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Abstract

Ericsson regularly collects traffic datasets from different radio net-
works around the world. These datasets can be used for several research
purposes, ranging from general statistics to more specific studies such
as system troubleshooting and buffer-level analysis. Currently, a re-
searcher may find it difficult to assess if a certain dataset is useful for a
particular investigation, since there exists no easily accessible overview
of the properties of the different datasets.

This thesis project aims to make it easier to compare the existing
traffic datasets in terms of general statistics, user and time coverage,
data integrity and the patterns of sequences in radio network event
logs. The key contribution is a method of clustering event sequences
based on sequence duration and occurrences of a number of key events.
A method called the Gap-statistic was applied to determine that using
11 clusters was suitable for the analysis, although no strong evidence
was found for the existence of well separated clusters.

The results show that the method can work as a useful extension
of basic comparative statistics. Two dense ranges of sequence durations
discovered in the basic statistics could successfully be linked to corre-
sponding clusters of sequences. Extensive statistics about the cluster
members then revealed detailed properties of the sequences in these two
dense areas, at a deeper level than could be understood from the basic
statistics.

A problematic part of interpreting the results of the method is that
many different perspectives of the data need to be considered at the same
time to find interesting links. Future work could include automating the
process of linking features in the basic statistics to clusters.



Referat
Att jämföra trafikdatamängder för mobila enheter

genom klusteranalys för sekvenser av event i
radionätet

Ericsson samlar regelbundet in trafikdatamängder ifrån olika radionät-
verk runt om i världen. Dessa datamängder kan användas i många olika
forsknings- och utvecklingssyften, både ur ett generellt perspektiv ge-
nom att betrakta allmän statistik, men även för specifika studier som
till exempel felsökning av system och analys av buffernivåer i nätverket.
För närvarande kan det dock vara svårt för en potentiell analytiker av
dessa datamängder att avgöra om de lämpar sig för en viss studie.

Detta examensarbete är inriktat på att underlätta jämförelser mel-
lan olika inspelningar av dessa trafikdatamängder vad gäller allmän
statistik, användar- och tidstäckning och dataintegritet samt mönster
i loggarna för radionätshändelser. Det huvudsakliga bidraget av detta
examensarbete är en metod för att klustra händelsesekvenser baserat på
deras tidsspann och antal förekomster av nyckelhändelser. Den s.k. Gap
Statistic-metoden användes för att avgöra att 11 kluster var lämpligt för
klusteranalysen, även om starka bevis inte kunde hittas för existensen
av tydligt separerade kluster i de studerade datamängderna.

Resultaten visar på att den valda metoden kan fungera som en an-
vändbar fördjupning av allmän jämförande statistik. Två intervall av
tätt samlande durationer för händelsesekvenser kunde länkas till två
motsvarande kluster av sekvenser. Utförlig statistik om sekvenserna i
dessa kluster kunde visa på sekvensernas egenskaper i stor detalj, på en
djupare nivå än vad som kunde åstadkommas med allmän statistik.

En problematisk del i tolkandet av metodens resultat var att flera
olika perspektiv av data var tvungna att betraktas på samma gång för
att kunna upptäcka intressanta länkar. En vidareutveckling av arbetet i
denna rapport kan vara att skapa metoder för att automatisera och för-
enkla processen att länka intressanta fenomen i den allmänna statistiken
till olika kluster.
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Chapter 1

Introduction

Ericsson regularly conducts measurements in different mobile networks and collects
log data about what kind of data traffic is sent and what communication protocol
events are registered in the network as devices connect, communicate and disconnect
from the network. The resulting datasets can be used for several research purposes,
ranging from general statistics about usage of different services and traffic volumes,
to more specific studies such as system troubleshooting and buffer-level analysis.

One problem that exists for current and potential future analysts of these
datasets is that it is difficult to assess if a particular dataset is useful for a cer-
tain investigation. There can be big differences in the data characteristics between
different recording episodes, owing to the fact that the collection may have taken
place in different radio networks, in different years and for longer or shorter peri-
ods. There might also be limitations in the collected data, such as missing data for
some periods. To address this, an overview of the qualities and limitations of each
dataset, and how they differ from each other is needed.

One perspective on the collected datasets is to examine the sequences of events
that are registered in the network as a user device connection proceeds. It is not well
known to what extent the patterns of such sequences differ between different radio
networks. Factors such as the network configuration and what devices and services
are popular could be likely to cause different sequence patterns to be observed in
different networks.

1.1 Aim
This master thesis project aims to propose methods for the automatic collection of
aggregated information from existing datasets, with the goal of generating a good
overview of their properties. The aim can be divided into three parts:

A. Describing dataset metadata: user and time coverage, and data integrity

B. Describing basic statistics

1



CHAPTER 1. INTRODUCTION

C. Investigating patterns of common radio network event sequences through clus-
tering, which in turn can be subdivided into two parts:

– Determine if there exists any global sequence patterns that are common
across all datasets

– Evaluate the usefulness of event sequence clustering results in comparing
datasets properties, in relation to using basic statistics

The purpose of the two descriptive parts (A) and (B) is to provide a good
overview of what the studied datasets contain, what basic features they have and
how their features compare and differ. By looking at this part, a potential analyst
should e.g. be able to quickly discard the dataset if the time covered is too short,
or if there is not enough variance in a specific metric between datasets to motivate
a certain study.

The analysis of common sequences (C) aims to complement the first two parts
by providing a more in-depth view on how the datasets are similar and different,
from the perspective of radio network event sequences.

1.2 Reader guidance
A background part with information relating to the structure and function of radio
networks is presented in Chapter 2, while the theoretical background needed to
understand the statistical methods used in this thesis is presented in Chapter 3.
The theory part includes descriptions of some relevant methods when analyzing
large datasets statistically and a presentation of the body of theory relating to
clustering, which is used for the analysis of common sequences.

In Chapter 4, the used method is described in detail. The used datasets are
described in the chapter, and the concept of a radio network event sequence is
explained and defined. The three main parts of the chapter describe the detailed
methods of how the three aims A, B, and C are pursued, respectively.

The results achieved when applying the described methods is presented in Chap-
ter 5. This includes the key results from the basic dataset analysis and several
different perspectives on the features of the groupings found during the analysis of
common sequences.

The results and the method is discussed in Chapter 6, while conclusions and
ideas for future work are given in Chapter 7.

2



Chapter 2

Background

2.1 Radio networks
The radio networks considered in this report are Universal Mobile Telecommuni-
cations System (UMTS) networks, so called 3G networks. UMTS is the successor
to the Global System for Mobile Communications (GSM) standard, and provides
higher bit-rates and more flexibility in supporting multiple applications such as
voice and video calls, multimedia streaming and online games. In addition, the
considered networks also support High-Speed Packet Access (HSPA) which gives a
further boost in transmission data rates in both the uplink and downlink.

2.1.1 UMTS network architecture
The basic idea of cellular radio networks such as UMTS is that the covered area
is divided into cells. Stationary transceiver nodes, Radio Base Stations (RBSs),
are placed to cover some number of cells each. Another important component
of the network is the Radio Network Controller (RNC) which handles relaying of
information to a Core Network. Each RNC is responsible for a number of RBSs.
The RNCs and RBSs collectively form the Radio Access Network (RAN).

An overview of the structure of the RAN can be seen in Figure 2.1. The core
UMTS components and terminology are explained below [1]:

• User Equipment (UE): The UE is the device connecting to the radio net-
work. It could be e.g. a cell phone, tablet, router or possibly some specialized
device like a credit-card reader.

• Node B: The name Node B is used for the radio base stations in UMTS.
These can communicate over the air with the UE:s.

• Radio Network Controller (RNC): Each RNC is responsible for a number
of Node B:s – its domain. The RNC owns and controls the radio resources in
its domain and is the service access point for the services the RAN provides
to the Core Network.
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CHAPTER 2. BACKGROUND

• Core Network: The Core Network is responsible for switching and routing
calls and data connections to external networks. It has two separate domains:
Packet Switched (PS) and Circuit Switched (CS). The PS domain handles
Internet Protocol (IP) based traffic, while the CS domain handles communi-
cation where a static route (circuit) needs to be set up, e.g. for voice calls.
Examples of external circuit switched networks include the phone network,
Public Switched Telephone Network (PSTN), and Integrated Services Digital
Network (ISDN) which combines voice and data transmissions.

The communication between the RAN and the Core Network is done over the
RAN Application Part (RANAP) protocol, which handles things such as paging a
user (e.g. for a voice call), tracking the UE location, and performing hard hand
overs, i.e. when the communication from a UE needs to go through another RNC,
perhaps since the UE has moved geographically.

Figure 2.1: UMTS RAN network structure

The UE and RAN communicate over the Radio Resource Control (RRC) pro-
tocol. This protocol handles, among other things, the relaying of information and
requests toward the Core Network, the setup and release of the RRC connection
between the UE and RAN, transmission of signal measurement reports and com-
munication about changes in the radio channel configuration for the UE.

2.1.2 Communication states
A UE can either be in idle or connected mode. In idle mode, the UE chooses a
suitable cell and monitors its control channel. To move to connected mode, the

4



CHAPTER 2. BACKGROUND

Table 2.1: RRC service state characteristics

User data bit-rate

State Uplink Downlink Power consumption (mA) †

Cell DCH High High 200-300
Cell FACH Low Low 100-150
Cell PCH - ‡ - ‡ < 5
URA PCH - ‡ - ‡ < 5
† The power consumption numbers are taken from [2]
‡ No user data communication possible

UE establishes an RRC connection. The connected mode is further divided into
four RRC service states: Cell DCH, Cell FACH, Cell PCH 1 and URA PCH. The
state names are derived from at which geographical granularity the UE is known
at (cell/URA) in the state, which will be explained in more detail further on, and
which underlying downlink transport channel is used (DCH, FACH, PCH), which
we omit the details about here, but is well described in e.g. [1].

The possible transitions between these modes and states are presented in Figure
2.2. These states have different characteristics e.g. in terms of how much power
they consume from the UE, the attainable data rates and how the location of the
UE is tracked. An overview over their differences is presented in Table 2.1.

Figure 2.2: RRC service state transitions

2.1.3 Mobility
As a UE moves between cells, the RAN and the Core Network need to keep track
of its location, at least at such a degree that they know to which RNCs to direct a

1The Cell PCH is defined by 3GPP, but in an Ericsson RAN the state is omitted, since the
URA PCH state achieves similar functionality.
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paging request (e.g. for a voice call). The mechanisms for tracking the location of
a UE vary depending on which state it is in [1]:

• Cell DCH: In this state a dedicated radio channel is maintained to the UE.
The UE can be communicating with up to four cells at the same time. The
currently communicating cells for a UE are called its active set. Using signal
strength reports from the UE, the RNC decides when cells are to be added
or removed from the active set. This is communicated to the UE by the soft
handover procedure.

• Cell FACH: The UE is in this state only communicating with one cell. When-
ever a UE finds a more suitable cell, the RRC cell update procedure is run
which lets the RAN know where it can be reached.

• Cell PCH: The UE is in this state only communicating with one cell, and
only monitors downlink channels, unable to use the uplink. Instead, whenever
a more suitable cell is found, the UE first has to change state to Cell FACH,
and then run the RRC cell update procedure, after which it can switch back
to Cell PCH.

• URA PCH: This state is similar to Cell PCH, but the difference is that here
an update is only done when the UTRAN Registration Area (URA) changes,
and the procedure is called RRC URA update. URAs are used to group cells
into larger groups. The effect is that the update is done more rarely, requiring
less resources from the UE and RAN.

Furthermore, the faster HSPA downlink transport channel, HS-DSCH, can be
used in the Cell DCH state if the UE supports it and it is within range of a cell
that supports it [3]. In this case, the UE is only communicating with one cell on the
downlink, the so-called serving HS-DSCH cell. The procedure to change the serving
HS-DSCH cell involves the RNC, which means it is also aware of the current serving
HS-DSCH cell of a UE.

2.1.4 User and device identification
Each UE can be identified with two main numbers: the International Mobile Sub-
scriber Identity (IMSI) and International Mobile Equipment Identity (IMEI). The
IMSI can be thought of as the phone number of a subscription. In all log types used
in this report an anonymized IMSI is used, which cannot be tied to a real phone
number.

The IMEI identifies the actual physical device and can be thought of as a com-
bined model and serial number for a mobile device. The first 8 digits constitute
the Type Allocation Code (TAC) code [4], which only can be linked to the device
model, and not the unique part for each device. In the log types analyzed in this
report, only the TAC part of the IMEI is available, if at all.
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2.2 Log types
The log types considered in this report can be divided into two groups: radio
network event logs and IP-traffic logs. The former cover logging related to RAN
protocol events processed by the RNC, while the latter follow IP-traffic as collected
at a point in the Core Network.

2.2.1 Radio network event logs
As a UE connects to the RAN, various protocols interact to setup, modify and
tear down communication between the different nodes in the network. The RNC
has a central role in this process, and it may log different events relating to a user
connection. The logged events cover both RANAP and RRC protocol events, and
also other events relating to the connection such as when the communication is
switched between a higher bit rate and a slower bit rate channel, or when the user
moves between cells. In this report this log type will simply be referred to as event
logs.

The events are logged in a binary format, where each entry has a timestamp at
millisecond resolution, event type, some parameters for tracking which sequence of
events belongs to the same user, and some parameters that describe the event in
more detail.

With the help of an Ericsson developed tool the binary logs can be translated
into a text based Comma Separated Values (CSV) format. The tool tries to link
each event to its IMSI, whenever possible, and can also output extra information
such as during which intervals a user was in a specific channel.

2.2.2 IP traffic logs
An Ericsson developed Deep Packet Inspection (DPI) tool can be connected at
different points in the Core Network to analyze packet switched data during the
measurement period. It records important characteristics at varying levels of detail,
and classifies the traffic type. In this project, four logs produced by this tool will
be analyzed: flow logs, summary logs, packet header logs, and to a lesser extent the
Packet Data Protocol (PDP) logs.

Flow logs An IP flow is a sequence of packets where the so called 5-tuple (source
IP, source port, destination IP, destination port, protocol type) is the same and
there is no gap longer than 60 seconds in between any two consecutive packets. In
the case of a TCP flow, it is initiated with a three-way handshake and ended either
by a FIN packet or the 60-second timeout. In addition to the identifying 5-tuple,
the logs also contain start and end time at millisecond resolution, an anonymized
IMSI, the device part of the IMEI, and traffic tags provided by the DPI tool.

7
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Summary logs In this log type, IP statistics are aggregated per minute into
summary activities, with one entry for each application that was recognized by the
DPI tool for a user during that minute.

Packet header logs This log is similar to the flow logs, but instead has one
entry per packet sent or received by the UE. The log tracks the time the packet was
received at the logging node, and also whether the packet was sent on the uplink or
downlink.

Packet Data Protocol (PDP) logs This log can be used to match IP addresses
with IMSI numbers. It is only used in this work to map each IMSI to an IMEI
number, which allows analysis of device types.

8



Chapter 3

Theory

This chapter contains a brief description of the theory relevant for this project.
The algorithms used to deal with statistical analysis of large data quantities are
described in Section 3.1, while the background theory for clustering methods is
presented in Section 3.2.

3.1 Statistical algorithms for large data quantities

3.1.1 Welford’s algorithm for mean and variance
Care has to be taken when calculating mean and variance on large datasets to
maintain floating point precision. The straightforward way to calculate mean, µ,
and variance, σ2, of a set of values x1,...,xN is:

µ = (
N∑

i=1
xi)/N

σ2 =
∑N

i=1 x
2
i − (

∑N
i=1 xi)2/N

N

Implementing this with standard floating point arithmetic can however lead
to loss of precision and other serious problems, such as negative variance [5]. A
method without these flaws is described by Knuth [5] (who cites Welford [6]) using
the recurrence formulas:

M1 = x1

Mk = Mk−1 + (xk −Mk−1)/k
S1 = 0
Sk = Sk−1 + (xk −Mk−1)× (xk −Mk)

with µ = MN and σ2 = Sn/(n− 1).

9
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3.1.2 Reservoir sampling
The problem of extracting a fixed number, K, of random samples from a stream
of items, with N items in total, is not trivial to solve effectively if N is not known
beforehand. One solution is to simply save all items and then pick every N

K sample,
but this consumes a substantial amount of memory, especially if each item takes
up much space in memory. Knuth [5] describes an algorithm dubbed Reservoir
sampling that solves this problem.

The original algorithm is stated in terms of processing a file of unknown size,
but it is easy to convert it to the case of processing items from a stream in memory,
which is described in Algorithm 1. We here assume randint(i,j) generates a
random integer between i and j (inclusive) and that the stream s has two methods:
hasNext() which returns True if there are more items in the stream and False
otherwise; and next() which returns the next item in the stream.

The general procedure of the algorithm is to first fill up the sample reservoir with
the first K items, and with probability K/n include each new item, thus replacing
an existing item.

It can be proven by induction that, in each iteration of the loop, all previously
seen items have an equal probability of being sampled to the reservoir [7].
Algorithm 1: Reservoir sampling
Data: Number of samples K, stream s
Result: Array of samples R
R ← Array();
for i← 1 to K do

if s.hasNext() then
R[i] ← s.next() ;

else
break;

end
end
n ← 0;
while s.hasNext() do

n ← n + 1;
ir ← randint(1, n);
if ir ≤ K then

R[ir] ← s.next() ;
end

end

3.2 Clustering
The field of clustering is a very typical representative of what is called unsupervised
machine learning. As opposed to supervised machine learning, which tries to learn

10
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models from known correct pairs of input and output data, in unsupervised learning,
no such mapping is known. Instead, an unsupervised method tries to find hidden
structure in unlabelled data.

In clustering, the hidden structure we are looking for is a grouping that puts
similar elements together and dissimilar elements in different groups. In this thesis
the focus will be on hard clustering, i.e. when each element belongs to only one
group (cluster).

3.2.1 K-means clustering
One of the most popular clustering algorithms is usually just known asK-means, but
it is perhaps more appropriate to talk about the K-means problem. The algorithms
that solve the problem are slightly different but are generally characterised by their
simplicity and speed.

The K-means problem is, given N data points ~x1, ..., ~xN , each of dimensionality
M , to split them into K sets (clusters) S1,...,SK to minimize the within cluster sum
of squares:

k∑
i=1

∑
~xj∈Si

||~xj − ~µi||2 (3.1)

where µi is the mean of points in Si.
It has been shown that the K-means problem is NP-hard [8], i.e. there cannot

exist an algorithm that solves it optimally in polynomial running time in K, N
and M asymptotically 1. The popular algorithms for solving the K-means problem
therefore only look for solutions that are approximately correct, while still managing
to have polynomial running time.

An algorithm that has been commonly used for the K-means problem was first
described by Lloyd [9]. It is often referred to as Lloyd K-means. Pseudo-code for
this algorithm is presented in Algorithm 2 (adapted from a restatement in [10]). The
distance metric is typically chosen to be the squared Euclidean distance between
two points in RM :

d(~x, ~y) =
M∑

i=1
(xi − yi)2 (3.2)

The algorithm first initalizes the cluster centers to some positions (described in
the next section) and then in iterative cycles assigns points to the cluster with the

1Unless P=NP, which has not been proven. However, it is generally assumed, within the field
of Computer Science, that the equality does not hold.
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nearest center and moves each cluster center to the mean of all of its members.
Algorithm 2: Lloyd K-Means
Data: Number of clusters K, data points X = {~x1, ..., ~xN}
Result: Clusters, i.e. sets of points, S1,...,SK such that each xi is a member

of exactly one Sj

changed ← True ;
C ← InitClusterCenters();
while changed = True do

foreach ~cj ∈ C do
Sj ← {~xi ∈ X|j = argmin

k
d(~xi,~ck)} ;

end
foreach ~cj ∈ C do

~cj ← 1
|Sj |

∑
~xi∈Sj

~xi ;
end
if the clusters have changed in this iteration then

changed = True ;
else

changed = False ;
end

end

3.2.2 Cluster center initialization
Commonly, the initial cluster centers (provided by the InitClusterCenters()-
function in the pseudo-code of Algorithm 2) would be chosen at random uniformly
from the given data points in X. The method is however only guaranteed to find
a local minimum for Equation 3.1, which means that the result depends heavily on
the initialization. There has been some work on providing an approximation bound
for Lloyd K-means type algorithms, mostly by initializing the cluster centers in
clever ways. One such method, called K-means++, uses random adaptive sampling
to provide a solution that has been proved to be a O(log k) approximation of the
optimum in expectation [10]. The authors also present empirical data that suggests
that K-means++ initialization both speeds up the running time and improves the
solution quality for Lloyd K-means clustering on some real and synthetic datasets.

The algorithm for K-means++ cluster center initialization is presented in Al-
gorithm 3. Here D(~x) = argmin

k
d(~x,~ck) where k goes up from 1 to the last cluster
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index chosen.
Algorithm 3: K-Means++ cluster center initialization
Data: Number of clusters K, data points X = {~x1, ..., ~xN}
Result: Initial positions of the clusters centers C = ~c1, ...,~cK

Choose ~c1 at random uniformly from X ;
for k = 2 to K do

Choose ck at random from X, where each xi has probability D( ~xi)2∑
~xj ∈X

D( ~xj)2

of being chosen ;
end
Since the initialization is still non-deterministic we can get different results when

running the algorithm multiple times. An easy way to get a better solution according
to Equation 3.1 is simply to run the combination of K-means++ initialization and
Lloyd K-means several times and pick the solution with the minimum error.

3.2.3 Determining K

One of the early methods of determining the number of clusters to use, K, is the
so called elbow method. As stated in [11]:

Start with k=1, and keep increasing it, measuring the cost of the op-
timal quality solution. If at some point the cost of the solution drops
dramatically, that’s the true k.

Cost here refers to the error of a clustering. The dramatic drop will on a plot make
the curve have the shape of an elbow, hence the name. The method is quite simple,
but also ambiguous, since “drops dramatically” is very vague.

A more rigorous method, the gap statistic [12], captures the intuition of the
elbow method, while giving a specific recommendation for which K to use. The
general idea is to compare the result of the quality of a clustering on the given
data to the average quality when clustering on some data generated to represent
unclusterable data, sampled from a chosen reference distribution, and choose the k
for which the gap in quality is the largest. The authors state that it is meant to be
used when there are well separated clusters in the data.

To describe how the gap statistic measures the quality of a clustering, we use
the same notation as before, i.e. we have clusters S1, ..., SK such that each data
point xi is a member of exactly one Sc. We also define the sum of pairwise distances
within cluster c as [12]:

Dc =
∑

i,j∈Sc

d(~xi, ~xj)

and also a dispersion measure for a complete clustering with k clusters:

Wk =
k∑

c=1

1
2|Sc|

Dc
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When the squared Euclidean distance (Equation 3.2) is used,Wk becomes the pooled
within-cluster sum of squares around the cluster centers, and can then be calculated
as in Equation 3.1. The authors then define:

Gapn(k) = E∗n{log(Wk)} − log(Wk)

Here E∗n denotes the expectation over samples of size n from the reference distribu-
tion. The authors use the gap statistic with two reference distributions: (a) uniform
over the range of the observed values, and (b) uniform over a box aligned with the
principal components of the data. The empirical results in [12] suggest that (b)
gives the best results overall. The algorithm for sampling from a type (b) reference
distribution is presented in Algorithm 4.
Algorithm 4: Sampling from a reference distribution aligned with the prin-
cipal components of the data
Data: Data matrix X, size n×m, with points as rows. Number of points to

sample, s.
Result: Sample point matrix, S, size s×m
1. Find the singular value decomposition: X = UDV
2. Project points onto eigenvectors: X ′ = XV T

3. Find the minimum and maximum values in each of the columns (rotated
dimensions) in X ′
4. Build S′, with the values in each column being sampled uniformly between
the minimum and maximum found for each respective column in the
previous step.
5. Compute the real coordinates of the sampled points as S = S′V

The expectation E∗n{log(Wk)} is computed as the average log(Wk) when the
clustering algorithm is run on B different samples from the reference distribution,
using k clusters. With σk being the standard deviation for log(Wk) in these B runs,
the authors also define the term:

sk =
√

1 + 1/Bσk (3.3)

Putting all of this together to determine the best k according to the gap statistic,
we have the following steps:

1. Cluster the given dataX for each considered number of clusters k = 1, 2, ...,K,
recording each within-cluster dispersion measure Wk.

2. Generate B datasets, each by sampling from the reference distribution (e.g.
as in Algorithm 4).

3. For each considered k, cluster the B datasets, and record the within-cluster
dispersion for each sample and k pair as W ∗kb.
We then have:

Gap(k) = (1/B)
B∑

b=1
log(W ∗kb)− log(Wk)
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4. The best k according to the gap statistic is then, using sk from Equation 3.3:

k̂ = the smallest k such that Gap(k) ≥ Gap(k + 1)− sk+1

3.2.4 Feature normalization
The scale of the features selected as dimensions for the input data to K-means
greatly affects the outcome of the clustering. If, e.g., feature A is measured in
seconds and feature B in milliseconds, this will have the effect that we consider
the same absolute time difference more important for feature B than for feature
A. In the case where the features are measuring different aspects altogether, such
as time and distance, the relative scale of the features is more difficult to reason
about intuitively. Even if raw features are used, this is an indirect decision about
the relative importance of the features.

A solution can then be to normalize (sometimes called standardize) the features,
so that e.g. they all have the same range, usually between 0 and 1. This is not
without critique however. If each feature is allowed to contribute equally to the
distance measure, this can remove implicit importance judgments, but it can also
remove meaningful differences [13].

One simple method of normalizing a feature is to linearly scale its values to the
[0, 1]-range [14]. Using

xmin = min
i
xi

xmax = max
i
xi

the transformation

x̄ = lintf(x) = x− xmin

xmax − xmin
(3.4)

then puts x̄ in the range [0,1].
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Method

The work in this thesis can be divided into three logical parts, corresponding to
the three aims listed in Section 1.1: extracting dataset metadata, extracting ba-
sic statistics and analyzing common radio network event sequences. The goal has
been to implement a reusable set of tools that can produce HTML reports on the
similarities and differences between datasets from these three perspectives.

Seen from a chronological point of view, the method has three phases: (1) data
extraction (2) data analysis (3) HTML report generation. An overview of the kind
of data that is processed and from which the data reports are generated is presented
in Figure 4.1.

The studied datasets are described in Section 4.1. The term radio network event
sequence is defined and motivated in Section 4.2. The details of the method relating
to aims A, B and C are presented in Section 4.3, 4.4 and 4.5, respectively.

Data

Data

Data extraction Data analysis Report generation

IP logs

Sampled metric values,
 tracked statistics

 

Raw event sequences

Event error logs

Log gaps
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Gap metrics
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Example seqs., per 
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Figure 4.1: An overview of the data extracted and how it is
used in the two different reports.
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Table 4.1: Dataset attributes

Label Region Year # RNCs

ASIA-A Asia 2010 4 †
NA North America 2012 1
ASIA-B Asia 2013 2
EU Europe 2012 2 †
† Only 10% of users considered

4.1 Datasets
In this report, datasets from four collection episodes are considered. Time con-
straints prohibited analysis of more datasets. The selected datasets were chosen to
have a wide geographical spread while spanning a few years. In some cases the size
of the dataset made it infeasible to consider all users for the basic statistic extrac-
tion. In these cases only a certain fraction of all users were considered. See Section
4.4.3 for a short motivation that we still maintain statistical properties when con-
sidering fewer users. The datasets are further described in Table 4.1, which specifies
for which datasets a smaller fraction of the users was considered. The term dataset
will be used to refer to the data from one of the collection episodes listed in the
table.

4.2 Definition of radio network event sequence
Both the event sequence analysis and the basic statistics rely on the notion of a
radio network event sequence, which is applicable to only the event logs. It is meant
to capture the process of a UE going from idle to connected mode (see Section
2.1.2), communicating though the RAN and then going back to idle mode. Some
timeout limitations had to be introduced to limit the memory consumption and
increase the performance of the extraction script. For this report, a radio network
event sequence is defined to have the following properties:

• The sequence starts with an RRC Connection Request event and contains
only one such event

• The events in the sequence are logged on the same RNC

• The events in the sequence are from the same IMSI

• If the sequence contains an IU Release 1 event, events after the the first 2 IU
1This marks the termination of the link on the RNC-CN interface (IU), for a user.
2In some cases there would be several IU releases recorded in a sequence that satisfies the other

conditions, which motivated the need to be restrictive after the first seen IU release
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release are only included until there is a gap 180 seconds or more between
events

• It is the longest possible sequence under the above conditions that starts with
a given RRC Connection Request.

Sequences are then extracted in chronological order from the events in the log
file. For performance reasons, the timeouts are not checked after each new event is
processed, but instead regularly every 180th second.

A test was run on 5 hours of the Asia dataset without these timeouts to see how
many sequences would be cut short. Assuming sequence time-outs are discovered
immediately, only 1.5% of sequences were affected in the test, which was deemed
acceptable. Since timeouts are only checked every 180th second, we can expect a
slightly lower fraction of sequences with missed events.

4.3 Extracting dataset metadata
The time span of each log type is for this report defined to be the time difference
between the first and last record of the log. In addition to this, a basic data integrity
check was done for all log types by monitoring the gaps present in the logs. This
was achieved by recording all time intervals where no log records appeared, if the
interval was longer than dt seconds. For the Event, Flow and Packet log types, a
15 second dt value was picked, to mark an interval not to short to be an acceptable
difference between two records during low traffic, while still not being too large
which could lead to that legitimate gaps would be missed. For the Summary log
type, records are made every minute, and a 61 second dt value was therefore picked,
which will indicate any missing minutes as gaps.

In the case of the radio network event logs, the analysis of gaps can be subdivided
over different entities that record events. One level is to consider which RNCs are
producing events in the log at any given time. Further subdivided, each RNC has
different processing units that split the recording of events among them. As is
discussed further on, during high load, logging of events can be turned off for such
a processor, which is why it can be interesting to study when there are gaps for a
specific processor.

The found gaps in the event logs will be analyzed in terms of the activity level
over time, which is simply the fraction of processors that have no gap in the log
at a point in time. We will consider a) activity levels of the log as a whole, i.e. a
fraction out of all processors on all RNCs, and b) activity level per RNC.

The coverage over users in the different log types in each dataset was studied
by considering sizes and overlaps between the observed sets of users. To get an
idea about the user coverage within a dataset, the user sets from all log types were
compared, and subsequently the size of the overlaps was counted. In the case where
only 10% of the users were considered (see Section 4.1), the set of all users could
still be efficiently extracted, and therefore also be part of this analysis.
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Event log data integrity analysis

The event logging mechanism in the RNC is designed to automatically scale down
and possibly turn of the logging if the load on a particular processor of the RNC
becomes too high. There can also be other factors that prohibit logging and the
saving of log files. To verify that the data integrity of the event logs in a particular
dataset is good it is therefore necessary to analyze these error intervals. Fortunately,
an event is always logged when the logging level is changed for a processor on an
RNC. The error intervals per processing unit on each RNC was tracked for later
analysis.

4.4 Basic dataset statistics

4.4.1 Extracting distributions
To be able to model the distribution of different metrics in the datasets, some
functionality for processing statistics was implemented. Each value of a metric that
was selected to be measured was processed in the following way:

1. Mean and variance is tracked by stepwise calculation of the recurrence formu-
las for Welford’s algorithm, as described in Section 3.1.1.

2. The value is considered for inclusion in a sample reservoir, as described in
Section 3.1.2. The number of samples was limited to N = 500000 to achieve
a good balance of statistical accuracy and limiting storage space.

3. After collection of all values is finished, order statistics (i.e. median and
different percentiles) were calculated on the sample reservoir.

4. A Cumulative Distribution Function (CDF) is then calculated based on the
sample reservoir.

Simple category counts were also tracked, but for this there is no need for sam-
pling since counts take up little storage space.

4.4.2 Selected metrics
After studying the literature related to the radio network theory in Section 2.1 and
discussing with some Ericsson researchers, a list of metrics to measure was selected.
Because of the relative simplicity of measuring many metrics on the same data, the
list is quite long and not all of the metrics will be analyzed in this report. The
metrics that will be discussed in this report are presented below, while the rest
can be found in Appendix C. Each selected metric is described below, with a short
motivation of why it is interesting. The metrics marked with † are extracted as
category counts, while the others are extracted as distributions as described earlier
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in this section. Traffic volumes are measured as the total of uplink and downlink
volume 3.

The selected metrics by log type:

• Event logs

– Total number of events in a sequence: Indicates how much radio
network protocol activity was generated.

– Duration of a sequence: The duration of a sequence could be affected
by what type of activity the UE is engaged in, what kind of device it is
and user behavior for that activity.

– Number of events of four key types in a sequence: Counts key
events per radio network event sequence. This metric is recorded sepa-
rately for each key event listed below. These key event types were chosen
to both cover changes to the communication state and mobility updates
(see Section 2.1):
◦ Channel switch
◦ Soft handover
◦ Cell update
◦ HS-DSCH cell change

• Summary logs

– Summary activity traffic volume: Measures the number of bytes
communicated during a summary activity. This can indicate different
usage patterns that might be caused by user behavior or the kind of
application being used.

– Traffic volume per user: The total amount of bytes sent or received
by a user during the measurement period. This indicates user behavior.

– Device types by traffic volume (†): A category count of the total
amount of bytes sent or received added up for different device types.
Device type is one of HANDHELD, M2M, PC, ROUTER or TABLET.
This metric shows which device types are responsible for most of the
traffic.

– Device OS by traffic volume (†): A category count of the total
amount of bytes sent or received added up for different device OS’s, e.g.
Android, iOS, Symbian or Blackberry. This metric shows which device
OS’s are responsible for most of the traffic.

– Device type by number of user devices (†): A category count of
the number of user devices seen in the dataset with a particular device
type. This metric shows the device type penetration.

3Separate metrics for uplink and downlink traffic are included in Appendix C
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– Device OS by number of user devices (†): A category count of the
number of user devices seen in the dataset with a particular OS. This
metric shows the device OS penetration.

• Flow logs

– Flow duration: The duration of a flow could be affected by what type of
activity the UE is engaged in, what kind of device it is and user behavior
for that activity.

– Flow data volume: The number of bytes sent or received during a flow.
This metric indicates usage patterns, which could depend on both user
and application behavior.

• Packet header logs

– Packet size: The size in bytes of a packet. It can be related to usage
patterns in different applications.

4.4.3 Using a fraction of the users
As mentioned in Section 4.1, for two datasets only 10% of the available users were
considered in the event logs. A investigation was done to see if the main character-
istics were still captured well when fewer users were considered. Six key statistics
were collected as described in the previous section for 100%, 10% and 1% of the
users in the ASIA-B dataset during five hours of log time. The statistics collected
were: Total number of events in a sequence, Duration of a sequence and Number of
events of key types in a sequence, for each of the four key events described in the
previous section.

When the CDFs of these statistics were plotted with the value on a log scale 4

the curves for all three cases were similar enough that one curve covered the others
almost completely. This was taken as evidence that using 10% of users still is enough
to reliably capture the properties of the dataset. These plots are not included in
this report, since the curves were overlapping to such a large extent. Instead, tables
over the values at the percentiles 10%, 20%, ..., 90%, for each measured statistic,
are included in Appendix A.

4.5 Analysis of common event sequences
The approach chosen to analyze the common radio network event sequences has
been to use clustering methods to group them, and then analyze the result both
in terms of the identifying features of each cluster, and how the sequences of the
considered datasets are divided between these clusters.

The method consists of the following major steps:
4The same kind of plot as is used in Section 5.2
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Table 4.2: Extracted raw radio network event sequences

Dataset % of users† # raw sequences

ASIA-A 1 % 7,472,734
NA 10 % 8,110,589
ASIA-B 1 % 14,415,144
EU 10 % 1,290,583
† Percentage of the total amount of users
appearing in the log, irrespective of whether
only 10% was used for basic extraction, as is
listed in Table 4.1

1. Extract raw radio network event sequences from each dataset

2. Extract features from the radio network event sequences

3. Transform and normalize features

4. Determine how many clusters, K, to use in the analysis

5. Run the clustering algorithm

6. Analyze the features of the found clusters

7. Generate an HTML report showing the results

The raw data extraction details are outlined in Section 4.5.1. To achieve a
reasonable similarity metric a few key features were selected, and then transformed
with normalization methods, which is described in Section 4.5.2, corresponding to
step 2 and 3 above. The method of applying a cluster algorithm to this data is then
given in Section 4.5.3, including how K should be determined.

4.5.1 Raw sequence data extraction and selection
Radio network event sequences from all four considered datasets are used as input to
the clustering procedure. In this way, if there are similar sequences across multiple
datasets they should end up in the same cluster.

All seen radio network event sequences from a fraction of the users in each
dataset were saved for later processing by the clustering method. The storage
size for the sequences and the processing time of later steps prohibited analyzing
sequences from all the users. Here, only the event timestamps and types were
recorded, together with the IMSI number of the device that generated the sequence.
The fraction of considered users and the total number of sequences saved per dataset
is listed in Table 4.2.

For the clustering, care was taken to select an equal amount of sequences from
each dataset so as to not introduce a bias for any dataset. The reservoir sampling
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Table 4.3: Selected features and their short names as used in
this report

Feature number Short name Description

1 duration Duration of the sequence
2 #chsw Number of channel switching events in the sequence
3 #soho Number of soft handover events in the sequence
4 #update Number of cell update events in the sequence
5 #hschange Number of HS-DSCH cell change events in the sequence

method (see Section 3.1.2) was used to select N = 106 of the saved raw sequences
from each dataset, for a total of 4 × 106 sequences. Using more sequences proved
to take prohibitively long time for running the feature extraction, clustering and
cluster analysis.

4.5.2 Feature selection and normalization
The input to the clustering algorithm was constructed by extracting a set of features
from each selected raw radio network event sequence in the previous section, and
then transforming each feature and normalizing it to be in the range 0-1. The
selection of features is important because it defines what we care about for the
similarity measure. The transforms then define how we care about these selected
features.

Selected features

One can imagine many different things to measure about a sequence, but for this
project only a few features were selected to keep the analysis reasonably simple and
facilitate interpretation of the resulting clusters. The duration of a sequence (in
seconds) was selected as a feature, since it could be used to distinguish between
both different user activities and user behavior during these activities.

Furthermore the counts of four key event types were selected as the remaining
features: channel switches, soft handovers, cell updates and HS-DSCH cell changes.
Channel switches are important, because they indicate if the activity the user is
doing has varying communication speed requirements. The last three events indicate
user mobility (see Section 2.1.2), in different communication states (see Section
2.1.3), which speaks to different user behaviors.

A list of the selected features and the short names used to refer to them in
plots etc is presented in Table 4.3. Using these features means that the data point
corresponding to a specific sequence will be a vector with five numeric components,
each corresponding to what the extracted feature yields on the specific sequence.
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Feature transformation and normalization

As was described in Section 3.2.4, if no normalization is done, the range of each
feature greatly affects the distance measure. For this project the features are nor-
malized to the [0,1]-range, to avoid any indirect weighting, which could be hard to
reason about. The squared Euclidean distance (Equation 3.2) will be used in the
actual clustering, which we will discuss also in this section, to reason about the
definition of the distance measure.

Simply scaling each feature linearly to the [0,1]-range (see the lintf transform
in Section 3.2.4), however, yields very skewed distributions. Histograms of the
features after this normalization are presented in Figure 4.2. Note that the Y-axis
is in logarithmic scale. We can see that vast majority of sequences have feature
values less than 0.1. When initial clustering experiments were conducted with this
transform for K = 10 clusters, most sequences ended up in one or possibly two
clusters, while the remaining clusters only had a few sequences each, that had one
or more extreme feature values.
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Figure 4.2: Histograms of the selected features after linear scal-
ing to the [0,1]-range. The Y-axis is in logarithmic scale.

To get a better understanding of the distance measure when this transform
is used we can consider an example where two points differ only in the duration
feature. If two sequences, s1 and s2 differ in duration only, the distance between
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them is simply:
d = (u′1 − u′2)2

where u′1 and u′2 are the linearly scaled durations. Since the scaling is linear, how-
ever, the distance between two sequences of duration 5 and 6 seconds will be the
same as the distance between two sequences of duration 200 and 201 seconds. It
seems appropriate to instead consider the one second as more important in the first
case, compared to the second case, since the difference is larger compared to the
duration of the sequences. This motivates us to use a feature transform that results
in differences scaled to the size of the feature value. For this we can use the natu-
ral logarithm, since by multiplying a feature value x with a constant factor k (e.g.
k = 1.1 to increase the value by 10%) we get a difference only depending on k:

log(kx)− log(x) = log(kx
x

) = log(k)

This intuitively reasonable property seems to also be appropriate to the count
features (feature 2-5 in Table 4.3), where a difference of one event is more important
for sequences with fewer such events. Using the log transform by itself, however,
does not yield values in the [0,1]-range, but we can apply linear scaling after the
log transform. We need to take special care when we have the feature value x = 0
since log 0 = −∞. The method selected to deal with this is to choose an offset, ∆d,
to mark the value difference between zero and non-zero values, and perform the log
transform on the non-zero values, and then linearly scale them in the range [∆d, 1].
The transform then becomes:

x′ = logtf(x) =
{

0 , if x = 0
∆d+ (1−∆d)× lintf(log(x)) , otherwise (4.1)

For the duration feature no offset was used, i.e. ∆d = 0, since it is a continuous
feature. For the counts however (feature 2-5), it is significant in itself if an event
type appears at all in a sequence. The offset was chosen to be ∆d = 0.1, which
gives a somewhat significant difference between zero and non-zero values, while still
allowing 0.9 for variances among the non-zero values. When the linear transform is
applied the offset corresponds to a difference in feature value that depends on the
ratio of the largest and smallest seen feature value. We can see this by expanding
the transform for x > 0:

x′′ = lintf(log(x)) (4.2)

= {Eq. 3.4} = log(x)− log(xmin)
log(xmax)− log(xmin) (4.3)

=
log( x

xmin
)

log(xmax
xmin

) (4.4)
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Now, assuming that y = kx we consider the difference y′′ − x′′:

y′′ − x′′ =
log( kx

xmin
)

log(xmax
xmin

) −
log( x

xmin
)

log(xmax
xmin

) (4.5)

= log(k)
log(xmax

xmin
)��

����
+

log( x
xmin

)
log(xmax

xmin
)��

����
−

log( x
xmin

)
log(xmax

xmin
) (4.6)

= log(k)
log(xmax

xmin
) (4.7)

To see the dependency on the range of feature values we can consider the case
when the contribution to the feature value is equal between the offset and the
transformed and scaled value, in Equation 4.1:

x′′ × (1−∆d) = ∆d (4.8)

x′′ = ∆d
1−∆d = 0.1

0.9 = 1
9 (4.9)

We can note that when x = xmin in Equation 4.4 we have x′′ = 0 since log(1) = 0
in the numerator. Using x = xmin and y = kx for some k, we have, by Equation
4.7:

y′′ − x′′ = y′′ − 0 = y′′ = log(k)
log(xmax

xmin
) (4.10)

We can then solve for k when we have equal contribution from the offset and the
value, i.e. when y′′ = 1

9 (from Equation 4.8):

y′′ = 1
9 = log(k)

log(xmax
xmin

) (4.11)

⇔ 1
9 log(xmax

xmin
) = log(k) (4.12)

⇔ (xmax

xmin
)

1
9 = k (4.13)

We now see what the value increase factor is that corresponds to the offset
between zero and non-zero values. Some examples for different feature value ranges
is presented in Table 4.4.

In summary, using the logtf transform assigns at minimum a somewhat signif-
icant distance between sequences that contain and do not contain a specific event
type, while an increase by a factor k of a feature value within a feature always yields
the same contribution to the transformed feature value.

Using the described log transform yields the feature distributions in the his-
tograms presented in Figure 4.3. We can see that the feature histograms are less
skewed toward low values as was the case when just the linear transform was used.
There is also linearly decreasing trend for the count features, most clearly for #chsw
and #soho. Since a logarithmic scale is used for the Y-axis, this indicates an expo-
nentially decreasing number of sequences for higher feature values.
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Table 4.4: Feature value increase corresponding to the non-zero
offset value, for different feature value ranges

xmax
xmin

k % increase

10 1.292 29.2 %
1000 2.154 115.4%
100000 3.594 259.4%

0.0 0.2 0.4 0.6 0.8 1.0

101

102

103

104
duration

0.0 0.2 0.4 0.6 0.8 1.0
100

101

102

103

104

105 #chsw

0.0 0.2 0.4 0.6 0.8 1.0

101

102

103

104

105
#soho

0.0 0.2 0.4 0.6 0.8 1.0

101

102

103

104

105
#hschange

0.0 0.2 0.4 0.6 0.8 1.0

101

102

103

104

105
#update

Figure 4.3: Histograms of the selected features after log trans-
form with offsets. The Y-axis is in logarithmic scale.

4.5.3 Clustering
The K-means clustering algorithm (see Section 3.2.1) was selected since it has
been well studied and has good performance even for quite large datasets. The
K-means++ cluster initialization procedure (see Section 3.2.2) was used in the
initialization phase of the algorithm, because it has been shown to improve quality
of the solution and reduce running time, while also providing a solution that in
expectation is at most O(log k) from the optimum. The clustering algorithm was
repeated 10 times, and the clustering with the best solution according to Equation
3.1 was selected. As was discussed in Section 3.2.2, running the algorithm repeatedly
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and selecting the best clustering is a simple way of improving the results.
The ELKI clustering software v0.5 [15] was used to do each clustering. The

transformed features from the previous section were used as input, and the following
software parameters were used:

• algorithm=clustering.kmeans.KMeansLloyd

• kmeans.initialization= KMeansPlusPlusInitialMeans

• kmeans.k=K

To determine which number of clusters K is reasonable to use during the clus-
tering above, the gap statistic method was applied (see Section 3.2.3). The values
K = 1, 2, ..., 20 were considered. For each possible assignment of K, the clustering
(with best-of-10 selection) was run on the transformed features, and then B = 30
times on uniformly sampled data as described in the Theory chapter.
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Results

The results achieved using the methods described in the previous chapter are pre-
sented below in sections corresponding to the three aims from Section 1.1: dataset
metadata (Section 5.1), basic dataset statistics (Section 5.2) and the analysis of
common event sequences (Section 5.3).

5.1 Dataset metadata

5.1.1 Time span and log gap analysis
Each of the studied log types in all of the considered datasets was analyzed in terms
of its time span and whether there were any gaps in the logs, as described in Section
4.3.

Radio network event logs

An overview over the time span and gap time in the recordings from the different
datasets is presented in Table 5.1. The time span is simply the time difference
between the first and last timestamp seen in the log. Gap time refers to time where
no event was observed from any processing unit on any RNC, added up for periods
of at least 15 seconds of duration.

In the table, we can see that the time span of the recordings in the different
datasets are quite similar, ranging from just below 8 days up to almost 9 days. All
datasets have a total gap time of 2-2.5 hours, or around 1.1% of the time span,
except EU which has zero gaps.

The activity levels (see Section 4.3) over time in each dataset are presented in Figure
5.1 - 5.3. In these plots, the top part shows the activity level overall in the recording, and
for the datasets with multiple RNCs, the other parts show the activity level of individual
RNCs. For Asia-A (Figure 5.1) we can see that there are two long gaps for the first RNC:
first for 14 hours, and in the end of the recording for 24 hours. We also see that all log
activity stops 10 times, where 8 of those seem to form a pattern of gaps in 24 hour cycles,
occurring regularly every day at around 16:00. Deeper inspection of the data showed that
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Table 5.1: Span and gap overview: Event logs

Dataset Log start Log end Time span Gap time Gap time %
(days) (h)

Asia-A 2010-09-13 15:59 2010-09-22 15:45 8.990 2.50 1.2%
EU 2012-06-25 09:59 2012-07-03 10:59 8.042 0.00 0.0%
NAmerica 2012-03-23 00:59 2012-03-30 17:59 7.708 2.00 1.1%
Asia-B 2013-03-14 06:30 2013-03-22 04:30 7.917 2.00 1.1%

these recurring gaps were all around 15 minutes long. These gaps then constitute the
majority of the total 2.5 h of gaps seen in the overview table.

For the North America (Figure 5.2) and Asia-B (Figure 5.3) datasets we see a similar
recurring overall gap in the logs every 24 hours, occurring at around 04:00 and 00:00 re-
spectively. Deeper inspection once again showed that such recurring gaps were around 15
minutes long.

We can also see some other cyclic behaviors: in the North America dataset the activity
level of one RNC varies from around 1 down to 0 during each day, while we can see that for
Asia-B, the activity level of the only RNC drops to around 0.9 at similar times of each day.
This indicates that the fraction of active processors on some RNCs varies throughout each
day. Such recurring patterns could be related to the load of a particular RNC, perhaps if
it turns off some processing units when the load is low.

The plot for the EU dataset is omitted since it simply shows an activity level at 1.0
with only a handful very small temporary decreases. It was the only dataset of the studied
ones without the recurring 15 minute gaps every day.
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Figure 5.1: Activity level over time: event logs (Asia-A)

31



CHAPTER 5. RESULTS

12-03-24 12-03-25 12-03-26 12-03-27 12-03-28 12-03-29 12-03-30
0.0

0.2

0.4

0.6

0.8

1.0

a
ct

 l
v
l:
 O

v
e
ra

ll

Figure 5.2: Activity level over time: event logs (North Amer-
ica)
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Figure 5.3: Activity level over time: event logs (Asia-B)
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Table 5.2: Span and gap overview: Summary logs

Dataset Log start Log end Time span Gap time Gap time %
(days) (h)

Asia-A 2010-09-16 09:21 2010-09-24 01:08 7.657 0.00 0.0%
EU 2012-06-25 11:37 2012-07-03 12:18 8.028 0.00 0.0%
NAmerica 2012-03-22 15:16 2012-03-30 16:10 8.037 0.00 0.0%
Asia-B 2013-03-18 13:50 2013-03-25 16:10 7.097 0.00 0.0%

Table 5.3: Span and gap overview: Flow logs

Dataset Log start Log end Time span Gap time Gap time %
(days) (h)

Asia-A 2010-09-14 04:17 2010-09-24 01:08 9.869 8.99 3.8%
EU 2012-06-25 11:37 2012-07-03 11:46 8.006 0.00 0.0%
NAmerica 2012-03-22 15:14 2012-03-30 16:09 8.038 0.00 0.0%
Asia-B 2013-03-18 13:55 2013-03-25 16:04 7.090 0.02 0.0%

Summary logs
An overview table of the time span and gaps in the summary logs, in the different datasets,
is presented in Table 5.2. We can see that the time span varies from just over 7 days to just
over 8 days. No gaps were observed in these logs.

Flow logs
An overview table of the time span and gaps in the flow logs, in the different datasets,
is presented in Table 5.3. Here the time span varies from just above 7 days, for Asia-B,
to almost 10 days for Asia-A. However, Asia-A is also the only dataset with a significant
amount of gaps, at almost 9 hours (3.8%). The activity level over time for Asia-A is
presented in Figure 5.4. We can see that a single gap constitutes all of the total gap time,
and it starts at 00:00 at 2010-09-16.
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Figure 5.4: Activity level over time: flow logs (Asia-B)
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Table 5.4: Span and gap overview: Packet logs

Dataset Log start Log end Time span Gap time Gap time %
(h) (h)

EU 2012-06-28 17:00 2012-06-28 22:02 5.04 2.96 58.9%
NAmerica 2012-03-28 16:59 2012-03-29 02:03 9.07 6.97 76.8%
Asia-B 2013-03-21 11:00 2013-03-21 12:03 1.05 0.00 0.0%

Packet logs
An overview table of the time span and gaps in the packet logs, in the different datasets1,
is presented in Table 5.4. We can see that for EU and North America most of the time
span is constituted by gaps. The activity levels over time for the EU and North America
datasets are presented in Figure 5.6 and Figure 5.5, respectively. Here we can see that in
both datasets, the total gap is accounted for by a long gap in the middle of the time period.
In both of these datasets, there is one hour of activity both before and after the gap.
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Figure 5.5: Activity level over time: packet logs (North Amer-
ica)
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Figure 5.6: Activity level over time: packet logs (EU)

1Packet data for the Asia-A dataset is not available
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5.1.2 User overlap
In each recording, different sets of users are observed in the various log types. A user is
identified by its anonymized IMSI. By comparing which IMSIs appear in which log types
in a recording, we can see the user set overlap between them. These overlaps are listed per
dataset in Table 5.5-5.8, in decreasing order. The Overlap size column refers to the number
of users appearing in all the log types listed on that row. The % of total column indicates
how large part an overlap is out of the total number of unique users observed in all log
types for that dataset.

Looking at the tables we can see that there is a variation between the datasets about
which log types overlap the most. In Asia-A the overlap is largest between flow logs and
PDP logs; for EU it is between flow and summary logs; while for North America and Asia-B
it is the intersection of the user sets from event and PDP logs. The largest overlap overall is
the overlap between users in the event and PDP logs in the Asia-B dataset, which includes
720K users.

If we look at the log types that exist with IMSI information in all datasets — event,
summary and PDP logs — the overlap sizes are 110 K, 230 K, 35 K and 180 K for Asia-A,
EU, North America and Asia-B respectively. For someone looking to correlate different log
types with respect to users, such information could be valuable in deciding which datasets
to include and for which log types it is feasible.

More detailed results on these overlaps can be found in Appendix D.

Table 5.5: Overlaps between user sets in different log types
(Asia-A), ordered by overlap size.

Log types Overlap size % of total

Flow, PDP 254869 20.08%
Event, Flow, PDP 218988 17.25%
Event, Flow 218988 17.25%
Event, PDP 218988 17.25%
Flow, Summary, PDP 130575 10.29%
Flow, Summary 130575 10.29%
Summary, PDP 130575 10.29%
Event, Summary 110398 8.70%
Event, Flow, Summary, PDP 110396 8.70%
Event, Flow, Summary 110396 8.70%
Event, Summary, PDP 110396 8.70%
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Table 5.6: Overlaps between user sets in different log types
(EU), ordered by overlap size.

Log types Overlap size % of total

Flow, Summary 524406 62.54%
Summary, PDP 522214 62.28%
Flow, Summary, PDP 521604 62.21%
Flow, PDP 521604 62.21%
Event, PDP 269359 32.13%
Event, Summary 231301 27.59%
Event, Flow, Summary 231092 27.56%
Event, Flow 231092 27.56%
Event, Summary, PDP 230270 27.46%
Event, Flow, Summary, PDP 230099 27.44%
Event, Flow, PDP 230099 27.44%
Summary, Packet 137158 16.36%
Flow, Summary, Packet 137157 16.36%
Flow, Packet 137157 16.36%
PDP, Packet 137024 16.34%
Summary, PDP, Packet 137023 16.34%
Flow, Summary, PDP, Packet 137022 16.34%
Flow, PDP, Packet 137022 16.34%
Event, Flow, Summary, Packet 80644 9.62%
Event, Flow, Packet 80644 9.62%
Event, Summary, Packet 80644 9.62%
Event, Packet 80644 9.62%
Event, Flow, Summary, PDP, Packet 80586 9.61%
Event, Flow, PDP, Packet 80586 9.61%
Event, Summary, PDP, Packet 80586 9.61%
Event, PDP, Packet 80586 9.61%
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Table 5.7: Overlaps between user sets in different log types
(North America), ordered by overlap size.

Log types Overlap size % of total

Event, PDP 318969 16.56%
Flow, Summary 192603 10.00%
Flow, PDP 190953 9.91%
Summary, PDP 190948 9.91%
Flow, Summary, PDP 190941 9.91%
Flow, Summary, Packet 80611 4.19%
Flow, Packet 80611 4.19%
Summary, Packet 80611 4.19%
PDP, Packet 79754 4.14%
Flow, Summary, PDP, Packet 79384 4.12%
Flow, PDP, Packet 79384 4.12%
Summary, PDP, Packet 79384 4.12%
Event, Summary 35633 1.85%
Event, Flow 35629 1.85%
Event, Flow, Summary 35628 1.85%
Event, Summary, PDP 35373 1.84%
Event, Flow, PDP 35370 1.84%
Event, Flow, Summary, PDP 35369 1.84%
Event, Packet 18608 0.97%
Event, Flow, Summary, Packet 18507 0.96%
Event, Flow, Packet 18507 0.96%
Event, Summary, Packet 18507 0.96%
Event, PDP, Packet 18444 0.96%
Event, Flow, Summary, PDP, Packet 18343 0.95%
Event, Flow, PDP, Packet 18343 0.95%
Event, Summary, PDP, Packet 18343 0.95%

Table 5.8: Overlaps between user sets in different log types
(Asia-B), ordered by overlap size.

Log types Overlap size % of total

Event, PDP 729986 54.83%
Summary, PDP 255927 19.22%
Event, Summary, PDP 180779 13.58%
Event, Summary 180779 13.58%
Summary, PDP, Packet 157161 11.81%
Summary, Packet 157161 11.81%
PDP, Packet 157161 11.81%
Event, Summary, PDP, Packet 117078 8.79%
Event, Summary, Packet 117078 8.79%
Event, PDP, Packet 117078 8.79%
Event, Packet 117078 8.79%
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5.1.3 Data integrity of event logs
The gap analysis presented previously in the report gives a basic view into the integrity
of the different log recordings. For the radio network event logs, we can also specifically
study the effect of a number of factors that affect the integrity of the data, since their
occurrences are logged as specific events. Each RNC has a number of processing units that
can be individually affected by a number of different error types, presented2 below with
their respective abbreviations used in the figures:

• FILE_SIZE_EXCEEDED (abbr. “>FILE_SIZE”): The maximum file size for a processing
unit, for the current 15 minute logging period was exceeded, after which no other
events were logged that period.

• OVERLOAD: The processing unit suffered overload, disabling event logging until the
load is lower again.

• PARTIAL_OVERLOAD (abbr. “PART_OVLOAD”): The processing unit suffered partial over-
load, disabling logging of some event types until the load is lower again.

• RESTART: The processing unit was restarted, and event logging is resumed when it is
online again.

A Cumulative Distribution Function (CDF) plot over the error rate per processing unit
(considering the set of all processing units on all RNCs in each dataset) is presented in
Figure 5.7. Note that the X-axis has a logarithmic scale. This was chosen to be able to
convey details at different parts of the value range. The fraction of values equal to zero is
presented in separate X-axis on the left side of the plot.

The error rate is measured as non-logging time in seconds on a processing unit, per
hour. In this way we can compare the error tendencies, irrespective of log time span. Note
that data is missing for the EU dataset since error events were not logged properly in that
recording.

In the plot, we can see that the processing units in the Asia-A dataset tend to have
much more error time per time unit than the other two datasets, with a median of 0.1 s of
error time per hour compared to a median of 0 error time in Asia-B and North America.
Looking at the 90th percentile, we can see that 10% of the processing units in the Asia-A
dataset have error rates over 4 s/h, while the corresponding number is 0.07 s/h for Asia-
B and 0.006 s/h for North America. We can also see that the maximum error rate for
any processing unit goes up to around 500 s/h in Asia-B while being around 60 s/h for
Asia-B and 2 s/h for North America. While Asia-A is more affected by errors than the
other datasets, still only a small part of its processing units were affected by errors, a small
fraction of the time. The overall effect of the errors on the studied datasets can therefore
be said to be quite small.

We can also consider the percentage of processing units without errors at any point in
time, which we will refer to as the logging level. A CDF plot of the fraction of time spent
at any logging level up to a certain logging level is presented in Figure 5.8. We can see
that only around 1 % of the total time is spent in logging levels below 97% in any of the
datasets, and in Asia-B and North America, less than 2% of the time is spent in a logging
level less than 100%. For Asia-A we instead see that aorund 30% of the total time is spent
in a logging level higher than 97.5% and less than 100%. The varying size of the discrete

2There are other possible error triggers, but since they did not appear in any of the studied
logs they are omitted here.
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Figure 5.7: Error rate per processing unit in seconds per
minute, in the different datasets

steps, in between datasets, is due to the varying total number of processing units within
each dataset, which decides the granularity of the fractions.

It is interesting to note that all three datasets in the plot suffered from the recurring 15
minute time gaps, as seen previously in this section, and yet we see no time at logging level
0. If the recurring gap was explained by a low logging level, we would expect to see around
1% of the time at logging level 0, since we observed no events during these gaps, and the
time in the gaps was around 1% of the total time (see Table 5.1).

It is also interesting to study the causes for this non-logging time. Pie charts of the
triggers of non-logging time in the different datasets are presented in Figure 5.9, with slice
size proportional to the total non-logging time attributed to each trigger. We see that in
both North America and in Asia-B, the PARTIAL_OVERLOAD trigger is responsible for all
non-logging time while in Asia-A, this trigger is only responsible for around 10% of the
non-logging time. Instead, the FILE_SIZE_EXCEEDED accounts for around 85% of the non-
logging time in Asia-A. This indicates some problems in the setup of the logging for this
recording, since the file sizes are exceeded often. It is possible that the hardware used in
this radio network does not allow for the storage and transfer of the quantities of log data
that would be required to more completely record event logs.
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5.2 Basic dataset analysis
The key statistics described in Section 4.4 were collected and the sampled values were saved
to allow flexible analysis. For each of the value distributions, two plots were generated for
the HTML report: a Cumulative Distribution Function (CDF) plot and a box plot. A table
of mean, variance, minimum value, maximum value, median and different percentiles was
also assembled for each value distribution, for the HTML report.

While the generated report contains large number of statistics presented from the dif-
ferent perspectives, the key statistics studied in this report are presented as CDF plots
since it is a very informative view that still allows for easy comparison between dataset
distributions.

A sequence in this section refers to a radio network event sequence, as defined in Section
4.2.

5.2.1 Radio network logs
Sequence duration
A CDF plot over sequence duration in the different datasets is presented in Figure 5.10.

We can see that the Asia-B dataset has many sequences with long duration. Just below
90% of its sequences are shorter than 100 s, while the corresponding percentage for the
other datasets is above 97%. Up to the median the curves for Asia-B and North America
are similar, but from there on Asia-B has markedly longer sequences. We can here observe
that North America has a large group of sequences with duration 10-15 s, covering more
than 30% of its sequences. A seemingly small concentration also occurs for Asia-B where
around 3% of its sequences are around 600 s long, which we will get back to later on in the
report. The EU and Asia-A datasets have similar distributions, and have shorter durations
than the other two datasets, up until the steep rise for North America.
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Figure 5.10: CDF:s for sequence duration in the four datasets.
The duration is plotted on a logarithmic scale.
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Sequence length
A CDF plot over the number of events in the sequences (sequence “length”) in each of the
four datasets is presented in Figure 5.11. As for the sequence duration, we can see that the
Asia-B data set has more sequences with higher values. Around 80% of its sequences have
less than 10 events, while for the other datasets this fraction is around 95%. Still, we can
also see that in North America the median is the highest, at 7 events per sequence. Once
again, the distributions for EU and Asia-A are similar. While the median of North America
is decidedly higher than for EU/Asia-A, the curves are similar after the 90th percentile.
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Figure 5.11: CDF:s for the number of events in the sequences
in the four datasets. The number of events is plotted on a
logarithmic scale.

Number of channel switches per sequence
A CDF plot over the number of channel switch events per sequence in each of the four
datasets is presented in Figure 5.12. To start with, we can here see big differences in how
many sequences contain a channel switch at all. In North America only around 45% of
sequences contain no channel switch, for Asia-B this is just above 55%, while for EU/Asia-
A this number is around 80%. We can also note that in Asia-B the sequences generally have
more channel switches, with 10 % of them having more than five such events, compared to
around 3% for the other datasets.

Number of soft handovers per sequence
In contrast to the channel switches, the distributions over the number of soft handovers
per sequence are fairly similar. A CDF plot over the number of soft handover events per
sequence is presented in Figure 5.13. We can see that in all datasets, around 60% of the
sequences lack soft handover events. The Asia-B dataset has a slightly higher number of
soft handovers, with e.g. around 5 percentage points more sequences with more than 10
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Figure 5.12: CDF:s for the number of channel switches per
sequence in the four datasets. The number is plotted on a
logarithmic scale.

events. Since Asia-B had more sequences with longer duration (Figure 5.10) it could still
be that it has a lower frequency of occurrences per time unit.
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Number of cell updates per sequence
For the cell updates we can see that there are some differences in how many sequences
contain the event at all, between the datasets. A CDF plot over the number of cell update
events per sequence is presented in Figure 5.14. Around 85% of the sequences in the Asia-
A/EU datasets lack cell updates. This percentage is much smaller in the other two cases:
around 60% for Asia-B and as small as 45% for North America.

0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
u
m

u
la

ti
v
e
 f

ra
ct

io
n

100

100

101

101

102

102

103

103

104

104

# (log)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CDFs: sequence cell updates

Asia-A EU NAmerica Asia-B

Figure 5.14: CDF:s for the number of cell updates per sequence
in the four datasets. The number is plotted on a logarithmic
scale.

Number of HS-DSCH cell changes per sequence
A CDF plot over the number of cell update events per sequence is presented in Figure 5.14.
We can see that very few sequences contain this event, with the most being in Asia-B at
around 10% and the other datasets having it appearing in only 2.5-5% of the sequences.

5.2.2 IP logs
There are many common attributes that can be extracted in all three IP log types (Summary-
, Flow- and Packet logs) such as the distribution over devices and services. These statistics
are only presented and discussed for the Summary log, since they seemed to be similar for
the other two log types.

Summary activity traffic volume
Recall from Section 2.2.2 that a summary activity covers the traffic of one application for a
user during one minute. A CDF plot over total traffic volume in bytes (uplink+downlink)
per summary activity for the four datasets is presented in Figure 5.16.
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We can see that summary activities tend to have more traffic in Asia-A. For each value
between the median at 103 bytes up to the 90th percentile at 105, Asia-A consistently has
5-10 percentage points more of its sequences over that value.
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Figure 5.16: CDF:s for the total traffic volume (uplink +
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datasets. The volume is plotted on a logarithmic scale.
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Summary traffic volume per user
For this statistic the total traffic on both uplink and downlink was tracked per IMSI. The
results are presented in Figure 5.17. We can see that the users in the Asia-B dataset have
a much higher traffic volume. The median user in Asia-B had a traffic volume of 108 bytes
(100MB) while the medians in the other data sets are 3× 105 to 2× 106 (0.3 to 2 MB).
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Figure 5.17: CDF:s for the total traffic volume (uplink + down-
link) per user for the four different datasets. The volume is
plotted on a logarithmic scale.
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Summary traffic volume per device type
The traffic volume distribution over device types is presented in a pie chart in Figure 5.18.
There are five types: handheld, PC, tablets, routers and Machine to Machine (M2M). All
slices after 90% of the total are collapsed into one slice, labeled ’other’. We can see that PCs
dominate the traffic volume in Asia-A and EU, while handhelds are responsible for most of
the traffic in Asia-B and North America. This indicates a clear difference between datasets
as to which device types are generating the most traffic.

HANDHELD

PC

other

Asia-A

HANDHELD

PC
other

EU

HANDHELD

other

NAmerica

HANDHELD

other

Asia-B

Figure 5.18: Total traffic volume distribution (up-
link+downlink) per device type

Summary traffic volume per device Operating System (OS)
The traffic volume distribution over device OS is presented in a pie chart in Figure 5.19.
Unfortunately the mapping to device OS was not known for a large portion of the devices
in Asia-A/EU. The correspondence between Unknown in this plot and PC in Figure 5.18
suggests that the OS mapping is missing for PCs.

Nevertheless, we can see that Android dominates the traffic volume in North America at
around 80% of the total, and about 60% of the total in Asia-B, which also has a significant
portion (around 25%) from iOS devices. Only Asia-A and EU have similar distributions,
while there are clear differences in between the others.
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Figure 5.19: Total traffic volume distribution (up-
link+downlink) per device OS

User distribution over device type
The user distribution over device types is presented in a pie chart in Figure 5.20. We can
see that the handheld type dominates in all datasets. The only other category that appears
with a significant amount is PC, which around 10% of users have in the Asia-A and EU
datasets. It is interesting to note that while only 10% of users have PCs in these datasets,
they are responsible for more than 75% of the traffic volume, as could be seen in Figure
5.18. We see that the distributions are similar for Asia-A/EU, while Asia-B has a higher
portion of handheld devices, and North America almost exclusively has handheld devices.

User distribution over device OS
The user distribution over device OS is presented in a pie chart in Figure 5.20. We can
see that there are clear differences in the device fleets between the datasets. Asia-A is
dominated by iOS (IPhones/IPads) while North America is dominated by Android based
phones. It is also the only dataset where a significant fraction of the users (around 20%)
use BlackBerry phones.

The EU dataset seems to be dominated by proprietary and Symbian phones, and could
be labeled a feature phone 3 heavy network. On the contrary, the Asia-A dataset is domi-
nated by Android and iOS phones, and can be considered a smartphone heavy network.

3“Dumb” phones, or at least “not-as-smart-as-Android/iOS-phones”
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Figure 5.20: The user distribution over device types

In general we see that there are large differences between the distributions in the different
datasets.

Flow duration
Recall the term flow from Section 2.2.2. A CDF plot over the flow duration in the different
datasets is presented in Figure 5.22. We can see that Asia-A has longer flows up until the
60th percentile at around 3 seconds, and after this the flow duration is similarly distributed
in all of the datasets.

Traffic volume per flow
A CDF plot over the total traffic volume (uplink + downlink) in the different datasets is
presented in Figure 5.23. We can see that the flows in Asia-B and North America tend to
have a higher traffic volume. The 75th percentile is 6 Kb while for Asia-A/EU it is instead
around 1-2 Kb.

Packet size
A CDF plot over UDP/TCP packet sizes in the different datasets is presented in Figure
5.24. The minimum size for a TCP packet is 40 bytes and the Maximum Transmission Unit
is 1500 bytes which corresponds well with the sharp jumps in the start and end of the plot.
We can see that the packets in the Asia-B dataset seem to be slightly bigger than in the
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Figure 5.21: The user distribution over device OS
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Figure 5.22: CDF:s for the number of flow duration in the four
datasets. The duration is plotted on a logarithmic scale.

other data sets, but the differences are not that large. Unfortunately, the data for Asia-A
is unavailable.
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5.3 Analysis of common event sequences

5.3.1 Determining K

A prerequisite to running the cluster analysis is to decide how many clusters to use. The
Gap-statistic (see Section 3.2.3) was run for K = 1..20 clusters, with the number of tested
randomly generated distributions, B = 30. Unfortunately, it was infeasible to run on the full
dataset because of time constraints, and therefore only 50 000 randomly sampled sequences
from each dataset was used for this analysis.

The plot of the achieved gaps for different K is presented in Figure 5.25. The error bars
show sk, the adjusted standard deviation of the error on the randomly generated datasets
(see Section 3.2.3 for details). Since the error bars are quite large compared to the deviance
from 0 we see that there is a quite large variance in the error for the randomly generated
datasets.

While it is impossible to tell from the graph, the actual result of the gap statistic method
is that K = 1 should be used, since:

Gap(1) = 0 > Gap(2)− s2 = 9× 10−16 − 1× 1−14 ≈ −1× 10−14

Recall from Section 3.2.3 that the gap statistic method is specifically designed to identify
the appropriate number of clusters to use when there are well separated clusters in the data.
One conclusion we can draw from this is that there is no strong evidence for the existence
of well separated clusters in the data given the used distance metric.

The analysis done in this project is however not deemed to require that the clusters
are very well separated. The clustering will still provide a useful discretization of the space
of sequences that we can use to to analyze differences in how common certain types of
sequences are in the different datasets.

The gap statistic curve has a maximum at K = 11, while also having a slightly smaller
error bar at this point, which is a good indication that there are somewhat well separated
clusters when K = 11 is used. Because of this, K = 11 clusters were used in the cluster
analysis.

5.3.2 Cluster perspectives
Overview
The K-means clustering algorithm was run as described in Section 4.5.3, using 1 million
randomly sampled sequences from each dataset as the input data. Using the motivation
from the previous section, K = 11 clusters was used. The found clusters were of varying
size and had different properties. An overview of the clusters is shown in Table 5.9, which
includes the relative size of the clusters and a relative feature value marker of 1-4 bullets
for each feature for each cluster. To refer to the clusters, the 11 indices 0-10 are used. The
indices were picked in order of the median duration of each cluster. The short names used
for the features are described in Table 4.3.

The markers in the table indicate the relative feature value of a cluster center com-
pared to the other clusters. These were generated by using the feature values (after the
normalization and transformation described in 4.5.3) for each respective cluster center. The
maximum and minimum feature values for the cluster centers were used to scale the values
to the range 0..1, after which the values were categorized into four ranges, with [0, 0.25)
corresponding to one bullet and [0.75, 1.0] corresponding to four bullets. In this way, one
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Figure 5.25: The value of the gap statistic for different number
of clusters used (K). The error bars show sk, the adjusted stan-
dard deviation of the error on the randomly generated datasets
(see Section 3.2.3 for details).

bullet indicates a low relative value for that feature compared to the other cluster centers,
and four indicates a high relative value.

As we can see in the table, almost all clusters are different in terms of their feature
properties. Only clusters 1 and 3 have the same relative feature values using this crude
discretization. It is also apparent that most sequences are members of clusters with a low
relative duration, with clusters 0-5 covering 82.3% of all sequences.

Sampled sequences comparison plot
While the overview presented in the last section gives some idea about the sequences in
each cluster, it does not describe them in any detail. To get a better view what kind of
sequences appear in the clusters, example sequences from each cluster are visualized in
Figure 5.26. In this figure, six sequences from each cluster are visualized to show how their
events occur in time. The five bottom-most for each cluster are randomly sampled from all
sequences in the cluster, while the top one is the sequence which is closest to the cluster
center. The key events that occur in the sequences are visualized with different kinds of
markers, as described in the legend. To cover sequences of very varying length, the time
scale is logarithmic. While this blurs together events in the later stages of long sequences, it
is still possible to compare the length of the sequences, and the rate at which events occur.

We can see that cluster 0 seems to exclusively contain sequences that only have an RRC
connection request event. As was indicated in the previous section, clusters 1 and 3 have
similar events, but here we also see that the duration is longer in cluster 3.
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Table 5.9: Cluster overview

Idx Cluster size duration #chsw #soho #cellupd #hs-cc

0 2.1 % • • • • •
1 20.8 % •• • • • •
2 14.2 % •• • •• • •
3 19.2 % •• • • • •
4 10.2 % •• • •• • •
5 15.8 % ••• •• • • •
6 9.1 % ••• •• •• • •
7 2.6 % ••• • ••• • •
8 2.5 % ••• ••• ••• •• ••
9 2.7 % •••• ••• • • •••
10 0.8 % •••• •••• •••• •••• ••••

It is clear that all clusters differ with respect to some property. Sequences in clusters 5
and 6 e.g. seem to have similar duration, but in 6 they are distinguished by having more
soft handovers and HS-DSCH cell changes. Similarly, clusters 7 and 8 differ in that there
are more channel switches for the sequences in 8.

Cluster 9 has some especially distinguishing properties. Its sequences have a very long
duration, and contain almost exclusively channel switches and cell updates. In contrast,
the two other clusters with similar duration, clusters 8 and 10, contain soft handovers and
HS-DSCH cell changes at a quite high rate.
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Figure 5.26: Example sequences from each cluster.
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Cluster distribution comparison
To understand the clusters on a deeper level we can study Cumulative Distribution Function
plots for different properties.

Duration In Figure 5.27, we can see CDF:s for the sequence duration in the different
clusters. While we can see that many clusters overlap in the durations covered, some clusters
have almost identical duration distribution, such as 3/4, and 5/6. It is to be expected that
clusters overlap in a feature like this, since many features have been used for finding the
clusters, and the other features could be distinguishing sequences of the same length, which
we saw in the previous section. As mentioned before, the cluster indices were chosen in the
order of median sequence duration. This will later give us a simple tool in relating CDF:s
for other properties to sequence duration by just looking at the index order.

An interesting thing to note in the figure is the steep slope in the curve for cluster 9
at around 600 seconds. Recall that two steep slopes were discovered in the per dataset
sequence duration CDF plot in Figure 5.10: for North America at around 10-15 seconds
and for ASIA-B at 600 s. The 600 s bump therefore seems to have ended up in Cluster 9,
although we will get back to actually verifying the origin datasets of Cluster 9 later in the
report. Judging from the figure, the 10-15 s bump seems to have ended up in clusters 5
and 6, and we will also try to verify later by considering dataset origin distribution in these
clusters.

0

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 f

ra
ct

io
n

10-2

10-2

10-1

10-1

100

100

101

101

102

102

103

103

104

104

105

105

106

106

s (log)

0.0

0.2

0.4

0.6

0.8

1.0

CDFs: Duration of sequences in cluster

C-0
C-1

C-2
C-3

C-4
C-5

C-6
C-7

C-8
C-9

C-10

Figure 5.27: CDF:s for the sequence duration in different clus-
ters. The duration is plotted on a logarithmic scale.

Length In Figure 5.28, we can see CDF:s for the sequence length (total number of
events) in the different clusters. We can see that Cluster 8 which has a lower median
sequence duration than Cluster 9, still has sequences of longer length. Similarly, Cluster
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3 has slightly fewer events in its sequences than Cluster 2, while having higher median
duration. The distribution in this figure ties in well with the visualization in Figure 5.26,
where e.g. the long duration and comparatively low number of events for Cluster 9 gives
its example sequence a much less dense character than clusters 8 and 10.

It is worth noting that the sequence length in itself was not used as a basis for any
feature for the clustering procedure. Only the sequence duration and specific counts of
channel switches, soft handovers, cell updates and HS-DSCH cell changes were used as raw
features, and therefore have a direct effect on the clusters found. Of course, the different
event counts affect sequence length, so there is an indirect correlation.
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Figure 5.28: CDF:s for the total number of events per sequence
in different clusters. The number is plotted on a logarithmic
scale.

Channel switches We have seen that some clusters overlap in sequence duration which
was the basis for one clustering feature. Next we will look at the counts of the four specific
events which were the basis for the other four features used for the clustering. This will
present the differences between clusters at a deeper level of detail than what could be seen
in the overview in Table 5.9.

In Figure 5.29, we can see the CDF:s for the number of channel switch events per
sequence in the different clusters. To start with, we can see that clusters 0, 1 and 2 have no
channel switches in their sequences. Also for clusters 3, 4 and 7 the majority (70-90%) of
sequences have no channel switches. Clusters 5 and 6 have an almost identical distribution,
with around 30% of the sequences having one channel switch, and almost 60% having two,
with very few having much more than that. Similarly, clusters 8 and 9 have curves that
follow very closely, with a median around 6 switches, with the sequences in Cluster 9 having
slighly more sequences with more than 10 switches. Cluster 10 dominates this chart, having
the median number of switches being around 50.
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Soft handovers A plot of the CDF:s for the number of soft handovers per sequence in
the different clusters is presented in Figure 5.30. Here we can see that clusters 0, 1, 3 and
5 have no soft handovers at all. It is interesting to note that Cluster 9, which has a long
median duration has the fewest soft handovers of the rest of the clusters. Over 70% of its
sequences have no soft handovers. The sequences in clusters 2, 4 and 6 have a majority
(55-70%) of their sequences with one soft handover, and no sequence with more than 10
soft handovers.

Another interesting observation is that the sequences in Cluster 7 tend to have more soft
handovers than the ones in Cluster 8, even though Cluster 8 has a higher median duration
and sequence length which we could se in Figure 5.27 and 5.28.

Once again Cluster 10 clearly has the most number of soft handovers per sequence, with
a median of almost 30 compared to 7 for Cluster 7.

Cell updates A plot of the CDF:s for the number of cell updates per sequence in the
different clusters is presented in Figure 5.31. We can see that clusters 0-4 have practically
no sequences with cell updates. For Cluster 7, almost 90% of the sequences contain no
cell updates, while the last 10% contain one. In clusters 5 and 6, 80-90% of the sequences
contain one soft handover, 99% contain up to three cell updates.

For clusters 8 and 9, the distributions look very similar, having a median of 3 cell
updates per sequence, with Cluster 9 having slightly more sequences with more than 10 cell
updates.

Again, Cluster 10 clearly dominates this statistic, having a median of around 25 cell
updates per sequence.
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on a logarithmic scale.

59



CHAPTER 5. RESULTS

0

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 f

ra
ct

io
n

100

100

101

101

102

102

103

103

104

104

# (log)

0.0

0.2

0.4

0.6

0.8

1.0

CDFs: Num soft handovers in sequences in cluster

C-0
C-1

C-2
C-3

C-4
C-5

C-6
C-7

C-8
C-9

C-10

Figure 5.30: CDF:s for the number of soft handover events
per sequence in different clusters. The number is plotted on a
logarithmic scale.
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Figure 5.31: CDF:s for the number of cell update events per
sequence in different clusters. The number is plotted on a
logarithmic scale.
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HS-DSCH cell changes A plot of the CDF:s for the number of HS-DSCH cell changes
per sequence in the different clusters is presented in Figure 5.32. We can see that no
sequences in clusters 0, 1, 2, 3 and 5 have any HS-DSCH cell changes. In clusters 4 and
6, around 90% of the sequences have no cell changes. Furthermore, Cluster 9 has very few
sequences (less than 5%) which contain HS-DSCH cell changes.

Cluster 10 also clearly has the most HS-DSCH cell changes, and is the only cluster with
a significant number of sequences with more than 10 cell changes. Clusters 7 and 8 have
15%/30% respectively of their sequences with only one cell change, and 15%/30% of their
sequence with 2-10 cell changes.

Compared to the previously discussed event distributions per cluster, a difference for
HS-DSCH cell changes is that only in Cluster 10 does a clear majority of the sequences
contain the event, while for the other event types there has been three clusters where
almost all sequences contained the event.
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Figure 5.32: CDF:s for the number of HS-DSCH cell change
events per sequence in different clusters. The number is plotted
on a logarithmic scale.

Device type Similarly as with the sequence length, the type of devices that have gen-
erated the sequences in each cluster have no direct effect on the clustering procedure. In
fact, while sequence length has an obvious indirect relation to the raw event count features,
there is an even less direct relation with device type to the raw features. We can speculate
in there being some links though, e.g. that less mobile devices such as the PC device type4

will have few mobility events such as soft handovers and cell updates.
Pie charts over the distribution over device types per cluster are presented in Figure

5.33. In the bottom-right corner the overall distribution device type in the sequences is

4includes laptops
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included. We can see that only clusters 8, 9 and 10 have a significant amount sequences
generated by PC devices. Recall that the indexing scheme implies that these clusters have
the three highest median durations.

We can also note that clusters 1, 2, 3, 4 and 7 have a slightly lower fraction (less than 5%)
of sequences generated by non-handheld devices than the remaining clusters. In contrast,
clusters 9 and 10 have more than 10% of their sequences generated by non-handheld devices.
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Figure 5.33: Distribution over device type per cluster

Device OS The device OS similarly has no obvious direct relation to the raw features
used by the clustering. We can also here speculate in there being some indirect links since
the device OS often implies a device type and possibly some hardware features of the phone.

Pie charts over the distribution over device OS’s per cluster are presented in Figure
5.33. Note that the bottom right pie chart shows the overall distribution of device OS per
sequence. We can see certain deviances from the overall distribution. For one, Symbian is
responsible for generating a comparatively high portion of the sequences in clusters 0, 1, 2
and 7. Similarly, while Android is big in the overall distribution, it is even more dominating
in clusters 5 and 6. iOS has a bigger portion than overall in clusters 3, 4, 7, 8 and 10
but most notably in Cluster 9 where it accounts for about half of the sequences, compared
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to 25% in the overall distribution. Blackberry accounts for a notably low portion of the
sequences in clusters 7 and 10, but it is otherwise fairly evenly distributed over the clusters.
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Figure 5.34: Distribution over device OS per cluster

Dataset distribution While we so far have been studying results relating to what
properties the different clusters have, the key idea with clustering sequences from different
datasets has been to see if there are imbalances in how the sequences from different datasets
distribute over the clusters. A pie chart plot over this distribution is presented in Figure
5.35. Recall that the sequences were selected so that the overall distribution has an equal
portion from each dataset.

One interesting thing to note in the plot is that clusters 5 and 6 are clearly dominated
by sequences from the North America dataset. Recall from the plots over sequence duration
per dataset (Figure 5.10), and per cluster (Figure 5.27) that we identified a large portion
of the sequences from North America as having a duration of around 10-15 s, and therefore
most probably belonging to clusters 5 and 6. The dominance of North America in these
clusters further suggests that this group of sequences with similar duration belongs to these
clusters.
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Another thing that is clear in the plot is that Asia-B has a clear dominance in clusters
9 and 10. It may not be that surprising since we saw earlier in Figure 5.10 that there were
much more sequences in Asia-B with long duration than in the other datasets. We also
before identified a small group of sequences with very similar durations around 600 s, that
we found strong indications for that they ended up in cluster 9 (from 5.27). Since Asia-B
dominates this cluster, we have further evidence supporting that this group of sequences
ended up in Cluster 9. In this case one could argue that it is even more interesting, since
there are several clusters that contain sequences with duration around 600 s, but we have
specifically found evidence that they ended up in Cluster 9.

Furthermore we can observe that the EU and ASIA-A datasets account for a notably
high portion of the sequences in clusters 1-4 and 7. Asia-A is dominating Cluster 0, with
40% of the sequences. North America has a markedly low portion of the sequences in
clusters 3 and 7.
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Figure 5.35: Distribution of over datasets per cluster
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Table 5.10: Event pattern homogeneity

Rank Cluster idx Homogeneity Count Median length

1 0 1.000 85299 1
2 4 0.922 708785 6
3 1 0.696 579218 4
4 6 0.638 524622 9
5 5 0.531 175728 7
6 2 0.369 150952 5
7 9 0.178 21648 14
8 3 0.153 38529 4
9 7 0.138 32402 13
10 8 0.093 8702 22
11 10 0.015 736 125

Common event patterns
While it can be informative to consider the duration of sequences, and visualize the occur-
rences of events in time, another perspective is to simply consider the order of the events
in a sequence. To do this, all sequences with a certain event order was counted, and these
patterns were then ordered after the number of occurrences of each. The resulting top 3
most occurring event orders can be found in Appendix B.

An overview of the totals for the top 3 event patterns per cluster is presented in Table
5.10, along with median sequence length for comparison. In this table, Homogeneity is the
fraction of sequences within the cluster that matches one of the top 3 patterns seen in the
cluster. We can start by noting that Cluster 0 has homogeneity 1.0 which, by looking at the
example sequences in Figure 5.26, seems to be explained by all sequences simply consisting
of a single RRC Connection Request event, i.e. having the same event pattern.

It is interesting to note the cases when a cluster has a higher homogeneity than clusters
with lower median length, since if we assume completely random transitions between events,
we should find fewer examples of sequences that contain more events, and thus a lower
homogeneity. In the table we find that clusters 4, 6, 9 and to a degree cluster 7 meets the
criteria of having a comparatively high homogeneity in relation to their median sequence
length. This indicates that there are certain event patterns in these clusters that are more
typical than we could expect for a pattern of that length.
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Discussion

In this chapter the results from the previous section are further analyzed and discussed. Sec-
tion 6.1 reviews the results regarding time span, log gaps, user coverage and data integrity;
and the relevance of such results to a potential analyst. In Section 6.2, the similarities and
differences of the studied datasets are examined. The properties of the different clusters
are analyzed in Section 6.3 and the differences in how the datasets distributed over these
clusters is discussed in Section 6.4. The clustering method itself is evaluated in Section 6.4.
Finally, a discussion around the contribution of the common sequence analysis is held in
Section 6.6.

6.1 Dataset metadata

6.1.1 Time-wise log coverage
From the time span and gap analysis results from Section 5.1.1, we saw that most log types
covered similar time spans across datasets, with the possible exception of the Packet logs,
where the EU amd North America datasets had a total of 2 hour active log time compared
to the single hour noted for Asia-B, which of course is a large relative difference. Such data
is helpful when we interpret some of the basic statistics. While e.g. the large difference in
total traffic volume per user (see Figure 5.16) between the Asia-B and the other datasets
could have been partly explained by the recording time span being significantly longer in
that dataset, instead we could here see that the Summary log time span of the Asia-B
dataset was the shortest among the datasets (see Table 5.2). It is important to be aware of
cases where a difference in time span between dataset recordings could explain differences
in some statistic, which data such as the referenced table can shed light on.

We could also observe specific downtimes in the logs, such as the logging on an RNC
in the Asia-A dataset going down in long periods, and a 9 h long gap in the flow logs. It is
important to be aware of such issues if you e.g. want to plot a comparison over a statistic
over time.

The gap analysis also brought to light a phenomenon in the event logs where, in three
out of four logs, there was a regularly occurring 15 minute gap consistently every 24 hours.
There seems to be no natural explanation why gaps like this should be observed, and the
analysis of the error events did not show any downtimes in the logging in the same magnitude
that these recurring gaps constitute. There could have occurred a problem at some step of
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the processing the data has gone through1.

Effect of event log gaps on statistical analysis
We can try to reason about the effect of the observed gaps on the measured statistics and
clustering results. Since the recurring 15 minute gaps accounted for the majority of all gaps
they are most interesting to study. The reasoning here will focus on the integrity of the
collected event sequences, since many of the statistics are counted per event sequence, and
the sequences also are important in the clustering. The assumption is here that we were
supposed to observe events during the gaps, but could not because of some problem with
the recording.

It seems reasonable to assume that the complete sequences we miss within such 15
minute gaps look more or less the same as the ones we see during the rest of each day,
and by missing them there should be no large effect on the measured statistics. Instead,
the sequences that are cut off (incomplete) because of the gaps could instead skew some
statistics, such as sequence duration. We could see in the basic results section (Figure 5.10)
that more than 97% of all analyzed sequences were shorter than 15 minutes. For a 15
minute long sequence to be cut of by one of these gaps, it will have to start somewhere in
the 15 minutes before the gap, i.e. a period of around 1% of a day 2.

Assuming sequence starting times are uniform during a day, a higher bound is then that
for 97% of all sequences, only at most 1% of them are cut off by a gap. Since most sequences
are much shorter than 15 minutes, it seems reasonable that less than 1% of all sequences
would have been cut off. Longer sequences have a higher risk of being cut off, but then
again there are fewer of them. All in all, the gaps should have little effect on the collected
statistics and the clustering. However, we could possibly expect that some sequences were
cut off in the clusters with long sequence duration, that otherwise would have been longer.

6.1.2 User coverage
We saw in Section 5.1.2 an analysis of how the sets of users seen in different log types
overlapped. The combination of log types that yielded the biggest overlapping user set was
quite varied between datasets. If you want to undertake studies that correlate different log
types for the same set of users, it is important that there is a high enough number of users
that appear in both logs. Statistics about these overlaps can indicate which overlaps are
big enough to study reliably. If there is a high interest in doing log correlation studies, it
could also be helpful to use this kind of statistic to evaluate choices about on which nodes
in the network logging is done, since it could be possible to end up with a larger user set
overlap between log type recordings, by adjusting the choices of which nodes in the radio
network to do logging on.

6.1.3 Data integrity
In Section 5.1.3, we saw some statistics about specific data integrity issues in the radio
network event logs. The RNC processing units in the Asia-A dataset tended to have a

1Possible reasons for this could be missing or corrupt binary raw data files, or some problem
in the tools used to process the data before applying the method described in this work

2If it would have started during the gap, we would miss the RRC Connection Request event,
and discard the whole sequence, and the effect is the same as if a complete sequence was missed
during a gap
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higher error rate than in the other datasets. At the same time we could observe that the
cause for such non-logging time in this dataset to a large extent was caused by file size limits
being overrun, an error trigger that was not seen in the other datasets. It is possible that
with the file issues aside, the error rates would have been comparable to the other datasets
studied.

On the whole, however, the effect of these issues should be quite low, since we saw that
at least 97% of the processing units were without issues around 99 % of the time.

6.2 Comparing the different datasets
From the basic statistics results presented in Section 5.2 we could note a number of clear
differences between the four datasets.

The Asia-B dataset is extreme in many respects. It has substantially much more ra-
dio network event sequences with long durations than the other datasets, and also more
sequences with a high number of events. Looking at specific event types we can see that
the distributions for Asia-B are especially ahead in HS-DSCH cell changes and channel
switches, fairly ahead in cell updates and not that much ahead in soft handovers. We could
also note that the differences were mainly in the upper quartile, while median value for
North America was similar and often slightly higher than for Asia-B.

Another statistic where Asia-B really differentiated itself from the other datasets was in
the traffic volume per user, with a median 50 times higher than any other dataset. One can
imagine different causes for this difference, such as user behavior, the kind of area covered
by the recording (urban/rural) or the behavior of the common applications used in this
area. In this thesis we will simply conclude that there is a significant difference, which
could be of value for someone who aims to further analyze these datasets.

We could see that more than 75% of users in Asia-B were using Android/iOS based
devices, while the corresponding numbers for the other datasets were between 25 and 50%.
The sophistication of these two operating systems as well as the large number of apps
available might explain the extreme statistics recorded for Asia-B to an extent. If the users
have more useful devices they might use them more and longer each time.

As mentioned, for North America we could note that the median was comparable or
higher to Asia-B for radio network sequence duration, length and number of channel switch
and cell updates per sequence. While having reasonably high median values, the sequence
duration for in the North America dataset was actually lower than for Asia-A and EU at
the 90th percentile.

Asia-A and EU appeared very similarly distributed for most statistics, and usually
had a lower distribution of values than NA and considerably lower than Asia-B. Notable
differences between Asia-A and EU are that Asia-A had twice as many sequences with
HS-DSCH cell changes than EU, and a higher median traffic volume per user.

Looking at the device fleets, we see that PCs had a much higher portion of the user
devices in Asia-A and EU (around 10%) than in the other datasets (less than 2%). The
PC category also managed to account for around 75% of the traffic volume in Asia-A and
EU, which instead was dominated by handheld devices in North America and Asia-B.

We could also note that EU had only a small fraction of iOS/Android devices (around
20%) and instead a much higher portion of devices with proprietary OSs (feature phones)
and Symbian based devices. These generally do not have as much functionality as An-
droid/iOS based devices. A point to consider is also that the Asia-A recording is from
2010, so that devices listed with iOS are to a larger extent older IPhone models than those
in the other datasets. Similarly, with Asia-B being the most recent recording, from 2013,
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an iOS and Android device OS label might imply newer phone models than in the other
datasets.

6.3 Cluster properties
The clusters found in the analysis of common radio network sequences all had distinguishing
properties. Most were distinguishable by the counts of the four events selected as features,
while some had similar counts but different sequence duration (the fifth raw feature). We
could see that the clusters with the lowest median sequence duration together contained
most of the sequences.

Some clusters were more unique than others. In Cluster 9 e.g., the median duration was
quite long, but compared to other clusters with a long median duration (clusters 8 and 10),
the number of events per sequence was significantly lower. Another aspect differentiating
Cluster 9 from 8 and 10 was that its sequences contained very few soft handovers and
HS-DSCH cell changes, but instead mostly just channel switches and cell updates.

Another fairly unique cluster was number 7, whose sequences contained a high number of
soft handover events compared to both Cluster 6 and 8 which had similar median duration.

On the opposite side of the spectrum there were two clusters that were very similar
in some respects: clusters 5 and 6. They had an almost identical distribution of sequence
duration, number of channel switches and number of cell updates, but differed in that cluster
5 had very few soft handovers and HS-DSCH cell changes.

6.4 Cluster distributions over datasets
As we could see in Figure 5.35, there were few clusters where there was a similar proportion
of each dataset. Only in Cluster 1 and 2 were there similar proportions. On the other
hand, considering the cluster sizes presented in Table 5.9, these clusters together cover 35%
of all sequences. In clusters 0, 3 and 4 the proportions are not substantially skewed, but
we cannot say that they are similar either. Using four datasets might not give us enough
evidence to clearly show the existence of universally occurring patterns in radio network
sequences, but from the data collected in this report, it seems Cluster 1 and 2 could be
candidates for universal patterns.

Cluster 1 can be characterized as having sequences with a duration around 1.5 seconds,
with three events, typically in the sequence: RRC connection request, IMSI registered at
RNC and IU Release. Cluster 2 is similar, but its sequences typically also contain a soft
handover event, usually just after the RRC connection request, and have a duration around
2 seconds.

If we instead consider clusters with a very skewed distribution over datasets we find
several interesting cases. North America is dominating both Cluster 5 and 6, with more
than half of all sequences in each. We also found a dense range of sequences with 25% of the
sequences in the North America dataset being around 10-15 s, which fits very well with the
duration distributions of clusters 5 and 6. We then have some fairly good pointers on how
sequences in this group look, with the typical events sequences being listed in Appendix B,
Table B.7 and B.8, or more visually by the example sequences in Figure 5.26.

We also found that clusters 8, 9 and 10 are dominated by Asia-B, having around 50%,
75% and 85% respectively of all the sequences in each of these clusters. This is not surprising
considering that these are the clusters with the highest median durations, and that Asia-B
had more sequences with long durations than the other datasets. Looking at the properties
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of these specific clusters however gives us a more detailed view on how these long sequences
look like. While clusters 8 and 10 have a fairly high number of all four key event types, the
sequences in Cluster 9 almost exclusively have channel switches and cell updates. It is also
interesting to note that the small concentration of sequences around 600 s of duration in
Asia-B observed in Figure 5.10 could be linked quite strongly to Cluster 9. This is especially
important since sequences of this duration also could have fit in quite well in both Cluster 8
and 10, but that we noticed that this specific group of sequences to a large extent ended up
in Cluster 9. Going from a small bump in a distribution from basic statistics we can from
the analysis of common sequences also find out significant properties of this concentration
of sequences, such as what events they mainly contain, which order the events tend to occur
in and what devices mainly are responsible for generating them.

6.5 Evaluation of clustering results
While we have found that the clusters had fairly different properties, these properties con-
cerned the cluster centers, and does not say much about if the sequences in a cluster lie
mostly close to the center, or if they are more uniformly distributed over the space we are
clustering in. In Section 5.3.1 the results of the Gap Statistic test were presented, which
compared the results from clustering on the actual data, to data meant to represent unclus-
terable, uniformly distributed data. The results showed that the highest gap for the error
between these two clustering scenarios occurred when using K = 11 clusters. However, as
the test is designed to only recommend a higher number of clusters to be used if there is
substantial evidence, the result of the full Gap Statistic procedure was to recommend K = 1
clusters, i.e. that the data should not be clustered.

This might seem like a discouraging result, but we should bear in mind that the test
is quite strict being designed, as the authors claim, to find “well-separated clusters” [12].
From the results found we can conclude that there is not strong evidence for the existence
of well-separated clusters in the data.

From the perspective of trying to compare differences between datasets it is not a strong
requirement that there are well-separated clusters in the data. The clustering gives us a
way to divide the multidimensional space that we have placed the sequences in into regions.
Recall that each point is assigned to the cluster with the nearest cluster center. If we instead
of the found cluster centers used 11 random points as cluster centers and used this to divide
up the sequences, this would still give us a somewhat meaningful model for comparing
similarities and differences of the datasets. The point of using clustering is to try to find a
more useful division of the space, by looking for natural groupings of similar sequences. The
Gap Statistic has therefore been used as guidance in finding a suitable number of clusters
to use (11) which results in somewhat well-separated clusters.

As we could see in the different perspectives presented of the clusters, but perhaps
most clearly in the visualization in Figure 5.26, we have found clusters with quite different
properties, which indicates that the clustering has been successful at some level. Of course
we can also start to reflect on if the distance measure that we ended up with accurately
reflects when sequences are similar and different. We should however be aware that there
can be several different sets of features that all generate results that are meaningful in their
own way. We can find an example of this in [16], which brings up a cluster scenario where
two different feature sets generate two different meaningful clusterings. The scenario was to
cluster animals by their attributes, and when using a certain set of attributes as features the
clustering managed to group mammals separately from birds, while another set of attributes
(features) led to seeing the separation between predators and non-predators instead.
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In our case we could imagine picking different features or doing other transforms that
affect how we value these features. The selection of features here focused on the occurrences
of four key events. It is easy to instead study other types of events, and perhaps even split
up events into different categories, e.g. a channel switch into an event type for switching
to a HS channel and another type for the other channels. Another option would be to use
rates of event occurrences per time unit, instead of the counts of events per sequence that
was used in this work. This might yield very different results, but care has to be taken if
you also use duration and the total number of events per sequence as features, since the
features then become correlated in ways that can be hard to reason about.

As a reflection on the distance measure used we can consider clusters 5 and 6. We
saw that they were similar in many respects, but cluster 6 had more soft handovers and
HS-DSCH cell changes. Depending on your point of view this difference might be important
or insignificant, which highlights the possibility to adapt the method to specific purposes
by changing the sequence similarity definition.

6.6 Contributions of the used method
The datasets used in this report and other similar datasets are already being studied from
different angles at Ericsson. While the basic statistic analysis in this thesis project does not
apply any novel techniques for this part, one of the results of the project is a set of reusable
scripts that can extract a repeatable set of statistics between datasets of the type studied,
producing a report that presents a comparative view of the dataset statistics.

Another valuable part of this project has been to extract dataset metadata, that de-
scribes the dataset in terms of time span, coverage and data integrity. We earlier concluded
that the effect of the gaps and event log errors was not very significant in the studied
datasets, which is important when considering the reliability of the statistical analysis that
has been done. The user set overlap analysis provides pointers to which kind of log corre-
lation studies can be undertaken with a solid coverage in the data. The dataset metadata
can also be valuable as feedback into the data collection loop, to follow up problems with
specific recordings.

The key novel contribution of this work is however the analysis of common radio network
event sequences through clustering. Through this work we get an idea of what groups of
similar sequences exist in the data, across the different datasets. The cluster example
sequence plot in Figure 5.26 provides a novel way of visualizing radio network events, which
highlights the differences of the found clusters.

Studying the clusters found by the method allows us to explore differences indicated
by the basic statistics in more detail. We found e.g. that the Asia-B dataset tends to
have radio network event sequences of longer duration than the other datasets. As we could
expect, we then saw that the clusters with a high median sequence duration were dominated
by Asia-B. Being able to look at specific properties for these clusters, however, provides a
much more detailed view of this difference from the datasets. We can now find what event
patterns are common among the sequences with long duration, and also subdivide them into
groups with different properties. Cluster 9 e.g. had very few soft handovers and HS-DSCH
cell changes compared to clusters 8 and 10.

A slightly unexpected result was the opportunity to link unique phenomena discovered
among the basic statistics to specific clusters. We could see that the North America dataset
had a large concentration of sequences with durations around 10-15 seconds, which we could
then link fairly well to clusters 5 and 6. This link allows us to connect the cluster properties
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to this concentration, such as concluding that its sequences most likely have one of the event
patterns listed in Appendix B, Table B.7 and B.8.

The link found between a small concentration of sequences in the Asia-B dataset with
a duration around 600 seconds, to Cluster 9 is of specific interest. There are three clusters
that have a significant amount sequences with this duration, but we could uniquely deter-
mine that the concentration found ended up in Cluster 9. As mentioned earlier, Cluster
9 had sequences with a unique event composition compared to clusters 8 and 10, so this
concentration of sequences has both a fairly specific event composition and duration.

It is perhaps not surprising that concentrations of some values seen in the basic statistics
end up in one cluster. After all, the clustering is supposed to group similar sequences with
each other.
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Conclusions

7.1 Key findings
Four datasets were analyzed both in terms of basic statistics and which groupings of common
radio network event sequences could be found through clustering.

When comparing the basic statistics of the studied datasets, some clear differences were
discovered. The most recent dataset, Asia-B from 2013, was found to have radio network
event sequences with markedly longer durations than the other datasets. We could also
see that the median traffic volume per user was 50 times higher than in any of the other
datasets. We can speculate if it could be usage patterns of the users, the behavior of the type
of devices used in this network or possibly patterns from how certain popular applications
communicate that account for these differences. We could note that the Asia-B dataset had
a high portion of devices with Android and iOS operating system compared to the other
datasets, which could account for some of the differences.

From the basic statistics we could also note that the Asia-A (from 2010) and EU (from
2012) datasets tended to have similar distributions for most of the measured statistics.
Compared to the Asia-B dataset they had less extreme values, e.g. having more radio
network event sequences with short durations and much smaller traffic volume per user.
The North America dataset (from 2012) tended to have distributions in between EU/Asia-
A and Asia-B, although for some statistics the distribution was very similar to the one in
Asia-B up to the median.

The analysis of common radio network event sequences through clustering managed
to find clusters with distinguishing features. The Gap Statistic was used as guidance to
choose to use K = 11 clusters, since the difference in error when clustering on the given
data compared to a reference distribution of “unclusterable” data was the highest when
using 11 clusters. The specific recommendation of the Gap Statistic method, however, was
to use K = 1 clusters, which is taken to mean that no strong evidence was found for the
existence of well-separated clusters in the data.

The found clusters and their properties proved a useful tool in further exploring dif-
ferences indicated by the basics statistics. The Asia-B dataset was found to dominate the
clusters with long sequence durations, which could be expected since the longer durations
were indicated by the basic statistics. By studying the properties of these clusters we could
further characterize the long sequences that were most common in the Asia-B dataset. Here
we saw that the long sequences not just were divided up into clusters based on how long
they were, but also based on the occurrence count of specific events. Cluster 9 represented
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long sequences with very few soft handovers and HS-DSCH cell changes.
A specifically interesting link was found between a small concentration of sequences

with durations around 600 seconds in Asia-B and Cluster 9. The clear majority of these
sequences ended up in Cluster 9, which as mentioned was unique in its lack of soft handovers
and HS-DSCH cell changes.

The collection of dataset metadata has provided a means to judge the data integrity
of a dataset and give pointers to what potential log correlation studies can be undertaken.
This kind of data is important for a potential future analyst to decide of a dataset is at a
basic level suitable for a particular study.

In conclusion, the work in this thesis project allowed key differences between the studied
datasets to be discovered from the basic statistics, and then be further explored by consid-
ering how the radio network event sequences from the datasets were distributed over the
found clusters and what properties these clusters had.

7.2 Future studies
The work done in this thesis project introduces some new ways to approach the existing
datasets, but one can imagine several ways to further develop these ideas.

7.2.1 Dealing with many plots
The plots presented in this report are a subset of the plots generated by the tool developed
as a part of the project. Even when just considering the plots that are included in the
report it is hard to get a good overview of the properties of the different datasets. While
the cumulative distribution function plots for multiple datasets allow for easy comparison
on a particular statistic, during the course of this work it was found that you often want to
view and link several plots together at the same time.

It would be helpful to have a tool for interactively exploring plots that are linked to-
gether. One can imagine an interface where you can interactively hide or show distributions
in a plot, such as the radio network event sequence duration for both datasets and clusters.

Another useful piece of functionality would be to have more automatic follow up on
features in the basic statistics when looking at cluster properties. You could for example
be able to mark a certain range for a statistic, say sequences with duration 10-20 seconds,
and then get a distribution for the sequences in this range over the clusters. This would
greatly simplify the process of linking features from the basic statistics to clusters.

A different approach to the problem of having to go through many plots to get an idea
of the similarities and differences of the studied datasets would be to try to define some
standardized criteria that you can judge datasets by, such as user mobility, HS channel
usage, smartphone penetration, etc., perhaps by aggregating several statistics.

7.2.2 Possible adjustments to the clustering method
The distance measure used by the clustering method is a result of the choice of the five
features, the specific normalization and transformation methods and usage of the Euclidean
distance measure. One can easily imagine many other features and possible transforms.
Experts trying to use the clustering results to compare datasets based on the dataset se-
quence distribution over the resulting clusters should perhaps also try to reflect on if the
distance measure used fits with their idea of when two sequences are similar and different.
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The aim of this thesis project was to use a fairly general similarity measure that was not
too complex. If you have a more specific purpose there are good possibilities to tailor the
distance metric to another idea of similarity.

One can try to find more information about each sequence that could either be used as
a feature or just simply when analyzing cluster properties. You could also skip clustering
altogether and instead focus on which variables are correlated and try to speculate in
causality. Does e.g. a high smartphone penetration imply long durations for radio network
event sequences?

There are also several other different entities that you can try to cluster in these datasets.
You could try to cluster users based on their usage patterns (possibly simply by considering
their sequences), or define event sequences in other log types, such as the packet header
logs.

In this thesis project theK-means clustering algorithm was used, but there are numerous
other clustering methods that have other properties. Density based clustering methods such
as DBSCAN do not have the same limitations of the cluster geometry as K-means methods
[16]. It could be interesting to experiment with such methods to see if similar clusters are
found.

In order to get more universally valid results with the method used in this project it
would be interesting to try to use more datasets. Then you have more evidence to support
claims about global sequence patterns. Having more cases can also make it easier to discover
if some abnormality in a dataset is related to another of the studied variables or is a quirk
with a particular dataset. In our case, e.g. North America was the dataset having most
users with Android devices, and it was dominating two clusters of sequences. It is here
difficult to determine if features of the sequences in these clusters are caused by Android
properties, or something specific to the dataset, such as hardware configuration, network
node geography or user patterns.
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Appendix A

User sampling

Distribution comparision for different user sampling fractions on the NA1 dataset.

Table A.1: Comparison of percentiles for sequence length at
different user fractions

Distribution percentiles

User fraction 10% 20% 30% 40% 50% 60% 70% 80% 90%

100 % 3.000 3.000 4.000 4.000 4.000 5.000 6.000 7.000 9.000
10 % 3.000 3.000 4.000 4.000 4.000 5.000 6.000 7.000 9.000
1 % 3.000 3.000 4.000 4.000 4.000 5.000 6.000 7.000 9.000

Table A.2: Comparison of percentiles for sequence duration at
different user fractions

Distribution percentiles

User fraction 10% 20% 30% 40% 50% 60% 70% 80% 90%

100 % 0.830 1.410 1.862 2.614 5.486 7.973 9.692 19.994 28.180
10 % 0.833 1.420 1.885 2.632 5.593 7.994 9.829 20.495 28.136
1 % 0.811 1.409 1.867 2.605 5.525 8.000 9.865 20.291 28.370
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Table A.3: Comparison of percentiles for number of channel
switches per sequence at different user fractions

Distribution percentiles

User fraction 10% 20% 30% 40% 50% 60% 70% 80% 90%

100 % 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.000
10 % 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.000
1 % 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.000

Table A.4: Comparison of percentiles for number of soft han-
dovers per sequence at different user fractions

Distribution percentiles

User fraction 10% 20% 30% 40% 50% 60% 70% 80% 90%

100 % 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 2.000
10 % 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 2.000
1 % 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 2.000

Table A.5: Comparison of percentiles for number of cell up-
dates per sequence at different user fractions

Distribution percentiles

User fraction 10% 20% 30% 40% 50% 60% 70% 80% 90%

100 % 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
10 % 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
1 % 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

Table A.6: Comparison of percentiles for number of HS-DSCH
cell changes per sequence at different user fractions

Distribution percentiles

User fraction 10% 20% 30% 40% 50% 60% 70% 80% 90%

100 % 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 % 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 % 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Appendix B

Top event patterns for clusters

The short labels used to identify event types in this section are presented in Table B.1. The
top three event patterns in clusters 0-10 are presented in Tables B.2 - B.12.

Table B.1: Short labels for event type

Event type Short label

RRC connection request RRC
IMSI registered at RNC REG
IU Release IUR
Soft handover SHO
Channel Switch CSW
HS-DSCH cell change HCC
RAB establishment RAB
Cell update CUP

Table B.2: Top sequences in Cluster 0

Rank Fraction Count Events

1 1.000 85298 [RRC]
2 0.000 1 [RRC, HCC]

Total 1.000 85299
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Table B.3: Top 3 sequences in Cluster 1

Rank Fraction Count Events

1 0.460 383097 [RRC, REG, IUR]
2 0.153 127019 [RRC, IUR, REG]
3 0.083 69102 [RRC, REG, REG, IUR, IUR]

Total 0.696 579218

Table B.4: Top 3 sequences in Cluster 2

Rank Fraction Count Events

1 0.187 76426 [RRC, SHO, REG, IUR]
2 0.104 42664 [RRC, REG, SHO, IUR]
3 0.078 31862 [RRC, REG, REG, IUR, SHO, IUR]

Total 0.369 150952

Table B.5: Top 3 sequences in Cluster 3

Rank Fraction Count Events

1 0.055 13844 [RRC, REG, RAB, SHO, SHO, IUR]
2 0.050 12534 [RRC, SHO, REG, RAB, SHO, IUR]
3 0.048 12151 [RRC, SHO, SHO, REG, IUR]

Total 0.153 38529

Table B.6: Top 3 sequences in Cluster 4

Rank Fraction Count Events

1 0.791 607667 [RRC, REG, RAB, IUR]
2 0.105 80864 [RRC, REG, RAB, CSW, IUR]
3 0.026 20254 [RRC, RAB, IUR]

Total 0.922 708785

Table B.7: Top 3 sequences in Cluster 5

Rank Fraction Count Events

1 0.309 102359 [RRC, REG, RAB, SHO, IUR]
2 0.136 45052 [RRC, SHO, REG, RAB, IUR]
3 0.086 28317 [RRC, REG, RAB, SHO, SHO, IUR]

Total 0.531 175728
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Table B.8: Top 3 sequences in Cluster 6

Rank Fraction Count Events

1 0.385 316535 [RRC, REG, RAB, CUP, CSW, IUR, CSW]
2 0.174 143000 [RRC, REG, RAB, CUP, CSW, IUR]
3 0.079 65087 [RRC, REG, RAB, SHO, CUP, CSW, IUR, CSW]

Total 0.638 524622

Table B.9: Top 3 sequences in Cluster 7

Rank Fraction Count Events

1 0.086 20133 [RRC, REG, RAB, SHO, SHO, CUP, CSW, IUR, CSW]
2 0.027 6368 [RRC, SHO, REG, RAB, SHO, CUP, CSW, IUR, CSW]
3 0.025 5901 [RRC, REG, RAB, SHO, SHO, CUP, CSW, IUR]

Total 0.138 32402

Table B.10: Top 3 sequences in Cluster 8

Rank Fraction Count Events

1 0.040 3751 [RRC, REG, RAB, SHO, SHO, SHO, SHO, IUR]
2 0.028 2658 [RRC, REG, RAB, SHO, SHO, SHO, SHO, SHO, SHO, IUR]
3 0.025 2293 [RRC, REG, RAB, SHO, SHO, SHO, SHO, SHO, IUR]

Total 0.093 8702

Table B.11: Top 3 sequences in Cluster 9

Rank Fraction Count Events

1 0.109 13242 [RRC, REG, RAB, CUP, CSW, CSW, IUR, CUP, CSW]
2 0.045 5466 [RRC, REG, RAB, CUP, CSW, CSW, CUP, CSW, CSW, CUP, CSW, IUR, CSW]
3 0.024 2940 [RRC, REG, RAB, CUP, CSW, CSW, CUP, CSW, CSW, IUR, CUP, CSW]

Total 0.178 21648

Table B.12: Top 3 sequences in Cluster 10

Rank Fraction Count Events

1 0.013 646 [RRC, REG, RAB, CUP, CSW, CSW, CUP, CSW, CSW, CUP, CSW, CSW, ...]
2 0.001 49 [RRC, REG, RAB, SHO, SHO, CUP, CSW, CSW, CUP, CSW, CSW, CUP, ...]
3 0.001 41 [RRC, REG, RAB, SHO, CUP, CSW, CSW, CUP, CSW, CSW, CUP, CSW, ...]

Total 0.015 736
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Additional extracted metrics

This is an extension of the list in Section 4.4.2. These are the additional metrics that are
also collected by the extraction tool but were not addressed in this report.

The metrics marked with † are extracted as category counts, while the others are ex-
tracted as distributions as described earlier in this section. Wherever EVENT-TYPE is
mentioned below it indicates that the metric is recorded separately for each key event listed
below. The events were chosen to both cover changes to the communication state and
mobility updates (see Section 2.1.2-2.1.3):

• Channel switch

• Soft handover

• Cell update

• HS-DSCH cell change

Similarly, metrics with CHANNEL-TYPE are repeated for the following downlink channels:

• 16 kbps

• 64 kbps

• 128 kbps

• 384 kbps

• HS-DSCH

In the same manner we also have TRAFFIC-DIRECTION being replaced by, respectively:

• Uplink

• Downlink

• Total (Uplink + Downlink) 1

The additional metrics by log type:

• Event logs

– EVENT-TYPE event frequency: Counts key events per minute within
radio network event sequences.

1The total for some metrics was also already included in Section 4.4.2
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– Duration in CHANNEL-TYPE downlink channel per sequence: Cap-
tures how much different downlink channel types are used in each sequence.

– User connection frequency: This is measured as number of started radio
network event sequence per user per 24 h, and can indicated any imbalances,
e.g. that a small number of users is responsible for most data connections.

– Frequency of EVENT-TYPE per user: This is measured as events of the
given type for a user per minute during the active time for that user, i.e. the
time the user has an active data connection.

• Summary logs

– Summary activity traffic volume in TRAFFIC-DIRECTION : Mea-
sures the number of bytes communicated during a summary activity. This can
indicate different usage patterns that might be caused by user behavior or the
kind of application being used.

– Traffic volume per user in TRAFFIC-DIRECTION : The total amount
of bytes sent or received by a user during the measurement period.

– Functionality by traffic volume in TRAFFIC-DIRECTION (†): A
catergory count of the total amount of bytes sent or received added up for
different device OS’s. Could be e.g. Android, iOS, Symbian or Blackberry.

– Device types by traffic volume in TRAFFIC-DIRECTION (†): A
category count of the total amount of bytes sent or received added up for dif-
ferent device types. Device type is one of HANDHELD, M2M, PC, ROUTER
or TABLET.

– Device OS by traffic volume in TRAFFIC-DIRECTION (†): A cate-
gory count of the total amount of bytes sent or received added up for different
device OS’s. Could be e.g. Android, iOS, Symbian or Blackberry.

– Social networking providers by traffic volume in TRAFFIC-DIRECTION
(†): A catergory count of the total amount of bytes sent or received in activi-
ties where the functionality is social-networking, added up for different service
providers. Could be e.g. Facebook or Twitter.

– Video providers by traffic volume in TRAFFIC-DIRECTION (†): A
catergory count of the total amount of bytes sent or received in activities where
the functionality is video, added up for different service providers. Could be e.g.
YouTube or Netflix.

– Protocol by traffic volume in TRAFFIC-DIRECTION (†): A cate-
gory count of the total amount of bytes sent or received added up for different
protocols. Could be e.g. HTTP, BitTorrent or POP3.

• Flow logs

– Flow data volume in TRAFFIC-DIRECTION : The number of bytes sent
in the given direction during a flow.

– Traffic volume per user in TRAFFIC-DIRECTION : The total amount
of bytes sent or received by a user during the measurement period.

– Functionality by traffic volume in TRAFFIC-DIRECTION (†): A
catergory count of the total amount of bytes sent or received added up for
different device OS’s. Could be e.g. Android, iOS, Symbian or Blackberry.
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– Device types by traffic volume in TRAFFIC-DIRECTION (†): A
category count of the total amount of bytes sent or received added up for dif-
ferent device types. Device type is one of HANDHELD, M2M, PC, ROUTER
or TABLET.

– Device OS by traffic volume in TRAFFIC-DIRECTION (†): A cate-
gory count of the total amount of bytes sent or received added up for different
device OS’s. Could be e.g. Android, iOS, Symbian or Blackberry.

– Social networking providers by traffic volume in TRAFFIC-DIRECTION
(†): A catergory count of the total amount of bytes sent or received in activi-
ties where the functionality is social-networking, added up for different service
providers. Could be e.g. Facebook or Twitter.

– Video providers by traffic volume in TRAFFIC-DIRECTION (†): A
catergory count of the total amount of bytes sent or received in activities where
the functionality is video, added up for different service providers. Could be e.g.
YouTube or Netflix.

– Protocol by traffic volume in TRAFFIC-DIRECTION (†): A cate-
gory count of the total amount of bytes sent or received added up for different
protocols. Could be e.g. HTTP, BitTorrent or POP3.

• Packet header logs

– Traffic volume per user: The total amount of bytes sent or received by a
user during the measurement period.

– Device types by traffic volume (†): A category count of the total amount
of bytes sent or received added up for different device types. Device type is one
of HANDHELD, M2M, PC, ROUTER or TABLET.

– Device OS by traffic volume (†): A category count of the total amount of
bytes sent or received added up for different device OS’s. Could be e.g. Android,
iOS, Symbian or Blackberry.

– Social networking providers by traffic volume (†): A catergory count of
the total amount of bytes sent or received in activities where the functionality
is social-networking, added up for different service providers. Could be e.g.
Facebook or Twitter.

– Video providers by traffic volume (†): A catergory count of the total
amount of bytes sent or received in activities where the functionality is video,
added up for different service providers. Could be e.g. YouTube or Netflix.

– Protocol by traffic volume (†): A category count of the total amount of
bytes sent or received added up for different protocols. Could be e.g. HTTP,
BitTorrent or POP3.
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User set overlap details

This appendix provides more detailed results related to the overlaps between the sets of
users observed in the different log types of each dataset. See Section 5.1.2.

Tables D.1-D.4 present information about the size of the user sets, and the pairwise
overlap between log types. In these tables, for rows with two log types listed, the Size
column refers to the number of users appearing in both of these log types in the recording.

Table D.1: Overview of user set sizes and pair-wise overlaps
between different log types (Asia-A)

Log types Size All % Event % Flow % Summary % PDP %

All 1269428 100% - - - -

Event 1233505 97.17% 100.00% - - -
Flow 254869 20.08% - 100.00% - -
Summary 130577 10.29% - - 100.00% -
PDP 254911 20.08% - - - 100.00%

Event, Flow 218988 17.25% 17.75% 85.92% - -
Event, Summary 110398 8.70% 8.95% - 84.55% -
Event, PDP 218988 17.25% 17.75% - - 85.91%
Flow, Summary 130575 10.29% - 51.23% 100.00% -
Flow, PDP 254869 20.08% - 100.00% - 99.98%
Summary, PDP 130575 10.29% - - 100.00% 51.22%
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Table D.2: Overview of user set sizes and pair-wise overlaps
between different logtypes (EU)

Logtypes Size All % Event % Flow % Summary % PDP % Packet %

All 838457 100% - - - - -

Event 447092 53.32% 100.00% - - - -
Flow 524406 62.54% - 100.00% - - -
Summary 525237 62.64% - - 100.00% - -
PDP 658732 78.56% - - - 100.00% -
Packet 137159 16.36% - - - - 100.00%

Event, Flow 231092 27.56% 51.69% 44.07% - - -
Event, Summary 231301 27.59% 51.73% - 44.04% - -
Event, PDP 269359 32.13% 60.25% - - 40.89% -
Event, Packet 80644 9.62% 18.04% - - - 58.80%
Flow, Summary 524406 62.54% - 100.00% 99.84% - -
Flow, PDP 521604 62.21% - 99.47% - 79.18% -
Flow, Packet 137157 16.36% - 26.15% - - 100.00%
Summary, PDP 522214 62.28% - - 99.42% 79.28% -
Summary, Packet 137158 16.36% - - 26.11% - 100.00%
PDP, Packet 137024 16.34% - - - 20.80% 99.90%

Table D.3: Overview of user set sizes and pair-wise overlaps
between different logtypes (North America)

Logtypes Size All % Event % Flow % Summary % PDP % Packet %

All 1925920 100% - - - - -

Event 376770 19.56% 100.00% - - - -
Flow 192623 10.00% - 100.00% - - -
Summary 192618 10.00% - - 100.00% - -
PDP 1866701 96.93% - - - 100.00% -
Packet 80981 4.20% - - - - 100.00%

Event, Flow 35629 1.85% 9.46% 18.50% - - -
Event, Summary 35633 1.85% 9.46% - 18.50% - -
Event, PDP 318969 16.56% 84.66% - - 17.09% -
Event, Packet 18608 0.97% 4.94% - - - 22.98%
Flow, Summary 192603 10.00% - 99.99% 99.99% - -
Flow, PDP 190953 9.91% - 99.13% - 10.23% -
Flow, Packet 80611 4.19% - 41.85% - - 99.54%
Summary, PDP 190948 9.91% - - 99.13% 10.23% -
Summary, Packet 80611 4.19% - - 41.85% - 99.54%
PDP, Packet 79754 4.14% - - - 4.27% 98.48%
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Table D.4: Overview of user set sizes and pair-wise overlaps
between different logtypes (Asia-B)

Logtypes Size All % Event % Summary % PDP % Packet %

All 1331244 100% - - - -

Event 862491 64.79% 100.00% - - -
Summary 255928 19.22% - 100.00% - -
PDP 1198738 90.05% - - 100.00% -
Packet 157161 11.81% - - - 100.00%

Event, Summary 180779 13.58% 20.96% 70.64% - -
Event, PDP 729986 54.83% 84.64% - 60.90% -
Event, Packet 117078 8.79% 13.57% - - 74.50%
Summary, PDP 255927 19.22% - 100.00% 21.35% -
Summary, Packet 157161 11.81% - 61.41% - 100.00%
PDP, Packet 157161 11.81% - - 13.11% 100.00%
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