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Abstract

In telecommunication baseband signal processing systems, thousands of
tasks are executed every millisecond. These tasks take in different
parameters and cause heavy load to the system. The aim of the thesis is to
build proper mathematical models for these tasks, enabling the prediction
of their load given the corresponding parameters.

For each task, data samples of task load measure and corresponding
parameters are provided. No prior knowledge on the task load and its
parameters is available. By studying the data samples, an explicit, accurate
and simple model is expected. Graphical skills like scatter plots are used
as a preliminary analysis of the data. Then first-order and second-order
linear models, piecewise-linear models and tree-based models are taken as
prototypes for the task modeling. Methods like stepwise linear regression
and partial correlation analysis are applied to select proper parameters from
many available parameters to simplify the models. An automatic tool is
further developed to automate the whole modeling process.

There are 17 tasks in total. For 15 tasks, acceptable models are built
with a RMSE lower than 2 times of the estimated noise standard deviation
with the assumption of a Gaussian noise, while for the other 2, no adequate
models are given. Reasons for not getting acceptable models are discussed
and suggestions on future work are proposed.



 

 

Sammanfattning 

I telekommunikationssystem utförs tusentals uppgifter varje millisekund. Dessa 
uppgifter tar in olika parametrar och orsakar stor belastning på systemet. Syftet 
med avhandlingen är att bygga riktiga matematiska modeller för dessa uppgifter 
som gör det möjligt att förutsäga deras last givet motsvarande parametrar. 

För varje uppgift har datasampel med lastutnyttjande och motsvarande 
parametrar tillhandahållits. En explicit, exakt och enkel modell önskas. 
Spridningsdiagram används som en preliminär analys av datat. Sedan används 
första ordningens och andra ordningens linjära modeller, styckvis-linjära modeller 
och trädbaserade modeller som prototyper för uppgiftsmodellering. Metoder som 
styckvis linjär regression och partiell korrelationsanalys tillämpas för att välja rätt 
parametrar från många tillgängliga parametrar för att förenkla modellerna. Ett 
automatisk verktyg har utvecklats för att automatisera hela modelleringsprocessen. 

Det finns 17 uppgifter totalt. För 15 av 17 uppgifter hittades acceptabla 
modeller byggda med ett RMSE lägre än 2 gånger standardavvikelsen av det 
uppskattade bruset med antagandet om ett gaussiskt brus. För de andra två 
uppgifterna hittades inga adekvata modeller. Skäl till att inte få acceptabla modeller 
diskuteras och förslag på framtida arbete föreslås. 
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Chapter 1

Introduction

1.1 Background

Telecommunication technology evolves all the time. In November 2004, the
3rd Generation Partnership Project (3GPP)[1] started work on the Long
Term Evolution (LTE) as the access part of the Evolved Packet System
(EPS). The LTE solution is developed to meet the main requirements like
high spectral efficiency, high peak data rates, short round trip time as well
as flexibility in frequency and bandwidth. Based on orthogonal frequency
division multiple access(OFDMA), and in combination with higher order
modulation (up to 64QAM), large bandwidths (up to 20 MHz) and spatial
multiplexing in the downlink (up to 4x4), LTE is able to achieve high data
rates. The highest theoretical peak data rate on the transport channel is 75
Mbps in the uplink, and as high as 300 Mbps in the downlink using spatial
multiplexing. By the end of 2008, LTE specifications have been included in
3GPP Release 8 [2].

In the industry, as with all other protocols, LTE standards are mainly
realized with sets of software programs. The programs execute on different
hardware platforms. The software programs and hardware together make
a complete system. Ericsson is one leading infrastructure vendor for
radio network equipment. In its LTE base station, the 3GPP radio
network specification together with Ericsson radio link and radio resource
management algorithms are realized in control-, signal processing-, and radio
software, and then executed on customized hardware platforms.

In the area commonly referred to as “baseband processing”, several
thousand software programs are executed every millisecond in a base station
on customized digital signal processors (uplink or downlink DSPs). The
software programs can be further grouped into different tasks, for example,
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channel estimation, antenna combining, decoding, etc. Two schematic plots
of the hardware platform and tasks are given in Figure 1.1 and Figure 1.2.

Figure 1.1: The hardware platform.

Figure 1.2: Software programs and tasks.

Running these tasks causes heavy load to the system. Meanwhile, most
of these tasks are highly real-time critical in order to offer high quality of
service, leading to a great interest for system designers to model the load of
each task.

Research on task load modeling can be found in many fields. In computer
science, CPU load gains a lot of interest. In [8], the authors evaluated linear
models for predicting the Digital Unix host load. The analysis suggested that
linear models like auto-regressive(AR) models, moving-average(MA) models
[3] might be appropriate for predicting host load. Similar ideas of using
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linear models show up in later research like [21]. Others may have nonlinear
models like [17]. All these models involve previous task load data to predict
current or future task load. One reason behind this is that these tasks do
not change much for different runs; and CPU has its internal memory that
will save data of the previous task to accelerate later runs. For LTE base
station DSP hardware platform, the situation is different. First, DSP is a
particular type of microprocessor designed to support numerically intensive
tasks; little data will be saved for later runs, meaning little correlation should
be expected between sequential runs. Thus in a model for tasks executing on
DSPs, it is less possible to involve history items. The load of one task varies
mainly with the task’s input parameters, leading to a load model involving
task parameters.

In this thesis, a specific type of data that is gathered from baseband
signal processing in Ericsson base stations are provided. This is data stating
how much computational load a certain task created, including traces of both
task load and the tasks’ input parameters. The task load is measured by
the task running time. The input parameters can be the number of physical
resource blocks, the modulation scheme, the number of antennas, etc. These
parameters are believed to be related with the task load somehow but no
clear knowledge is available. Also, there is no particular order for collecting
the data. It is expected to analyze the data to explore the relationship
between the task load and the parameters, and therefore be able to predict
the task load.

The results are expected to be advantageous in several aspects:

- To better understand how the hardware is utilized, and estimate the
resource headroom with current software program tasks.

- To give clues on more efficient use of the hardware resources with
current software program tasks. For example, on a multi-core DSP
platform, several tasks may be executed at the same time. A good
schedule of these tasks that make the hardware fully used will give the
best efficiency.

- To give clues on optimizing software design and hardware design.

1.2 Problem definition

A task usually takes in several parameters and then executes on some
hardware platform. In this thesis, all tasks are always executed on the same
digital unit hardware platforms (mainly DSPs), and software programs are
fixed. Therefore, the task running time varies merely with its parameters,
plus some noise from the system. By denoting a task as Task T , its
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parameters as p1, p2, · · · , its running time as Y and the noise as nT , such a
relationship is best expressed with a schematic model shown in Figure 1.3,

Figure 1.3: A block model for some specific Task T .

or mathematically,
Y = fT (p1, p2, · · · ) + nT (1.1)

The running time Y is measured by hardware clock cycles. For
example, with a clock speed of 1.2GHz, a cycle is about 0.833ns. The
parameters p1, p2, · · · represent different physical parameters such as the
modulation scheme and the number of receiving antennas and so on. These
parameters may have different types: some being binary-valued, some being
enumerating types, and others being best modelled as several values within a
certain range. The number of parameters for some tasks can be quite large,
mostly beyond 10. Different tasks usually have different sets of parameters,
varying in both number of parameters and their types. No prior knowledge is
available on the form of function fT . The noise nT is a random variable which
models that the running time is affected by external factors (for example,
interference from other tasks on other computing resources in the system).
The noise is not necessarily to be the most well known white Gaussian noise.
For each execution, the task takes in parameters p1, p2, · · · , which can be
treated as constant rather than random; however, the running time Y will
be random due to the random noise nT .

An explicit mathematical model with the task parameters to best
estimate the running time for each task generally can be expressed as

Ŷ = f̂T (X1, X2, · · · , Xm) (1.2)

where Ŷ is an estimate of the real measured value of the task T’s running
time. X1, X2, · · · , Xm are some or all the input parameters p1, p2, · · · ,
or even their mathematical transforms. The function f̂T can be of different
forms.

Such an explicit model is expected to be accurate and simple. Basically,
the model will be used to predict running time for a task given some
parameters, therefore accuracy is necessary. A simple form of the model
will make it easy for implementation. Also, the number of parameters taken
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into the model is expected to be small. When not all these requirements
can be met at the same time, some trade-off is necessary. So technically,
to build such a model for some Task T, the following questions are to be
answered:

- What is the proper form of f̂T ?
A proper form of f̂T is expected. Since no prior assumptions on the
relationships fT is provided, a wide set of possible forms are available
to choose, be it linear or nonlinear forms. It should be emphasized
that f̂T does not necessarily need to be exactly the same form as
the real fT . If there exists a fT that is too complicated to grasp or
describe in simple terms, it is best to approximate fT by some simple
mathematical function. As long as the simple f̂T gives a Ŷ close to Y ,
it is an acceptable form.

- Which parameters should be included into the model?
When there are too many parameters for a task, probably a model
with part of all parameters can be good enough to give a satisfactory
model. This also makes it cost-efficient since it asks for less parameters
as input. Sometimes transforms of the parameters (for example, high
order items for a parameter) can be attractive to be included in the
model as well.

1.3 Thesis objective

There are around 20 tasks in total, and each task has 16 to 20 parameters.
Data on tasks’ load and corresponding parameters are provided. Without
prior knowledge of the parameters’ relationship to the task’s load, a pure
mathematical relationship between the task’s load and its parameters will be
explored and a proper model will be built for each task. Also, an (guided)
automatic tool will be designed, which takes the task data as input and
gives a model as output for any task. An evaluation of the tool will be given
with data extracted from real industrial systems. In the end a profile table
containing all the tasks with their corresponding models will be reported as
well.

1.4 Thesis outline

The rest of the thesis report is organized as follows. In Chapter 2, a
preliminary analysis of the data is conducted, leading to some hints on
methodology. Then in Chapter 3, techniques that can help build the models
are introduced. Then in Chapter 4 further analysis on the data are carried
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out for some typical tasks and proper models are built for them. Chapter 5
describes the design of an automatic tool to build models for tasks. Chapter
6 shows all the models for all given tasks. Chapter 7 gives a conclusion of
our work and discusses future work on the topic.
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Chapter 2

Preliminary analysis of the
data

In this chapter, a preliminary analysis of the data is carried out. The data
is extracted from real industrial devices. With no prior knowledge on the
data, graphical methods are used as main approach to get an intuition of
possible relationships behind the data, and lead us to techniques for further
analysis.

2.1 Overview of the data

The data is extracted from baseband signal processing tasks. There are 17
tasks in total. Each task has different sets of parameters. A set of data
samples for some typical task is shown in Figure 2.1.

Figure 2.1: A set of data samples for Task T.

This task has 18 input parameters denoted as X1, X2, ..., X18, and
running time is denoted as Y . A trace of the task running time and its
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corresponding parameters is referred to as a data sample, and there are
totally around 17000 samples. All the data only takes integer values. The
ranges of the data set are summarized in Figure 2.2.

Figure 2.2: Data ranges of Task T.

It can be seen that:

- Parameters X2, X3, X4, X7, X11, X15, X17 are constant;

- Parameters X1, X8, X9, X10, X14 are binary;

- Parameters X5, X12, X13 vary within small ranges;

- Parameters X6, X16, X18 vary within big ranges.

Constant parameters do not contribute much help to a mathematical
model, therefore are ignored for the current analysis; all other parameters
are taken as normal numerical values at first.

A histogram of the input parameters are given in Figure 2.3. Here those
constant parameters are ignored. It can been seen that most parameters do
not show a uniform distribution. For example, there are more samples with
X1 = 0 than those with X1 = 1. This is also a character of practice.

The data parameters are given without specific physical units. One
reason is that the analysis of the data is purely from its mathematical
properties, in the end making the automatic tool as a general tool for
arbitrary tasks without relying too much on the real physical meanings;
the other is that for some parameters there are no exact units, for instance,
the value of X3 here is a program flag taken from task software.

It should be also emphasized again that there is no particular order for
these data samples. And there is no particular order in the data extracting
process itself. This also means sorting or reordering these samples does not
make any difference to the model building. All these is based on the fact
that the output samples are independent to each other.

2.2 Scatter plot of the data

As is said in[5], “there is no statistical tool that is as powerful as a well chosen
graph”. Because graphs summarize data in ways that describe essential
information more quickly and completely than tables of numbers, graphics
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Figure 2.3: Histogram of parameters of Task T.

are important diagnostic tools for exploring data. Since no prior knowledge
on the data is available, a graphic approach is an ideal choice for preliminary
analysis. Among all plots, a scatter plot is our first choice. A scatter plot
uses Cartesian coordinates to display values for two variables for a set of
data. The data is displayed as a collection of points, each having the value
of one variable determining the position on the horizontal axis and the value
of the other variable determining the position on the vertical axis [19].

Figure 2.4 is a scatter plot of the data of a task, where constant
parameters are ignored for the plot. With this plot, it seems obvious that
there is probably a linear relationship between Y and X1. This hints us
to try linear regression methods with X1 as a following step. For X2, if
X2 = 2, the upper bound of Y is lower than that of X2 = 4. Less clues are
available on other parameters’ relationship to Y . Further analysis is left to
later chapters.

Another task has a scatter plot shown in Figure 2.5. It shows that
X1 affects Y significantly. The relationship is not likely a pure linear
relationship. As X1 goes beyond some value around 80, Y has a huge drop.
If the data is separated into two groups according to the value of X1, then
for each group there is a linear relationship between X1 and Y . This hints
us to try a piecewise linear model.
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Figure 2.4: Scatter plot of Task T1.

Figure 2.5: Scatter plot of Task T2.
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Another scatter plot is shown in Figure 2.6. In this plot, the relationship
between Y and X1 seems to be characterized by several rays. And in
Figure 2.7, a similar relationship exists between Y and X1, and between
Y and X3. The plots look pretty much like a tree with several branches, for
each branch maybe a linear model can fit well. This gives us a hint that a
tree-like model where data can be separated into several groups and then
be handled separately may fit well.

Figure 2.6: Scatter plot of Task T3.

The scatter plots for the other tasks do not give more clear clues on
possible relationships between task load and its parameters.

2.3 Samples with same parameters

Assuming that a model for one task is already built as well as an estimate Ŷ
of Y . One key measure of the model performance is the root-mean-square-
error(RMSE), which can be expressed as

RMSE =

√
E[(Ŷ − Y )2] (2.1)
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Figure 2.7: Scatter plot of Task T4.

With an ideal model, RMSE should approach zero. But as mentioned in
Equation 1.1, there is a noise nT in the true relationship, so the zero RMSE
rarely happens in practice.

No much information about the properties of the noise is available.
According to the central limit theorem (CLT), it can be assumed that
the noise is normally distributed, with zero mean and a variance of σ2;
furthermore the noise can be assumed to be independent from parameters,
therefore the different parameters do not affect the distribution of the noise.
Then for a good model, the RMSE is expected to approach the standard
derivation σ.

The the standard derivation σ can be estimated from the data samples
available. For most tasks, there is a great number of data samples available
for analysis, and some samples have same parameters while different task
running time. One example is shown in Figure 2.8.

The samples that have same parameters but different running time are
caused mainly by this nT . With the following notation,

- Y1,1, Y1,2, ..., Y1,n1 are n1 samples with same parameters (X1,1, X1,2, ...),
and Ȳ1 is the mean of these samples;
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Figure 2.8: Samples with same parameters.

- Y2,1, Y2,2, ..., Y2,n2 are n2 samples with same parameters (X2,1, X2,2, ...),
and Ȳ2 is the mean of these samples;

- ...

- Ym,1, Ym,2, ..., Ym,nm are nm samples with same parameters (Xm,1, Xm,2, ...),
and Ȳm is the mean of these samples;

an estimate s of σ can be calculated as

s =

√√√√ 1

n1 + n2 + · · ·+ nm

m∑
j=1

nj∑
u=1

(Yj,u − Ȳj)2 (2.2)

which gives us a rough idea on how large a good model’s RMSE should be.

2.4 Summary

In this chapter, a preliminary analysis is carried out on the data.

The input parameters can be constant, binary, or vary within some range.
From the point of mathematical analysis, constant parameters are ignored
for analysis; binary parameters and parameters that vary within a small
range can be treated as categorical variables if necessary.

Scatter plots indicate that linear models, piecewise models and tree-
based models will probably help.

Also the standard derivation of the noise is estimated from samples with
exactly the same parameters, which can be helpful for later analysis on
model’s performance. It should be noted here that the assumption of a
normally distributed noise is not solid and should be reexamined if necessary.

Based on the analysis in this chapter, linear regression, piecewise-linear
regression and tree-based methods are candidate methods to analyze the
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data to build proper models.
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Chapter 3

Methodology study

In this chapter, several techniques are introduced to build models. Linear
regression is explained first, followed by nonlinear methods including
piecewise linear regression and tree-based methods.

3.1 Linear regression

Assuming variables (or predictors)X1, X2, · · · , Xm and a dependent variable
or response Y are to be analyzed. A linear relationship between Y and the
predictors can be described as

Y = β0 + β1X1 + β2X2 + · · ·+ βmXm + ε (3.1)

where β0, β1, · · · , βm are constants referred to as the regression coefficients
and ε is a random disturbance or error or noise. Equation 3.1 can be
rephrased in matrix form,

Y = Xβ + ε (3.2)

where X = [1, X1, X2, · · · , Xm] and β = [β0, β1, · · · , βm]T .

Given data samples of X1, X2, · · · , Xm, Y , where each of them is a n×1
vector,

Ŷ = Xb (3.3)

and
b = (X′X)−1X′Y (3.4)

where b is an estimate of the coefficients β. It minimizes the error sum
of squares ε′ε, irrespective of any distribution properties of the error. Ŷ
is an estimate or fitted value of Y . The calculation is based on the least
squares method and details can be found in [9]. The residual is then given
as e = Y − Ŷ .
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Equation 3.1 has a constant item β0 and m first-order items. Linear
models can also include higher order items, for example, second-order items
like X2

1 , X1 · X2, third-order items like X3
1 , X2

1 · X2, etc. Generally, items
like Xα where α ∈ R are all allowed. These models are considered as linear
models because the coefficients can be estimated in the same way as given
in Equation 3.4.

3.1.1 The usefulness of the estimated model

To show the usefulness of a model described in Equation 3.3, a proper
measure is necessary.

Assuming X0 is a specified 1×(1 +m) vector whose elements are of the
same form as a row of X so that Ŷ0 = X0b is the fitted value at a specified
point X0. For one sample, it is easy to see that

(Yi − Ȳ ) = (Ŷi − Ȳ ) + (Yi − Ŷi) (3.5)

where Ȳ is the average of Yi, i = 1, 2, · · · .

For all n samples together, the following equation holds:∑
(Yi − Ȳ )2 =

∑
(Ŷi − Ȳ )2 +

∑
(Yi − Ŷi)2, (3.6)

SST = SSR+ SSE (3.7)

and ∑
Y 2
i =

∑
(Yi − Ȳ )2 + nȲ 2 (3.8)

Here
∑

(Yi − Ȳ )2 is denoted as sum of squares about the mean(SST),∑
(Ŷi − Ȳ )2 as sum of squares due to regression(SSR) and

∑
(Yi − Ŷi)2 as

sum of squares of residuals(SSE). Equation 3.7 shows that, of the variation
in the Y’s about their mean, some of the variation can be ascribed to the
regression and some to the fact that samples do no all lie on the regression

curve. In addition, (
∑

(Yi))
2

n = nȲ 2 is denoted as SS(b0), the sum of squares
due to the existence of b0, and

∑
Y 2
i as the total sum of squares.

The SSE can be a measure of model usefulness. If SSE is small, it means
the difference between Y and Ŷ is small. The ratio R2=(Sum of squares
due to regression)/(Sum of squares about the mean) gives similar measure
too. If R2 is close to unity, it means the sum of squares due to regression is
much greater than the sum of squares of residuals, which is pleased to see.
R2 is formally named as coefficient of determination in statistics, measuring
proportion of total variation about the mean Ȳ explained by the regression.

Also an analysis of variance table can be constructed as Table 3.1. The
last column is derived as the SS column divided by the df column, where
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Source of Degrees of Freedom Sum of Squares Mean Square
Variation (df) (SS) (MS)

Due to regression m
∑

(Ŷi − Ȳ )2 MSR

Residual n-(m+1)
∑

(Yi − Ŷi)2 MSE

Total, about Ȳ n-1
∑

(Yi − Ȳ )2

Due to b0 1 SS(b0) = (
∑
Yi)

2/n = nȲ 2

Total n
∑
Yi

2

Table 3.1: Analysis of Variance Table, the basic split

MSR is the mean square due to regression and MSE is the mean square
due to due to error(residual). The table will be used for hypothesis testing
later.

There are also criterions as Mallows Cp, Akaike Information Criteri-
on(AIC), Bayes Information Criteria (BIC), etc. These criteria can be
helpful to deal with the trade-off between the goodness of fit and the
complexity of the linear model. Together with R2 and SSE, these criteria
offers various measures to quantify a model’s usefulness. A more detailed
discussion can be found in [6].

3.1.2 Hypothesis testing of linear regression

Hypothesis testing, or significance testing, is a method for testing a claim
or hypothesis about a parameter in a population, using data measured in a
sample. With this method, some hypothesis is tested by building a proper
sample statistic and determining the likelihood that the hypothesis can be
accepted. Hypothesis testing plays a fundamental role in the statistics[12].

In a linear model, many hypothesis is widely used to verify the
model. With the assumption that the error ε is normally distributed as
ε ∼ N(0, σ2), several different hypotheses are commonly considered in
connection with the analysis of linear models. With the model given in
Equation 3.1 and its estimated coefficients, one favourable investigated
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hypothesis is “all the regression coefficients associated with the predictor
variables are zero”. In the following the procedure is explained in details.

First the null hypothesisH0 and the alternative hypothesisH1 are stated.

H0: All the regression coefficients associated with the predictor
variables are zero;
H1: not H0.

The hypothesis H1 represents the model given in Equation 3.1, denoted
as the full model(FM). The hypothesis H0 represents a reduced model(RM)
as

Y = β0 + 0 ·X1 + 0 ·X2 + · · ·+ 0 ·Xm + ε. (3.9)

The statement can then be refined as

H0: Reduced model is adequate;
H1: Reduced model is not adequate compared to Full model.

With these two models FM and RM, their corresponding coefficients
b and SSE can be estimated, denoted as SSE(FM) and SSE(RM).
SSE(RM) should be no less than SSE(FM) because the additional
parameters in the full model cannot increase the residual sum of squares,
and SSE(RM)− SSE(FM) represents the increase in the residual sum of
squares due to fitting the reduced model. If this difference is large, then the
reduced model is treated as inadequate. The decision is made with the help
of a ratio

F =
[SSE(RM)− SSE(FM)]/m

SSE(FM)/(n− (m+ 1))
(3.10)

The ratio is referred to as the F-test. SSE(RM) − SSE(FM) and
SSE(FM) each is divided by their respective degrees of freedom to
compensate for the different number of parameters involved in the two
models as well as to ensure that the resulting test statistic has a standard
statistical distribution. For the full model, there are 1 + m parameters
(β0, β1, · · · , βm) to be estimated while for the reduced model there is only
one β0. (Note here β0 for the two models may not be the same value.)
Actually the F value can be calculated from the last column of Table 3.1.

Now the F value is compared with the tabulated value of F with (m,n−
(m+ 1)) degrees of freedom at the significance level α, which usually is set
to some small value like 0.05, 0.01, etc. Accordingly, H0 is rejected if

F ≥ F(m,n−(m+1);α), (3.11)

or equivalently, if
p(F ) ≤ α, (3.12)
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where p(F ) is the p-value for the F-test, which is the probability that a
random variable having an F distribution with (m,n− (m + 1)) degrees of
freedom.

Another test is the T-test. If an estimate β̂ of β is calculated, to test
whether β̂ is significantly different from a constant β0, a t-statistic can be
formed as

tβ̂ =
β̂ − β0
s.e.(β̂)

(3.13)

where s.e.(β̂) is the standard error of the estimate β̂, defined as

s.e.(β̂) =

√∑N
i=1 (β̂i − ¯̂

β)2

N
(3.14)

Correspondingly the null hypothesis H0 and the alternative hypothesis
H1 are

H0: β̂ equals β0;
H1: not H0.

Then tβ̂ is compared with tabulated value of T-test and make proper
decision. A similar p-value for T-test can be associated with tβ̂. More

details can be found in [9].

Other tests can be conducted in the similar way.

3.1.3 Variables selection

Assuming in total m variables X1, X2, · · · , Xm and one response Y are
available. A model as Equation 3.1 can then be built where all variables
are included. Such a model will usually give a high precision. But if m
is large, because of the cost involved in building a large model, a smaller
model where some variables are excluded if it has similar performance as the
model with all variables are preferred. Many methods can be used to select a
subset of variables to build a small model, but there is no “best method” that
handles all cases. Here correlation analysis, all-possible-regression method
and stepwise method are introduced. Each method has its own advantages
and disadvantages.

Correlation and partial correlation

Correlation is a measure of statistical dependence, and thus can be used to
select the variables that are closely related to response. The most familiar
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measure of dependence between two quantities is the Pearson product-
moment correlation coefficient, commonly referred to as “the correlation
coefficient”[18].

The population correlation coefficient ρX,Y between two random vari-
ables X and Y with expected values µX and µX and standard deviations σX
and σY is defined as

ρX,Y ≡ corr(X,Y ) =
Cov(X,Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY
(3.15)

where E is the expected value operator and Cov means covariance.

ρX,Y takes values between −1 and 1 and indicates the degree of linear
dependence between the variables. As it approaches zero there is less of a
relationship (closer to uncorrelated); the closer the coefficient is to either
−1 or 1, the stronger the correlation between the variables are.

The population correlation can be estimated by the sample correlation
coefficient. If measurements of X and Y are written as xi and yi where
i = 1, 2, · · · , n, then

rX,Y =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑
i=1

(xi − x̄)2
n∑
i=1

(yi − ȳ)2

, (3.16)

where x̄ and ȳ are the sample means and sx and sy are the sample standard
deviations of X and Y.

Correlation has an important role in some variable selection methods.
Assuming predictor variables are added to the model one by one. The first
predictor variables can be chosen as the one which is most correlated with
Y , i.e., the variable Xi whose |riY | is the largest of all |rlY |, l = 1, 2, · · · ,m.
Suppose X1 is chosen and the model

Y = β0 + β1X1 + ε (3.17)

is fitted. In the second stage, it is not wise to select the variable that has
second largest correlation coefficient with Y. The reason is that the variables
Xi, i = 1, 2, · · · ,m could be correlated and one’s correlation coefficient with
Y can be affected by others.

To tackle this problem, new variables X∗,2, X∗,3, · · · , X∗,m, Y ∗ can be
constructed by finding the residuals of X2 after regressing it on X1, that
is, the residuals form fitting the model X2 = α0 + α1X1 + ε

′
, the residuals

of X3 after regressing it on X1, and so on, respectively. The new variables
represent those portions of the corresponding original data which have no
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dependence on the values of the variable X1. Now a new set of correlations
which involve the starred variables is generated. These are called partial
correlations, denoted as rjY ·1. In the second stage of the selection procedure
the variableXi whose partial correlation coefficient with Y is the greatest can
be added to the model; that is, choose the variable Xi most correlated with
Y after the effect of X1 has been removed both from Y and Xi. After the
second variable is chosen, say X2, the third stage of the selection procedure
involves partial correlations rjY ·12 between the residual of Xi regressed on
X1, X2 and the residual of Y regressed on X1, X2. This process can be
continued to any extent.

By comparing ordinary correlation and partial correlation, for example,
r2Y and r2Y ·1, three results can potentially occur. When partial and ordinary
correlations are approximately equal, it suggests that the relationship
between X2 and Y cannot be explained by X1; when partial correlations is
closer to zero than ordinary correlations, it suggests no much improvement if
both X1 and X2 are taken into the model. The case that partial correlations
are farther from zero than ordinary correlations rarely happens.

All-possible-regressions

All-possible-regressions means checking all possible regression equations
with all available sets of variables. The procedure try fitting each possible
regression equation which involves a constant item plus any number of the
m available variables. Each variable can be, or not be, in the equation. If
there are m variables, there are 2m − 1 distinct regression equations. Each
regression equation is assessed according to some criterion, be it R2 ,Cp,
AIC or other criterion. The best regression equation can be chosen as the
final model.

This method guarantees that you will find the “best” model, since it
looks at all the possible models. But there are cases where a small increase
in the criterion, for example, R2 increasing from 0.92 to 0.93, comes with the
addition of several variables. In such situations, manually choice is always
involved in the decision. Besides, the methods needs to deal with too many
equations if m is large.

Stepwise linear regression

The general idea behind the stepwise regression procedure is to build our
regression model from a set of candidate predictor variables by entering and
removing predictors in a stepwise manner into our model until there is
no justifiable reason to enter or remove any more[20]. By the “justifiable
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reason” different criterions as stated above in Section 3.1.1 can be used.
Since in this thesis, a regression model is constructed mainly for prediction,
the criterion is chosen as SSE. Correspondingly, in each step, the p-value for
an F-test of the change in the sum of squared error by adding or removing
the term will be calculated. The procedure can go forward from a simple
model and then try adding variables in, or go backward from a big model
and then try removing variables out, or both way can be utilized. The
bidirectional procedure is detailed here.

As a preliminary step, a starting model needs to be specified. Any
model can be set as a starting model, while a constant model is usually
preferred. Also an Alpha-to-Enter (αE) significance level and an Alpha-to-
Remove (αR) significance level to help decide whether to enter or remove
one variable into the model need to be specified.

Step 1 Fit each of the one-predictor models that is, regress Y on X1,
regress Y on X2, ..., and regress Y on Xm. For each model a F-test
that the coefficient of the variable to be included is zero is conducted.
Of those predictors whose F-test p-value is less than αE , the first
predictor put in the stepwise model is the predictor that has the
smallest F-test p-value. If no predictor has a F-test p-value less than
αE , stop.

Step 2 Assuming X1 was chosen to be included in the model. Now, fit
each of the two-predictor models that include X1 as a predictor that
is, regress Y on X1 and X2, regress Y on X1 and X3, ..., and regress
Y on X1 and Xm. Of those predictors whose F-test p-value is less
than αE , the second predictor put in the stepwise model is the
predictor that has the smallest F-test p-value.

If no predictor has a F-test p-value less than αE , stop.

If one predictor, say, X2 is entered into the stepwise model, step back
and see if entering X2 into the stepwise model somehow affected the
significance of the X1 predictor. That is, check the F-test p-value for
testing the coefficient of X1 in the new two-predictor model is zero.
If the F-test p-value is greater than αR, remove X1 from the stepwise
model.

Step 3 Consider adding one more predictor from the other available
predictors into the current model. Calculate the F-test p-value for
the new predictors and choose the smallest one among those lower
than αE . If no predictor enters, stop; otherwise take the predictor
into the model and conduct hypothesis on predictors that already in
the model to see whether they can be removed.

Continue the steps as described above until adding an additional
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predictor does not yield a F-test p-value below αE and removing an
existing predictor does not yield a F-test p-value above αR, stop.

Step 4 When the procedure is stopped, the final model is chosen as our
result.

Stepwise regression is a common choice when the number of variables is
relatively large. Many mathematics software provides its implementation.
It is easy to understand and easy to use. However, the method has some
drawbacks. It does not guarantee an optimal result in many cases. It only
provides a single final model in the end, although there are often several
equally good models. The order that the variables are taken into the model
should not be over-interpreted. Since the entering or removing of variables
are based on hypothesis testing, one should not jump to the conclusion that
all the important predictor variables for predicting Y have been identified,
or that all the unimportant predictor variables have been eliminated.

Another point is that stepwise regression does not take into account a
researcher’s knowledge about the predictors. This is advantageous since no
prior knowledge of the predictors is available. If some predictors are known
to be important, then it is necessary to force the procedure to include such
predictors.

3.2 Piecewise-linear regression

From the analysis in Chapter 2, nonlinear relationships may exist among
data. To deal with such cases, nonlinear techniques are considered.
Piecewise-linear(PWL) regression is a very old method and has been widely
used in many fields including data mining, image processing, etc. By doing
this, the basic problem is transformed from a single nonlinear equation into
several linear equations, therefore linear theory can be applied.

A PWL function consists of a collection of linear mappings, for each
segment of the function exactly one. Each mapping is only valid in a
certain interval if there is only one variable. The PWL method works for
high dimension cases too but in this thesis only one-variable situation is
considered. The boundaries between the segments are therefore denoted as
breakpoints.

If the breakpoints are known in advance, the data can be separated
into several groups according to the breakpoints, and for each group linear
regression methods may be applied, making it simple to solve. Figure 3.1
shows such a situation. The leftmost plot is the original data. If the
breakpoint is known to be 6 alone, the data can be separated into two pieces
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and a linear regression on each piece can be applied; if the breakpoints are
known to be 6 and 10, 3 lines can be fitted.

Figure 3.1: PWL with known breakpoints.

If the breakpoints are unknown, more analysis is needed to decide the
breakpoints and build the model. In [11], PWL method is used in data
mining for time series data. The author gives a summary of three major
approaches to time series segmentation, named as Sliding-window, Top-
down and Bottom-up, respectively. The data here is not time series data
but the approaches are well worth considering.

The Top-down algorithm starts from a large interval and try splitting it
into smaller intervals recursively until some user-specified threshold is met.
A schematic plot is given in Figure 3.2, where it starts from one single piece
and then split the piece into 2 and more pieces.

Figure 3.2: PWL with unknown breakpoints: Top-down approach.

The Bottom-up algorithm moves in the opposite direction, starting from
many small pieces and try merging into larger pieces until some threshold
is met. A schematic plot is given in Figure 3.3, where it starts from many
small pieces and then merges the small pieces into larger pieces.

The Sliding-window algorithm works by taking the first data point of a
time series as the starting point, then attempting to include the data to the
right with increasing longer segments. If at some point, including the right
data point results in an error beyond the predefined threshold, the point is
set as the starting point of next segment; previous data points then forms a
piece and is fixed. Form the new starting point, the same process continues
until the entire data points have been handled. In Figure 3.4, it starts from
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Figure 3.3: PWL with unknown breakpoints: Bottom-up approach.

the leftmost data point and tries taking the data points to the right in to
do a linear regression; when trying to take the sixth data point, the error is
beyond the threshold so the first five data points is set as a piece and applies
a linear regression; the sixth data point is set as another starting point and
the process continues.

Figure 3.4: PWL with unknown breakpoints: Sliding-window approach.

Neither of these methods are guaranteed to give globally optimal solution
in the end. The Sliding-window approach is attractive to us for its great
simplicity and intuitiveness, and its good performance on noisy data.

PWL models were criticized by its lack of explicit analytical representa-
tion and the need to store an immense amount of information on functions
in order that the linear equations over each interval can be retrieved for
computation purposed. Now there are compact explicit PWL expressions
to solve the problems, see[7],[10]. These expressions often ask for a clear
knowledge of breakpoints, and in this thesis the compact expression does
not provide much convenience for use, so it is not discussed here.

3.3 Tree-based models

Another particular kind of nonlinear method is predictive trees, with two
basic varieties named as regression tree and decision tree. The models are
obtained by recursively partitioning the data space and fitting a simple
prediction model within each partition. As a result, the partitioning can be
represented graphically as a tree, with a simple model at each tree leaf[13].
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Let us restudy the problem with m variables X1, X2, · · · , Xm and one
response Y in the tree-based method approach. In theory, the solution is
simply a partition of the X space into k disjoint sets, A1, A2, · · · , Ak, such
that the predicted value Ŷ is close to Y for each set. There are different
algorithms available for the partitioning, like CART[4] and M5[16], etc. In
this thesis, due to limited time and the specific problem, only simple tree-
based models are considered. Particularly, the thesis only considers splitting
on discrete variables. As seen in Chapter 2, there are parameters which take
only limited number of values, therefore making it easy to try all possible
sets according to the variable values. In Figure 3.5, the data is first separated
into two sets according to the value of X2; then the data set with X2 = 2
is further separated into three sets according to the value of X3. For each
small data set, a linear regression equation is built.

Figure 3.5: An example of tree-based model.

A key point in tree-based models is to decide which variables can be the
nodes. The problem is similar to variable selection discussed earlier. As
there are many variables available, it is not feasible to try every possible
tree. Correlation and partial correlation together with variables’ ranges can
be applied as the criterion for node selection.

The tree-based method is known for its simplicity and efficiency when
dealing with large number of variables and cases. The disadvantage is that
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global optimal solution is not guaranteed.

3.4 Summary

This chapter studies several techniques that may help build feasible models
for given tasks. Linear regression is the basic technique. Piecewise and
tree-based methods extends the possibility to study nonlinear relationships.
Piecewise regression can be seen as a simplified regression tree model where
the branches are replaced by breaking points while with tree-based models,
more complicated relationships can be explored where multiple variables are
involved.

Variables selection is necessary for all methods. Correlation analysis
provides a basic tool while hypothesis testing can help in many situations.
It should be emphasized that the selection results based on these methods
are not necessarily to be related to practical physical meaning, it is more
likely a mathematical explanation. This satisfies our assumption that no
prior knowledge on the data is available.
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Chapter 4

Data analysis and model
building for real tasks

In this chapter, the data of several tasks is fully analyzed and proper models
are built, step by step. As a starting point, a general model building process
is discussed and the performance criterion is decided to choose acceptable
models. Then several typical tasks are analyzed to build models. The
analysis also gives intuition on the design of an automatic model building
tool. Matlab(R2014a) is the main tool and it offers many functions like
fitlm and stepwiselm to accelerate our process. The ideas behind these
functions are basically the same as stated in Chapter 3. More details can
be found in [14].

4.1 Model building procedure: general

The model building procedure should be carefully designed. Before
trying models, graphical skills can help us get an intuition of what the
data looks like. Correlation analysis also gives some impression on the
data’s relationship, and due to reasons stated in previous chapter, partial
correlation will be our preference. As there may be many possible models,
some criterion needs to be set for choosing acceptable models. The criterion
should apply to different models. Then possible models can be tried, be
it linear or nonlinear. Here first-order and second-order linear models,
piecewise-linear models, or one-node-tree model will be tried. There is no
specific order to try these models, but as the complexity increases from linear
to nonlinear models, linear models will be explored first. After an acceptable
model is built, new data is used to validate the model’s usefulness. In our
case, the sample data is separated into two parts at the very beginning, 70%
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of the data will be used for building the model, while the remaining 30%
will be used to validate the model. If the validation proves that the model
works fine with validation data, the model is accepted as the final result of
the corresponding task.

4.2 Model performance criterion

As discussed in Chapter 2, RMSE is a reasonable criterion for model
performance. No matter which method is used to build a model, the outcome
model is always associated with a RMSE. The RMSE is calculated as

RMSE =

√
E[(Ŷ − Y )2] ≈

√∑n
i=1(Ŷi − Yi)2

n
(4.1)

A good model’s RMSE should try to approach the estimated standard
derivation s, which can be calculated from given data sample as shown
in Section 2.3. Therefore in the analysis below, our main criterion for an
acceptable model is set as

RMSE < 2s. (4.2)

The threshold 2s is chosen by experiment, without much theoretical
derivation. Within linear models, as introduced in Section 3.1.1 and
Section 3.1.3, several other criteria are available. R2 is widely used
to compare linear models with same parameters; SSE, AIC, BIC are
mostly used in stepwise linear regression procedure. These criteria act as
supplement criteria in our model building process.

4.3 Task HD

In this section Task HD is analyzed. There are 17 parameters available,
of which 11 are constant and therefore ignored. The remaining parameters
are denoted as variables X1, X2, · · · , X6, and the measured running time is
denoted as variable Y , and there are 213 samples in total. A small part of
the samples is shown in Figure 4.1.

4.3.1 Setting criterion

First, calculate an estimate s of the error variance using all samples holding
same parameters, as stated in Chapter 2. The calculation gives a result of
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Figure 4.1: A small part of the data set for Task HD.

s = 41.29. The criterion of an acceptable model for Task HD is then set as

RMSE < 2s = 82.58 (4.3)

4.3.2 Scatter plot and correlation table

A scatter plot of the data set is given in Figure 4.2.

The plot obviously indicates a linear relationship between Y and X4.
To make sure of this, the partial correlation of the parameters with Y is
calculated, shown as Figure 4.3.

It can be seen that X4 and Y has a big partial correlation coefficient;
X1 has a medium one; other parameters have very small coefficients. This
leads us to try linear models first.

4.3.3 Models trial

As there are 6 parameters in total, the all-possible-regression method can be
applied. Figure 4.4 shows the drop of RMSE as the number of parameters
in the model increases. At each point, the y-axis value is the smallest RMSE
that can be reached with all possible models when the number of parameters
is fixed as the corresponding x-axis value. The figure shows that all models
can give a RMSE smaller than 2s, and as the number of parameters increases
from 1 to 6, the model’s RMSE approaches s. But by adding parameters,
the RMSE drop is small. A single parameter model holds a RMSE as
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Figure 4.2: Scatter plot of the data set for Task HD.

Figure 4.3: Correlation analysis of Task HD.
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43.1661, and a two-parameter model holds 42.5411, giving a small drop of
1.45%. After 4 parameters have been included, adding more gives even less
improvement. According to the criterion, a one-parameter model is already
acceptable. Among all one-parameter models, the model that has X4 gives
the smallest RMSE. This matches the intuition of Figure 4.2 as well as the
correlation analysis result.

Figure 4.4: All-possible-regression modeling of Task HD.

The model turns out to be in the form

Ŷ = b0 + b4X4 (4.4)

where coefficients are given in Figure 4.5. In Figure 4.5, “SE” represents
the standard error of the estimated coefficient value, “tStat” represents the
t-statistic for a test that the coefficient is zero, and the “pValue” is the
corresponding p-value for the t-statistic. The smaller p-value the estimate
has, the more reliable it is.

The model gives Figure 4.6. The model fits well with the real value. The
residual plot is Figure 4.7 and no obvious pattern shows up, which is pleased
to see.

Now stepwise linear regression method is applied. By setting αE = 0.001
and αR = 0.05, the method gives exactly the same result as above, and
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Figure 4.5: All-possible-regression coefficients of Task HD.

Figure 4.6: All-possible-regression result of Task HD.
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Figure 4.7: All-possible-regression residual of Task HD.

the selection is automatic except for our setting αE and αR at the very
beginning.

4.3.4 Model validation

Let us further check the model with validation data. Figure 4.8 gives
the validation plot, and the RMSE calculated for the model validation is
RMSE = 50.1574, meeting the 2s criterion. The conclusion is that the
linear model above is satisfactory, and it is taken as our model for Task HD.

4.4 Task HqD

In this section Task HqD is analyzed. There are 17 parameters available,
of which 10 are constant and therefore ignored. The remaining parameters
are denoted as variables X1, X2, · · · , X7, and the measured running time is
denoted as variable Y . For this task, a very limited number of samples are
provided: 40 in total. For Y , the smallest is 1488 while the largest is 13297.
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Figure 4.8: Validation of Task HD model.

4.4.1 Setting criterion

The samples with same parameters give an estimate as s = 103.65, therefore
the criterion for an acceptable model is set as RMSE < 2s = 207.30.

4.4.2 Scatter plot and correlation table

The scatter plot of the data set is given in Figure 4.9. It seems that Y
has a relative strong linear relationship with X4. By checking the partial
correlation table as in Figure 4.10, Y may has a strong relationship with
X4, X2.

4.4.3 Models trial

Linear models are tried first. With the all-possible-regression method,
Figure 4.11 shows that all the models give an RMSE beyond 2s. Therefore
even if all the parameters are included in the model, i.e., a 7-parameter
first order linear model, it is still inadequate for the task. Stepwise linear
regression gives similar results.

Then second-order linear models are considered, i.e., taking interactive
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Figure 4.9: Scatter plot of the data set for Task HqD.

Figure 4.10: Correlation of the data set for Task HqD.

Figure 4.11: All-possible-regression of Task HqD.
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items and square items into consideration. There will be 256 possible models,
making it infeasible to try all these models. Stepwise linear regression is
used to try second-order linear models. Starting with a constant model
and setting αE = 0.001 and αR = 0.05, the method ends with a second-
order linear model. The model has an RMSE of 113.38, which satisfies the
criterion. The model has a form as

Ŷ = b0 + b2X2 + b4X4 + b6X6 + b24X2X4 + b46X4X6 (4.5)

where

Figure 4.12: All-possible-regression of Task HqD.

Figure 4.13: Second-order linear model of Task HqD.

The result is shown in Figure 4.13, as well as the residuals. The estimated
value and the original value seems to match well. The residual plot shows
that the model has relatively large residual when Y is small, and very small
residual when Y is large. This may indicate a piecewise model. Let us try
a piecewise linear model now. The variable according to which the data is
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separated into pieces is decided by correlation coefficient with Y and the
variable’s range. A model relying on X4 is built, in the form of

Ŷ =

{
795.19 + 26.60X4; if X4 < 108

845.85 + 49.81X4; if X4 >= 108
(4.6)

This model gives a RMSE of 165.80, which also satisfies our criterion
while bigger than that of second-order linear model. Figure 4.14 shows the
result.

Figure 4.14: Piecewise-linear model of Task HqD.

Since there is no particular reason to reject any of the two models, here
the second linear model is taken as the result simply because of its smaller
RMSE, and do the validation.

4.4.4 Model validation

With validation data, the model gives the result shown in Figure 4.15, with
a RMSE = 72.36, which is satisfactory. So Equation 4.5 is taken as the
result for Task HqD.
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Figure 4.15: Validation of second-order linear model of Task HqD.

4.5 Task Ti

In this section Task Ti is analyzed. There are 17 parameters available, of
which 7 are constant and therefore ignored. The remaining parameters are
denoted as variables X1, X2, · · · , X10, and the measured running time is
denoted as variable Y . There are 7301 samples in total. For Y , the smallest
is 18097 while the largest is 19299.

4.5.1 Setting criterion

The samples with same parameters give an estimate as s = 34.39. The
criterion for acceptable models is set as RMSE < 2s = 68.78.

4.5.2 Scatter plot and correlation table

The scatter plot is given in Figure 4.16. It seems quite obvious that there
is a linear relationship between Y and X1. The partial correlation table is
given in Figure 4.17.
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Figure 4.16: Scatter plot of the data set for Task Ti.

Figure 4.17: Correlation of the data set for Task Ti.

4.5.3 Models trial

A linear model trial is carried out by stepwise linear method. With first-
order models, RMSE = 171.50 is reached; with second-order models,
RMSE = 123.99 is reached. Neither matches our criterion.

Piecewise-linear regression method is tried next. X1 is chosen as the
regressor, based on its largest absolute correlation value with Y or intuitions
from the scatter plot. The idea of sliding-window algorithm is implemented,
taking the data points that have minimum X1 values(i.e., data points with
X1 = 1 and X1 = 2) to build initial pieces. The algorithm gives a piecewise-
linear model with five pieces, with the breakpoints of 4, 27, 54, 80, shown in
Equation 4.7.

Ŷ =



907.3 + 363.03X1; if 1 ≤ X1 < 4

897.34 + 180.99X1; if 4 ≤ X1 < 27

1129.8 + 183.78X1; if 27 ≤ X1 < 54

1536.3 + 181.37X1; if 54 ≤ X1 < 80

1721.6 + 182.45X1; if 80 ≤ X1 < 96

(4.7)

The piecewise-linear model has RMSE = 38.39, which perfect satisfies
our criterion. The result plot is shown in Figure 4.18.
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Figure 4.18: Piecewise-linear model for Task Ti.
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4.5.4 Model validation

With validation data, the piecewise-linear model gives the result shown in
Figure 4.19, with a RMSE = 38.93, which is satisfactory. So Equation 4.7
is taken as the result for Task Ti.

Figure 4.19: Validation of piecewise-linear model of Task Ti.

4.6 Task CE2

In this section Task CE2 is analyzed. There are 20 parameters available,
of which 9 are constant and therefore ignored. The remaining parameters
are denoted as variables X1, X2, · · · , X11, and the measured running time
is denoted as variable Y . There are 30046 samples in total. For Y , the
smallest is 409 while the largest is 5447.

4.6.1 Setting criterion

The samples with same parameters give an estimate as s = 18.04. The
criterion for acceptable models is set as RMSE < 2s = 36.08.
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4.6.2 Scatter plot and correlation table

The scatter plot is given in Figure 4.20. Again a linear relationship seems to
exist between Y and X1. The partial correlation table is given in Figure 4.21.

Figure 4.20: Scatter plot of the data set for Task CE2.

Figure 4.21: Correlation of the data set for Task CE2.

4.6.3 Models trial

With linear model approach, stepwise linear regression does not give
an adequate model with either first-order or second-order models. The
minimum RMSE it reaches is 100.94 with a second-order linear model. A
single-variable piecewise linear model does not work well too. Then tree-
based models are tried. One-node tree model is implemented here.

First the node variable is decided. According to the partial correlation
table in Figure 4.21, X1 and X11 are the two variables that have the largest
partial coefficients. X1 ranges from 1 to 96 while X11 is a binary variable,
taking either 0 or 1. Therefore X11 is taken as the node and data is separated
according to its value. For each small data set, a model is built with methods
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mentioned above, be it linear or piecewise-linear regression. In this way, a
tree model with RMSE = 27.55 is built, which meets the criterion well.
The result is shown in Figure 4.22.

Figure 4.22: Tree-based model of Task CE2.

The model is in the form:

Ŷ =

{
f1(x), if X11 = 0;

f2(x), if X11 = 1.
(4.8)

where

f1(x) =


336.05 + 75.74X1; if 1 ≤ X1 < 27

210.01 + 56.89X1; if 27 ≤ X1 < 54

240.19 + 49.02X1; if 54 ≤ X1 < 80

143.16 + 46.36X1; if 80 ≤ X1 < 96

(4.9)

and

f2(x) =


551.57 + 81.56X1; if 1 ≤ X1 < 27

422.24 + 62.89X1; if 27 ≤ X1 < 54

445.19 + 55.09X1; if 54 ≤ X1 < 80

363.72 + 52.25X1; if 80 ≤ X1 < 96

(4.10)
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4.6.4 Model validation

With validation data, the tree-based model gives the result shown in
Figure 4.23, with a RMSE = 19.33, which is satisfactory. So Equation 4.8
is taken as the result for Task CE2.

Figure 4.23: Validation of tree-based model of Task CE2.

4.7 Task CE5

In this section Task CE5 is analyzed. There are 20 parameters available,
of which 9 are constant and therefore ignored. The remaining parameters
are denoted as variables X1, X2, · · · , X11, and the measured running time
is denoted as variable Y . There are 19807 samples in total. For Y , the
smallest is 2056 while the largest is 44541.

4.7.1 Setting criterion

For this task, the samples with same parameters give an estimate as s =
1799.96. The criterion for acceptable models is set as RMSE < 2s =
3599.90.
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4.7.2 Scatter plot and correlation table

The scatter plot indicates that X1 is an important factor to Y . The partial
correlation table is shown as Figure 4.25.

Figure 4.24: Scatter plot of the data set for Task CE5.

Figure 4.25: Correlation of the data set for Task CE5.

4.7.3 Models trial

A second-order linear model is accepted according to our criterion, with a
RMSE=2737.02. The result is shown in Figure 4.26.

With this plot, it is hard to say that the model is adequate model the
task. Other methods are tried but none gives better models. Therefore for
this task, no adequate model can be built.

To explain the reason behind this, the samples having the same
parameters except X1 is drawn as a plot of Y against X1, shown as
Figure 4.27.
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Figure 4.26: Second-order linear model for Task CE5.

Figure 4.27: Data samples with varying X1 for Task CE5.
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The plots shows that, at almost all X1 values, there are two or more
different values, while all other parameters are exactly the same. This
indicates a high possibility that some parameter which controls this variation
is missed when collecting the data.

To detect this situation, review the estimated error variance s = 1799.96.
Also the minimum value of available Y is 2056. s/min(Y ) = 87.55%. This
means the noise variance is 87.55% of the real value. Compared to previous
tasks data, the noise is too large. This ratio can be utilized to decide the
quality of the data set before building models.

4.8 Summary

In this chapter, given the predefined criterion, several tasks are analyzed and
proper models are built. The models vary in types and complexity, some
being first-order or second-order linear, others being piecewise-linear or tree-
based models. With validation data, the models’ usefulness is validated. For
some tasks like Task CE5, no adequate model is built with current approach.

This chapter analyzes the data and builds models in a step-by-step
way. Graphical skills like scatter plot are used, and sometimes decision
are made by human intuition (for instance, when choosing a “best” model
with all-possible-regression method). With a lot of tasks, this approach is
not efficient. An automatic tool is well worth considering.

48



Chapter 5

Design of the automatic tool

This chapter considers to automate the task modeling procedure, i.e., to
build an automatic tool for task modeling. The tool is expected to involve
less human intervention during the process, and be able to deal with
large data set efficiently, therefore being able to handle more tasks in the
future. The tool is implemented with Matlab object-oriented programming
language[15].

5.1 The flow chart

The work flow of the automatic tool comes from the study of typical tasks
shown in Chapter 4. As seen in previous chapter, several basic types of
functions are able to model most given tasks, and procedures like stepwise
linear regression can be utilized to avoid human intervention with proper
predefined criteria.

The tool starts with pre-analysis of the data. Here the tool discards
constant parameters, calculates correlation and partial correlation tables,
and estimates the noise variance s from samples with same parameters for
later use.

Then the criterion for an acceptable model is set as RMSE < 2s.

Next, different model types are tried. First-order linear models are tried
first with stepwise linear regression approach, where the αE and αR are
predefined. The default value is set as αE = 0.001 and αR = 0.05 based
on our experience. If there is no model meeting the criterion, second-
order linear models are tried, where interactive items and squared items
are included.
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If these linear models do not meet the criterion, piecewise-linear models
are tried. The variable based on which the data is separated is decided by
partial correlation and the variable’s range. The sliding-window approach
is implemented to give the piecewise-linear model. Here the initial length
of a piece is set to 2, which means a first piece is built with the data points
having the minimum two parameter values.

Finally tree-based models are tried, and the node is again decided by
partial correlation and the parameter ranges. Only a one-layer tree is
considered for the moment. At each leaf, a linear model or piecewise-linear
model is given.

During these trials, if there is some model meeting the criterion, it is
taken as the model and outputted; if none of these model types gives an
acceptable model, the tool reports a failure.

The flow chart is given in Figure 5.1.

Figure 5.1: Flow chart of the automatic tool.
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5.2 Summary

The tool is advantageous for its automatic procedure and thus avoids human
intervention. The criterion is simple and easy to be compared by different
types of models. Linear models, piecewise-linear models and tree-based
models form a model pool. The tasks try different models to select a simple
and acceptable one.

The disadvantage is obvious too. There might be cases where a scatter
plot can give much intuitions while the tool cannot take advantage of it. The
models have to be tried in some order(here linear models are tried first then
nonlinear models), while this might not be the optimal order. The model
pool has only a limited number of available model prototypes, which limits
its flexibility and extensibility.

In the tool design, the validation procedure is not included. The
validation procedure often involves people’s judgement on plots and requires
new data; and from several tasks analyzed in Chapter 4, the validation
procedure does not conflict with our criterion with our model prototypes.
The validation procedure is suggested to be manually carried out with new
data, if necessary.
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Chapter 6

Results

In this chapter each task is analyzed and a proper model is built. There
are 17 tasks in total. With the help of the tool, a model is built for each
task, with its RMSE as the performance measure. In addition, the time
consumption for generating each task model is stated as a measure on how
the tool works.

6.1 Linear models

Task CE1

For this task, the data set leads to an s = 16.0884. The tool gives a second-
order linear model with 22 items in 8 parameters, and an RMSE = 28.3.
The time consumption is 59.7372s with 30091 samples in total.

Ŷ = 535.37 + 114.19X1 − 3.0826X2 + 12.125X3 − 73.154X4

+ 150.96X5 + 0.6239X6 + 0.0225X7 − 46.967X8

+ 0.852X1X2 − 0.2054X1X3 + 2.4119X1X4 − 2.685X1X5

+ 0.0024X1X6 + 0.0216X1X7 − 32.932X2X5 − 0.326X2X6

+ 26.861X2X8 − 103.32X3X4 + 0.4858X3X6

− 0.0054X6X7 + 0.4767X7X8 + 0.046X2
1 − 0.0002X2

6 (6.1)

The too many items makes it less interesting. Meanwhile, a first-order
linear model gives an RMSE = 46.7 with only 4 items.

Ŷ = 493.72 + 121.48X1 − 28.518X3 − 0.2133X6 + 31.308X9 (6.2)

Figure 6.1 shows the first-order modeling.
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Figure 6.1: Modeling of Task CE1.

Equation6.2 is taken as the final model for Task CE1.

Task Co

For this task, the data set leads to an s = 27.5384. The tool gives a second-
order linear model with 3 items in 2 parameters, and an RMSE = 31.9.
The time consumption is 4.9964s with 363 samples in total.

Ŷ = 342.99 + 5.1485X10 + 167.12X11 + 7.5498X2
11 (6.3)

Figure 6.2 shows the modeling.

Task De

For this task, the data set leads to an s = 78.2091. The tool gives a second-
order linear model with 20 items in 8 parameters, and an RMSE = 97.2.
The time consumption is 17.3175s with 7484 samples in total.

Ŷ = 2585.4− 1.5782X1 − 3.2307X2 − 26.123X3 + 1528.5X4

+ 2389.6X5 + 24.233X6 + 16.156X7 − 894.97X8

+ 17.832X1X2 + 1.654X1X3 − 0.0134X1X6

+ 2.6275X1X8 − 594.92X2X4 − 1218.1X2X5 + 10.26X2X6

+ 4.9397X2X7 + 369.16X2X8 − 22.34X6X8 + 0.0342X2
1 (6.4)
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Figure 6.2: Modeling of Task Co.

Figure 6.3 shows the modeling.

Figure 6.3: Modeling of Task De.
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Task Ri

For this task, the data set leads to an s = 30.2314. The tool gives a first-
order linear model with 7 parameters, and an RMSE = 46.6. The time
consumption is 6.8317s with 1212 samples in total.

Ŷ = 492.11− 0.2973X1 − 19.448X2 + 1176.9X4 + 7.5157X6

+ 12.208X7 − 18.904X9 + 1696.5X10 (6.5)

Figure 6.4 shows the modeling.

Figure 6.4: Modeling of Task Ri.

Task Rs

For this task, the data set leads to an s = 9.6856. The tool gives a first-
order linear model with 6 parameters, and an RMSE = 11.2723. The time
consumption is 16.4601s with 16993 samples in total.

Ŷ = 249.95 + 84.135X1 − 7.2931X5 + 0.0265X6

− 0.1403X7 + 6.3504X10 − 1.9829X11 (6.6)

Figure 6.5 shows the modeling.
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Figure 6.5: Modeling of Task Rs.

Task HD

Task HD has been analyzed in Section 4.3, giving a simple first-order linear
model as shown in Equation 4.4.

Task HqD

Task HqD has been analyzed in Section 4.4, giving a second-order linear
model as shown in Equation 4.5.

6.2 Piecewise-linear models

Task An

For this task, the data set leads to an s = 46.7026. The tool gives a
piecewise-linear model with RMSE = 68.4555. The time consumption is
about 86.7411s with 41540 samples in total.

Ŷ =


518.05 + 136.11X1; if 1 ≤ X1 < 36

1226.5 + 134.6X1; if 36 ≤ X1 < 72

1824.9 + 134.94X1; if 72 ≤ X1 < 100

(6.7)

Figure 6.6 shows the modeling.
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Figure 6.6: Modeling of Task An.

Task Po

For this task, the data set leads to an s = 432.0566. The tool gives a second-
order linear model with 23 items in 8 parameters with an RMSE = 791.
Also a piecewise-linear model can be given with an RMSE = 458.8830. The
Piecewise-linear model is selected. The time consumption is about 48s with
26687 samples in total.

Ŷ =



632.72 + 348.76X1; if 1 ≤ X1 < 4

659.89 + 355.31X1; if 4 ≤ X1 < 8

526.73 + 377.45X1; if 8 ≤ X1 < 12

821.36 + 379.74X1; if 12 ≤ X1 < 24

918.41 + 187.33X1; if 24 ≤ X1 < 45

966.54 + 123.99X1; if 45 ≤ X1 < 72

310.76 + 101.89X1; if 72 ≤ X1 < 81

10247− 23.76X1; if 81 ≤ X1 < 100

(6.8)

Figure 6.7 shows the modeling.

Task Ti

Task Ti has been analyzed in Section 4.5, giving a tree-based model as shown
in Equation 4.7.
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Figure 6.7: Modeling of Task Po.

6.3 Tree-based models

Task CE3

For this task, the data set leads to an s = 163.4087. The tool gives a tree-
based model. Parameter 11 is chosen as the node and there are 2 branches.
For each branch, a piecewise-linear model is given. The RMSE = 258.8638.
The time consumption 79.2450s with 24278 samples in total.

The model is in the form of Equation 6.9:

Ŷ =

{
f1(x), if X11 = 0;

f2(x), if X11 = 1.
(6.9)

where

f1(x) =



484.9 + 108.25X1; if 1 ≤ X1 < 12

889.71 + 110.58X1; if 12 ≤ X1 < 20

6674.9− 180.04X1; if 20 ≤ X1 < 27

869.23 + 56.00X1; if 27 ≤ X1 < 45

862.47 + 37.46X1; if 45 ≤ X1 < 72

811.49 + 28.81X1; if 72 ≤ X1 < 81

3714.8− 7.74X1; if 81 ≤ X1 < 100
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and

f2(x) =



1083 + 162.93X1; if 1 ≤ X1 < 12

1627.3 + 168.10X1; if 12 ≤ X1 < 24

1121.6 + 91.31X1; if 24 ≤ X1 < 45

1276.3 + 57.70X1; if 45 ≤ X1 < 72

1534.5 + 40.04X1; if 72 ≤ X1 < 81

5230.3− 6.86X1; if 81 ≤ X1 < 100

The Figure 6.8 shows the modeling.

Figure 6.8: Modeling of Task CE3.

Task CE4

For this task, the data set leads to an s = 58.8445. The tool gives a tree-
based model. Parameter 11 is chosen as the node and there are 2 branches.
For each branch, a piecewise-linear model is given. The RMSE = 103.2757.
The time consumption 55.7920s with 24079 samples in total.

The model is in the form of Equation 6.10:

Ŷ =

{
f1(x), if X11 = 0;

f2(x), if X11 = 1.
(6.10)
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where

f1(x) =



767 + 222.55X1; if 1 ≤ X1 < 5

692.53 + 235.6X1; if 5 ≤ X1 < 24

715.4− 117.71X1; if 24 ≤ X1 < 45

588.61 + 81.24X1; if 45 ≤ X1 < 64

9840.2− 64.14X1; if 64 ≤ X1 < 80

9960.8− 55.32X1; if 80 ≤ X1 < 100

and

f2(x) =



1977.1 + 426.69X1; if 1 ≤ X1 < 24

899.37 + 223.93X1; if 24 ≤ X1 < 45

1447.1 + 138.96X1; if 45 ≤ X1 < 72

1792.6 + 100.01X1; if 72 ≤ X1 < 90

2439.9 + 73.35X1; if 90 ≤ X1 < 100

Figure 6.9 shows the modeling.

Figure 6.9: Modeling of Task CE4.

Task Dei

For this task, the data set leads to an s = 143.5442. The tool gives a second-
order linear model with RMSE = 221.1890, but the plot is not satisfactory,
shown in Figure 6.10.
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Figure 6.10: A second-order linear model of Task Dei.

The model can also give a tree-based model. If Parameter 2 is set as the
node, then for each branch a piecewise-linear model is given. The RMSE =
188.9782.

The model is in the form of Equation 6.11:

Ŷ =

{
f1(x), if X2 = 2;

f2(x), if X2 = 4.
(6.11)

where

f1(x) =


1072.9 + 132.83X1; if 1 ≤ X1 < 27

896.08 + 72.44X1; if 27 ≤ X1 < 45

1852.9 + 30.87X1; if 45 ≤ X1 < 96

and

f2(x) =


896.49 + 144.86X1; if 1 ≤ X1 < 12

1037.2 + 61.70X1; if 12 ≤ X1 < 24

1060.2 + 42.99X1; if 24 ≤ X1 < 36

2491− 3.73X1; if 36 ≤ X1 < 96

The Figure 6.11 shows the modeling.
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Figure 6.11: Modeling of Task Dei.

Task So

For this task, the data set leads to an s = 24.8767. The tool cannot give
a proper model automatically. With the tree-based method, the tool takes
Parameter 11 as the node. But if parameter 2 is set as the node then an
acceptable model can be built. There are 2 branches. For one branch, a
first-order linear model is given; for the other, a piecewise-linear model is
given. The RMSE = 40.7272.

The model is in the form of Equation 6.12:

Ŷ =

{
f1(x), if X2 = 2;

f2(x), if X2 = 4.
(6.12)

where
f1(x) = 368.98 + 82.38X1

and

f2(x) =

{
377.91 + 104.89X1; if 1 ≤ X1 < 80

438.23 + 52.04X1; if 80 ≤ X1 < 96

The Figure 6.12 shows the modeling.

There are two possible reasons behind the problem. One could be
taking partial linear regression coefficients as our criterion to decide which
parameter can be the node, which may not be well adequate. The other is
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Figure 6.12: Modeling of Task So.

that only one-layer tree structure is considered in the design. If multi-layer
tree can be designed, then the problem may be solved. Actually, Parameter
2 has a smaller partial coefficient than Parameter 1 and Parameter 11, but
bigger than all others.

Task CE2

Task CE2 has been analyzed in Section 4.6, giving a tree-based model as
shown in Equation 4.8.

6.4 Unexplained ones

Task Si

For this task, the data set leads to an s = 181.1121. The tool gives a
first-order linear model, with RMSE = 190.2107.

Ŷ = 2226 + 175.51X1 (6.13)

Figure 6.13 shows the modeling.

The plots shows that the upper data points are all missed. So more
study should be conducted on this task.
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Figure 6.13: Modeling of Task Si.

Task CE5

Task CE5 has been analyzed in Chapter 4, with no satisfactory output
models. The possible reason is also explained in Section 4.7.

6.5 Summary

The tool builds models for 14 tasks automatically. For Task CE1 and Task
So, auxiliary steps are needed to build an acceptable model. This shows that
the automatic tool works fine with many tasks but is still not fully capable
of dealing with highly complex tasks.

The main limit of the tool results from the limited model prototypes,
the order of the trial of the models, as stated in Section 5.2. Also taking
partial correlation as a criterion for variables selecting is not well proved but
only based on experiments. This does not always work fine, for example in
Task So, automatically it takes Parameter 11 rather than Parameter 2 as
the node, which does not lead to a good result.
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Chapter 7

Summary and future work

This chapter summarizes the thesis work, discusses some problems during
the work, and gives some suggestions on future work.

7.1 Summary of the thesis

During this thesis work, three basic function prototypes are proposed for
modeling the relationship between the task load and its parameters, i.e.,
linear function, piecewise-linear function and tree-based function. These
models varies in the number of parameters involved and complexity of the
outcome model.

For linear models, stepwise linear regression is used as the main
approach. The threshold to include or exclude parameters, αE and αE , are
set by experience. The values have an influence on the result’s complexity.
The specific value of the parameters may need more trial for different tasks.

For piecewise-linear models, the parameter according to which the data
is separated and how to decide the breakpoints are the key problems. The
parameter is selected based on partial correlation and this works fine with
most tasks. The sliding-window approach is used to separate the data and
build the model. With this approach, the number of pieces is not specified in
advance. The initial length of the first piece is set to 2 based on experiments,
which may need adjustment in some cases.

For tree-based models, only one-layer tree is considered. The node is
decided by partial correlation coefficient and the variable range.

There models can be considered as one unified modeling approach: a
tree-based model with leaves of piece-wise linear modeling approach. Special
cases could be zero node and linear models at leaves.
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The criterion for an acceptable model is defined based on the intrinsic
property of the data set, that is, samples with same parameters. The
criterion 2s is also an empirical value, which may be flexibly adjusted if
necessary.

The models built for the tasks are capable of predicting future task load
with new parameters, and also can give some intuition on how the true
relationship may be between the task load and its parameters.

The guided automatic tool means to help build models for new tasks
faster. The tool works fine with many tasks, while for some tasks re-
examination on the output result may be needed and the final model should
be decided carefully.

7.2 Future work

On noise

With explicit modeling approach, an assumption of the noise is unavoid-
able. In this thesis it is assumed that the noise is normally distributed,
independent with parameters or task load, i.e., N(0, Iσ2). The assumption
is mainly based on central limit theory and it turns out that the assumption
does not harm the modeling. A more careful study may be carried out
on the noise if necessary. For example, in some cases if the noise variance
varies with parameters, another model like N(0, V σ2) may be applied and
weighted least square method can then be used instead of ordinary least
square method.

On model criterion

The criterion for acceptable models is calculated based on estimation of
noise variance from samples with same parameters. The calculation here
relies heavily on the quality of data set. If the number of repeat runs is
very limited, the estimate of the noise variance may be unreliable. For later
research, improvement can be carried out on this topic.

On correlation among input variables

In linear regression, the ideal situation is that the variables in the regressor
are all independent variables, i.e., X1, X2, ... are all independent variables.
This is hardly true in practice, and in this thesis partial correlation and
stepwise approach are used to avoid this problem. Other approaches are
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available like ridge regression[6]. If the correlation among parameters are
serious, these approaches can be considered.

On model forms

Three basic different function forms are designed in the thesis to fit different
tasks. What has not been considered further in the thesis is a unified form of
model functions. Based on our current work, there is a high possibility that
interactive items is necessary for many tasks. The second-linear models
and the tree-based models prove this. A new model prototype shown as
Equation 7.1 is well worth considering.

Ŷ = f1(X1) · f2(X2) · · · · · fm(Xm) (7.1)

In this prototype, f1, f2, ... are basic functions, mostly in the form of
a simple first-order linear function form y = αx + β, yet in some tasks, a
piecewise-linear function is appropriate. In this way, the models shown in
this thesis are included and can be extended to more complex models.

On researcher’s knowledge

The thesis tries to avoid taking advantage of researcher’s pre-knowledge
on parameters when building the models. The analysis goes in a pure
mathematical way. In this way the same work procedure applies to any
future task. But for explicit modeling approach, researcher’s knowledge
can be of great help and improve the model’s usefulness significantly. For
instance, when building a piecewise linear model, if the breakpoints can be
decided in advance, the model building process can be shorted and the result
can gain more explanatory power. Careful use of researcher’s knowledge is
suggested with explicit modeling approach.
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Appendix A

Here we list all the models with corresponding measures. The Time column
is the time consumed of the automatic tool when building the model, in
seconds. NA means the model is obtained by aid from human judgement
thus no direct tool running time is available.
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