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Abstract

This thesis is based on two papers: the �rst one concerns Carleman-

Sobolev classes for small exponents and the other solves Poisson's equa-

tion for the standard weighted Laplacian in the unit disc.

In the �rst paper we start by noting that for small Lp-exponents,

i.e. 0 < p < 1, the way we usually de�ne Sobolev spaces is very unsatis-
factory, which was illustrated by Peetre in 1975. In an attempt to rem-

edy this we introduce completions of a class of smooth functions, which

we call Carleman-Sobolev classes since they generalize Sobolev spaces

and uses a norm inspired by Carleman classes. If the class is restricted

with a growth condition on the supremum norms of the derivatives,

we prove that there exists a condition on the weight sequence in the

norm which guarantees that the resulting completion can be embed-

ded into C∞(R). This condition is even sharp up to some regularity

on the weight sequence, in the sense that the norm inequality required

for continuity no longer holds. We also show that the growth condition

is necessary, in the sense that if we drop it entirely we can naturally

embed Lp into this class's completion. Hence in this case we cannot

consider the completion as a proper generalization of a Sobolev space.

In the second paper we �nd Green's function for the standard

weighted Laplacian and give conditions on the Riesz-mass such that we

can use Green's potential to solve Poisson's equation with zero bound-

ary values in the sense of radial L1-means. The weight here comes

from the theory of weighted Bergman spaces and from this context it

gets the label as the standard weight.
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Sammanfattning

Den här avhandlingen är baserad på två artiklar: den första handlar

om Carleman-Sobolev-klasser för små exponenter och den andra löser

Poissons ekvation för den standardviktade Laplacianen i enhetsskivan.

I den första artikeln börjar vi med att notera att för små Lp-

exponenter, dvs 0 < p < 1, så är metoden man vanligen använder för

att de�niera Sobolevrum väldigt otillfredsställande, detta illustrerades

av Peetre i en artikel från 1975. I ett försök att förbättra situatio-

nen introducerar vi tillslutningar av klasser av släta funktioner, som vi

kallar Carleman-Sobolev-klasser eftersom de generaliserar Sobolevrum

och använder en norm inspirerad av Carlemanklasser. Om klassen in-

skränks med ett växtkrav på derivatornas supremumnormer, så visar

vi att det �nns ett krav på viktsekvensen i normen som garanterar att

den resulterande tillslutningen går att inbädda i C∞(R). Detta krav är

dessutom skarpt upp till viss regularitet hos viktsekvensen, i meningen

att normolikheten som krävs för kontinuitet inte längre håller. Vi visar

också att växtkravet är nödvändigt, i meningen att om vi utelämnar

detta krav så kan vi inbädda Lp naturligt i tillslutningen av denna

klass. Alltså, utan kravet kan vi inte betrakta tillslutningen som en

äkta generalisering av ett Sobolevrum.

I den andra artikeln hittar vi Greens funktion för den standard-

viktade Laplacianen och ger krav på Rieszmassan som tillåter oss att

använda Greens potential för att lösa Poissons ekvation med noll på

randen i betydelsen av radiella L1-medelvärden. Vikten kommer från

teorin om viktade Bergmanrum och det är där den kallas för standard-

vikten.
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Chapter 1

Introduction

This thesis is based on two separate papers in two di�erent areas, therefore
we supply two separate introductions.

1.1 Introduction to Carleman-Sobolev classes for

small exponents

In the usual case, when p ≥ 1, there are several equivalent ways of de�ning
Sobolev spaces. The two most commonly considered are the spaces H, the
completion of smooth functions with respect to the Sobolev norm, and W ,
which is the subset of distributions having �nite norm. As mentioned, these
are equivalent when p ≥ 1. Indeed, this is even the name of the famous
theorem �H=W� (see [2] or the original paper [11]).

For small Lp-exponents, i.e 0 < p < 1, the situation is far worse. To
begin with, the spaces Lp are now only quasi-Banach spaces and have a
trivial dual, see [5]. The failure of the triangle inequality will not hinder us
signi�cantly, but because of the latter fact we are deterred from trying to
de�ne Sobolev spaces as spaces of distributions.

However, the viewpoint of completions is also riddled with pitfalls. In
a paper by Peetre [14] we can read a counterexample by Douady showing
that if we choose to view the Sobolev space W 1,p as a completion of smooth
functions with respect to the ordinary Sobolev norm, then we can �nd objects
which cannot even be regarded as functions: he constructs a �function�, for
a lack of a better word, which is identically zero yet has derivative equal to
one almost everywhere!

1



2 CHAPTER 1. INTRODUCTION

One approach to remedy this is found in Peetre's book [15, Chapter 11]
where he uses ideas from Besov spaces as a starting point.

We will instead try to look at another norm and examine what we get
when we take the completion of a class of smooth functions. There is then a
couple of possible outcomes, depending on the strength of our norm and on
other restrictions on the class:

• nothing new happens and we end up where we started, i.e with smooth
functions,

• we get too much, i.e we get all of Lp,

• or something completely di�erent.

As an example, consider what happens when p ≥ 1 where we end up in
the last scenario with the di�erent spaces W k,p, which neither are smooth
functions nor all of Lp.

The norm we will use comes from the so-called Carleman classes. These
classes are de�ned by a weight sequence (Mk)k≥0 so that f ∈ C∞ belong to
the Carleman class C{Mk} if there exists some b > 0 for which:∥∥∥f (k)

∥∥∥
∞

Mk
≤ bk, k ≥ 0.

Due to the classical theorem of Denjoy-Carleman (see [4]) these classes are
quasi-analytic when

∞∑
k=0

Mk

Mk+1
=∞.

A quasi-analytic function is a function which cannot vanish together with all
its derivatives at a common point unless it is the zero function. (Where we
can read this as: if its Taylor expansion is nothing but zeros at some point,
then it must be zero everywhere.) So we ask ourselves if we can �nd some
similar condition, or at least in the same spirit, which in some sense classi�es
our completions.

Towards that end, we note that in many cases the constant b can be

removed by considering g(x) = f(b−1x), so that
∥∥∥g(k)

∥∥∥
∞

= b−k
∥∥∥f (k)

∥∥∥
∞
.

Then we consider f to belong to the Carleman class if

sup
k≥0

∥∥∥f (k)
∥∥∥
∞

Mk
≤ 1.
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To make this expression more Sobolev-�avored, we change the supremum
norms to Lp-norms. This might seem like a radical thing to do. In some
sense it is, but when p ≥ 1 there is a connection between the supremum of
a function f and the Lp-norms of f and f ′, at least it is clear for compactly
supported f . For some discussion in this direction and for the classical
scenario of Carleman classes see [10, Chapter V].

Here the reader might interject: but what about the �in�nite� Sobolev
norm:

‖f‖ =
(
‖f‖p
M0

+
‖f ′‖p
M1

+
‖f ′′‖p
M2

+ . . .

)1/p

?

Perhaps we can then choose the weight sequence to ensure that a nice subset
have �nite norm. So why do we not choose this norm? In some sense the
norm we will choose is a drastic simpli�cation of this, chosen in the hope of
simplifying the ensuing calculations.

We are now �nally ready to reveal the norm for our Carleman-Sobolev
classes. For a �xed sequence M = (Mk)k≥0 of numbers Mk ≥ 1 we de�ne
the quasi-norm

‖f‖M = sup
k≥0

∥∥∥f (k)
∥∥∥
p

Mk
, f ∈ C∞(R).

We will frequently drop the quasi-pre�x since in our results the failure of the
triangle inequality can quite easily be overcome.

The results we present are in the direction of classifying the completions
of these classes. Furthermore, we will �nd that a growth restriction on the
derivatives is crucial if we want to consider the completion as a generalized
Sobolev space.

1.2 Introduction to Green's potential for weighted

Laplacians

Let Ω be a connected domain in C and let ρ be a positive weight function.
Then a weighted Laplacian is a complex second order partial di�erential
operator de�ned as

Lρ = −∂zρ−1∂z

where ∂z and ∂z are the Wirtinger-derivatives de�ned as

∂z = 1
2

(
∂

∂x
− i ∂

∂y

)
and ∂z = 1

2

(
∂

∂x
+ i

∂

∂y

)
, z = x+ iy ∈ C.
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When ρ = 1 we get an unweighted or classical case, named so because Lρ
then is the normalized Laplacian −1

4∆.
The main object of study will be Green's function Gρ(z, w) corresponding

to these operators. These are the fundamental solutions to Lρ with zero
boundary values, that is, Gρ(z, w) is the function satisfying:

1. LρGρ(z, w) = δ0(z − w) in sense of distributions on Ω,

2. Gρ(z, w)→ 0 when z → ζ ∈ ∂Ω,

3. Gρ(z, w) = Gρ(w, z).

One of the reasons for studying these Green's functions is their connection
to the Bergman space weighted by ρ, that is, the space of analytic functions
with norm: (∫

Ω
|f(z)|2ρ(z)dA(z)

)1/2
, dA = 1

π
dxdy.

This connection was shown in 1951 in Paul Garabedian's paper [6] where
he studied the case when ρ is continuously di�erentiable in Ω. He shows
in particular that the Bergman kernel Kρ(z, w) of these spaces are given by
Green's function Gρ(z, w) of the weighted Laplacian by the formula:

Kρ(z, w) = − 1
ρ(z)ρ(w)∂w∂zGρ(z, w), z 6= w.

This means of course that given Gρ we can �nd Kρ. Then since the Poisson
kernel for this operator can also be calculated by knowing Gρ, we see that
Gρ sits in a nice place between these two domain functions.

Another natural question to consider when faced with an di�erential
operator is the corresponding boundary value problem. That is, the question
of existence and uniqueness of both the Dirichlet problem:

Lρu = 0 and u = f on ∂Ω

and Poisson's equation:

Lρu = g and u = 0 on ∂Ω.

Here we need to be careful and make sure that these equations make sense.



1.2. INTRODUCTION TO GREEN'S POTENTIAL FOR WEIGHTED

LAPLACIANS 5

For a physical interpretation one can choose to see these operators as a
complex equivalent of the conductivity equation for the electric potential u
inside a material with conductivity σ = 1

ρ :

∇ · σ∇u = 0.

They might be considered equivalent since this is exactly the real part of
the equation Lρu = 0, where our weight function now serves the purpose of
describing the resistance.

In this setting these operators appear in Calderón's inverse problem,
which studies the problem of identifying the conductivity if we know the
current through the boundary for arbitrary boundary data. More precisely,
if we know the Dirichlet to Neumann map:

Λσ : u|∂Ω 7→ σ
∂u

∂ν

∣∣∣∣
∂Ω

then can we �nd the conductivity σ? This was answered a�rmatively for
the plane in 2006 by Astala and Päivärinta, see [3].

These operators have another cousin, namely the weighted bi-Laplacian
which is much more well-studied, see e.g. [9] and [8]. That operator is con-
nected much more directly to physics, it is real in contrast to Lρ and can be
used to describe the elasticity of a thin plate.

In Paper B we consider the weight (1−|z|2)α in the unit disc D, where α is
a real parameter. This weight is commonly referred to as the standard weight
in the context of weighted Bergman spaces. Here we refer the reader to [7]
and in particular the results concerning the boundedness of the Bergman
projection, which describe how nicely these weights �t into the Bergman
space theory.

Therefore we denote this standard weighted Laplacian as:

Lα = −∂z(1− |z|2)−α∂z, α > −1,

and its corresponding Green function by Gα(z, w). Note that this weight is
not so well-behaved towards the boundary when α < 0 so the considerations
of Garabedian do not directly apply without some extra worries.

Prior to the work of Paper B the Dirichlet problem was solved by Olofsson
and Wittsten in [13] where they �nd the Poisson kernel:

Pα(z) = (1− |z|2)α+1

(1− z)(1− z)α+1 .
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Using this they show both uniqueness and existence for distributional bound-
ary values. Therefore, since the Bergman kernel is well-known (see [7]), the
missing piece was Poisson's equation.

In Paper B we �nd Gα(z, w) and use its Green's potential

Gµα(z) =
∫
D
Gα(z, w)dµ(w)

to solve
LαG

µ
α = µ, D

with zero boundary values, in the sense of radial L1-means:∫ 2π

0
|Gµα(reiθ)|dθ2π → 0, r ↗ 1,

where the Riesz-mass µ is any complex Borel measure satisfying∫
D

(1− |w|2)α+1d|µ|(w) <∞.



Chapter 2

Summary of results

2.1 Paper A

This paper is the result of a collaboration with Aron Wennman where we
study two classes of functions de�ned in relation with the following quasi-
norm which we discussed above.

De�nition. For a �xed sequence M = (Mk)k≥0 of numbers Mk ≥ 1 we
de�ne the quasi-norm

‖f‖M = sup
k≥0

∥∥∥f (k)
∥∥∥
p

Mk
, f ∈ C∞(R).

With this norm we now de�ne our two Carleman-Sobolev classes as:

De�nition. Let C and S be the classes of functions de�ned by

C = {f ∈ C∞(R) : ‖f‖M <∞}

and

S =
{
f ∈ C∞(R) : ‖f‖M <∞ and lim

k→∞

∥∥∥f (k)
∥∥∥(1−p)k

∞
≤ 1

}
,

respectively. Note that both classes depend on the number 0 < p < 1 and
the choice of the sequenceM.

7
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The main objects of study will be the abstract completions of C and
S, which we denote by Ĉ and Ŝ respectively. The starting point of our
examination of these is the following result which was communicated to the
authors by Håkan Hedenmalm.

Proposition (Hedenmalm). If f ∈ S then

‖f‖∞ ≤
( ∞∏
k=0

M
p(1−p)k−1

k

)
‖f‖M .

It is mainly this result and the methods used in the proof that led to the
particular conditions for the class S. Building on this we went on to show
the following result regarding Ŝ.

Theorem 1. Suppose the sequenceM satis�es

∞∏
k=0

M
p(1−p)k−1

k <∞.

Then Ŝ can be continuously embedded in C∞(R).

Hence we now know that in some sense the two conditions

∞∏
k=0

M
p(1−p)k−1

k <∞ and lim
k→∞

∥∥∥f (k)
∥∥∥(1−p)k

∞
≤ 1

are too strong to give something new in the completion. So the natural
question is what happens if we drop one or both of these conditions.

The �rst result in this direction is one where we replace the �rst condi-
tion with the converse and keep the last. To make the following theorem's
conditions more readable note that the logaritmized invertion of the �rst
condition above is:

p
∞∑
k=0

(1− p)k−1 logMk =∞.

The following theorem's statement will involve the asymptotic behavior of
the terms, that is, di�erent ways for the sum to diverge. All of the other
conditions are the promised regularity conditions.
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Theorem 2. Suppose
∞∏
k=0

M
p(1−p)k−1

k =∞.

Assume either that

lim
k→∞

(1− p)k logMk > 0

or that all of the following hold:

logMk is an increasing and convex sequence,

lim
k→∞

(1− p)k logMk = 0,

lim
k→∞

logMk

P (k) =∞, for any polynomial P .

Then there can be no constant C such that

‖f‖∞ ≤ C ‖f‖M , f ∈ S.

This we choose to interpret as the impossibility of considering the comple-
tion Ŝ as smooth functions in this case, or more speci�cally the impossibility
to continuously embed Ŝ in any space with the supremum norm.

The proof uses ideas from spline approximation and this connects our
results to Peetre's original considerations in [14] since it was these approx-
imations that sparked his original interest in the Sobolev spaces W k,p for
small exponents. Furthermore, the constructions used in the proof can also
be seen hinted at in Cohen's proof of the Denjoy-Carleman theorem (see [4]),
which ties these classes even closer to the Carleman classes.

Lastly we show that the second condition mentioned above:

lim
k→∞

∥∥∥f (k)
∥∥∥(1−p)k

∞
≤ 1,

is even more crucial to ensure that we get something interesting in the com-
pletion. More speci�cally we show that:

Theorem 3. There exists a canonical, continuous embedding

Lp(R) ↪→ Ĉ.

Explicitly one can map f ∈ Lp to a Cauchy sequence (fi) in C such that

fi → f in Lp and for each derivative we have f
(n)
i → 0 in Lp.
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Hence we cannot do without this growth restriction on the derivatives
if we want to consider the completion as a proper Sobolev space, meaning
that we want our space to be a proper subset of Lp in analogy with Sobolev
spaces for p ≥ 1. This motivates that the conditions we have put on S are
the correct ones in this situation.

2.2 Paper B

The following is the �rst result of Paper B and the starting point for consid-
ering the corresponding Green's potential.

Theorem 4. For the principal branch of the complex exponential, Green's

function Gα(z, w) for the operator Lα = −∂z(1− |z|2)−α∂z for α > −1 in D
is given by

Gα(z, w) = (1− zw)αh ◦ g(z, w), z 6= w,

where

h(s) =
∫ s

0

tα

1− tdt =
∞∑
n=0

sα+1+n

α+ 1 + n
, 0 ≤ s < 1,

and

g(z, w) = 1−
∣∣∣∣ z − w1− zw

∣∣∣∣2 = (1− |z|2)(1− |w|2)
|1− zw|2 .

Here we strongly encourage the reader to view the function h(s) as a
generalization of the logarithmic expression − log(1 − s). Note also that
Gα(z, w) is in general a complex-valued function.

In an e�ort to make this expression more familiar (at least to the reader
who is well-versed in special functions) we mention that it is possible to
express Green's function above using the incomplete Beta function as

Gα(z, w) = (1− zw)αB
(

(1− |z|2)(1− |w|2)
|1− zw|2 ;α+ 1, 0

)
.

Therefore by using the zero-balanced Gauss' hypergeometric function 2F1
can we get:

Gα(z, w) = 1
α+ 1

(1− |z|2)α+1(1− |w|2)α+1

(1− zw)(1− zw)α+1

× 2F1

(
1, α+ 1;α+ 2; (1− |z|2)(1− |w|2)

|1− zw|2

)
.
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For de�nitions and formulas for these special functions see [1].
Now using this function and estimates for it we can show the main result.

In particular we mention that a nice estimate for the absolute values of the
α-harmonic Poisson kernel by Olofsson was used (see [12]) to obtain the
boundary values.

Theorem 5. Given a complex Borel measure µ on D which satis�es∫
D

(1− |w|2)α+1d|µ|(w) <∞

then Green's potential, de�ned as:

Gµα(z) =
∫
D
Gα(z, w)dµ(w),

where Gα(z, w) is Green's function for Lα, is the unique solution to Poisson's

equation for Lα (α > −1):

1. LαG
µ
α = µ in sense of distributions on D and

2.

∫ 2π

0
|Gµα(reiθ)|dθ2π → 0 as r ↗ 1.





Chapter 3

Discussion and remaining

questions

3.1 Paper A

In [14] Peetre also showed that

W k,p ∼= Lp ⊕ Lp ⊕ . . .⊕ Lp ∼= Lp,

in the sense that the successive copies of Lp represents the derivatives of a
function inW k,p. (Of course the objects inW k,p are not really functions, but
we ask the reader to accept this abuse of terminology.) Then the isomorphism
implies that one can choose the derivatives entirely uncoupled from each
other.

Since this paper served as a main source of inspiration for the work behind
Paper A one naturally asks if we can get similar results in our in�nite setting.
That is, we ask ourselves if one can show the following two conjectures.

Conjecture 1. For the space Ĉ we have

Ĉ ∼= Lp × Lp × Lp × · · ·

This does not seem too far-fetched if we look back to the embedding of
Lp in Ĉ in Theorem 3. There we embedded any f in a way which suggests
that this object would be (f, 0, 0, . . .) in Lp × Lp × Lp × · · · . If this holds
true then the conclusion would be that the growth restriction in S, i.e.

lim
k→∞

∥∥∥f (k)
∥∥∥(1−p)k

∞
≤ 1,

13
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cannot be dropped if we want something other than Lp in the completion.
If one manages to do all this for the bigger class C then one wonders if it

is possible to achieve the same isomorphism with S.

Conjecture 2. Assume that

∞∏
k=0

M
p(1−p)k−1

k =∞

and that the regularity assumptions of Theorem 2 are satis�ed. Then

Ŝ ∼= Lp × Lp × Lp × · · ·

If both these conjectures would hold true then the further conclusion
would be that, with this speci�c norm, the �niteness of the product above
classi�es the completions fully up to regularity. Perhaps we can even do
without the regularity, but on this both authors feel uncertain.

3.2 Paper B � Extension to singular weights

Here the natural question, I feel, is to try to �nd similar results with dif-
ferently weighted Laplacians. In [9] Hedenmalm studied the weighted bi-
Laplacian with the singular weight |z|2α. Therefore it was a natural weight
to try and so I would like to take this moment to state some partial results
without proof, or conjectures if you will, for the interested reader.

Because of the singularity we encounter di�culties and ambiguities al-
ready in the de�nition of this weighted Laplacian. We cannot directly adopt
the same idea used for the bi-Laplacian in [9], since the ∂z-derivative of
Green's function will not be locally integrable when both arguments are
close to the origin. For α > −1

2 , at least, these di�culties can be over-
come by extending the de�nition of the weighted Laplacian to allow the �rst
derivative to be considered as a principal value.

Using the method of re�ection I believe that Green's function Gα(z, w)
for the operator Lα = −∂z|z|−2α∂z for α > −1

2 in D is given by

Gα(z, w) =
∫ min(|z|2,|w|2)

|z|2|w|2

tα

zw − t
dt−

∫ 1

max(|z|2,|w|2)

tα

zw − t
dt, z 6= w.

The min and max here is to avoid the slit-singularity which otherwise would
appear in the ∂z-derivative.
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By expanding the integrands we also get the following series expansion
of Green's function. Set

en(z, w) = 1
α+ 1 + n

(
1− |w|2(α+1+n)

)
|z|2α z

n+1

wn+1

and

fn(z, w) =


1

α− n

(
1− |w|2(α−n)

)
znwn, n 6= α,

−zαwα log |w|2, n = α,

then we can expand Gα(z, w) for |z| < |w| as

Gα(z, w) =
∞∑
n=0

en(z, w) +
∞∑
n=0

fn(z, w).

Basically, this expression is the primitive function of

∂zGα(z, w) = |z|2α

w − z
− |z|

2α|w|2αw
1− zw

which can be used to calculate the corresponding weighted Bergman kernel:

Kα(z, w) = 1
(1− zw)2 + α

1− zw .

Furthermore, we can follow [9] and consider the so-called Almansi-expansion
of a function u satisfying ∂|z|−2α∂u = 0 and use it to ensure uniqueness in
the Dirichlet problem. This expansion can also be used to deduce that for
this weight the Poisson kernel is given by

Pα(z) = z|z|2α

1− z + 1
1− z .

Therefore, we can solve the Dirichlet problem with the usual Poisson integral.
But what about Poisson's equation? Here one needs to �nd estimates

of the L1-norm of Green's function but because of the singular weight this
becomes much trickier. I have managed to �nd estimates that ensure that
Green's potential Gµα exists and allows us to compute −∂|z|−2α∂Gµα = µ if∫

D
(1− |w|2(α+1))d|µ| <∞, α > −1

2 .

However, the boundary condition, i.e. the radial L1-means, have proven too
elusive for me.
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