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Abstract
There is large theoretical, experimental and numerical interest in studying
boundary layers, which develop around any body moving through a fluid.
The simplest of these boundary layers lead to the theoretical abstraction of
a so-called Blasius boundary layer, which can be derived under the assump-
tion of a flat plate and zero external pressure gradient. The Blasius solution
is characterised by a slow growth of the boundary layer in the streamwise
direction. For practical purposes, in particular related to studying transi-
tion scenarios, non-linear finite-amplitude states (exact coherent states, edge
states), but also for turbulence, a major simplification of the problem could
be attained by removing this slow streamwise growth, and instead consider
a parallel boundary layer. Parallel boundary layers are found in reality, e.g.
when applying suction (asymptotic suction boundary layer) or rotation (Ek-
man boundary layer), but not in the Blasius case. As this is only a model
which is not an exact solution to the Navier-Stokes (or boundary-layer) equa-
tions, some modifications have to be introduced into the governing equations
in order for such an approach to be feasible. Spalart and Yang introduced a
modification term to the governing Navier-Stokes equations in 1987. In this
thesis work, we adapted the amplitude of the modification term introduced
by Spalart and Yang to identify the nonlinear states in the parallel Blasius
boundary layer. A final application of this modification was in determin-
ing the so-called edge states for boundary layers, previously found in the
asymptotic suction boundary layer.





Referat
Icke-linjära stater i parallell Blasius gränsskikt

Det finns stor teoretisk, experimentell och numerisk intresse för att stude-
ra gränsskikt som utvecklas runt varje kropp som rör sig genom en vätska.
Det enklaste av detta gränsskikt leder till den teoretiska abstraktion av ett
s.k. Blasius gränsskikt, som kan härledas under antagande av en plan platta
utan externt tryckgradient. Blasius lösningen karakteriseras av en långsam
tillväxt av gränsskiktet i strömningsriktningen. Av praktiska skäl, särskilt i
samband med att studera övergångsscenarier, icke-linjära finita-amplitud till-
stånd (“exact coherent state” på engelska), men även för turbulens, en stor
förenkling av problemet kan nås genom att ta bort denna långsamma ström-
vis tillväxt, och istället överväga en parallell gränsskikt. Parallella gränsskikt
finns i verkligheten, t.ex. vid sugning (asymptotisk sugningsgränsskiktet) el-
ler rotation (Ekman gränsskiktet), men inte i Blasius fallet. Eftersom detta
är bara en modell som inte är en exakt lösning på Navier-Stokes (eller gräns-
skikts) ekvationer, vissa ändringar måste införas i de styrande ekvation för
att en sådan strategi ska vara genomförbart. Spalart och Yang infört en en-
kel ändring i Navier-Stokes ekvationer redan 1987. I detta examensarbete har
vi anpassat amplituden av modifieringstermen att identifiera de icke-linjära
tillstånd i det parallella Blasius gränsskiktet. Motivation av tillämpning av
denna ändring var att fastställa de så kallade “edge states” för gränsskikt,
som tidigare har hittats i det asymptotiska sugningsgränsskiktet.
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Chapter 1

Introduction

We experience flows in all fields of our natural and technical environment. The one that
every living person at least experiences is the supply of oxygen in their body through
the flow-dependent transport process. Our life on earth would have been different or
even impossible without fluid flows. Our natural and technological world could have
been perished without it.

Understanding the fluid flow-related phenomena is a long standing subject of research
both for academic and industrial purposes. Flows are typically categorized as two differ-
ent phenomena known as laminar and turbulent flow. If a dye is injected in the middle
of stream of free flowing water through a pipe, the resulting flow could be either laminar
or turbulent. Osbourne Reynolds (1842-1912) was the first person to investigate this
phenomenon in the 1880s, later became a classics in fluid mechanics [16].

After many experiments he found that the expression ρud/µ, where ρ = density, u =
mean velocity, d = diameter of the pipe and µ = viscosity, would help to predict what
the flow behavior could be. Value less than 2000 result in laminar flow where the mo-
tion of the particles of the fluid is very orderly distributed and all particles moves in
straight lines parallel to the pipe walls. Whereas the flow become irregular in space and
time for value greater than 4000, known as turbulent flow. This number expressed by
ρud/µ later named as Reynolds number, Re. Reynolds also observed another type of
flow in between laminar and turbulent flow for the range 2000 < Re < 4000 defined as
transitional flow [16].

Ever since the pioneering experimental study on pipe flows by Reynolds, there has
been decades of effort to get fundamental insight how a flow undergoes transition from
laminar to turbulent. But still our ability to answer the question of how a turbulent
flow arises and sustains is far from satisfactory. We can observe turbulent or transitional
state in many technical applications such as flow over an airplane wings or around a
car body. Hence, understanding turbulence and transitional flow is of great significance.
Controlling transition could allow significants improvement in many applications. For
example, by delaying transition skin-friction drag can be reduced in case of flow over
a airplane wings and thus smaller fuel consumptions can be achieved. On the other
hand, allowing transition to turbulence, mixing for combustion, heat transfer, chemical
reaction and other exchange processes can be enhanced.
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CHAPTER 1. INTRODUCTION

Viscosity, how viscous a fluid is, is one of the important physical parameters of a fluid
that defines how the fluid flow will behave. All solid surface interact with viscous fluid
because of the no-slip boundary condition. The physical requirements is that the fluid
and solid have equal velocities at their interface. Thus a boundary layer is formed when
a viscous fluid moves over a solid surface as the flow is retarded by the fix solid surface
and the flow is termed as boundary-layer flow. In the present study we are going to
deal with the simplest possible boundary layer that formed over a semi-infinite flat plate
known as Blasius boundary layer. The boundary-layer flow on a flat plate is of great
fundamental as well as practical importance.

A boundary-layer flow can be formulated in two possible ways, spatial and temporal.
In spatial simulations a physical boundary layer is usually develops in the downstream
direction, while in case of temporal simulations boundary layer develops in time. A
spatial formulation of a physical boundary layer is the best numerical model, but spa-
tial development of inhomogenous boundary layer makes it computationally demanding.
Moreover, in turbulent flows the range of dynamically-significant length and time scales
widen rapidly, hence making an accurate numerical solution increasingly costly. In this
study we are going to use a model with periodic boundary conditions in the stream-
wise and spanwise directions. There are several advantages of using periodic boundary
conditions: very efficient Fourier spectral methods can be used, and, there are no in-
flow and outflow boundary conditions to be prescribed. In case of spatially growing
boundary-layer flow a fringe region downstream of the physical domain needs to be
added to retain the advantages of the spectral Fourier decomposition, results in compu-
tationally demanding simulation. This motivate us to go for temporal advancement of
the boundary-layer flow, where the boundary layer develops in time rather than in space.

Spalart used a temporal simulation technique to compute the development of a flat plate
boundary layer at a Reynolds number Reθ = 1410 [23]. Temporal simulation technique
has been adopted for this particular study as well. The basis of the temporal simulation
technique is based on the fact that a localized disturbance or wave of relatively short
wavelength which travels downstream in a slowly growing boundary layer is surrounded
by a slowly temporal growing boundary layer of almost constant thickness. That is the
idea is to use the fact that both the boundary layer thickness and the turbulence energy
level vary slowly as functions of x.

Spalart and Yang [24] performed a study in 1985 related to ribbon-induced transition in
Blasius flow on the parallel boundary-layer flow approximation. To perform their study,
they added a correction term to the Navier-Stokes equations so that the laminar solution
has a Blasius profile. They studied the early three-dimensional stages of transition in
the Blasius boundary layer by numerical solution of the Navier-Stokes equations. They
numerically solved the full, time-dependent, three-dimensional Navier-Stokes equations
in the half-space over a plane wall with Blasius boundary layer as the initial condition
disturbed by a finite-amplitude, two-dimensional TS wave [detailed in CHAPTER 3]
and low-amplitude, three-dimensional random noise. They observed rapid amplification
of the three-dimensional components which leads to transition. The early nonlinear
stage has also been the subject of recent experimental, theoretical, and numerical work
by Thomas(1983) [34]; Kachanov & Levchenko (1984) [11]; Saric, Kozlov & Levchenko
(1984) [27]; Craik (1971) [2]; Herbert (1984, 1985) [7] [8]; Wray & Hussaini (1980) [37]
and Spalart (1984) [22]. Wedin et al [9] performed a study to locate a relevant nonlinear
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solution in a parallel boundary-layer flow. They also reported finite amplitude coherent
structures together with a preliminary analysis of their stability. Their study was based
on the self-sustaining process originally described by Waleffe [36] which requires adding
a body force to the Navier-Stokes equations. Wedin et al [9] adapted the magnitude
of the body force based on the mean velocity at the outer edge of the domain in the
context of the disturbance formulation.

Relevant and similar studies as Wedin et al [9] have been carried out by Milinazzo
& Saffman (1985) [19]; Koch (1992) [14]; Rotenberry(1993) [26] and Ehrenstein & Rossi
(1996) [5] discovering nonlinear two-dimensional solutions to the Blasius boundary-layer
flow. In Koch (1992) [14] the prechaotic bifurcation behavior of the Blasius boundary-
layer flow was studied using the parallel flow approximation followed up by a secondary
stability analysis of the nonlinear solutions. Rotenberry (1993) [26] studied the sta-
bility of the flow over a flat plate to finite-amplitude disturbances and found that the
minimum Reynolds number of the nonlinear Tollmein-Schlichting waves is about 510
slightly below the linear critical point 519.4. His result suggests that finite amplitude
disturbances can initiate transition. To perform his study, Rotenberry used a model
described by Milinazzo & Saffman (1985) [19]. Ehrenstein & Koch (1995) [4] performed
a secondary analysis of the two-dimensional nonlinear equilibrium solutions with a hope
to find a key to the transition mechanism and to clarify the bursting process. Koch et al
(2000) [15] reported three-dimensional nonlinear equilibrium solutions for a flow over an
infinite swept flat plate.

In the current thesis, we have studied the linear behavior of single two-dimensional
TS waves followed by an early nonlinear stage, during which two-dimensional nonlin-
ear effects become significant, such as the saturation of a TS wave. Finally, a strong
nonlinear stage, which leads to the fully turbulent boundary layer, was studied in a
three-dimensional domain followed by the understanding of the dynamics of laminar-
turbulent separatrix known as edge state. In the edge state case our aim was to identify
a relative attractor on the laminar-turbulent separatrix, the invariant phase-space region
separating trajectories that relaminarize from those experiencing turbulent dynamics.
This thesis work woes much to the previous work by Wedin et al [9] and Spalart & Yang
(1985) [24].
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Chapter 2

Governing Equations

2.1 Incompressible Navier-Stokes Equations
The motion of the fluid substances is described by the Navier-Stokes equations, named
after Claude-Louis Navier and George Gabriel Stokes. The equations comprise the
conservation of mass and momentum equations. The general dimensional form is read
as:

ρ
Du
Dt

+∇p− µ∇2u = 0

Dρ

Dt
+∇.(ρu) = 0

(2.1.1)

where ρ is density, p is pressure, u = (u, v, w) are velocity components and µ is the
molecular viscosity.

The material derivative D
Dt = ∂

∂t + u.∇, is the time rate of change of some fluid quantity
from the viewpoint of Eulerian definition of fluid. In case of incompressible flow the
density ρ is assumed to be constant, which leads us to Dρ

Dt ≡
∂ρ
∂t + u.∇ρ = 0.

Thus for incompressible flow the Navier-Stokes equation takes the form:

ut + 1
ρ
∇p− ν∇2u + (u.∇)u = 0

∇.u = 0
(2.1.2)

where ν = µ
ρ is the dynamic viscosity.

The dimensional incompressible Navier-Stokes equations defined by (2.1.2) are non-
dimensionalized based on unidirectional free-stream speed U∞ and the displacement
boundary-layer thickness, δ∗ =

∫∞
y=0(1− u

U∞
)dy. The non-dimensional form of (2.1.2):

ut +∇p− 1
Reδ∗

∇2u + (u.∇)u = 0

∇.u = 0
(2.1.3)

where Reδ∗ = U∞δ∗

ν is the Reynolds number based on the boundary-layer displacement
thickness δ∗.
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CHAPTER 2. GOVERNING EQUATIONS

2.2 Boundary-layer equations
The relevant equations for laminar boundary-layer flow is one of the most important
advances in fluid dynamics which is based on few assumptions. One of the assumption
is that Reδ∗ = U∞δ∗

ν → ∞. This assumption along with using an order of magnitude
analysis of the Navier-Stokes equations of the viscous flow, help to decide which terms are
important and which terms are less important to be negligible to simplify the solutions
of equations within the boundary layer. The dimensionless two-dimensional simplified
boundary-layer equations for streamwise and normal velocity components u and v can
be written as :

∂u

∂x
+ ∂v

∂y
= 0

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ 1
Reδ∗

∂2u

∂y2

0 = ∂p

∂y

(2.2.1)

The assumption of high Reynolds number divide the flow over a surface into a region
unaffected by the viscosity known as outer region and a near surface region where the
viscous effect can not be neglected known as boundary layer. The asymptotic analysis in
the boundary-layer equations states that the contribution from the wall-normal velocity
component v is small compared with the streamwise velocity component u, and also
that the variations of any fluid properties is much smaller in the streamwise direction
than that of the normal direction, i.e ∂

∂x << ∂
∂y . It is also worthy to note that the

boundary-layer approximation is not valid near the leading edge x = 0 of the domain
since the assumption Reδ∗ >> 1 and ∂

∂x <<
∂
∂y are incorrect there. According to the

study [20] the boundary-layer approximation is valid for Reynolds number above 30.

2.2.1 Blasius solutions to the boundary layer on a flat plate
For constant free-stream flow velocity U∞ and external zero pressure gradient ∂p

∂x = 0,
we observe the simplest possible steady two-dimensional boundary layer forms on a
semi-infinite flat plate at zero angle of incidence known as Blasius boundary layer. In
this special case the non-dimensionalized boundary-layer equations simplify to:

∂u

∂x
+ ∂v

∂y
= 0

u
∂u

∂x
+ v

∂u

∂y
= 1
Reδ∗

∂2u

∂y2

(2.2.2)

The solution of the equations (2.2.2) should be valid for any values of x except for the
leading edge x = 0. Hence the corresponding boundary conditions are:

u(x, 0) = v(x, 0) = 0

u(x, y)→ U∞ as
y

δ(x) →∞

δ → 0 as x→ 0

(2.2.3)

Here the boundary-layer thickness δ(x) is approximated based on the length of the
domain x as δ(x) = [νx/U∞]1/2. Determining the two velocity components of (2.2.2) via
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2.2. BOUNDARY-LAYER EQUATIONS

the derivatives of stream function ψ = U∞δ(x)f(η), the corresponding Blasius equation
based on the similarity variable η = y

δ(x) = y
√

U∞
νx can be defined by the following

ordinary differential equation:

d3f

dη3 + 1
2f

d2f

dη2 = 0 (2.2.4)

The boundary conditions of (2.2.4) are:

f = 0 and
df

dη
= 0 at η = 0

df

dη
→ 1 as η →∞

(2.2.5)
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Figure 2.1: Similarity solutions of the Blasius boundary-layer equations and derivatives
with respect to similarity variable η = y/δ(x).

The characteristic of the Blasius boundary-layer solutions is the slow growth rate of
the boundary-layer thickness along the streamwise direction. The profile changes in
a self similar way as it moves downstream. Another noteworthy property of the Bla-
sius boundary-layer similarity profile can be achieved by the asymptotic analysis, which
shows that ( dfdη − 1) ∼ 1

ηe
− η

2
4 as η → ∞. Which indicates that the streamwise velocity

component u approaches free-stream velocity U∞ very smoothly as we move further
from the wall.

The solutions of (2.2.4) are known as the Blasius similarity solutions for the boundary-
layer flow and are defined by two velocity components Ublas(x, y), Vblas(x, y), with x
being the streamwise direction and y normal to the wall. The similarity solutions can
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CHAPTER 2. GOVERNING EQUATIONS

be expressed in non-dimensional form as:

Ublas(y) = u

U∞
= fη(η)

Vblas(y) = v

U∞
= 1

2Re
1
2
x

(−f(η) + ηfη(η))
(2.2.6)

According to the study of Fasel et al [6], the numerical simulation of the complete
Navier-Stokes equations of a small amplitude wave showed that locally parallel theory
predicts Fourier amplitude functions very well. Their results went in good agreement
with the conclusion of Klingmann et al [13] justifying the use of parallel flow assump-
tion. In this study we are also going to use parallel flow approximation which is valid
for sufficiently large Re. As we see from equation (2.2.6), Vblas is of order Re−1

x , we
can assume the contribution from the wall-normal velocity component Vblas(y) is small
enough to be negligible for large Rex. This leads us to define the parallel laminar flow
for non-thickening boundary layer as Ublas ≈ Ublas(y)i = fη(η)i, with i as a unit vector.
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Chapter 3

Theory

Although the mathematical theory of the stability of sheared viscous flows was developed
many years ago, the physical mechanism behind the process of instability has received
relatively little attention, and still remains obscure. One of the common method to
understand this instability in viscous boundary-layer flows is to study the Tollmein-
Schlichting waves (hereafter denoted to as TS waves), which basically is the streamwise
instability arises in a viscous boundary layer. This instability is the initial part of the
process of transition to turbulence in boundary layers in common situations such as on
aeroplane wings. In case of incompressible flow, two-dimensional TS waves are gener-
ated in the mean flow direction when some disturbance (sound for example) interacts
with leading edge roughness in a process known as receptivity. These waves are slowly
amplified as they move downstream until they may eventually grow large enough that
nonlinearities take over and the flow transitions to turbulence. The essential mathe-
matics of these waves originally discovered by Ludwig Prandtl, were further studied by
two of his former students, Walter Tollmein and Hermann Schlichting for whom the
phenomenon is named.

Transition of the laminar boundary layer to turbulence is governed by the choice of
control parameter namely Reynolds number Reδ∗ , based on the boundary-layer dis-
placement thickness δ∗. For Reδ∗ < 17, the lower limit where short-lived growth of
disturbance energy is possible. The laminar state is globally stable and finite-amplitude
disturbances decrease monotonically [3]. Depending on the disturbance shape and en-
ergy, for the interval 17 < Reδ∗ < 519.4 the flow is conditionally stable. On the other
hand, TS traveling waves are amplified and laminar state stays no longer attractor for
even weaker disturbance for Reδ∗ > 519.4 [3] and we can see the supercritical classical
transition.

3.1 Forcing

When a viscous fluid flows over a solid surface in both laminar and turbulent flows, loses
kinetic energy constantly because of the friction with the wall. This is happened as the
molecules of the fluid right next to the surface stick to the surface. The molecules just
above the surface are slowed down in their collision with the molecules sticking to the
surface and these molecules in turn slow down the flow just above them. As we move
away from the surface, the effect of the collision with the surface slows down. This flow
deceleration near the surface in boundary-layer flows, helps growing the boundary-layer
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CHAPTER 3. THEORY

thickness in time (Figures 3.1 and 3.2).
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Figure 3.1: Effect of forcing in a laminar boundary-layer flow for Reδ∗ = 510. Figure
represents the displacement boundary layer thickness δ∗ for with and without forcing.

Widening in the boundary-layer thickness can be seen in Figure 3.1. So, to keep the flow
from decelerating and to maintain a non-thickening boundary layer we need to employ
proper forcing to the flow. A well-estimated forcing will ensure the correct development
of the boundary layer profile. To highlight more the effect of forcing in a boundary-layer
flow we present below the stream-wise velocity profile along normal direction normalized
by the free stream velocity U∞ .
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Figure 3.2: Effect of forcing in a laminar boundary-layer flow for Reδ∗ = 510. (a) with
force; (b) without force. Figures clearly show that the flow is slowing down near the
surface as the boundary-layer thickness δ99 increases in time while there is no driving
force in the flow. In contrast, the velocity profiles remain almost constant in time and we
don’t see δ99 increases for the flow with forcing. Here, δ99 is an overall boundary-layer
thickness that specifies the distance from the wall where the stream-wise velocity in the
boundary layer is 99% of the free-stream velocity U∞.
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3.1. FORCING

3.1.1 Spalart and Yang method
In parallel boundary-layer flow with periodic boundary conditions in x, the mean flow is
independent of streamwise direction x and the mean velocity component U is a function
of the normal direction y and the time t. During the linear stage, the Reynolds stress
τ is negligible (τ = − < u′v′ >, where u′ and v′ are the fluctuations along streamwise
and normal directions with respect to the mean flow U(y, t), V = 0 and <> denotes
an average over the x- and z-directions) and the mean velocity U satisfies the following
equation of motion,

∂U

∂t
= 1
Re

∂2U

∂y2 (3.1.1)

where Re = (U∞xν )
1
2 with U∞ as laminar free-stream velocity, x as the length of the

domain and ν as kinematic viscosity of the fluid.

Equation (3.1.1) represents the Stokes first problem, for which the solution is a thick-
ening error function. To deal with this thickening error, Spalart and Yang [24] modified
the equation (3.1.1) by adding a small correction term that should allow the thickness
to grow in time instead of space, while retaining a Blasius profile. The procedure is as
follows.

The boundary-layer profile is defined by the solution of the Blasius equation Ublas(y, xr)
as a function of y and of xr. Here, xr is a reference point defining the distance from the
leading edge at which the mean flow is evaluated. This reference point is introduced by
a linear correspondence between time t and distance xr as follows:

xr = x0 + ct (3.1.2)

Here c is a reference speed and is chosen to match the growth rate of the boundary-layer
thickness and the growth rate of the TS wave.

Introducing the relation between xr and t into the function Ublas(y, xr) defines the
desired mean velocity profile Ublas(y, t). The correction to the U -component momentum
equation consists of the quantity ∂Ublas

∂t − 1
Re

∂2Ublas
∂y2 , which depends only on y and t.

Thus the modified equation of motion (3.1.1) becomes

∂U

∂t
= 1
Re

∂2U

∂y2 + ∂Ublas
∂t

− 1
Re

∂2Ublas
∂y2 (3.1.3)

Now, if the initial profile is the Blasius solution

U(y, 0) = Ublas(y, 0) (3.1.4)

the solution U(y, t) of (3.1.3) and (3.1.4) will satisfy

U(y, t) = Ublas(y, t) (3.1.5)

Thus the correction term to the streamwise momentum equation can be viewed as forcing
as follows:

F1 = ∂Ublas(y, t)
∂t

− 1
Re

∂2Ublas(y, t)
∂y2

= c
∂Ublas(x, y)

∂x
− 1
Re

∂2Ublas(x, y)
∂y2 (3.1.6)
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CHAPTER 3. THEORY

Equation (3.1.6) shows that if the reference speed c is zero, the forcing term reduces to

F1 = − 1
Re

∂2Ublas(y, t)
∂y2

3.1.2 Wedin et al study

In their study, Wedin et al [9] used the forcing term F1 = − 1
Re

∂2Ublas(y,t)
∂y2 to the stream-

wise momentum equation to account for the parallel base flow. Their study was similar
to Rotenberry (1993) [26] and Milinazzo & Saffman (1985) [19]. Wedin et al [9] adapted
the forcing term along with the magnitude for the perturbation equations.

Following the idea of Koch [14], the instantaneous velocity field u is decomposed as
a local boundary layer profile Ubase = (Ubase, Vbase,Wbase) plus the disturbances u′ =
(u′, v′, w′). Thus the total velocity field can be defined as follows:

u = Ubase + u′

To define the base flow, parallel flow assumption for the two-dimensional laminar Blasius
solution was used described in previous Chapter as Ubase = Ublas(y)i = fη(η)i. Which
means that the normal and spanwise components of base flow are both zero and we
only have non-zero streamwise component of base flow Ubase. i.e Vbase = Wbase = 0 and
Ubase = Ublas(y).

Since Ublas is a function of y only, consequently the base flow Ubase is a function of
y only, meaning we are assuming the flow through a parallel boundary layer. This helps
us to assume that the solution is periodic. We also assume the disturbance u′ to be
separable in x, z and t. Thus we can express the streamwise and spanwise dependence
of each variable as:

u(x, z) = Ubase(y)i + u′

⇒
Nx

2 −1∑
l=−(Nx2 −1)

Nz
2 −1∑

m=−(Nz2 −1)

ûlmtotei(αlx+βmz) = Ubase(y)i +
Nx

2 −1∑
l=−(Nx2 −1)

Nz
2 −1∑

m=−(Nz2 −1)

ũlmpertei(αlx+βmz)

(3.1.7)

where Nx and Nz are the number of Fourier modes in the streamwise and spanwise
direction respectively, αl and βm are real wave numbers defined as αl = 2πl/xl and
βm = 2πm/zl, imaginary variable i =

√
−1, ûlmtot(y) represents the Fourier mode for the

total flow and ũlmpert(y) denotes Fourier mode for the disturbances.

Asymptotically decaying boundary condition ((ũlmpert)y + (l2α2
l + m2β2

m)ũlmpert = 0) was
imposed in their study to make sure that the Fourier mode ũ00

pert(y) for the perturbation
decays to zero to account for the parallel base flow at y = ymax. But the ũ00

pert(y) mode
does not decay exponentially to zero for y = ymax and is thus finite with zero gradient
at y = ymax, which means the flow at the outer edge of the domain fails to stay unper-
turbed. So, to ensure unperturbed flow at y = ymax the base flow Ubase needs to act as
a corrector on the assumption of uniform flow u = (1, 0, 0) at the free-stream. Therefore
the base flow is set equal to

Ubase(y) = Ublas(y) = Kpfη(η) (3.1.8)
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3.1. FORCING

The coefficient Kp serves to ensure that the correct asymptotic boundary condition is
satisfied. Relevant studies were performed by Milinazzo & Saffman (1985) [19]; Koch
(1992) [14]; Rotenberry(1993) [26] and Ehrenstein & Rossi (1996) [5] to maintain the
uniform flow at the outer edge of the domain in the presence of finite amplitude pertur-
bations. Thus the condition to fulfill the uniform flow at the free-stream is:

Kpfη(ymax) + ũ00
pert(ymax) = 1

⇒ Kp + ũ00
pert(ymax) = 1 (3.1.9)

Equations (3.1.8) and (3.1.9) show that Kp = 1 for purely laminar flow and infinitesimal
disturbances, while in the presence of finite amplitude disturbances Kp is different from
unity.

3.1.3 Present study
The present study is based on the studies performed by Wedin et al [9] and Spalart
and Yang (1985) [24]. The forcing term (F1 = − 1

Re
∂2Ublas(y,t)

∂y2 = − 1
Re

∂2(Kpfη(η))
∂y2 ) added

to the streamwise momentum equation is same as Spalart and Yang (1985) [24] in the
absence of reference speed c along with the magnitude coefficient Kp. To adjust the
magnitude of the forcing term, we borrowed the idea from Wedin et al [9] and intro-
duced the adapted forcing term to the total flow fields rather than the perturbation
equations.

Combining the equations (3.1.7) and (3.1.9) we got the following relation for Kp and
total Fourier mode u00

tot(ymax):

Kp + u00
tot(ymax)− Ubase(ymax) = 1

⇒ Kp = 1 + Ubase(ymax)− u00
tot(ymax) (3.1.10)

Equation (3.1.10) leaves us with two choices based on Ubase(ymax).

Non-iterative approach
Ubase(ymax) could be set as the value of the initial base flow at ymax to compute Kp; i.e.
Ubase(ymax) = fη(ymax) = 1 at every step. In this case, we have the forcing magnitude
Kp = 2− u00

tot(ymax).

Iterative approach
At each time step Ubase(ymax) can be computed based on the base flow calculated on
the previous step (Ubase(ymax) = Kpfη(ymax) = Kp). In the presence of finite amplitude
disturbances Kp value would be different from unity, which mean Ubase(ymax) will also
be changed as Kp changes. This updated Ubase(ymax), which is nothing but the Kp value
of the previous step, could be used to compute Kp for the current step iteratively.

In this study we are going to use the first option, that is the non-iterative approach. We
leave the iterative approach for the future study.
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3.1.4 Forcing profile

We have seen that the forcing term got the expression − 1
Re

∂2(Kpfη(η))
∂y2 . This indicates

that the forcing is proportional to the negative of fηηη, which is the third derivative of
the Blasius similarity solution of the boundary layer equation 2.2.4, where the derivative
is with respect to the similarity variable η.
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Figure 3.3: Forcing profile is proportional to −fηηη for amplitude KP = 1.

From the above figure we see that the forcing is applied up to the initial boundary layer
thickness δ99 and above that the profile becomes zero. Here, δ99 is an overall boundary-
layer thickness that specifies the distance from the wall where the stream-wise velocity
in the boundary layer is 99% of the free-stream velocity U∞.

3.2 Boundary conditions

Boundary conditions in the horizontal directions are periodic. However, we need to
specify boundary conditions at the wall and in the free-stream. Various boundary con-
ditions can be tested along the wall-normal direction. At the wall we impose vanishing
(no-slip) boundary condition. But to specify the boundary conditions in the free-stream
we can choose one of the boundary conditions describe below.

Despite the flow is assumed to extend infinitely far perpendicular to the wall, for prac-
tical reason we have to truncate the domain to a finite distance. Say, the outer edge
of the domain locate at a wall-normal position ymax and we need to apply an artificial
boundary condition at this point. The simplest choice could be the Dirichlet boundary
condition defined as:

u|y=ymax = Ubase|y=ymax (3.2.1)
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where Ubase(y) is the similarity solution to the Blasius boundary-layer equations.

Generally we are interested in a flow that will contain a disturbance. But forcing this
disturbance to be zero at the free-stream by imposing Dirichlet condition, results in an
error to the exact solution for which the boundary condition is applied at an infinite
distance from the wall. The error may over-damp the disturbances in the boundary
layer. This error can be minimized by choosing the Neumann condition defined as:

∂u
∂y
|y=ymax = ∂Ubase

∂y
|y=ymax (3.2.2)

But most appropriate boundary condition could be to use the generalization of the
boundary condition proposed by Malik et al (1985) [17], which allows the boundary to
be placed closer to the wall. This asymptotic boundary condition can be easily applied
in Fourier space that decreases the error further and is defined in terms of horizontal
Fourier transform with respect to the horizontal coordinates as:

(∂û
∂y

+ |k|û)|y=ymax = (∂Ûbase

∂y
+ |k|Ûbase)|y=ymax (3.2.3)

where (̂.) denotes the horizontal Fourier mode in the horizontal directions and k2 =
α2 + β2 with α and β are the horizontal wavenumbers (see equation (3.1.7)). This
boundary condition ensures that the potential flow solution decays away from the wall.

In the present study we have chosen the boundary condition defined in 3.2.3.
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Chapter 4

Numerical Method

For numerical simulations, the unsteady incompressible Navier-Stokes equations were
solved within a numerical domain defined as [−Lx/2, Lx/2]× [0, Ly]× [−Lz/2, Lz/2].

An equation for the normal velocity component can be found by taking the divergence
of the momentum equations of (2.1.3) updated by adding the forcing term to the right
hand side. For numerical purposes, they can be written as a system of two second order
equations

∂ψ

∂t
= G+ Lψ (4.0.1)

with ψ = ∇2v. Here, operator G contains the non-linear advective and forcing terms
and depends on all velocities and vorticities. L represents the linear diffusion term. A
similar form as (4.0.1) can be found for the normal vorticity ω by taking the curl of the
updated momentum equations of (2.1.3). Once the normal velocity v and the normal
vorticity ω have been calculated the other velocity components can be found from the
incompressibility constraint and the definition of the normal vorticity.

4.1 Temporal discretization

The time advancement is carried out by one out of two semi-implicit schemes. Opera-
tor G is discretized explicitly by a low storage third order three or four stage Runge-
Kutta(RK3) scheme, while the linear diffusion term L is discretized implicitly using the
second order accurate Crank-Nicolson(CN) scheme. These time discretization may be
written in the following manner

ψn+1 = ψn + anG
n + bnG

n−1 + (an + bn)(Lψ
n+1 + Lψn

2 ) (4.1.1)

Here, an and bn are time stepping coefficients, which are chosen according to the explicit
scheme used and G and L are assumed to have no explicit dependence on time. One
full physical time step is only achieved every three or four iterations based on Runge-
Kutta scheme. t = t + cn defines the time used for the intermediate stages. The two
possibilities for the RK3 schemes are shown in the table below.
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an/∆tn bn/∆tn cn/∆tn
RK3 3-stage 8/15 0 0

5/12 -17/60 8/15
3/4 -5/12 2/3

RK3 4-stage 8/17 0 0
17/60 -15/68 8/17
5/12 -17/60 8/15
3/4 -5/12 2/3

Table 4.1: Time stepping coefficients. Table source [18].

4.2 Space discretization: Horizontal direction

Fourier series expansion is used to discretize in the horizontal directions which assumes
that the solution is periodic. The streamwise and spanwise dependence of each variable
can be written similar to equation (3.1.7) for the Fourier modes Nx and Ny along
streamwise and spanwise directions

u(x, z) =
Nx

2 −1∑
l=−(Nx2 −1)

Nz
2 −1∑

m=−(Nz2 −1)

ûlm(αl, βm)ei(αlx+βmz) (4.2.1)

Here, αl and βm are real wave numbers defined as αl = 2πl/xl and βm = 2πm/zl.

4.3 Space discretization: Normal direction

To discretize in the normal direction for boundary-layer flow, first it requires to map the
physical domain [0, ymax] to [−1, 1] by setting y′ = 2y/ymax − 1. Then the dependent
variable ψ̂ is expanded in Chebyshev series, i.e.,

ψ̂(y) =
Ny∑
j=0

ψ̃jTj(y) (4.3.1)

where Tj are the Chebyshev polynomial of order j and Ny the highest order of polyno-
mial included in the expansion. For simplicity we dropped the prime of y in the above
equations.

For more details on numerical implementation, please refer to [18].

4.4 Properties of the discretizations

To analyse some properties of the discretizations they will be applied to the two di-
mensional linearized Burgers’ equation with a system rotation. The eigenvalue analysis
yields a necessary condition for stability. Putting the equation into the form of equation
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(4.0.1) yields

ψ =
[
u
w

]

G =
[
u0

∂
∂x + w0

∂
∂z 2Ω

−2Ω u0
∂
∂x + w0

∂
∂z

] [
u
w

]

L = 1
Re

[
∂2

∂x2 + ∂2

∂z2 0
0 ∂2

∂x2 + ∂2

∂z2

] (4.4.1)

where u0 and w0 represent the flow field around which the linearization was made and
Ω represents the angular velocity of the coordinate frame. The dependence of ψ on
both the streamwise and spanwise coordinate directions have been included in order to
indicate how multiple dimensions enter into the stability considerations.

For simplicity, Fourier discretization has been used here in the spatial directions. The
Chebyshev method acts locally as a transformed Fourier method and thus the stability
properties derived here can be applied with the local space step. For more details please
refer to [18].

Fourier transforming in x− and z−directions yields

ψ̂t =
[
iαu0 + iβw0 2Ω
−2Ω iαu0 + iβw0

]
ψ̂ − α2 + β2

Re
ψ̂ (4.4.2)

where α and β are the real wavenumbers in the x− and z−directions, respectively. The
diagonalized form of this equation give the following equation,

ût = i(αu0 + βw0 ± 2Ω)û+ α2 + β2

Re
û (4.4.3)

If ∆x and ∆z are the discretization step lengths in physical space, we assume that the
stability limit will first be reached for the largest wavenumbers of the discretization
αmax and βmax, which corresponds to a wavelength of 2∆x and 2∆z, respectively. The
important parameters for analysis are as follows,

µ = ∆t(2|Ω|+ (αmax|u0|+ βmax|w0|))

= ∆t(2|Ω|+ π( |u0|
∆x + |w0|

∆z ))
(4.4.4)

λ = 1
Re

∆t(α2
max + β2

max)

= 1
Re

π2∆t( 1
∆x2 + 1

∆z2 )
(4.4.5)

The parameter µ is usually called the spectral CFL number, in analogy with the stability
theory for finite difference equations. We have the following three stages in each time
step for the modal equations (4.4.3) using the RK3-CN time discretization,

ûn+1 = ûn + iµa1û
n − λ

2a1(ûn+1 + ûn)

ûn+2 = ûn+1 + iµ(a2û
n+1 + b2û

n)− λ

2 (a2 + b2)(ûn+2 + ûn+1)

ûn+3 = ûn+2 + iµ(a3û
n+2 + b3û

n+1)− λ

2 (a3 + b3)(ûn+3 + ûn+2)

(4.4.6)
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Figure 4.1: Contours of constant amplification factor for the RK3-CN method. Contour
spacing is 0.05 with dashed lines indicating that the amplification factor is below unity.
Figure source [18].

The regions where all solutions to the above difference equations are bounded in the
µ− λ plane, can now be found by calculating the roots of the associated characteristic
polynomials. Contours of constant absolute values of the roots, for the RK3-CN method,
are given in the Figure 4.1. Note that the method is stable for higher values of λ (lower
Re), i.e. increases the CFL number µ that is allowed for an absolutely stable solution. In
the limit of infinite Reynolds number the RK3-CN method approaches the limit

√
3. The

analysis for the four stage method is analogous and the stability limit is
√

8. Reference
[18].

4.5 Edge tracking
The dynamics on the invariant phase-space region separating trajectories that relami-
narize from those experiencing turbulent dynamics, i.e. the separatrix was tracked using
the bisection technique described by Skufca et al [30]. The algorithm starts with choos-
ing two bracketing initial conditions, one leading to turbulence (uT ) and the other going
laminar (uL) as they are evolved in time. The algorithm is initialized with a turbulent
flow but the choice of initial state is not critical since arbitary initial conditions appear
to converge to the same solution. Now, as the edge of chaos lies somewhere in-between,
we perform a bisection on the line connecting the two. A set of initial conditions based
on the weighted disturbances is considered as follows:

uλ = u + λ(uT − uL) (4.5.1)

where λ is the bisection parameter varied between 0 and 1. Initial conditions correspond-
ing to various values of λ are evolved in time until they approach either the laminar or the
turbulent state, according to the predefined thresholds for the root-mean-square(r.m.s)
value of the wall-normal velocity fluctuations vrms. Depending on which side the trajec-
tory ends, a new initial condition is chosen by rescaling λ and the process is repeated.
By increasing λ, the initial condition moves away from the laminar profile and will not
become laminar again. On the other hand, to move the initial condition closer to the
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laminar profile λ is reduced so that the flow will not become turbulent again. Therefore
by iteratively bisecting the value of λ, an interval of λ can be found bounded by a trajec-
tory becoming turbulent at one end and the other end is bounded by a trajectory that
returns to the laminar state. That is, we bracket the laminar-turbulent boundary and
obtain a trajectory that evolves for a substantial long interval on the separatrix without
becoming either laminar or turbulent. Thus the numerical method is based on a bisec-
tion algorithm in order to find the amplitude of two initial conditions on either side of
the edge state. But because of the exponential separation of initially nearby trajectories
and the limited numerical accuracy of the bisection, the two states quickly separates
in the edge’s unstable direction and the resulting trajectory visits the boundary for a
finite time only. That is why, a refining bisection is required to find a new pair of states
that are close together. This can be done by restarting the bisection (after every 1500
time units in our case) from the last state closest to the edge often enough to constrain
the solution on the separatrix that shadows the basin boundary for an infinite time to
reach a relative attractor within this boundary, the edge state. The main steps of the
algorithm are shown in the following Figure 4.2.

Figure 4.2: Conceptual sketch of the phase space illustrating edge-tracking algorithm.
Green dot represents the laminar state and the convoluted red structure represents the
turbulence. Laminar-turbulent boundary is illustrated by the grey surface, with the
edge state representing by the yellow curve. (a) The family of initial conditions used
for the bisection is represented by a part (solid) of the black dashed line connecting
two states from both sides of the boundary, uT and uL; (b) Two trajectories shadowing
the separatrix obtained with the bisection and later leave it in two different directions;
(c) The last trajectory of the current bisection and the family of initial conditions for
the next one and (d) Results of the following bisection. Figure source [33] with kind
permission.
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Chapter 5

Validation and results

This chapter is dedicated to the validation and the comparison of our results with the
Spalart and Yang method [24]. The results were collected using the open source code
SIMSON [18], where Spalart and Yang method has already been implemented. To get
the results for the present method, we have adapted the amplitude of the forcing term
used in Spalart and Yang method in the SIMSON code [18]. We have implemented
our adaptive forcing amplitude technique for three different cases categorized as 2D, 3D
and the edge state. For 2D case, a two-dimensional domain with periods Lx = 20 and
Ly = 20, normalized by the displacement thickness δ∗ was chosen. On the other hand,
the periods for 3D case are Lx = 20, Ly = 20 and Lz = 6 and for the edge state are
Lx = 10, Ly = 20 and Lz = 6.

The Reynolds number was decided based on the critical value 519.4. At least one
sub-critical and one super-critical Reynolds number were chosen for 2D and 3D cases.
For the edge tracking a sub-critical Reynolds number was considered.

5.1 2D

In 2D case our main aim is to check whether our method works by comparing and validat-
ing our results with the Spalart and Yang method. The comparison and validation have
been done for the Reynolds number Reδ∗ = 510 and Reδ∗ = 600. To analyze 2D case fur-
ther for our method we chose another super-critical Reynolds number Reδ∗ = 1000. In
all simulations for 2D case the number of spectral nodes in x and y directions is (64×65).

Introduction of localized disturbance with reasonably small amplitude to the initial Bla-
sius profile for both sub-critical and super-critical Reynolds number has been studied
for present method along with Spalart and Yang method. We performed all simulations
with Blasius profile disturbed by localized disturbance as initial condition. Studies have
shown that for sub-critical Reynolds number, the disturbance energy decreases exponen-
tially in time and eventually everything will be damped out to zero to restore the initial
Blasius laminar profile. On the other hand, for super-critical Reynolds number the
boundary-layer flow develops TS waves with growing amplitude and saturation. Figure
5.1(a) shows the exponential decay of the TS waves energy and free-stream recovering
the uniform flow condition as u00

tot(ymax) mode (Figure 5.1(b)) converging to 1. Displace-
ment thickness (Figure 5.1(c)) and δ99 (Figure 5.1(d)) also converging to the laminar
value in the advancement of time. These clearly indicate that the solution retains to the
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Figure 5.1: Validating results with Spalart and Yang method for Reδ∗ = 510. Fig-
ures show the time evolution of (a) energy of TS waves urms; (b) u00

tot(ymax) − 1; (c)
displacement thickness δ∗ and (d) δ99.

laminar Balsius profile both for the present method and the Spalart and Yang method
for sub-critical Reynolds number Re∗δ = 510.
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Figure 5.2: Comparing results with Spalart and Yang method for Reδ∗ = 600. To
calculate δ∗ and δ99 initial free-stream value U∞ = 1 was assumed. Figures show the
time evolution of (a) energy of TS waves urms; (b) u00

tot(ymax)− 1 and (c) displacement
thickness δ∗.
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For super critical Reynolds number Reδ∗ = 600, using the same initial condition as
Reδ∗ = 510, the disturbance energy increases as expected. In both present and Spalart
and Yang method we see that the disturbance amplitude increases in time and after
certain time the disturbance becomes almost steady (Figure 5.2(a)). This energy in-
creasing in disturbance slows down the flow and results in the growth of displacement
thickness (Figure 5.2(c)). As the disturbance never vanishes, rather it is in the flow,
the finite amplitude disturbance dominates the forcing term and never let free-stream
to retain initial laminar state (Figure 5.3(b)).

Both the present and Spalart and Yang method exhibit the similar flow pattern, the
solutions are not exactly identical, at least in case of super-critical Reynolds number.
We can see that the mean velocity at the at the free-stream defined by u00

tot(ymax) mode
(Figure 5.2(b)) is decreasing because of disturbance in the flow. The forcing amplitude
for the present method by definition in increasing, while for Spalart and Yang method
it is constant. The effects of this difference in the forcing amplitude for both methods is
clearly distinguishable in Figures 5.2(a), 5.2(b), 5.2(c) and 5.3(b). In Figure 5.3(b) we
can see that the free-stream is perturbed by the disturbance and the value goes below
1 for both methods. Though the velocity profiles are similar for both methods, they
slightly lose the Blasius shape and the correction term becomes inadequate to retain
the initial laminar state. The only difference between the methods is that the present
method maintains slightly larger value for u/U∞ away from the wall compare to the
Spalart and Yang. On the contrary, for sub-critical Reynolds number, both methods
converge to the initial Blasius profile (Figure 5.3(a)).
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Figure 5.3: Mean velocity profile non-dimensionalized by the free-stream velocity U∞
at x = 0. a) Reδ∗ = 510; b) Reδ∗ = 600.
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Figure 5.4: Time evolution of the forcing amplitude Kp and the u00
tot(ymax) mode for

the present method. a) Converging characteristic for Reδ∗ = 510; b) Steady state for
Reδ∗ = 600, 1000.

Figure in 5.4(a) represents the converging criteria of the u00
tot(ymax) mode and the

forcing amplitudeKp for sub-critical Reynolds number to the laminar value u00
tot(ymax) =

1 and Kp = 1. But for the super-critical Reynolds number mean velocity at the edge of
the domain u00

tot(ymax) decreases in time, consequently the forcing amplitudeKp increases
(Figure 5.4(b)). After certain instant of time unit the flow seems to become steady and
mean velocity turns to be constant, so does Kp. This also indicates that the flow is never
restored to the laminar Blasius flow rather it conceives the disturbance in it. We could
see the wave-like disturbance, so called TS waves, moving with the flow with saturated
disturbance and increase in energy in the advancement of time in the Figures 5.5 and
5.6 for Reδ∗ = 600 for both the present method and Spalart and Yang method.
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Figure 5.5: Visualization of the travelling of TS waves along streamwise direction at time
t = 15000, 15100 and 15200 for Reδ∗ = 600. (a), (c), (e) Present results; (b), (d), (f)
Spalart and Yang method.
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Figure 5.6: TS wave at time t = 1000, 2000 and 3000 for Rδ∗ = 600 showing increase in
energy. (a), (c), (e) Present results; (b), (d), (f) Spalart and Yang method.
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Though the flow fields look identical for both method in the figures 5.5 and 5.6,
yet there is a difference in the solution of the flow. To check this we have produced
the following figure by taking the norm of the element-wise difference of the solutions
matrix in xy-plane for the six flow fields depicted in Figures 5.5 and 5.6 along with flow
fields at time t = 5000 and 10000.
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Figure 5.7: log-plot of norm of the difference of the solutions of present results and
Spalart and Yang method for eight flow fields at time t = 1000, 2000, 3000, 5000, 10000,
15100, 15200 and 15300 for Reδ∗ = 600.

Figure 5.7 shows the similar pattern as the figure 5.4(b) for Reδ∗ = 600. Initially
the norm of the difference of the solutions of two methods is almost zero and then in-
creases as the time goes on.

Overall, in 2D case we have observed that for sub-critical Reynolds number the dis-
turbance introduced to the flow field vanishes very quickly and both methods show
almost same dynamics. On the other hand, for Reδ∗ = 600 two-dimensional TS waves
never vanish from the flow fields rather it stays with almost constant energy (Figure
5.2(a)) for both methods. Two methods can be differentiated for Reδ∗ = 600 in term
of TS waves energy as the energy is higher for present method, which is also reflected
in the free-stream value in the Figure 5.3(b). This difference is because of the larger
magnitude of the forcing for the present method. As the free-stream value is less than
1, the forcing magnitude for the present method would be larger than 1, while for the
Spalart and Yang method which is 1 all the time.
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5.2 3D
This section is devoted to the study of the development of the TS waves in a 3-
dimensional domain. The associated number of spectral nodes in the x, y and z-
directions is (32 × 65 × 32). One sub-critical (Reδ∗ = 500) and one super-critical
(Reδ∗ = 1000) Reynolds number have been chosen to study the dynamics of the three-
dimensional development of TS waves. The initial condition is the Blasius mean velocity
profile disturbed by localized disturbance.
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Figure 5.8: Comparing the results with Spalart and Yang method for Reδ∗ = 500 for a
3D domain. Figures shows the time evolution of (a) urms; (b) u00

tot(ymax)−1; (c) (δ∗−1)
and (d) δ99.

Figures 5.8 indicates that for sub-critical Reynolds number Reδ∗ = 500, the energy
of the localized disturbance added to the Blasius profile, decreases rather fast as the
advancement of time and the velocity profile clearly converges to the laminar Blasius
profile for both the present result and Spalart and Yang method. Figure 5.9 shows that
both methods retain the laminar Blasius profile after certain time period. The same
behavior was observed for Reδ∗ = 510 in two-dimensional case.
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Figure 5.9: Mean-velocity profile non-dimensionalized by the local free-stream velocity
U∞ for Reδ∗ = 500 in 3D case. The figures was generated at x = 0, z = 0.

Before wiping out completely the disturbance generates TS waves (Figure 5.10),
which loses energy very quickly in the course of time to vanish from the flow. This
energy decreasing of the TS waves is expected as in this case we are dealing with a
Reynolds number less than the critical value 519.4. As we see in the Figure 5.10(d) for
time t = 100000, the TS waves vanish from the flow as there is almost no disturbance
in the flow. We just recover the initial flow profile.
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Figure 5.10: Generation of the TS waves in a 3D domain for Reδ∗ = 500 for the present
study. Figures showing the evolution of TS waves at four instant of time (a) t = 5000;
(b) t = 10000; (c) t = 50000 and (d) t = 100000.
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To understand the nature of the boundary-layer flow, i.e whether the flow is laminar
or turbulent, one of the variables to study is shape factor defined by H = δ∗

θ , with
the momentum thickness θ. Here, the momentum thickness θ =

∫∞
y=0

u
U∞

(1 − u
U∞

)dy is
defined such that ρU2

∞θ is the momentum loss in the actual flow because of the presence
of the boundary layer. The standard laminar value for H is 2.59 while for the turbulence
state it is 1.5. When breakdown occurs, the mean-velocity profile starts to lose Blasius
shape and H shows clear signal to decrease from laminar value to its turbulence value
and indicates the breakdown in the flow. In the following figure for shape factor H for
Reδ∗ = 500 we see that the value of H is 2.59 throughout the whole simulation, means
that the flow remains laminar during the simulation.
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Figure 5.11: Shape factor H for Reδ∗ = 500 for both present and Spalart and Yang
method. For both method the value of H is very close to the laminar value 2.59,
indicating the laminar behavior of the flow throughout the simulation time.
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Figure 5.12: Comparing results with Spalart and Yang method for Reδ∗ = 1000 in 3D.
Figures showing the time evolution of (a) urms and (b) u00

tot(ymax)− 1.

We know that for Reynolds number larger than the critical value 519.4, the distur-
bance energy amplifies in time and the laminar state is no longer an attractor. In the fig-
ure 5.12(a), we can observe the amplification of the disturbance energy for Reδ∗ = 1000
for both methods. For the present method urms value contains almost constant and
larger value compare to Spalart and Yang. Moreover, for Spalart and Yang case, the
disturbance energy is fluctuating which results in the ups and downs of u00

tot(ymax) mode
(Figure 5.12(b)). For both methods u00

tot(ymax) mode declines by 50% (Figure 5.12(b))
by the time t = 200000 and shows clear intention of continuous declination for larger
time period.
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Figure 5.13: Mean-velocity profile using wall variables for Reδ∗ = 1000 in 3D case. The
dotted lines represent the classical viscous sublayer y+ and the log law κ−1lny+ + C,
where κ = 0.4 and C=5.

Here, y+ is a non-dimensional wall distance for a wall-bounded flow defined by
y+ = uτy

ν , with uτ as friction velocity, y as the distance to the nearest wall and ν as the
kinematic viscosity of the fluid.

Figure 5.13 shows that both the present results and Spalart and Yang method are in
good agreement in both the viscous sublayer y+ < 5 and the buffer layer (5 < y+ < 30).
But in the log-layer starting at y+ = 30, the agreement is not satisfactory with the tur-
bulence flow for both methods, as the curves are higher for both methods in that region.
Two methods also are not in good agreement in the the wake region. For the present
method U+

∞, freestream velocity non-dimensionalzed by shear velocity uτ is around 17,
whereas for the Spalart and Yang case the value is approximately 22.

In the following Figures 5.14 and 5.15 we compare the turbulent intensities of the present
results in terms of u+

rms, v+
rms, w+

rms and (uv)+ for Re∗δ = 1000 with Spalart and Yang
method.

38



5.2. 3D

0 100 200 300 400 500 600
0

1

2

3

4

5

y
+

u
rm

s

+

Re
δ

* = 1000

 

 

present result

Spalart and Yang

(a)

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

y
+

v
rm

s

+

Re
δ

* = 1000

 

 

present result

Spalart and Yang

(b)

Figure 5.14: Comparing turbulent intensities in 3D domain with Spalart and Yang
method for Reδ∗ = 1000. (a) urms/uτ ; (b) vrms/uτ .
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Figure 5.15: Comparing turbulent intensities in 3D domain with Spalart and Yang
method or Reδ∗ = 1000. (a) wrms/uτ ; (b) uv/uτ .
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Figure 5.16: Visualization of the flow field for Reδ∗ = 1000 in terms of xy-contour plot
of u at z = 0 at three different instant of time t = 10000, 100000, 200000. (a), (c), (e)
Present results; (b), (d), (f) Spalart and Yang method.
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Figure 5.17: Visualization of the flow field for Reδ∗ = 1000 in terms of xy-contour plot
of v at z = 0 at three different instant of time t = 10000, 100000, 200000. (a), (c), (e)
Present results; (b), (d), (f) Spalart and Yang method.
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For further visualization of the flow field for Reδ∗ = 1000 we present in Figures
5.16 and 5.17, the xy-contour plot of instantaneous streamwise and normal velocity
component u, v at three different instant of time. The presence of disturbance in the
flow field results in positive and negative fluctuations both in u and v throughout the
whole domain (Figures 5.16(a), 5.16(b), 5.17(a), 5.17(b)). But in the course of time
larger fluctuations can be seen near the wall, which indicates the generation of elongated
streamwise low and high speed streaks near the wall region. In Figure 5.20 we can see
the positive and negative streamwise streaks in the flow field at four different instant of
time for the present method. In the course of time, the streaks seems to vanish from
the region far away form the wall, which is also quite clear from Figures 5.16(c) and
5.16(e). Similar behavior is observed for the v velocity component as the fluctuations far
away from the wall seem to diminish in the course of time. For the present results the
fluctuations in v seem to vanish in the free-stream for the larger time (Fig: 5.17(e)), but
for the Spalart and Yang case the flow still experiences some fluctuations (Fig: 5.17(f))
in the free-stream.
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Figure 5.18: v vs y at five different points of x and z = 0 in the flow field for three differ-
ent instant of time t = 10000, 100000, 200000. (a), (c), (e) Present results; (b), (d), (f)
Spalart and Yang method.
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Figure 5.19: u vs x at five different points of y and z = 0 in the flow field for three differ-
ent instant of time t = 10000, 100000, 200000. (a), (c), (e) Present results; (b), (d), (f)
Spalart and Yang method.
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5.2. 3D

Figures in 5.18 and 5.19 clarifies the figures in 5.16 and 5.17 more precisely. As we
see for the present method, the normal-velocity component (Figures 5.18(a), 5.18(c) and
5.18(e)) converges to 0 asymptotically near the edge of the domain in the advancement
of time. Which precisely indicates that the flow becoming almost parallel near the edge
(Figures 5.19(a),5.19(c) and 5.19(e)) after a longer period of time. But near the wall,
after long time the flow still experiences the fluctuations both in u and v indicating
the existence of the streaks and vortices. On the other hand, for the Spalart and Yang
method, the normal velocity component does not converges to 0, at least for t = 200000
(Fig: 5.18(f)) indicating the existence of turbulence not only near the wall but also far
away from the wall.

Thus, we could say that for sub-critical Reynolds number Reδ∗ = 500 in 3D, both
methods converge to the laminar state as they did in 2D case. One simple difference
between two methods is that, for the present method mean velocity at the outer edge
of the domain converges to laminar value 1 little faster than Spalart and Yang method
( Figure 5.8(b)). In contrast, for Reδ∗ = 1000, present method attains better veloc-
ity profile and free-stream (Figure 5.13) and does not seem to have turbulence in the
free-stream compare to Spalart and Yang by the time t = 200000. Moreover, for larger
forcing amplitude present method maintains larger urms value than Spalart and Yang
does.
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(a) (b)

(c) (d)

Figure 5.20: Snapshots of the turbulence structures near the wall for Reδ∗ = 1000 for
the present method. Isosurfaces of streamwise velocity fluctuation u′ = 0.05 (high-
speed streaks coloured in red), u′ = −0.05 (low-speed streaks coloured in blue) and
λ2 = −0.005 (vortices coloured in green). Vortices are visualized using the λ2 criterion
[10]. a) t = 10000; (b) t = 50000; (c) t = 100000 and (d) t = 200000.
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5.3 Edge state
In this section the dynamics on the laminar-turbulent separatrix is investigated numer-
ically for the boundary-layer flows in the subcritical regime. The number of spectral
nodes in the x, y, and z was chosen to be (48× 97× 48).

According to Schlichting (1987) [28], in case of spatially developing Blasius boundary
layer, the laminar base flow is linearly stable for Reynolds number less than the critical
value 519.4 based on displacement boundary layer thickness, δ∗. However, subcritical
transition may also occur in the presence of strong disturbances via the formation of
streaks and vortices, bypassing the classical supercritical transition scenario [1]. These
near-wall coherent structures such as streaks and quasi-streamwise vortices appear as a
result of large sensitivity to forcing and large transient energy growth of these structures
in shear flows [29]. Thus in the absence of any linear instability streamwise streaks and
streamwise vortices can also be identified for boundary-layer flows and thus we have
chosen Reδ∗ = 500 for tracking the edge state.

0 5000 10000 15000
10

−5

10
−4

10
−3

10
−2

10
−1

t

v
rm

s

(a)

0 5000 10000 15000
10

−4

10
−3

10
−2

10
−1

t

v
rm

s

(b)

Figure 5.21: Root-mean-square (r.m.s) value of the wall-normal velocity fluctuations
vrms. Arrow signs represent the starting points of each refinement. (a) Presents results;
(b) Spalart and Yang.
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Figure 5.22: Time evolution of the mean velocity at ymax for both the present results
and the Spalart and Yang method. For both cases u00

tot(ymax) decreases in time.

Figure 5.21 shows that both the present results and Spalart and Yang method follow
the almost same laminar-turbulent trajectories at least upto time unit t = 10000. The
mean velocity at the edge of the domain defined by the u00

tot(ymax) also quite same for
both methods as we can see in the Figure 5.22.

As both methods exhibit almost same results, in the next page we present figures to
visualize the laminar-turbulent separatrix for the present method only.
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(a) (b)

(c) (d)

Figure 5.23: Three-dimensional visualization of the laminar-turbulent separatrix for
Reδ∗ = 500 for the present method. Isosurfaces of streamwise velocity fluctuation u′ =
0.05 (high-speed streaks coloured in red), u′ = −0.05 (low-speed streaks coloured in
blue) and λ2 = −0.005 (vortices coloured in green). Vortices are visualized using the
λ2 criterion [10]. a) One high-speed streak with one low-speed streak at t = 900; (b)
Generation of the strong quasi-streamwise vortices over the low-speed streak at t = 4600;
(c) Breakdown at t = 4800 and (d) Regeneration of one high-speed streak with one low-
speed streak with a shift in the position at t = 5400.
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In the three-dimensional visualization of the laminar-turbulent separatrix in the
Figure 5.23 we can see the calm phase at around t = 900. Then at around t = 4600 strong
quasi-streamwise vortices generated over the low-speed streak which grow in strength in
time and wrap around the streak. The strengthen in the vortices induce upward motion
that advects slow fluid away from the wall and finally results in breakdown at t = 4800
and creates a high-speed streak in the position of the low-speed streak and low-speed
streak shift it’s position to the high-speed streak and the phase state becomes calm
again at around t = 5400. We have observed the similar flow behavior for the larger
time period.
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Chapter 6

Conclusion and future work

In this study, we have modified the Navier-Stokes equations by an adapted forcing term
on the assumption of parallel flow to keep the free-stream unperturbed and to ensure
the correct development of the boundary-layer profile by combining the idea of Spalart
and Yang [24] and Wedin et al [9]. The amplitude of the forcing term have been adapted
based on the mean velocity at the outer edge of the domain. The idea was taken from
Wedin et al [9], where they adapted the forcing term for the perturbation equations
based on the mean flow at the edge of the domain defined as u00

tot(ymax). But, in our
study we have used adaptive forcing term for the total flow field. Having validating
and comparing our results with Spalart and Yang method we have found slightly better
results for the turbulence case, while for laminar case the results is almost similar to
Spalart and Yang. But for finite amplitude disturbances and Reynolds number greater
than the critical value 519.4, the present study fails to keep the free-stream unperturbed
as the Spalart and Yang method does. In the last part, we have tried to identify the
edge state and have found that for both methods the results is almost the same and
the state is still chaotic for time units up to 10000. But because of computing time
limitation we could not perform more refinements to reach to a possible periodic edge
state. Thus, to achieve better result for the turbulence case one could use the iterative
approach of computing the magnitude of the forcing term described in CHAPTER 3.
For the edge state case, more refinement could be performed to check whether any of
the methods reach a periodic state.
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