90

V.o = 2: ij
o= 0x;
i,j=1 J

Substituting in equation (2.61), it becomes
3. 90
(@, via=()_ 87”, v)a + (U, v)a (2.62)
ij=1

Applying integration by parts on the first term on the right hand side

3
801] 0o ;j Doy ov;
= 9] -V - Q) Q
2= /z Gd| - vidon / /Z Flda) ria

ij=1 20 i, j=1
3 3
avz
= E sy v dl — E cr,J
i, J=1 zg 1
3 3

31]1‘
= Z Tij - M, Vi)oq — Z (0, %)Q (2.63)
J

7, 5=1 i, j=1
Substituting equation (2.63) in equation (2.62)
3 3 v
Z Tij " My Vi)oq — Z (0ij, 87551)9 + (U, v)a (2.64)
- J

i, =1 7,7=1

21

CHAPTER 2. METHODS

Reverting to the notation without indices, equation (2.64) becomes
(fl, V)Q = (U -n, V)aQ — (O’, VV)Q + (U, V)Q (2.65)

Since ¢ and Vv are matrices the contraction property which is defined as; Given any two
3 x 3 matrices A and B then

can be used on o and Vv. Thus

3
(O’, VV)Q = / Z U,‘jVi}de
Q=1
where Vv = v, ;
= /0: VvdQ2
Q
= (0: Vv)g (2.67)

Substituting equation (2.67) in equation (2.65)
(0, v)a=(0-n,V)sa —(0: Vv)g+ (U, v)q (2.68)
Equation (2.68) becomes

(%, V)Q = (O’ -n, V)aQ — (0’ : VV)Q + (U, V)Q (2.69)

Let u” be the finite element solution, then the finite element method for equation (2.69)
reads;
Find u® € V}, such that

o h
(%, vig=(0-n,v)gg — (0: Vv)g+ (U, v)q,VWveV, (2.70)

Equation (2.70) is discretized in time using backward Euler and given that it is a non linear
equation, for each time step the Newton’s method is applied to the spatial part to obtain

the solution. To illustrate the method, the notation D, f = 887’2_ will be used [10].

Define F' to be

a h
F(uh) = —(%, V)a + (0 n,v)aa — (0 Vv)a + (U, V) (2.71)
and also let ,
ou
h _ (2=
Dtu - (8t 9 V)Q

and
Gu") = (0-n,v)sg — (6: Vv)q+ (U, v)g

Observe that G contains differential operators in space only. Then equation (2.71) becomes
F(u") = —Dyu" + G(u") (2.72)

22

2.4. NUMERICAL IMPLEMENTATION

Generally Newton’s method is given by

uy =y — (F'(uy_y)) " F(ag_y), (2.73)

n n

where F’(ul_,) is a square matrix with elements that are partial derivatives of the com-
ponents of F. To derive the Newton’s method for equation (2.72), first apply a differential
operator, D,» on both sides of equation (2.72)

Dyn(F(u")) = =Dyn (Dyu” + G(u")) (2.74)
= —Dyn(Diu") + Dyn (G(u™)) (2.75)
D,» and D; commute
= —Dy(Dyru") + Dyn (G(u")) (2.76)

Multiply both sides of equation (2.76) with a function W

Dyn (F(u")W = —Dy(Dynu™)W + Dy (G(u"))W (2.77)
but Dru® =1
and Dy (G(u")) = G'(uh)
Dyn (F(uM))W = =D, W + G’ (u")W (2.78)
F'(u"M)W = —D;W + G/ (u")W (2.79)

Let W = ul —u"_,, that is the difference between the current and previous solution to

equation (2.73). Substituting it in equation (2.79)

Fl(u_)(u —ul) = —Di(u}—u}) +G'(u_)(u) —u})
= thuZ + DtuZ—l + G’(uﬁ_l)(UZ - uZ—l)
F'(u)_y)(u)—ul_) =D} | = —Dwul+G'(u}_)(u}—u}) (2.80)

But from equation (2.72),
F(uy_y) = =Deujy_; + G(uy_y)

= Dy, =—F(u}_,)+G(u)_,)
Substitute in equation (2.80)

F’(Ufifl)(uﬁ - uzfl) + F(uZél) - G(uv’ifl) = _Dtuﬁ + G’(UZfl)(UZ - 11271)
(2.81)
F(ul
Pt [-ty D] g o pt ol l -ty
F (un—l)
(2.82)

The first term on the left hand side of equation (2.82) is zero inferred from equation (2.73).
Therefore the Newton’s method for equation (2.72) is

D! + G YW -)= -Gl_)), for n=1,23. (2.83)

n—1 n—1
Writing equation (2.83) concisely as

h G(UZ 1)

Dl = |u —ul |+ Wh_) G'(ul_,) for n=1,23. (2.84)
n—1

23

CHAPTER 2. METHODS

From equation (2.84), it can be seen that for each time step a non linear algebraic system is
solved. This equation is implemented in Unicorn in a class known as the ElasticSmoother.
For more about Unicorn see the next chapter and [17].

At this point the elastic object can now be deformed since the external field can be computed
from equation (2.39) and the deformation is described by equation (2.84). Algorithm 2
presents a holistic approach of this deformation.

Algorithm 2 Model deformation algorithm

1: Let the solution from Algorithm 1 be Ugg
Define the bilinear and linear Forms from equation (2.40) to depend on Ugk, dt, Uy,
where U,;4 is the solution at the previous time step, on a mesh.
Let these Forms be a(Ugk, dt,a) and L(Uyq, dt, Usq)
Assemble a(Ugg, dt, @) and L(Uyq,dt, Uyg)
Declare ElasticSmoother class which contains the implementation of equation 2.84
while t < T do
Assemble a(Ugg, dt, o) into a matrix A
Assemble L(Uyq, dt,Uyq) into a vector b
Apply boundary conditions
10: Solve the system AUg,; = b for Ugyt
11: Set Ugig = Uest
12: Apply ElasticSmoother which depends on the external field U,y
13: Check for convergence by examining the change in volume (area) of the mesh
14: if no change in volume (area) then
15: break
16: end if
17: 1+ = timestep
18: end while

N

24

Chapter 3

Software

The software used in implementing the equations derived in this project is Dolfin-hpc [13, 16]
and Unicorn [9] which are part of the FEniCS-hpe project. Dolfin-hpc is a high performance
computing branch of Dolfin, consisting of several C++ /Python library functions (classes)
which have been parallelized. The parallelization is carried out with the following; MPI,
OpenMP, PGAS. Thus only a small amount of effort is needed to parallelize a new low
level algorithm which involves looping over a mesh, and the algorithms developed in this
project are executed in parallel. For example, reading a mesh in a program, the mesh is
automatically distributed on the available number of cores. Each core has a separate part
of the mesh and the meshes on each of these cores are glued together using a class known
as MeshDistributedData. There is also a mapping from local to global indices and vice
versa making it easy to keep track of the vertices and cells of the whole mesh. Some classes
used in this project will be mentioned. One of those classes is the Function class. Func-
tions are defined by a mesh and degrees of freedoms. Since the mesh is distributed across
the cores, so is any function defined with the function class. Also, since partial differen-
tial equations are used as building blocks for this project, a gain in parallel performance
is achieved. Another class is the MeshEditor. It is used for creating a simplicial mesh
(meshes consisting of intervals, triangles or tetrahedra) by specifying the vertices and the
cells.

25

CHAPTER 3. SOFTWARE

FFC (FEniCS Form Compiler)

FFC is another component of FEniCS-hpc which translates a high level representation of
the weak form into low-level source code. As an example consider the weak form of equation
(2.39), its implementation in a form file is as shown in listing 3.1.

Listing 3.1: Source code for bilinear and linear forms for one time step with Newton’s method
of equation (2.39)

cell = "triangle"

element = FiniteElement ("Lagrange", cell , 1)

K3 = FiniteElement ("Discontinuous Lagrange", cell , 0)

elementl = VectorElement (" Lagrange", cell ;1)

v = TestFunction (elementl)

u = TrialFunction (elementl)

f = Function (element)

u_old = Function(elementl) #solution computed at the previous time

alpha = Function (K3)
dt = Function (K3)

T = dot(grad(f),grad(f))

def A(u,v):
return dot(grad(u),grad(v))

L
a

dt+xdot (mult (T, grad(f)),v)xdx + dot(u_old,v)*xdx
dt+xalpha*A(u,v)*xdx 4+ dtxdot (mult(T, u),v)*dx + dot(u,v)xdx

Unicorn: Unicorn is made up of a collection of finite element solver implementations
for continuum mechanics and models. Amongst them is the ElasticSmoother, already men-
tioned in Chapter 2. In the ElasticSmoother class, its implementation is based on deforming
a mesh towards a weighted optimal quality. The highest quality that a cell can have is set
to one, which corresponds to a scaled equilateral reference cell. By searching for the best
quality for cells in the mesh, a time-dependent non-linear elasticity problem is solved. For
cells with a bad quality, an extra stiffness is attached to it.

26

step

Chapter 4

Results

4.1 Introduction

To validate the methods developed in Chapter 2, a sphere is used as a test case to be
deformed to an ellipsoid, that is the ellipsoid is the target geometry. The sphere is in the form
of a volume mesh with 18596 tetrahedrons, 3827 vertices, radius of 1.0 and a computational
volume of 4.16916. Computational volume means that we sum all the individual volumes of
the tetrahedrons in the mesh. The axis of the ellipsoid are chosen asa = 0.7, b = 0.8, ¢ = 0.6
to observed a significant displacement of the points in the mesh. The volume of the ellipsoid
(target geometry) is 1.41. A force field is computed from the target geometry. The vertices
at the boundary of the mesh (sphere) are allowed to move towards the target (ellipsoid)
boundary. For this test case, two implementations of the elasticity PDE are tested. These
implementations are; when extra stiffness is assigned to cells with poor quality making them
very stiff and when no extra stiffness is assigned, but there is a uniform stiffness across the
cells. The parameters E and v were taken as 1.0 and 0.0 respectively. We observe effects of
a parameter p, which is a power of the cell quality (see equation(4.2)), in the deformation
for both implementations of the PDE. In this project, we chose p = 0, for the case of
uniform stiffness and p = 2 when extra stiffness is assigned to cells with poor quality. The
visualization of the results is with Paraview [1]. The results were performed using 12 cores
on a NUMA (Non Uniform Memory Access) machine (Hydra) at KTH.

4.2 Results

The implementation of equation (2.39) in FEniCS-hpc is with an analytical function given
by
. 1-(Z+5+%)
f(xayaz) = ﬁexp - 252) (41)

where a = 0.7, b = 0.8, ¢ = 0.6, ¢ = 0.5 and o = 0.2. Using a sphere with radius r = 1
and the target geometry as an ellipsoid with dimensions given as a, b, and ¢ as above, the
computed solution of equation (2.39) is shown in Figure 4.1. From the figure, it can be seen
that the properties of the gradient are

e V[has vectors pointing towards the boundary and are normal to the boundary at
the boundaries. This will cause the model’s boundary undergoing deformation to
converge to the target boundary.

27

CHAPTER 4. RESULTS

Figure 4.1: Computed solution of equation (2.39) before deformation. The figure shows
that the gradients are highest at the edge in the domain and near zero at the centre of the
domain. The domain is a spherical mesh with tetrahedral elements and vertices=3827

e Vf has large magnitudes only in the immediate vicinity of the boundary.

o In a homogeneous region (for example, the inner part of the left ventricle), Vf is
almost zero.

The deformation is first implemented with the case when the elasticity PDE assigns extra
stiffness to cells with poor quality. A weighted stiffness is given to each cell in the mesh, in
the form

weight = é (4.2)
where @ is the quality and p is a coefficient. When the quality @ reduces, the stiffness for
that cell increases. The inequality 0 < @ < 1 holds for each cell.

Figure (4.2) shows how the sphere deforms to an ellipsoid over the number of iterations
shown. As the iteration progresses, the sphere shrinks until equilibrium is reached. At
equilibrium, a stopping criterion is satisfied. The stopping criteria compares the current
volume of the mesh and the previous volume of the mesh. If the comparison is less than a
given tolerance (of 107%) then the deformation stops. The volume of the mesh is calculated
by summing the volume of each cell in the mesh. Since the execution is done in parallel,
each core has just a portion of the mesh and computes a partial volume. At each iteration
step, the total volume of the complete mesh is calculated by gathering (MPI__Allgather) the
individual volume that each core calculates. This total volume is what is used in the com-
parison of previous and current volume, not the local volume on each core. This prevents
some cores from calling MPI_ Finalize when their local current volume compared with their
previous local volume is less than the given tolerance, while other cores are still computing.

The roughness in Figure (4.2) is explained by the fact that the cells that have been deformed,
some turn to have poor quality and thus extra stiffness is assigned to them resulting in no

28

4.2. RESULTS

(a) iteration =0 (b) iteration = 10

(c) Iteration=14 (d) Iteration=18

(e) Iteration=26 (f) Iteration=34

Figure 4.2: A sphere undergoing deformations in number of steps shown into an ellipsoid
with p =2

movement of the vertices associated to the cell while the other cells with higher quality,
their vertices can move. This is the observed effect of the parameter, p (p = 2). To smooth
out the ellipsoid, a Laplacian mesh smoother is used. The Laplacian mesh smoother in this
case iterates over all the nodes of the mesh and moves each node to the geometric center
of its neighbours. The smoothing is carried out with a small number of iteration. A high
number of iterations with Laplacian smoothing will change the geometry of the mesh. That
is, the mesh will become elongated. With the addition of a smoothing routine (Laplacian
smoothing which results in Figure (4.4)), the result is not as good as compared to Figure
(4.5), where p = 0 is used in equation (4.2). This case correspond to the case when the
PDE uses uniform stiffness.

29

CHAPTER 4. RESULTS

Volume over time

4.5

volume

0 10 20 30 40 50
iterations

Figure 4.3: A plot showing how the size of the volume of the sphere changes in each time
step. This figure represents the volume in figure 4.2 with a time step of 0.0001 with p = 2.
The target volume is 1.41.

A plot of volume over number of iterations for p = 0 and p = 2 is shown in Figure (4.6)
and Figure (4.3) respectively. From these figures, the deformation for p = 0 does somewhat
better than that for p = 2. The case when p = 2 performs poorer, is due to the fact that at
some point during the deformation, some cells at the surface will end up with low quality
and high stiffness making their vertices non movable. The next iteration will lead to more
cells having low quality on the surface increasing the number of non movable vertices. This
leads to an early attainment of the stopping criterion as compared to the case when p = 0.

30

4.2. RESULTS

Figure 4.4: Using local averaging to smooth the mesh with five iterations.

Figure (4.7) shows a plot of the minimum mesh quality over iteration for a spherical mesh
undergoing deformation. Figure (4.7a) is with p = 0. As shown the quality decreases as
the iteration is progresses. Figure (4.7b) depicts the minimum mesh quality over iteration
for the case with extra stiffness attached to cells with low quality. As shown, the quality
improves up till iteration = 10 then shortly after that, drops a little bit. It stops here
because the stopping criterion imposed has been met. From these plots, it is important to
find a good balance between choosing a tolerance value for the stopping criterion, number
of iterations and mesh quality for the deformation.

31

CHAPTER 4. RESULTS

(a) iteration =0 (b) iteration = 11

(c) Iteration=28 (d) Iteration=064

(e) Iteration="70 (f) Iteration=179

Figure 4.5: A sphere undergoing deformations in number of steps shown into an ellipsoid.
The p value has been set to zero and o = 0.5

32

4.2. RESULTS

Volume over time with P=0

4.5

volume

"0 20 40 60 80 100 120 140 160 180
iterations

Figure 4.6: A plot showing how the size of the volume of the sphere changes in each iteration.
This figure represents the volume in figure 4.5 with a pseudo time step of 0.0001 with p = 0.

The target volume is 1.41.

Mesh quality over iterations

Mesh quality over iterations with P=0

Mesh quality
Mesh quality

o 20 a0 60 s 100 120 140 160 180 o 5 10 1 20 30 s r
iterations iterations

(a) Mesh quality over iteration with p =0 (b) Mesh quality with p = 2.

Figure 4.7: This figures shows how the quality of the mesh with vertices=27593 varies with

number of iterations with ¢ = 0.5

33

Chapter 5

Application

In this chapter, the application of the method developed in the previous chapter to the
Philips data set is shown. To begin the illustration, the Philips data set is described and
how to extract the relevant part of the data is also outlined. The relevant part in this
context is the inner wall of the left ventricle (LV) which will later be used with the heart
solver code mentioned earlier. The solver works with volume meshes of the left ventricle
and the data set consists of surface meshes which are not embedded, therefore a conversion
from surface mesh to volume mesh has to be made. Having the extracted mesh ready, the
gradient vector flow computation is then carried out on the mesh which will then be used
in deforming a generic model. The pipeline for the procedure is shown in Figure (5.1).

Extraction

777777 W =i 07 o
surface

mesh

Interpolate
Set up solution on
Convert necessary an generic
t® velkuae equation mesh, and
mesh with GVE set it as

theory external
field

deform the
increment seneric
time step mesh to

_fit the LV

Compare
deformed
mesh and

no

stop

Figure 5.1: Flow diagram showing the procedure of moving from the raw data to generating
a patient specific model

35

CHAPTER 5. APPLICATION

(a) The whole heart as a surface mesh (b) Extracted left ventricle

Figure 5.2: The Philips heart model

5.1 Automated patient specific data extraction

The data set for this project is provided by Philips. It consists of time (¢ = 0 : 1 : 33)
snapshots of the whole heart in the form of a surface meshes in object file format (.off).
For more details about object file format see [2]. The first time snapshot is considered for
the application of the developed method of the previous chapter. For the remaining time
snapshots, the same method, as applied to the first time snapshot holds. The .off file is read
and the MeshEditor is used in building the surface mesh. The result from this building
is depicted in Figure (5.2a). For the purpose of this project the left ventricle, as shown in
Figure(5.2b) is extracted by means of the following Algorithm 3.

36

5.1. AUTOMATED PATIENT SPECIFIC DATA EXTRACTION

Algorithm 3 Extraction of left ventricle from the whole heart

1: Declare maps: new_ verts, new_ cells, old_ cells
2: Load the mesh

3: int local_ cell = 0;

4: for each cell in the mesh do

5: if cell index is in between 619 and 1717 then
6 int j =0

7 for each vertex in a cell do

8 set global_id < wvertex.index()

9 if global id is not in verts array then

10: verts[global_id] = local_id

11: insert in new_ verts map local id and points of the vertex
12: increment local id

13: end if

14: old_ cellscell —index()][j] = global id
15: new__cells[local_cell][j] = verts[global_id]
16: increment j

17: end for

18: increment local cell

19: end if

20: end for

21: Using mesh editor to build extracted mesh
22: set num_ verts as the size of new_ verts map
23: set size_of cells as the size of new_ cells map
24: MeshEditor editor

25: Declare a new mesh, mesh1

26: editor.open(meshl, CellType::triangle, 2, 3)
27: editor.initVertices(num_ verts)

28: editor.initCells(size_of cells)

29: for k= 0 : num_verts-1 do

30: set Point p < new_ verts[k]

31: editor.addVertex(k, p[0], p[1], p[2])

32: end for

33: Get cell connectivities

34: for k= 0: num_verts-1 do

35: set point p < new_ cells[k]

36: editor.addCell(k, p[0], p[l], p[2]);

37: end for

38: editor.close()

39: Write new mesh to a file

40: File f(leftventricle.pvd)

41: f<< meshl;

37

CHAPTER 5. APPLICATION

(a) Solution of the Eikonal equation on the whole (b) Cross section of the left ventricle with the com-
of the left ventricle. puted solution of the Eikonal equation.

Figure 5.3: Numerical solution of the Eikonal equation on the left ventricle.

5.2 Mesh generation

The challenge in this project is owing to the fact that there are two dissimilar meshes
involved. A surface mesh from the available data and a a priori model in the form of a
volume mesh. The task is to generate the external field from the surface mesh and use it
to deform the model. A direct computation of the GVF field on the surface mesh can not
be used in deforming the model since the two meshes are not compatible. An approach of
connecting these meshes has to be developed. As a first test of the method developed in
Chapter 2, a conversion of the extracted inner wall of the left ventricle to a volume mesh
is done by using ANSA software [3]. The GVF is computed on the generated volume mesh
which will be used to deform the model.

5.3 Gradient vector flow computation

To begin the GVF computation, the Eikonal equation is first solved on the left ventricle.
The result is shown in Figure (5.3)

38

5.3. GRADIENT VECTOR FLOW COMPUTATION

000148 000148

(a) Edge map function computed on the left ventri- (b) Cross section of the left ventricle showing the
cle. edge map function computed on the left ventricle.

Figure 5.4: Edge map function computed on the left ventricle.

0.00164
7U(D]L‘
0.0008

0.0004

8.43e-07

Figure 5.5: Gradient vector flow computed on the left ventricle.

From Figure (5.3b), it is observed that the solution of the Eikonal equation, which says
that the distance should be zero at the boundary and has a maximum value at the farthest
point from the boundary.

The next step is to calculate the edge map function using the solution of the Eikonal
equation. Recall that the edge map function is given by

_ 2
fany.2) =~ (1550

where g(z,y, z) is the solution of the Eikonal equation, with & = 0.5. The results of this
computation is shown in Figure (5.4). From this figure, the edge map has maximum value
on and near the boundary which is a desired property, as already mentioned in Chapter 2.
Computing the GVF on the heart yields the result shown in Figure (5.5).

Now at this point the generic model, in this case a sphere is to be deformed. The solution
obtained from solving the GVF equation on the left ventricle has to be projected on the
spherical mesh since the information about the shape of the ventricle has to be mapped on
to the spherical mesh. Figure (5.6) shows the cross section of the sphere with the projected
solution. The regions in the sphere with non zero values are then set as the target geometry

39

CHAPTER 5. APPLICATION

Figure 5.6: Interpolated solution on the spherical mesh

for the sphere to be deformed into. In Figure (5.7), it shows some deformation of the sphere
to the target. The deformation is not enough. This is due to the fact that the projected
force exist only within certain regions (left ventricles) resulting only in pulls from within the
region and no push externally. To solve this problem, the vertices of the surface mesh should
be projected (mapped) onto the sphere and the Eikonal equation will then be computed for
the whole domain. This ensures that the external force is in the whole domain. By doing
this, the projection of the GVF solution computed on the extracted left ventricle from the
data set is avoided and converting the extracted inner wall of the left ventricle to a volume
mesh is also avoided.

40

5.3. GRADIENT VECTOR FLOW COMPUTATION

u

£0.02
Eo.m
ko
-0.00803 - -0.00803 -

(a) iteration =0 (b) iteration = 7

-0.00803 - -0.00803 -

(c) Iteration=18 (d) Iteration=27

U
002
Io.m
E 0
-0.00803 - -0.00803 -

(e) Iteration=40 (f) Iteration=50

Figure 5.7: A sphere undergoing deformations in number of steps shown into the left ven-
tricle. The deformation is not enough, which can be seen in the figure.

41

Chapter 6

Conclusion

In this project, algorithms and software tools have been developed which are shown in Fig-
ure (5.1), as a pipeline for automating the transformation of patient specific model of the
human heart from Philips data set to a priori model that mimics the left ventricle. In the
process of establishing this pipeline, the following was studied;

The gradient vector flow (GVF) was used as a foundation for computing the external force
field used in the deformation of the generic model. The GVF was formulated in terms of
the edge map function.

Another aspect that was studied, was the ElasticSmoother in Unicorn. The ElasticSmoother
was modified to take into account the external force field used in the deformation. Two
implementations were studied. That is, the case when the extra stiffness is assigned to cells
of poor quality and the case when there is uniform stiffness. The three dimensional case
for uniform stiffness produced expected results as seen in [24]. In [24], they used a sphere
and transformed it to an ellipsoid. The problem that arose with the ElasticSmoother for
the case with assigning extra stiffness , was the roughness for three dimensional cases , and
further investigations will be carried out.

When the developed methods were applied to the Philips data set, the deformation was not
enough due to the projected force being limited to certain parts of the domain. To overcome
this problem, project the vertices of the surface mesh on to the volume mesh and compute
the Eikonal equation. By doing this, the external force is available on the whole domain.
The method developed in this project for generating a mesh can be improved upon to
include learning algorithms such as Bayesian learning algorithm, whereby for an unseen
data set it can adjust itself and produced the required mesh [19]. This is an advantage for
having a fully automated routine. On the other hand, there are three partial differential
equations that require solutions to them, making this method computationally intensive.

43

Bibliography

http://www.paraview.org/.
http://www.cs.princeton.edu/courses/archive/spr09/cos426 /assn2 /formats.html.
http://www.beta-cae.gr/ansa.htm.

Chandrajit Bajaj, Samrat Goswami, Zeyun Yu, and Yongjie Zhang. Patient specific
heart models from high resolution ct. International Journal for numerical methods in
Biomedical engineering, 29:850-869, 2013.

Niyazi Cem Degirmenci, Johan Jansson, and Johan Hoffman. Fluid-structure interac-
tion model of vocal folds. EUNISON.

K Eriksson, D Estep, P Hanbo, and C Johnson. Computational Differential Equations.
Cambridge University Press, UK, 1996.

Rafael C. Gonzalez and Richard E. Woods. Digital image processing. Prentice Hall.

J. Hoffman and et al. Unicorn: Parallel adaptive finite element simulation of turbu-
lent flow and fluid-structure interactio for deforming domains and complex geometry.
Computers and fluids, 80:310-319, 2013.

Johan Hoffman, Johan Jansson, Rodrigo Vilela de Abreu, Niyazi Cem Degirmenci,
Niclas Jansson, Kaspar Miiller, Murtazo Nazarov, and Jeannette Hiromi Spiihler. Uni-
corn: Parallel adaptive finite element simulation of turbulent flow and fluid-structure
interaction for deforming domains and complex geometry. Computers € Fluids, 2012.

Johan Hoffman, Johan Jansson, and Michael Stockli. Unified continuum modeling
of fluid-structure interaction. Mathematical Models and Methods in Applied Sciences,
21(3):491-513, 2011.

Johan Hoffman and Claes Johnson. Computational Turbulent Incompressible Flow.
Springer, Germany, 2007.

J Jansson and J Hoffman. Simulation-Visualization-Interaction.
http://www.kth.se/en/csc/forskning/forskningsnyheter/
simulation-visualization-interaction-1.396026, 2013. [Online].

Niclas Jansson. High Performance Adaptive Finite Element Methods: With Applica-
tions in Aerodynamics. PhD thesis, KTH Royal Institute of Technology, 2013.

S.S Khalafvand, E.Y.N Ng, and L. Zhong. CFD simulation of flow through the heart: a
perspective review. Computer Methods in Biomechanics and Biomedical Engineering,
14(1):113-132, Febuary 2011.

45

[15]

[16]

[17]

[18]

[19]

23]

[24]

[25]

[26]

[27]

[28]

[29]

BIBLIOGRAPHY

Mats G Larson and Fredrik Bengzon. The Finite element method: Theory, Implemen-
tation and Applications, volume 10. Springer-Verlag Berlin Heidelberg, 2013.

A. Logg and G. N. Wells. Dolfin: Automated finite element computing. ACM Trans.
Math. Softw., pages 1-28, 2010.

Anders Logg, Kent-Andre Mardal, and Garth N. Wells. Automated Solution of Differ-
ential Equations by the Finite Element Method, volume 84. Springer-Verlag, 2011.

Q Long, R Merrifield, X Y Xu, P Kilner, D N Firmin, and G-Z Yang. Subject-specific
computational simulation of left ventricle flow based on magnetic resonance imaging.
Journal of Engineering in Medicine, 222:475-485, 2008.

Stephen Marsland. Machine Learning: An Algorithmic Perspective. CRC, New York,
2009.

Maxwell Lewis Neal and Roy Kerckhoffs. Current progress in patient specific modeling.
Briefings IN Bioinformatics, 11(1):111-126, 20009.

J.T Ottesen, M.S Olufsen, and J.K Larsen. Applied Mathematical Models in Human
Physiology. Roskilde University Denmark, 2003.

Markus Persson, Jan Erik Solem, Karin Markenroth, Jonas Svensson, and Anders
Heyden. Phase Contrast MRI Segmentation Using Velocity and Intensity, volume 3459.
Springer Berlin Heidelberg, 2008.

Q. C. Pham, F. Vincent, P. Clarysse, P. Croisille, and I. E Magnin. A fem based
deformable model for the 3d segmentation and tracking of the heart in cardiac mri.
pages 250-254.

Youssef Rouchdy, Jerome Pousin, Joel Schaerer, and Patrick Clarysse. A nonlinear
elastic deformable template for soft structure segmentation. application to the heart
segmentation in mri. Inverse problems, 3:1-23, 2007.

Shankar P. Sastry, Jibum Kim, Suzanne M. Shontz, Brent A.Craven, Frank C. Lynch,
Keefe B. Manning, and Than Panitanarak. Patient-specific model generation and sim-
ulation for pre-operative surgical guidance for pulmonary embolism treatment. Lecture
Notes in Computational Vision and Biomechanics, 3:223-249, 2013.

Jung Hee Seo, Vijay Vedula, Theodore Abraham, and Rajat Mittal. Multiphysics
computational models for cardiac flow and virtual cardiography. International Journal
for numerical methods in Biomedical engineering, 29:850-869, 2013.

David A Steinman. Image-based computational fluid dynamics modeling in realistic
arterial geometries. Annals of Biomedical Engineering, 30:483-497, 2002.

Boyang Su, Liang Zhong, Xi-Kun Wang, Jun-Mei Zhang, Ru San Tan, John Carson
Allen, Soon Keat Tan, Sangho Kim, and Hwa Liang Leo. Numerical simulation of
patient specific left ventricle model with both mitral and aortic valves by fsi approach.
Computer methods and Programs in Biomedicine, Elsevier, 113(2):474-482, 2013.

Clarence Wilbur Taber. Taber’s Cyclopedic Medical Dictionary. F a Davis Company,
2009.

46

BIBLIOGRAPHY

[30] The Frankline Institute. The human heart. www.fi.edu/learn/heart/index.html.
[Online].

[31] J Weese, J Peters, C Meyer, I Wachter, R Kneser, H Lehmann, O Ecabert,
H Barschdorf, R Hanna, F M Weber, O Ddssel, and C Lorenz. The Generation of
Patient Specific Heart Models for Diagnosis and Interventions, volume 113. Springer-
Verlag.

[32] Chenyang Xu and Jerry L Prince. Snakes, shapes and gradient vector flow. IEEE
Transactions on Image Processing, 7(3):359-369, 1998.

47

TRITA-MAT-E 2014:67
ISRN-KTH/MAT/E—14/67-SE

www.kth.se

	SCI framsida - Fru Mbha
	Inlägg Fru Mbah
	School of Engineering Sciences

	Rapport Fru Mbha
	Backsidag Fru Mbah
	Blank Page
	Blank Page

