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Abstract 
 

 

 

Normalization is important for a large range of phenomena in biological neural 

systems such as light adaptation in the retina, context dependent decision making 

and probabilistic inference. In a normalizing circuit the activity of one neuron/-

group of neurons is divisively rescaled in relation to the activity of other 

neurons/groups. This creates neural responses invariant to certain stimulus 

dimensions and dynamically adapts the range over which a neural system can 

respond discriminatively on stimuli. This thesis examines whether a biologically 

realistic normalizing circuit can be implemented by a spiking neural network 

model based on the columnar structure found in cortex. This was done by 

constructing and evaluating a highly structured spiking neural network model, 

modelling layer 2/3 of a cortical hypercolumn using a group of neurons as the 

basic computational unit. The results show that the structure of this hypercolumn 

module does not per se create a normalizing network. For most model versions 

the modulatory effect is better described as subtractive inhibition. However three 

mechanisms that shift the modulatory effect towards normalization were found: 

An increase in membrane variance for increased modulatory inputs; variability in 

neuron excitability and connections; and short-term depression on the driving 

synapses. Moreover it is shown that by combining those mechanisms it is 

possible to create a spiking neural network that implements approximate 

normalization over at least ten times increase in input magnitude. These results 

point towards possible normalizing mechanisms in a cortical hypercolumn; 

however more studies are needed to assess whether any of those could in fact be 

a viable explanation for normalization in the biological nervous system. 

  



 

 

 

Sammanfattning 
 

 

 

Normalisering är viktigt för en lång rad fenomen i biologiska nervsystem såsom 

näthinnans ljusanpassning, kontextberoende beslutsfattande och probabilistisk 

inferens. I en normaliserande krets skalas aktiviteten hos en nervcell/grupp av 

nervceller om i relation till aktiviteten hos andra nervceller/grupper. Detta ger 

neurala svar som är invarianta i förhållande till vissa dimensioner hos stimuli, 

och anpassar dynamiskt för vilka inputmagnituder ett system kan särskilja mellan 

stimuli. Den här uppsatsen undersöker huruvida en biologiskt realistisk normal-

iserande krets kan implementeras av ett spikande neuronnätverk konstruerat med 

utgångspunkt från kolumnstrukturen i kortex. Detta gjordes genom att konstruera 

och utvärdera ett hårt strukturerat rekurrent spikande neuronnätverk, som 

modellerar lager 2/3 av en kortikal hyperkolumn med en grupp av neuroner som 

grundläggande beräkningsenhet. Resultaten visar att strukturen i hyperkolumn-

modulen inte i sig skapar ett normaliserande nätverk. För de flesta nätverks-

versioner implementerar nätverket en modulerande effekt som bättre beskrivs 

som subtraktiv inhibition. Dock hittades tre mekanismer som skapar ett mer 

normaliserande nätverk: Ökad membranvarians för större modulerande inputs; 

variabilitet i excitabilitet och inkommande kopplingar; och korttidsdepression på 

drivande synapser. Det visas också att genom att kombinera dessa mekanismer är 

det möjligt att skapa ett spikande neuronnät som approximerar normalisering 

över ett en åtminstone tio gångers ökning av storleken på input. Detta pekar på 

möjliga normaliserande mekanismer i en kortikal hyperkolumn, men ytterligare 

studier är nödvändiga för att avgöra om en eller flera av dessa kan vara en 

förklaring till hur normalisering är implementerat i biologiska nervsystem. 
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List of abbreviations and 

terminology 
ANN Artificial neural network 

EPSP Excitatory postsynaptic potential 

HC Hypercolumn 

IPSP Inhibitory postsynaptic potential 

FIR test Fixed Input Relations test. Test designed in this thesis 

for evaluating normalization by considering how an 

input vector of fixed input relations is processed 

depending on input magnitude. 

IAF neuron  Integrate-and-fire neuron 

IO test Input - output test. Test for evaluating normalization 

where the effect of a modulatory input on a single 

computational units IO-curve is studied. 

IO curve Output firing rate for computational unit (here 

neuron/minicolumn) as function of input rate. Also 

termed “Input - output curve” and “response curve”.  

NEST The Neural Simulation Tool. Simulator for spiking 

neural network models used in this thesis. 

PSP Postsynaptic potential 

STD Short-term depression 

V1 Primary visual cortex 

WTA Winner-take-all 

MC/mc Minicolumn. Group of recurrently connected cells 

found in primate cortex and used as the basic 

computational unit for models implemented in this 

thesis. 

Modulatory effect How the response function of a single unit is affected 

by a modulatory input.  

Modulatory input A secondary input that will affect how a neuron/-

computational unit processes a driving or primary 

input. E. g. for a normalizing circuit the modulatory 

input would be the input to the other computational 

units in the circuit. 
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1 Introduction 

Understanding the mysteries of the brain is often described as “one of the last 

scientific frontiers” together with the origin of our universe. When the research 

on the origin of it all is about understanding how we came to be here, 

neuroscience touches the questions about who we really are and why we are the 

way we are. The human brain constantly performs tasks that might seem 

mundane since we seemingly effortless perform them every day but are in fact 

highly computationally complex. How are we able to recognize our tea cup or 

coworker, decipher sounds to words and understand the meaning of those words? 

How can we decide what to have for dinner, coordinate limb movements to cook 

said dinner or integrate information from different senses to shape a coherent 

representation of the kitchen? 

Even though the great efforts put into solving these questions unquestionably 

have resulted in significant advances in neuroscience and computational 

neuroscience over the last decades, there are still large parts of the puzzle missing 

to satisfyingly answer how the brain performs these tasks. An improved 

understanding of the biological nervous system could (aside from it being 

extremely interesting in its own right), improve diagnosis and treatment for 

psychiatric disorders and brain diseases (Lansner 2009) and give us a deeper 

understanding of human and animal behavior. Moreover it could give way to a 

new generation of neuromorphic computers and artificial intelligence systems 

using the same principles for computation as the biological nervous system.  

Could finding the missing pieces and putting them together, also bridge the gap 

between how the brain and billions of neurons works on a low level scale, and 

how we experience consciousness, sense of self and being distinct from the world 

around us? An often cited quote attributed to various sources states: 

“If the brain were so simple we could understand it, we would be 

so stupid that we couldn’t”  

This harbors an intriguing question: Will it be possible to use our brain as an 

instrument to dissect itself? Will we succeed in our endeavor to unravel the 

mysteries of this complex biological system that defines who and what we are? 

(Cannon 2014). Maybe in a few decades from now we will actually know the 

answer to that question.  

Modeling the Brain  

This brings us to the question of how to find the missing pieces of the puzzle. 

One way to get a better understanding of the brain is to make a model of it. In a 

model it is straight forward to perform experiments not feasible or ethical to 

perform on a biological brain. Parameters can be changed to understand what 

significance they have, the scale of the model can be reduced or increased, the 

connectivity, neuron type and synapses can be modified as we wish. Biologically 

realistic models of the nervous system can thus help bridge the gap between our 

understanding of behavior and psychology in a top down way, and our bottom up 

understanding of the morphology and functionality of neural circuits and their 

information processing abilities. It can also help reducing the amount of costly 

and morally dubious animal studies needed for solving these tasks. Developing 

computer hardware or software based on the way the brain processes information 

(stochastic, local, distributed), that transcends the synchronized deterministic 
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way of a standard computer of today, is also thought to give way to more 

powerful and energy efficient computers that could solve problems which are 

currently intractable. Computer science and computational neuroscience thus gets 

interleaved: The former enable us to construct the complex and large scale 

computer models necessary to understand the biological nervous system; and a 

better understanding of the biological nervous system could give way to a new 

generation of computers and artificial intelligence applications. 

The third generation of neural networks with biologically realistic spiking 

neurons are because of the high degree of similarity to real neurons, especially 

suited for these tasks (Ponulak & Kasinski 2011). With spiking neural networks it 

is indeed possible to gain deeper insights into how a biologically realistic neural 

network can perform e. g. sensory processing, memory formation and decision 

making. 

Canonical neural computations  

From a computational perspective the brain can be understood as organized in a 

large number functional units or modules, where data is processed and 

transformed creating successively more complex representations of the 

surrounding world. It has been shown that a set of distinct neural computations 

appear as parts in information processing for disparate modalities, tasks, and 

species (Carandini & Heeger 2012). Understanding these “canonical neural 

computations” is an important part in deciphering the brains information 

processing. Exponentiation (non-linear transformation of incoming our outgoing 

signals and linear filtering (weighed summation by linear receptive fields) have 

long been recognized as canonical neural computations. Normalization where the 

activity in one computational unit is rescaled in relation to the activity in other 

computational units, is now proposed to be another one because of its presence in 

multiple neural systems (Carandini & Heeger 2012).  

Normalization  

Normalization is a nonlinear cortical operation where the activity of a single 

neuron/computational unit is rescaled in relation to the total activity in a group of 

neurons/units. This will lead to a disregard of the absolute input magnitude to the 

system, while preserving information about the relation between different inputs. 

In several experimental studies, see for example the primate visual system 

(Carandini, Heeger 1997) and the olfactory system of the fruit fly (Olsen et al. 

2010), the below stated relation between direct input to a single neuron and input 

to the normalization pool (the group of neurons which rescale the output) is 

found. 

 
𝑅𝑗 = 𝑅𝑚𝑎𝑥

𝐷𝑗
𝑛

𝜎𝑛 + ∑𝐷𝑘
𝑛 (1.1) 

 

Here Rj is activity in neuron j; Dj driving input to neuron j; Dk activity for neuron 

k in the normalization pool; and Rmax, σ and n experimentally derived constants. 

The important thing to note, is how increased activity in the normalization pool 

suppress the output from a single neuron in a divisive way. For processing of an 

input vector of the form ͞x = [ac1, ac2, .. acn] normalization would mean that 

irrespectively of the magnitude of the input vector - that is for different choices 

of a - the summed output from the system as well as the relations between the 
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outputs will be kept approximately constant. Normalization can thus be used to 

create a neuronal circuit invariant or partially invariant to certain stimulus 

dimensions.  

These features make normalization significant for effective information 

processing, for example by dynamically adapting the range in which a cell can 

respond discriminatively on input which is illustrated by a toy example in 

Figure 1.1, and facilitate discrimination by a linear classifier (Olsen et al. 2010). 

It is also suggested as an explanation for how attention affects the interpretation 

of sensory inputs (Reynolds & Heeger 2009), and proposed as an important 

mechanism in multisensory integration (van Atteveldt et al. 2014) and decision 

making (Louie et al. 2013). Normalization is also hypothesized to play a role for 

the type of probabilistic inference in neural networks known as marginalization               

(Beck et al. 2011).  

 
 

 
 

Figure 1.1: Toy example of how normalization in the visual system preserves the 
relative light intensities in a scene. A greyscale image for a scene with increasing 
average light intensity is visualized as the output from (top row) The normalization 
model (Equation 1.1) and (bottom row) a neuronal response function without the 
divisive scaling in relation to the other inputs (Equation 1.1 with the sum in the 
denominator replaced with Dj

n). Average light intensity is increased from right to left 
using scale factors 1/10.0, 1/√10.0, 1.0, √10.0 and 10.0.  Input vector for scale factor 
1.0: I =  [100, 300, 500, 1000].  

 

The phenomenological studies that show the presence of normalization in 

biological nervous systems are abundant and result in strikingly similar 

mathematical models that describe neuronal responses. However the biological 

mechanisms underlying normalization on cell or network level remain elusive.  

Proposed mechanistic explanations for normalization  

Among proposed mechanisms for implementing normalization is varying 

amounts of balanced (no net excitatory or inhibitory drive) noise which is shown  

to result in a gain change for the response curve of a single in vitro neuron 

(Chance et al. 2002), modulation by ongoing activity of the brain that affect 

subthreshold membrane potentials (Carandini & Heeger 2012), short-term 

synaptic depression and/or non-linear effects in the dendrites or afferent inputs 

(Silver 2010). Experimental or theoretical studies have shown that these 

mechanisms can give rise to divisive gain control under certain conditions, but it 

has not yet been proved which one of them, if any, that are active in shaping 

normalization for real cortical circuits and neurological tasks. 
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As to modeling in silico, gain control through balanced background activity 

(Ayaz & Chance 2009, Ly & Doiron 2009), short-term synaptic depression 

(Carandini et al. 2002, Rothman et al. 2009) and the effect of nonlinearities in the 

afferent inputs (Murphy & Miller 2003) have been studied in more or less 

complex models of single neurons. Winner-take-all dynamics have also been 

implemented in a biologically realistic attractor memory model (Lundqvist et al. 

2006). However it is to our knowledge not yet studied how normalization can be 

implemented intrinsically in a larger biologically realistic spiking neural network 

using a group of neurons as the computational unit.  

A better understanding of the mechanisms that give normalization in spiking 

neural networks would be important both for creating larger biologically realistic 

networks composed of different modules, and for designing effective information 

processing networks e. g. for artificial intelligence tasks. It would also provide 

guidance as to the mechanisms for normalization in biological nervous systems 

which could guide further research into this important but elusive phenomenon.  

1.1 Aim of study 

The purpose of this thesis is to gain insight into how normalization can be 

implemented in a biologically realistic way by trying to design a spiking neural 

network that implements normalization. The starting point is several proposed 

mechanistic explanations for normalization in biological nervous systems and an 

existing spiking neural network model of layer 2/3 of a cortical hypercolumn – a 

highly structured network with recurrent connectivity and a group of 

interconnected neurons as the basic computational unit.  

The project is constrained to achieve normalization within the means of realistic 

neuron models and biological mechanisms represented in these. The overarching 

hoped for result is twofold: To gain increased understanding of normalization in 

spiking neural nets and more specifically this type of highly structured recurrent 

network; and to gain insight into how normalization might be implemented in 

biological nervous systems. 

More specifically this thesis aims to answer the following questions:  

1. What kind of modulatory effects can be implemented by the 

hypercolumn model? The functionality is compared to three well known 

models of cortical processing:  

a) Subtractive inhibition  

b) Output gain  

c) Normalization 

2. What are the roles of the feed-back and feed-forward inhibition in the 

network? 

3. How does changing the parameters of the system affect the kind of 

modulation it performs, and is it possible to implement normalization by 

varying the parameters within a biologically plausible parameter range? 

4. If so over what range of input magnitudes is the system normalizing?  

5. What limits the system’s ability for normalization? 

6. Will adding synaptic depression to the system, change how it modulates 

its input and if so in what way? 

7. Could the structure of the hypercolumn model, be a plausible mechanistic 

explanation of normalization in biological nervous systems? 
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2 Preliminaries 

2.1 Outline of report 

This chapter “Preliminaries” revisits preliminaries of biological neurons and 

nervous systems, artificial neural networks as well as spiking neural networks 

and neuron models. It can be skipped by a reader already familiar with these 

subjects. The third chapter “Theory” summarizes the current state of art 

considering information coding in the brain and spiking neural networks, as well 

as normalization in spiking neural networks and biological nervous systems. This 

is the scientific basis for the investigation conducted in this thesis and the model 

construction. The fourth chapter “Materials and methods” describes the blueprint 

for the network model – the hypercolumn module - and gives all details of the 

implemented model versions. The second part of this chapter “Evaluation 

methods” presents the three theoretical models of cortical modulatory modes 

used as a reference during evaluation. It also details how the normalization 

abilities of the model versions were assessed. In the fifth chapter “Results” the 

reader will be guided through the evaluation of the hypercolumn module and the 

performance of different model versions are presented. The last chapter 

“Discussion and conclusions” gives a comprehensive summary of the results and 

discuss alternative approaches and implications for normalization in biological 

nervous systems as well as spiking neural networks.  

2.2 The biological nervous system 

At the heart of any in silico neural network model lies an intent to capture some 

of the essence of single biological neurons as well as the connectivity and 

information processing found in biological nervous systems. They are thus all 

based on the idea of connecting a large number of small independent processing 

units - with a greater or lesser similarity to biological neurons - into a network 

where information can be transferred, processed and interpreted. From the first 

generation of artificial neural networks using highly simplified neurons with 

binary output, over networks using more realistic phenomenological spiking 

neuron models, to highly detailed network models, where ion-channel mechanics 

and the neuronal spatial structure is modelled in detail, the starting point remains 

the same: A more or less simplified model of a single biological neuron.  

Biological neurons   

A biological neuron is an electrically excitable cell well adapted to receive 

process and transmit information (Purves et al. 2008). Neurons vary widely in 

shape, size and electrochemical properties, but a typical neuron can be divided 

into three parts: The soma, which contain the cell nucleus, the dendrites which 

receive most of the incoming connections, and the axon which extends away 

from the cell body and branches out to form outgoing connections to other 

neurons. Figure 2.1 shows a schematic picture of a single neuron, as well as some 

examples of the diverse shapes of biological neurons in the primate brain. 

Neurons communicate with each other by sending electrical impulses called 

action potentials or spikes along their axon. Incoming electrical information is in 

most cases passively propagated via dendrites and soma while outgoing impulses 
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are actively amplified in the axon to facilitate information transfer over long 

distances. Between neurons specialized connections – synapses - transmit the 

signal from the presynaptic cell to the postsynaptic cell by electrical or chemical 

signaling (Purves et al. 2008). The human brain is comprised of about 100 billion 

neurons and a single neuron receives input from on average 1000-10 000 other 

neurons (Herculano-Houzel 2009) which gives the brain a magnitude of 100 

trillion synapses. Since a single neuron exhibits a degree of randomness in its 

behavior the nervous system can be considered a massively parallel, non-

deterministic information processing unit.  

A B 

 

 

Figure 2.1: A) Schematic drawing of single neuron showing connections with pre- and 
postsynaptic cells. B) Some of the diverse neurons found in the primate brain. Images 
from Stufflebeam (2014). 

Electrical properties of biological neurons 

The electrical potential across the cell membrane seen for all neurons at rest, is 

the result of a difference in ion concentration between the intracellular and 

extracellular fluid. This ionic gradient is actively upheld by transmembrane 

proteins which move ions against their concentration gradient. When no synaptic 

input reaches the neuron the potential will settle at a value decided by the ionic 

gradient for the specific neuron type and surrounding temperature. This potential 

is called the resting potential and varies for different neurons but usually lies 

around - 65 mV (Purves et al. 2008).  

The arrival of synaptic input to a cell can, by the means of opening or closing ion 

channels, result in a net flow of charge across the cell membrane and thus a 

change in the potential difference across the membrane. Excitatory 

neurotransmitters such as glutamate tend to activate ion channels that depolarize 

(increase) the membrane potential and thus make it more likely for the neuron to 

fire. Inhibitory neurotransmitters such as GABA on the other hand affect ion 

channels that tend to hyperpolarize (decrease) the membrane potential and thus 

make it less likely for the neuron to fire (Purves et al. 2008). The ion channels 

dynamics are also affected by intrinsic neuronal parameters such as change in 

membrane voltage or concentration of certain ions.  

When input from other neurons cause the membrane potential to rise high 

enough, an action potential is initiated by the intrinsic dynamics of the neuron, 

and will propagate along the axon. This will cause release of neurotransmitters 

at the synaptic terminals which will in turn affect postsynaptic cells. A 
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simplified way of modelling the neuron membrane that capture its basic 

electrical properties is as a RC-circuit, where the different ion channels are 

modelled as resistors and voltages in series, and these in turn are placed in 

parallel with a capacitor representing the membrane capacitance (Steratt et al. 

2011). Figure 2.2 shows such an equivalent circuit for a patch of membrane. 

 

Figure 2.2: Equivalent circuit of patch of passive neuronal membrane. The Na+ 
“battery “tend to depolarize the cell and the K+ “battery” to hyperpolarize it. The cell 
membrane can accumulate charge and thus works as a capacitor. Vm is potential 
difference across the cell membrane. An electrode by which current can be injected 
in the cell is also included in the picture. Picture drawn with inspiration from Steratt 
et al. (2011). 

In the circuit represented in Figure 2.2, no dependence of the ionic conductances 

on the membrane voltage is represented. But this dependence is actually what 

underpins the formation of an action potential in a biological neuron. When the 

membrane reaches a threshold potential, voltage dependent sodium channels are 

opened thus depolarizing the membrane even further, until the slower activation 

of voltage gated potassium channels again forces the membrane back to the 

resting level (Purves et al. 2008). The equivalent circuit model can be extended 

by letting the resistance of the different ion channels change with time and 

membrane voltage, which is done e. g. for the Hodgkin-Huxley neuron model 

described in Section 2.3.1 (Steratt et al. 2011). 

 

 

Figure 2.3: Schematic drawing of a generic action potential. At t = 0 a steady state 
current is injected which causes the membrane potential to rise. When it reaches the 
threshold potential an action potential is initiated. Drawn with inspiration from 
Marsland (2009). 

The time course of a generic action potential can be seen in Figure 2.3. Note that 

under a short period after firing an action potential, there is a membrane potential 

undershoot caused by a delayed potassium current. This makes it very hard to 

invoke an action potential during this time, which is called the refractory period 

(Purves et al. 2008). Some neuron models reproduce this behavior intrinsically 

and for others an absolute refractory period can be added. 
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For a specific neuron type all action potentials have essentially the same shape. 

This means that no information is contained in the shape, but the action potential 

can be considered as an all or nothing event (Steratt et al. 2011); it is thus only 

the firing rate and/or timing of individual spikes that convey information.  

If a constant current is injected in a biological neuron, it is possible to get the 

current - firing frequency relation for a specific neuron. This can be visualized as 

an input – output curve (“IO curve”). This is also called response curve since it 

determines the neuronal response to a rate coded input. The terms IO curve and 

response curve are used interchangeably during this report. The output frequency 

curve is usually only piecewise linear and saturates for high frequencies. This 

limits the dynamic range of a biological neuron. It is also important to note that 

in a biological neuron current is never “injected” but is has to enter the cell 

through synaptic ion-channels, which can result in different dynamics, e. g. by 

saturation at the synaptic level (Lansner 2014). 

Synapses and neurotransmitters 

As with neuron types there are a wide variety of different synapses. The time 

course over which they affect the permeability of ion channels, the type of 

chemicals used as neurotransmitters and the amount of synaptic adaptation and 

facilitation varies greatly (Purves et al. 2008). Synapses are sometimes placed not 

only on the dendritic tree, but on the soma or even on the axon. Chemical 

synapses can be classified according to the neurotransmitter released such as 

glutamatergic or GABAergic. Another important feature is if they have fast 

ionotropic receptors with a synaptic time constant of a couple of ms or 

metabotropic receptors that can affect membrane conductance over a time of 

seconds to minutes (Steratt et al. 2011). There are also electrical synapses where 

electric current can pass directly between pre- and postsynaptic cells through 

specialized channels called gap-junctions. 

While the form of an action potential is assumed to be the same, the synaptic 

strength (that is how much charge flowing across the membrane that results from 

of a presynaptic spike) varies between individual synapses. This also changes 

dynamically in the living brain in accordance with several different mechanisms 

such as depression (weakening of a synapse) potentiation (strengthening of a 

synapse) and facilitation (response becomes stronger if preceded by another 

action potential) (Purves et al. 2008). Short-term depression and facilitation is 

shown to influence the information processing of neural circuits (Silver 2010), 

while long term synaptic plasticity is believed to explain how we can store 

memories and learn. Because of this significance synaptic plasticity is often also 

included in neural network models as is the case for one of the models in this 

thesis. 

Cell assemblies and canonical microcircuits 

A neuron never exists in a vacuum but is always connected to other neurons. 

Together they form neural circuits or cell assemblies which is where the truly 

interesting things happen. These can be seen as functional modules that receives 

input, process it and then passes the output on to other parts of the brain. Circuits 

with surprisingly similar characteristics have been found to be repeated across 

different parts of the nervous system and in different species (Douglas & Martin 

2004), which has led to the notion of canonical microcircuits. These functional 

modules can be reproduced and cascaded to perform complex computational 

tasks (Carandini & Heeger 2012) in the same way we can construct a highly 
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complex computer from more simple individual parts. 

In contrast to today’s computers however, a biological neuron is not a 

deterministic processing unit. If the same input is repeated several times, the 

output will most likely not be the same even though in accordance with a certain 

probability distribution. The randomness in the response of single neurons 

depends on random fluctuations in the membrane potential generated by noise 

from other neurons, and the stochastic nature of opening and closing of ion 

channels (Naud and Gerstner, 2009). This is in line with the idea of neurons or 

neural assemblies representing information in a probabilistic way.  

 

 

Figure 2.4: A) Schematic illustration of the columnar organization of neocortex.  B) 
Illustration of a cortical minicolumn. Letters denote layers and sublayers. Image in A 
from Cortical structure (2014). Image in B from Lansner (2009). 

 

Cortical structure – Hypercolumns and minicolumns 

The mammalian cerebral cortex has a clear laminar structure where different 

layers harbor different cell types and are believed to have different roles in 

information processing. The number of layers vary between brain regions, but in 

most parts of neocortex six different layers can be discerned. Input from thalamus 

primarily arrives at layer 4, which then projects information to more densely 

populated layer 2/3 for further processing (Thomson et al. 2002). Apart from the 

laminar structure of the mammalian cerebral cortex there is also a columnar 

organization (Hübel & Wiesel 1959). Groups of neurons that share the same 

thalamic input are called hypercolumns. This means neurons in the same hyper-

column have similar receptive fields while more horizontally distant neurons do 

not. The columnar organization is also reflected in that vertical connections 

between neighboring neurons are much more abundant than horizontal ones.  

Within a hypercolumn smaller subcolumns called minicolumns can be discerned. 

Those code for different features within a hypercolumn’s receptive field, such as 

the orientation of a line as illustrated in Figure 2.4 which show a schematic 

picture of a hypercolumn. In primate cortex there are 50-100 minicolumns in 

each hypercolumn and a minicolumn typically consist of around 100 neurons 
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(Mountcastle 1997). “The columnar organization hypothesis” is currently the 

dominating explanation of cortical information processing (DeFelipe et al. 2012), 

but it should be noted that in some mammals, such as rats, the organization 

shows less evidence of columnar structure.  

The hypercolumn module implemented in this thesis is based upon this modular 

cortical structure. It models primarily layer 2/3 of a neocortical hypercolumn, 

with input from layer 4 and laterally from other more distant hypercolumns. An 

important underlying assumption during model construction was that groups of 

cells – here minicolumns - constitute the fundamental computational unit.  
 

2.3 Models of the nervous system 

During the development of the field of computational neuroscience a vast number 

of different models of neurons and neural systems have been developed, each 

trying to capture some essence of the biological nervous system information 

processing and dynamics. This section revisits a number of these and will use the 

categorization proposed by e. g. Ghosh-Dastidar and Adeli (2009) and Maass 

(1997) into first, second and third generation of neural networks. 

2.3.1 Artificial neural networks 

The first generation of neural networks was developed in the 1940s and 1950s, 

and the basic building blocks of these networks are extremely simplified abstract 

models of biological neurons. These were named McCulloch and Pitts neurons 

after those who first presented a mathematical model of a neuron in 1943 

(McCulloch & Pitts 1943). 

The McCulloch and Pitts neuron (Figure 2.5 A) is a binary threshold device that 

integrates inputs linearly and fire if the sum exceeds a predefined threshold. T his 

abstract neuron captures the notion of a neuron receiving input from several 

sources and firing an action potential if the summed input is sufficiently large. 

The weights attached to each input, could be interpreted as the strength of the 

synapse between pre- and postsynaptic neurons. Since the inputs are real valued, 

they can be seen as representing a rate code from presynaptic neurons (Ghosh-

Dastidar & Adeli 2009). The output is however binary; either one, which can be 

interpreted as that the neuron fires, or zero which would mean it does not. 

 

 

 
 

Figure 2.5: A) Schematic illustration of the calculation performed by a McCulloch 
and Pitts neuron. A weighted sum of the inputs ∑ 𝑥𝑖𝑤𝑖𝑖   is computed and if this 
exceeds a predefined threshold θ, the output y will be one, otherwise zero.  
B) A Perceptron, with three McCulloch and Pitts neurons (white) and four inputs 
(grey). Each neuron independently performs the calculation visualized in A. Images 
drawn with inspiration from (Marsland 2009). 
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Several McCulloch and Pitts neurons can be connected to form an information 

processing network, referred to as the Perceptron (Figure 2.5 B). For 

computations with binary output this network is shown to be universal in the 

sense that it can compute every boolean function (Maass 1997). A single layer 

network can also be trained by supervised learning to work as a linear classifier. 

During training the weights are updated according to some learning rule, in 

analogue with synaptic plasticity in biological nervous system.  

To be able to perform non-linear classification the second generation of neural 

networks was developed which used continuous activation functions such as 

sigmoidal functions, linear or piecewise linear functions and radial basis 

functions (Ghosh-Dastidar & Adeli 2009). The basic structure of the network 

remained the same but the outputs yj were now described by Equation 2.1.  

 𝑦𝑗 =  𝜑(∑ 𝑤𝑖𝑗𝑥𝑖𝑗 )  (2.1) 

Where xi is input i, φ the continuous activation function and wij the weight 

between input i and neuron j. The real valued output from these units can be 

interpreted as a rate code. As well as solving non-linear classification problems, a 

multi-layer perceptron with sigmoidal activation function can reproduce any 

continuous function with arbitrary precision if enough hidden neurons are used 

(Cybenko 1989).  

Artificial neural networks have since been developed and elaborated into a large 

number of different architectures such as multilayer neural networks, radial basis 

function networks, self-organizing maps and dynamic neural networks 

(Figure 2.6). They have proven useful for a variety of computational tasks such 

as classification, pattern recognition, function/process estimation, complicated 

optimization problems and data compression (Marsland 2009).  

A) B) C) 

 

 

 
 

 

Figure 2.6: Some different types of artificial neural networks. A) Multilayer 
perceptron. B) Hopfield network. C) Self organizing map.  

Important lessons and insights into biological neural systems have resulted from 

studying artificial neural networks. One example is associative memory models 

which were first proposed in an artificial neural network context, and has later 

been implemented with increasing level of biological realism. One such imple-

mentation is the spiking neural network attractor memory model introducing the 

hyper- and minicolumnar organization used for the models in this thesis (Lansner 

2009). When drawing analogies between artificial neural networks and the bio-

logical neural systems it is thus important to remember that an artificial neuron 

can be interpreted not only as a single neuron but also as a local subpopulation of 

neurons (Lansner 2009). 

Limitations  
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The “non-spiking units” of the first and second generation of neural networks are 

still very far from biological neurons. The most important limitations are that all 

computation occurs at discrete time steps; all inputs arrive simultaneously; the 

summation of inputs is always linear; and the firing threshold of a neuron is 

fixed. They can thus not represent the continuous temporal dimension of real 

neurons or more complex intrinsic neuronal dynamics. Usually there is also no 

connection to biological processes for learning or only a pseudo-realistic learning 

mechanism (Ghosh-Dastidar & Adeli 2009). Thus although useful for a vast 

number of computational tasks and able to represent some neural network 

phenomena conceptually these limitations makes those artificial neurons less 

useful for understanding or reproducing more complex biophysical phenomena. 

To overcome these limitations model neurons that can implement more 

biologically realistic and diverse biophysical dynamics as well as encode 

information via the precise timing of spikes have been developed. Those are the 

basis for the third generation of neural networks - spiking neural networks 

(Ghosh-Dastidar & Adeli 2009). 

2.3.2 Spiking neural networks 

Growing experimental support of the possible importance of spike timing for 

neural computations (Ghosh-Dastidar & Adeli 2009) and processing speed, as 

well as robust long range communication in neural systems (Ponulak & Kasinski 

2011) were some motivations for the development of spiking neural network 

models. Models comprised of spiking neurons can also more accurately take into 

account the continuous temporal dimension, and local nature of biological neural 

systems.  

The more complex behavior of spiking neurons can result in more computational 

power: When a neuron have more complex behavior the information or 

computations possible to represent with the same number of neurons increase 

(Maass 1997). Although it we still do not know for sure if and how this is 

actually utilized by biological nervous systems, spiking neural networks are 

widely used to gain increased understanding into the workings of biological 

nervous systems. They have also been proven useful for biomimetic algorithms 

that enable fast information processing and learning such as fast signal-

processing, classification, speech-recognition and event detection (Ponulak & 

Kasinski 2011). 

Spiking neurons 

In spiking neural networks the computational unit is a spiking neuron which is 

not updated at specific discrete points in time, but has a dynamic internal state 

described by at least one state variable. For more complex models with several 

state variables the spiking neuron will be a small dynamical system of coupled 

differential equations. The parameters in spiking neuron models are usually 

related to actual physical quantities such as membrane voltage, capacitance and 

permeability. 

Similar to the ANN neuron a spiking neuron will fire when given enough input. 

However the input and membrane voltage for which this happens may vary. 

Similar to biological neurons the magnitude of a spike is assumed to contain no 

information; the firing of an action potential is an all or none response. Since the 

precise timing of spikes and spike trains can be modelled, a spiking unit can in 

contrast with an ANN neuron use not only rate but also temporal encoding (see 
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Section 3.1). Spiking neuron models can also reproduce complex biological 

firing patterns such as bursting and slow or fast adaptation and facilitation.  

2.3.3 Designing spiking neural networks 

When modeling a spiking neural network, as we do in this thesis, maybe the 

hardest choice to make is how detailed it should be, since for each level of detail 

it is always possible to make an even more detailed model. We do not yet know 

how much of the astonishing detail present in biological nervous systems that is 

necessary for its information processing purposes; it is thus often unknown how 

much biological realism that is needed for the specific task at hand. In addition, 

biological data for parameters such as connectivity between different neuron 

types as well as for neuronal and synaptic parameters are often incomplete or 

uncertain. This means when constructing a spiking neural network model it is 

necessary to make an informed guess of the features and complexity needed.  

Previously the computational cost for large realistic network models often 

constrained the level of complexity (Ghosh-Dastidar & Adeli 2009). With the 

constant increase in computational power this is no longer the case, even if 

something more powerful than a standard laptop might have to be used for 

simulations. However, that it is possible to include more details does not always 

mean it is best to do so. It can also make the underlying mechanisms more 

unclear - and usually those are what we wish to reveal - and the model and 

processes harder to understand (Steratt et al. 2011). In order to relate to higher 

functionalities such as computation or coding, it e. g might not be necessary to 

model details of ionic flow and protein interactions. And for real-time 

applications such as small embedded systems, computational complexity can still 

be an issue. All in all this means a complicated model needs to be justified just as 

well as a simple one.  

As for many other scientific undertakings, it is probably good to keep in mind the 

quote with somewhat unclear origin but often attributed to Einstein: 

 “Everything should be made as simple as possible but not simpler” 

Following this advice, the models implemented in this thesis are not using more 

complex features than can be justified by their functionality in relation 

normalization. It is however necessary to accept that each study will explore only 

a certain part of a vast “complexity space”, and even though we of course try to 

choose the part believed to be most enlightening there are no guarantees. 

 

2.4 Spiking neuron models 

The multitude of different models describing the dynamics of a spiking neuron, 

all try to capture some of the essence of a biological neuron. In common for all 

spiking neuron models is a dynamic state variable corresponding to the neuron 

membrane potential. This variable is updated continuously in correspondence 

with incoming presynaptic events and intrinsic phenomena such as leak current 

through the membrane or the generation of an action potential. When a certain 

internal state is reached, a spike will be emitted and propagated to postsynaptic 

neurons.  

This said the different neuron models vary greatly in biological realism and can 

thus capture different aspects of - and in more or less detail - the extremely 

diverse properties and behavior of biological neurons. Hodgkin-Huxley like 



CHAPTER 2 PRELIMINARIES  

15 

 

models have more of a bottom-up approach (Ghosh-Dastidar & Adeli 2009). By 

simulating the differential equations governing the membrane conductances 

resulting from opening and closing of ion-channels and the spreading of post 

synaptic potentials and action potentials in different parts of the neuron, the 

models can be calibrated with biological data and reproduce complex behaviors 

found in biological neurons (Steratt et al. 2011). Hodgkin Huxley multi-

compartment models of single neurons can have more than thousand 

compartments, coupled to each other by boundary conditions of their respective 

differential equations. Multi-compartmental models can thus in great detail 

model neurons of different spatial structure and how e. g. placement of synapses 

or branching of dendrites affect neuronal properties. 

The less detailed models have a functional or top-down approach where the 

parameters in the model are chosen not to necessarily represent actual biological 

quantities but to reproduce specific behavior or firing characteristics of biological 

neurons. Integrate-and-fire, Izhikevich and Morris-Lecar neuron models belong 

to this category. These are also all point neuron models, which means the spatial 

structure of the neuron is not taken into account but it is modelled as a single 

compartment. These simpler models can often allow mathematical analysis of a 

network, e. g. via dynamic system analysis (Steratt et al. 2011). The behavior of 

networks composed of more complex neurons can on the other hand only be 

studied experimentally. 

 
Figure 2.7: Equivalent circuit for the Hodgkin-Huxley neuron model. The arrows in the 
Na and K resistors show that they are active voltage dependent conductances. 
Drawing inspired from Steratt et al. (2011). 

 

2.4.1 Hodgkin-Huxley  

The Hodgkin-Huxley neuron model (Figure 2.7) was the first quantitative model 

of active membrane conductances. It was developed by Hodgkin and Huxley in 

the early 1950s to describe the initiation and propagation of the action potential 

in a giant squid axon (Hodgkin & Huxley 1952). In the basic version the 

Hodgkin-Huxley model includes three ionic currents: sodium, potassium and leak 

current and the current through the membrane is taken to be the sum of these 

currents. The leak conductance is further assumed to be independent of the 

membrane voltage, while the sodium and potassium currents are modeled as 

active, that is depending on both voltage and time. The ion channels are modelled 

as dependent on different voltage and time dependent “gating particles” which 

regulate the activation (opening) and for potassium current, also inactivation 

(closing after a certain time at a high membrane voltage) of the ion channels 

(Steratt et al. 2011). These gating particles are a theoretical construct without any 

direct biological counterpart. The molecular mechanisms underlying the ion-
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channel dynamics are thus not modelled directly. The result is four coupled 

differential equations (Equation 2.2) which model as well the neuron 

subthreshold dynamics as the duration, amplitude and shape of an action 

potential (Hodgkin & Huxley 1952). 

𝐶𝑚
𝜕𝑉

𝜕𝑡
= − 𝑔𝐿(𝑉 − 𝐸𝐿) − 𝑔̅𝑁𝑎𝑚

3ℎ(𝑉 − 𝐸𝑁𝑎) −

 g𝐾𝑛
4(𝑉 − 𝐸𝐾) +

𝑑

4𝑅𝑎

𝜕2𝑉

𝜕𝑥2

 (2.2) 

𝑑𝑚

𝑑𝑡
= 𝛼𝑚(1 − 𝑚) − 𝛽𝑚𝑚 

 

𝑑ℎ

𝑑𝑡
= 𝛼ℎ(1 − ℎ) − 𝛽ℎℎ 

 

𝑑𝑛

𝑑𝑡
= 𝛼𝑛(1 − 𝑛) − 𝛽𝑛𝑛 

 

Here Cm is membrane potential, gX, maximum value of the respective 

conductances, Ex reversal potential for leak, Na, and K current respectively m, n 

and h the “gating particles” and α and β experimentally fitted rate constants 

corresponding to transition rates between the “open” and “closed” state of the 

gating particles. Note that while the K+ channel only has an activation variable n, 

the Na+ channel also has an inactivation variable h, resulting in decreased 

conductance after a certain time at a high voltage. This is what causes the decay 

of the membrane potential back to resting potential. A refractory period is 

reproduced by this model since the recovery of the gating variables is consider-

ably slower than the time course of the action potential (Steratt et al. 2011). The 

Hodgkin-Huxley model can account for the variable spike threshold and refract-

ory period seen in biological neurons, as well as different spike characteristics. It 

is often used in multi-compartmental models.  

Multi-compartmental models 

To account for the three dimensional structure of biological neurons and current 

flowing not only across the membrane but also perpendicular to it, it is necessary 

to model how current and voltage is transmitted between different parts of the 

neuron. This is usually done by dividing the neuron into a number of 

compartments each governed by for example a Hodgkin-Huxley type equation. 

The compartments are then connected by allowing inflow of current from 

neighboring compartments. Compartmental models can be used to account for 

behavior of biological neurons not possible to capture with a single compartment 

model such as different effects from inhibition depending on where on the 

dendritic tree inhibitory synapses are placed; presynaptic inhibition; and non-

linear processes in the dendrites. 

2.4.2 Morris-Lecar  

Several simplifications of neuronal dynamics to a model with only two state 

variables have been proposed after the Hodgkin-Huxley model was constructed  

(Steratt et al. 2011). The two state variables are usually a faster voltage variable 

and a slower recovery variable. In the Morris-Lecar model the reduction is done 

by assuming that the dynamics of the neuronal membrane is described by only K+ 

and Ca+ ionic currents. It is also assumed that the calcium current respond 
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instantaneously to voltage. This gives two state variables: membrane potential 

and the potassium state. The system can thus be governed by only two coupled 

differential equations: 

 
𝐶𝑚
𝑑𝑉

𝑑𝑡
= −𝐼𝑖𝑜𝑛(𝑉,𝑤) + 𝐼𝑒 (2.3) 

 𝑑𝑤

𝑑𝑡
= 𝛩 ⋅

𝑤∞(𝑉) − 𝑤

𝜏𝑤(𝑉)
  

 𝐼𝑖𝑜𝑛(𝑉, 𝑤) = 𝑔𝐶𝑎𝑚𝑖𝑛𝑓(𝑉 − 𝑉𝐶𝑎) + 𝑔𝐾 ∗ 𝑤(𝑉 − 𝑉𝑘) + 𝑔𝐿(𝑉 − 𝑉𝐿)  

 𝑚∞(𝑉) = 0.5(1 + tanh ( (𝑉 − 𝑉1) 𝑉2))⁄  

𝑣∞(𝑉) = 0.5(1 + tanh ( (𝑉 − 𝑉3) 𝑉4))⁄  

𝜏𝑤 = 𝜙 cosh((𝑉 − 𝑉3) (2𝑉4)⁄ )⁄  

 

Here Ie is injected current, Iion ionic current, minf Ca2+ activation variable, w K+ 

activation variable, w∞ steady state K+ activation variable, tauw K+ activation time 

constant, and ϕ represents a temperature/time scaling. The parameters V1, V2, 

V3 and V4 determine the activation curves for the calcium and potassium 

voltages (Steratt et al. 2011). 

With only two time-dependent variables V and w, this model is computationally 

much cheaper than Hodgkin-Huxley while still able model intrinsically the 

generation of an action potential. The Morris-Lecar model can produce different 

IO curves depending on the choice of parameters (Steratt et al. 2011) and also 

model spontaneous firing rhythm patterns, such as bursting.  

2.4.3 Izhikevich  

Another two state variable neuronal model is the Izhikevich model. This model 

can reproduce a wide range of behaviors seen in biological neurons using two 

quite simple coupled ordinary differential equations (Izhikevich 2003). Examples 

of firing patterns are shown in Figure 2.8. The state variables for the Izhikevich 

model is as for the Morris-Lecar model a fast voltage variable v, and a slower 

recovery variable u. There is no longer any clear correspondence between the 

model variables and biological quantities, but the constants a and b in the model 

are chosen to reproduce specific firing characteristics. The Izhikevich neuron 

model is described by Equation 2.4. 

 𝑑𝑉

𝑑𝑡
= 𝑘(𝑉 − 𝐸𝑚)(𝑉 − 𝑉𝜃) − 𝑢 + 𝐼  (2.4) 

 𝑑𝑢

𝑑𝑡
=  𝑎(𝑏(𝑉 − 𝐸𝑚) − 𝑢)   

 
𝑖𝑓 𝑉 ≥ 30 𝑚𝑉, 𝑡ℎ𝑒𝑛 {

 𝑅𝑒𝑠𝑒𝑡 𝑉 𝑡𝑜 𝑐
 𝑅𝑒𝑠𝑒𝑡 𝑢 𝑡𝑜 𝑢 + 𝑑 

}  

The equations can model the rise of the action potential, but not the fall back to 

resting potential. This is instead done by resetting when membrane potential 

reaches a predefined value. The model does not necessarily have a fixed firing 

threshold and is in this aspect similar to the Hodgkin-Huxley model. The relative 
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simple governing equations enable simulating very large networks with moderate 

computational resources. 

 

 
Figure 2.8: Some of the diverse firing patterns exhibited by Izhikevich neurons when 
injected by a constant current I(t). Vertical axis show membrane voltage and 
horizontal axis time. Picture from Izhikevich (2003). 

2.4.4 Integrate-and-fire  

The integrate-and-fire (IAF) neuron model is a further simplification of neuronal 

dynamics to just one state variable: membrane voltage. The subthreshold 

neuronal dynamics are be described by one linear differential equation and the 

action potential is simply modelled as a discrete event. When the membrane 

potential reaches a predefined threshold Vth, a spike occurs and the membrane 

voltage is reset to a reset potential Vr and clamped there during the refractory 

period τr.  

 
𝐶𝑚
𝑑𝑉

𝑑𝑡
= −

𝑉 − 𝐸𝑚
𝑅𝑚

+ 𝐼 (2.5) 

 𝑖𝑓 𝑉 =   𝑉𝑡ℎ  𝑡ℎ𝑒𝑛  𝑒𝑚𝑖𝑡 𝑠𝑝𝑖𝑘𝑒 

𝑎𝑛𝑑 𝑐𝑙𝑎𝑚𝑝 𝑉 𝑡𝑜 𝑉𝑅 𝑑𝑢𝑟𝑖𝑛𝑔 𝜏𝑟 𝑠𝑒𝑐𝑜𝑛𝑑𝑠  
 

Here Cm is membrane conductance, Rm membrane resistance, Em membrane 

resting potential and I injected current or current resulting from synaptic input. 

The neuronal dynamics are thus treated as those of the simple RC-circuit in 

Figure 2.2. The leak current - described by the first term on the right hand of the 

equation - is included to account for that the neuronal membrane is not a perfect 

isolator. Often the resting membrane potential Em is set to zero and the equation 

is expressed in terms of the membrane time constant, τm = CmRm. This is a 

convention followed also in this thesis and gives Equation 2.6.  

 
𝜏𝑚
𝑑𝑉

𝑑𝑡
= −𝑉 + 𝐼𝑅𝑚 (2.6) 

The simple dynamics of the IAF neuron model makes it straight forward to 

analyze analytically. Solving Equation 2.6 for the case of a small constant 

injected current I, e. g gives an expression for how the membrane potential 

evolves with time: 

 𝑉 = 𝑅𝑚𝐼(1 − exp(− 𝑡 𝜏𝑚⁄ )) (2.7) 

As can be seen, the membrane potential approaches RmI asymptotically and thus 

the neuron will only fire if RmI is bigger than Vth otherwise the membrane 

voltage will saturate at a constant elevated level. For input current large enough 

for the neuron to reach threshold, the steady state firing rate for different amounts 

of constant input current is described by Equation 2.8; which thus describe the 

input-output (IO) curve of the model neuron. 
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𝑓(𝐼) =

1

𝜏𝑟 + 𝜏𝑚ln (1 − 𝑉𝑡ℎ 𝑅𝑚𝐼⁄ )
 (2.8) 

If no refractory period is included the firing frequency will increase with input 

without bound, but otherwise it will asymptotically approach the limit given by 

the refractory period. The firing characteristics of an IAF neuron are illustrated in 

Figure 2.9. 

A B 

  
Figure 2.9: Firing characteristics of the IAF neuron model. A) Response of IAF neuron 
to different amounts of constant input current, chosen to result in a membrane 
potential rising precisely above or below firing threshold. B) IO curve for IAF neuron. 
Continuous line – with refractory period. Dashed line - without refractory period. 
Figures created with inspiration from Steratt et al. (2011).  

The low computational complexity of the IAF neuron model enable fast 

simulation of very large networks of neurons. It also enables mathematical 

analysis of large networks, for example by using mean field theory (Brunel 

2000). The direct representation of membrane voltage makes it possible to model 

how e. g. noise affects membrane variability and consecutively the response 

curve, which is not possible using simple rate based units. The basic IAF model 

can however not reproduce more complex neuronal firing patterns such as 

bursting, intrinsic adaptation or variable firing threshold.  

Adaptive integrate-and-fire neurons 

It is possible to add adaptation to the IAF neuron model by including a negative 

adaptation current that grows larger for each initiated spike or in proportion to an 

elevated membrane potential. During repeated firing this makes it harder and 

harder to initiate a spike. One simple model shown to be able to reproduce 

adapting spike patterns similar to biological neurons, was developed by Brette 

and Gerstner (2005). The subthreshold membrane potential is described by 

Equation 2.9, and the adaptation current by Equation 2.10. An exponential term 

is also added in the equation describing subthreshold dynamics. 

 
𝐶𝑚
𝑑𝑉

𝑑𝑡
= −𝑔𝐿(𝑉 − 𝐸𝐿) + 𝑔𝐿∆𝑇 exp (

𝑉 − 𝑉𝑇𝜃
∆𝑇

) − 𝜔 + 𝐼 

(2.9)  
𝜏𝑤
𝑑𝑉

𝑑𝑡
= 𝑎(𝑉 − 𝐸𝐿) − 𝑤 

𝑖𝑓 𝑠𝑝𝑖𝑘𝑒:  𝑤 → 𝑤 + 𝑏 

Where τw is the time constant for adaptation, a represents the level of 

subthreshold adaptation and b the amount of spike-triggered adaptation. VT is a 
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threshold voltage and ΔT a slope factor that determines the sharpness of spike 

initiation. This model is used to include adaptation for model neurons in one of 

the model versions implemented in this thesis. 

2.4.5 Synaptic input to spiking neurons 

Synaptic input to a neuron can be “plugged in” to the governing equations of a 

spiking neuron as the current resulting from synaptic events. For a conductance 

based synapse this would mean the synaptic current represented by I in 

Equation 2.6 would be described as:   

 𝐼𝑠𝑦𝑛(𝑡) =∑𝑔𝑠𝑦𝑛_𝑗(𝑉(𝑡) − 𝐸𝑠𝑦𝑛_𝑗)

𝑗

 (2.10) 

Where the sum is over all incoming synaptic connections and Esyn is the 

equilibrium potential for each activated synapse. The function gsyn(t) describes 

the time course of the membrane conductance change and can be approximated in 

different ways. One common way, shown to be a quite realistic representation of 

the synaptic input to a biological neuron, is to model it as an alpha function: 

 

𝑔𝑠𝑦𝑛(𝑡) = {
𝑔𝑚𝑎𝑥

(𝑡 − 𝑡𝑠)

𝜏𝑠𝑦𝑛
  exp (−

(𝑡 − 𝑡𝑠)

𝜏𝑠𝑦𝑛
)     𝑓𝑜𝑟 𝑡 ≥ 𝑡𝑠

0                                                      𝑓𝑜𝑟 𝑡 < 𝑡𝑠

} (2.11) 

Here ts is the time when the synapse is activated, gmax the maximum conductance 

and τsyn the synaptic time constant. A larger τsyn means that conductance changes 

affect the neuron during a longer time period. A simplification is to instead use a 

decaying exponential function with instantaneous rise time: 

 

𝑔𝑠𝑦𝑛(𝑡) = {
𝑔̅𝑠𝑦𝑛𝑒𝑥𝑝(−

(𝑡 − 𝑡𝑠)

𝜏𝑠𝑦𝑛
)        𝑓𝑜𝑟 𝑡 ≥ 𝑡𝑠

0                                         𝑓𝑜𝑟 𝑡 < 𝑡𝑠

} (2.12) 

Other more complex functions describing the synaptic input exists but are not 

considered here. A further simplification which facilitates mathematical analysis 

and enables faster simulation is to instead use current based synapses. For current 

based synapses the time course of the synaptic current is modelled directly as in 

Equation 2.14.  

 

𝐼𝑠𝑦𝑛(𝑡) = {
𝐼𝑠̅𝑦𝑛𝑒𝑥𝑝(−

(𝑡 − 𝑡𝑠)

𝜏𝑠𝑦𝑛
)        𝑓𝑜𝑟 𝑡 ≥ 𝑡𝑠

0                                         𝑓𝑜𝑟 𝑡 < 𝑡𝑠

} (2.13) 

This could of course also be done with an alpha shaped postsynaptic current. For 

all model versions in this thesis exponential shaped conductance based synapses 

are used.  

Synaptic plasticity 

To capture more realistic neuronal behavior with an IAF neuron it is also possible 

to include synaptic plasticity in the form of long or short-term facilitation or 

depression. Long-term synaptic depression has been found to have a large impact 

on biological neural systems; these semi-permanent changes in synaptic strengths 

makes it possible for the brain to learn and adapt to new conditions. Long term 

depression or potentiation is usually modelled as an increase/decrease in synaptic 
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weights. Short-term depression on the other hand can be important for 

information processing on a much smaller time scale; the effect usually wears off 

after a few hundred milliseconds. One quite simple model that describes short-

term synaptic depression phenomenologically as a consequence of depletion of 

synaptic resources was developed by Tsodyks et al. (1998). They developed a 

model of synaptic depression by considering the three states a synaptic 

neurotransmitter can be found in: recovered (ready for release), effective (in 

synaptic cleft), and inactive (no longer active and not yet but soon, to be 

recovered). Each of those states are assigned a state variable and their dynamics 

are modelled as a system of differential equations: 

 𝑑𝑥

𝑑𝑡
= −

𝑧

𝜏𝑟𝑒𝑐
− 𝑢 𝛿(𝑡 − 𝑡𝑠𝑝) 

𝑑𝑦

𝑑𝑡
= −

𝑦

𝜏𝑖𝑛
+ 𝑢𝛿(𝑡 − 𝑡𝑠𝑝) 

𝑑𝑧

𝑑𝑡
=
𝑦

𝜏𝑖𝑛
−

𝑧

𝜏𝑟𝑒𝑐
 

(2.14) 

Here x represents the recovered, y the effective and z the inactive part of the 

neurotransmitter and u [0,1] the release probability. For each incoming spike thus 

u percent of the recovered neurotransmitters is released and enters the effective 

state. The net synaptic current/conductance will be proportional to the fraction of 

resources in this state. The recovered pool will thus diminish for each spike while 

the active pool increases. This is the reason the effect a single synaptic event 

decreases for a sequence of consecutive spikes: if all synaptic resources are in the 

active pool, there are none left to release. The conductance change will thus be a 

saturating function of input frequency. The inactive pool on the other hand grows 

in proportion to the active neurotransmitters and decays back to zero at as the 

neurotransmitter enter the recovered stage again. Thus after a “resting period” the 

synapse will again be ready to release its maximum amount of neurotransmitter. 

This is the model used when synaptic depression is included in the implemented 

model versions. 

Modelling short-term facilitation can be done by letting also u be a dynamic 

variable changed for each incoming spike by incrementally increasing the release 

probability, u, (Tsodyks et al. 1998). The dynamics are described by 

Equation 2.15: 

 𝑑𝑢

𝑑𝑡
= −

𝑢

𝜏𝑓𝑎𝑐𝑖𝑙
+ 𝑈𝑆𝐸(1 − 𝑢)𝛿(𝑡 − 𝑡𝑠𝑝) (2.15) 

Here USE represent the percentage increase in u and τfacil  the decay time. Synaptic 

facilitation is not included in any of the network model versions.
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3 Theory 

3.1 Neural coding 

Somehow the neural activity in the brain encodes information to enable diverse 

and complex tasks such as processing multisensory information or storing and 

retrieving information on different time scales. In a digital computer information 

is both stored and communicated in binary code. We know exactly how it works 

since we ourselves designed the system. In the brain on the other hand, although 

we have a quite good idea about the neural code for some tasks, for most we do 

not yet fully understand how information is encoded in communication between 

neurons or stored as physical changes in the brain. This is a serious limitation 

when trying to understand biological neural circuits and poses an additional 

difficulty when designing biomimetic neural networks. As stated by Louie et al. 

(2013): 

“Understanding the neural code is critical to linking brain and behavior”  

It is indeed also critical to designing biologically realistic neural networks. But a 

different approach can be to design a network that is similar in structure to some 

biological neural circuit and then see what type of coding regime this network 

can utilize. This might help solving the puzzle. Since the brain is a highly diverse 

biological device, information coding is most likely not as simple and clear cut as 

for computers; most probably different means of encoding are used for different 

functions as well as for different species and brain regions.  

Rate coding vs temporal coding  

Information transmitted from pre- to postsynaptic neurons is often characterized 

as using one of two coding regimes: rate coding or temporal coding. There is no 

complete consensus of the definitions, but usually the term “rate coding” is used 

to describe a neural code where only the average firing of a neuron or group of 

neuron carries information, while the term “temporal coding” is used for 

proposed coding regimes where also the precise timing of individual spikes is 

believed to be important (Kostal et al. 2007). Temporal coding can e. g. mean 

that information is transmitted by the correlation of spikes (Silver 2010) or is 

contained in the time to first spike or the temporal structure of the interspike 

intervals (Kostal et al. 2007). Since there is no global clock in the nervous 

system, a temporal code is somehow based on relative timing of spikes, e. g. in 

relation to an external stimulus or global oscillations in a brain area.  

Rate coding as a means of representing a continuous sensory variable such as 

touch or pressure was first described in sensory neurons by Adrian and 

Zotterman (1926). They showed that sensory neurons responded with regular 

sustained firing of a frequency proportional to stimulus intensity. For rate coded 

information a computational unit’s response curve is a good way of describing its 

information processing.  

For some brain regions, such as neocortex, where the firing rate of individual 

neurons can be as low as a few Hz it has been argued that rate coding would be 

unfeasible since it would simply take too long to get a reliable average (Silver, 

2010). However, if the computational unit is not a single neuron but a group of 

neurons - such as a cortical minicolumn - this is does no longer have to be a 

problem. The time needed to get an average of the firing for a group of neurons is 
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considerably shorter, and could thus very well be compatible with the response 

times seen in cortex (Shadlen & Newsome 1998). Population rate coding could 

also be a means for neural systems to represent probability distributions and thus 

explain the near optimal probabilistic inference found in psychophysical 

experiments (Ma et al. 2006). Population rate coding is the coding regime 

assumed for the models in this thesis. It should be mentioned that also if 

primarily firing rate is studied the use of spiking neurons can be motivated 

because of their more complex behavior compared rate based units. 

Local vs distributed coding 

Another dimension to consider for neural coding is spatial distribution of active 

neurons. In one end of the spectra lies a local code where every neuron code for 

one single feature and in the other a dense code where all neurons in a population 

take part in representing all possible features. A compromise between these 

extremes is a sparse code where a small percentage of neurons in a population is 

active for a certain stimulus (Silver 2010). It has been shown theoretically that 

sparse coding is the most energy efficient way of representing information and 

should thus be favored evolutionary (Olshausen & Field 2004). There are also 

evidence of sparse coding in primate cortex (Waydo et al. 2006). For cortical 

hypercolumn such as the one modelled in this thesis, it has been shown only a 

few of the minicolumns in a cortical hypercolumn are active simultaneously. 

 

3.2 Non-linear cortical operations 

The classical view of neurons is that they compute a linear weighted sum of their 

inputs and answer with a firing rate, which is a function of this sum. If this were 

true the complex computations implemented by neural networks would have to 

be the result of complex connectivity and not attributed to the computational 

power of individual neurons (Silver 2010). But the weighted linear summation of 

inputs, have been shown to be only part of the story: Complex as well as 

morphologically simple neurons seem to be able to perform a range of arithmetic 

operations such as division and exponentiation (Silver 2010).  

Through this thesis the division of neural input into driving and modulatory input 

introduced by Sherman and Guillery (1998) is used. While they put forward a 

possible anatomical distinction between the two (where drivers were proposed to 

act through fast ionotropic receptors and modulators activate slower metabotropic 

receptors) this could also be more of a functional distinction as suggested by 

Abbott and Chance (2005). Driving input might e. g. represent the strength of a 

sensory input, and the modulatory input how some other variable (such as 

attention, gaze direction or other concurrent stimuli) modifies the neural 

response. 

Addition and subtraction by neurons 

Neuronal firing indeed typically represent the sum of synaptic inputs (Rothman et 

al. 2009). This computational mode means that if a modulatory drive, m, is added 

to the driving input the result is to change the output of the neuron from R(d) = 

f(d) to R(d, m) = f(d + m). The response curve is thus shifted to the right or left 

on the horizontal axis, depending on the sign of the modulatory input. That 

adding a certain amount of excitatory or inhibitory current to a neuron give this 

effect is easily motivated by considering the simple RC-circuit model of a 
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neuron; all positive and negative currents are summed up and thus affect the 

membrane potential as well as the firing rate, in an additive way. 

A textbook example of this type of calculation is the explanation of how linear 

summation of afferent inputs give rise to the direction selectivity in simple cells 

in primary visual cortex (Hübel & Wiesel 1959).  

A B 

  
Figure 3.1: Schematic picture of multiplicative and additive input modulation.  
A) Multiplicative/divisive input modulation, according to the “output gain” model. 
This affects the slope of IO curve as well as max output. B) Additive/subtractive input 
modulation shifts the IO curve on the horizontal axis. Pictures drawn with inspiration 
from Silver (2010). 

 

Multiplicative operations 

However, there are evidence a neuron can also perform multiplicative operations 

(Silver 2010). A multiplicative modulatory input m, would transform the output 

of a neuron from R(d) = f(d) to R(d, m) = f(d*m) or alternatively R(d, m) = 

m*f(d). The former will be referred to as “input gain control” (the input/ 

independent variable is scaled multiplicatively) and the latter as “output gain 

control” (the output/dependent variable is scaled multiplicatively). For both these 

versions the sensitivity of the neuron to driving input, which will be referred to as 

“gain”, is scaled up or down. It should be noted that normalization is a form of 

input-gain control. Figure 3.1 A shows the effect on the IO curve from output 

gain control.  

Evidence of multiplicative neural computations are found e. g. during contrast 

invariance of orientation tuning, attentional scaling, translation-invariant object 

recognition, auditory processing and coordinate transformations. The necessity of 

gain modulation for these tasks is highlighted by theoretical studies (Rothman et 

al. 2009). A review of the possible biophysical mechanisms that can implement 

multiplication on the neuronal level is given in Section 3.4, but it is important to 

note the qualitative difference between an additive and multiplicative modulation 

of the IO curve. 

Exponentiation   

Another non-linear operation that can be performed by biological neurons is 

exponentiation. Neuron firing rate with respect to membrane voltage, can 

typically be described by a threshold function - that is an IO curve with a 

discontinuous firing onset - but in the presence of synaptic noise this relationship 

will instead be transformed to a sigmoidal function. This follows since increased 

membrane variability smoothens the threshold making the neuron sometimes fire 

also for membrane voltage below the threshold. This feature is also reproduced in 
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biophysically detailed neuron models (Gabbiani et al. 2004), as well as the 

simple IAF model used for the models in this thesis (see Results chapter). The 

smoothed firing onset will make the neuronal response to excitatory input 

approximate a power law of exponential function at firing onset. An exponential 

response function can indeed be a possible way for neurons to implement 

multiplication since exp(𝑥 − 𝑏) = exp(x) /exp (b) (Silver 2010). However the 

approximate exponential relationship between membrane voltage and firing rate 

typically only holds for low input rates, which limits the range of inputs that can 

be modulated multiplicatively.  

3.3 Normalization in biological nervous systems 

Evidence of normalization, where the activity of a single neuron/computational 

unit is rescaled divisively in relation to the activity in a group of other 

neurons/computational units is found in an increasing number of modalities, 

tasks, brain regions and different species (Carandini & Heeger 2012). 

Normalization has been shown to be important to a vast number of brain 

functions, not only regarding sensory processing where the concept was first 

developed. Such prevalent neural computations are considered to be “canonical 

neural computations” and normalization is proposed to be one of those 

(Carandini & Heeger 2012).  

The linear model - where the response of a neuron depends on a weighed sum of 

intensity values or afferent neural activities - can account for multiple sensory 

processing phenomena such as edge detection as well as orientation, position and 

motion selectivity in the visual system (Carandini & Heeger 1994). However, as 

pointed out by Carandini and Heeger this model fails to account for other 

phenomena such as cross-orientation inhibition and surround suppression, where 

the response of a neuron is suppressed by stimuli that has no effect at all if 

presented alone. Further the linear model cannot explain why for a non-preferred 

stimulus a doubled stimulus intensity does not give a doubled response, but 

instead there is saturation at a lower level than the maximum firing rate for a 

preferred stimulus. To account for these phenomena Carandini and Heeger 

(1994) proposed a “normalization model” where (in line with the distinction later 

formalized by (Sherman & Guillery 1998)) the inputs to a neuron were divided 

into driving and modulatory inputs. The effect of this distinction was that the 

driving inputs could still be assumed to be summed linearly - and thus account 

for the linear phenomena - while the modulatory input rescaled the response in a 

divisive manner. The modulatory input originating from a larger pool of neurons 

which was termed “the normalization pool”. 

3.3.1 The normalization model  

The normalization model describes how the activity in a neuron or computational 

unit is rescaled with respect to the input to/activity in a pool of other neurons/ 

computational units. This gives a response which preserves information about the 

relation between different inputs/stimuli information but is partly or completely 

invariant to the absolute input magnitude. Normalization in neural systems can be 

compared with normalization of a vector in a Euclidean vector space, where 

every entry in the vector is divided by the vector norm resulting in a new vector 

of norm one. Consider e. g. the p-norm x̂ of an input vector 𝑥̅ where xi represents 

the individual vector entries: 
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x̂ =

𝑥̅

√∑|𝑥|𝑖
𝑝𝑝

 
(3.1) 

Note how every entry is rescaled by the same factor which is also true for the 

equation describing normalization in biological nervous systems (Equation 3.2). 

Equation 3.2 can in fact be seen as a continuous version of Equation 3.1, 

capturing the gradual onset of normalization as well as the saturation present in 

biological neural systems. The “normalization equation” thus describes how the 

response of a single neuron or group of neurons, Rj, does not only depend on its 

driving input Dj, but also on input to other neurons, Dk, in “the normalization 

pool”: 

 
𝑅𝑗 = 𝑅𝑚𝑎𝑥

𝐷𝑗
𝑛

𝜎𝑛 + ∑ 𝐷𝑘
𝑛 + 𝐷𝑗

𝑛
𝑗≠𝑘

 (3.2) 

Here Rmax determines max response; σ for which input value half the max 

response is reached without any normalization input; and n the shape of the 

response curve/amplification of individual signals. Note how increased input to 

neurons in the normalization pool will have the same effect as increasing σ. The 

constants are free parameters which are derived experimentally and vary between 

different neural systems. For higher values of n the model goes towards winner-

take-all (WTA) behavior. Two examples of experimental studies that show 

evidence of normalization in the primate visual system are seen in Figure 3.2.  

 A       B 

 
 

Figure 3.2: Normalization in primary visual cortex (V1). A) Cross-orientation inhibi-
tion. Grating 1 has an optimal direction for driving the cell, while grating 2 is an 
orthogonal grating, unable to drive the cell when presented alone. Note how 
nonetheless the response to grating 1 is suppressed for higher contrast of grating 2. 
B) Normalization predicts soft WTA behavior for population responses. Dots 
represent the response of a neuronal population with a specific orientation 
selectivity. Lines are fit to the normalization model. Image in A from Carandini et al. 
(1997). Image in B from Carandini and Heeger (1994). 

 

If the driving input in the normalization model comes from a summation field the 

stimulus drive will be the weighted sum of sensory inputs as in Equation 3.3:  

 𝐷𝑘 =∑ 𝑤𝑗𝑘𝐼𝑘
𝑘

 (3.3) 

In a corresponding way a suppressive field can be defined for the normalization 

pool inputs defined by weights αjk. These fields can be different for different 

neurons. A spontaneous driving input β can also be added to the normalization 
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equation - this would correspond to letting also the spontaneous activity be 

affected by normalization - and different exponents (m, n and p) can be used for 

the numerator and denominator (Carandini & Heeger 2012). This gives the more 

general model described by Equation 3.4: 

 

 
𝑅𝑗 = 𝛾

(∑ 𝑤𝑗𝑘𝐼𝑘𝑘 )
𝑛
+  𝛽

𝜎𝑛 + (∑ 𝛼𝑗𝑘𝑘 𝐼𝑘
𝑚)

𝑝 (3.4) 

Evaluating normalization in different neural systems is often done by to fitting 

the normalization equation to the neuronal responses for different driving and 

normalizing/modulatory inputs (Carandini & Heeger 2012). Often the exponents 

in nominator and denominator are assumed equal, and have e. g. in the visual 

system been found to typically lie between one and four.  

That the response of a cell or computational unit in relation to stimuli is 

accurately described by the normalization model, does not necessarily give away 

anything about the mechanistic implementation of normalization. Also, since 

normalization is often studied directly as one neurons response to external stimuli 

and not in relation to inputs from afferent neurons (the latter is considerably 

harder to do), it is important to keep in mind that there are several stages of 

neural computation between sensory stimuli and response further down in the 

sensory processing pathways. This means there is usually only indirect evidence 

of the actual neural level computations (Kouh & Poggio 2008). Thus it can be 

hard to know at which stage (or stages) in e. g. sensory processing normalization 

takes place which poses an additional difficulty when trying to unmask the 

biophysical mechanisms.  

3.3.2 Normalization and neural coding 

Normalization is proposed to have several advantages for neural processing 

where most are related to coding efficiency (Carandini & Heeger 2012). A very 

important feature of normalization is the dynamic adjustment of the range in 

which neurons can respond discriminatively on input. Assume e. g. (a bit 

simplistic) neurons or groups of neurons encoding the values of monetary 

rewards in their firing rate and that the dynamic range of a neuron is 0-200 Hz. 

This means without normalization it would be hard for a single neural system to 

discern both one dollar from two dollars and one million dollars from two million 

dollars (Carandini & Heeger 2012) without using separate systems for different 

input magnitudes. However a normalizing circuit will give approximately twice 

the activity for the more favorable option in both cases. It should though be noted 

that normalization is not always complete, so some information of the absolute 

input values might also be left in the output.  

Normalization has also been shown to facilitate discrimination by a linear 

classifier (Luo et al. 2010), which is important for example in odor or object 

recognition. This can be compared to how normalizing the input can improve 

performance of an artificial neural network classifier. Schwartz and Simoncelli 

(2001) have also suggested that normalization reduces statistical dependences in 

neuronal responses to natural images that cannot be eliminated by linear opera-

tions. This would be consistent with the “efficient coding hypothesis” that states 

that the role of early sensory processing is to remove statistical redundancy in 

neural signals. Also for odor representations in the fruit fly normalization is 

shown to result in increased statistical independence (Olsen et al. 2010). 
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Normalization is also proposed to play a role for decoding probabilistic neural 

representations; if the outputs are normalized to sum up to one, mean and 

variance can in a later stage be computed simply as weighted sums of the firing 

rates (Beck et al. 2011). 

3.3.3 Normalization in invertebrates 

Evidence of normalization is found not only in more complex nervous systems, 

but also in invertebrates such as the fruit fly or locust. A study by Olsen et al. 

(2010) shows the existence of normalization in the fly olfactory system: The 

response of a second order projection neuron (PN), that receives input from 

olfactory receptor neurons (ORNs) is shown to be normalized by the activity of 

other olfactory receptor neurons. For a single neuron driven only by a “private 

odor” (that does not activate any other PNs) the projector neuron response is 

accurately described by Equation 3.5. 

 

 
𝑃𝑁 = 𝑅𝑚𝑎𝑥

𝑂𝑅𝑁1.5

𝜎1.5 + 𝑂𝑅𝑁1.5
 (3.5) 

 

When a “public odor” that drives other receptor neurons is presented together 

with the private odor, the response is accurately described by Equation 3.6. Here 

the normalizing factor s is shown to be linearly proportional to the local field 

potential (LPF) in the olfactory bulb. Note the similarity to Equation 3.1.  

 
𝑃𝑁 = 𝑅𝑚𝑎𝑥

𝑂𝑅𝑁1.5

𝜎1.5 + 𝑠1.5 + 𝑂𝑅𝑁1.5
 (3.6) 

In the fruit fly olfactory system the normalizing suppression seems to be the 

result of presynaptic lateral inhibition between ORNs (Figure 3.3). Papadopoulou 

et al. (2011) also shows the existence of a normalizing negative feedback loop in 

the locust mushroom body where the divisive suppression is shown to originate 

from a non-spiking “giant” interneuron. However, since the neural circuitry is 

different in primate cortex those mechanisms cannot be directly translated to 

cortical circuits.  

A       B 

 

 

 

Figure 3.3: Normalization in invertebrates. A) Schematic picture of the neural circuit 
responsible for normalization in the fly olfactory system. B) IO curves for a projector 
neuron in presence of increased amounts of a public odor. Fits are to Equation 3.6 
with parameters: Rmax = 163, σ = 12.4 and s = 10.63 LFP. Figures and parameters from 
Olsen et al. (2010). 
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3.3.4 Normalization in vertebrate sensory processing  

The normalization model was first developed to explain non-linear phenomena 

for simple neurons in primary visual cortex. Since then normalization have been 

shown to act at multiple (perhaps all) stages in the visual system (Reynolds & 

Heeger 2009). The normalization model does e. g. accurately describe how 

photoreceptors adjust their dynamic range to discount mean light intensity, and 

can approximate a neural measure of visual contrast (Carandini & Heeger 2012). 

The response of a photoreceptor obeys the same type of equation found to 

characterize the response of a projection neuron in the fly olfactory system 

(Equation 3.7). The exponent n is here found to equal one.  

 
𝑅 = 𝑅𝑚𝑎𝑥

𝐼

𝜎 + 𝐼𝑚 +  𝐼
 (3.7) 

Where I is incoming light intensity to the individual photoreceptor and Im 

background light intensity. See Figure 3.4 for an illustration of this calculation. 

A       B 

 

 
 

Figure 3.4: Normalization in V1. A) Schematic representation of normalizing circuit. 
The response from a single neuron is modulated in a divisive way by the summed 
input to other neurons. B) IO curves for a turtle cone photoreceptor for increased 
average light intensity. Note the rightward shift on a logarithmic scale; this will adapt 
the dynamic range to different light conditions. Figures from Carandini and Heeger 
(2012). 
 

Later signals in retina are thought to feed into a second normalization stage 

which performs contrast normalization. Here the response is no longer 

proportional to local contrast, but to the contrast in the area that drives the neuron 

relative the contrast in the region that drives the suppressive field. This is 

described by Equation 3.8: 

 
𝑅𝑗 = 𝛾

∑ 𝑤𝑖𝑘𝑘 𝐶𝑖

𝜎 + √∑ 𝛼𝑘𝐶𝑘
2

𝑘

 
(3.8) 

Where Rj is neuronal response Cj local contrast, and αk, and wik define the 

summation field and suppression field respectively. This equation e. g. correctly 

describes surround suppression since it predicts that a smaller stimulus (such as a 

linear grating), surrounded by a high contrast region, will have its response 

scaled in a divisive way in proportion to the contrast of the high contrast region. 

Reynolds and Heeger (2009) also showed that a slightly extended normalization 

model for attention can reconcile different findings about how attention 
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modulates neural responses in visual cortex. Normalization is also believed to 

account for spatial pattern-invariant velocity representation in MT (Carandini & 

Heeger 2012) and suggested as the mechanism responsible for contrast gain 

control in the auditory system: Rabinowitz et al. (2011) show that responsiveness 

of auditory sensory neurons are dynamically adjusted to the contrast of recent 

stimulation, that is normalization over time. It is also suggested that expanding or 

compressing the representation of inputs with the help of contrast gain enables a 

more efficient coding of natural sounds. 

3.3.5 Normalization in non-sensory tasks 

There is also evidence of normalization beyond the sensory domain. It is for 

example proposed as a mechanism that can give context-dependent value 

encoding to guide decision making in primates (Louie et al. 2013). The results 

suggest that normalized value encoding in decision circuits could play a critical 

role in decision making since it would give a rescaling of neural activity driven 

by the value of all choice options, thus implementing a relative value code 

(compare with the example in Section 3.2.2). It is also shown that the brain 

displays normalization to the recent history of rewards (which is the reason that 

you would not be as happy if I give you 100 $ today, if you got 1000 $ yesterday 

compared to if you got nothing yesterday). This is another example of 

normalization in a temporal sense.  

Normalization is also suggested to be important for flexible multisensory 

integration, where it could explain cross-modal suppression and provide a 

unifying computational account of important features of multisensory integration 

(Ohshiro et al. 2011, van Atteveldt et al. 2014). Moreover it is believed to play a 

role for causal reasoning, motor control and visual tracking (Beck et al. 2011) by 

giving near optimal marginalization.  

3.4 Proposed mechanistic explanations                     

for normalization 

It would indeed be possible to implement normalization with simple neurons that 

only compute a weighted sum of their inputs. As mentioned previously any 

continuous function can be approximated arbitrarily well by a multilayer 

perceptron and an artificial neural net could thus without doubt, be used to 

approximate a normalizing function as well. However both the structure and 

learning rule would be far from biologically plausible and we are here looking for 

mechanisms possible to implement in biological nervous systems. Carandini and 

Heeger (2012) proposed that normalization could be implemented either by feed-

forward or recurrent neural circuitry (Figure 3.5).Their proposed setup includes 

two different “channels” or mechanisms: One for linear summation of inputs and 

one that mediate divisive suppression from the normalization pool. A feedback 

circuit has traditionally also been proposed for primary visual cortex where 

normalization signals are thought to originate from lateral feedback within V1 

(Carandini et al. 2002). Another proposed circuit is a feed-forward circuit with 

lateral presynaptic inhibition, similar to what appears to be the case in the fruit 

fly olfactory system.  

Kouh and Poggio (2008) also show in a theoretical study that if the mechanisms 

for divisive gain control and exponential amplification are in place, a canonic 

neural circuit with different values for the exponents in the normalization model 
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(Equation 3.4) could implement not only normalization but also winner-take-all, 

Gaussian and max like operations.  

 

A B C 
 

 

 

 

 

 
 

Figure 3.5: Proposed architectures for normalizating circuit. A) Feed forward circuit 
where other inputs are pooled, and affect the computational unit in a divisive way. B) 
Recurrent circuit where instead the modulating normalizing signal originate from 
other responses in the normalization pool. C) Neural circuit with presynaptic lateral 
inhibition. Note similarity to Figure 3.3 A. Images in A and B drawn with inspiration 
from Carandini and Heeger (2012), C with inspiration from Kouh and Poggio (2008). 

 

3.4.1 Shunting inhibition  

One of the first proposed mechanistic explanations for normalization was 

“shunting inhibition” (Carandini & Heeger 1994). Normalizing shunting 

synapses, with an equilibrium potential close to the neurons resting potential, 

were assumed to be responsible for divisive scaling (and thus the target of 

modulatory inputs). When activating these synapses the result would be a change 

in the neuronal membrane conductance, but no or little net ionic current. The 

cells driving current for subthreshold potentials is indeed scaled divisively by 

total membrane conductance in accordance with Ohms law (𝑉 = 𝐼𝑠𝑦𝑛 𝑔⁄ ) and this 

was believed to be transformed into a multiplicative scaling of the input 

frequency – output frequency relationship. 

That changing the total conductance affects the gain of the subthreshold 

membrane potential is indeed true. But it was later showed in theoretical work by 

Holt and Koch (1997) that when a cells is engaged in sustained firing a change in 

membrane leak conductance does actually have a subtractive and not divisive 

effect on output firing rates. This follows since a neuron engaged in sustained 

firing will have its membrane potential “clamped” above the resting potential by 

the firing mechanism, which will invalidate the assumption that the shunting 

conductance does not result in any net current. This subtractive effect of shunting 

synapses in the absence of noise has been confirmed for biological neurons e. g. 

by Chance et al. (2002). However the picture changes somewhat in the presence 

of balanced noise and dendritic saturation (Prescott & De Koninck 2003) which 

is the reason “shunting inhibition” in an extended sense, in spite of these results 

is still considered a possible mechanism for normalization.  

3.4.2 Shunting 2.0 - Gain modulation from background 

synaptic input 

One of the mechanisms that have both experimental and theoretical support, and 

is quite widely proposed as a possible mechanistic explanation for the divisive 

suppression in the normalization model, is gain modulation from balanced 



CHAPTER 3 THEORY  

32 

 

background synaptic input (Carandini & Heeger 2012, Chance et al. 2002, Kouh 

& Poggio 2008, Silver 2010). This mechanism is based on that in addition to the 

driving input there is also a modulatory “noise channel” (i. e. how large the input 

fluctuations are) which carry an independent gain modulating signal. Indeed in 

vivo neurons are constantly bombarded by synaptic input and the functional role 

of this noisy background activity has long been unknown (Abbott & Chance 

2005). It is however well known that background activity affects neuronal 

response properties by changing the gain and shifting the rheobase of the IO 

curve. This can be understood intuitively since increasing the amount of balanced 

noise input will result in no change in average membrane potential but an 

increased membrane variance. This leads to the membrane potential sometimes 

crossing the firing threshold even for driving inputs which otherwise would result 

in a membrane potential constantly below threshold (Chance et al. 2002). The 

mechanism is illustrated in Figure 3.6. Increased membrane variance will also 

reduce the gain of the IO curve, since this effect is strongest for small inputs and 

gradually decreases as the driving input grow stronger.  

A B C 

 
  

Figure 3.6: Gain change for an in vivo neuron and how increased membrane variance 
will affect firing for average membrane potentials below rheobase. A) Gain change for 
an in vivo neuron receiving increased amounts of noisy synaptic input.  B) Membrane 
potential for an IAF neuron injected with a constant current not large enough for it to 
reach firing threshold as well as balanced noise in form of excitatory and inhibitory 
Poisson trains. B) During low noise condition the membrane potential does not cross 
the firing threshold and the neuron remain silent. C) When more noise (here by 
increasing the frequency of both the excitatory and inhibitory inputs), the membrane 
potential variance increase; the membrane voltage will now sometimes cross the 
threshold even if the average membrane potential is the same as in B. Neuron 
parameters in B and C same as for Model A standard (Table 4.2). Image in A from 
Chance et al. (2002).  

 

When a neuron is bombarded by balanced synaptic input this will also result in a 

change in membrane conductance without any net synaptic drive i. e. shunting 

(Abbott & Chance 2005). This will as discussed in the previous section result in a 

subtractive shift of the IO curve, for a neuron engaged in sustained firing. The 

combined effect for a certain parameter range, and if the background activity is 

indeed carefully balanced is a pure change in neuronal gain (Figure 3.7). The 

same mechanism is in a theoretical study also shown to work for integrate-and-

fire neurons that receive time-variable input (Ly & Doiron 2009).  

Critique against this hypothesis is e. g. that it is only valid under quite restrictive 

conditions (where the balanced and variable background noise is one) which 

might not be so easy to achieve in the biological nervous system as in carefully 

controlled experiments. The mentioned studies does indeed not include any 

biophysically related mechanism for generating the right amounts of noise, but 
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noise is postulated to increase in relation to the activity in a group of neurons, see 

e. g. Ayaz and Chance (2009). A possible source of noise is though of course the 

noisy activity of other neurons, and there are evidence that the background 

activity in cortex is balanced. However, it is not yet known if and how the 

background activity stays balanced, so as not to introduce an excitatory or 

inhibitory drive, and which mechanisms that could increase it with the right 

factor at the right moment to give appropriate divisive scaling.  

 

A B C 

   
Figure 3.7: Gain change in an in vitro neuron induced by adding increased amounts of 
balanced noise. A) The effect of adding a constant inhibitory conductance. This effect 
is the same effect resulting from the shunting introduced by balanced noise. B) The 
effect of adding increased amounts of balanced noise without the shunting; this gives 
both an additive shift and a slope change of the IO curve. C) When both those effects 
are combined the result can be a pure change in neuronal gain. Images from Chance 
et al. (2002). 

3.4.3 Short-term synaptic depression 

Another theory is that normalization could be caused by nonlinearities in the 

afferent inputs to a neuron (Rothman et al. 2009). One such non-linearity is 

short-term synaptic depression. Carandini and Heeger (2012) argue that if a 

synapse transmits input to both the studied neuron and neurons in the 

normalization pool, its effectiveness can be reduced in a way that resembles the 

divisive effect required for normalization. This was demonstrated in a model by 

Carandini et al. (2002) where synaptic depression at the thalamocortical synapses 

was shown to give divisive suppression of neuronal responses. This would in 

contrast to the prevalent view - where the suppression is assumed to originate 

laterally from other V1 neurons - imply a feed-forward normalizing circuit. This 

setup however requires that driving and modulating inputs are mediated by the 

same synapses and can thus not explain e. g. surround suppression. 

Maybe most interesting for the study conducted in this thesis is how Rothman et 

al. (2009) show that in multi-compartmental models of cortical pyramidal and 

simple granule cells, short-term synaptic depression converts inhibition-mediated 

additive shifts of the neuronal response curve, into multiplicative gain change 

(Figure 3.8). This is the main reason why short-term synaptic depression was 

included in one of the implemented models versions. It should however be noted 

that in the study by Rothman et al, the effect of synaptic depression is that not 

only the gain but also the saturation level of the IO curve is changed; that is the 

modulatory effect is output gain and not normalization. Another interesting 

aspect of this is that Murphy and Miller (2003) in a computational study show 

that by assuming driving input is a non-linear saturation function of stimulus 
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intensity (not specifically because of synaptic saturation) will give rise to very 

similar effects. 

A B 

  
C D 

 
Figure 3.8: Short-term depression as a modulator of neuronal gain. A) Relation 
between input frequency and excitatory conductance for a simple granule cell. B) 
Difference between how a modulatory input affects the IO curve with (blue) and 
without (red) short-term depression (STD). C) Pyramidal cell without STD D) 
Pyramidal cell with STD. Note the divisive scaling and decreased max output. Figures 
from Rothman et al. (2009). 

3.4.4 Dendritic nonlinearities 

In line with the nonlinearity between afferent inputs and neuronal firing rate 

introduced by synaptic depression, dendritic nonlinearities are also suggested to 

be able to mediate multiplicative gain changes. When synaptic inputs are located 

in a distributed fashion they tend to sum linearly owing to the passive properties 

of the dendrites. But if the synapses instead are spatially clustered it may produce 

a sufficiently large local depolarization to active nonlinear dendritic mechanisms 

(Silver 2010). It has been suggested based on theoretical studies that dendritic 

saturation introducing a non-linear relation between membrane potential and 

excitatory input will amplify noise mediated gain modulation of sustained rate-

coded inputs (Prescott & De Koninck 2003). In a computational study Gabbiani 

et al (2004) also suggest an implementation of multiplication in a single neuron 

where two inputs encoded logarithmically are subtracted and the result exponent-

tiated through active membrane conductances; that is the neuron performs the 

computation 𝑎(1 𝑏⁄ ) = exp(𝑙𝑜𝑔(𝑎) − 𝑙𝑜𝑔(𝑏)). This type of mechanism have also 

been proposed at network level. The possible role of dendritic nonlinearities will 

however not be explicitly considered for the models in this thesis since the 

modelling approach does not include multicompartmental models.  
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3.4.5 Ongoing activity  

Spontaneous activity (the firing of neurons in the absence of any sensory input) 

has previously been considered as just a byproduct of activity in other parts of the 

brain with no real purpose (Ringach 2009). It is now believed that the ongoing 

activity might be a top-down prediction/expectation signal that interacts with 

incoming input to predict the most likely representation of the world in a 

probabilistic sense. This would means ongoing activity shapes the response 

properties of a group of neurons, making them more or less likely to fire for a 

certain stimulus (Ringach 2009) and could thus be considered a modulatory 

signal. It has indeed has been shown that the responsiveness of neurons in 

primary visual cortex is to a large degree controlled by ongoing activity. This 

could mimic the effect of divisive suppression (Carandini & Heeger 2012). Since 

only a single hypercolumn is modelled in this thesis, there has not been any 

intent to try and implement this mechanism. 

Concluding remarks on biophysical explanations  

In conclusion: There is a considerably larger amount of studies describing 

normalization functionally or showing theoretically the benefits effective 

information processing, than there is certainty about the underlying biophysical 

mechanisms. It is important to note that normalization could be mediated by 

different biophysical mechanisms for different tasks, species and brain regions so 

maybe we are not looking for a single mechanism but several. Even in a specific 

neural circuit and task normalization might be a result of a complex combination 

of biological biophysical mechanisms and neural circuitry (Priebe and Ferster 

2008) so it might not enough to study normalization in the context of driving and 

modulatory input to a single neuron or computational unit but a larger neural 

circuit might be needed.   
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4 Materials and methods 

This chapter first describes the inspiration/blue print for the implemented 

network models in the form of a hypercolumn from a biophysically detailed 

attractor memory model, and then the structure and details of the implemented 

model versions. The third part “Evaluation methods” describes the three 

theoretical models of cortical processing used as a reference during evaluation, as 

well as the methods used for evaluating the modulatory effects of the model 

versions. 

4.1 Model blueprint 

The models implemented in this thesis, are primarily based on the biophysically 

detailed attractor network model (in the following referred to as “the attractor 

network”) first implemented by Lundqvist et al. (2006). The attractor network is 

based on the hypercolumnar and minicolumnar organization found in primate 

cortex (see Section 2.2) and use a group of neurons as the basic computational 

unit. The network work as an associative memory and perform pattern 

completion, rivalry and recall while remaining biologically realistic neuron to 

neuron connectivity ratios and recreating large scale dynamics typically found in 

cortex (Lundqvist et al. 2011, Lundqvist et al. 2013). The attractor network is 

constructed from several hypercolumn modules, each composed of a certain 

number (this vary between different implementation but usually between 9 and 

100) of minicolumns. The minicolumns are modeled as groups of recurrently 

connected excitatory neurons sharing a common input. Each hypercolumn also 

has a local population of inhibitory cells. The inhibitory population is driven by 

the excitatory cells in its constituent minicolumns and provide feed-back 

inhibition to those. The minicolumns are the functional units of the attractor 

network and depending on if two minicolumns in different hypercolumns are part 

of the same pattern or not, there are excitatory or inhibitory connections between 

them. Patterns or “memories” are stored in the network by supervised training 

that change synaptic weights between minicolumns. A schematic picture of the 

attractor network and its relation to the more abstract Hebbian attractor memory 

as well as the hypercolumn model implemented in this thesis is seen in 

Figure 4.1. 

If some minicolumns in the attractor memory model is briefly stimulated by an 

excitatory input, a pattern (that is a group of connected minicolumns) will 

activate and stay active for a couple of hundred milliseconds before it 

spontaneously die out and leave room for other patterns to activate. The temporal 

dynamics is the result of adaptation and short-term depression. If several 

minicolumns in a single hypercolumn are stimulated (that is at least two different 

patterns), there will first be a short transient period with rivalry between patterns, 

but then one pattern will “win” leaving only one minicolumn in each 

hypercolumn active (Lundqvist et al. 2006). The feed-back from the inhibitory 

pool together with the connections from other minicolumns is what cause each 

hypercolumn to function as a soft WTA module. An “active minicolumn” is also 

shown to have approximately the same activity level during pattern recall, which 

together with the WTA dynamics implies that the activity in every hypercolumn 

is kept constant during an attractor state.  

This non-linear behavior constitute the main reason the implemented network 

model was based on a hypercolumn from the attractor network. If the 
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hypercolumn works as a soft WTA-module for a certain range of inputs, it might 

be possible to tune/extend such a hypercolumn to also implement normalization. 

It has indeed been suggested that both these dynamics might be implemented by 

the same type of circuit implementing some key neuronal computations (Kouh & 

Poggio 2008). Keeping the average activity constant in a group of computational 

units is also one of the key features of a normalizing network. This type of 

structured network also enables using not a single neuron but a group of neurons 

as the computational unit in a normalization study, which might enable capturing 

mechanisms not possible to represent in a single neuron. For simplicity and in 

hope of clarifying the underlying mechanisms of the hypercolumn/soft WTA 

module, a single hypercolumn is modelled in this thesis.  

A) B) C) 

 
 

 

Figure 4.1 A) Hebbian attractor memory constructed with single abstract neurons. 
The blue neurons constitute a pattern and are connected by stronger positive 
weights. B) Schematic of the attractor memory model seen from above. A pattern 
consists of one minicolumn (small circles) from each hypercolumn (large circles) and 
the excitatory connections are shown for two patterns, blue and green. The basic unit 
is now a group of biologically realistic spiking neurons, but the logical principle 
remains the same. C) The network blueprint for the model implemented in this 
thesis: A single hypercolumn. One active minicolumn is colored to symbolize the WTA 
functionality. Pictures in B and C drawn with inspiration from Lundqvist et al (2013). 

4.2 The network model 

The network model implemented and studied in this thesis is based on a 

hypercolumn/soft WTA module from the biophysically detailed attractor memory 

network. It is thus a highly structured network modeling layer 2/3 of a single 

cortical hypercolumn. The hypercolumn is composed of a variable number of 

minicolumns (1-4 for the experiments reported here). Using a larger number of 

minicolumns (8-10) was also tried but did not result in any qualitative differences 

in network processing, so a smaller number was chosen for simplicity. The 

explicitly modelled minicolumns should be seen as the active minicolumns for a 

certain set of stimuli in a biological hypercolumn constituted of a much larger 

number of minicolumns. This is a reasonable reduction since most minicolumns 

in a biological hypercolumn have been found to be silent during a specific set of 

stimuli.  

The network structure is illustrated in more detail in Figure 4.2. Each mini-

column is modeled as a population of NE = 30 excitatory cells with intrinsic 

recurrent connectivity. The hypercolumn also includes a pool of NI = 16 

inhibitory neurons, in common to all the minicolumns. The excitatory cells will 

as in the original attractor memory model be referred to as “pyramidal cells” and 

the inhibitory as “basket cells”, which reflect that the excitatory cells in this 
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model are loosely considered to correspond to the cortical excitatory pyramidal 

cells and the inhibitory cells to fast spiking cortical interneurons. It should 

however be noted that the cells in the basic versions of this model do not 

reproduce the specific firing characteristics of these types of cortical cells. The 

choice was made to keep the number of inhibitory neurons fixed independent of 

the number of modelled minicolumns. This was done to make the network scale 

invariant when varying the number of minicolumns, in the sense that each 

minicolumn will keep the same number of incoming inhibitory connections. This 

is reasonable because also in a cortical hypercolumn with a smaller number of 

active (here explicitly modelled) minicolumns, there are others close by that 

would contribute neurons to the inhibitory neuron pool.  

The network structure is a realization of a type of connectivity that lies at the far 

end of a spectra ranging from networks with no inherent structure (a connection 

between two neurons is just as likely to occur independently of their relative 

position) to networks where neurons are clustered and only have connections 

intrinsically within the cluster. Also more moderate clustering is shown to affect 

network functionality (Litwin-Kumar & Doiron 2012) and this type of model 

should be seen as not necessarily representing only the functionality in a cortical 

hypercolumn; but the minicolumns could in a broader sense correspond to locally 

connected groups of cells (Lundqvist et al. 2013). 

 

 
Figure 4.2: Schematic picture of the model structure. The picture depicts a 
hypercolumn with three minicolumns (rectangles) and the basket cell population 
(large circle). Input 𝑥̅ to the network correspond to incoming activity from layer 4 and 
from layer 2/3 of other hypercolumns. Output is defined as average activity in each of 
the minicolumns. Numbers next to the lines representing synaptic connectivity is PSP 
size (cursive) and connection probability. The summation show how input to the 
basket cells is calculated from driving input to the minicolumns. Picture drawn with 
inspiration from Lundqvist et al. (2011). 

4.2.1 Connectivity 

The network is as mentioned highly structured and there are no connections 

between pyramidal cells in different minicolumns. There are recurrent 

connections between pyramidal cells in the same minicolumn with a connection 

probability of 20 %. The network is recurrent also on a larger scale since the 

inhibitory pool is driven by the activity in the minicolumns, and then provides 
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inhibitory feed-back to those same minicolumns. The probability of a connection 

between a pyramidal cell in one of the minicolumns and a model neuron in the 

basket cell population is 70 %, and the same connection probability applies for 

the inhibitory feed-back. This means that while all minicolumns get different 

driving input they will all receive the same amount of inhibitory input from the 

basket cell population. This setup was used also in the attractor network model 

and should thus be adequate to produce the soft WTA effects observed there. 

In addition to the high connectivity found between local excitatory and inhibitory 

cortical cells, there are also evidence of long range cortical afferent inputs 

converging on both excitatory and inhibitory cells (Isaacson & Scanziani 2011). 

To reflect this a feed-forward inhibitory circuit was added as well. This was done 

by including the possibility to let the basket cell population be driven by a certain 

percentage, pin_bas, of average driving input to the minicolumns. This means the 

network, in contrast to the attractor memory model, can implement both a feed 

forward and a feed-back inhibitory circuit by changing the connection 

probabilities. This is an advantage since both these circuits are hypothesized to 

play a role for implementing normalization (compare with Figure 3.5).  

In the basic network versions the connection probability was realized by, for each 

postsynaptic neuron connecting it to ppre_post*Npre randomly chosen neurons from 

the presynaptic population, where ppre_post is the connection probability between 

the populations and Npre the number of presynaptic neurons. This means the 

number of incoming connections are fixed for each neuron, while the number of 

outgoing connections vary in accordance with a binomial distribution. To study 

how variability in the network affects its functionality, this was for some model 

versions changed to instead having a fixed number of outgoing connections and a 

variable number of incoming connections, which creates a larger variability of 

the incoming excitation/inhibition for each model neuron.  

4.2.2 Input   

During simulations each minicolumn receives a driving input of constant Poisson 

frequency. This represents both input from layer 4 and lateral input from mini-

columns in other hypercolumns. The larger portion of this input would be lateral, 

thus e. g. in the attractor memory model or a cortical hypercolumn correspond to 

input from minicolumns in other hypercolumns. However in this model there is 

no functional distinction between these two types of input. The afferent neurons 

are not modelled explicitly but input to each neuron is approximated as an 

independent Poisson process of specified frequency. All neurons receive driving 

input in accordance with a truncated normal distribution of mean Im and standard 

deviation 0.1 Im, constrained to [Im - 0.2Im, Im + 0.2Im]. As mentioned previously 

the basket cell population might also receive feed-forward input in addition to the 

drive from the pyramidal cells. When this is the case a basket cell receive input in 

accordance with a similar clipped normal distribution. 

Noise input   

Both pyramidal and basket cells in the network also receive noise input, 

representing inputs from more distant parts of the nervous system. This is also 

modelled as independent Poisson processes. The noise input is calibrated to give 

an excitatory postsynaptic potential (EPSP) that is considerably smaller than the 

EPSP of the driving input (approximately 0.1 mV) for both pyramidal and basket 

cells. For pyramidal cells the frequency of the noise input is chosen to bring the 

pyramidal cells to weak spontaneous firing (1-5 Hz). There is evidence of basket 
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cells receiving less noise so for most model versions the basket cells receive 

noise that do not bring them to rheobase or no noise at all. The amount of noise 

to the basket cells was however used to tune some of the network model versions.    

4.2.3 Neuron and synapse model 

The aim was to use a neuron model as simple as possible, while still able to 

capture the neuronal features hypothesized to be important for normalization. An 

IAF neuron model is the least complex model that can implement all the 

proposed gain change mechanisms discussed in Section 3.4 which do not require 

a multicompartmental model. Accordingly a leaky integrate-and-fire (IAF) 

neuron model with conductance based synapses was used for all model versions, 

except one where this model was replaced with an adaptive IAF neuron model. 

The subthreshold dynamics of the model neurons are thus described by 

Equation 2.6 and the synaptic input by Equation 2.10 and Equation 2.12 

(repeated in Table 4.2 for convenience). 

The neuron parameters are loosely based on the Hodgkin-Huxley neurons of 

Lundquist et al 2006 translated to an IAF neuron model. This was done by simply 

using the values of e. g. membrane conductance and the area of the each neuron 

type to calculate the corresponding value for a point neuron model. It should be 

noted that this does not render model neurons to reproduce those qualitative 

differences in the firing patterns between the basket and pyramidal cells seen for 

the original multicompartmental models. This large reduction in complexity is 

motivated by that the WTA effects of the attractor memory model have been 

reproduced without these qualitative differences in firing patterns (Bruederle et 

al. 2011). There is also neither adaptation nor short-term depression included; the 

effect of those features were instead tested separately. Another difference is that 

the same value of the neuronal time constant, 13.5 ms is chosen for both 

excitatory and inhibitory cells. The refractory period is a bit shorter for the basket 

cells compared to the pyramidal cell (2 ms in contrast to 3.5 ms) which reflect 

that basket cells tend to be faster spiking than pyramidal cells. The membrane 

time constant for both excitatory and inhibitory synapses is 6 ms. It should be 

noted that the specific neuronal parameters are not hypothesized to have a 

significant effect on network functionality - mainly because of the low 

complexity of the neuron model - as long as synaptic weights are tuned to 

reproduce the same PSP sizes.  

Calibration of synaptic weights 

The synaptic weights in the network are specified implicitly as the weights 

needed to produce postsynaptic potentials (PSPs) of specified sizes for the 

different synaptic connections. The PSP values for the standard model version 

are equal or close to those used in the attractor network. Tuning of synaptic 

weights was done by considering the PSP size resulting from a single synaptic 

event for a model neuron at resting potential. For all models the EPSP from 

driving input to the pyramidal cells is fixed at 0.9 mV and the EPSP from noise 

input to pyramidal and basket cells at 0.1 mV. Standard PSP values for feed-

forward input to basket cells; excitatory connections between pyramidal and 

basket cells; and inhibitory feed-back from basket cells to pyramidal cells; are 

0.45 mV, 0.45 mV and -1.1 mV respectively. However the latter three were 

varied in some model versions to study what effect this has on network 

functionality. The PSP values as well as the synaptic weights which produce 

those are summarized in Table 4.2. An illustration of the calibration and PSPs of 
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the model neurons are seen in Figure 4.3. Since it is in fact the synaptic weights 

that are changed during parameter tuning of model versions, the parameters 

representing those are usually the ones given when describing differences 

between network model versions in the Results chapter. The different synaptic 

weights are referenced to as EPSCpre_post PSPs are referred to as EPSPpre_post. Here 

“pre” and “post” are the pre- and postsynaptic populations. Pyramidal cell 

population (minicolumn) is abbreviated as pyr, basket cell population as bas, and 

external population as ext.  

         A          B          C 

   
Figure 4.3: PSP calibration and depressing synapses for Model B. A) For a pyramidal 
cell the PSP from driving input is 0.9 mV, and from noise input 0.1 mV. The IPSP 
from the inhibitory pool is 1.1 mV. B) For basket cells the EPSP from pyramidal cells 
as well as external input is 0.45 mV, noise input 0.1 mV and eventual negative 
recurrent IPSP from other basket cells 0.45 mV. All PSPs are recorded from resting 
potential. C) The effect of synaptic depression on pyramidal PSPs. Input rate: 50 Hz. 
Synaptic depression parameters and equations are seen in Table 4.2.  

 

Depressing synapses  

In one model version (termed “Model B”) short-term synaptic depression is 

included for the driving input to the pyramidal cells. Including synaptic 

depression on all pyramidal-pyramidal synapses - that is also for the recurrent 

connections - was tested separately for this model version. There is no depression 

for feed forward input to basket cells or for synapses between excitatory or 

inhibitory cells (and vice versa) since there is no evidence that synaptic 

depression is present in cortex for these connections. Depressing synapses are 

modelled according to Equation 2.14 (repeated in Table 4.2) with a time constant 

for recovery of 200 ms.  

For Model B a population of 200 excitatory cells are created to represent the 

neurons from which the pyramidal cells in layer 2/3 get their input. These 

neurons are modelled as “parrot neurons” that transform every incoming spike to 

an outgoing spike without modelling any intrinsic neuronal dynamics. This 

population which receive Poisson input will thus as well spike as a Poisson 

source. The parrot neurons were necessary because it is not possible in NEST to 

create a depressing synapse between a Poisson generator node and its 

postsynaptic nodes. The connectivity between the layer of “input neurons” and 

the pyramidal cells in the minicolumn is 50 %. This means every pyramidal cell 

will receive input from approximately 100 neurons. When the input to the 

network is specified as X Hz this is realized by letting each neuron in the input 

layer spike with Poisson frequency X/NE Hz, to render a total average input to the 

minicolumn (X/NE)*NE = X Hz. This definition was done for simple comparison 

with the other model versions. The reason a quite large population of post-

synaptic neurons need to be modelled explicitly, is that a synapse with short-term 

depression have a limit to how much current it can transport over the cell 
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membrane; replacing this group of neuron with fewer neurons spiking faster, 

would result in a very limited input to the network. 

4.2.4 Biological realism   

The aim of this thesis is to gain deeper understanding into how this type of 

structured recurrent network behaves functionally and whether the mechanisms it 

implements may be related to how normalization is achieved in biological 

nervous systems. Biological realism is achieved by using biological data as a 

constraint during the network design (e. g. neuron parameters, PSP sizes, 

connectivity and structure present in cortex). But within these “biological 

bounds” the network parameters are varied to see how this affect network 

functionality. It should however be noted that the aim of this quite abstract model 

is not to try and reproduce realistic cortical firing characteristics, such as 

interspike intervals and oscillatory activity, but focus lies on how the population 

firing rate of a group of recurrently connected cells is modulated by the firing 

rates in other cell assemblies. 

To find out if and when increased complexity do change model functionality 

there were several tests conducted where more complex features were added to 

the basic model version, to see if and how this might change the properties of the 

network. To start simple and gradually increase complexity was hoped to help 

elucidate which features that are important for normalization/gain-control in the 

model.  

Biologically plausible parameter space  

The connection probabilities and the PSPs for the standard model versions are the 

same or similar to the original attractor memory model, where biological 

constraints on these values are mainly from Thomson et al (2002). Since we here 

wanted to vary parameters to see how this affects network functionality, it was 

necessary to consider in which range it is meaningful to do so. Since PSP and 

connection data is quite uncertain (there are often only a few cells investigated 

from one or two species) the choice was made to use these data as a guidance 

rather than an exact postulation. This means a quite broad range of possible PSP 

values was considered: in the range from 0.075 mV to 7.5 mV for all connection 

types. This is a range that contains all the values found by Thomson et al (2002), 

and a deviation from the average both up and down in an order of magnitude of 

10. This should though only be seen as a broad constraint which enable ruling out 

truly unrealistic values and not that all values within this range are equally 

plausible. But it was for the for the purpose of finding tendencies and patterns for 

how changing different parameters affects functionality deemed better to search a 

too large area than a too small. It is always possible to later use only values 

within a subpart of this area.  

4.2.5 Simulator 

There are several simulators available to construct and simulate neural networks, 

which means it is not necessary to implement neuron and synapse models from 

scratch. The choice of simulator for implementing and running the models 

designed and evaluated in this thesis was NEST. NEST is a thoroughly tested and 

efficient simulator for large networks of point neurons or neurons with a few 

compartments (Gewaltig et al. 2012). As a high level interface to the NEST 

simulator PyNEST (Eppler et al. 2008) was used which gives simple integration 

with python code. NEST includes the neuron and synapse models used in the 
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network model so no new models were constructed. Since comparisons between 

simulators have not shown qualitatively different results when implementing the 

same networks on different simulators (and only slight quantitative differences) 

(Brette et al. 2007) the choice of simulator is not believed to influence the results 

in any significant way.  

Randomness   

For generating random connectivity and Poisson trains the built in random 

number sources of NEST were used. Membrane conductance, initial membrane 

potential and input was randomized by the means of the numpy.random module. 

The membrane conductance for each neuron is sampled from a truncated normal 

distribution with mean Cm and standard deviation of 0.1 Cm constrained to the 

range [Cm - 0.1Cm, Cm + 0.1Cm]. The driving input to each neuron is sampled 

from a similar truncated normal distribution with mean Im and standard deviation 

0.1 Im, constrained to [Im - 0.2Im, Im + 0.2Im]. The membrane potential at setup 

(t = 0) is also randomized but has a broader distribution with mean 5 mV and 

standard deviation 5 mV constrained to [0, 10] mV.  

Because of variability in neuron parameters and the randomized connections 

there will be slight quantitative differences if the same tests are run for different 

network setups (i. e. different random seeds). The choice was made to not make 

one setup and keep this for all network tests, but running the tests for a range of 

setups with different random seeds. This was done to ascertain that not only one 

network version that might show functionality different to most realizations of 

the random setup was studied. In practice a smaller subset of random seeds were 

used for producing the results presented in the report, but the network structure 

have been tested on a larger set without showing qualitative different results.  

4.2.6 Differences from the attractor network 

The most significant differences between the model implemented here and the 

attractor network is that only a single hypercolumn is modelled. This will mean 

the larger network dynamics as well as temporal dynamics of different attractors 

activating after each other are lost. On the other hand we gain in simplicity. The 

attractor memory properties are not important for normalization, but it should be 

noted that the excitatory and inhibitory connections between minicolumns in 

different hypercolumn do play a part in the WTA behavior as well. Using IAF 

neurons and that short-term depression and adaptation is not included on model 

neurons in the basic model versions, are also significant differences. Considering 

the input, the model implemented in this thesis receives a stationary input and 

wait until the network reach a steady state before reading the output. This in 

contrast to the attractor network where a brief input stimulates the network, 

which then keeps active without any external input. The stationary input could 

for a hypercolumn that is part of an attractor network be seen as corresponding to 

input from other minicolumns in the same or rivaling patterns during an attractor 

state. However, the input to the hypercolumn implemented here could also for a 

different setup such as a network used for probabilistic calculations, correspond 

to input representing confidence in different object features.  

Model versions  

Four different main model versions were studied, all based on Model A but with 

some changes in connectivity or synapse dynamics: 
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 Model A: Basic model version with both feed-forward and feed-back 

connectivity 

 Model A1: Feed-forward inhibitory circuit only. 

 Model A2: Feed-back inhibitory circuit only. 

 Model B: Short-term synaptic depression included on driving synapses. 

Model A1 and A2 were studied to gain insight into how the different inhibitory 

circuits might contribute to the modulatory effects of the network. These insights 

were then used to tune Model A before adding additional features such as 

increased variability in the network; recurrent connectivity in minicolumns and 

basket cell populations; as well as model neurons with more realistic firing 

characteristics. Model and neuron parameters are summarized in Table 4.2. 

Model versions are summarized Table 4.3. 

Table 4.2: Summary of network setup and model parameters.  

Neuron and synapse model 

Neuron model  Integrate-and-fire neuron. NEST model: “iaf_cond_exp”. See also 
section 2.4.4. 

Subthreshold 
dynamics: 

𝜏𝑚
𝑑𝑉

𝑑𝑡
= −𝑉 − 𝑅𝑚𝐼𝑠𝑦𝑛(𝑡) 

Neuron model 
adaptive neurons 

Adaptive integrate and fire neuron modelled according to Brette 
and Gerstner (2005). NEST model: “aeif_cond_exp”. See also 
section 2.4.4. 

Subthreshold dynamics 
𝐶𝑚
𝑑𝑉

𝑑𝑡
= −𝑔𝐿(𝑉 − 𝐸𝐿) + 𝑔𝐿∆𝑇 exp (

𝑉 − 𝑉𝜃
∆𝑇

) − 𝜔 + 𝐼 

 
𝜏𝑤
𝑑𝑉

𝑑𝑡
= 𝑎(𝑉 − 𝐸𝐿) − 𝑤 

𝑤ℎ𝑒𝑛 𝑠𝑝𝑖𝑘𝑒:  𝑤 → 𝑤 + 𝑏 

Synapse model Exponential shaped conductance based synapses, with infinite 
rise time. See also Section 2.4.5. 

 𝐼𝑠𝑦𝑛(𝑡) =∑𝑤𝑖𝑗 ∙

𝑗

𝑔𝑠𝑦𝑛(𝑉(𝑡) − 𝐸𝑠𝑦𝑛) 

 

𝑔𝑠𝑦𝑛(𝑡) = {
𝑔̅𝑠𝑦𝑛𝑒𝑥𝑝 (−

(𝑡 − 𝑡𝑠)

𝜏𝑠𝑦𝑛
)        𝑓𝑜𝑟 𝑡 ≥ 𝑡𝑠

0                                         𝑓𝑜𝑟 𝑡 < 𝑡𝑠

} 

Synaptic depression 
model 

Synaptic depression is modelled according to the 
phenomenological model described in Tsodyks et al. (1998), 
NEST model “tsodyks2_synapse”. See also Section 2.4.5.  

 𝑑𝑥

𝑑𝑡
= −

𝑧

𝜏𝑟𝑒𝑐
− 𝑢 𝛿(𝑡 − 𝑡𝑠𝑝)  

𝑑𝑦

𝑑𝑡
= −

𝑦

𝜏𝑖𝑛
+ 𝑢𝛿(𝑡 − 𝑡𝑠𝑝)    

 
𝑑𝑧

𝑑𝑡
=

𝑦

𝜏𝑖𝑛
−

𝑧

𝜏𝑟𝑒𝑐
 

 Where x represent the available, y the active and z the inactive 
part of the neurotransmitter.  
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Populations 

Name  Size  

Ei Excitatory populations NE = 30  
Number of excitatory populations, nmc, = 1-8 

I Inhibitory population NI = 16  

N External noise (long range) NE* Nmc + NI 
Modeled as independent Poisson processes. 

D Driving input  NE* Nmc  
Modeled as an independent Poisson 
processes for each neuron receiving input. 

 

Connections 

Source Target Connection 
probability 

PSP Weight (peak  
conductance) 

Ei Ei 0.2 0.9 mV 0.17 nS   

Ei Ej 0.0  0.9 mV 0.17 nS 

Ei I 0.7 0.45 mV 

(0.075 - 7.5) 

0.009 nS   

(0.014 - 0.16) 

 I Ei 0.7 - 1.1 mV 

(0.075 - 7.5) 

- 2.6 nS     

(0.17 - 40) 

I I 0.0 - 0.45 mV - 0.02 nS  

N Ei 1.0 0.1 mV 0.02 nS 

N I 1.0 0.1 mV 0.0022 nS 

D Ei 1.0 * 0.9 mV 0.17 nS   

D I 1.0 * 0.45 mV 

(0.075 - 7.5) 

0.009 nS   

(0.014 - 0.16) 

*All neurons get input but input frequency is normally distributed around mean input, to reflect that the 

number of incoming connections vary for biological neurons. In parenthesis: range of values considered 
during parameter searches.  

 

Additional network parameters 

Abbreviation Description Unit Value 

noisepyr Poisson frequency for 
noise input to pyramidal 
cells 

Hz 0 

noisebas Poisson frequency for 
noise input to basket cells 

Hz 5200 

Cm_rsd_bas Relative standard deviation 
membrane conductance 
pyramidal cell  

% of mean 10 

Cm_rsd_pyr Relative standard deviation 
for membrane 
conductance pyramidal cell  

% of mean 10 
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Inputrsd_pyr Relative standard deviation 
membrane conductance 
pyramidal cell 

% of mean 10 

Inputrsd_bas Relative standard deviation 
membrane conductance 
pyramidal cell 

% of mean 10 

NE_4 Number of layer 4 parrot 
neurons in Model B  

- 200 

IAF model neuron parameters  

Abbreviation Description Unit Excitatory cell  
“Pyramidal cell” 

Inhibitory cell  
“Basket cell” 

EL Resting membrane 
potential 

mV 0.0 0.0 

Eex Excitatory reversal 
potential 

mV 120.0 120.0 

Ein Inhibitory reversal 
potential 

mV - 10.0 - 10.0 

Cm Membrane capacity pF 70.0 7.5 

τm Membrane time 
constant 

ms 13.5 13.5 

τref Refractory period ms 3.5 2.0 

Vth Spike threshold mV 15.0 15.0 

Vreset Reset membrane 
potential 

mV 0.0 0 

τsyn_ex Time constant 
excitatory  

ms 6.0 6.0 

τsyn_in Time constant 
inhibitory synapses 

ms 6.0 6.0 

Adaptive IAF model neuron parameters  

Abbreviation Description Unit Excitatory cell  
“Pyramidal cell” 

Inhibitory cell  
“Basket cell” 

EL Resting membrane 
potential 

mV - 61.71 - 56.0 

Eex Excitatory reversal 
potential 

mV 0.0 0.0 

Ein Inhibitory reversal 
potential 

mV - 80.0 - 85.0 

Cm Membrane 
capacitance 

pF 179.0 6.88 

τm
 Membrane time 

constant 
ms 16.89 15.64 

τref Refractory period ms 3.5 2.0 

Vth Spike threshold mV - 54.36 - 52.7 
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Vreset Reset membrane 
potential 

mV - 60.7 - 72.5 

τsyn_ex Time constant exc. 
synaptic exponential 
function 

ms 17.5 6.0 

τsyn_in Time constant 
inhibitory synaptic 
exponential 
function 

ms 6.0 - 

ΔT Slope factor mV 0.0 0.0 

τw Adaptation time 
constant 

ms 196.0 0.0 

a Subthreshold 
adaptation  

nS 0.0 0.0 

b Spike-triggered 
Adaptation 

pA 0.0132 0.0 

Synaptic depression parameters 

Name Description Unit Value 

u Release probability - 0.5 

τrec Recovery constant synaptic depression ms 200  

τfac Recovery constant facilitation ms 0   

 Weight adjustment: To give the same PSP for a single synaptic 
event when synaptic depression is included, all weights are 
multiplied by two in synapse models including synaptic 
depression. 

 

 
Table 4.3: Summary of model versions. Parameters or features not mentioned are the 
same as for Model A standard. 

Name Description 

Model A standard Model A with standard parameters from Table 4.2 

Model A1 Connectivity between all minicolumns and basket cell population 
(ppyr_bas) is set to zero. 

Model A2 Feed-forward input to basket cell population (p in_bas) is set to zero. 

Model A tuned Larger IPSP size. IPSCbas_pyr = 12.0 pS, EPSCext_bas = 0.007 pS, EPSCpyr_bas 
= 0.005 pS, pin_pyr = 0.05, noisebas = 1250 Hz. 

Model A adaptive 
tuned 

Tuned similarly to Model A tuned. IPSCbas_pyr = 15.0 pS, noisepyr = 
2000.0 Hz, noisebas = 10 000 Hz, EPSPpyr_bas = 0.005 pS. 

Model B  Short-term depression added. IPSCbas_pyr = 2.6 pS, EPSCext_bas = 0.006 
pS, EPSCpyr_bas = 0.005 pS, pin_bas = 0.05. Cm_pyr_rsd = 0.25, Cm_pyr_rsd = 
0.25. Includes variation in number of incoming connections. 

Model B tuned Short-term depression added. IPSCbas_pyr = 12.0 pS, EPSCext_bas = 
0.005 pS, EPSCpyr_bas = 0.004 pS, pin_pyr = 0.02. Cm_pyr_rsd = 0.25, 
Cm_pyr_rsd = 0.25. Includes variation in number of incoming 
connections. 
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4.3 Evaluation methods 

This section describes the three theoretical models of cortical processing used as 

a reference during the network evaluation (in the following referred to as “the 

theoretical models”) and the tests used to evaluate the network model versions 

normalizing ability. For reference these tests are applied to the theoretical 

models, and the results confirm that a normalizing network has several important 

information processing features not present for the other theoretical models.  

Network input and output  

An input to the network 𝑥̅  = [x1, x2, .. xn] is defined as the driving input to its 

minicolumns where xi is input to minicolumn i. The output 𝑦̅  = [y1, y2, .. yn] 

associated with a specific input is defined as the average activity in the network’s 

minicolumns after steady state activity is reached, where yi is activity in 

minicolumn i. The output is evaluated by simulating network activity for tsim = 

500 ms, and then averaging the activity in each minicolumn over the [tst, tsim] 

(Equation 4.1), where tst is the time where the network is assumed to have 

reached a steady state activity. For all implemented model versions tst = 50 ms. 

 
𝑦𝑗 ≡

∑ 𝑛𝑗𝑘
𝑠

𝑘

𝑡𝑠𝑖𝑚 − 𝑡𝑠𝑡
 (4.1) 

Here the sum goes over all neurons in minicolumn j and 𝑛𝑗𝑘
𝑠  is the number of 

spikes emitted by neuron k. The average activity in the inhibitory pool is 

calculated in the same way. The average activity for the hypercolumn, Hav, is 

defined as the average activity over all its constituent minicolumns 

(Equation 4.2). Note that the activity in the inhibitory pool is not included here.  

 
𝐻𝑎𝑣 ≡ 

∑ 𝑦𝑗𝑗

𝑛𝑚𝑐
 (4.2) 

Here nmc is the number of minicolumns in the network.  

4.3.1 Evaluating normalization 

To evaluate the network models, three different phenomenological models of 

cortical processing observed in biological nervous systems were used as a 

reference: a) normalization b) output gain control and c) subtractive inhibition 

(see Theory chapter for references). The definitions of those models in the 

context of the implemented network model and a summary of their respective 

modulatory effects, are seen in Table 4.4. The driving input to a minicolumn/-

computational unit is defined as the direct input to that minicolumn, and the 

modulatory input as the average of the driving inputs to other minicolumns/-

computational units. For normalization this type of setup follows straight from 

the definition of the normalization model (see Section 3.3.1). For the other 

theoretical models their definition only incorporate how increased modulatory 

input affect the output not where it comes from. However since for the network 

studied in this thesis, this will indeed be from the input to the other minicolumns, 

the same origin of the modulatory input is assumed for all theoretical models. 

For a specific input to the network, there are two important dimensions that 

might affect system performance: First there might be a difference in the 

functional dependence of outputs on inputs, depending on if the individual 

minicolumns get input similar in magnitude or if some minicolumn get a much 
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larger input - that is input relations. Second, an input vector with fixed input 

relations might be processed differently depending on input magnitude. To 

capture these two dimensions an input vector to the network can be described as:  

 𝑥̅ = 𝑎[𝑐1, 𝑐2, . . 𝑐𝑛],  ∑ 𝑐𝑖𝑖 = 1 (4.3) 

Where 𝑐̅ represent input relations and a input magnitude. A perfectly normalizing 

system will of course give a normalized output for all possible values of a and 𝑐̅, 
but since a neural system might be normalizing for only a subset of input 

relations and input magnitudes the evaluation is designed with those two aspects 

in mind.  

Two different tests were used to evaluate the network model versions: The “IO 

curve test” (IO test) and the “Fixed Input Relations test” (FIR test). Both these 

tests were used to estimate from different perspectives, how well the function 

from inputs to outputs implemented by the network correspond to the 

normalization model. 

The IO test 

To evaluate the networks normalizing ability of over a range of input relations 

and magnitudes the IO test study how the IO curve of one “studied minicolumn” 

is changed for different amounts of modulatory input. This type of test is 

standard in previous normalization and gain control studies (see e. g. (Carandini 

& Heeger 2012, Chance et al. 2002, Olsen et al. 2010, Rothman et al. 2009, 

Silver 2010). In the context of this thesis the IO test was performed by plotting a 

family of IO curves for one studied minicolumn for different amounts of input to 

the other minicolumns (that is for increased inhibitory feed-back from the basket 

cell population). Each curve is produced by evaluating the output from the 

studied minicolumn for a range of inputs, while keeping the input to the other 

minicolumns at a constant value. The “input to the other minicolumns”, Iother is 

for a network with more than two minicolumns defined as the averaged input to 

the other minicolumns. The input to the individual minicolumns is not equal but 

distributed equidistantly in the range [0.2Iother, 0.8Iother]. This since it is quite 

unlikely that all other minicolumns would receive the exact same amount of input 

in a cortical hypercolumn.  

The result of the IO test was evaluated by comparing the effects on the IO curve 

for increased modulatory input to the theoretical models. Focus was especially 

put on eventual gain change; change in max output (Rmax); the input which give 

half max(σ); and subtractive offset (β). To quantify this a sigmoidal Hill type 

function (Equation 4.4), can be fitted in the least squares sense to each set of data 

points, see e. g. (Olsen et al. 2010, Rothman et al. 2009, Silver 2010). 

 
𝑓(𝐼𝑖) = 𝑅𝑚𝑎𝑥

(𝐼𝑖 − 𝛽)
𝑛

𝜎𝑛 + (𝐼𝑖 − 𝛽)
𝑛

 (4.4) 

For a normalizing network there will be a clear increase in σ (since the additive 

term in Equation 4.3 here will turn out as σ), while 𝛽 and Rmax remain approxi-

mately constant. For output gain on the other hand σ and β will stay approxi-

mately constant, but Rmax will be scaled down for increased modulatory input. If 

on the other hand Rmax and σ remain constant while there is primarily an increase 

in β for increased input to the other minicolumns, it can be concluded that the 

modulatory effect of the network is primarily subtractive.  
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Since normalization and output gain models will result in changed gain of the 

response curve for increased modulatory input, this was also evaluated. The gain 

of the IO curve was calculated as the average derivative of the fitted function 

between output values ystart and ystop, see e. g.  Rothman et al. (2009), where ystart 

and ystop can be varied to evaluate the gain for different parts of the IO curve. 

Normalized gain for each IO curve was then calculated as the gain for the 

specific curve, divided by the gain of the curve corresponding to the smallest 

modulatory input.  

In the IO test we only study the output from one minicolumn. In addition this test 

does not allow varying input relations and input magnitude freely but a certain 

input magnitude is tied to a specific relation between the inputs. It was as well 

deemed important to study how an input vector with fixed input relations is 

processed for increased input magnitude. This brings us to the second test used 

for the network evaluation. 

The Fixed Input Relations test   

To study how the networks process a specific input vector - that is all outputs for 

a specific input - a second test where the input relations are held constant, while 

the input magnitude is varied was constructed for the purpose of this project. This 

test will be referred to as the “fixed input relations test” (FIR). The result is 

visualized as a graph (denoted FIR graph, see also Figure 5.1) were the outputs 

from the network are plotted as a sequence of histograms for increased input 

magnitude. The histograms from the FIR test can show for which input 

magnitude normalization starts up and breaks down, and also help clarify how 

input relations and magnitude affect the functionality of the network separately 

This test thus enables evaluating in which range of input relations and input 

magnitudes a network approximate normalization, even if it is not perfectly 

normalizing. This is something not possible with the more standard IO test. For 

the purpose of a quantitative comparison between different model versions this 

test is also quantified for some specific model vectors (see Section 4.3.3).  

4.3.2 Normalization vs output gain-control and subtractive 

inhibition 

This section study the theoretical models in the light of the IO test and the FIR 

test. The results of performing these tests for the theoretical models are seen in 

Figure 4.4.  

 

IO test theoretical models 

Considering the IO test, important to note is that both the normalization and 

output gain model will give reduced gain (i. e. sensitivity to an increase driving 

input) of the IO curve, for an increased modulatory input. A difference is though, 

that for normalization it is still possible to reach the previous max output value 

(even if this will require a larger driving input) while for output gain the max 

output is changed together with the gain. This follows from the definition of 

output-gain where the Rmax is scaled by a constant for a specific modulatory 

input. Another qualitative difference between normalization and output gain is 

that for normalization the point on the horizontal axis where half max activity is 

reached, is shifted to the right with increased modulatory input, while for output 

gain it stays the same. 
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Table 4.4: Definitions of the theoretical models of cortical processing, and their 
modulatory effects.  

Normalization 
 

 
𝑓𝑖(𝑥̅) = 𝑅𝑚𝑎𝑥

𝑥𝑖
𝑛

𝜎𝑛 + 𝑔([𝑥1, 𝑥2, … 𝑥𝑚]) + 𝑥𝑖
𝑛 (4.5) 

 𝑔(𝑥̅) = 𝑑∑𝑥𝑗
𝑘

𝑗≠𝑖

 
 

I Gain change of the IO curve for increased modulatory input.  
II No change in Rmax, but the driving input needed to reach saturation is 

increased for increased modulatory input. 
III Average activity in hypercolumn approach a constant value for increasing 

input magnitudes. 
IV For fixed relationships between the inputs, the relationships between the 

outputs show no dependence on input magnitude.  
 

Output gain 
 

𝑓𝑖(𝑥̅) = 𝑅𝑚𝑎𝑥 ∙ 𝑔([𝑥1, 𝑥2, … 𝑥𝑚]) ∙
𝑥𝑖
𝑛

𝜎𝑛 + 𝑥𝑖
𝑛 (4.6) 

 
𝑔(𝑥̅) =

1

(1 + 𝑑 ∑ 𝑥𝑗)𝑗

 
 

I Gain change for lower output rates for increased modulatory input (gain is 
scaled multiplicatively, since the whole function is multiplied by a constant, 
𝑓(𝑥) → 𝑎𝑓(𝑥) 𝑔𝑖𝑣𝑒𝑠 𝑓′(𝑥) → 𝑎𝑓′(𝑥) 

II Rmax is decreased for increased modulatory input. 
III The point on the horizontal axis where half max is reached remain the same 

for increased modulatory input. 
Above features follow from that the IO curve is scaled vertically by a constant for a 
specific modulatory input. 

IV Relations between outputs do not stay the same for increased input 
magnitude. For sufficiently input magnitudes the outputs will all saturate 
and thus the distinction between them is lost.  

V Average output vary with increased input magnitude. 
 

Subtractive inhibition 

 

𝑓𝑖(𝑥̅) = 𝑅𝑚𝑎𝑥
(𝑥𝑖 − 𝑔([𝑥1, 𝑥2, … 𝑥𝑚]))

𝑛

𝜎𝑛 + (𝑥𝑖 − 𝑔([𝑥1, 𝑥2, … 𝑥𝑚]))
𝑛

 (4.7) 

 𝑔(𝑥̅) = 𝑑∑𝑥𝑗
𝑚

𝑗

 
 

I No gain change for increased modulatory input when considering points of 
similar output value. 

II No change in Rmax for increased modulatory input. 
III Curve keep its shape but is shifted to the right on the horizontal axis for 

increased modulatory input. 
Since subtractive inhibition is defined as subtracting a constant amount from the 
independent variable before calculating the output, above features follow directly 
from the definition. 

IV Relations between outputs do not stay the same with increased input 
magnitude. For sufficiently large input magnitudes all non-silenced inputs 
will saturate and the distinction between them is lost.  

V Average output vary with increased input magnitude. 
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A B 

   
C D 

  
E F 

  
Figure 4.4: Illustration of the modulatory effects of the theoretical models. All plots 
are produced by the equations found in Table 4.4 with Rmax = 100, σ = 500 and 
n = 1.5. Continuous lines: activity with zero modulatory input. Dashed lines: average 
activity for all computational unit. Modulatory inputs: 500, 1000 and 1500 to two 
additional computational units respectively. A, C, E) IO test. B, D, F) FIR test ͞x = a [0.1, 
0.2, 0.3, 0.4] for increasing a. A, B) Normalization (Equation 4.5) with d = 1. C, D) 
Output-gain control (Equation 4.6) with d = 0.0005 and m = 1. E, F) Subtractive 
inhibition (Equation 4.7) with d = 0.15 and m = 1. For graphical notation see Table 5.1 
p. 58. 

For subtractive inhibition on the other hand there is no gain change at all, the 

curve keeps it’s shape but is only shifted along the horizontal axis. This follows 

straight from the definition since we are subtracting a constant from the 

independent variable of a function.  

If we consider the average output from the network for the normalization model, 

it approaches a constant value 1/𝑛𝑚𝑐 ∙ 𝑅𝑚𝑎𝑥 for increased input to the studied 

minicolumn. For output gain the average will first increase and then decrease and 

is thus bounded but not stable. For subtractive inhibition on the other hand the 

average is strictly increasing and only stable when all non-silenced input units 

have reached their max firing rate. All these features are seen in Figure 4.4 and a 

mathematical analysis that shows the same is indeed true also for other values of 

the constants in Equations 4.5 - 4.7 was conducted and is found in Appendix 7.1.  
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FIR test theoretical models 

If we consider the FIR test, we see that normalization is the only modulatory 

effect that can keep both the input relations and the average output stable for 

increasing input magnitude while keeping distinction between the outputs. These 

features are all important for the networks information processing abilities e. g. if 

we wish to see the outputs from the network as encoding probability assessments. 

Simply put if the inputs are considered as evidence for a certain class, we do not 

want the probabilities for all outcomes to increase to twice the previous value, if 

all evidence are increased by a factor of two. This would mean the total 

probability would no longer sum up to one. It would also not be good if the 

average output is kept constant but for increased input magnitude the relations 

between the outputs change. That would mean there would be a different 

outcome if all inputs were increased by a common factor. Note that while both 

subtractive inhibition and output gain do have a range for which there is a clear 

distinction between the outputs, and for subtractive inhibition for low input 

magnitudes the relation between the outputs is almost stable; in this range the 

average is strictly increasing. However it is possible to keep the output 

approximately constant over a limited range of input magnitudes for the 

subtractive inhibition model, if there is a “starting input” to the minicolumn not 

creating any modulatory effect as shown in Figure 4.5.  

4.3.3 Quantifying the Fixed input relations test 

As seen in the previous section a normalizing network, have several important 

features closely related to its information processing abilities. This was used to 

quantify the FIR test to enable estimation of if a specific model version can be 

considered approximately normalizing for some specific input magnitude range 

and input relations. The features seen in a normalizing network used when 

designing the quantified FIR test were: 

I The average output is kept constant independently of input 

magnitude and the relationships between the inputs.  

II The relations between different outputs (measured as each outputs 

relation to the average output) is constant for increased input 

magnitude.   

III There is distinction between outputs if there is a clear difference 

between the inputs. Depending on the value of n in a normalizing 

network, if and how much the differences between the inputs are 

magnified in the output differs, but they will not decrease if n >=1. 

How these features are quantified is shown in Table 4.5. To evaluate the 

networks normalizing ability for some specific input relations a sequence of input 

vectors ͞xj = aj [c1, c2, .. cn]   ∑ 𝑐𝑖𝑖 = 1 is created for a set of logarithmically 

spaced input magnitudes. For all FIR tests in this thesis the percentual increase in 

magnitude between two consecutive input vectors is 15 %.  The logarithmic 

spacing means the test result will be independent of scaling the input or changing 

the input EPSP and that it is not crucial exactly when the normalization starts up.  

To calculate the region of approximate normalization for some specific input 

relations, all input vectors are processed by the network to produce 

corresponding output vectors. To remove some noise the output vector is  

Table 4.5: Quantification of the FIR tests. Mathematical definition of the different 
criteria for an approximately normalizing network and the FIR score for a specific 
random setup. 
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Set of input vectors  

 

𝑉 = { 𝑥𝑗̅ = 𝑎𝑗[𝑐1, 𝑐2, . . 𝑐𝑛]  | 𝑎𝑗 = 𝑎𝑚𝑖𝑛 ∙ 1.15
𝑗    𝑎𝑗 < 𝑎𝑚𝑎𝑥 ∙ 1.15}  

 

Quantified criteria for an approximately normalizing range 

I) Constant average. For any input vector in the range, the average activity 
in the hypercolumn must not deviate more than pmean percent from the 
average activity in the hypercolumn over the entire sequence.  
 

 
∑
𝑦𝑖(𝑥𝑗̅)
𝑛𝑚𝑐

𝑖

(∑ ∑
𝑦𝑖(𝑥𝑗̅)
𝑛𝑚𝑐

𝑖 )/𝑠𝑒𝑞_𝑙𝑒𝑛𝑔𝑡ℎ𝑗

< 𝑝𝑚𝑒𝑎𝑛  ∀ 𝑥̅𝑗 (4.9) 

II) Distinction between outputs. For any input vector in the range, relations 
between consecutive entries in the output is at least ri. (The inputs are 
assumed to be placed in ascending order in the input vector). 
 
 

𝑦𝑖(𝑥𝑗̅)

𝑦𝑖+1(𝑥̅𝑗)
< 𝑟𝑖      ∀     𝑥̅𝑗  (4.10) 

III) Constant relations between outputs. For any input vector in the range, 
the output from each minicolumn yi in relation to the average output, 
must not deviate more than p i percent from the average output for that 
minicolumn over the entire range in relation to the hypercolumn 
average over the same range. 

 
𝑦𝑖(𝑥𝑗̅)/(∑ 𝑦𝑖(𝑥̅𝑗)𝑖 /𝑛𝑚𝑐)

∑ (∑ 𝑦𝑖(𝑥̅𝑗)𝑖 /𝑛𝑚𝑐)𝑗 /𝑠𝑒𝑞_𝑙𝑒𝑛𝑔𝑡ℎ
< 𝑝𝑖      ∀ 𝑥̅𝑗 (4.11) 

FIR score 

 𝑚𝑎𝑥(a𝑗_𝑚𝑖𝑛/ 𝑎𝑗_𝑚𝑎𝑥)   (4.12) 

Where aj_min and aj_max is the average input for the first and last vectors in a set of 
consequtive vectors that fulfill Equation 4.9 – 4.11 the average input for the first 
vector in the range, divided by the average input for the largest input vector  
 

Parameters for the quantified FIR tests 

 ͞c Pmean ͞r ͞p 

1234 test [0.1 0.2 0.3 0.4] 0.2 [0.5 025 0.15] [F 0.25 0.25 0.25] 

1234 average 
test 

[0.1 0.2 0.3 0.4] 0.2 [F F F] [F F F F] 

1200 test [1/3, 2/3, 0, 0] 0.2 [0.25] 
y1 > 0.1ymean* 

[0.25 .25] 

1200 average 
test 

[1/3, 2/3, 0, 0] 0.2 [F F F] [F F F F] 

F = free (no condition applied) * an additional condition of the smaller output being at 
least 20 % of the average output.
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averaged over four runs of the specific network setup. The quantified criteria 

detailed in Table 4.5 are then used to evaluate the sequence of output vectors to 

give the longest region of input magnitudes over which the network is considered 

approximately normalizing (for the specified input relations). The FIR score for a 

specific random setup is then defined as the quotient between the smallest and the 

largest input magnitude in this sequence of input vectors. This range of input 

magnitudes is also shaded in the FIR graphs. When comparing different network 

model versions, the FIR score is averaged over five different setups using 

different random seeds. This is done to give a fair comparison between model 

versions since the score usually differ between setups.  

A B C 

   
Figure 4.5: Keeping average constant with subtractive inhibition. All plots use 
Equation 4.7 to simulate network activity with Rmax = 100, σ = 500, and n = 1.5, but 
subtract a constant m = 300 from the independent variable in g(͞x).  A) FIR average 
test with inputs ͞x = a[0.25, 0.25, 0.25, 0.25]. If we have a starting input before the 
modulatory effect starts up, it is trivial to keep a stable average when all minicolumns 
have the same input. Here k = 0.25. B) FIR1234 average test. When there is different 
inputs to the minicolumns keeping average is more complicated. However by letting 
some outputs increase and other decrease the average can be kept approximately 
stable over a large range. C) FIR1234 test. For the inhibition strength that keeps 
average constant, the relationships between the outputs is diverging, which results in 
a low FIR score. For graphical notation see Table 5.1 p. 58. 

 

A graphic illustration of evaluating the theoretical models with the quantified 

FIR tests is seen in Figure 4.6. The results show that these tests indeed favor the 

normalization model, and give poor results for the other models, depending on 

their bad ability to a) keep average and relations between outputs constant and/or 

b) keep distinction between outputs. It should however be noted that a network 

can pass these tests for a certain range even if the underlying equations 

describing the network is not the normalization model. A single FIR tests can 

thus not be used to prove that a network is normalizing, which is also not the 

objective for this test.  For evaluating the networks model versions it is as 

important to look at qualitative features in the FIR graph, such as if average is 

strictly increasing or how the relationships between outputs from different 

minicolumns change. The FIR test is also designed to be useful for studying 

when and why normalization starts up and breaks down. The score from the 

quantified FIR tests are used to compare different model versions to see if certain 

changes tend to improve normalization or not. This should not be seen as definite 

proof that one network normalizes better, since other factors need to be taken into 

account as well, but it is a strong indication of better normalization. 
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A B C 

   
D E F 

   

Figure 4.6. Result of applying the quantified FIR tests to the theoretical models. First 
row FIR1234 test, second row FIR1200 test. A, C) Normalization. B, E) Output gain. 
C, F) Subtractive inhibition. Equations in Table 4.4 are used to calculate the output for 
the set of input vectors specified in Table 4.5, with n = 1.5, Rmax = 100 and σ = 500. For 
normalization d = 1.0, for output gain d = 0.0005 and for subtractive inhibition 
d = 0.15. For graphical notation see Table 5.1 p. 58.  
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5 Results 
This chapter first presents some results on how the IO curve of a single model 

neuron and minicolumn is affected by increased amounts of Poisson inhibition. 

Then the results from Model A with standard parameters are shown. Thereafter 

the effects of feed-forward and feed-back inhibition only, that is Model A1 and 

A2, are studied, to help understand network functionality, and find eventual 

mechanisms that contribute to a normalizing network. Then Model A tuned for 

improved performance is revisited and a number of additional changes are 

evaluated. Those include increased variability in the network; changed strength 

of the recurrent connectivity in the pyramidal and basket cell populations; and the 

use of model neurons with more realistic firing characteristics. Last Model B and 

the effect of adding short-term depression is evaluated. The chapter is organized 

to let the reader follow the investigation. Since interpretation of the results were 

important for choosing the next step, there is also a discussion of implications 

and causes for different results. The Discussion chapter however give a more 

comprehensive discussion of results and implications. 

Notation for IO and FIR graphs  

Since a large number of similar graphs is presented in the results chapter, the 

graphical notation for the IO and FIR graphs, is not repeated in the subtext of 

each graph but instead summarized in Table 5.1 and Figure 5.1. 

5.1 Model A standard parameters 

This section presents results from studying a single neuron, a single minicolumn 

and Model A with standard parameters. These results constitute a starting point 

for further investigations of the hypercolumns normalizing ability. For all 

experiments in this section the standard parameters for Model A found in 

Table 4.2 were used.  

5.1.1 Single model neuron and minicolumn 

First the effect on the model neuron response curves when adding a small current 

or conductance based inhibitory input was studied. This was then repeated for a 

single model minicolumn receiving inhibitory input from the basket cell 

population. The purpose of these tests were to see if different modulatory effects 

are present in a single neuron, a single minicolumn and the complete 

hypercolumn module.  

IO curves for model neurons  

How the model neurons response curves are affected by different amounts of 

direct inhibition (as opposed to inhibition mediated through the basket cell 

population) is seen in Figure 5.2. The pyramidal cell response curve is a good fit 

to a sigmoidal Hill function (Equation 4.4) with Rmax = 285, n ≈ 1, σ ≈ 1500 and 

increased offset β for larger amounts of inhibition. The basket cell response curve 

have similar fit parameters but a higher maximum output. The clear horizontal 

shift of the curves for increased amounts of inhibition, show that the modulatory 

effect of an inhibitory input, is best described as subtractive. This applies to both 

the pyramidal and basket cell, and implies that with this neuron and synapse 

model and these synaptic weights, the model neurons does not intrinsically 

implement a mechanism that result in normalization or output gain control, when 
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receiving a inhibitory synaptic input. A feature not explained by a pure 

subtractive shift of the IO curve is that the onset of firing is smoother for a 

neuron receiving Poisson inhibition. This means the shape of the response curve 

is changed in a way that reduce gain for low firing rates. 

Table 5.1: Summary of graphical notation for FIR and IO graphs 

Notation IO test graphs 

Continuous lines Activity in studied minicolumn. 

Dotted lines Activity in the minicolumn that receives the 
second largest input of the not studied 
minicolumns. 

Dashed lines Average activity in the hypercolumn. 

Color code Lines of the same color correspond to a specific 
modulatory input. For sigmoid fits only the activity 
in the studied minicolumn is seen. 

 

Notation FIR test graphs 

Continuous  
black line 

Average activity in hypercolumn.  

Dashed black line  Activity in basket cell population.  

Histograms Each group of bars show activity in the network 
minicolumns (that is network output) for a specific 
input magnitude. Bars of the same color 
correspond to the same minicolumn. 

 

Continuous lines 
with dots 
 

Activity in each minicolumn as percentage of the 
average activity in the hypercolumn. Color coded to 
correspond to the minicolumns in the histogram. 
This is plotted against the scale of the y-axis as 
percentage. 

 

Blue shaded region Longest range passing the FIR1234 or FIR1200 test.  

Grey shaded region Longest range passing the FIR1234 average or 
FIR1200 average test. 

 

 

A B 

  
Figure 5.1: Notation for IO and FIR graphs. A) IO graph. B) FIR graph.  
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This is a feature typical for an in vivo neuron experiencing a noisy input (Silver 

2010). Here the increased variance is a result of that a) For higher amounts of 

inhibition a higher input frequency is needed to reach a certain output and the 

variance of the driving Poisson process will thus be higher (for a Poisson process 

variance equals average rate) and b) The inhibition will also contribute to the 

variance since the variance of the superposition of two independent subprocesses 

(here the excitatory and inhibitory Poisson inputs), equals the sum of the 

individual variances.  

 
A B 

  
C D 

 
 

Figure 5.2: How the model neurons IO curves are affected by increased amounts of 
inhibition. All lines are fits to a sigmoidal Hill function (Equation 4.4). A) Pyramidal cell 
receiving Poisson excitation and inhibition. Inhibition: 0, 200, 400, 600 and 800 Hz. Fit 
is done to data points below 175 Hz output. Note the clear subtractive shift of the IO 
curve. B) Same as A, but for basket cell. C) Same as A, but the fit is done to points below 
50 Hz output. Note how increased Poisson input and inhibition creates a smoother 
onset at rheobase which makes the IO curve similar to a power function at the firing 
onset. The dominating feature is however still the subtractive shift. D) Pyramidal cell 
instead driven and inhibited by a steady state current. Inhibition: 0, 50, 100, 150 and 
200 pA. Note the sharp onset of firing and that the curves are perfect subtractively 
shifted versions of each other.  
 

Single minicolumn receiving basket cell inhibition 

To test how a single minicolumn is affected by increased amounts of inhibition 

the parameters and setup from Model A were used. This means the same noise 

input to pyramidal cells, input variance, recurrent connectivity within the 

minicolumn and connectivity from basket cell population to the minicolumn. 

However the input to the basket cells was for this test not related to the input or 

the activity in the minicolumns (as is the case in the hypercolumn module). That 

is for this test the network was ran with only one active minicolumn, and the 

input to the basket population varied freely.  
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The result is seen in Figure 5.3. Not surprisingly the IO curve for a single mini-

column is still well described by a sigmoidal Hill function. When a modulatory 

input is added the IO curve is shifted to the right on the horizontal axis, while 

gaining a smoother threshold at rheobase. This is in analogue with how the IO 

curve of the single neuron was affected, and for these parameter values using a 

computational unit composed of several neurons does not result in any 

qualitatively different effect. One difference is that output from a minicolumn is 

less noisy than that from a single neuron because averaging reduce variance. The 

IO curve also has a steeper slope, which is a consequence of the recurrent 

connectivity in the minicolumn. 

 

A B 

  
Figure 5.3: The effect on the IO curve of a single minicolumn of increased amounts of 
inhibition from the basket cell population. Lines are Hill function fits (Equation 4.4). 
A) IO curves for a single minicolumn. Driving input to the basket cell population: 0, 
1400, 1700, 2000 and 2300 Hz. Fit is done to outputs below 200 Hz. Note that 
increased inhibition does not affect the max firing rate, only when it is reached.  
B) Same as A but the fit is done to points below 55 Hz.  

5.1.2 No inhibition  

For reference the networks information processing characteristics without any 

inhibition was studied. This means Model A, but with a connection probability of 

zero between basket and pyramidal cell populations as well as between pyramidal 

and basket cell populations. The result of the IO test and the FIR1234 test are 

seen in Figure 5.4 A and B. Response curves for different amounts of input to the 

other minicolumns all collapse to a single curve since without feed-back or feed-

forward inhibition the input or activity in the other minicolumns do (of course) 

not affect the studied minicolumn. The average is not surprisingly strictly 

increasing for increased input to the studied minicolumn, as well as for increased 

input to the other minicolumns.  

The FIR1234 test show one feature which tend to give this setup poor 

information processing characteristics. As the input magnitude increase the 

differences between the outputs diminish and thus gradually any information 

about the relationships between the inputs is lost, as all units reach their max 

firing rate. This non inhibitory network pass the FIR1234 average test over a 

small region simply because a certain increase in average is allowed. It does 

however not pass the FIR1234 or FIR1200 test for any range which is because of 

it’s poor ability to keep distinction between outputs. This is also illustrated in the 

spike histogram and raster plot for an input vector ͞x = [200, 400, 600, 800] Hz 

seen in Figure 5.4 C and D. The outputs are clearly more similar in magnitude 

than the inputs even for this quite moderate input magnitude. If this result is 
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compared to the network model versions with inhibition, independently of their 

specific modulatory effect, it is clear why it can be advantageous for the 

biological nervous system to “step at the gas and the break simultaneously” 

(Isaacson & Scanziani 2011).  

A B 

  

C D 

  
Figure 5.4: Characteristics of Model A standard parameters, without inhibition.  
A) IO test. Input to the other minicolumns: 100, 400 and 700 Hz for blue, red and 
green curves respectively. Note that all IO curves for the studied minicolumn 
coincide. B) FIR1234 average test. We see that average is strictly increasing and that 
the relations between the outputs is diminishing for increasing input magnitude.  
C) Spike histogram for the four minicolumns, for input ͞x  = [200, 400, 600, 800] Hz.  
D) As C but raster plot. For C and D numbers in parenthesis to the right of each figure 
are input to the respective minicolumns and the basket cell population. In figure D 
also average activity in each minicolumn and the basket cell population is seen. 
 

5.1.3 Model A – complete network 

As a starting point for further investigations, Model A with standard parameters 

was studied. Some network characteristics for two input vectors ͞x1 = [200, 400, 

600, 800] Hz and ͞x2 = [800, 1600, 2400, 3200] Hz are seen in Figure 5.5 and 

Figure 5.6. It can be seen that all minicolumns are suppressed by the activity in 

the basket cell population, and that the distinction between outputs is better 

compared to the network without inhibition. It can also be noted that there is a 

short delay before the inhibition sets in – the same effect is seen in cortex 

(Isaacson & Scanziani 2011) - and thus all minicolumns start up firing, but as 

soon as the basket cell population gets active the activity is dampened and the 

minicolumns receiving a smaller input is almost or completely silenced.  

After 5 to 25 ms the network is stable in the sense that there is either oscillatory 

activity with a fixed frequency and amplitude, or more irregular firing. For both 

cases there is a stable output rate if averaged over approximately 100 ms. For the 

lower magnitude input vector in Figure 5.5 there is a pronounced oscillatory 
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activity with frequency determined by the synaptic delay time and the membrane 

time constant. This oscillatory activity is created by the dynamics of the feed-

back inhibition and here gives gamma oscillations. Gamma oscillations was also 

seen in the original attractor memory model (Lundqvist et al. 2006). That 

oscillatory activity is more pronounced for lower magnitude inputs depends on 

that feed-back input to the basket cells then dominate over the feed-forward 

input.  

A B 

  
C D 

  
Figure 5.5: Network activity for a 500 ms run with input ͞x  = [200, 400, 600, 800] Hz. 
A) Spike histogram. Note that the minicolumns with smaller input start up spiking but 
are silenced after a couple of milliseconds. B) Raster plot. C) Voltage traces for 5 
randomly chosen neurons in each minicolumn. D) Distribution of average spike 
frequency for neurons in each minicolumn. Neurons are sorted according to their 
average firing rate and dashed line is average activity in minicolumn. Numbers to the 
right of each figure in parenthesis show input to the respective minicolumns. 
Numbers below those in A show average firing rate in each neural population.  

 

That single cells reach higher output rates than in the original model (especially 

pronounced when there is oscillatory activity) is a consequence of the absence of 

short-term synaptic depression and adaptation and that the driving input to a 

minicolumn can be considerably stronger than in the attractor memory model. 

The output from the network show clear signs of average control. The average 

activity in the minicolumns (and thus also the hypercolumn) is although slightly 

larger for Figure 5.6 clearly smaller than twice the average for the smaller input 

vector even though input magnitude was increased by a factor of four. It should 

also be noted that, for both input vectors, minicolumns with smaller inputs, are 

suppressed to a higher degree than those with larger inputs. When studying the 

distribution of average spike frequencies for each minicolumn it can be seen that 

the randomization of neuron size and driving input creates a small variance in 

firing frequency.  
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A B 

  
C D 

  
Figure 5.6: Network activity for a 500 ms second run with input ͞x = [800, 1600, 2400, 
3200] Hz A) Spike histogram. B) Raster plot. C) Voltage traces for 5 randomly chosen 
neurons in each minicolumn. D) Average spike frequency for neurons in respective 
minicolumn. Dashed line is average activity in minicolumn.  

 

IO test Model A standard parameters  

The result of IO test for Model A with standard parameters is seen in Figure 5.7 

and Figure 5.8. To get the bigger picture the network was first tested on different 

input magnitude scales. In Figure 5.7 A two regions can be discerned in the IO 

curve: First the output start saturating at a level lower than the max firing rate 

given by the neuronal parameters, but then the average starts increasing again 

approaching the same max firing rate seen for the network without inhibition. In 

the first region (in the following referred to as “the modulatory region”) it is clear 

that the activity in the studied minicolumn is suppressed by increased input to the 

other minicolumns as well as the other way around. However, in the second 

region all curves almost collapse to one, indicating that we no longer have 

any/very small modulatory effects on the studied minicolumn. This depends on 

that the input to the studied minicolumns is so much larger than the input to the 

other minicolumns. For higher inputs we can also note that the hypercolumn 

average is ¼ of the average firing rate of the studied mc – this since all the other 

minicolumns are silenced - and that the average keep increasing until the output 

of the studied mc saturate. 

So in the modulatory region the feed-forward and feed-back inhibition do keep 

the output approximately bounded over a certain range of input magnitudes, but 

as input magnitude increases this is no longer the case. In fact for the setup used 

in all model versions in this thesis, the average control will always break down 

eventually since the excitatory input can be increased without bound, while the 

inhibition from the basket cell population is bounded by EPSCpyr_bas·NI· 
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Rmax_bas·pbas_pyr. Inhibitory activity will also grow sublinearly for a linear increase 

in excitatory input for a range before that happens.  

However since a biological system always have an operating range (and the input 

to a biological minicolumn in vivo will be bounded), it was not considered as 

crucial whether the system breaks down for very high input magnitudes or not. 

Instead we were primarily interested in the region of lower input showing the 

modulatory effects we wish to study. However since one of the benefits of 

normalization is to extend the dynamic range of a system, it was seen as an 

advantage with network model versions that prolong the operating range. 

A B 

  
Figure 5.7: Result of IO test for Model A on different input magnitude scales. Average 
input to additional minicolumns: 100, 400, 700, 1000 and 1300 Hz for both plots.  A) 
Input to studied minicolumn 0-10 000 Hz. B) Input to studied minicolumn: 0-3000 Hz. 
See table 5.1 for graphical notation. 

  

A1 B1 

  
A2 A3 B2 B3 

    
  

Figure 5.8: Hill function fits (Equation 4.4) for Model A, standard variables. A1) Hill 
function fit using datapoints below 80 Hz output. A2. Modulatory inputs: 100, 400, 
700, 1000 and 1300 Hz. A2) Normalized gain for curves in A1 between 5 and 80 Hz 
output. A3) Offset for curves in A1. B1) Hill function fit to data points below 20 Hz. 
Modulatory input: 50, 150, 250, 350 and 450 Hz. B2) Normalized gain for curves in B1 
calculated between 2.5 and 20 Hz. B3) Offset for curves in B1. 
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The results from the IO test in the modulatory region is studied in more detail in 

Figure 5.8 where a sigmoidal Hill function (Equation 4.4) is fitted to the data 

from Figure 5.7 B as well as to data from performing the IO test with smaller 

modulatory inputs. To visualize the amount of gain change “normalized gain” 

were computed for the fitted functions. This is as described in Section 4.3.1 

calculated as the average derivative for each curve between some chosen ymin and 

ymax divided by the average derivative for the curve corresponding to the smallest 

modulatory input. Offset were also plotted as function of the modulatory input, 

where offset is defined as the subtractive shift β in Equation 4.4. It is clear that 

for larger modulatory inputs and larger output rates the effect on the response 

curve of the studied minicolumn is primarily subtractive. There is in principle no 

gain change, and a very pronounced subtractive shift to the right on the 

horizontal axis. 

However as seen in Figure 5.8 B1-B3, for smaller modulatory inputs and low 

output rates there is in addition to a shift in rheobase or “offset”, also a noticeable 

gain change. This is even more pronounced for very low output rates (below 

5 Hz). For input rates over 10 Hz the subtractive shift dominates also here. 

FIR tests  

The results of the FIR1234 and FIR1200 tests are seen in Figure 5.9. It is clear 

that for high input magnitudes the FIR characteristics are similar to the 

subtractive inhibition model. The distinction between the outputs gradually 

diminish as they reach their max firing rate for increased input magnitude while 

the average output from the hypercolumn is increasing fast. However in the low 

input region there is better distinction between the outputs compared to the 

network without inhibition. At the same time the output relations are stable over 

a larger range of input magnitudes than what is the case for the subtractive 

inhibition model (compare to Figure 4.4 F and 4.5 C). This indicate that the 

network show some weak normalizing effects. The longest approximately 

normalizing region according to the FIR tests lies between 150 and 500 Hz input 

magnitude. This is in agreement with that it was for this region a gain change was 

seen for the IO test.  

Considering the relationships between the outputs (remember continuous lines 

with dots plot the output in each minicolumn as fraction of the average output), a 

“bubble” is seen: First the differences between the outputs diminish since the 

inhibition is not yet strong enough to counteract the increasing input magnitude, 

but then the differences start increasing and the minicolumns with smaller inputs 

are almost completely silenced - the network enters a WTA mode. After that the 

distinction between the outputs is gradually lost as the inhibition no longer keeps 

up with the increasing input magnitude.  

This means the network suppresses smaller inputs to a higher percentage for 

medium input magnitudes and that input magnitude thus has a substantial effect 

on the network functionality, which is not the case for a normalizing network. 

This first half of the bubble can though be compared to Figure 4.5 C and the 

second half to Figure 4.6 C, which give at hand that these features arise in a 

system characterized by subtractive inhibition. It could be noted that the longest 

region of approximately stable output relations is seen where there is a slowly 

increasing average, and that the region of approximately stable average is 

considerably longer than the region of approximately stable output relations, but 

at the far end exhibiting WTA features. 
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A B 

  
C D 

 

  
Figure 5.9: Some network characteristics for Model A standard parameters. A) 
FIR1234 test. B) FIR 1200 test. Note the “bubble” where the relationships between 
the outputs first increase and then decrease. C) Relationship between outputs for a 
network with two active minicolumns, as a function of input to the respective 
minicolumns. D) As C but average activity in the network as a function of input to the 
two minicolumns. Note that average is neither stable for increasing input magnitude, 
nor for fixed input magnitude and varying input relations. 

 

That the qualitative features of the two different FIR tests are similar indicate that 

both can be used to estimate the normalizing ability of a network. To further test 

this hypothesis over a larger range of input relations, a second test was performed 

were the relation between the outputs for a network with two active minicolumns, 

as a function of the input to the respective minicolumns was studied. That is the 

output from the network ͞y= [y1, y2, 0, 0] was evaluated for each data point and 

the graph depicts the contour plot of y1/y2. The result is seen in Figure 5.9 C. 

Note that for a specific relationship between the inputs, the output for increased 

input magnitude can be traced by following a straight line in the graph with slope 

decided by the relationship between the inputs. If such a line cross the contour 

lines of the plot this means the relationship between the outputs change with 

input magnitude.  

That this is clearly the case for this network independently of the slope of the line 

(as long as it is not one), show that the characteristics seen in the FIR graphs is 

true also for other input relations. It should however be noted that the change in 

output relations happens faster for more dissimilar inputs. This is important since 

it means to prove that a network is normalizing in a certain range of input magni-

tudes, it is not enough to study a single FIR test; it has to be combined with this 

type of test and the IO test.  
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IO test vs FIR test  

How can the results from the IO test and the FIR tests connected? It should be 

noted that for the IO test in contrast to the FIR test, the relationship between the 

inputs is not constant for increased input magnitude but a certain relationship 

between the inputs is tied to a certain input magnitude. The quotient between the 

input to the studied minicolumn and input to the other minicolumns will thus for 

low input magnitudes be very low and for high input magnitudes very high. Since 

the network tend to suppress an input that is small in relation to the average input 

to a higher degree than larger inputs, this explains why also for the region where 

the network can keep output relations stable for the FIR1234 test, the IO curve 

does not follow the normalization model (even if some gain change is seen).  

Concluding remarks Model A standard parameters  

Model A with standard parameters show weak normalizing features for low input 

magnitudes and inputs similar in input magnitude. Within a range of 100-500 Hz 

the input magnitude can be increased with factor of three while keeping 

approximately the same average activity and relationships between outputs 

(where approximately means there in fact might be about a 50 % increase). The 

result of the IO test and the qualitative features of the FIR tests however show 

that the network, although able to approximate normalization over a certain range 

of input relations and magnitudes, is qualitatively most accurately described by 

the subtractive inhibition model. However some normalizing features are seen 

which are not explained by this model so the next step in the investigation was to 

try and understand what creates those and whether the mechanisms might be 

possible to extend. As a basis for further investigations a hypothesis of the 

parameters most likely to affect the modulatory effects of the network was 

constructed. 

5.1.4 Hypothesis of important parameters 

To evaluate the hypercolumn module the effects of different parameter changes 

needed to be evaluated. It is not feasible to systematically test all possible 

parameter combinations for the vast parameter space of a spiking neural network 

model. The question is then which parameters changes should be evaluated? One 

way of reducing the parameter space is considering dependencies, for example is 

it probable that the PSP sizes are more important than the specific neuronal 

membrane parameters and synaptic weights.  

The choice of parameters and features to investigate was primarily based on that 

the fact that the network is designed for population rate coding.  Since the output 

rate for a certain input is decided by a computational units IO curve, the most 

important parameters are those that affect either the strength of the excitatory or 

inhibitory drive to the different neuron populations or the shape of the IO curve. 

This means for example the fraction of the input to the minicolumns that is fed to 

the basket cells as feed forward inhibition and the strength of the feed-back from 

the minicolumns to the basket cells. It also includes, the strength of the inhibition 

from the basket cells to the minicolumns as well as, the recurrent connectivity 

within the basket cell and pyramidal cell population. 

For further investigations the starting point was the hypothesis that the three most 

important parameters for network functionality is (see Table 4.2. for parameter 

definitions):   
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 Strength of the feed-forward drive to the basket cell population:  

 ∝ 𝑝𝑖𝑛_𝑏𝑎𝑠 ∙ 𝑁𝐼 ∙ 𝐸𝑃𝑆𝐶𝑒𝑥𝑡_𝑏𝑎𝑠 (5.1) 

 Strength of excitatory drive from the minicolumns to the basket cell 

population: 

 ∝ 𝐸𝑃𝑆𝐶𝑝𝑦𝑟_𝑏𝑎𝑠 ∙ 𝑁𝐸 ∙ 𝑝𝑝𝑦𝑟_𝑏𝑎𝑠  (5.2) 

 Strength of inhibitive drive from basket cell population to minicolumns:  

 ∝ 𝐸𝑃𝑆𝐶𝑝𝑦𝑟_𝑏𝑎𝑠 ∙ 𝑁𝐼 ∙ 𝑝𝑏𝑎𝑠_𝑝𝑦𝑟 (5.3) 

 Noise input to the pyramidal cells in relation to noise input to the basket 

cells. Since noise input to pyramidal cells will be held constant, this 

reduce to: 

 𝑛𝑜𝑖𝑠𝑒𝑏𝑎𝑠  

The strategy when tuning the different network versions was to start with 

inhibition strength and noise to basket cells to create a network that performed 

good on the IO test as well as the FIR1234 and FIR1200 tests. For the IO test this 

in practice means gain change and average control, and for the FIR test average 

control and stable output relations for as long input range as possible. Changing 

pyramidal and basket cell parameters, such as average size and membrane time 

constants, was not tested explicitly for different model versions. However during 

some exploratory studies in the beginning of the project those were not found to 

affect the network behavior in any significant way as long as synaptic weights 

were tuned to give similar PSPs.  

When a network model version was tuned, for some version additional 

parameters were tested, and. Those include primarily:  

 Recurrent connectivity in basket and pyramidal cell population 

 𝑝𝑝𝑦𝑟_𝑝𝑦𝑟  , 𝑝𝑏𝑎𝑠_𝑏𝑎𝑠  

 Standard deviation for input to pyramidal and basket cells: 

 𝐼𝑛𝑝𝑢𝑡𝑟𝑠𝑑_𝑝𝑦𝑟 , 𝐼𝑛𝑝𝑢𝑡𝑟𝑠𝑑_𝑏𝑎𝑠  

 

 Standard deviation on pyramidal and basket Cm. 

 𝐶𝑚_𝑟𝑠𝑑_𝑝𝑦𝑟 , 𝐶𝑚_𝑟𝑠𝑑_𝑏𝑎𝑠  

A feature not captured by any specific parameter, that were also investigated was 

using a variable number of incoming connections to postsynaptic neurons.  

5.2 Model A1 - Feed-forward inhibition 

This section describes the result from studying Model A1, that is Model A 

without any feed-back inhibition. The aim of the performed tests was to discern 

which role feed-forward inhibition plays in creating the weak normalizing effect 

seen in the low input magnitude region for Model A standard. First the network 

was studied with the same standard parameters used in Model A. Then the effects 
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of different parameters changes were investigated. A simplified mathematical 

model of the feed-forward network was also constructed and analyzed to better 

understand its modulatory effects. 

Network characteristics for a single input vector 

First network characteristics for a single 500 ms run of Model A1 with input 

͞x = [400, 800, 1200, 1600] Hz was studied. The results are seen in Figure 5.10 

and are similar to those seen for Model A. However for feed-forward inhibition 

there is no clear oscillatory activity in the network although there are 

dependencies between the different minicolumns introduced by their common 

inhibitory input. The excitatory input to the minicolumns proceeds the inhibitory 

by a couple of millisecond, a dynamic also present in cortex for this type of feed-

forward circuit (Isaacson & Scanziani 2011).  

A B 

  
C D 

  
Figure 5.10: Network activity in Model A1 for a single input vector ͞x = [400, 800, 
1200, 1600] Hz A) Spike histogram. B) Raster plot. C) Voltage traces for 5 randomly 
chosen neurons in each minicolumn. D) Distribution of spikes for neurons in each 
minicolumn. Dashed line is average activity in minicolumn. Numbers in parenthesis to 
the right of each figure show input to the respective minicolumns. In A also average 
firing rate in each neuron population is seen. 
 

5.2.1 Tuning inhibition strength.  

How is the normalizing ability of Model A1 affected by different parameter 

changes? If we considered the parameters hypothesized to have the largest impact 

on network functionality, those will for Model A1 be reduce to feed-forward 

drive to the basket cell population and the strength of the inhibitory drive to the 

minicolumns. The effect of changing the feed-forward drive was examined by 

varying both pin_bas and EPSCext_bas. The effect of changing the inhibitory drive 

from pyramidal to basket cells was primarily investigated by varying IPSCbas_pyr.  
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Keeping average constant  

One feature of a normalizing network is as mentioned that it keeps the average 

output constant for increased input magnitude. The intuitively most direct way to 

accomplish this in a feed-forward network is to tune inhibition strength to 

counteract any increase in input magnitude. This approach was used to see if it 

could improve the networks normalizing ability. Both changing the feed-forward 

drive to the basket cell population and the strength of the inhibitory connections 

from the basket cell population to the pyramidal cell population was tested, using 

the FIR1234 as a measurement of the networks normalizing ability. At the same 

time the FIR1234 average test was used as a measurement of average control.  

The change in how the network process an input vector with constant input 

relations when tuning EPSCext_bas is seen in Figure 5.11 A1-A3. It is clear that a 

too small synaptic weight will not give enough average control. A too large value 

on the other hand will increase the rate at which the relations between the outputs 

diverge for increasing input magnitudes. Considering the relationships between 

the outputs, the result are qualitatively similar to those for Model A with standard 

parameters, creating the same characteristic “bubble” of first increasing and then 

decreasing relationships between the inputs, although this is less pronounced 

when inhibition is weaker.  

To investigate performance over a more extensive range of parameter values, the 

FIR1234 test and the FIR average test was performed for 20 logarithmically 

spaced EPSCext_bas values in the range [0.0014, 0.17] pS. A slightly smaller range 

is plotted in Figure 5.11 D to highlight the interesting part of the curve. The FIR 

scores are averaged over 5 random seeds (note that for the FIR graphs each graph 

is produced using a single random seed, since they reflect the performance of a 

single random setup). The result of the parameter search show that a quite narrow 

range gives the best FIR scores. It should also be noted that the best average 

control does not coincide with the longest normalizing region, although they are 

quite close in the EPSCext_bas space. This unfortunately means that simply tuning 

inhibition strength to keep average constant is not enough to create a normalizing 

network. The best FIR1234 score lies in a similar range (between 5 and 6 times 

increase in input magnitude) if instead pin_bas or IPSCbas_pyr are tuned (see 

Figure 5.11 E-F). Tuning IPSCbas_pyr however resulted in the longest region of 

approximately stable average - almost 30 times increase in input magnitude - but 

we see WTA behavior and not normalization over a large part of this range. 

However, it should be noted that the result of tuning these three parameters are 

qualitatively very similar.  

Basket cell IO curve and average control  

To understand why there is a limit to the longest region of stable averages it 

should be remembered that the IO curve of the basket cell population is 

sigmoidal. This means that a) There is no region of stable growth, but the gain is 

first increasing and then decreasing (see Figure 5.14 for a plot of the Hill 

function derivative) and b) Eventually the basket cell curve will start saturating 

and thus no longer keep up with the growing input. The first property means that 

for increased input strength the gain of the basket population’s IO curve will first 

be supralinear and then sublinear (note the logarithmic scale on the horizontal 

axis for the FIR plots). This is the reason a feed-forward drive to the basket cell 

population appropriate for a stable average in the lower input region can result in 

too much inhibition for the medium input region. 
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It is also clear that a problem when strengthening the inhibition by scaling p in_bas 

or EPSCext_bas, is that the point on the horizontal axis where the gain of the basket 

cell population start decreasing is shifted towards lower input magnitudes. This is 

could be addressed in future studies by using a variable size of basket cells, 

giving a gradual recruitment of the inhibitory population, and should thus not be 

considered as problematic as the diverging output relations. 

A1   pin_bas                  0.05 pS A2                      0.075 pS A3                      0.15 pS 

   
B1   EPSCext_bas               0.005 pS B2                       0.0075 pS B3                      0.0125 pS 

   
C1   IPSCbas_pyr             1.2 pS C2                         2.4 pS C3                       3.5 pS 

   
D E F 

   
Figure 5.11: The effect of changing the inhibition strength in Model A1. A1-A3) Changing 
pin_bas. From right to left pin_bas: 0.05, 0.075 and 0.15. B1-B3) Changing EPSCext_bas. From 
right to left EPSCext_bas: 0.005, 0.0075 and 0.0125 pS. C1-C3) Changing IPSCbas_pyr. From 
right to left IPSCbas_pyr:  1.2, 2.4 and 3.5 pS. D-F) Parameter search over D) EPSCext_bas E) 
pin_bas F) IPSCbas_pyr . Blue line = FIR score. Green line = FIR1234 average score. All scores 
are averaged over 5 different random seeds. Note how the network is quite sensitive to 
tuning, and how the peak of the average score is shifted towards a slightly stronger 
inhibition than the best FIR1234 score. 
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More on output relations 

As for Model A the relations between the outputs for different input relations 

than those in the FIR tests was investigated. The relationships between the 

outputs for a hypercolumn with two active minicolumns, as a function of the 

inputs to the two minicolumns is seen in Figure 5.12 A. It can be seen that output 

relations are not stable for increased input magnitude. It is also clear that they 

diverge faster for more dissimilar inputs. Compare with the theoretical 

normalization model in Figure 5.12 B. 

A B 

  
Figure 5.12: Output relations for a hypercolumn with two minicolumns as a function 
of input to the two minicolumns. A) Model A1 with standard parameters and 
EPSCext_bas = 0.0075 pS. If we follow a straight line in the graph that means input 
relations are kept constant. Note how output relations are not stable across such a 
line except for low input magnitudes. B) For reference, the same graph for the 
theoretical normalization model. Note that independently of the relationship 
between the inputs the relation between the two outputs stays constant for 
increasing input magnitude. 

 

IO test   

The result of the IO test for Model A1 with EPSCext_bas tuned to the best value 

found in the previous section (0.0075 pS) is seen in Figure 5.13. Note that the 

shift in the IO curve is mainly subtractive for higher input magnitudes. However 

there is also a larger gain change, compared to Model A standard. This is even 

more pronounced in the low input region, 0 - 500 Hz, and for smaller modulatory 

inputs. This result is in accordance with what we saw in the FIR test (Figure 5.11 

A2); between 50 and 500 Hz is the network approximately normalizing, but for 

higher input magnitudes there is a switch to WTA dynamics. For this model 

versions, in the same way as for Model A standard, the region of approximately 

constant average is considerably longer than the region of stable output relations. 

It is thus primarily the latter that limits the normalizing ability. Because of this 

the reasons for why output relations are diverging and if there are mechanisms 

counteracting this, are studied in the next section. 
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A1 B1 

  

A2 B2 

  
B3 B4 B3 B4 

    
Figure 5.13. IO test for feed-forward inhibition only. Standard parameters from Table 
4.2 except EPSCext_bas which is set to 0.0075 pS. A1) IO test. Modulatory inputs: 100, 
400, 700, 1000 and 1300 Hz. A2) Hill function fits to data points in A1 below 100 Hz. 
A3) Normalized gain for curves in A2 between 5 and 100 Hz. A4) Offset for curves in 
A2. B1) IO test. Modulatory inputs: 50, 150, 250, 350 and 450 Hz. B2) Hill function fits 
to data points in B1 below 20 Hz. B3) Normalized gain between 2.5 and 25 Hz for 
curves in B2. B4) Offset for curves in B2. Note that for the low input region and 
smaller modulatory inputs there is a considerable gain change. 

5.2.2 Feed-forward inhibition vs output relations 

To analyze the behavior of Model A1 a simple mathematical model of the 

network was constructed. One building block was that the response functions of 

the minicolumns and the basket cell populations are sigmoidal. A second one was 

that inhibition have been shown to primarily have a subtractive modulatory effect 

on those population response curves. 

An expression for the inhibition each minicolumn receives - and note that each 

minicolumn will receive the same amount of inhibition - would thus be:  

 ℎ = 𝐼𝑃𝑆𝐶𝑏𝑎𝑠_𝑝𝑦𝑟𝑁𝐼 𝑅𝑚𝑎𝑥
𝑏 𝑔(𝑝𝑖𝑛_𝑏𝑎𝑠𝐸𝑃𝑆𝐶𝑒𝑥𝑡_𝑏𝑎𝑠∑𝑥𝑗

𝑗

− 𝑣) (5.4) 



CHAPTER 5 RESULTS  

74 

 

→ ℎ = 𝑘𝑔(𝑑∑𝑥𝑗
𝑗

− 𝑣) 

 
𝑔(𝑥) =  

𝑥𝑛𝑏

𝜎𝑏
𝑛𝑏 + 𝑥𝑛𝑏

 
 

Where k represent the strength of the inhibition from the basket cells to the 

pyramidal cells, d the strength of the feed-forward drive to the basket cells and v 

the position of the basket populations rheobase in relation to the minicolumns. 

Subscript b in function g means basket cell parameters. The assumption that 

adding inhibition to the minicolumns, has the same effect as subtracting a 

constant from the independent variable of the response function was made. This 

means f(x, h) = f(x - h), where x is excitatory and h inhibitory drive. The output 

from minicolumn i can then be approximated as: 

𝑦𝑖 = 𝑓(𝑥𝑖 − 𝑘𝑔(𝑑 ∑ 𝑥𝑗 − 𝑣𝑗 )) (5.5) 

For convenience the coordinate system is shifted to the right in relation to total 

input magnitude a, where an input vector as previously is described as  

a·[c1, c2, .. cn] where ci represent the percentage of total input magnitude mini-

column i receives. This gives: 

  𝑓(𝑚𝑖 + 𝑎𝑐𝑖 − 𝑘𝑔(𝑑 ∑ 𝑎𝑐𝑗𝑗 )) (5.6) 

 
𝑓(𝑥) = 𝑅𝑚𝑎𝑥  

𝑥𝑛𝑝

𝜎𝑝
𝑛𝑝 + 𝑥𝑛𝑝

 
 

Where f(x) is the IO curve of the pyramidal population also approximated as a 

sigmoidal function. If this model is studied it explains why input relations tend to 

diverge, and why this happens faster for a stronger inhibitory drive. To get a 

constant average the response of the basket cells need to be approximately linear 

for increased input magnitude (here increased a). As discussed before it is not 

really but for a short range it can be approximately linear. For the range where it 

is we have: 

 𝑦𝑖 = 𝑓(𝑚𝑖 + 𝑎𝑐𝑖 − 𝑘𝑑∑ 𝑎𝑐𝑗𝑗 ) 

= 𝑓(𝑚𝑖 + 𝑎(𝑐𝑖 − 𝑘𝑑∑ 𝑐𝑗𝑗 ))  

= 𝑓(𝑚𝑖 + 𝑎𝐶𝑖)  

(5.7) 

Thus if C𝑖 >  0 the output from that unit will grow and if C𝑖  <  0 it will diminish. 

To have a constant average the inhibition need to cancel out the excitation when 

the input magnitude is increased. This means for any minicolumn in the 

hypercolumn Equation 5.10 must hold: 

 𝐶𝑖 = 0 → 𝑘𝑑 =  
∑ 𝑐𝑗𝑗  

𝑐𝑖
  (5.8) 

If all minicolumns have the same input (that is the input vector is a*[1, 1, 1, 1] 

this is value of k ∙ d could be chosen and the network would keep average output 

stable (see e. g. Figure 4.5). The problem is when we have different inputs to the 

minicolumns. For a network with two minicolumns, input ac1 < ac2, and still 

approximately linear inhibition the average is directly proportional to:  
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 𝑦1 + 𝑦2 = 𝑓(𝑚1 + 𝑎𝐶1) + 𝑓(𝑚2 + 𝑎𝐶2) (5.9) 

To keep this constant either both outputs have to be constant (which will only be 

the case if C1 = C2 = 0) or one output has to grow with the same rate as the other 

one decrease. The first case is not possible since c1 < c2 which implies C1 < C2. 

For the second approach if making the assumption that the pyramidal response 

curve is also approximately linear, the appropriate value for k·d could be 

calculated: 

 𝑦1 + 𝑦2 = 𝑟(𝑚1 + 𝑎𝐶1) + 𝑟(𝑚1 + 𝑎𝐶1)  

= 2𝑟(𝑚1 +𝑚2 + 𝑎(𝑐1 + 𝑐2 − 2𝑘𝑑∑ 𝑐𝑗𝑗 )) 

=>  𝑘𝑑 =
𝑐1 + 𝑐2
2∑ 𝑐𝑗𝑗

 

(5.11) 

This also implies C1 = - C2. What it means is that if we cannot choose the 

inhibition to cancel out the excitation for all minicolumns (which we cannot since 

they receive different proportion of excitation and the same amount of inhibition) 

to keep the average constant one output has to grow at the same rate as the other 

decrease, and consequently the difference between them will increase. This was 

exactly what was seen in the FIR graphs from Model A standard and A1. 

Although we here assumed a linear response curve for the pyramidal cell 

population (primarily to simplify the calculation), the specific shape of the 

pyramidal response curve in fact does not matter as long as it is a strictly 

increasing function. The same principle would thus apply if it resembles a power 

law, exponential or logarithmic function that is for all parts of its sigmoidal 

response curve. 

The shape of the IO curve will however affect how fast the output relations will 

grow apart, since the derivative of f (c1a) / f (c2a) with respect to a is dependent 

on the derivative of the pyramidal population response curve f, as well as the 

derivative of the basket population response curve g. That allowing a certain 

increase in input magnitude will counteract diverging output relations can also be 

understood if the decreasing gain for the second part of a sigmoidal response 

curve is considered. A minicolumn with a larger ci value will still get a larger 

increase in excitation for a certain increase in average input magnitude. However 

this will be partly counteracted by that gain is lower for a minicolumn that 

already receives a large input because of the decreasing Hill function derivative. 

This explains why perfect average control tend to counteract stable input 

relations.  

However it is important to remember that this model will only be a good 

representation of system functionality when a single minicolumn response curve 

is indeed affected subtractively by increased inhibition.  

5.2.3 Tuning EPSCext_bas and IPSCbas_pyr together  

Even if average control is not sufficient to create a normalizing network, it is a 

requirement. Since the diminishing derivative of the inhibitive response curve 

was shown to be a major factor limiting the range over which average can be kept 

stable, it is interesting to see if there is some way this could be counteracted. It 

was seen in Section 5.2.1 that decreasing the input to the basket cells do scale 

their output curve on the horizontal axis (equivalent to dividing the independent 

variable of a function by a constant), and that increasing IPSCbas_pyr increase the 
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resulting amount of inhibition from a specific firing rate in the basket cell 

population. So the idea tested in this section is what would happen if EPSCext_bas 

is decreased while at the same time as IPSCbas_pyr is increased. This should give 

the basket cell response curve a longer region of approximate linear growth as 

illustrated in Figure 5.14 and thus make it possible to keep optimal inhibition 

strength over a larger range of input magnitudes.  

A B 

  
Figure 5.14: The Hill function (Equation 4.4) and its derivative. Continuous line: 
function. Dashed line: derivative. A) Rmax = 300, σ = 1500, n = 1.5. B) Rmax = 3000 and  
x = x/10. Note that there is a much slower change in the derivative in B which is in 
analogue with how decreasing EPSCext_bas and increasing IPSCbas_pyr was hypothesized 
to affect the derivative of the basket population response curve in the network 
model.   

For this purpose IPSCbas_pyr was increased to - 25.0 pS (this gives an EPSP of 

6.1 mV) and other neuronal parameters was tuned for optimal performance. As 

illustrated in Figure 5.15 the approach indeed works as a way of extending the 

region of stable average. However more interesting is that it also extends the 

range of both input magnitudes and input relations over which the network is 

approximately normalizing. The divisive scaling of the IO curve also for higher 

input magnitudes seen in Figure 5.15 A1, is a clear qualitative difference from 

previous models. Here a pronounced gain change is present also for larger 

modulatory inputs. This together with the absence of subtractive shift give that 

the modulatory effect of the network is now more accurately described by the 

normalization model than the subtractive inhibition model. 

However as seen in Figure 5.15 B the network is not normalizing over the whole 

input range and Figure 5.15 C show that the normalization works better for inputs 

of similar magnitude, as for the previous model versions. However, what is 

troubling about this model version is that the basket cells now fire at a very low 

rate (below 20 Hz) and also lower than the pyramidal cells. In addition these 

IPSP values could not be considered biologically realistic if compared with data 

from (Thomson et al. 2002). It should be however be remembered that if we only 

wish to keep the average constant, this mechanisms does not specifically require 

a low firing rate but that the basket cell do have a stable derivative over quite a 

large range of inputs. This might also be achieved by increase the number of 

basket cells or by using a group of different sized basket cells, where the smaller 

start up for lower input rates and the larger ones gets recruited for a larger input 

magnitude (Lansner 2014). However as discussed previously keeping average 

constant does not necessarily give a normalizing network. 
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Figure 5.15: The effect of increasing IPSCbas_pyr and decreasing EPSCext_bas while keeping 
inhibition strength constant in Model A1. Differences from parameters in Table 4.2: 
IPSCbas_pyr = 25.0 pS, EPSCext_bas = 0.0014 pS, noisebas = 5900 Hz, pin_bas = 0.05. A1) IO test. 
Modulatory inputs: 100, 400, 700, 1000 and 1300 Hz. A2) Hill function fit (Equation 4.4) 
to the data points in A1. A3) Normalized gain for curves in A2. A4) Offset for curves in A2. 
B) FIR1234 test. The reason there is enough inhibition from a very low activity in the 
basket cell population is because of the large IPSCbas_pyr. C) Relationship between outputs 
for a network with two active minicolumns, as a function of input to the respective 
minicolumns. D) As C but average activity in the network as a function of input to the 
two minicolumns. 

 

This was also confirmed by instead of using a large IPSP using a larger number 

of basket cells in the inhibitory population. The result seen in Figure 5.16 show 

that this does not give same results, but instead this network is as the previous 

network model versions closer to the subtractive inhibition model. So the results 

of this experiments are maybe most important in the aspect that they point to a 
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mechanism that can indeed create a more normalizing network. How this 

mechanism works was investigated further, and the results are presented in the 

next section. 

A B 

 
 

Figure 5.16: FFW network with larger number of basket cells, NI = 160. A) IO test. 
Modulatory input: 100, 400, 700, 1000 and 1300 Hz. Note that the gain change seen 
when using a large IPSP is not seen when instead using a larger number of inhibitory 
neurons. B) FIR1234 test. This is very similar to what was seen in Figure 4.5 C for the 
theoretical subtractive inhibition model. 

5.2.4 Noise, gain change and normalization 

If the derived mathematical model can explain why output relations are not kept 

stable for higher input magnitudes, what explains why they are stable for lower 

input regions? And why does it work better when we decrease EPSCext_bas and 

increase IPSCbas_pyr? An assumption made in the mathematical model was that the 

IO curve would keep its shape for increased amounts of inhibition. As results 

from previous model versions using standard parameters show this is a valid 

approximation for output rates above 10-20 Hz. However the output rates where 

there is gain change for Model A and A1 with standard parameter values are 

lower than that. And what effect the large IPSCbas_pyr might have on the model 

neuron IO curve is not yet investigated.  

To gain a wider perspective an experiment to study how the response curve is 

affected by increased inhibition for standard vs large IPSP sizes was conducted. 

The setup was based on the fact that for a specific network setup in Model A1 the 

activity in a minicolumn will only be affected by two state variables: i) The 

amount of excitatory input to the pyramidal cells and ii) The amount of excitatory 

input to the basket cells (since the input is approximated by a Poisson process a 

specific input frequency is tied to a specific variance). Thus if the output firing 

rate of a single minicolumn is plotted as a function of these two variables it is 

possible to study how the IO curve change for increased amounts of drive to the 

basket cells as well as how a minicolumn will “travel” in this state space when 

input magnitude is increased.  

The results are seen in Figure 5.17. Since for the feed-forward setup a certain 

amount of inhibition is always coupled with a certain amount of excitation, each 

minicolumn would for increased input magnitude travel along a straight line in 

this graph/ state space. The graphs visualize what was shown mathematically in 

the Section 5.2.2 about why input relations change for increased input magnitude: 

To keep the average constant it is necessary to choose the inhibition strength 

(slope of the line the minicolumn will follow in this graph) so that the average 

output follow one of the contour lines in the plot. But if minicolumns have 

different ci values, they will have a steeper or lower slope. If there is no widening 
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of the contour lines (as would be the case if the response curve is affected 

divisively) the difference between them will be magnified with growing input 

magnitude.  

These results also visualize why it is harder to keep the relations between the 

outputs for more dissimilar inputs: The difference between the paths for the 

different minicolumns is then larger. Comparing Figure 5.17 A and B with Figure 

5.17 C and D it is also clear that the approximation of a primarily subtractively 

shifted curve is valid when the standard parameters are used but not for the “large 

IPSP network”. It can also be seen that for a larger IPSP the variance in the 

output is larger, reflecting a larger neuronal membrane variance. As discussed in 

Section 3.4.3 increased variance in the input gives a more gradual onset of firing. 

This is seen as larger spacing between contours for higher amounts of inhibition, 

which partly counteract the increased differences between the outputs. Thus 

increased neuronal membrane variance seem to be the primary reasons we get a 

better approximate normalization for a network when a larger IPSP is used. 

A B 
 

 
 

C D 

  
Figure 5.17: Output from single minicolumn in Model A1 standard parameters for 
different amounts of excitation and inhibition. A, B) Model A1 standard parameters. 
Note for that basket cells output get saturated for higher input. For the low input 
region it is possible to choose a path (straight line) that keep average constant but as 
input increase this is no longer possible. C, D) IPSP = 40 pS, EPSPext_bas = 0.0014 pS. 
This parameter setting both smoothen the onset of firing and keep basket cells from 
saturating. D) Also for larger input magnitudes output relations can be kept constant 
for more dissimilar inputs. 
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Since it is interesting to know if a large IPSP change also the response curve of a 

single neuron this was as well investigated. The pyramidal cell response curve 

was plotted for increased amounts of inhibition for three different IPSP sizes: 2.6, 

12.0 and 25.0 pS. The rate of the inhibition was adapted to give approximately 

the same inhibitory drive for the three IPSP sizes. The results seen in Figure 5.18 

show that there is a clear difference in the modulatory effect of an inhibitory 

Poisson input depending on the IPSP size also for a single neuron: The larger 

IPSP the better can the effect be described as divisive instead of subtractive. This 

indicate that the modulatory effect seen in the network for a large IPSP is most 

likely a superposition of modulatory effects implemented by individual neurons. 

A B C 

   
Figure 5:18: How increased IPSP size change the modulatory effect of Poisson inhibition on 
a single model neuron. Lines are Hill function fits (Equation 4.4) using data points below 50 
Hz. A) IPSP = 2.6 pS. Inhibition: 0, 200, 400, 600 and 800 Hz. B) IPSP =  12.0 pS. Inhibition: 
0, 50, 100, 150 and 200 Hz. C) IPSP = 25.0 pS. Inhibition: 0, 25, 50, 75 and 100 Hz. Note that 
for a larger IPSP the modulatory effect of from an inhibitory input is transformed from 
subtractive to divisive. 

 
Table 5.2: FIR test results for different versions of Model A1. Numbers are FIR scores 
averaged over 5 different random seeds with standard deviation. Green: best scores. 

 Model A1 
standard 
parameters 

Model A1  
EPSCext_bas  
= 0.0075 pS 

Model A1, large IPSP 
IPSCbas_pyr =  25.0 pS 
EPSCext_bas = 0.0014 pS 

FIR1234 5.15 ± 0.95 5.86 ± 0.82 5.86 ± 0.69 
FIR1234 average 13.60 ± 1.90 10.0 ± 1.45 16.92 ± 1.73 
FIR1200 3.62 ± 0.21 3.24 ± 0.33 6.73 ± 0.79 
FIR1200 average 4.04 ± 0.0 4.16 ± 0.24 6.73 ± 0.79 

 
 

Concluding remarks Model A1 

So in conclusion the feed-forward network can using standard parameters 

approximate normalization over a larger range than the subtractive inhibition or 

output gain model. Between 50 and 750 Hz, input magnitude can be increased by 

about 5 times while keeping output relations approximately stable. However it is 

also for this range of input magnitudes only a good approximations if the inputs 

are quite similar in magnitude. Also for the tuned network with very large IPSP 

this effect is present even if it can handle slightly larger input magnitudes and 

differences between inputs. The FIR scores for different versions of Model A1 

are seen in Table 5.2. 

It was also seen that inhibition strength can be tuned to give an inhibition that 

over a certain range of input magnitudes is approximately balanced to the 

excitation. However there will always be a point where the inhibition to the 

minicolumns grows slower than their excitatory input. It was also shown that a 

constant average does not necessarily give a normalizing network. The most 
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interesting result from using a very large IPSP size is that it shows a mechanism 

that can be used to create a normalizing network - an increase in neuronal 

membrane variance coupled to an increase in modulatory input. Even if the way 

this was done could be considered unbiological, there might other ways to get a 

similar effect. 

So could feed-back inhibition give a different effect and overcome some of the 

problems we face when trying to create a normalizing network with only feed-

forward inhibition? 

5.3 Model A2 - Feed-back inhibition 

This section study Model A2 with only feed-back inhibition, to see what part the 

feed-back inhibitory circuit plays for network functionality. A difference in 

network setup is that for Model A2 there is in the standard setup no noise to the 

basket cell population. The feed-back mechanism makes the amount of noise to 

basket cells less important since the basket cell population is driven directly by 

the activity in the minicolumns. The network characteristics for a single input 

vector ͞x = [400, 800, 1200, 1600] Hz is seen in Figure 5.19. Those are similar to 

what was seen for Model A (Figure 5.5), with the strong oscillatory activity as 

the main difference from Model A1.  

A B 

  
C D 

  
Figure 5.19: Network activity for a single input vector with ͞x = [250, 500, 1000, 
2000] Hz input. A) Spike histogram. B) Raster plot. C) Voltage traces for 5 randomly 
chosen neurons in each minicolumn. D) Distribution of spikes for neurons in 
respective minicolumn.  

5.3.1 Tuning inhibition strength 

Since there is only feed-back inhibition in Model A2 the two parameters tuned to 

vary inhibition strength was IPSCbas_pyr and EPSCpyr_bas. The same tuning tests 

done for Model A1 were performed also for this model where the average of five 
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FIR1234 scores using different random seeds was used as a measure of the 

networks normalizing ability. The objective was also to see if there were any 

qualitatively different effects from previous model versions especially regarding:  

 Average control in the network. 

 Relationships between outputs for increased input magnitude.  

The result of tuning EPSCpyr_bas is seen in Figure 5.20 A1-A3 and the graphs are 

quite similar to those seen for the feed-forward model. The same characteristic 

“bubble” is seen, where input relations first diverge and later converge. It is also 

seen that for a larger EPSCpyr_bas the basket cells reach higher firing rates for 

smaller input magnitudes. A difference is though that we see the best score on the 

FIR1234 fest for a very small value of EPSCpyr_bas. This is since at the onset of 

the inhibition there is a break in the otherwise constantly growing average. The 

result of instead tuning IPSCbas_pyr is seen in Figure 5.20 B1-B3.  

 

A1 EPSCpyr_bas       0.003 pS A2                       0.009 pS A3                         0.16 pS 

   
B1 IPSCbas_pyr         1.0 pS B2                         4.0 pS B3                          20.0 pS 

   
C D 

  
   
Figure 5.20: The effect of tuning inhibition strength in Model A2. A1-A3) Tuning 
EPSCpyr_bas. From right to left EPSCpyr_bas = 0.003, 0.009 and 0.16 pS. B1-B3) Tuning 
IPSPbas_pyr. From right to left IPSCbas_pyr = 1.0, 4.0 and 20.0. pS. C) Parameter search over 
IPSCbas_pyr D) Parameter search over EPSCpyr_bas. Green curve = FIR1234 average score. 
Blue curve = FIR1234 score. All scores are averaged over 5 different random seeds. Note  
in D that average control gets considerably worse for increased drive to the basket cell 
population because of saturation. However as seen in C the network is quite insensitive 
to changes in IPSCbas_pyr.  
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The histograms for smaller values of IPSCbas_pyr are quite similar to Model A1, 

but in contrast to Model A1 the network has the best performance for very large 

IPSP values. Another characteristic effect is that also for very large IPSP values, 

there is, in contrast to Model A1, no decrease in average for large input 

magnitudes.  

As seen in the parameter search plots (Figure 5.20 C and D) the feed-back 

network is indeed less sensitive to a change in parameter values. This is because 

of the feed-back loop: If we e. g. increase IPSCbas_pyr  this gives more suppression 

for the same basket population firing rate; but then the minicolumns firing rate 

will decrease, which will in turn decrease the drive to the basket cells. This until 

a new stable state is reached with slightly lower firing rate for both excitatory and 

inhibitory populations. For decreasing IPSCbas_pyr the stable state will instead be 

found for a slightly higher firing rate in the pyramidal population. There is thus a 

dynamic balance between the firing rate in the pyramidal and basket cell 

populations not present in the feed-forward network. However the range over 

which the network pass the FIR1234 test is slightly smaller than for Model A1. 

This is mainly because it is limited by the strictly growing average. 

IO test 

The results from the IO test for Model A2 with EPSCpyr_bas set to 0.003 pS, are 

shown in Figure 5.21. The IO curves show a clear subtractive shift for higher 

output rates and modulatory inputs. There is as for Model A1 also a small gain 

change present, more pronounced for lower output rates and modulatory inputs. It 

can be seen in Figure 5.21 C that output relations are not stable for increasing 

input magnitude and in Figure 5.21 D that average output vary both with 

increased input magnitude and with relationships between inputs. 

5.3.2 Keeping average constant with feed-back inhibition 

A problem for the feed-back only network is that it is unable to implement as 

good average control as for feed-forward inhibition. The range over which 

Model A2 can keep average approximately constant, is a little less than half that 

of Model A1. Increasing inhibition strength does not seem to improve average 

control very much. To understand why a mathematical model of Model A2 in 

analogue with the one used for the feed-forward network was constructed. The 

result is seen as Equation 5.13 that describes how the output from minicolumn i 

depends on input, inhibition strength and activity in other minicolumns. Also 

here f (x, h) = f(x - h) was assumed where x is excitatory and h inhibitory drive. 

𝑦𝑖 = 𝑓(𝑚 +  𝑥𝑖 − 𝑘𝑔(𝑑 ∑ 𝑦𝑗𝑗 )) (5.13) 

Here k correspond to strength of the drive from basket population to the 

minicolumn, and d strength of the drive from the minicolumn to the basket cells 

population. This model explain why average control is a problem for a network 

using only feed-forward inhibition. Consider the case when all inputs are equal 

and assume that average could be kept constant for increased input magnitude. 

This would imply that the inhibition cancels out the increased excitation. But 

inhibition is a strictly growing function of the outputs. This means to get larger 

inhibition larger outputs are needed, thus creating a paradox and disproving the 

original assumption. A similar argument holds when the inputs are not similar 

since both minicolumns would receive increased excitation – and the inhibition 

thus must increase to keep average stable.  
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Figure 5.21: IO test for Model A2. Standard parameters except EPSCpyr_bas = 0.003 pS. 
A1) IO curve. Modulatory inputs 100, 400, 700, 1000 and 1300 Hz. A2) Hill function fit 
(Equation 4.4) to data points in A1 below 80 Hz. A3) Normalized gain for fitted curves 
in A2. A4) Offset for fitted curves in A2. B1) Io curve, modulatory input 50,  150, 250, 
350 and 450 Hz. B2) Sigmoid fit to data points in B1 below 20 Hz. B3) Normalized gain 
for curves in B2 between 2.5 and 20 Hz. B3) Subtractive offset for curves in B2. C) 
Relationship between outputs for a network with two active minicolumns, as a 
function of input to the respective minicolumns. D) As C but average activity in the 
network. 
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However as for the feed-forward model the assumption that increased inhibition 

only shift the curve to the right on the horizontal axis is a simplification, and 

there are conditions when it is not valid such as when the inhibition starts up (see 

e. g. Figure 5.20 A1). But this is only the case just when the inhibition starts up 

and after that the difference in shape between response curves for increased 

modulatory input is for standard parameters not large enough to allow good 

average control. This means though an increased inhibitive strength will give a 

slower growth in average, no choice of EPSCpyr_bas or IPSCbas_pyr will in contrast 

to the feed-forward network keep it constant.  

Relationships between outputs 

Considering the relationships between the outputs for an input vector 

𝑥̅=a·[c1, c2, .. cn] the mathematical model described by Equation 5.13 gives:   

𝑦𝑖
𝑦𝑗
=
𝑓(𝑚𝑖 +  𝑎𝑐𝑖 − 𝑘𝑔(𝑑 ∑ 𝑦𝑗𝑗 ))

𝑓(𝑚𝑗 +  𝑎𝑐𝑗 − 𝑘𝑔(𝑑 ∑ 𝑦𝑗𝑗 ))
 (5.14) 

As in the feed-forward network, we see that both minicolumns receive the same 

amount of inhibition but different amounts of excitation with increased input 

magnitude (there is nothing in the feed-back circuit that change this). This means 

the argument from the model of the network with only a feed-forward inhibitory 

circuit still holds: A minicolumn with a smaller ci will for increased input 

magnitude either decrease or grow slower than a minicolumn with a larger ci thus 

magnifying the difference between them. The increasing average of this network 

will as for the feed-forward model partly counteract this. When considering the 

results of the IO and FIR tests this simple model is a good description of the 

functionality of Model A2 when slightly tuned standard parameters are used. 

5.3.3 Tuning EPSCpyr_bas and IPSCbas_pyr together  

Also for Model A2 the same approach of increasing IPSCbas_pyr and decreasing 

EPSCpyr_bas was tried. This did increase the region of approximately stable 

average as well as the range of input magnitudes over which the network could 

keep output relations approximately stable. This can be seen in Table 5.3 as a 

considerably better result on the FIR tests. Similar qualitative characteristics for 

the IO test and sigmoidal Hill function fits, as well as the FIR1234 and FIR1200 

test were also seen for this model version. However graphs are not shown but 

instead similar plots for a large IPSP can be seen in next section for the tuned 

versions of Model A.  

Table 5.3: FIR test results for different versions of Model A2. All scores are averaged 
over 5 different random seeds. Green - best scores. 

 Model A2, 
standard 
parameters 

Model A2, tuned  
EPSCpyr_bas = 0.003 pS 

Model A2, large IPSP  
IPSCbas_pyr = 40.0 pS 
EPSCpyr_bas =  0.0014 pS 

FIR1234 2.74 ± 0.16 3.45 ± 0.55 6.58 ± 1.80 
FIR1234 average 3.52 ± 1.99 7.09 ± 2.99 9.36 ± 1.12 
FIR1200 3.72 ± 0.26 2.59 ± 0.14  7.10 ± 0.63 
FIR1200 average 7.10 ± 2.99  8.14 ± 0.0 12. 80 ± 1.31 
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Concluding remarks Model A2  

In conclusion the effects of feed-back inhibition considering normalization ability 

are similar to those of feed-forward inhibition. The network can approximate 

normalization over a certain range of input magnitudes and relations, but it is not 

possible to extend this region very much by only tuning inhibition strength. For 

the tuned model version the FIR scores are slightly worse than for Model A1. 

Since the feed-back or feed-forward inhibitory circuit seem to complement each 

other, in that the feed-forward circuit is better suited to keep average stable, 

while the feed-back circuit dynamically adapts inhibition and thus makes the 

network a less sensitive to small changes in parameter values, the following 

investigations were performed on Model A, which includes both these circuits. 

5.4 Model A revisited 

This section continue the study of Model A, that is the network version including 

both the feed-back and the feed-forward inhibitory circuit. First the effect of a 

larger IPSCbas_pyr was investigated, and then several changes to the model was 

done to see if there might as well be other mechanisms that could create a 

normalizing circuit. 

A B 

  
C D 

 

 
 

 

Figure 5.22: Model A large IPSP. Parameters changed from those seen in Table 4.2: 
IPSCbas_pyr = 40.0 pS, EPSCpyr_bas = 0.001 pS, EPSCext_bas = 0.001 pS, pin_bas = 0.05 and 
noise input bas = 5000 Hz. A) IO test, input to the other minicolumns 100, 400, 700, 
1000 and 1300 Hz. B) Hill function fit (Equation 4.4) to data points in A. C) Relation-
ships between outputs for two active minicolumns, as a function of the input to those 
minicolumns. D) FIR1234 test.  
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Figure 5.23: Test results Model A tuned. Parameters changed from those seen in 
Table 4.2: IPSCbas_pyr = 12.0 pS, EPSCpyr_bas = 0.005 pS, EPSCext_bas = 0.007 pS, 
pin_bas  = 0.05. A1) IO test. Input to other minicolumns 100, 400, 700, 1000 and 1300 
Hz. A2) Hill function fit (Equation 4.4) to data points in A below 75 Hz. A3) Normalized 
gain for curves in B1, between 5 Hz and 75 Hz. A4) Offset for curves in A2. B) 
Relationships between outputs for two active minicolumns as a function of the input 
to those minicolumns. C) FIR1234 test. D) FIR1200 test. 

5.4.1 Model A large and medium IPSCbas_pyr 

First the approach of using a very large value of IPSCbas_pyr was tested for 

Model A. This was done to see if the result would be similar to those from 

Model A1 and A2. An IPSCbas_pyr of 40.0 pS was set and the network was then 

tuned manually. This IPSC corresponds to an IPSP size of 7.5 mV. It should 

however be remembered that the inhibitory reversal potential is – 10 mV, which 

means the increase in synaptic strength is not completely reflected by the IPSP 

size.  
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The results are seen in Figure 5.22 and this approach indeed creates a network 

that show clear divisive gain change for the IO curve of a studied minicolumn. In 

the IO test it should especially be noted that gain change is present also for 

higher input magnitudes. There is also a subtractive shift present, but it is 

considerably smaller compared to model versions using a smaller IPSP. This 

model version also gives the so far longest range over which the network pass the 

FIR1234 test. There is also stable output relations over a larger range of input 

magnitudes, also for more dissimilar inputs (Figure 5.22 C). It is also clear that 

average is kept constant over a very large range of input magnitudes for both the 

IO and FIR tests. The FIR score results Table 5.4 can be compared to other 

versions of Model A and further confirms that this model version is a good 

approximation to the normalization model. 

However since the biological realism of this mechanism should rightly be 

questioned, further investigations focus on other features that might contribute to 

a more normalizing network. For that purpose Model A was instead tuned within 

a narrower parameter range, to get a perhaps more realistic performance measure. 

The results from using IPSCbas_pyr = 12.0 pS (corresponding to an IPSP size of 3.9 

mV) and tuning other synaptic weights manually are seen in Figure 5.23. This 

network will be referred to as “Model A tuned”. It shows better performance 

compared to Model A with standard parameters, but worse than when a very 

large IPSP is used. The gain change present in the IO test is weaker and 

accompanied by a clear subtractive shift. The FIR graphs show the same features 

seen in the previous model versions using smaller IPSPs but also a slightly 

prolonged region of constant output relations. Model A tuned is in the remainder 

of this section used for evaluation different changes to Model A that might give a 

more normalizing network.  

Table 5.4: FIR scores for different versions of Model A. All scores are averaged over 5 
different random seeds. Green: best scores. 

 Model A 
standard 

Model A, tuned 
IPSPbas_pyr = 12.0 pS  

Model A, large 
IPSPbas_pyr = 40.0 pS 

FIR1234 2.59 ± 0.14 4.17 ± 0.24 10.16 ± 2.36 
FIR1234 average 3.24 ± 0.22 17.84 ±- 1.2 21.16 ± 2.25 
FIR1200 3.73 ± 0.26 5.83 ± 0.39 10.20 ± 0.69 
FIR1200 average 3.73 ± 0.26 7.29 ± 0.42 26.38 ± 1.83 

5.4.2 Variability in the network 

One difference between using a single cell and a group of cells as the computa-

tional unit is that for a group of cells is it possible to have variability in 

parameters such as neuron size/excitability (here cell membrane capacitance Cm) 

and input to neurons. It was therefore investigated if changing the variability in 

the network might affect performance. First using an increased and decreased 

standard deviation for pyramidal and basket neuron capacitance and input 

variance was tested. The random distribution from which these values were 

drawn during setup was as described in Section 4.2 a truncated normal distribu-

tion. The result seen in Table 5.5 show that there seems to be a weak trend 

towards better FIR scores when an increased variance is introduced. It is not a 

very large difference and could be an effect of slightly worse average control, but 

when considering output relations for the FIR test graph in Figure 5.24, this 

indicate that the network show a slightly stronger normalizing effect. 
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Table 5.5: Effect of increased standard deviation in the distributions for cell membrane 
capacitance Cm_rsd and driving input, Inputrsd. The same values were used for pyramidal 
and basket cells. All FIR scores are averaged over 5 different random seeds. Standard 
deviation is given as relative standard deviation (RSD). Green: best values. 
 

Membrane 
capacitance  
RSD 

Input RSD  FIR1234 score FIR1234 
average score 

0.01 0.01 4.35 18.82 
0.10 0.10 4.05 17.00 
0.20 0.20 4.45 16.44 
0.25 0.50 5.176 14.99 

 
A B 

  
Figure 5.24: Results from IO and FIR1234 tests when increasing variability in neuron 
Cm and input. For producing these graphs Cm_rsd was increased from 0.1 to 0.25, and 
Inputrsd from 0.1 to 0.5 for both pyramidal and basket cells. A) IO test. B) FIR1234 
test.  

 

Variability in connections 

Since there seemed to be small positive effect from increased variability in the 

network, a second way of doing this was also investigated: Instead of using a 

fixed number of incoming connections for each neuron in the postsynaptic 

population, the number of incoming connections was allowed to vary as 

described in Section 4.2.1 The results of this approach are seen in Figure 5.25 A 

and compared to changing the variance of neuronal membrane capacitance and 

input this does affect network processing in a similar but more pronounced way. 

The difference is even more pronounced for larger input magnitudes and 

modulatory inputs as seen in Figure 5.25 B. It is also seen in the FIR graphs that 

including variability in the number of incoming connections for Model A creates 

a network better at keeping stable output relations. This can also be seen in 

Figure 5.25 E as the straighter contour lines in the plot of output relations. It can 

also be noted that this network have more pronounced WTA behavior, as seen by 

the closer spacing between contours in Figure 5.25 D. However as seen on the IO 

graph this does not create a perfectly normalizing network but a subtractive shift 

is still evident. Figure 5.26 illustrates one reason this mechanism results in 

improved normalization. 
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A B 

 
 

C D 

  
E F 

  
Figure 5.25. Test results for Model A tuned, using a variable number of incoming 
connections for postsynaptic neurons. A) IO test. Modulatory input: 100, 400, 700, 
1000 and 1300 Hz. B) IO test. Modulatory input: 200, 1200, 2200, 3200 and 4200 Hz. 
Note the gain change present also for higher input magnitudes and larger modulatory 
inputs. C) FIR1234 test. D) FIR1200 test. E) Relationship between outputs for a 
network with two active minicolumns, as a function of input to the respective 
minicolumns. F) As E but average activity in the network as a function of input to the 
two minicolumns. Note that when variability in incoming connections is introduced, 
the network is considerably better at keeping output relations stable. 
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Figure 26: Illustration of one mechanism by which increased variability in the network 
creates a more normalizing network. Here f(x) (continuous lines) is defined as the 
average of five Hill functions (Equation 4.4), f0, f, f2, f3 and f4. For all fi Rmax = 100, 
n = 1.5 and sigma = 500. However how they are affected by inhibition is varied, by 
multiplying a subtractive modulatory input with coefficients 0, 1, 2, 3 and 4 before 
each function is evaluated. The combined function f(x) is plotted for different 
amounts of subtractive inhibition, I = 100, 300, 500, 1000 and 1500. Note how this 
creates a modulatory effect very similar to normalization, even though each f i is 
affected purely subtractively by inhibition. The purple dotted curves are the curves 
that are averaged to compute f(x) for I = 1000. 

5.4.3 Recurrent connectivity in minicolumns and basket cell 

population 

The effect of changing the strength of the recurrent connectivity in pyramidal and 

basket cell population was also investigated. This was done by computing an 

average FIR1234, as well as FIR1234 average score, for a range of connection 

probabilities between 0.0 and 0.5. The result is seen in Figure 5.27 E and F. IO 

and FIR graphs were also plotted for the largest probability of a recurrent 

connection (0.5) to look for qualitative changes. Those graphs are also seen in 

Figure 5.27.  

It can be seen that increased strength in the recurrent connectivity within 

minicolumns is coupled to an increased in range of approximately stable average. 

There is also a slightly better FIR1234 score for recurrent connectivity lower and 

higher than the one used during this thesis (ppyr_pyr = 0.2). However this is not 

enough to create a normalizing network. Changing the strength of the recurrent 

connectivity in the basket cell population does not seem to affect the FIR1234 

score much; but there is a marked decrease in the range of approximately stable 

average, which is perhaps not very surprising. 

5.4.4 Adaptation and more realistic firing patterns  

Since a more complex neuron model with adaptation is used in the original 

attractor memory model, it was also investigated whether using model neurons 

with more realistic firing characteristics would affect the networks normalizing 

ability. For this purpose the original model neurons in Model A were replaced 

with adaptive IAF neurons, and the neuronal parameters changed to values shown 

to implement firing characteristics closely resembling those of the original 

Hodgkin-Huxley model neurons (see Table 4.2). Synaptic weights was tuned to 

give similar PSP sizes as Model A tuned or Model A standard.  

The results are seen in Figure 5.28 and the network characteristics are very 

similar to Model A tuned. There are some differences in the dynamics if we study 

a single input vector - such as a tendency for population bursts in the 
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minicolumns for low magnitude inputs (not shown) - but the results from the FIR 

tests as well as the IO test are qualitatively very similar to a network with regular 

IAF neurons. 

A B 

  
C D 

  
E F 

  
Figure 5.27: IO and FIR test for Model A tuned, with increased recurrent connectivity 
in pyramidal and basket cell populations. No other parameters are changed.  A, B) IO 
test and FIR1234 test with recurrent connectivity in pyramidal cell populations 
increased from 0.2 to 0.5. C, D) IO test and FIR1234 test with recurrent connectivity in 
basket cell population increased from 0.0 to 0.5. Note the qualitative similarity to 
Model A tuned. E) Result of FIR1234 and FIR1234 average test as a function of ppyr_pyr.  
F) As E but for pbas_bas. 

 

The FIR ratings for the network using adaptive IAF neurons are shown in 

Table 5.5, and those are also similar to the results for Model A tuned. In addition 

it is seen that also for this network the performance on the FIR tests gets worse if 

a parameter setting similar to that for Model A standard was used. Using a 

smaller IPSP removed most of the gain change and increased the offset (data not 

shown). This indicate that the larger increase in membrane variance for increased 

modulatory input created by a larger IPSP is a very important mechanism also in 

this model version. The effect of inhibition on the IO curve of a single model 

neuron was also investigated and the results were similar to those for a regular 
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IAF neuron (not shown). The conclusion is that the more realistic firing patterns 

does not seem to introduce any new normalizing mechanisms in the hypercolumn 

module. 

A B1 

 
 

C B2 B3 

 

  

D E 

  
Figure 5.28: Test results when using adaptive IAF-neurons with more realistic firing 
characteristics. Model neuron parameters are seen in Table 4.2. Other parameter 
changes relative to Model A standard: EPSCpyr_bas = 0.009 pS, EPSCext_bas = 0.005 pS, 
IPSCbas_pyr = 15 pS, pin_bas = 0.05, noisepyr = 2000 Hz, noisebas = 3500 Hz.  A) IO test. B1) 
Hill function fit to data points in A below 150 Hz. B2) Gain for curves in B1. B2) Offset 
for curves in B1. C) Relationship between outputs for a network with two active 
minicolumns as a function of the input to those minicolumns. D) FIR1234 test. E) 
FIR1200 test. Note the similarity Model A tuned. 
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Table 5.5: FIR ratings for Model A using adaptive IAF neurons and Model A tuned with 
variability in the number of incoming synaptic connections (here denoted VAR). All FIR 
scores are averaged over 5 different random seeds. Green: best scores. “+ VAR”: 
Variability in incoming connections added. 

 Model A tuned 
Adaptive neurons 
IPSCbas_pyr = 15.0 pS 

Model A Adaptive 
IPSCbas_pyr = 15.0 pS 

Model A tuned  
+ VAR 

FIR1234 4.28 ± 0.30 3.06 ± 0.0 7.11 ± 1.58 
FIR1234 average 5.67 ± 0.39 4.28 ± 0.30 7.92 ± 0.42 
FIR1200 4.28 ± 0.30 2.66 ± 0.0 5.83  ± 0.39 
FIR1200 average 5.67 ± 0.39 5.35 ± 0.0 7.28 ± 0.42 

5.5 Model B - Short-term depression 

Short-term depression have been found to have a large impact on the response 

curve of a single neuron (Rothman et al 2009). Because of this it was investigated 

if adding short-term depression to the driving synapses would have a similar 

effect. First the same parameters was used as in the tuned version of Model A 

(results not shown), but some changes proved necessary to optimize performance. 

Since the effect of the inhibition was enhanced by the short-term depression, the 

feed-forward input to the basket cells was reduced to 40 % of its previous 

strength and IPSCbas_pyr and EPSCext_bas reduced to 80 % and 70 % of their 

previous values.  

The test results for Model B tuned are seen in Figure 5.29. There is a marked 

qualitative difference from all previous network versions: A clear decrease in 

Rmax for increased modulatory inputs. There is also a marked gain change for low 

input magnitudes and no clear subtractive shift. All those are features typical for 

the theoretical output gain model. However the point on the horizontal axis where 

Rmax is reached, is also shifted towards higher output magnitudes. This indicate 

that the network also implement normalizing features.  

The results from the FIR tests and from studying a network with only two 

minicolumns, seen in Figure 5.29 B, confirm that the network is quite good at 

keeping output relations constant for input rates under 2500 Hz. However also for 

this network, the range of approximate normalization is smaller for more 

dissimilar inputs. When the input magnitude increase further the distinction 

between outputs is lost in the same way seen for the theoretical output gain 

model.  

The FIR test also show a clear resemblance to the theoretical output gain model: 

The average first increase but is then slowly decreasing and clearly bounded. The 

relationships between the outputs also follow the typical pattern of first diverging 

and then converging, until all distinction is lost between outputs. But it should be 

noted that this happens slower than for the theoretical output gain model. As seen 

in Table 5.6 the results of the FIR tests are very good. Something that should be 

noted compared to the previous model versions is that the STD network have a 

more pronounced problem with keeping distinction between similar outputs. This 

can also be seen in Figure 5.30 B, which show a pattern qualitatively different to 

previous model versions. 
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A1 A2 

  
 A3 A4 
 

  
B C 

  
D E 

  
Figure 5.29. Test results Model B tuned. Differences in parameters from standard 
parameters in Table 4.2: IPSCbas_pyr = 12.0 pS, EPSCpyr_bas = 0.005 pS, EPSCext_bas = 
0.004 pS, pin_bas = 0.02. A1) IO test. Input other minicolumns 100, 300, 700, 1000 and 
1300 Hz. A2) Sigmoid fit to data points in A. A3) Normalized gain between 5 and 75 % 
of Rmax for each curve in A2. A4) Offset for curves in A2. B) Relations between outputs 
for a network with two active minicolumns as a function of input to those mini-
columns. D) As B but average output. D) FIR1234 test. E) FIR1200 test. 

  

 

 

 



CHAPTER 5 RESULTS  

96 

 

Synaptic depression on pyramidal-pyramidal synapses 

In the original attractor memory model synaptic depression is included on all 

pyramidal-pyramidal synapses; that is also for the recurrent connections within 

the minicolumns. This was also tested and gives results very similar to those in 

the previous section (not shown) but the FIR scores were slightly lower. The 

reason for this is probably that, as shown in Section 5.4.3, stronger recurrent 

connectivity within minicolumns tend to increase the range of stable average.  

Smaller IPSP and short-term depression  

To see if the effect from short-term depression is similar when using a smaller 

IPSP, the FIR1234 and IO tests were repeated using IPSCbas_pyr = 2.6 pS 

(IPSP 1.1 mV). The results are seen in Figure 5.30. The similarity to the output 

gain model is still evident, but the network now has more trouble keeping the 

average and output relations stable. Increasing inhibition strength did not 

improve performance (data not shown).  

A B 

  
Figure 5.30: IO test and FIR test for Model B using a smaller IPSCbas_pyr of 2.6 pS. 
Parameter changes compared to the network in the previous section: EPSCext_bas = 
0.006 pS, EPSCpyr_bas = 0.005 pS, and pin_bas = 0.05. Note that average control is 
considerably worse and that output relations vary with input magnitude in B. 

 

 

A B 

  
Figure 5.31: Short-term depression does not produce as good results if the variability 
in incoming connections is removed from the network. FIR1234 and IO test for Model 
B with the same parameters as in Figure 5.29, but using a fixed number of incoming 
connections to postsynaptic neurons. A) FIR1234 test. B) IO test. Modulatory inputs: 
100, 400, 700 and 1300 Hz.   
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Variability in the network and short-term depression. 

It is interesting to see how important the variability in in incoming connections to 

postsynaptic neurons is for a network implementing gain change through synaptic 

depression. Therefore Model B was also tested using a fixed number of incoming 

connections to postsynaptic neurons. As seen in Figure 5.31 the performance is 

not nearly as good, which is further supported by the FIR scores in Table 5.6, 

where scores for all versions of Model B are presented. Thus using a variable 

number of incoming connections seem to be crucial for good performance also 

when gain change is implemented through short-term depression.  

 

Table 5.6: FIR test results for different versions of Model B. All FIR scores are averaged 
over 5 different random seeds. “+ VAR”: variability in incoming connections added,     
“- VAR”: no variability in incoming connections. Green: best scores.  

 STD 
IPSPbas_pyr = 12.0 pS 
 + VAR 

STD  
IPSPbas_pyr = 12.0 pS 
- VAR 

STD  
IPSPbas_pyr = 2.6 pS 
+ VAR 

FIR1234 17.41 ± 9.5 3.18 ± 0.86 3.15 ± 0.18 
FIR1234average 36.03 ± 4.21 7.96 ± 0.85 10.76 ± 0.0 
FIR1200 26.02 ± 8.20 4.06 ± 0.36 3.24 ± 0.22 
FIR1200average 34.90 ± 2.42 10.80 ± 0.96 11.40 ± 0.49 

  

5.6 Additional tests 

Since this project was of an exploratory character, several other experiments 

were conducted, that were judged to be less enlightening to report, or very similar 

to results already described. None of them gave any marked improvement of 

normalization. Those worth mentioning are: 

 Including recurrent connections between all minicolumns in the 

hypercolumn. This tended to, not surprisingly, impair distinction between 

outputs. 

 Including recurrent connections between minicolumns receiving similar 

input. This was less detrimental but tended to impair distinction between 

the two largest outputs. 

 Changing the connection probabilities between the minicolumns and the 

basket cell populations, as well as between the basket cell population and 

minicolumns. A connection probability close to 100 % impaired norm-

alization, otherwise no marked effect. 

 Using current based instead of conductance based synapses. No marked 

effect on normalization. 

 Using alpha shaped, current or conductance based synapses. No marked 

effect on normalization. 

 Using different neuronal parameters for the IAF or adaptive IAF neuron 

model but tuning PSPs to the same values. No marked effect on 

normalization. 

 Using a population of pyramidal cells instead of parrot neurons for input 

to Model B. No marked effect on normalization, but a slightly noisier 

output.  
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6 Discussion and conclusions 
The discussion chapter is divided into two parts: A discussion part where the 

results are summarized and possible conclusions; causes for observed effects; and 

the possible use of this type of system are discussed more extensively, and a 

shorter conclusion part that summarizes the most important conclusions to be 

drawn from the study. 

6.1 Discussion 

This section begin by discussing the results for Model A with standard 

parameters. The differences between the feed-back and the feed-forward circuits 

as well as what limits these model versions normalizing ability are summarized. 

Thereafter the three mechanism found to give a more normalizing network are 

discussed: noise, variability in neuron excitability and connections and short-term 

depression. Last the methodology is evaluated and alternative approaches are 

considered.  

6.1.1 Model A standard parameters 

If the standard values for synaptic weights, or values close to those, are used and 

each neuron receives the same number of incoming connections, there were only 

slight differences between different implementations of Model A. The modula-

tory effects implemented by the feed-forward inhibitory circuit in Model A1, the 

feed-back circuit in Model A2 or by the combined circuits in Model A are all best 

described as qualitatively most similar to the subtractive inhibition model. All 

versions show the characteristic subtractive shift of the IO curve for increased 

modulatory input. Qualitative features seen in the FIR graphs further supports 

that the modulatory effect is primarily subtractive. Those features are:  

 Average output not stable for increased input magnitudes.  

 For fixed input relations the relationships between the outputs 

show a strong dependence on input magnitude.  

 Also for constant input magnitude, average output might vary 

depending on the relationships between the inputs.  

The network models tendencies for WTA behavior only for medium input 

magnitudes can as well be explained by the subtractive inhibition model if also 

the sigmoidal shape of the basket cell population’s response curve is taken into 

account. The constructed mathematical model of the system gave primarily one 

important insight considering why it is hard to keep relationships between 

outputs for increased input magnitude: Since all minicolumns receive the same 

amount of inhibition (from the common inhibitory population), but their driving 

input will grow with different factors, it is not possible to tune inhibition to keep 

all outputs constant. That the basic assumption this model was based upon, a 

subtractive shift of the IO curve for a minicolumn for increased inhibition, is a 

good description of network functionality was also shown by plotting the output 

from a single minicolumn receiving different amounts of excitatory drive to the 

pyramidal and basket cell populations (Figure 5.3, Figure 5.17).  

Normalizing features  

That the response curve of a minicolumn is shown to be primarily subtractively 

shifted for increased modulatory inputs explains why these model versions are 
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not very good at normalization. But there were in fact some weak normalizing 

effects observed. First for low input magnitudes and small modulatory inputs, 

some gain change was present in addition to the subtractive shift. This was more 

pronounced the smaller output magnitudes that were studied. Second in the FIR 

test graphs, the model versions were showing a bit slower divergence of output 

relations and thus an approximate normalization over a slightly larger range than 

for the theoretical subtractive inhibition model. 

This gain change was also seen for a single neuron and minicolumn detached 

from the network which shows it is not a network effect. It can instead be 

explained by the increased variance in the input created by both increased input 

rate and the added inhibition. However this effect is not large enough to give a 

pure divisive rescaling of the IO curve for standard parameters. 

It was also noted that the network was better at keeping stable relationships 

between the outputs if a small increase in average was allowed, which is the 

reason the best results on the FIR test is not seen for the same inhibition strength 

as the best average control. This depends on that an increasing average counteract 

diverging output relations, since the gain of a sigmoidal response curve is strictly 

decreasing except for very low input magnitudes; the minicolumns receiving a 

smaller increase in excitatory drive during the FIR tests, will thus have a larger 

gain than the minicolumns receiving a larger increase in excitatory drive. This in 

fact highlights another important insight from studying these model versions: 

Keeping average constant does not necessarily create a normalizing network. 

Feed-forward versus feed-back inhibition 

One question we set out to answer was if there were differences in the 

normalizing ability of the feed-forward and feed-back inhibitive circuits. The 

results do as mentioned show that the difference in normalizing ability is very 

small. However some qualitative differences were found that could be important 

to consider if the aim is to create an approximately normalizing hypercolumn. 

The two most pronounced differences are: 

 The feed-forward circuit is better at keeping a stable average, while 

average is strictly increasing for the feed-back circuit.  

 The feed-back network is less sensitive to tuning because of the feed-

back loop creating a dynamic balance in the firing rates of the excitatory 

and inhibitory populations. 

To use both types of inhibitory circuits in concert can thus be motivated, and by 

choosing the relative strength of feed-forward versus feed-back inhibition one of 

those features can be emphasized. The differences found in this work that a feed-

forward circuit is more powerful for controlling average activity, while a feed-

back circuit is more dynamically adapting could be a possible explanation for 

why both these circuits are present in cortex. 

In conclusion these network model versions can even though qualitatively closer 

to the subtractive inhibition model, be used to approximate normalization in a 

spiking neural network for a limited range of input magnitudes and input 

relations. However that normalization works considerably worse for more 

disparate input relations should be taken into account. That is the reason we are 

not stating that these network versions “are normalizing” for the low input 

region, since that is only true for a subset of input relations. If a hypercolumn 

module with these parameters should be used to normalize output in a spiking 

neural network, is thus dependent on that requirements for accuracy is not too 
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high. Using a hypercolumn with these parameters could e. g. be good enough if 

the important point is to have an approximately constant average but the quotient 

between the first and second largest input is not crucial. 

6.1.2 The role of noise and IPSP size 

For Model A, A1 and A2 the effect of increasing IPSP size was to shift the 

network from the subtractive inhibition towards the normalization model. This 

effect was found to be more pronounced the larger IPSPs that were used. The 

reason for this was touched upon in the previous section: A computational unit 

receiving inhibition will need larger excitatory drive to reach a certain output 

rate. This will create a larger variability in incoming spikes at rheobase (at least if 

as in this study the input has Poisson statistics) and variability will also be further 

increased by the variability added by the inhibitory drive. The effect of an 

increased modulatory input in the network can thus be separated into two parts: 

 A decrease in average membrane potential.  

 An increase in input, and thus membrane potential variability. 

As seen in previous studies, see e. g. Chance et al (2002), the combination of a 

subtractive shift, and increased variance can if properly balanced create a pure 

divisive shift in a neurons IO curve. It is for all networks versions in this thesis as 

well as for a single neuron or minicolumn seen that an increased modulatory 

input is tied to increased neuron membrane variability. When smaller IPSPs are 

used this effect is weak. However when a larger IPSP is used, it is magnified and 

for the “large IPSP” networks studied here, large enough to create a network that 

is better described the normalization model than any of the other theoretical 

models.  

There are several studies showing that variable amounts of balanced noise has the 

potential of being an important neuronal mechanism for gain change (Ayaz & 

Chance 2009, Ly & Doiron 2009, Prescott & De Koninck 2003). It has also been 

suggested that this is the biological mechanism that gives the “divisive” part in 

the normalization equation (Carandini & Heeger 2012). However there have to 

our knowledge not been any computational studies where this noise creating gain 

change is shown to be generated intrinsically in the network. This should thus be 

considered one of the more interesting findings of this study. 

This is also to our knowledge also the first complete “normalizing circuit” built 

from the “gain change via noise” principle. To get normalization gain change is 

needed, but it also has to be an appropriate amount at the right time. There are 

other studies that model normalizing circuits such as Ayaz & Chane (2009) but 

then the “normalizing signal” (which is for that study a separate noise signal) is 

generated external to the model.  

The main argument against that the “large IPSP versions“ of the hypercolumn 

model is that the IPSP and thus IPSC needed to create a sufficiently large effect 

are very large. The IPSP size for the network model versions that perform really 

well is about 10 times the average found by Thomson et al. (2002)  and could 

thus not be considered biologically realistic. This is of course a reason to doubt 

the validity of the mechanism; and that a large enough increase of noise can be 

created in a single hypercolumn to give a normalizing circuit. Another important 

parameter is that the driving input is modelled as Poisson processes which gives 

this increase in variance with input magnitude. Since all input is modelled 

naturally the statistics of this input will be very important. 
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It should however be remembered that the mechanisms works also for smaller 

IPSPs (just not as good) and could thus maybe work in concert with other 

mechanisms – such as synaptic depression - to give normalization in a cortical 

hypercolumn. And the approximate normalization performed by this network 

found for more realistic parameter values might be at play for tasks when the 

range over which the input magnitude is varied is quite small. 

It should also be remembered that we here study a single hypercolumn module 

with very few minicolumns. Using a very small network can sometimes result in 

a need to compensate by using unrealistic parameter values. In conclusion further 

studies are needed to assess if this is an artificial effect only possible to create in 

this specific network model or a viable mechanism for normalization in a 

biological hypercolumn. One interesting line of future studies would be to 

investigate this mechanism in a larger network, with connectivity similar or 

different to the original attractor memory network and which reproduce spike 

statistics typically seen in cortex. 

6.1.3 Variability in the network 

It was seen in the results section that the model versions performed better the 

larger amount of variability that was present in model neuron capacitance, input 

to neurons in a minicolumn, and number of incoming connections. For neuron 

capacitance and input the effect was quite small. This is most likely partly due to 

that a truncated normal distribution was used, so there was a limit to the amount 

of variability that was introduced. It is also the case that even if there e. g. is a 

variability in the feed-forward input to basket cells, since each pyramidal cell 

gets input from several basket cells, the variability in the amount of inhibition for 

a pyramidal cell will be smaller than the input variability for the basket cells.  

By allowing the number of incoming connections to each neuron to vary it is 

possible to create a larger variability in excitatory and inhibitory input to 

pyramidal cells. The result was a binomial distribution of inhibitory as well as 

excitatory inputs. Some neurons could thus e. g. receive triple the average 

excitatory input and a third of the average inhibitory input or no inhibitory input 

at all. Using a variable number of incoming connections accordingly have a 

larger impact on network functionality. The network model versions including 

this variability was considerably better at keeping output relations stable, even 

though this did not translate to a perfectly normalizing IO curve. It was also 

shown by a simple computational example that variability in inhibition can give 

rise to a marked normalizing effect also if the response curve of a single 

computational unit is affected purely subtractively by a modulatory input.  

That this type of variability in the network affect can have so large impact on the 

network functionality should be considered the second important finding in this 

study. This shows that maybe not all modulatory effects need to come from a 

single neuron implementing this effect intrinsically, which previous normaliza-

tion and gain control studies have been focused on. Maybe the answer to the 

elusive normalization phenomena in cortex cannot be found only in a single 

neuron but we need to lift the gaze? The effect on network processing of this type 

of variability is even more pronounced when short-term depression is included in 

the network. An interesting direction of future studies could be thus to study the 

effects and biological realism of a more structured (not as here random) 

variability in the network. This could both create an inhibitory population able to 
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provide linear (or in fact arbitrary shape of the IO curve) inhibition over a larger 

range of input magnitudes and create normalizing effects in the network by the 

principle illustrated in Figure 26. This could possibly be done modeled on how 

different neuron sizes affect recruitment and inhibitability of motor neurons 

(Henneman et al. 1965).  

These results also highlights that the typical choice of using neurons of similar 

size, may result in inability to capture some important phenomena. An important 

consideration is however of course, that there are several studies showing that the 

output from a single neuron is normalized; and that a normalizing output on 

population level can thus not fully explain normalization in cortex. However this 

is in relation to an external stimuli and not afferent inputs. An interesting 

possibility to consider could thus be if the normalized response could in fact be 

the effect of input from an “upstream” normalizing group of neurons.  

6.1.4 Short-term synaptic depression 

Adding short-term synaptic depression on driving synapses was what had the 

largest effect on the network processing, shifting its modulatory effect from 

subtractive inhibition to output gain. This was seen for all versions of Model B, 

but for the version using a variable number of incoming connections as well as a 

quite large IPSP the most interesting results were seen. In addition to the reduced 

maximum output and gain change for low inputs typical for the output gain 

model, there was also seen a shift in the half-max of the response curve. This is a 

feature typical for the normalization model, and this network can thus be said to 

implement a mix of normalization and output gain. Although qualitatively most 

similar to the output gain model, especially for higher input magnitudes, this 

network was able to keep average output and output relations over the longest 

range of all model versions, as measured by the FIR test. Also here it should 

however be noted that the model is less normalizing for certain input relations; 

for this model version this is in contrast to previous model versions more similar 

inputs.  

This is the third significant result of this study: Variability in the network tend to 

shift the effect from synaptic depression previously shown to be present for 

single neurons (Rothman et al. 2009) towards the normalization model. This is 

thus another example of how using a group of neurons results in different 

processing compared to when a single neuron is studied. However also this 

model version is most accurately described as “output gain approximating 

normalization” over a certain range of input magnitudes and input relations. This 

because of the clear qualitative similarities to output gain seen for the IO and FIR 

tests.  

But synaptic depression could indeed be used to create an approximately 

normalizing circuit for low and medium input magnitudes. This is an important 

result since it could enable a biologically realistic implementation of such a 

circuit for future spiking network models. Could it also be a good enough 

approximation to explain the normalizing effects seen in biological cortical 

circuits? Between 50 and 1500 Hz input magnitude, which in an increase in input 

magnitude with a factor of 30, this network quite closely approximate the 

normalization model. For an increase in input magnitude with a factor of 10 it is 

a very good approximation. Although normalization for some neural circuits such 

as e. g. on the retina can handle a much larger change in input magnitude than 

that, it is a considerable range. There was not time within this study to study 
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more extensively whether this range might be enough to explain some of the 

normalizing effects observed in primate cortex. This is thus believed to be an 

important future line of study. It would also be interesting to investigate how 

blocking short-term depression might affect the normalizing ability of a 

biological cortical circuit.  

A computational study by Ayaz and Chance (2009) also showed that the 

modulatory effect was shifted from output gain to normalization when mutual 

inhibition was included between a normalization pool and a second pool of 

cortical neurons. So an interesting line of study could also be to investigate if 

something similar might be possible in this type of network. The large difference 

in the modulatory effect seen when synaptic depression was added - which is 

indeed present at biological pyramidal to pyramidal synapses - indicate that this 

feature might have large implications on information processing in cortex and 

could be a plausible explanation for normalizing effects.  

6.1.5 Alternative approaches  

A different approach to this problem could have been using a more detailed 

neuron model, such as the Hodgkin Huxley multicompartmental models used in 

the original attractor memory network (Lundqvist et al. 2006). The results of this 

thesis indicate that this would probably not have made any difference since the 

main limitation to the networks normalizing ability comes from that the model 

neuron IO curve is a) Strictly increasing and b) Affected in a subtractive way by 

moderate amounts of inhibition. Both these conditions are also true for a 

Hogdkin-Huxley neuron model of a pyramidal cell as shown by e. g. Rothman et 

al. (2009) and Chance et al. (2002). Changing the neuron type is thus not likely to 

affect the reason why the structure of the hypercolumn module does not per se 

create a normalizing network. However there are slight differences in how the 

response curve of an Hodgkin-Huxley neuron and an IAF neuron are affected by 

noise (Chance et al. 2002), so it could be interesting to see if the “noise 

mechanism” would work better or worse for a different neuron model. 

Another choice made was to study a standalone hypercolumn module, which of 

course cannot represent the dynamics of a larger network. The question we 

should ask is if a hypercolumn embedded in the original attractor memory 

network might be more normalizing. An indication this might not be the case is 

that also in the attractor memory model a large increase in the activity of each 

“winning” minicolumn is seen if the amount of excitation to those are increased 

(Lundqvist et al. 2006). This is similar to what was found for several network 

versions in this study and indicate the “constant” activity in each hypercolumn in 

the original attractor network is in fact quite dependent on that each minicolumn 

in an active pattern receive an approximately constant amount of excitation. This 

indicate that also a model comprising a large network of hypercolumns do have 

similar dynamics concerning keeping average constant. That the WTA effect of 

the hypercolumn in the attractor memory network is reproduced here also 

indicates that the dynamics is similar. The most important limitation of using a 

single hypercolumn module is probably that it does not produce the same type of 

realistic spike statistics and since spike statistics are important for the “noise 

mechanism” that could be worth investigating further.  

It would also have been possible to use an even simpler rate based model, but this 

was not deemed accurate enough since it can e. g. not capture the gain change of 

a neuronal response curve for increased input variability. This do in hindsight 
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seem to be a good choice since this specific mechanism was in fact shown to 

have a large impact on network processing.   

The FIR test have shown to be very useful for studying the network model 

versions modulatory effects more in detail, and get a deeper understanding of 

different reasons a network might be more or less normalizing. However it have 

because of the network models dependence on input relations shown to not be a 

perfect way to compare different model versions; this since it only studies a 

single input vector. The results are still considered useful, but it would be helpful 

to develop a more holistic measurement of the range over which a network can be 

considered normalizing.  

6.2  Conclusions 

This thesis has investigated which modulatory effects that can be created in a 

highly structured recurrent spiking neural network, modelling layer 2/3 of a 

cortical hypercolumn. This means a network composed of several intrinsically 

connected groups of cells (minicolumns) with a common inhibitory pool creating 

feed-back/feed-forward inhibition or a combination of those. The results show 

that the structure of the hypercolumn does not per se create a normalizing 

network. Since the response curve of a single minicolumn in the network when 

using standard parameters is affected primarily subtractively by inhibition, it is 

not possible to fulfill normalization criteria of keeping both output relations and 

average stable for any larger range of input relations. The modulatory effect is 

then instead more accurately described by the subtractive inhibition model.  

However there are mechanisms in this type of circuit that can shift the modula-

tory effects towards the normalization model. In the hypercolumn module 

following normalizing mechanisms were found: 

 An increase in input variance coupled to larger modulatory 

inputs. 

 Variability in the network, either in neuronal properties and 

input, or in the number of incoming connections from 

presynaptic neurons. 

 Short-term depression on the driving synapses. 

The first mechanism is widely proposed as one of the mechanism giving rise to 

the divisive part of a normalizing circuit, but this is (to our knowledge) the first 

time this noise is shown to arise intrinsically in a spiking neural network model. 

That it here require moving outside the boundaries of IPSP sizes observed in 

cortex does not necessarily mean the mechanism itself is not valid. The second 

mechanism show that using a group of connected neurons as the computational 

unit can indeed create dynamics not present for a single neuron. This indicates 

that to improve our understanding of the mechanisms for normalization in 

biological neural circuits we may need to lift the gaze from the modulatory 

effects that can be implemented by a single neuron and also study larger 

computational units. Adding short-term depression resulted in a qualitatively 

different modulatory effect, best described as output gain. However when 

combined with network variability this gives a network which can approximate 

normalization over a large range of input magnitudes and input relations. Short-

term depression combined with the other two mechanisms could thus be a 

candidate for how normalization is implemented in cortex. 
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However to know if these mechanisms can constitute a biologically realistic 

explanation for normalization in biological nervous systems, further studies are 

needed. An interesting direction of those studies would be to further investigate if 

and how short-term depression might be combined with other mechanisms to 

create a more fully normalizing network; or if the effect seen is in fact large 

enough to explain some of the normalizing effects seen in primate cortex. Further 

investigations should also be directed towards studying if there are other ways 

the increased noise can be created in the hypercolumn module apart from using 

very large IPSPs and towards structured variability in networks. It would also be 

useful to study if and how the functionality of this type of hypercolumn module 

differ when it is a part of a larger network.  
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7 Appendix 

7.1 Mathematical analysis of the theoretical models 

In this sections a mathematical analysis which show that the features discussed 

for the normalization, output gain and subtractive inhibition model in 

Section 4.3.3, hold for all values of, n, σ and Rmax. It also gives a more detailed 

analysis of why they occur. 

Normalization 

Consider the output ͞y = [y1, y2, .. yn]  from a normalizing network with inputs 

͞x = [x1, x2, .. xn]: 

 
𝑦̅ = (𝑦1, 𝑦2, . .  𝑦𝑚) = 𝑅𝑚𝑎𝑥

𝑅𝑚𝑎𝑥

𝜎𝑛 + 𝑘∑ 𝑥𝑗
𝑛

𝑗≠𝑖 + 𝑥𝑖
𝑛 ∙ (𝑥1

𝑛, 𝑥2
𝑛, . .  𝑥𝑚

𝑛 ) 
 

(7.1) 

The average output for a specific input vector is: 

 
〈𝑦〉  =

1

𝑚
𝑅𝑚𝑎𝑥

∑ 𝑥𝑗
𝑛

𝑗

𝜎𝑛 + 𝑘∑ 𝑥𝑗
𝑛

𝑗≠𝑖 + 𝑥𝑖
𝑛        (7.2) 

For ∑ 𝑥𝑗
𝑛

𝑗 > 𝜎𝑛 the sigmoidal term will approach one and we get  

 
  〈𝑦〉  ≈

𝑅𝑚𝑎𝑥 

𝑚
    

 

(7.3) 

that is the average activity approach a constant independent of n, input magnitude  

and the relationships between the inputs. We now consider the relationships 

between the outputs when we keep the input relations constant that 

is ͞x = [c1a, c2a, .. cma]. Since all inputs are divided by the same denominator      

we can write the output in Equation 7.1 as 

 
𝑦̅ =

1

𝐶(𝑎)
(𝑥1
𝑛, 𝑥2

𝑛, . .  𝑥𝑚
𝑛 ) =

1

𝐶(𝑎)
((𝑐1𝑎)

𝑛, (𝑐2𝑎)
𝑛, . .  (𝑐𝑚𝑎)

𝑛) 
 

(7.4) 

The relationship between two outputs yi and yj will thus be: 

 𝑦𝑖
𝑦𝑗
=
𝑎𝑛𝑐𝑖

𝑛

𝑎𝑛𝑐𝑗
𝑛
=
𝑐𝑖
𝑛

𝑐𝑗
𝑛

 
 

(7.5) 

That is a normalizing network will keep the relationships between the outputs 

constant independent of Rmax, σ and the magnitude of the input as was illustrated 

in Figure 4.4. The relationships between the outputs do however depend on n - a 

larger n makes the network go towards winner take all dynamics, while a smaller 

n tend to keep the relationship between the outputs the same as that between the 

inputs (this is identically true for n = 1). It can also be noted that in contrast to 

subtractive inhibition one computational unit will never be completely silenced, 

even if its activity can be very low.  
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Output gain 

Considering the output of the network for the output gain model that will be:   

 
𝑦̅  = 𝑅𝑚𝑎𝑥

1

(1 + 𝑘 ∑ 𝑐𝑗𝑎)𝑗
 (

(𝑐1𝑎)
𝑛

𝜎𝑛 + 𝑐1𝑎
𝑛
,
(𝑐2𝑎)

𝑛

𝜎𝑛 + 𝑐2𝑎
𝑛
, … 

(𝑐𝑚𝑎)
𝑛

𝜎𝑛 + 𝑐𝑚𝑎
𝑛) (7.6) 

When (𝑐𝑖𝑎)
𝑛 ≪ 𝜎𝑛 for all ci the numerators in the second term will grow faster 

than the denominator in the first term, and we will thus have an increasing 

average. On the other hand when  (𝑐𝑖𝑎)
𝑛 ≫ 𝜎𝑛 for all ci, the second term will for 

all outputs saturate, while the denominator of the first term continue growing 

(albeit slowly for a small k) and thus the average will now decrease with 

increasing input magnitude. There is thus not a stable average as for 

normalization, but it will be bounded. The same is true for the output from 

individual units which will not reach their max firing rate. If we consider the 

relationship between the inputs we have: 

 𝑦𝑖
𝑦𝑗
 = 𝑅𝑚𝑎𝑥 (

1

(1 + 𝑘∑ 𝑐𝑘𝑎)𝑘

 
(𝑐𝑖𝑎)

𝑛

𝜎𝑛 + 𝑐𝑖𝑎
𝑛
) 𝑅𝑚𝑎𝑥 (

1

(1 + 𝑘∑ 𝑐𝑗𝑎)𝑗

 
(𝑐𝑗𝑎)

𝑛

(𝜎𝑛 + 𝑐𝑗𝑎
𝑛)
)⁄  

= ( 
(𝑐𝑖𝑎)

𝑛

𝜎𝑛 + 𝑐𝑖𝑎
𝑛
) ( 

(𝑐𝑗𝑎)
𝑛

(𝜎𝑛 + 𝑐𝑗𝑎
𝑛)
)⁄  

(7.7) 

When (𝑐𝑖𝑎)
𝑛 ≪ 𝜎𝑛  for all ci, the small inputs will first grow slower than the 

larger ones, partly since 𝑎𝑐𝑖 < 𝑎𝑐𝑗 and partly since the derivative of the 

sigmoidal term (for n>1) is increasing for low input magnitudes, and a larger 

input thus have a larger gain. However when the derivative of the sigmoidal term 

start to decrease the small inputs will grow faster than the large ones, creating a 

gradually smaller difference between them. When 𝑐𝑖𝑎
𝑛 ≫ 𝜎𝑛 for all ci all the 

outputs will be saturated and we get: 

 𝑦𝑖
𝑦𝑗
 ≈ 1 (7.8) 

In conclusion the relationships between the outputs will for the output gain model 

in the beginning depend on the relationships between the inputs but approach one 

if the input magnitude is increased enough.  

Subtractive inhibition 

Repeating the analysis for subtractive inhibition we start by considering the 

average output: 

 

𝑦̅  = 𝑅𝑚𝑎𝑥

(

  
 
 
(𝑐1𝑎 − 𝑘 ∑ 𝑐𝑗𝑎𝑗 )

𝑛

𝜎𝑛 + (𝑐1𝑎 − 𝑘∑ 𝑐𝑗𝑗 𝑎)
𝑛 ,

(𝑐2𝑎 − 𝑘∑ 𝑐𝑗𝑎𝑗 )
𝑛

𝜎𝑛 + (𝑐2𝑎 − 𝑘 ∑ 𝑐𝑗𝑗 𝑎)
𝑛 ,

 …  
(𝑐𝑚𝑎 − 𝑘 ∑ 𝑐𝑗𝑗 𝑎)

𝑛

𝜎𝑛 + (𝑐𝑚𝑎 − 𝑘 ∑ 𝑐𝑗𝑗 𝑎)
𝑛

)

  
 

 (7.9) 

Since  
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 (𝑐𝑖𝑎 − 𝑘∑𝑐𝑗𝑎)

𝑗

= 𝑎(𝑐𝑖 − 𝑘∑𝑐𝑗)

𝑗

 (7.10) 

Where the second term is independent of a, this will give two types of outputs. If 

(𝑐𝑖 − 𝑘∑ 𝑐𝑗) > 0𝑗  the output from that unit will grow as a sigmoid however 

shifted to the right on the horizontal axis. If on the other hand (𝑐𝑖 − 𝑘∑ 𝑐𝑗)𝑗 < 0 

that output unit will be silenced no matter the input. Since all outputs are either 

growing or zero this will give a monotonically increasing average output that 

saturates when 𝑎(𝑐𝑖 − 𝑘∑ 𝑐𝑗)𝑗 ≫ 𝜎𝑛 for all i. The average activity will then be:  

 
  〈𝑦〉  ≈

𝑅𝑚𝑎𝑥 𝑚𝑎𝑐𝑡𝑖𝑣𝑒
𝑚

    
 

(7.11) 

Where mactive is the number of non-silenced units. It should however be noted that 

this stable average output is only reached when all non-silenced units have 

reached their max firing rate, that is when any differences between the inputs are 

no longer perpetuated to the outputs. This means similar to output gain this type 

of modulation work best over a small range of input magnitudes. For subtractive 

inhibition it is also interesting to consider the case where we have a “starting 

input” before inhibition gets started (as this will later be the case for the network 

models). If all inputs are the same it is trivial to tune the inhibition to keep a 

constant average as seen in Figure 4.5 A. However when they are not it is more 

complicated as seen can be seen in Figure 4.5 B. 

Considering the relations between the outputs we have:  

 𝑦𝑖
𝑦𝑗
 = 𝑅𝑚𝑎𝑥

(𝑐𝑖𝑎 − 𝑘∑ 𝑐𝑗𝑎𝑗 )
𝑛

𝜎𝑛 + (𝑐𝑖𝑎 − 𝑘∑ 𝑐𝑗𝑗 𝑎)
𝑛 𝑅𝑚𝑎𝑥

(𝑐𝑗𝑎 − 𝑘∑ 𝑐𝑗𝑎𝑗 )
𝑛

𝜎𝑛 + (𝑐𝑗𝑎 − 𝑘∑ 𝑐𝑗𝑗 𝑎)
𝑛 ,⁄  

(7.12) 

If (𝑐𝑖𝑎 − 𝑘∑ 𝑐𝑗𝑎𝑗 )
𝑛
≪ 𝜎𝑛 for all i, this simplifies to:  

 𝑦𝑖
𝑦𝑗
 ≈
(𝑐𝑖𝑎 − 𝑘∑ 𝑐𝑗𝑎𝑗 )

𝑛

𝜎𝑛
 
(𝑐𝑗𝑎 − 𝑘 ∑ 𝑐𝑗𝑎𝑗 )

𝑛

𝜎𝑛
,⁄  

=
𝑎𝑛(𝑐𝑖 − 𝑘∑ 𝑐𝑗)𝑗

𝑛

𝑎𝑛(𝑐𝑗 − 𝑘∑ 𝑐𝑗)𝑗
𝑛 

=
(𝑐𝑖 − 𝑘∑ 𝑐𝑗)𝑗

𝑛

(𝑐𝑗 − 𝑘∑ 𝑐𝑗)𝑗
𝑛 

(7.13) 

Which means for small inputs the relationship between the outputs will be 

decided by the relationship between the inputs, k and n, and stay approximately 

stable with increasing input magnitude. When 𝑎𝑛(𝑐𝑖 − 𝑘∑ 𝑐𝑗)𝑗  grows however, 

this approximation is no longer valid and since the derivative of the sigmoids in 

Equation 4.4 for n > 1, is strictly decreasing for larger input magnitudes, the 

smaller outputs will eventually grow faster than the larger ones diminishing the 

difference between them. In the limit where all non-silenced units reach max 

firing rate there will no longer be a discernible difference between the outputs.  
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7.2  Python code 

The network model is structured in the form of a hypercolumn class that keep track of all 

nodes such as neurons, Poisson generators, and devices to record network activity. There 

are no separate classes for minicolumn and basket cell populations, but those are 

represented as lists of nodes. The build and connect methods of the hypercolumn class 

define the network structure and are seen in Listing 7.1. The complete hypercolumn class 

as well as parameters and functions for performing some of the simulations can be 

downloaded from GitHub https://github.com/spacemir/normalization. To run the scripts 

NEST, as well as the python packages NumPy, SciPy, and Matplotlib must be available. 

Versions used are Python 2.7.5, NEST 2.2.2, NumPy 1.8.2, SciPy 0.13.3 and 

Matplotlib 1.2.1.  

 

Listing 7.1 Python code showing the build and connect methods of the hypercolumn class. 

class HC: 

    """Hypercolumn class with variable number of minicolumns""" 

 

    def build(self): 

        # Each neuron will have its own input rate,  

        # and therefore an individual Poisson generator 

        self.inputs = [None]*(self.params["n_minicolumns"]+1) 

        for i in range(self.params["n_minicolumns"]): 

            poisson_generators = Create("poisson_generator",self.params["N_E"]) 

            self.inputs[i] = poisson_generators 

        self.inputs[-1] = Create("poisson_generator",self.params["N_I"]) 

        self.pyr_noise_input = Create("poisson_generator")   

        self.bas_noise_input = Create("poisson_generator")     

        self.spikedetectors = Create("spike_detector",\  

self.params["n_minicolumns"]+1) 

        self.raster_spikedetector = Create("spike_detector") 

        self.voltmeters = Create("voltmeter",self.params["n_minicolumns"]+1) 

 

        #create populations of excitatory cells 

        for n in range(self.params["n_minicolumns"]): 

            mc = Create(self.params["neuron_model"], self.params["N_E"],\ 

                        params=self.params["pyramidal_params"]) 

            self.all_pyr = self.all_pyr + mc 

            self.minicolumns.append(mc) 

 

        #create populations of inhibitory cells 

        self.basket_cells = Create(self.params["neuron_model"],\  

  self.params["N_I"], params=self.params["basket_params"]) 

        self.randomize_network_and_inputs() 

        self.built = True 

 

    def connect(self): 

        if not self.built: 

             self.build() 

 

  #create all synapse models 

        CopyModel("static_synapse", "pyr_external",  

   "weight":self.params["epsp_ext_pyr"],"delay":self.params["d"]}) 

        CopyModel("static_synnapse", "pyr_recurrent",  

   {"weight":self.params["epsp_pyr_pyr"], "delay":self.params["d"]}) 

        CopyModel("static_synapse", "bas_external",  

   {"weight":self.params["epsp_ext_bas"],"delay":self.params["d"]}) 

        CopyModel("static_synapse", "bas_recurrent",  

   {"weight":self.params["ipsp_bas_bas"],"delay":self.params["d"]}) 

        CopyModel("static_synapse", "pyr_inhibitory",  

   {"weight":self.params["ipsp_bas_pyr"],"delay":self.params["d"]}) 

https://github.com/spacemir/normalization
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        CopyModel("static_synapse", "bas_excitatory",  

   {"weight":self.params["epsp_pyr_bas"],"delay":self.params["d"]}) 

 

  # choice between variable number of outgoing or incoming connections 

        if self.params.["mult"]: 

             connect = RandomDivergentConnect 

        else: 

             connect = RandomConvergentConnect 

 

        # Connections.. 

        self.raster_neurons = [] 

        for i,mc in enumerate(self.minicolumns): 

             Connect(self.inputs[i],mc, model = "pyr_external") 

             connect(mc, mc, int(self.params["p_pyr_pyr"]*self.params["N_E"]),\ 

                    model="pyr_recurrent", options = {'allow_multapses':\  

     self.params["mult"], allow_autapses':self.params["aut"]}) 

            connect(mc, self.basket_cells,int(self.params["p_pyr_bas"]*  

     self.params["N_E"]),model="bas_excitatory",\  

     options={'allow_multapses':self.params["mult"]}) 

            connect(self.basket_cells, mc, int(self.params["p_bas_pyr"]*\  

     self.params["N_I"]), model="pyr_inhibitory", \  

     options={'allow_multapses':self.params["mult"]}) 

            DivergentConnect(self.pyr_noise_input, mc,  

     self.params["epsp_noise_pyr"],  self.params["d"]) 

            # .. to device 

             self.raster_neurons += mc[0:self.params["n_cells_to_raster"]+1] 

 

        if self.params["p_mc_mc"]>0: 

             self.mc_mc_connect() 

 

        # .. external noise bc pop, recurrent bc pop 

        Connect(self.inputs[-1],self.basket_cells, model="bas_external") 

        DivergentConnect(self.bas_noise_input, self.basket_cells, 

self.params["epsp_noise_bas"], self.params["d"]) 

        connect(self.basket_cells, self.basket_cells,int(self.params["p_bas_bas"]*  

   self.params["N_I"]),                model="bas_recurrent") 

        self.raster_neurons += \  

   self.basket_cells[0:self.params["n_cells_to_raster"]+1] 

 

        self.connect_devices() 

        self.connected = True 

 

    def __init__(self, params): 

        ResetKernel() 

        self.params = params    # parameter dictionary  

        self.minicolumns = []   # MCs added here during build 

        self.inrates = None 

        self.setRandomSeeds(params["random_seeds"][3]) #choose a random seed 

        self.finished, self.built, self.connected = False, False, False 
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