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Abstract

This thesis project have the purpose of investigating possibilities for a cur-
rent control with respect to cell voltages in the testing procedures of large
battery systems. The main goal is to design and implement a control that
is not in need of considerable tuning, but still has stability and performance
during all different conditions of testing. The dynamics of the battery system
is largely dependant on the temperature, but other factors such as age also
affect the behaviour, and most importantly the dynamics changes for different
battery systems.

Current control in a battery cell is relatively easy and with classic control
theory methods one can achieve robustness with regards to stability, and this
is largely used as a foundation for evaluating possibilities. To achieve good
performance an adaptive control method is selected, where the changing gain
of the system is one of the most important properties to determine. More
specifically, a parameter based recursive least squares method is applied. Some
special consideration is taken within designing the control to work in the digital
networked system that constitutes the test rig with battery system, actuator
and control.

Generally, the significant properties of the cells in the battery system can
be determined by the adaptation, and the performance is good considering the
responsiveness of the subsystems surrounding the control. However, there are
parts that may still be improved within the control by considering compen-
sation for imperfections in the network and the treatment of data in closed
systems.

Sammanfattning

Detta examensarbete har som syfte att undersöka möjligheterna till regle-
ring av ström efter börvärde på cellspänningar i testning av stora batterisystem
som är ämnade att användas i tunga hybridfordon. Det huvudsakliga målet är
att utveckla och implementera en regulator som inte är i behov av större pa-
rametersättning men fortfarande behåller robusthet och prestanda vid olika
typer av testning. En av de största faktorerna utöver byte av batterisystem är
de förändringar som sker i celler vid olika temperaturer.

Reglering av ström i battericeller är relativt enkelt och klassiska metoder
för regulatordesign kan uppnå robusthet med avseende på stabilitet, och detta
används till stor del för utvärdering av möjligheter till prestandaförbättring.
För att uppnå snabb reglering används adaptiv reglerteknik där den varierande
förstärkningen i systemet är viktigast at ta hänsyn till. Specifikt så används
en parameterbaserad rekursiv metod där cellernas egenskaper bestäms under
användning. Dessutom appliceras vissa kompensationer i form av tillståndsma-
skiner för att få önskade egenskaper i det sammansatta systemet.

De viktiga egenskaperna i cellerna bestäms med relativt hög precition utav
de adaptiva algoritmerna och prestandaförbättringen mot tidigare använd re-
glering är stor. Dock är den slutgiltiga regulatordesignen inte optimal och vissa
förbättringar kan fortfarande göras med avseende på kompensation for brister
i mätenheter och behandling av data inom de inbyggda systemen.
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Nomenclature

ε(t) Prediction error of input-output model. Section 5.1.

φ(t) Vector of variables in the discrete time input-output model Section 5.1.

τ Time constant for the time dependent (RC-) circuit in the battery cell model,
Section 3.1

θ(t) Vector of parameters in the discrete time input-output model Section 5.1.

ai Parameters of the discrete time input-output model, related to past output.
Section 4.3.

Am Gain margin, Section 3.1

bi Parameters of the discrete time input-output model, related to past input.
Section 4.3.

ccap Capacitance of capacitive part in the battery cell model, Section 3.1

F (t) Adaptation gain, matrix or scalar. Section 5.1.

Gcell(s) Transfer function describing a battery cell in continuous time , Section 3.1

Gcell(z) Transfer function describing a battery cell in discrete time , Section 3.1

h Sample or step time in the discrete time models, Section 3.1

Icap Current through capacitive part in the battery cell model, Section 3.1

Iset Setpoint for the current to the current source, ideally the same as Isys,
Section 2.

Isys Current through the compound battery system, Section 2.

nA,nB Number of past samples the input-output model depends on. If system
characterized by an irreducible discrete time transfer function nA and nB
corresponds to the number of zeros and poles respectively. Section 4.3.

R1 Resistance of the pure resistive part in the battery cell model, Section 3.1.
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R2 Resistance of the time dependent resistive part in the battery cell model,
Section 3.1.

Vcap Voltage across the capacitive part in the battery cell model, Section 3.1

Vcell Voltage across a single cell in the battery cell model, Section 3.1

Vlim,max Lower cell voltage limit, Section 2.

Vlim,max Upper cell voltage limit, Section 2.

Vmax Maximum cell voltage in the battery system, Section 2.

Vmin Minimum cell voltage in the battery system, Section 2.

VOCV (t) open circuit voltage (OCV) of battery cell, may be constant or time de-
pendant, Section 3.1

Vsys Voltage of the compound battery system, Section 2.
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1 Introduction

1.1 Background

Within the charging and discharging of batteries and battery systems there is a
number of factors to consider, both in actual usage and in the testing and develop-
ment of products involving batteries. Among the most important aspects are the
current and voltage limits that are to be followed to avoid damage or accelerated
ageing.

In this thesis the possibilities of controlling the maximum charge- and discharge
current in large hybrid electric vehicle (HEV) battery systems is investigated, where
the voltage limits of the worst individual cell is setting the governing bounds. The
main objective is to find a control method that, with minimal amount of active
retuning, can be used on different systems under different circumstances with good
performance. Important variations include different cell chemistry, system config-
urations, temperatures, state of charge and age of the cells. The knowledge of the
dynamics and properties of the cells are limited since the controller is to be used
within the early testing phase, but base properties that is present on a data sheet
for a sample cell is known, such as one or a small set of typical internal resistances.
Additionally, the configuration of the cells within the battery system is known.

The primary usage of the control will be in hybrid pulse power characterization
(HPPC) tests, which consists of high current pulses of short duration at different
amplitudes (the exact method is based on an existing ISO standard [12]). But there
is also a need for functionality within other experiments such as lifetime testing with
actual drive cycles (these test methods are also described in [12]). Common for the
applicable testing is that it is specified in the form of current profiles.

Previously, a statically tuned PID based controller have been used for a specific
battery system with decent performance, but more performance is desirable to avoid
aborting a test as well as robustness so that one controller can be used with different
battery systems.

1.2 Method

Important for the accuracy in the application is understanding of the set-up and
the behaviour of the different components, not only the battery cells but also the
measurement equipment, the actuator in form of a voltage or current supply and
network effects. Section 2 explains the test set-up and the parts that affects the
design process, followed by an explicit formulation of the system model in Section 4.
This is linked to an investigation of the system response with classic control theory
that is useful as a foundation for further investigation, due to the changes in system
properties a method based on adaptive control is finally selected (as in Section 5).

The work is linked to simulations that largely could be based on measurement
data from earlier tests. The simulation results and the results of the final implemen-
tation in the testing environment is covered in Section 6 together with evaluation of
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computer

+
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Figure 1. Overview of the test equipment set-up with battery system, actuator
and control. The battery system consist of cells as well as sensors and an internal
computer for sensor communication, balancing and other functions.

the results. With a goal of a control that is functional in actual usage, the methods
of the thesis are tested along ordinary experiments on the battery systems.

2 Equipment and testing setup
The basic test set-up is shown in Figure 1, it consists of a battery system connected
to a battery cycling unit capable of supplying a constant voltage or a constant
current depending on the selected mode. In addition, a climate control equipment
is used for performing tests at different temperatures.

From a control perspective the battery is to be viewed as the system to control
and the cycling unit as the actuator, which may from now on be referred to as the
cycling equipment, the current source or the actuator. The general control loop
from a control perspective is shown in Figure 2. The different devices are connected
to a rig computer via different types of control networks, mainly CAN (controller
area network) buses. This computer handles the overall control of the equipment.

Battery system configurations The battery system is designed for applica-
tions within heavy hybrid electric vehicles, as an energy storage with the capacity
to transfer high amounts of energy in or out of the system. To keep the current
within a reasonable level the voltages are raised to high values. The battery cy-
cling equipment is capable of magnitudes up to 900 volts, and currents up to 500
A. These large current and voltage values highlights the importance of stability
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Rig computer Actuator
(Current source) Battery system

Control signal Voltage/current

Measurements

Measurements

Reference values

CAN network

Figure 2. Overview of the control loop.

and robustness, partly because of the expensive equipment involved. The battery
configuration achieves the needed specifications by using a large number of cells,
in both series and parallel configurations. For practical purposes they are usually
arranged in physical modules (Figure 2) that do not directly affect the electrical
layout, but it is important to know that the different measurements are done with
different hardware. As an example an eight cell battery system may consist of two
modules in series, each consisting of four cells, two in parallel and two in series.
This would yield a system with four cells in series and two in parallel. The modules
are consisting of a limited number of cells both in parallel and in series as well as
the sensors. The modules are then stacked to a complete system, there is still only
one terminal to connect a load, a general view of the circuit is shown in Figure 3
where each rectangle corresponds to one cell. Thus, when considering the control,
the system have a single input (in actual usage this is the current Isys but could
also be the voltage Vsys) and multiple outputs in the form of measurements of each
cell voltage and other quantities such as temperatures at different locations. The
individual cell voltages are denoted Vi, i ∈

{
1 2 3 . . . n

}
1 as in Figure 3 and

since all cells in parallel have the same voltage (by Kirchoff’s voltage law) only the
voltage differences between cells in series needs to be considered.

Each measurement is handled by the integrated logic and sent as a message over
the CAN bus with a fixed interval that differs between the quantities and the dif-
ferent battery systems. From the previous testing it is clear that the measurements
of the individual cell voltages Vi is subject to a larger delay than the total voltage
Vsys. This delay is related to the different hardware involved, but as it is a closed

1The voltages Vi are individual cell voltages, typically in the range of 3 − 4 V for lithium based
cells, not to be confused with the voltage of a module, that may be in the region around 10 − 50
V. In these applications there are generally hundreds of cells, arranged within tens of modules.
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Vsys

Isys

V1

V2

V3

Vn

Figure 3. Overview of a general battery system cell array, the modules are not
shown as they are only a physical division that does not affect the electrical layout.

system that will change it has not been investigated further. The control design
is done with enough robustness to handle a large delay of individual cell voltage
measurements. In practice it is reasonably clear that some type of filtering of raw
data has occured, by either analog or digital circuitry.

As the worst individual cell sets the limit one mainly considers the maximum
and minimum cell voltage

Vmax = max(V1, . . . , Vn) and Vmin = min(V1, . . . , Vn) (1)

and the upper and lower voltage limits that we denote Vlim,max and Vlim,min.
In addition to handling sensor data the embedded computer handles balancing

of the cells and security functions such as contactor opening and closing.

Battery cycling equipment The actuator in the control loop is the battery
cycling equipment, it is able to supply a constant voltage or a constant current (the
input Vsys or Isys) and is specified to do so with an accuracy of about 0.2%. Upper
limits of currents and voltages are well above the ratings of the battery system.
When considering the timing of the supplied current or voltage there is no specified
performance, but the supply is surely dependent on the behaviour of the connected
system. Observations of the quantities are also done by the battery cycle equipment
sent with an interval of about 50 Hz.

Control computer The intelligence in the system is provided by a rig computer
with LabView as the software managing the testing. It is connected to the sensor
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and control networks and receives measurements from the battery systems internal
sensors as well as from the external sensors in the cycling equipment. Additionally
the actuators control is sent over the same network as the measurements.

The implementation of the control is performed in this already functional sys-
tem. When considering the programming environment there are a set of variables
easily accessible that represents all measurements, in addition to the variables that
corresponds to the commands sent to the actuators. There are also basic linear
algebra such as handling (multiplication) of matrices available.

This gives possibilities for easy implementation of different types of control. The
limitations of the set-up are within the scheduling of the computations, there is no
control over the scheduling times. Additionally, as a result of the large system with
a great number of tasks, a significant amount of jitter is introduced.

3 System model

3.1 Cell model

Detailed models of the behaviour of battery cells are possible, based on either the
internal physics and chemical composition of the cell or the behaviour during usage.
Modelling based on physical effects in fuel cells are investigated in [5], this gives some
understanding of the behaviour of cell components (anode/cathode) in a similar
area. The important behaviour to model for this purpose is the response of the cell
under changes in load, and more specifically, for feedback regulation purposes, it
need only to be accurate within a limited frequency range (or time range) where it
affects the regulators performance. This frequency range is theoretically bounded
on one side by the sampling frequency and on the other side by the settling time
of the control, as it will be of a feedback design. Specifically one cannot control
behaviour that is faster than the sampling time, and similarly there is no need to
model behaviour that is slow enough for any control system to handle. The model
also needs to be general enough to work for all types of cell chemistry that might
be applicable. Additionally, the different operational conditions that are applicable
needs to be considered, where one of the most important factors to consider is the
range of temperatures.

Equivalent circuit based ideal components

An equivalent circuit diagram is often used that may represent the system with
sufficient accuracy for the application. A simple one may consist of a pure resistance
in addition to a voltage source. This voltage source, describing the open circuit
voltage of the cell (or VOCV (t)) have non-linear behaviours that are not trivial to
model. For investigation of these relationships, such as energy transferred and open
circuit voltage, one needs to explicitly establish definitions of often used terms (such
as state of charge, or SOC). For this purpose in current regulation the open circuit
voltage may be viewed as constant during the short control actions, but may still
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I(t)

VOCV (t)

R1

ccap

Icap(t)
R2

I(t)

Vcell(t)

Vcap(t)

+

−

Figure 4. Cell equivalent circuit diagram.

be included in the model for specific purposes, mainly to track the change during
the regulators active time.

This model can be extended with different parts and many variants exist, some
are described in [2, 3] investigating lithium based cells, and the article in [4] considers
nickel based cells. Common is that one or more dynamic states are introduced to the
model, each of them implicitly describing either one or a group of time dependent
behaviours of the cell. For investigation with focus on system control a simple model
initially examined, consisting of two states where one is the open circuit voltage and
the other represents a time dependent voltage. An equivalent circuit diagram as
in Figure 4 describes this single cell model, that also corresponds with the model
used in [1]. This model can replicate the system with good accuracy during current
pulses within a limited time range, in [1] it is also evaluated with the same type of
current pulses that are applicable in this thesis work.

The accuracy is naturally dependent on using correct parameters R1, R2 and
ccap. 2

3.2 Assembled system
As said before the battery system consists of multiple cells, both in series and in
parallel and there are many possibilities for a model of the complete system. A
natural way is to compile a single input multiple output (SIMO) system describing
each individual cell as above (Section 3.1). The system model will differ considerably
if considering a voltage source as input (instead of a current source), but as only
current profiles are used as input in the battery testing the model is based on this

2The parameter ccap may be implicitly given by R2 and the corresponding time constant τ =
R2ccap for the RC-circuit.
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fact. With m cells in parallel, each one of order p, the single cell models could
be combined into a SISO system of order m × p. Multiple cells in series have an
output voltage that is independent of each other if a current input is used and are
thus easily put together to a larger SIMO system without dependencies between the
states. The cell parameters would however be very similar and a model with fewer
cells might produce the same accuracy, with increasing number of variables comes
increased undesired computational complexity. To avoid that, another approach for
the system is evaluated, namely to model just a single average cell and in addition
use compensation for the extreme (maximum, and minimum) cell deviations. This
model may be simplified by introducing scheduling of the deviation depending on the
systems state, i.e. introduce a model for the deviation between worst and average
cell at the regulation points Vlim,max and Vlim,min and thus avoiding some of the
dynamics and nonlinearities needed for modelling of the full operational range of
the cell.

In the final control a model of an average cell is used in addition to an voltage
offset at the regulation point.

Closed loop Besides the cell model the sensors and actuator in the loop adds
dynamics to the system that are hard to model. The accuracy regarding absolute
values are high the effects of quantization are negligible. But there are substantial
effects in the system in form of delay and jitter. The effect of a constant and
known delay is easy to include in the model but as the behaviour of the sensors are
not known between the different battery systems it becomes harder. In Figure 5
the effect of a delay of 300 ms can be seen, the result is as a phase shift which
passes −180 degrees at 2 1

300ms ≈ 6.67Hz. This represents a typical delay that is
experienced with the individual cell voltage Vi of the current battery system, but
with different possible systems this delay is not generally known and it is most likely
a result of some type of filtering.

3.3 Parameter determination and model evaluation
Impedance. The presented model with one modelled time transient (Figure 4)
can be formulated explicitly (explained in Section 4.3) and compared to the impedance
of a typical cell measured by frequency sweep. In Figure 5 a comparison of the mea-
sured and modelled impedance in form of a bode plot is illustrated, with markings
for the relevant frequency range. The model seen is based on a pure resistive part
and a single time dependent part in form of an RC-circuit as above. As the state
representing the open circuit voltage is considered constant it does not affect the
impedance. The model allows for two absolute values of the gain to be specified,
as well as a point in the frequency spectrum where the transient between these
values appear. As we see in Figure 5 this does represent the actual cell with decent
accuracy within the given range3.

3note that the range in the figure is not the same as final implementation, which largely depends
on sampling frequency
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A general conclusion is that the absolute value of the impedance, or gain of the
system, is not changing drastically within the specified frequency range (order of
magnitude is around 10% change), and the improvement of accuracy possible with
higher order models are limited. In addition we see the importance of the network
induced delay for the model, which will be defining for the gain and phase margins
(Section 4.4).
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Figure 5. Frequency response of cell model compared to measurements from lithium
based secondary cell, in form of a bode plot. Two models are included, one continuous
and one discrete with a 10 Hz sample rate and a 300 ms delay. The Model parameters
are selected to match measured gain within the given region.

Dynamics of model parameters. The model parameters are not only varying
with different cells but also with different operating conditions. Temperature is
one of the largest factors and a plot of the internal resistance as a function of the
temperature of an example cell is shown in Figure 6. As we can see the resistive
part of the cell varies with a factor of about 4 within the operational range of this
particular cell, the behaviour is clearly non linear but a second order polynomial or
an exponential function could be used as an approximation within given limits.

The internal resistance also varies to a lesser degree with other factors. Relations
to current direction and amplitude (i.e. non-linear voltage-current relations) can
be discussed as well as variations with different state of charge. However, the data
from tests that have been carried out must be interpreted with care, mainly due
to temperature changes during usage (testing) and internal electrochemical effects
that does not have significe during regulation, but may have large effects during
other parts of cell usage.
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Figure 6. Values of real part of perceived resistance 0.2 s after a current step. Data
is from an particular cell at different temperatures but it is not generally known. The
above is normalized with a typical resistance at a typical working temperature.

Resistance viewed against state of charge can be viewed in Figure 7 at a high
and a low temperature to illustrate the largest and the smallest variations. Actual
state of charge is highly dependant on definition, but as seen the variations are
small. Other cells in other battery systems generally have similar dependencies on
temperature etc., but the absolute values and exact relation naturally differs to a
large degree.

4 System control

4.1 Problem

The regulation should be designed to always keep all cell voltages within certain lim-
its. In the application multiple such levels are specified with different actions taken
when reaching each level. This is typically important when charging or discharging
the battery fully, but the change in voltage related to impedance are also included
within the limits. In Figure 8 some voltage regions are marked together with a
typical relation to the state of charge. For this application the voltage levels are
given by the manufacturer of the cells but generally they are related to destructive
reactions in the cell, that may be seen as accelerated ageing and shorter lifespan.

In the application the first action is to control the current through the battery
system, followed by aborting the test, and finally activating hardware security func-
tions such as physically breaking the circuit with contactors. Most important for
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Figure 7. Some Values of real part of perceived resistance 0.2 s after a current step
at different state of charge and a high and a low temperature. Axis are normalized
with a typical working value of resistance and a typical working region for the used
cell.

the control is to ensure stability, but high emphasis is put on performance during
pulse tests which implies step response performance. Low performance in form of
overshoot typically leads to an aborted test and in extreme cases one also risks to
reach a voltage where the circuit is physically broken, which at large currents is
destructive for the involved equipment.

When controlling the current the main system to model is naturally the battery
cell and its impedance, a described above, in Section 3.1 this is formulated with
differential equations. The model parameters changes considerably with different
conditions and different cells, and the major problem is to achieve high performance
despite this. Achieving robustness with regards to stability can easily be done with
classic control theory analysis using gain and phase margins. This can be extended
to cover non-linearities conservatively with, for example, the small gain theorem
and/or circle criterion [6] (with certain assumptions). However, this conservative
approach does have an impact on the performance. To achieve a consistently high
performance an adaptive control method is the natural option while still leaving
enough robustness in the system to not risk an unstable system. Many options
for adaptive control exists, and the exact method to use depends largely on the
conditions. In this case a parametric model is viable. With system input and output
is measurable, but not internal states, a model identification adaptive control based
on an input-output discrete time model is the natural choice (with several methods
based on [10]). The controller itself is designed around the system model and uses
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Figure 8. An illustration of how cell voltage and state of charge may be related,
with desired and undesired voltage regions marked.

the adapted parameters. With a simple system as in this case it is possible to design
a perfect feedback with regards to bringing the system model to a zero error between
the output and it’s setpoint.

In addition to the cell and the battery system there is other dynamics introduced,
the multiple treatments of measurement data both in embedded systems as well as in
the rig computer have a large effect on the system as perceived from the controllers
perspective. These effects are a result of computational delay and jitter as well as
dynamics and filtering in the sensors. Methods for this type of compensation have
been investigated by others, but may also mitigated by assuring that the robustness
of the control is good enough.

4.2 Classic methods

Previously used solution Initially, a simple statically tuned PID based con-
troller was used in the testing purposes. This controller acted on an error signal,
e, based on an actual system voltage output and a reference signal. The constant-
and integrating gain is large compared to the derivative gain. From a control theory
perspective it uses a conservative gain that leaves a large gain margin which makes
it stable but slow to react. The control uses two states depending on which limit
is relevant and effectively chooses the relevant error signal but the gain is always
constant. As output it uses the maximum or minimum cell voltage (Vmax or Vmin)
and as setpoint for the said output it uses the upper or lower voltage limit (Vlim,max
or Vlim,min), furthermore it acts relative to the desired test current Iref and is nat-
urally clamped to a value between 0 and 1 to assure that the system input is in the
interval [0, Iref ]. In Figures 9 and 10 the layout and switching is illustrated.
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Positive current
e =

Vlim,max − Vmax

Negative current
e =

Vmin − Vlim,min

Iref < 0

Iref > 0

Figure 9. Illustration of the previously used regulators modes and switching.

Error signal
selector PID × System

Iref

Vlim,max,Vlim,min e Iset

Vmax , Vmin

Figure 10. Layout of previous PID control. The analog parts of the system (battery
and cycling equipment) is represented as one. Note that the desired current Iset may
not be the actual system current Isys.

Classic control theory approach As can be seen in Figure 5 the gain of the
system does not drastically change within the operative area of the controller and
the phase is not far from zero, thus a pure integrating controller will perform well.
With classic control theory this could be extended to a first order control design,
for example a PID with a lead/lag based method, and an improved compensation
with regards to the cell dynamics could be achieved.

4.3 State space and transfer functions of cell model

Continuous time To analyse the system with more depth it is beneficial to for-
mulate the system in form of a transfer function or a state space model, the cell
model in Figure 4 can easily be written on state space form with Ohm’s and Kirch-
hoff’s laws together with the voltage-current relation for a capacitor. The capaci-
tance is described by

Icap(t) = ccap
dVcap(t)
dt

(2)

where Icap(t) is the current through the capacitor and Vcap is the voltage across it,
ccap is the capacitance. Using Vcap as the state x, the cell current I(t) as the input
u(t) and the cell voltage Vcell(t) as the output y(t) we have

x(t) = Vcap(t) (3)
u(t) = I(t) (4)

y(t) = Vcell(t). (5)
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With a state space model on the form

ẋ(t) = Ax(t) + Bu(t) (6a)

y(t) = Cx(t) + Du(t). (6b)

we get

A = − 1
R2ccap

, B = 1
ccap

, C = 1 , D = R1 (7a)

The first order model works if the open circuit voltage VOCV (t) is constant and
known. As the open circuit voltage changes considerably during the usage of the
cell it needs to be considered for most control designs. If VOCV is viewed as a linear
function of the electrical charge, a model only valid for a small operational range,
we can easily write a second order system. The charge is directly dependent on the
current flow and thus VOCV depends on the current through the cell

V̇OCV (t) = Ku(t). (8)

with K as the voltage gain per time unit and current, one gets

x(t) =
[
Vcap(t) VOCV (t)

]T
, y = Vcell(t) (9)

A =
[
− 1
ccapR2

0
0 0

]
, B =

[ 1
ccap

K

]
, C =

[
1 1

]
, D = R1 (10a)

The state space model can also be written as a transfer function in the Laplace
domain, if transforming the model as in Equation (6) and rewrites it one gets

G(s) = C(sI−A)−1B + D (11)

with I as the identity matrix. With the system as in Equation (10a) one gets the
following transfer function

Gcell(s) =
1

ccap
s+Ks+ K

R2ccap

s2 + 1
R2ccap

s
+R1 (12)

which can also be written as

Gcell(s) =
R1s

2 + ( 1
ccap

+K + R1
R2ccap

)s+ K
R2ccap

s2 + 1
R2ccap

s
. (13)
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Discrete time approximations

By using a step length h and a forward difference approximation where

x(t+ h) = x(t) + hẋ(t) (14)

one can produce a discrete time approximation of the state space model in both as
in Equation (7a) and as in Equation (10a). Additionally, the transfer function can
be approximated (using the same relation, Equation (14)) to the z-domain by the
substitution

s ≈ s̃ = z − 1
h

. (15)

The result (with K = 0) is

Gcell(z) =
R1z

2 + (−2R1 + h( 1
ccap

+ R1
R2ccap

))z +R1 − h( 1
ccap

+ R1
R2ccap

)
z2 + (−2 + h

R2ccap
)z + (1− h

R2ccap
)

(16)

The special case of including VOCV as a state that does not change with input is
selected as the open circuit voltage does change during usage, thus a preselected
constant will have low accuracy. The included state for VOCV actually represents
all voltage contributions from reactions that are slower than what is modelled by
the RC-circuit of the model.

Input-output model. The general basis for the discrete time parameter adap-
tation algorithms used in [10] is an input-output difference model on the form

y(t) = −
nA∑
i=1

aiy(t− ih) +
nB∑
i=1

biu(t− dh− ih). (17)

In our case the output at time t is directly affected by the input at t, which can
be considered by allowing d = −1 or as in this case with a sum that starts at zero.
After this change, a discrete time transfer function with the z-transform is written
as

Y (z)
U(z) = G(z) =

∑nB
i=0 biz

−i∑nA
i=0 aiz

−i (18)

where a0 = 1. With the second order model of a battery (Equation (16)) the
corresponding input output model would be

y(t) = −a1y(t− h)− a2y(t− 2h) + b0u(t) + b2u(t− h) + b0u(t− 2h). (19)

A relation between the direct parameters R1, R2, τ and indirect parameters ai & bi
can easily be found. In the case with a second order system with a state representing
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Figure 11. Example response of a cell model with the RC-part, in the form of a
Nyquist plot.

the open circuit voltage (Equation (16)), i.e. nA = 2, nB = 2, we have

a1 =− 2 + h
1

R2ccap
(20a)

a2 =1− h 1
R2ccap

(20b)

b0 =R1 (20c)

b1 =R1[−2 + h( 1
R1ccap

+ 1
R2ccap

)] (20d)

b2 =R1[1− h( 1
R1ccap

+ 1
R2ccap

)]. (20e)

4.4 Stability and robustness of the control
The cell, and the continuous time model of it, have states which are stable. From
Equation (10a) it can easily be seen that the eigenvalues of the system matrix (the
system poles) are located at − 1

R2ccap
and 0. The negative eigenvalue naturally

corresponds to the state describing the capacitive part which is the fast behaviour
within the model, this state is asymptotically stable and increasing the model order
by adding additional capacitive parts will only add asymptotically stable states. If
using the transfer function to the corresponding state:

Gcell(s) = R2
1 + sR2ccap

+R1 (21)

and considering the Nyquist stability criterion [7, p. 76] one can see that value of
Gsys(iω) are located in the right half plane for all frequencies ω. In Figure 11 an
example is shown with a high frequency gain of 0.9 and a low frequency gain of 1.1.
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Thus the nyquist curve never encircles −1 and any control that does not bring the
phase to −180 degrees will be stable with any positive gain. Thus, an integrating
control would be stable for any gain in the ideal continous time system .

The sampling done by sensors transforms the closed loop into a discrete time
system, this will have effects when applying the feedback. If any delay is introduced
the phase of the system will be shifted as seen in Figure 5 and for any integrating
control there will be an upper limit on the gain, if the system should be kept stable.

If considering the discrete time control the stability can be investigated by con-
sidering the Nyquist curve of Gcontrol(eiω) [8, p. 90-91]. A discrete time integrating
control with gain KI will have a transfer function of

Gcontrol(z) = KI
h

z − 1 (22)

we see that

Gcontrol(eiω) = KI
h

eiω − 1 = KI
h

cos ω + isin ω − 1 = KIh

2

[
−1− i sin ωcos ω

]
. (23)

By considering the simple purely resistive model of a battery with resistance R a
simple system can be analysed. The curve to consider is now

Gcontrol(eiω)Gcell(iω) = KIh

2

[
−1− i sin ωcos ω

] 1
R

(24)

and we clearly see that it only resides at the real value of −1
2KIhR, thus we have a

gain margin of Am = 2
KIhR

. The (in this case preferred) controller gain of KI = 1
Rh

will thus leave a gain margin of Am = 2. When considering the model with time
dependent parts, and also the response of the real cell, the changes from a pure
resistance gain are not large and the simple gain margin as above still gives a good
reference. A example of a nyquist plot of the system inluding an RC-part and a
discrete time integrating control is shown in Figure 12. Similarly, it is a reference
for controls methods that are close to the integrating controller. A conservative
approach can also be taken with regards to stability of the real system, as an upper
limit of the system gain can be considered.

4.5 Model based control
With a discrete model as in Equation (16) or in the form of Equation (17) a control
that in theory brings the system to a desired output and holds it there is possible.
The simplicity of the system makes methods such as model predictive control (MPC)
trivial. If only considering the output at the next iteration a simple substitution of
y(t+ 1) for the desired output yref in Equation (28) and solving for u(t+ 1) gives
the sought input. For a system as in Equation (19) a control of

u(t+ 1) = 1
b0

[yref − a1y(t)− a2y(t− 1) + b1u(t) + b2u(t− 1)] (25)

brings the output to the desired level. As there is no desire to control the systems
internal states and they are asymptotically stable there is no need consider them.
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Figure 12. Example response of cell model with the RC-part and a discrete time
integrating control with gain KI = 1/R1, in the form of a Nyquist plot.

Input selector

Control

Control
Supervisor System

Rig computer

Iref , Vlim,max, . . .

Vref

Ireg

Iset

Vsys, Isys, Vmax, . . .

Figure 13. Block diagram of the general control layout.

4.6 Controller modes

As explained the input current is only to be controlled if any cell voltage limit is
exceeded, and several possibilities for achieving this is possible. The goal is to keep
the test and thus the current completely unaffected as long as no limit is exceeded.
A solution to this is illustrated by Figures 13 to 15 and mainly consists of the
control and a supervisor that is selecting what input to use. Some of the logic is
the same as used before, in Figure 14 an corresponding selection of upper or lower
limit is illustrated. A logic to select when the controller should be active is also
implemented. Basically, the control is always active and a supervisor decides if the
control setpoint for the current is to be used or if the reference current should be
used. The conditions for this switching is illustrated in Figure 15.
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Positive current
Vref = Vmax

Negative current
Vref = Vmin

Iref < 0

Iref > 0

Figure 14. Illustration of the input selectors and switching.

Normal operation
Icomp = Iref

Control active
Iset = Ireg

Non normal
condition
Iset = 0

[
|Ireg| < |Iref |

]
∧
[
(Vmax > Vlim,max) ∨ (Vmin < Vlim,min)

]

[(|Ireg| > |Iref |) ∧ (IregIref > 0)] ∨ (Iref = 0) (|Ireg| > |Iref |) ∧ (IregIref < 0)

Figure 15. Illustration of the modes of the supervisor and its switching.

5 Adaptive control

As explained in Section 1 the problem is to control the system during dynamic
changes that occur. As seen in Section 3.3 the changes in the system during the
different conditions are major, but from classic stability theory we see that it is
possible to design a simple controller such as an integrating feedback that is stable
for all external conditions by leaving a large enough gain margin. This will however
affect the performance of the controller, which in step responses are seen mainly
as a large rise time. To achieve good and consistent performance along the full
operational window without detailed knowledge of the cells (or retuning during
usage) an adaptive control is designed, in other words a self tuning controller.

Adaptive or self tuning controllers have been used for a long time, an early
coverage of this topic is given in [9], and today common methods are described in
[10] and other books. More specific methods of different kinds have certainly been
investigated before.

In our application the adaptation is a means of handling the changes in impedance
during, for example, different temperatures. Partly because the exact dynamics of
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the battery system are not known, one of the purposes of the test rig (in which the
control is to be implemented) is to determine these kinds of parameters exactly.
But another important objective is to design a control that is not in need of major
retuning if changing battery systems. An original requirement was to have at most
one single parameter that needs to change during change of battery systems, with
an adaptive method there is a possibility for a completely autonomous control.

In Section 4.5 we see that an optimal control can be designed for the model with
certain assumptions and a set of known parameters for the model (as in Section 3).
By using previous measurements these parameters can be determined and with a
recursive algorithm it can be implemented and used within the control computer.

5.1 Adaptation algorithms and recursive least squares

The recursive parameter adaptation algorithm used is based on [10, p. 61-] and is
on the form

θ(t+ 1) = θ(t) + f(θ(t), φ(t), ε(t)) (26)

where θ(t) is the current set of parameters at time t, φ(t) is our measurements and
ε(t) is the prediction error. By rewriting Equation (17) on vector form, with

θ(t) =



−a1
−a2
...

−anA

b0
b1
...
bnB


, φ(t) =



y(t)
y(t− 1)

...
y(t− nA)
u(t+ 1)
u(t)
...

u(t− nB)


, (27)

one can separate a parameter vector θ(t) and a measurement vector φ(t) and get
the relation

y(t+ 1) = θ(t)Tφ(t). (28)

and also define the prediction error at each time step t

ε(t) = ymeasured(t)− θ(t)Tφ(t− 1). (29)

Note that this definition considers the prediction of the output at time t, with the
parameters at time t. Called the posteriori prediction error, not to be confused with
the priori prediction error.

The correction of the parameters, f(θ(t), φ(t), ε(t)), that determines the new pa-
rameter set θ(t+1) at each discrete step determines the properties of the algorithm.
If one wants to minimize the size of the prediction error one can make a distinction
between what is denoted prior and posterior prediction error and then specify a
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quadratic function

J(t) =
t∑
i=1

(y(t)− θ̂(t)Tφ(t− 1))2 =
t∑
i=1

(ε(t))2. (30)

where θ̂(t) is a new set of parameters to be used. This is minimized with regards
to θ̂(t) by considering the value where

δJ(t)
δθ(t) =

t∑
i=1

(y(t)− θ̂(t)Tφ(t− 1))φ(t− 1) = 0 (31)

and together with knowing that

(θ̂(t)Tφ(t− 1))φ(t− 1) = φ(t− 1)(θ̂(t)Tφ(t− 1))T = φ(t− 1)φ(t− 1)T θ̂(t) (32)

one gets
t∑
i=1

φ(t− 1)φ(t− 1)T θ̂(t) =
t∑
i=1

y(t)φ(t− 1) (33)

To get a recursive algorithm one defines

F (t)−1 =
[

t∑
i=1

φ(t− 1)φ(t− 1)T
]

(34)

and thus gets

F (t)−1θ̂(t) =
t∑
i=1

y(t)φ(t− 1) (35)

or

θ̂(t) = F (t)
t∑
i=1

y(t)φ(t− 1). (36)

By considering

θ̂(t+ 1) = F (t+ 1)
t+1∑
i=1

y(t)φ(t− 1). (37)

θ̂(t+ 1) = F (t+ 1)
[
y(t+ 1)φ(t) +

t∑
i=1

y(t)φ(t− 1)
]

(38)

and inserting Equation (35)

θ̂(t+ 1) = F (t+ 1)
[
y(t+ 1)φ(t) + F (t)−1θ̂(t)

]
(39)

and correspondingly considering

F (t+ 1)−1 =
t+1∑
i=1

φ(t− 1)φ(t− 1)T (40)
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F (t+ 1)−1 = φ(t)φ(t)T +
t∑
i=1

φ(t− 1)φ(t− 1)T (41)

F (t+ 1)−1 = φ(t)φ(t)T + F (t)−1 (42)

F (t)−1 = F (t+ 1)−1 − φ(t)φ(t)T (43)

and inserting this into Equation (39)

θ̂(t+ 1) = F (t+ 1)
[
y(t+ 1)φ(t) + F (t+ 1)−1θ̂(t)− φ(t)φ(t)T θ̂(t)

]
(44)

θ̂(t+ 1) = θ̂(t) + F (t+ 1)φ(t)
[
y(t+ 1)− θ̂(t)Tφ(t)

]
(45)

and we arrive at our parameter update function by using θ̂(t + 1) as our new pa-
rameters. Thus we use (with Equation (29))

θ(t+ 1) = θ(t) + F (t+ 1)φ(t)ε(t) (46)

where F (t+1) is called adaptation gain, in general a square matrix ([nA+nB +1]×
[nA +nB + 1]) or a scalar, in this case a matrix that is updated with the algorithm

F (t+ 1)−1 = F (t)−1 + φ(t)φ(t)T (47)

which with the matrix inversion lemma can be show to be equivalent to

F (t+ 1) = F (t)− F (t)φ(t)Tφ(t)F (t)
1 + φ(t)TF (t)φ(t) . (48)

This is shown in detail within [10, p. 64] together with several update algorithms.
The basic selection of gain may be modified depending on the desired behaviour,
common is to include two weights λ1(t) and λ2(t):

F (t+ 1)−1 = λ1(t)F (t)−1 + λ2(t)φ(t)Tφ(t) (49)

which implies

F (t+ 1) = 1
λ1(t)

F (t)− F (t)φ(t)Tφ(t)F (t)
λ1(t)
λ2(t) + φ(t)TF (t)φ(t)

 . (50)

With a simple selection of weights where λ1 < 1 and λ2 = 1 have the result of
minimizing

J(t) =
t∑
i=1

λt−i1 ε(t)2 (51)
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and a similar recursion as from Equation (30) can be done. This is often called
using a forgetting factor as one puts less value on old values than new and is shown
in detail within [10, p. 68].

This can be extended by considering the model parameters as a dynamic system
and introducing certain assumptions, particularly adding disturbances in form of
Gaussian white noise, and subsequently one can formulate an update algorithm
using the optimal Kalman gain. In [10, p. 72-75] this is done with an algorithm as
above, with similar results and a slightly different update of the parameters. This
method can in special cases be interpreted as factors λ1 and λ2 that are based on
the covariance of the noise. In practice the selection of λ1 is based on how the
system is excited, in our case we have short periods of input in form of current and
longer periods of input consisting of noise in the input that excites the system but
at a amplitude that largely differs from usage. This small amplitude input does help
the convergence to a certain degree but the parts of the system that is significantly
exited differs from the model that is valid for larger input currents as a result of
unmodelled dynamics and non-linear behaviour. Thus we select a λ1 that is small
enough to have quick convergence in case of changes in the system during periods
with no input that excites the system, but not so small that the gain increases
during normal testing with pulses.

5.2 Parameter adaptation convergence
The algorithm described by Equations (29), (46) and (47) with the system as in
Equation (28) is in [10] shown to be asymptotically stable for any initial value of the
gain F (t0) > 0, by using the principle of system passivity. In addition to stability
it is shown in [10, p. 116] that under the following conditions:

1. The parameter adaptation algorithm is stable

2. The orders nA and nB of the system to be identified are known exactly

3. The system to be identified is characterized by an irreducible transfer function
in z

4. The input u(t) is a persistently exciting signal of order n = nA + nB.

A signal u(t), is said to be persistently exciting of order n if

lim
t1→∞

1
t

t1∑
t=1

φ(t)φ(t)T > 0 (52)

with φ =
[
u(t) u(t− 1) · · · u(t− n+ 1)

]
. It also shown that u(t) is a persis-

tently exiting signal for all non-zero polynomials L(z) of order n− 1 if

lim
t1→∞

1
t

[
t1∑
t=1

L(z)u(t)
]
> 0. (53)
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For practical usage this implies that the input signal needs to be composed of at
least n distinct frequencies.

In the practical application on HPPC testing the convergence conditions above
are not fulfilled. Mainly the system is of a high unknown order, and additionally
the input signal is not necessarily persistently exciting of a high enough order if
considering a limited time horizon. This does however not mean that results are
not satisfactory. The battery system to be identified does have distinct behaviours
that can be modelled with a known order under a limited operational window. In
practice the modelled order reflects the number of measurement points that are
considered, and together with the sampling time the adapted model will mainly
reflect behaviours that have significant importance within this time region. The
unmodelled dynamics do introduce some difficulties, and there are some undesired
results. One way to handle this is covered in [11] by introducing a value on the
information content in the current signal which depends on the system excitation.
Another modification is to project the parameters ai and bi onto a smaller set
of plausible parameters. In this case we have a bounded three dimensional room
defined by Equation (20) and reasonable values of R1, R2 and τ . In simulations
this projection did not help convergence to a significant extent and in some cases
the performance was decreased.

Modifications and usage

To ensure the robustness of the control and the adaptation a number of additions
can be added in practical use, most importantly during the convergence of the
parameters. To ensure that the controlled system will never be unstable during
this early period one can use a pure integrating control with a sufficiently low gain
to ensure stability, or introduce an additional safety factor that increases the gain
margin. Switching to the higher performing control can be done based on either the
model prediction error, the value of the gain F , or based on a comparison between
two or more models with different configurations. The last alternative was selected
for testing, as different initial values could be selected, corresponding to a high and
a low system gain. During normal convergence this results in only using a low gain
margin while the adapted parameters represent an accurate system.

6 Implementation and evaluation

6.1 Adaptation convergance

The adaptation algorithms and the control were initially evaluated by simulations
in Matlab using Simulink. The recursive least squares method with the additional
forgetting factor were implemented in both simulations and the test rig. In the
simulations models of different order were evaluated, of reasonably low order. Ex-
periments with up to a fifth order system were done, but as the basic cell model is
only linked to a second order input output function (nA = 2, nB = 2) this was used
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Figure 16. General layout of the adaptive parts of the control.

in the experiments, together with the purely resistive model. The simulations were
run against static data from previous testing of different forms, and one can expect
results close to would be achieved in real system testing. One limitation was that
earlier test data were recorded with 10Hz sample rate, hence the algorithm used in
simulation was tested with the same rate, while the intended time step is based on
the measurement rates, i.e. up to 50Hz.

Simulations

Initially, an adaptation to a single parameter model (based on a cell with only a
resistive part) is performed. In Figure 17 this is shown and the convergence is fast,
as it is not easy to determine the true value it is not trivial to measure the exact
performance. The initial values for the parameter used in Figure 17 are about ten
times above the expected value, and at the first system input the adapted resistance
quickly reaches a reasonable value around 3.7 and then decreases slightly with each
change in current, i.e. each input that excites the system. The temperature increases
during the test and we can assume that the decrease in the resistive parameter is
a result of this. Similar outcomes are seen in simulations based on other data and
generally the result of the adaptation to a purely resistive model of the battery is
good for all usage cases.

In Figure 18 a simulation of a five parameter adaptation is shown from a typical
set of current pulses, thus the input to the system is a current Isys with a set of
discrete changes in addition to noise. The changes in current can clearly be seen in
the convergence of the parameters as rapid changes. If considering the parameter
b0 = R1 we can see that it quickly reaches a value close to what can be assumed
correct (in this case just above 3.5 at the start of testing). During the test this
parameter decreases, which (as previously) is probably linked to the increase in
temperature during usage of the battery system.

In Figure 19 the interpretation of the parameters ai and bi in form of resistances
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Figure 17. The single parameter R and the corresponding gain F . During adap-
tation of internal resistance in a simulation with data based on a pulse test, the
resistance is normalized as in Figure 6. Asa a reference the temperature is shown as
well as the periods with small or large system input.

R1, R2 and the time constant τ is shown, calculated with the equation system formed
by Equation (20). The system is overdetermined but we see that a1 + a2 ≈ −1 and
b0 + b1 + b2 ≈ 0 as expected, and the adaptation follows the physical model.

If considering a1,a1,b1 and b2 or the corresponding τ and R2 we notice two
behaviours. One is the large discrete changes of a parameter, only to quickly return.
This is most likely a result of a large delay in some measurement or a dropped
package. The other is the cyclic behaviour of the parameters, during a large change
in the current input the parameters τ and R2 rises, but during constant current
they slowly decay. This result is an indication of different parts of the system
being significantly excited at different inputs. The different inputs beeing either
a significant (desired) variation in current, or a small (undesired) variation that is
regarded as noise. This is undesired and the magnitude of this effect may be changed
by selecting an appropriate gain, in this case the changes in current is approximately
twice every 100 seconds, a forgetting factor λ1 = 0.998 is selected, resulting in a
weight of around 0.135 on values from 100 seconds ago. Selecting a smaller λ1
results in more noise propagating through to the parameters. By increasing λ1 one
can stabilize the parameter adaptation, as shown in Figure 20, but if considering
the prediction error ε we see a negative effect.

The mean value and standard deviation of the prediction error ε for different
values of λ1 is shown in Table 1. The mean value is expected to be close to zero while
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Figure 18. The five parameters in the adaptation as functions of time during a
simulation based on a pulse test, the parameters bi are normalized with the same
resistive value as previously. λ1 = 0.998.
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in form of resistance values R1,R2 and a time constant τ .
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Figure 20. Values of R1,R2 and a time constant τ from a simulation with λ1 =
0.9995.

λ1 = 0.98 λ1 = 0.998 λ1 = 0.9995
mean value [10−6] -0.000042 -8.0 -10.0
standard deviation (10−6] 626.4 579.9 620.6
mean value (close to voltage limit) [10−6] -89.4 -110.9 -126.8
standard (close to voltage limit) [10−6] 628.0 589.0 719.4

Table 1. Performance of prediction during adaptation in form of standard deviation
of the one step prediction error ε, in values in cells are to be interpreted as microvolts
(10−6 V) although the original values used are normalized with a factor that is only
close to one.

the standard deviation gives a size on the usual error, additionally the said values
are calculated for a subset of sample points when the cell voltage is close to the
limits Vlim,max or Vlim,min. This gives an idea of the performance of the parameters
when regulation would be active. The negative mean value of the prediction error
is likely a result of a smaller distance to the upper cell voltage limit than to the
lower, i.e. |Vlim,max − VOCV | < |Vlim,min − VOCV |. With the result that the error is
more often considered during positive currents.

In Figure 21 the result of a simulation with input that is selected from a test
based on actual drive cycles, the system input and output is shown in Figure 22.
In this case the input is not as periodic, and we see a more continuous behaviour
of the parameters. We also note that, in periods, the second resistance R2 takes
values around zero and the improvement of the added RC-circuit part of the model
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Figure 21. Convergence of parameters in simulation with input based on drive cycle
testing.

is questionable. The cause of this might for example be dynamics in the system
originating in other parts than the cells, possibly filtering of raw measurement data.
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Figure 22. Input used during a test based on drive cycle usage.
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Figure 23. Typical convergence of a single parameter model from starting values
during usage in testing. The system excitation mainly consist of a discrete disturbance
at the beginning as a result of system activation and a current step as a start of setting
the system in the desired state. Additionally there are continuous disturbances from
the actuator on the system input Isys that excites the system, the input and output
is shown in Figure 25.

Testing

In Figures 23 and 24 some results of convergence during usage is shown, using 50Hz
as the sampling frequency. Most testing start with limited excitation of the system,
but disturbances and just a single step excites the system enough for the algorithm
to gain information about the absolute value of the impedance around the sampling
frequency. The input for the said results is shown in Figure 25. In these results
we can see that the parameters in form of resistances and a time constant quickly
reaches a stable value. If considering the capacitive part of the model we see that the
higher sampling frequency makes the modelled second resistance take even smaller
values, and the system as viewed from the adaptation algorithm drifts further from
a typical battery.

If considering the parameters in a pulse test with relatively high excitation of
the system, as a result of small delays between changes in current amplitude we
see similar results as earlier for the 50Hz adaptation. However, if the sampling
frequency is lowered to 10Hz as in Figure 27 there is a clear positive value on R2. A
comparision between different sampling frequencies is shown in Figures 26 and 27.
The shorter time span considered by the adaptation algorithm at a higher sampling
frequency generally makes the time dependant behaviours of the cell invisible, this
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Figure 24. Typical convergence of a second order model from starting values during
usage in testing. Input as in Figure 25.

0.8

0.9

1

1.1

1.2

1.3

N
or

m
al

iz
ed

 v
ol

ta
ge

 

 

U
avg

U, controllers max/min
U

max

U
min

U limit
U prediction

0 500 1000 1500 2000 2500 3000

0

5

10

15

x 10
−3

Time (s)

N
or

m
al

iz
ed

 c
ur

re
nt

 

 

I
sys

I
ref

Figure 25. Typical input to the system during a test start.
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may partly be a result of the dynamics in the actuator that limits the excitation of
the higher frequency dynamics of the cell.
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6.2 Control performance

The control were simulated against a model based on the same theoretical knowledge
used for the regulator design. In the ideal case the control can perfectly select a
value on the current that puts the voltage on the limit, and thus the result follows
the assumptions on parameter precision, delay and noise. As the ideal control has
a gain margin of Am = 2, and it is based upon previous values of the system input
rather than internal states, the closed loop is stable even under large delays and
considerable uncertainties.

The simulations were followed by implementation of the algorithms in the Lab-
View environment used within the test rigs. In addition a simple model for simula-
tion within LabView were programmed for reasonable testing of the LabView code
before live usage.

Initially the response of the previously used control were tested to get a reference
for the type of improvement achieved. In Figures 28 and 31 the result of reaching a
voltage limit with the previous control is shown, together with the values in form of
settling time and overshoot in Table 2. The definition of rise time and settling time
is based on 10% and 2% of a typical voltage step, since the step in the reference
current is not directly related. As some current steps does not result in a voltage
step that exceeds the limit some values are set to zero. More specifically, if the
voltage never exceeds the limit by more than 10% or 2% the rise time or settling
time are defined to be zero.

In Figures 29 and 30 a step in current and the resulting control is shown (with the
newly implemented controller). By design the current rises until the voltage limit is
exceeded. The step response is shown in the same time-scale as the previous figures
(for performance comparison with the previous control) together with a zoomed
one. The effect of delays are clearly seen, and as a result there is an uncompensated
rise in voltage of the cell. This rising voltage is linked to a time dependant effect
that is not seen by the adaptation algorithm as it only considers a limited time
horizon. If considering control during voltage saturation (Figures 32 and 33) the
control is close to ideal, as the overshoot is in the same size as the precision of
the voltage measurement. Some examples of the performance in form of common
step response values are seen in Table 2 compared to the equivalent values of the
previous controller.

Generally the response of the control is good with regards to the purely resistive
value of an average cell, but with data from a limited time interval and delays in
the system there are noticeable time dependant effects that is not compensated for.
Additionally there is a large performance loss due to the delay in the individual cell
voltage measurements, this is however of smaller amplitude as the cells are generally
similar and previous deviation values are used with some precision before feedback
is received.

When considering the response during a test with input based on drive cycles,
using limits that are often exceeded (Figure 34), the performance is better than in
the case with pulse tests. This is a result of an adaptation algorithm having more
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Old control
Charge saturation Saturation 1 Step 1 Saturation 2 Step 2

(Figure 31) (Figure 28)
overshoot 0.0093 0.0057 0.0357 0.0057 0.035
rise-time 0 0 5.8000 0 6.1000
settling time 35.1800 9.4800 12.3800 7.1800 11.9800

Improved control
Charge saturation Saturation 1 Step 1 Saturation 2 Step 2

(Figure 32) (Figure 29)
overshoot 0.0036 0.0014 0.0136 0.0014 0.0329
rise-time 0 0 0 0 0.2000
settling time 0 0 1.7800 0 1.4800

Table 2. Examples of control performance, old and improved control respecively.

information for the cell parameters and the deviation between the average and worst
cell. There is a clear delay between the regulators action and the system input that
is also an important limiting factor. In Figure 35 an example of this delay is shown,
the controllers output Iset is shown along with the system current Isys.
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Figure 28. Response of previously used control, during a step in current. Compar-
ison with Figure 29.
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Figure 29. A step in Iref with active control occurring during a pulse test. The
average cell with the active offset is also shown with dots, this is to be interpreted as
the controllers estimated extreme voltage. The controllers prediction of the average
voltage is also shown, as a reference for the accuracy of the parameters. Comparison
with Figure 28.
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Figure 30. Same data as in Figure 29 but with different timescale, to view the
details.



6. IMPLEMENTATION AND EVALUATION 37

1.15

1.2

1.25

1.3

1.35

N
or

m
al

iz
ed

 v
ol

ta
ge

 

 

U
avg

U
reg,max

U
reg,min

U
max

U
min

U lower limit
U upper limit

450 455 460 465 470 475

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time (s)

N
or

m
al

iz
ed

 c
ur

re
nt

 

 

I
sys

I
ref

Figure 31. Response of previously used control, during voltage saturation, compar-
ison with Figure 32.
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Figure 32. Increasing potential resulting in active control during a pulse test, com-
parison with Figure 31
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Figure 33. Increasing potential resulting in active control during a pulse test. Same
data as in Figure 32 but with different timescale.
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Figure 34. Current control as a result of a test with a current profile based on how
the battery system could be used.
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Figure 35. A step in Iref with active regulation occurring during a short pulse test.
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7 Conclusions
The improvement of the control performance comparing to the previously used
control is generally large and during the testing within actual usage of the rig there
were no unexpected behaviour even with suboptimal configurations such as an non
optimal forgetting factor.

The simple approach to control a system with the cell as a pure resistance in
series with a voltage source does work very well while the improvement of the higher
order cell models is questionable. Additionally the adaptation is stable when consid-
ering the modelled system. But within the complete system the control performance
is naturally bounded by the response of all parts, mainly the measurements that
the feedback relies on and the performance of the actuator.

As the real system and testing procedures did not fulfil the stability conditions
for the adaptation there are some uncertainty about the adaptive robustness. But
as we see in the results there are just a small set of modifications (forgetting factor,
limits on gain) that is needed to ensure that it works well in practice. If considering
the stability of the control it is of highest importance to always keep the stability,
and by considering the accuracy of the adapted model one can assure that there is
always a large enough gain margin for the uncertainties. As the system is unknown
there is an amount of uncertainty but with the security margins used in testing the
results were stable as expected.

When considering performance the final control is not optimal, several possi-
bilities exist for mitigating the different effects that are introduced in the system
besides the modelled cell dynamics. Partly as a result of unmodelled dynamics,
but mainly because of the uncertain properties of the measurement signals One can
assume that some type of low pass filtering of the data is involved in the battery
system used for testing. With the uncertainty within the treatment of data in the
closed battery system, and within future battery systems, the final solution was
based on just ensuring robustness.

8 Further improvements
The filtering, delay and other effects introduced by the embedded systems and
the rig software could be handled in better ways. Initially one could investigate the
possibilities of improving the reporting of measurements, including the possibility to
use timestamps on measurements. Methods for handling packet dropout in adaptive
systems also exist, as well as methods for delay compensation. Adaptation to a
networked systems with unknown delays and other uncertainties may certainly be
done, and improved performance could be achieved.
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