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Abstract

Most of fully-autonomous vehicles are equipped with GPS devices in
order to keep track of their exact location while driving towards any
target destination. However, it is widely known that GPS systems are
likely to fail under certain conditions, e.g., in long tunnels or during
very bad weather conditions. In this master thesis work we present
an Extended Kalman filter (EKF) framework for dead-reckoning in au-
tonomous trucks equipped with a CPU, a gyroscope and four simulated
sensors: a GPS, a magnetometer and two rotary encoders for velocity.
The EKF will fuse the sensors measurements with a prediction that uses
the kinematic model of a non-holonomic vehicle. In order to improve the
estimation of the yaw angular position when a GPS outage is reported
a new calibration method based on the rotation matrix is applied. This
method is proven to effectively decrease the error while driving in GPS
denied environments.

The tests are performed in a real-time embedded system, NI myRIO,
that runs on-board of a 1:14 scaled Scania truck. The performance
results confirm the correctness of our framework under short-term GPS
outages, during many driving loops. Additionally, during long-term
outages the estimation works pretty well for one loop and it has a good
performance for multiple loops due to the unavoidable sensor drifting.



Referat

De flesta av fullt autonoma fordon &r utrustade med GPS-enheter for
att halla reda pa sin exakta position nidr man koér mot ett mal destina-
tion. Det ar dock allmént kédnt att GPS-system kommer sannolikt att
misslyckas pa vissa villkor, till exempel, under langa tunnlar eller under
mycket svara viderforhallanden. I detta examensarbete presenteras ett
Extended Kalman filter (EKF) ramverk for dead-reckoning i autono-
ma lastbilar utrustade med ett gyroskop och fyra simulerade sensorer:
en GPS, en magnetometer och tva roterande pulsgivare for hastighet.
EKF:n kommer sidkring sensorerna métningar med en forutsigelse som
anvinder den kinematiska modellen av ett icke-holonomiskt fordon. For
att forbattra uppskattningen av gir vinkelposition ndr en GPS-avbrott
rapporteras testade vi en ny kalibreringsmetod baserad pa rotationsma-
trisen. Denna metod har visat sig att effektivt minska fel vid koérning i
GPS fornekade miljoer.

Testerna utfors i en realtid inbyggda system, NI myRIO, som gar
ombord pa en 1:14 skalade Scanialastbil. Prestanda resultat bekréf-
tar riktigheten av vara ramverk under kortfristiga GPS avbrott, under
méanga driv loopar. Dessutom, vid langtidsavbrottuppskattningen fun-
gerar ganska bra for en slinga och har en bra prestanda for flera slingor
pa grund av den oundvikliga sensorn drifting.



Resumen

La mayoria de los vehiculos completamente auténomos estan equipados
con GPS para poder tener informacién de la posicién exacta del vehiculo
mientras se viaja a algin lugar de destino. Sin embargo, es ampliamente
conocido que los GPS son propensos a fallar bajo ciertas condiciones,
por ejemplo, dentro de tineles largos o durante malas condiciones me-
teoroldgicas. En este trabajo de tesis de maestria se presenta un Filtro
de Kalman Extendido (EKF por sus siglas en inglés) como base para la
estimacién de posicién de camiones auténomos equipados con un CPU,
un giréscopo y cuatro sensores simulados: un GPS, un magnetémetro y
dos codificadores rotativos de velocidad. El EKF fusionara las medicio-
nes de los sensores con una prediccion que utiliza el modelo cinematico
de un vehiculo no holonémico. Con el fin de mejorar la estimacion de
la posicién angular de derrape, en carencia de la senial del GPS, se apli-
ca un nuevo método de calibraciéon basado en la matriz de rotacién.
Este método ha demostrado reducir efectivamente el error mientras se
conduce entornos carentes de sefial de GPS.

Las pruebas se realizan en un sistema embebido de tiempo real,
NI MyRIO, que corre a bordo de un camién a escala 1:14 de Scania.
Los resultados de desempenio confirman la exactitud de nuestro enfoque
durante fallas de senal de GPS a corto plazo. Adicionalmente, durante
interrupciones en el servicio de GPS a largo plazo, la estimacion funciona
muy bien para una vuelta y sélo bien para miltiples vueltas, debido a
que las mediciones del giréscopo inevitable se desvian con el tiempo.
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Chapter 1

Introduction

Several thousands years ago humans started using the horse to move to their
destinations; this was probably one of the first means of transportation in human
history. Afterwards, the invention of the horse-drawn carriages brought comfort and
increased safety to the travellers; it also meant the creation of the first vehicles in
human history. Although they were safe enough, humans could not reach effectively
their destination in terms of time. At least several thousands of years passed since
the first horses were ridden for first time until the first modern car was built in
1886. In contrast to horse-drawn carriages these vehicles could be very harmful to
humans.

During the following centuries the cars evolved from slow, heavy and inefficient
to lighter, faster and highly efficient machines. Although safety has been a priority
in the design of vehicles, accidents keep occurring; most of these accidents are caused
either by human error or by problems in the vehicle manufacture. A solution to
decrease the millions of deaths per year is what our technology-based world is asking
for and hence safety has become one of the biggest challenges in the automotive
industry. The answer to this huge problem is in the development of more intelligent
transport solutions.

1.1. Autonomous vehicles

The idea of having vehicles or including innovative features in these that can
decrease the number of accidents has been in the mind of researchers during the
past century. An autonomous vehicle (AV), or self-driving vehicle, can be defined
as a vehicle that partially or fully drives itself and which may ultimately require
no driver at all [3]. Taking the horse-drawn carriages as reference, we can say that
they are autonomous vehicle depending on the amount of control that the driver
has upon it. For instance, if we are commanding continuously the movement of the
horse, e.g., either by squeezing the horse with your calves or pulling the reins to
some direction, then we are driving a non-automated vehicle. On the other hand,
if the user is just sitting and waiting for the horse to move freely during a certain
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time period then we are talking about an autonomous vehicle.

Naturally, there are vast differences between a fully autonomous vehicle and
a vehicle that only has few autonomous features or no autonomy at all. In the
following section, we explain the five different levels of vehicle autonomy created by
the National Highway Traffic Safety Administration (NHTSA) [3]; the purpose is
to define the terminology to be followed during this project.

1.1.1. Classification

It is important to notice that cars can be classified in different levels of autonomy.
Every level is defined depending on the amount of control that the human has over
the primary vehicle functions, i.e., brake, steering and throttle. The classification
starts by the vehicles fully controlled by humans; followed by autonomous vehicles
that require from partial to almost no interaction while driving; and finally, those
self-driving vehicles with no human control inputs, fully-autonomous vehicles. Every
hierarchy is explained in detail below:

s Level 0 (No automation): The user is in total control of the car primary
functions as well as ensuring safe driving by continuously monitoring the status
of the vehicle and its environment.

» Level 1 (function-specific automation): Although the driver keeps control of
the vehicle as in level 0, some functions can be selected as additional safety
features. In this level we find features that can automatically assume limited
authority over a primary control, such as in autonomous cruise control (ACC)
or under emergency situations such as in dynamic brake control (DBC). One
or more functions can work at the same time, but they work independently
from each other.

» Level 2 (combined-function automation): The driver is still responsible to
monitor the safe operation in the driving environment. In this level at least
two functions of level 1 work simultaneously. The driver has to be available
for interaction at every time, because the system might relinquish the control
with no warning.

» Level 3 (limited self-driving automation): Safety-critical functions are enabled
at this level. These functions work for specific driving situations, depending
on the traffic or environmental conditions. The driver has to be available
for sporadic control of the vehicle but the safety relies mostly on the vehicle
functions.

» Level 4 (full self-driving automation): The user has to provide a target des-
tination and the vehicle will perform the whole trajectory with no need of
user interaction. Therefore, the vehicle can be either occupied or not. At this
level, safe operation rests solely on the automated vehicle system.
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Historically all modern vehicles were located at level 0 at the beginning. At the
time technology did not permit the manufacturers to design any sort of autonomous
features for the vehicles. However, the need for better safety and some additional
comfort led the investors to believe in the autonomous vehicles market. The history
of how the vehicles passed from the level 0 to the level 4 is briefly presented in the
following section.

1.1.2. History

During the middle of the 20th century engineers started to create ideas in order
to add some autonomy to the cars. It was not until 1977 that the first real attempt
to create a self-driving vehicle. It was a project research carried out by Tsukuba
Mechanical Engineering Laboratory in Japan. With the help of some hardware the
car followed white street markers while reaching speeds up to 30 km/h [2]. After this
first trial different techniques have been used in the development of autonomous cars.
These techniques have varied widely depending on the sensors that the developers
have been able to use in the car. As technologies improve, the quality and precision
of the sensors used in cars have increased to a large extent, while the size and weigh
decreases. This can be translated to lower prices for massive production and a
better acceptance in the market. However, the prices were still too high to fulfil
the market’s needs and autonomous driving was seen as something not feasible.
Initially, the processing power of the vehicles’ computers became a big challenge,
but after the introduction of microprocessors this problem, as well as the problem
of size and weight, were almost solved.

A huge turn was made when vision approaches were introduced in the research
of autonomous systems. In 1980 a Mercedes-Benz robot van was designed by Ernst
Dickmanns and his team at the University of Munich. This car achieved 100 km/h
guided by vision in traffic-less roads. In 1995 Dickmanns drove a S-class Mercedes-
Benz from Munich to Copenhagen and back. This used saccadic computer vision
and transputers to react in real-time during the 1600 kilometres; with speeds up
to 175 km/h and up to 178 km with no human intervention. This resulted in 95%
autonomous driving. In the meanwhile, the DARPA-funded Autonomous Land
Vehicle (ALV) in the United States designed successfully the first-road follower
that used laser radars, reaching up to 30 km/h [2].

As a matter of fact, vision-based techniques are currently the most interesting
and reliable techniques to be used in order to drive a car autonomously. During
the last decade they have become very popular in the largest and most famous
research groups in the autonomous vehicles industry. One of the uses of vision is to
detect features as feedback data that can provide useful information to intelligent
system in order to make online decisions regarding the trajectory to follow during
driving. After analysing the current status of the system and the possible trajectory
to follow, the control commands would be ready to be sent; these commands are
commonly the throttle and the steering wheel angular position.

In 1996, Alberto Broggi of the University of Parma launched the ARGO Project,
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where a modified vehicle was designed to follow the painted lane marks in an un-
modified highway. The result was 1900 km in over six days on the motorways of
northern Italy, average speed of 90 km/h. The car operated in fully automatic
mode during 94% of the whole journey; the longest automatic stretch was 55 km.
The vehicle was composed of only two black-and-white video cameras of low cost
on board. The data of the camera was used in stereoscopic vision algorithms to
analyse the driving environment [2].

Currently, we know that the driver is better than any autonomous system. AV
development is not just the trajectories that the cars have to take, it also covers
the interaction with the environment such as streets, weather, city laws and other
drivers. All these factors affect the application of these projects but researchers and
engineers are working very hard to overcome these barriers. The common goal of
AV research besides coping with these factors is to reach high performance in each
feature of the autonomous vehicle in order to provide safe, low-cost and intelligent
solutions. The goal is to develop vehicles that eliminate those risk factors that are
currently affecting the drivers. Some sectors have been promoting competitions in
order to evaluate the idea of AV and they have resulted in excellent feedback for
researchers.

Competitions

The funded projects in the United States of America, Demo I, IT and III, accu-
mulated information of many kilometres of self-driving in off-road environments that
included all sort of obstacles. One of the best ways to promote the development of
AV technologies has been the creation of competitions. During the following years
between 2004 and 2007, one of the biggest competitions of self-driving the DARPA
Grand Challenge took place. The competitors were teams from major universities
and major manufacturers. This naturally resulted in a big step in the research of
autonomous systems.

Nowadays, fully-autonomous vehicles cannot be found in the market yet. How-
ever, some vehicles have been able to drive hundreds of thousands of kilometres. In
the following section a brief description is done about the latest technologies avail-
able for autonomous systems as well as the future implementations that are being
studied internationally and locally.

1.2. Current state of technology

Internationally

There are fully autonomous cars on the streets of some countries; although still
in experimental and development stage, they will come hopefully to the automotive
market in the following decades. These cars have driven autonomously and logged
hundreds of thousands of kilometres, which has demonstrated that technologies
in this area have advanced substantially. The best example is Google’s vehicles,
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which operating fully autonomously, have been able to complete more than 800000
kilometres without a crash that can be attributed to the features that make the
vehicle autonomous [3]. Moreover, there are many features that provide some level
of autonomy to vehicles that are already being used on the automotive industry, as
described in section 1.1.1.

Safety is not the only question mark in fully AV development; the user needs to
reach his/her target destination correctly under all possible scenarios and in order
to accomplish this goal the cars need to make decisions knowing the current state
of the path to follow; decisions regarding for instance what route to take or what
speed is more convenient depending on several external factors that the vehicle has
to be able to consider. What happens if there is a car accident blocking the street
and the only way to skip the traffic is giving a sudden U-turn or crossing the side
walk, or some decision that goes over the typical. That is why another challenge
in the development of autonomous vehicles is modelling human decisions to make
these systems as intelligent as possible by covering a huge spectra of scenarios of
driving situations.

Naturally, any kind of decision needs to be made based on an estimation of the
current state of the vehicle and its environment. In order to meet this challenge
sensors are the best tool to provide such information. The data fetched by sensors
needs to be highly reliable because the decisions to be made are based on them. The
reliability can vary due to several factors; disturbances might affect those readings,
e.g. very sunny days or snow covering the streets makes very difficult to detect lane
markers, even for humans. The manufacturer has to predefine also the minimum
probability threshold to ensure safety and this value might change during the day
or depending on the place. That threshold can be seen as the probability where the
disturbance would not affect the capability of the vehicle (or one of its features) to
complete its task or their tasks correctly.

Sensors: vision and lidar

Let us assume we have a complete map of an urban area with streets and build-
ings, as well as a positioning system with no error. Now if we try to drive from
point A to point B we will need to detect all possible objects at the front of the
vehicle, otherwise an accident might occur. Some kind of radar can provide infor-
mation about the surrounding objects of the vehicle and some decision might be
made, such as braking if an object is too close or avoiding it if possible. However,
radar range is too narrow and some objects might not be detected. If we add the
functionality of a lidar (light and radar) sensor then we will have a larger range
to detect possible objects. We would know that there is some object at a certain
distance with reference to the lidar unit, but we would not know what the object
is. That is the idea behind why it is necessary to use vision in autonomous driving
systems. Vision is composed of a camera and a computer with enough processing
power that we could use to detect and, if required, even recognize objects in the
surroundings of the vehicle.
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It is known that vision is widely affected by weather conditions, the amount of
traffic and many independent factors that can be found on the roads like pedestrians,
animals or even tree shades. However, several algorithms have been used lately in
order to improve vision-guided driving. A video-based lane detection is introduced
in [5] using a fast vanishing point estimation method. The success of this approach
is shown by the author of the paper in a video available at '. I encourage the
reader to see this video to have a better understanding of the functionality of lane
estimation for vision-guided vehicles.

Mark Campbell, the S.C. Thomas Sze Director of the Sibley School of Mechani-
cal and Aerospace Engineering at Cornell University, gave a speech about Intelligent
Autonomous Systems in October 2012. He mentioned that most of the finalists in
one of the biggest self-driving competitions used a fusion of radars, spinning Lidar
unit and vision in order to make decisions about the state of the environment. Using
these different sensors provides better information about the environment because
it fuses the advantages of these sensors. ‘“We are able to know not just what objects
the vision detects but also how far they are’” said Campbell during his speech. 1
recommend the reader to watch the video of this speech for a better understanding
of the status of current technologies; the video is available at 2.

Sensors: RTK-GPS

RTK (Real-time kinematic) technology was born in the early 1990’s. The ad-
vantage compared to most other GPS technologies is that RTK allows us to reach
centimetre-level positioning in real-time. The basic concept behind RTK is that we
have a base station receiver set on a fixed point on an area and a surveyor who is op-
erating the survey receiver, known as rover. There are communication links between
a rover and the base station receiver. It takes measurements from satellites in view
and then broadcasts them along with its known position to the rover receivers. The
rover receiver also collects measurements from the satellites in view and processes
them with the base station data. The rover then computes its location relative to
the base. The corrections from the base station receiver can be sent to an unlimited
number of rovers. In Real-Time Kinematic surveys, data processing occurs in the
field as data is logged, providing immediate centimetre-level results in the form of
coordinates. Real-time positions on the rover receiver are calculated as fast as 20
times per second or as little as once per second [26].

Locally

KTH has deepen its work on the development of intelligent transportation so-
lutions since the creation of the Smart Mobility Lab. In this laboratory, students
have had the opportunity to take part in different projects. One of these is a course
that lasts a whole semester: the automatic control project course. Several transport

! https://www.youtube.com/watch?v=6XaU¥mHYWbsb
*https://www.youtube.com/watch?v=Jimh-YDZNF4&1ist=PL33ADE787A1607934&index=11
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features have been tested in these courses and every year the students have to work
on a totally new project. An example is the deep research in vehicle platooning and
semi-autonomous vehicles [1], where the researcher have been able to test different
kinds of high-traffic situations as a way to compare results in a more realistic en-
vironment. In the following sections a brief description of the projects developed
during the last years is given.

Automatic control project course 2012

A loading dock was built. This dock was composed of controlled trucks, a
quadrocopter and a stationary tower crane. The purpose of this system was to
simulate a loading dock. Initially, the trucks received a call from the freight hub, to
move to it. While running the trucks are surveilled by the quadrocopter until the
platoon leader reaches the final destination at the loading dock. The quadrocopter
returns to its landing site and informs the central that the trucks are at their
destination and they can be loaded by the freight hub.

In this project, all the devices are controlled by a central computer, which com-
municates through wireless nodes. This means that control signals are sent directly
to each device in order to complete their tasks.

More information about this project can be found in [22].

Automatic control project course 2013

A hardware-in-the-loop (HIL) platform for developing and testing traffic control
algorithms was established in this project. The purpose was to create traffic sce-
narios with model trucks which were as realistic as possible by using xPC. There is
interaction between the trucks in real-time simulation, by using vehicle-to-vehicle
(V2V) communication. The complexity of this platform can be increased to study
traffic optimization algorithms and cooperation.

This project was focused in scaled trucks working with model trucks (provided
by xPC) in different environments. Once again, all the processing was done directly
in a central computer for all the trucks.

In order to compute the current position of the vehicles the lab was equipped
with a Motion Capture (MoCaP) system. This system tracks the position of markers
in order to provide excellent estimations of position.

For both projects it was impossible to drive whenever the data of the MoCap was
lost. This meant that the scaled trucks had to stop when theirs markers could not
be detected by the MoCap system. Moreover, using a central computer and sending
information through wireless nodes added a delay factor that was important in the
performance of the system under high traffic or under high velocity tests, where the
vehicle may not able to react in time.

More information about this project can be found in [23].
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Grand Cooperative Driving Challenge 2011

The Scoop project was a co-operational project between Scania CV AB and
KTH. The project aimed to participate in the Grand Cooperative Driving Chal-
lenge (GCDC) in May 2011. The latter is an international challenge of cooperative
driving, organized by TNO from the Netherlands. Every team designs a vehicle
that takes part in platooning of vehicles, through urban city and highway driving
scenarios. Platooning has to be autonomous.

In this competition three Swedish competitors ended up in the four first places,
which speaks by itself the high level of development locally in autonomous systems.

More information about this project can be found in [18].

1.3. Motivation and objectives

The end goal of this project is to develop a system that can used in scaled au-
tonomous trucks. This system will be adapted to real-life situations. Currently, we
have at the Smart Mobility Lab at KTH an excellent position estimation, provided
by the Motion Capture system with a undermilimetric variance. The main idea is
to use this sensor as the position ground truth but it is also possible to simulate
different sensors by using these data.

Initially, all the decisions were made in a central computer running a LabVIEW
application, which communicated with the truck by using motes. These motes
are wireless sensor network nodes. Each truck had an on-board mote which was
communicating to its pair at the central computer. The central computer, while
running the LabVIEW application, sent continuously the control signals to each
truck mote. This meant that there was no autonomy in the system. In order
to make this feasible we have to move all these functionalities to an embedded
hardware device. By using such device we could make the driving decisions on-
board of the truck instead of in the central computer. By adding an embedded
device in each truck we could develop distributed autonomous systems and make
even more interesting projects in the SML.

Some real-life problems could be added to the simulation environment, such
as bridges, communications losses, obstacles, which could be then solved by the
decision on the autonomous vehicle. With the help of the MoCap data we could,
e.g., recreate the reception of an RTK-GPS by adding some simulated noise to
the current MoCap position. This noise could be extracted from real data from
an RTK-GPS. Another idea is to create more advanced scenarios for distributed
vehicles in the SML and test different theoretical approaches. That is the reason
why throughout the report we might call the data coming from the MoCap system
the “GPS data’”. We are recreating the data of this GPS device by using the MoCap
system of the lab.

Having a vehicle that is independent of a central computer means that the car
has to be able to keep control of its functions and perform safety procedures in
case of emergencies or in case of failure. It is also very important to have a good
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knowledge of the current position at all time. That is the main motivation of this
master thesis. We want to have a good estimation at all time. This means that we
have to be able to estimate our current position even when there is no available GPS
data, also called as ‘“‘outage’. For this reason, we need to study state estimation
techniques suitable for our needs and analyse what sensors might be feasible to use
in order to obtain a good performance.

After building this interesting platform of distributed autonomous vehicles, we
open the doors for future projects in the Smart Mobility Lab that could be adapted
to even more realistic situations. Currently, Linképing University, Scania, SAAB,
KTH and Autoliv are working along in IQMatic project; the final goal is autonomous
driving of tractor trailer trucks. Every organization has their own tasks and KTH
might contribute largely by testing state-of-the-art technologies in the SML by using
our platform. By having distributed autonomous vehicles driving in the lab we
might simulate high density traffic and perform vision-guided driving, platooning,
vehicle detection, pedestrian detection, and countless innovative ideas.

The expected outcomes of this project are the following:

= To build a test framework on the Smart Mobility Lab at KTH, which can be
extended to more advanced research on autonomous vehicles.

= Configure a scaled truck to be able to drive autonomously, which is run by an
on-board CPU connected to different sensors.

= This truck will be tested for different driving situations on the simulated tracks
of the SML, initially with no autonomy and then gradually start adding up
autonomous features

= In this extendible test framework the truck will have long-term navigation,
in hard situations, when some sensors are not available. For example lack of
current position data.

= Finally, the end goal of developing this system is to function as research tool
for students and researchers at KTH. They will be able to test different tech-
nologies for their research in platooning and autonomous vehicles in these
scaled trucks with on-board computers.

Creating such framework would provide a more reliable system for the future
tests to come in the SML.

1.4. Project structure

The project will be divided in chapters. The first chapter provides important
information of what composes the test framework, this will be very important be-
cause it will be the basis of our practical implementation. In the next chapter, we
introduce the problem of truck motion by defining a kinematic model to be used.
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Afterwards, we will discuss more about the theory behind recursive state estima-
tion as well as its importance for dead-reckoning situations in autonomous driving.
Additionally, we will explain which estimator suits better for our goals in order to
keep track of the vehicle pose at every time.

After the theoretical section is given we continue to provide a detailed explana-
tion of the practical implementation, where we give a detailed explanation of neces-
sary assumptions to take into account before performing the tests. Afterwards, we
test the integrated system and discuss the results of such tests.

We conclude with a general discussion of the obtained results of the whole project
as well as comprehensive suggestions in my point of view of at what the future
research in the SML should be aiming.

10



Chapter 2

Truck environment interaction

The Smart Mobility Lab (SML) was created for researchers and students who
develop and test intelligent transportation solutions in simulated traffic situations
with remote controlled model cars [11]. The lab is equipped with a motion capture
system that is used for tracking the pose of objects with markers, who are inside a
6 metres by 8 metres area. In the centre of this 16 square metres area there is an
image projector, which is used mainly to project maps of roads on the floor. The
lab is also equipped with scaled trucks with markers on top that have been used
to test different technologies; there are several computers that are programmed to
communicate with these trucks and send commands so as to control them.

In this chapter we will explain in detail of what our simulation environment is
composed. We will start by explaining the functionality of every component of the
system. Followed by explanation of important assumptions that were made for our
experimental setup. The whole system is composed of several blocks and the correct
integration of these blocks is necessary in order to reach a better performance of
the vehicle.

2.1. System components

To summarize, the system was composed of several sensors connected to an on-
board computer, that runs on top of a scaled truck and sends to a central computer
information of its current status. A detailed explanation with the components of
the whole system is given in the following list:

The scaled truck

The vehicle to be used during the simulations is an 1:14 scaled R/C tractor
truck version of the R620 Scania truck. The model features a ladder frame chassis
with aluminum channels, 3-speed transmission, suspension with metal leaf springs
and friction dampers, and rear axles equipped with differentials [24]. This scaled
truck is the TAMIYA Scania R620 Highline model truck with trolly as shown in
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CHAPTER 2. TRUCK ENVIRONMENT INTERACTION

Fig. 2.1, and will be referred to from now on as "the truck" for simplicity. These can

Figure 2.1. TAMIYA Scania R620 Highline model truck with trolly. Extracted
from: [13]

be classified as non-holonomic vehicles. The torque of the motor is applied to the
rear-wheels to provide angular velocity, while the steering commands are applied to
the front-wheels.

The on-board computer

NI myRIO is an embedded hardware device designed specifically to help students
design real, complex engineering systems. It also features NI industry-standard re-
configurable I/O (RIO) technology. The enclosed version of NI myRIO (NI myRIO-
1900), as shown in Fig. 2.2, places three multiple I/O connectors, wireless capabil-
ities, a dual-core ARM real-time (RT) processor, and a customizable Xilinx FPGA
in the hands of students [17]. This computer runs LabVIEW applications and com-

Figure 2.2. National Instruments myRIO-1900. Extracted from: [9]
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municate to a central computer, where the results of the processing and the current
status of the truck are displayed.

The central computer

This computer sends the orders to start; stop in case of emergency; a reference
velocity; and a desired map reference. It displays the results of the pose estimation,
the ground truth of the pose, and some variables that describe the status of the
vehicle; thanks to a network-shared public variables using Wi-Fi communication
with the on-board computer.

Motion capture system for pose estimation

In order to keep track of the current state of the vehicle we will use the Qualysis
Motion Capture system (to whom we refer as ‘“‘the MoCap’” or “the GPS”). This
systems is composed of 12 Oqus cameras which detect infrared markers. Therefore
if we position some markers on the object, with the information of every camera,
we are able to track the object current pose, i.e., X, y and z-position as well as roll,
pitch and yaw-angular position with under millimetres error.

Gyroscope and infrared sensor

Measuring the yaw angular position of the truck is possible by using a gyroscope.
The gyroscope to be used is the PmodGYRO, which is a peripheral module fea-
turing the STMicroelectronics®L.3G4200D, MEMS motion sensor. The L.3G4200D
provides a three-axis digital output gyroscope with built-in temperature sensor with
250/500/2000 dps selectable resolutions [8]. In order to detect possible objects or
vehicles either on the front or on the sides of the truck we use the GP2Y0A02YK
Sharp long distance measuring sensor. This sensor has a detection range between
20 and 150 cm.

Simulated sensors

All these following sensors are simulated by using the MoCap system:

= Rotary encoders: the velocity of the vehicle can be computed directly as the
derivative of the ground truth position in z and y over time.

= Camera: when the real webcam is not used the camera information is provided
as a calculation of what the camera would see at its front in terms of trajectory
points. This is given by the current pose of the truck. The trajectory points
have to be inside of a circle of radius r and inside the angle of vision of the
camera 1. These parameters can be changed during simulation, depending on
the specifications of the system.

13



CHAPTER 2. TRUCK ENVIRONMENT INTERACTION

(a) STMicroelectronics® L3G4200D. Ex- (b) GP2Y0A02YK Sharp infrared sensor. Ex-
tracted from: [19] tracted from: [21]

Figure 2.3. Gyroscope and infrared sensor

= Magnetometer: once again the MoCap provides the information, in this case
of the ground truth yaw angle. When the truck is running with no GPS the
error given by the gyroscope increases due to its drifting. The purpose of the
simulated magnetometer is resetting this error when we reach some reference
angle 0,..

In the following section we provide a detailed explanation of the importance of
state estimation as a way to keep updated information at all time of each variables
of the system.
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Chapter 3

Truck pose estimation

In this chapter we will describe the basis of the kinematic model that describes
the motion of our autonomous vehicle. Afterwards, we will show how to convert
this model into a discretised version that can be used in computational algorithms
for estimation. Later on, we explain the controllability issues of the system when
following a trajectory. This section is followed by a description of recursive state
estimation, where different algorithms are compared. This comparison will lead to
define which algorithm suits better our project.

3.1. Truck motion

In our project we will use as a vehicle a Tamiya Scania R620 Highline model
truck with trailer. This truck can be defined as a non-holonomic vehicle. In robotics
a system is non-holonomic if the controllable degrees of freedom are less than the
total degrees of freedom [10]. The model truck configuration is represented by the
position x and y, by the orientation of its main body in the plane #, and by the angle
of the steering wheels ¢. Initially, linear velocity inputs, v;, and steering angular
velocity, ve, are used for motion control. The non-holonomic nature of the car-like
robot is related to the assumption that the robot wheels roll without slipping. The
scaled trucks have been developed by Scania; these scaled trucks are rear-wheel
driving vehicles, whose kinematic model [15] is described as follows,

T cosf 0
y| | sin@ 0
0|  |tang¢/L vt | v2 (3.1)
¢ 0 1

The dynamics of v can be neglected assuming that this control signal is fast enough
to make instant changes in the steering angle. Moreover, we have to take into
account that {¢ € [-7n/6,7/6]}, and hence, we can ignore the singularity at ¢ =
+7/2; with these approximations of the model, the state-space vector for the pose
X becomes X = [z,y,0] and for the control signals, U = [v1, ¢|. The continuous-
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time non-linear model of the non-holonomic car to be used during this thesis project
is the one shown below,

T cosf 0
fX,U)=|g| = [sinf|vi+ | 0 |tang (3.2)
i 0 1/L

This model has to be linearised, because this result will be used in the future in some
estimation techniques that require linearised models. One example is the Extended
Kalman filter, which will be discussed further below.

3.1.1. Model linearization
Given the model in (3.2) we can use Taylor theorem in order to linearise around
some operating point Xo = [z, y0,60] and given a certain control input Uy =
[v14, P0]- Let us first define, the Jacobian matrix of F'x and Fy, respectively, as
gg gz gz 0 0 —wisiné
Jry (z,y,0) = % 873/ % = 8 8 UlcOOSH (3.3)
o6 00 00
dr Oy 00
and,
0 o0
%7;1 g(g cos 0 0
Jry, (v1,0) = 871)1 % = | sind 0 (3.4)
o6 80 tangb/L (Ul(tan¢)2+1)/[z

vy

¢

The new linearised state-space can be described as X=X-— Xo an~d (:] =U —Up.
The linear model can then be written as f(X,U) — f(Xo,Up) = f(X,U)

f(Xvﬁ):JFx($>y79> (X_XO)"i'JFU(Ulaqb) (U_UO)
Xo Uo
o 0 0 —wvy,sinfy . cos g 0 .
f(X,U)=10 0 wy,cosby | X+ | sinfy 0 U
0 0 0 tan ¢o/L  v1,/(L cos? ¢p)
At Bt
Summarizing,
0 0 —wvy,sinfy cos g 0
A; =10 0 wy,cosby and B; = sin 0 0
00 0 tan ¢o/L  v1,/(L cos? ¢g)
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and for simplicity, the linearised variables are

All the equations above are defined in continuous-time and the subscript ¢ is
used to describe this fact. Computations of electronic devices are governed by time
clocks with a limited maximum frequency; this makes impossible to use continuous-
time logic in these devices. Therefore, we need to translate all these models to their
discrete-time version.

3.1.2. Discretization

In order to make a proper analysis in any embedded device with a sampling time
T, we need to transform this continuous-time state-space system to its analogous
discrete-time state-space system, as follows,

1 0 —Tsvy,sinby
A =T = L7H(sT— A7) =10 1 Tsv,cosby
t=Ts 00 1
T cos by 0
B, =B, I, = | Tssinf, 0
Tstan¢g/L  Tsv1,/(L cos? ¢p)
1 00
C.=C;, =0 1 0
0 01

Dy =D; = 0|3,2

After computing all these matrices we get state-space, at time k,

where,
T v
Xk = |Yk and Uk = L
P Pk
k

Here X} is the pose at time k and Uy the control inputs; with these equations in
our hands we are able to make predictions of what the pose X4, would be, given a
set of control inputs Uy. In the following section we will use this model as the basis
of our prediction for estimation.
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3.2. Recursive state estimation: Gaussian filters

In many engineering applications and especially when working with control we
need to observe the states of a system. In most real applications only the outputs
of the plant can be measured, rather than the state vector itself. In such cases the
state estimation process becomes important for control implementation and/or for
monitoring applications [12]. State Estimation is a widely known problem, which
is a very important part of fields such as probabilistic robotics. The central idea
of it is to estimate the current state given sensor data; it is estimating quantities
from information fetched by sensors that even though are not directly observable,
can be inferred. The reason why state estimation is needed is that we cannot rely
completely on information provided by sensors for several reasons; the data from
the sensors might be either partial or corrupted by noise. The end goal of state
estimation is to recover the current state given this data.

Let us illustrate the need of state estimation by using the example of trajectory
control of a truck. This example is very important for explicative purposes for
the upcoming chapter of this thesis. This is an introductory description of how our
system is controlled. Let us assume that the truck has to move from its current pose
A, [k, yx|, to pose B, [xp, yp], in a known map. We know the truck current velocity
and its position with certain error, by using just a global positioning system (GPS).
The current yaw angular position of the truck, 85 is measured by a gyroscope; we
can get the reference angular position as 6.5, = atan2(yp — yx, xp — x1), where

atan(y/x) if >0
. ot .
anz(y, o) — | )T~ atan(ly/al)) i <o -
lf r=9Yy= 0
sign(y)m/2 ifz=0,y#0

Let us assume now that the velocity controller provides constant velocity. In order
to reach the goal we have to calculate the error bearing to the goal B, i.e., 0, =
Or, — 0. A steering controller will use this error in order to generate the control
signal to the wheels so as to decrease the error and to align the truck to the goal.
The problem occurs when one of the sensors stops working properly. For instance,
if we lose GPS data then we will lose our current position and then 0g, will be
wrong. This will lead to wrong control inputs and hence the truck will fail to reach
target B. That is just one of the reasons why it is so important to keep track of the
state of the system.

State estimation is critical for several other reasons: one reason is that sensors
are affected by different kinds of noises; another reason is that these sensors might
fail during short time periods. Such failures during just a few milliseconds might
cause system instability or simply an undesired behaviour. Additionally, state es-
timation provides some advantages to the system: control becomes easier avoiding
radical changes in the states, which decreases behaviours that lead to instability; al-
lowing better control actions to be selected. It is also sort of a testing block, where
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undesired states can be detected; allowing other blocks to take action. Another
advantage is that we could detect when a component fails; allowing the system to
make certain actions to cope with it [6].

An algorithm or system that yields an estimate Z(s) is called an observer or state
estimator. The most general algorithm for calculating the belief (internal knowledge
about the states environment of the robot) from measurements and control data is
given by the Bayes filter [25]. Due to the fact that this algorithm calculates the belief
at time ¢ from the previous belief ¢ — 1, we can call it as a recursive filter. The other
inputs of such filter are the last available measurements, z;, and controls, u;. For
a more detailed explanation of the algorithm, please refer to [25]. In the following
section a brief discussion is done about three popular recursive state estimators that
are derived from the Bayes filter.

3.2.1. Kalman filter

Probably the best studied approach for implementing Bayes filters is the Kalman
filter (KF). This technique was invented by Swerling (1958) and Kalman (1960),
for filtering and predicting in the so-called linear Gaussian systems [25]. The KF
provides to multi-sensor systems the possibility to combine dynamic low-level re-
dundant data in real time [20]. The KF is part of an important family of recursive
state estimators called Gaussian Filters, which are recognized as the most popular
filters; they are based on the idea that beliefs can be represented by multivariate
normal distributions. KF uses the statistical characteristics of a measurement model
in order to recursively estimate data from different sensors that are optimal in a
statistical sense. The recursive nature of the filter makes it appropriate for use in
systems without large data storage capabilities [7].

In theory it is known that the Kalman filter is an optimal algorithm. However,
this holds only if the used model is a very accurate replica of the real behaviour
of the system; and if the noise is zero mean Gaussian noise. Additionally, the
optimality holds if the observations are linear functions of the state; and if the next
state is a linear function of the previous state. We know in practice that most of
the cases that does not hold. However, although not optimal KF works quite well
in several nonlinear applications.

Given a model in state-space representation, the state transition function, at
time Kk, is,

Xy =ArXp_1+BrUp + e (3.8)

where e is the process noise which is assumed to be drawn from a zero mean
multivariate normal distribution with covariance

Q1 0 0
Q=10 Q@ 0 (3.9)
0 0 Qs
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i.e., ex ~ N(0,Qy). In the case of our non-holonomic vehicle, the state-space vector
for the pose X is X = [z,y, 0] and for the control signals is U = [vy, ¢].
On the other hand, the observation model is described as,

2z, = Cxy, + 0, (3.10)

where ¢, is the observation noise associated to each measurement, assumed to be
zero mean Gaussian white noise with covariance

R 0 0
Ry=|0 Ry 0 (3.11)
0 0 Rs

i.e., 0y ~ N(0,Ry). Both the state transition and the observation model have to be
linear functions. This is due to the fact that when working with Gaussian random
variables (RV) any linear transformation among these generate another Gaussian
random variables. This is the main assumption of basic Kalman filters. ()1 and Ry
are the associated covariances to x; Q2 and Ry are the associated covariances to y;
and (Y3 and Rj3 are the associated covariances to 6.

A brief description of the algorithm is done in appendix A. This description will
work as a basis for further details of the implementation of the extended version
of the KF, the EKF. Unfortunately, we know that state transitions and observa-
tions are mostly described as non-linear functions. For this reason, KF becomes
non-optimal to the majority of the robotic problems. Relaxing this assumption of
linearity decreases the uncertainty of the estimation.

Another approach that copes with non-linear dynamics, known as the Extended
Kalman filter (EKF) is explained under some detail in the following section.

3.2.2. Extended Kalman filter

EKF eliminates the constraint of using linear functions to describe the state
transition, g, and the observation, h. Let us now move from linear to non-linear state
transitions and observations. In this approach the state distribution is propagated
analytically through a linear approximation of the system around the operating
point at each time instant; this linearisation is done via first order Taylor expansion.
For this algorithm we need to approximate g and h to linear functions G and H,
which are tangent to g(Uy, ur—1) and h(uk—1), respectively; Uy are the inputs and
1 is the mean of the Gaussian that describes the states probability density function
(pdf) of Xj.

In our case the only difference between the algorithms of the Extended Kalman
filter and the Kalman filter is the nonlinear function g(Ug,pug—1) that replaces
Agpig—1 + BrUy [25]; the observation matrix becomes h(ug—1) = Ckur—1, because
C} is already linear, in our case. This can be written as follows,

{Xk = g(pr—1,Ux) + g

(3.12)
2k = h(pr—1) + Ok
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This non-linear kinematic model (3.2) is linearised as explained in section (3.5)
using Taylor expansions around some arbitrary linearisation point, [U, pp—1]. These
assumptions as discussed below will add uncertainty to the system. For more details
please refer to appendix B, where the algorithm is described step by step.

This linear approximation, depending on the nature of the pdf, might result in
less accurate estimates of the mean and covariance of the resulting random variable;
this occurs for instance when the probability density function of the random variable
that describes the state is highly non-Gaussian. These problems are dealt by using
more advanced extensions of the KF that represent posteriors by using mixtures of
Gaussians, as the multi-hypothesis EKF; this would be now a problem of trade-off
between computational efficiency and having less uncertainties in state estimation.

Another factor to take into account is the degree of local non-linearity of the
functions that are being approximated [25]; for instance approximating a sinusoidal
function around very small values will be more accurate than for large values. When
the linearisation of a function via Taylor expansion is not as accurate as we expect
then some other approach for linearisation is needed. One approach that deals with
this problem is known as the Unscented Kalman filter (UKF).

3.2.3. Unscented Kalman filter

The Unscented Kalman filter makes use of a different strategy so as to linearise
functions. The idea is that it examines the function around selected points and
provides a linearisation based on the results of these examined points. This approach
requires no calculations of Jacobians. When the systems are linear the UKF and
the simple KF are equivalent in terms of efficiency to estimate. However, when the
systems are non-linear the UKF often provides better results in terms of estimation
than the EKF, while having the same computational complexity.

This approach is not analysed further in this thesis project, but we encourage
the interested reader to read [25] to get a better explanation of the advantages of
other Kalman filter approaches. We wanted to discuss it to open the door for future
researchers. We chose as framework to use the Extended Kalman filter for our thesis
because the implemented version was reliable and the Taylor linearisation did not
decrease the performance of the system.

It is important to add that all these state estimation theories work as a very
important part of a whole system; without a reliable way to observe our system
we will certainly not be able to drive autonomously. On the other hand, before
the state estimation occurs the vehicle has to drive over a trajectory with some
desired velocity; to accomplish such goal we are required to send control commands
to the vehicle specifying how fast it should move and which direction it should take.
Without an efficient way to send these command we will fail to reach autonomous
driving.

That is the reason why the next chapter describes digital PID controllers, which
is a very known approach that is widely used in industry. In our case, we will use
two PID controllers in order to send the vehicle velocity as well as steering wheel
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commands to the truck.
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Chapter 4

Steering and velocity control

We require to design for our non-holonomic vehicle two controllers: one con-
troller for the steering angle based on a forward desired position and we use another
controller for the velocity given a reference velocity.

The non-holonomic model presented in Section 3.2 the steering angle ¢ was
proved to be controllable by [15] in the time-invariant case of constant velocity v;.
Additionally, v1 is controllable in the case of constant ¢. Otherwise, the system
mathematically is not controllable [15]. In our case we can see both variables as
independent process. The reason is that we can assume that after the velocity
controller reaches the desired velocity that the user inputs, we can give more priority
to control ¢ rather than v;. For simplicity, we select PID controllers, which are by
far the most used controllers in industry.

4.1. PID control

The basic implementation of a PID controller in the Laplace—domain is given
by the following equation:

K s2 + K, s + K;
Fpip(s) = = K, 2 L .

0 - (4.1)

where K, K;, Kq are the proportional, integral and derivative gains respectively.
K,, is an additional gain for the controller, that is useful, e.g., for unit scaling.
U (s) is the resulting control signal, and E(s) the error signal. This equation is nor-
mally presented in Laplace—domain, but the real-time devices with a fixed sampling
time can only handle a discrete-time equation. Therefore we have to discretise by
initially changing from Laplace— to z—domain and finally changing from z—domain
to k—domain, which is a discrete representation of time. The procedure is explained
in the following section.
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4.1.1. Discretization
From S to Z

In order to map to the z—plane we can use different approximations:

s Backward difference
z—1 1

s — &z T oTs (4.2)
= Forward difference
8%221@2% is (4.3)
= Tustin’s method
2(z—1) _1+sTs/s (4.4)

N Ly
Ts(z+1) : 1—sTg/s

where T is the sampling time of the discrete-time system. It can be seen as the
duration of a complete loop in the computer. In our case we used the Backward
difference approximation. This leads to,
Fpin(2) az? +arz+ay  U(z) ap+arz~!+agz?
Z) = = =
PID b022 + b1z + bs E(Z) bo + blz_l + b22_2

(boz? + b1z + bo)U(2) = (apz® + a1z + a2) E(2) (4.5)

From Z to K
The time shifting property of the z—transform can be applied now,

Z{zlk —n]} = 27"X][z] and Z[ciz1[k] + ... + cpxn[k]] = a1 X1(2) + ... + en Xn(2)
(4.6)

The z—transform has a set of properties in parallel with that of the Fourier transform
(and Laplace transform).
Applying (4.6) to (4.5) yields,

bouk + bluk_l + bQUk_Q = apei + a1€k—1 + a2€K—2
1

up = %[a2€k—2 + arep—1 + aper, — (brug—1 + baug—2)] (4.7)

where

ay = KTy + Ky + Kg/T,

a; = —Kp — 2Kd/TS

ay = Kg/T;s

bo = 1/Ky,

b =1/Kpn

by, =0
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After finding this control approach that can be handled by a real-time device,
we need to continue to describe what kind of system we are going to use. The
following chapter explains of what the system is composed and we highlight issues
that might decrease control performance. We end up the next chapter with a brief
explanation of how to tune the parameters of the controllers in order to cope with
some issues of the system.
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Chapter 5

Practical implementation

Due to the fact that we are working with a self-driving vehicle we need to fetch
reliable information from external sensors about the car’s current position, e.g,
something similar to global position system (GPS) data. Additionally, information
about the current motion of the vehicle given by internal sensors such as a gyroscope
(to compute the yaw angular position) and rotary encoders (to compute the velocity
of each wheel of the vehicle). From a explicative perspective let us first assume that
we have no GPS data but we know precisely the starting location of the vehicle;
also we have a good kinematic model of the system and the information provided by
all the sensors of the vehicle have null associated error. If these ideal assumptions
were true we could track the exact position of the vehicle on a flat surface at any
time. However, we know there is neither a perfect model nor perfect sensors. But
we can use an estimation approach to cope with this. Each one of these estimation
tools have associated uncertainties, with which we as engineers have to struggle to
cope. The performance analysis to be done in the following sections will consist in
moving modularly from ideal to real-life situations.

5.1. Proprioceptive (internal state) sensors

In this category we include the rotary encoders for the velocity as well as the
gyroscope. In a non-ideal framework, every sensor will add an error to the estimation
of the position. The larger the error, the larger the probability of having erroneous
estimations. Provided good resolution in the encoders, there are still some physical
factors that cannot be noticed and even the best sensors will still have effects that
we cannot neglect. One example of these is the loss of traction in the wheels causing
an erroneous reading in the encoders, which is common under high speed tests or
during sharp turns.

On the other hand, the gyroscopes output the angular velocity, which after in-
tegration results in angular position, provided of course that we know the initial
angular position. In our case, we are interested in the yaw rotation (around the
vertical axis), for the rotations of the vehicle. This sensor gives a well short-term
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estimation of the yaw angle. However, this angle will tend to increase, even after
calibration, which in the long run causes a large error. Due to this error the es-
timation of the position of the vehicle will be wrong. Some vehicles use a fusion
of accelerometer and gyroscopes to calculate the angles of rotation pitch and roll;
however, for yaw calculation this approach will not work because the axis of rotation
of the accelerometer is parallel to the gravity axis.

There are several ways to cope with this drifting of the gyroscope, though.
The option we chose was to use a magnetometer that detects the direction of the
magnetic field at a point in space. After reaching some magnetic field at a known
angle, the gyroscope could decrease its error to zero by replacing the output of
the gyroscope already in radians, gyro, by the angle to the point detected by the
magnetometer, magn,. This zero error yaw angular position measurement, 6, can
be easily computed in any real-time device by using the following equation in the
output block,

0.1 = gyro, — errory
where,
errory = magn, — gyroy

By using this approach we decrease the error of the current 6,, for the future
estimations. However, there is no way to recover for the error that this drifting
caused to the previous pose estimation. This error is unavoidable as long as the
sensors have some error.

5.2. Exteroceptive (external state) sensors

The main sensor to use in this case is the camera that would compose vision.
Vision is a complex part of an autonomous system and requires a camera that detects
features on a map; and a microprocessor or computer with enough computing power
and software to recognize that detected object among a number of objects located
in a database. In this computer all the sensor information will be fetched and
processed in order to make decisions regarding the speed and steering angle of the
vehicle. Let us assume that we have fixed landmarks with known identification (ID)
and their (z,y) positions that are located on a map. Every time we find one of these
landmarks during driving, we would have enough information so as to estimate the
value of the bearing to it, as well as many other functionalities that could be used
mainly to improve the driver safety. These landmarks can be traffic lights, curbs,
street signs, etcetera.

5.3. Assumptions to be considered

Important assumptions were done under the development of the whole system.
Initially, we set a fixed driving environment with selectable maps of roads, which
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are composed of different types of lanes, dashed white lines, waypoints and curbs.
Every lane has a default driving direction and it is composed of waypoints that are
fixed and that are the reference to be followed by the vehicle. If the road has two
directions every lane is separated by double white lines on the streets. The curbs
delimit the borders of every road, except on intersections.

As we know the ground truth pose of the vehicle any time, Xy = [x,y, ¢|x, we
can also extract from the map the closet waypoint, WPy, and then the car would
be able to follow WPy, with a reference velocity, V,.; provided by the user. n
is the amount of points ahead we see. Some special cases have to be taken into
account in the design of the application, such as those cases at the end of a loop,
when we reach the last waypoint, WPy and we are required to continue following
the next waypoints. The logic applied in this cases is to calculate the modulus after
the division of k over N in order to get WP, = WPy, where ¢ € N.

5.3.1. On the estimation algorithm

Using as a basic assumption, the truck to be used in our project is equipped
with proprioceptive (PC) and extereoceptive (EC) sensors. This in order to be
able to perceive their own motion, as well as the state of the outside world. As
mentioned above, our scaled truck will be equipped with a RTK-GPS-like sensor
which measures x and y as z, and z,, respectively, scaled directly to metres in the
x and y world-frame. A gyroscope will provide data to use in order to calculate
the yaw angular position of the vehicle, with respect to a given initial yaw. The
yaw angular rate z; is given in radians/sec. However, we process this data in
order to have a valid measurement of the yaw angular position, zp, in {—180, 180}
degrees. A simulated magnetometer will eliminate the inherent drift error of the
gyroscope every time the ground truth of the yaw angle between {180° 4+ 0.5°} or
between {0° £+ 0.5°}, i.e., when the magnetometer would detect the magnetic field
of reference. We decided to use this approach in order to remove the drifting of the
yaw angle in very specific angles (like north and south), giving more trust to the
internal gyroscope of the vehicle.

These sensors generate the observation matrix Cy, that maps the true state-space
into the observed space. Cj equals the identity matrix because we can measure the
pose (x and y) and the yaw angular position () at every time, k.

GPS denied environments assumptions

We assume that while driving, we will keep track of the position of the vehicle
using the MoCap data, as if it were RTK-GPS data. For this we added some noise
to the signal of the MoCap so as to add an uncertainty to the signal. We assume
additive white Gaussian noise with standard deviation equals to 3/14 centimetres;
the 14 comes from the scaled size of the truck and 3 cms from typical values of
commercial RTK-GPS. When the MoCap data is available the x and y position will
be measured using the RTK-GPS. Whereas ¢, the yaw angular position, will be
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always obtained by reading the digital output of the gyroscope and resetting the
drifting error depending on the magnetometer output signal.

During estimation of the pose, X, might occur that the MoCap data is lost
because the camera cannot find the markers of the vehicle. When the signal is
lost or when the MoCap cannot track the markers on the object we have to rely
completely on the measurements of the real on-board sensor, the gyroscope. This
means that there will be a higher uncertainty in the calculation of the velocity,
because there are no on-board rotary encoders, as well as in the calculation of the
yaw angle in the long-term due to its inherent drift.

It might also occur that during pose estimation we simulate that the GPS signal
is not available, as if the vehicle were located in GPS denied environments. The
rotary encoder, the camera and the magnetometer are simulated sensors in these
applications and they depend strongly on the MoCap system to be considered as
ground truth data. In case of simulated MoCap data losses these three sensors will
keep using the MoCap data for testing purposes.

In an EKF terminology, the prediction is done by using as input the previous
pose estimation. However, during the update phase of the EKF algorithm, the
measurements are assumed to have the same values of the states calculated in the
prediction phase. This is done in order to ignore the Na/N measurements, in order
to avoid numerical problems and sharp changes on the signal.

5.3.2.  On the PID parameters selection

In this section we give a brief analysis on how to choose the gains K,,, K,, K;
and K, for the different controllers.

Steering angle PID control

The steering wheel angle is controlled by a digital PID that provides the steering
angle command, ¢y, at time k as in (4.7). This approach uses an error signal eg,
equals to the reference signal, 0,..r, , minus the current yaw angular pose 6. 0.,
is the angle from the current position in {xy,yi} to the following waypoint on the
map to follow Zup, Yup, i-e. Orep, = atan2(Ywp — Yis Twp — Tk)-

The proportional parameter of the PID controller, K, tells us how much of the
error signal we want to project to the output of the controller. A really large value
will give very reactive responses that might lead to an oscillatory behaviour when
driving. On the other hand, a small value will result in slow responsiveness and the
truck will not manage to converge to the desired yaw angular position of reference.
The constant of the derivative action, K  establishes the amount of prediction of
the system behaviour and thus improves settling time and stability of the system.
Its inherent sensitivity to measurement noise is something that we have to keep in
mind [4] and that is why we should keep its value low. The integral term, K;, will
be necessary for the case when we need to turn with large steering angles. The
need of having an integral term comes due to the fact that the steering command is
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not exactly the value that the wheel will turn. Assuming we have a constant 0,.y,
if we set the command to be for instance ¢, = 30° and the future values of ey,
are still large that means that we are not converging to the reference value. The
integral term will try to help us to converge to the desired reference, though. That
takes us to one important issue of the steering angle control, saturation. When the
integral part of the control signal ¢, increases for a long time the steering wheel
will saturate.

When performing mathematical analysis, the final value theorem (FVT) is an
easy way to compare expressions in frequency domain with those in time domain,
as time approaches infinity. This is written as,

klirgo f(k) = ll_I}% sF(s) = ll_}ni(z —1)F(z) (5.1)
Let us go back to the previous example, in this case ¢ = 35°. As the vehicle
cannot reach ¢, > 30°, then e; > 0° for £k > 0 until £ — oco. Let us take the
s-domain representation of the PID controller (4.1) and apply the FVT to a fixed
step response E(s) = %d.

Kgs? + Kps + K;
lim f(t) = lim sFyia(s) B(s) = lim g =" RS (5.2)
5—

k—o0 s—0 S
This can be translated to an infinite control signal sent to the steering wheel when
k — oo. Moreover, if the output of the controller is saturated and the reference
suddenly changes to a negative value the control will be slow to react to this change
because it has to recover from a very large value.
For all the mentioned above, it is important to write some code in the real-time
program to avoid this saturation. In our case we limit the reference to 6, fn €
{—30°,30°} as well as the control signal.

Velocity PID control

As in the previous case, the velocity is controlled by a digital PID controller. Its
input is the error, e,, = v.cf, — Ux; Where v,.y, is the user desired velocity and vy, is
the observed velocity. The output of this controller is the input velocity command
to the vehicle, v1,. It is important to mention that the relationship between the
control signal vy, and vy is not linear. Therefore, we need to have and integral term
to be sure that vy reaches v,.y, faster. We are flexible with settling times but the
faster the better; but we want to avoid overshoots and all sort of oscillations. For
this reason we want to evaluate the behaviour of adding a derivative term in the
controller, that would act as a dampener on the control effort. The more the PI part
of the controller tries to change the control signal, the more the D part counteracts
the effort. This improves the overshooting.

In order to have a very good control, it is essential to have a good estimation
and vice versa. On the other hand, the failure on one blocks will cause a failure
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in the next step of the other block. These conflicts are one of the reasons why it
is so hard to debug a whole observer plus controller system. This has to be taken
into account when testing the system and proving the correct functionality of each
individual block.

5.3.3. Considerations on vision

Let us now imagine that we want to follow an object while driving, which can
be, e.g., a white dashed-line on the street or a car at the front. Therefore, we could
use the bearing angle to such object as error information in order to control the
steering angle. Vision in our project uses as landmarks the curbs of the streets
and based on this data we can compute a trajectory to follow. This information
is always given by the MoCap. Although some tests were run with a real camera,
these are not used in this project because the results were not as fast as expected
and they are left for future work at the lab.

With the information from the MoCap we developed a simulated camera that
performs lane detection. One example is shown in Fig. 5.1 running the simulated
camera on a map that replicates a simpler version of the Scania trail track located
in Sodertélje, Sweden. The shape was adapted to overcome lab constraints. This
is due to the fact that it was not possible to have the real curves for a truck with
such scale.

The simulation block is filled with data points of the map: the left and right curbs
as well as the waypoints; additionally we use information of the current estimated
position of the vehicle and the camera block provides as the output the data set of
points that a camera would see as curbs at the front of the vehicle inside a region of
certain radius and angle of vision. After this the block provides automatically the
trajectory to follow as the center point of the detected trajectory. A video showing
this result can be found at !. As default for the upcoming tests we use this approach
in order to follow waypoints, unless something else is stated.

After explaining the most important assumptions that were used during the
design of the test environment we are then ready to test the performance of the
system. We give a detailed description of how the experiments were performed
followed by a well documented discussion of their results.

Tane detection for autonomous vehicles using virtual camera: http://youtu.be/1-ikhbv_hi8
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Lane detection simulation in a known map
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Figure 5.1. Lane detection for autonomous vehicles using virtual camera in MAT-
LAB
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Chapter 6

Performance evaluation

In the previous chapter we provided the theory for our multi-sensor approach
for on-board autonomous truck navigation. We identified the issues of every sensor
and we explained the assumptions that were done in order to reach the goals of
driving on a pre-defined map. In this section we test our implemented system with
an Extendend Kalman Filter (EKF) framework. As explained in theory one of the
downsides of using EKF is the possible effect that the approximations could bring
to the system. Therefore, we need to test that after discretisation and linearisation,
the estimation is not strongly affected. We also need to take into account that the
sensors might affect the estimation.

In this section we evaluate the performance of the EFK estimator and the con-
trollers in quantitative terms, while understanding how the sensors are affecting
these results.

6.1. Experimental setup

The performance evaluation is divided in three sections. Initially, we test the
performance of the estimator, followed by the performance test of each controller.
Finally, we test the closed-loop system; the truck pose is observed by the EKF
estimator and the truck is controlled by the steering and speed controllers.

We quantitatively test our system on an on-board embedded device with the
provided sensors using as ground truth for comparison purposes the information
provided by the MoCap system as explained in 2.1. To this end, we implemented
the EKF framework in myRIO, a Xilinx FPGA and dual-core ARM Cortex-A9
processor with a 1.6 GHz speed and two cores. The FPGA section is not widely
used due to time constrains in the project, but it is widely recommended for future
research, due to the high-speed advantages. Using this embedded device on-board
of the truck let us control the vehicle in pose with a control loop of period, T = 40
ms.

When we say that the GPS data is available it means that the MoCap provides
the pose of the truck with under millimetre error, in most of the map. However,
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there were areas in the lab were we experienced what we called GPS outages; this
means that the MoCap data is not available. For all the following tests we avoid
these areas. The reason is simple: our system relies completely on the usage of
the MoCap data in order to compute the encoder velocity. With an erroneous
measurement of the velocity without any other velocity sensor, the estimation will
fail.

In order to effectively analyse the performance of every main blocks of our system
it is necessary to separate them and test them individually. One reason is to avoid
conflicts between controller and estimation when analysing the results. The tests
were run by attaching a gamepad to the main computer. This gamepad was used to
send speed and steering inputs to the truck in order to test the estimator. We were
able to send (positive and negative) velocity and speed references; we could send
simulated GPS outages as well. Fig. 6.1 illustrates how the buttons were used; this
is shown for future users to run their own tests.

V,={-1.5 m/s to 0 m/s} V,={0 m/s to 1.5 m/s}

Simulate lost
MoCap data

o o -y o oy "
O,.+~{-30°to 0 }I | 0,,~{0 ° to 30°}

Reset plot and
host global
variables

Figure 6.1. F310 Logitech Gamepad. Extracted from: [14]

On the other hand, so as to test the controller we sent fixed reference veloc-
ities, while the steering reference was given by the difference in angle between
the waypoint to follow on the road-map and my current position, i.e., 0,5 =
atan2(Ywp — Yk, Twp — Tk). In order to understand the values of the results dis-
cussed in this section it is good to keep in mind that every parameter is scaled 14
times, which is the ratio real truck over modelled truck.
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6.2. Experimental results

At this point we have a clearer image of how the experiments were set. In this
section we will show the performance results of the estimation and followed by the
performance of only controllers. Finally, these two parts are merged and tested.

6.2.1. Estimation performance

The initial setup uses the steering and velocity commands of the gamepad in
order to control the truck. The estimation evaluation will consist on running the
truck inside the lab and simulating GPS losses during some seconds or permanently.
Keep in mind that when simulating the GPS outage, the MoCap keeps feeding the
other simulated sensors with ground truth data, i.e., magnetometer and rotary
velocity encoders. The initial setup is shown in Fig. 6.2

[Uo, U] R

Truck > X =[x,y,0]

A

EKF
Estimator

\ 4

—> Xgsr = [X.Y,0] st

Figure 6.2. Block diagram for the system with controllers and EKF estimator

When making the initial test for the estimation performance we noticed in the
results that the angle provided by the gyroscope was drifting. The mean error in
the yaw angle for a 60 seconds loop was around 2.32 degrees. The problem with
this drifting is that the general performance of the estimation was affected largely,
because changes in the yaw angle affect directly & and ¢ position.

When doing any kind of pose estimation it is always necessary to have any kind of
sensor that can eliminate the inherent drifting of the gyroscope. Some applications
use accelerometers in order to eliminate the drifting by computing a mean value of
the current angle and subtracting in it to the gyroscope measurement. However,
this is not possible in x — y applications where the angle to estimate is the yaw.
This is due to the fact that the accelerometer cannot be used to compute the yaw
angle.

However, we compensated for this error by using a simulated magnetometer. The
purpose of the magnetometer was to detect certain headings, and use these values
to decrease the drifting error the gyroscope accumulated. The magnetometer send
a signal when the truck yaw angular position was between {180° +0.5°} or between
{0° £ 0.5°}. The results can be seen in Fig. 6.3

As it can be seen in the results the measurements provided by the gyroscope
will be more reliable when a magnetometer is used. This magnetometer reduced
the mean error to around 0.22 degrees.
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Figure 6.3. Yaw angular position given by the gyroscope

After providing reliable pose measurements as input to our EKF estimator, we
are now ready to test our application. For this reason, we made a simple test by
fixing the steering angle and the velocity references in order to test the behaviour
of the system when there is a GPS outage. The results of this initial test can be
seen in 6.4(b). The results show that when we are driving with circular motion and
constant reference values the drifting of the estimation still appears, as it is clear
just after three loops.

Calibration method 1: Sine function

The problem of unmanned ground vehicles equipped with GPS was considered
in [16]. In this paper the authors propose a method that improves such drifting.
This method aims to solve the problem of the current bias in yaw when there is
a GPS outage. A typical problem in our estimation is the lack of a very good
measurement of the real steering angle. The steering angle command given by the
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gamepad or the controller output can range between -30 and 30 degrees. This
relationship between the steering commands and the real steering output is highly
nonlinear. The real steering angle depends on the vehicle angular velocity, friction
and even the battery.

Therefore, the estimation will tend to drift even as soon as the outage occurs.
The method proposed in [16] uses a calibration routine as a sine function, as

B =pB+esin(B+7) (6.1)

where [ is the yaw angular position of the vehicle, B is the calibrated yaw and €
and v are parameters to calibrate the yaw. In order to calibrate these parameters,
we need to know first of all what the drifting angle is. For the first run we set the
maximum negative 6.y = —30° as steering angle and V. = 0.5 m/s as velocity
references, which yields clockwise rotation. During this time we pressed the GPS
outage simulator. The procedure to tune € and « in order to decrease the drifting
was as follows: firstly, by fixing v and then moving € from -2 to 2, until the best
performance was found; the results for this case are shown in the first column in
Fig. 6.4. Afterwards, we fixed € to the previous found value and then varying ~
from -180 to 180 degrees. A hint in order to find - easier was to trace two tangents
to the initial bearing angles of the estimation and the ground truth after the GPS
outage. The angle between these two tangents will be a good approximation for ~.
The best result was obtained for €, = 0.9 and ,, = —0.45 as shown in Fig. 6.4(f).

This calibration was done for the positive case as well, while keeping the same
reference velocity. The method to find the values was as mentioned above. For this
case we found ¢, = 0.8 and vy, = 0.48. After finding €, , and v, , for both cases, we
proceed to make these functions linearly dependent to the steering angle, in order
to improve the estimation, as shown in Fig. 6.5. In the future these functions can
be changed to polynomials of higher order, e.g., sigmoidal functions. This in order
to reach better approximations for middle values.

These parameters were tested by driving with both positive and negative steering
angles. As it can be seen in Fig. 6.6(a) before calibration the estimation drifted
largely when driving clockwise and anticlockwise. However, after calibration the
results are improved as shown in Fig. 6.6(b). It is important to add that if the
linearization step mentioned above would not have been done the result would have
been good just for one value of steering angle (the largest possible value), while for
any other case the estimation would have drifted, even at zero steering angle.

Calibration method 2: Rotation matrix

A similar approach is introduced in this section. It could be seen in the previous
method that finding the calibration parameters was not straight forward. In order
to calibrate in this case we use the same test environment as described above. This
time we fetch the data of this test and ran it in Matlab. The purpose of doing this
is to find the whole degree of rotation of the drifting. In order to obtain the real
drifting angle we have to know our position in the time instant when we lose the
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Figure 6.4. Calibrating first ¢ and then 7 so as to eliminate drifting in the yaw
angular position

signal. Afterwards, in order to find € we just have to rotate the ground truth pose
data points until matching the estimated pose data points. This can be done by
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Figure 6.6. Multiple loops clockwise and anticlockwise

using the rotation matrix,

cosa —sinao
sinae  cosa |-

This means that given a set of X = [z,y] data points we could find their pairs,
Xrot = [Trot, Yrot), rotated a radians as follows,

X, = RX (6.2)

After rotating our ground truth pose data points we obtained our ‘‘biased ground
truth”, that emulates the estimated pose. The results are shown in Fig. 6.7. Now,
we found out that the best value in theory for the drifting is around a = 7/8 for
clockwise rotation. Whereas o = —m/4 was obtained for anticlockwise rotation. As
done before, we found a linear relation between « and the steering angle in order
to provide better results for values between those values that were tested.
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Figure 6.7. Determining drifting in the yaw angular position

Either using (6.1) or (6.2) provides better results to the estimation. However, the
results found by using the second approach were slightly better, as well as simpler
to tune. All the future estimations use the second calibration method. We use
a(1)) by subtracting it to the current yaw angular position in the EKF estimation
algorithm, only during GPS outages.

As driving in circle is not the main purpose of an autonomous truck, we used
non-constant steering angle and velocity references in order to have a more complex
test. In this test the purpose was to test the capacity of the estimation when
driving 100% with no GPS signal before and after calibration. Without calibration
the results would be as shown in the upper side of Fig. 6.8, where drifting will
be very large even after the first loop. Whereas, after calibration the drifting is
reduced even for multiple loops. If the GPS data is available during less than 10%
of the loop the estimation improves largely as seen in 6.8(d), where the truck drove
for a little bit more than five loops.
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Figure 6.8. Driving autonomously through the road map

The individual block for the EKF estimation was proven to be functional for
fixed and variable steering and speed commands. The problems associated to the
sensors and to the real values of the input signals (steering angle and velocity) of the
estimator were compensated, decreasing the error in large extent. In the following
section we have to analyse the performance of the controllers before merging both

parts of the system.
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6.2.2. Controllers performance

In this section the performances of the steering controller and the velocity con-
troller are evaluated. Initially, the velocity PID controller gains, K,,, K, K;, were
tuned. After reaching the required performance for the velocity controller we tuned
the steering controller gains. Finally, we test the two controllers working together
while driving and following some waypoints on the road-map.

Velocity controller performance

The test for the velocity controller consisted in following waypoints on the road-
map while changing the reference velocity. The block diagram for this case is shown
in Fig. 6.9. Additionaly, for the implementation of the controller it was necessary
to low-pass filter the observed output velocity signal. This because the velocity
calculated by the simulated rotary encoder for velocity has a very noisy behaviour.
After this filtering the controller improved largely its performance.

Next waypoint Yo

in map

V, > > X =
User variable REF PID Velocity | el > X=[xy.0]

Velocity Controller U,

MoCap »
System

Figure 6.9. Block diagram for the system with velocity controller and fixed steering
reference

As design specification we were not looking for a very fast controller but a
controller that avoids all sort of overshooting or damping in the controlled variable.
Several values of the controller gains were tested in order to reach such specifications.
K, is chosen as the maximum possible value before the response become oscillatory.
The value of K; has to be small enough to avoid oscillations around the desired
velocity but large enough to reach such velocity. The oscillations are easy to detect
just by hearing when the truck is moving, because it has a shaky behaviour. The
selection of K; or even its use was a big question mark. After testing several values
of K, there was not a clear answer to it because most of the values in a range
between 0.05 and 0.2 provided very unstable performances. We decreased K, to
0.01 and we found a good example of the importance of K, in the velocity control.
The comparison between well tuned PI and PID controller can be seen in Fig. 6.10.

It is observable that in the PI controller the settling time is larger and during
Vrer = 1 the performance is quite violent, going rapidly out of the convergence
region. Therefore, we selected K, = 0.8, K; = 0.4 and K; = 0.01 as the parameters
of our velocity controller

44



6.2. EXPERIMENTAL RESULTS

1.4 T T

Ground truth velocity
1.2H Filtered velocity 7
Reference velocity | -
THLT T TROC e 5 B
Q
E 08 -
z
S o6t e e s 4 :
> f'f
0.4 —TT ZETE B
02k —— LAl e L -
0 I I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000
Time [s/40]
(a) K, =0.8, K; = 0.4, K4 = 0.0
1.4 T T
Ground truth velocity
1.2 Filtered velocity -
Reference velocty (. .
1] - - - Roc . e -
@ ~ 7 T data5
£ 08 -
2
'806, H Al s D B -
] . 73 Jd. o IR R T O
>
041 F; e B
0.2 =immsmtic =y -
0 I I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000

Time [s/40]

(b) K, = 0.8, K; = 0.4, K4 = 0.01

Figure 6.10. Velocity controller PID vs PI performance

Steering controller performance

The test for the steering controller was quite similar as the velocity control
test. In comparison to the velocity controller test, the reference cannot be provided
online by the user but fixed already to follow waypoints on the road-map; the block
diagram for this case is shown in Fig. 6.11.

In this case we show the results for different tuning gains. Initially, we set
K4 = K; = 0 and vary K, until reaching a control signal avoiding oscillations. We
require a fast controller in this case, otherwise we would miss the next waypoint in
sharp curves.

We needed to design a fast reaction for controlling the steering angle and a lower
reaction controller where high frequency oscillations could be filtered out in order to
avoid drastic changes in velocity. Selecting K}, = 0.8 together with a smaller value
of K; = 0.01 than before to permit faster changes and K; = 0.2 we had the best
response for our steering controller. To make the analysis even better we connected
the previous velocity controller to our steering controller, the performance is shown
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Figure 6.11. Block diagram for the system with steering controller and fixed velocity
reference
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Figure 6.12. Steering control and velocity control performance altogether

in Fig. 6.12.
At this point, the EKF estimator as well as both controllers were proven to be

functional and adequate for the needs of the system. Now, we have to integrate all
the block together.
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6.2.3. Integrated system performance

After both controllers were tuned and after testing the correct behaviour of
our state estimator we can proceed to integrate them all in a whole system. This
integrated system is shown in Fig. 6.13.

Next waypoint Orer + PID Steering Yo

in map - Controller
Ogst > Truck X =[xy,0]

User input Viee + PID Velocity

Velocity - Controller Uy

Vest
Velocity
Estimator
Kear =
est = [X.Y,Ol est EKF
. le—
Estimator

Figure 6.13. Block diagram for system with controllers and EKF estimator

It is important to add that in Fig. 6.13 the so-called ‘‘Velocity estimator’ is our
simulated rotary encoder for velocity whose output is connected to a low-pass filter
in order to avoid high-frequency components in the velocity signal. Two important
tests were done in this case. In both tests we would drive in the map following the
waypoints with the help of the discussed controllers.

Test 1: Short-time GPS outages

In the first test we simulate short GPS losses while driving. The result is shown
in Fig. 6.14.

We can see how the estimation works pretty well. A very important factor
to take into account is that after recovering the signal the estimation comes back
quickly to the real value. Therefore, we are able to drive with no problem for very
long time with this approach.

Test 2: Long-time GPS outages

In this test we simulate completely lost signal of the GPS. The purpose of this
test is to see how good the behaviour is under one loop. Especially if the drifting
affects the behaviour under one complete loop. The results is shown in Fig. 6.15,
where we illustrate the starting point of the GPS outage.

We can see in the simulation results that it is feasible to drive one loop with no
GPS signal. Indeed, we can drive during several loops with the downside that after
some loops we might leave the road indefinitely. The problem in this case is that we
will still have a small error being accumulated even though we are calibrating the
gyroscope; we are using a magnetometer for decreasing the error of the gyroscope
measurements; and even further calibrating for decreasing the initial bearing error
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Figure 6.14. Driving autonomously through the road map and simulating short-
time GPS outages in different tunnels
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Figure 6.15. Driving autonomously through the road map and simulating complete
GPS outage in a very large tunnel
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when losing the GPS signal. This error is unavoidable with the equipment used
in this project, but it can be improved by using other sort of sensors, like vision.
These tests were run in the SML and a video showing their results is available at !.

The vision performance chapter will be on hold for future research that can
hopefully compensate this drifting after a large number of loops.

'!On-board recursive state estimation for dead-reckoning in an autonomous truck:
http://youtu.be/nXpabU7yVSU
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Chapter 7

Discussion and conclusion

In this thesis work, we presented an Extended Kalman filter framework for
dead-reckoning in autonomous trucks equipped with a gyroscope and simulated
GPS, magnetometer and velocity rotary encoders. We designed proper discrete-
time controllers, one for the steering angle and one for the velocity. These con-
trollers were designed to reach certain criteria, which were proven to be met in the
performance evaluation. During the analysis of the velocity controller it was shown
the importance of using velocity low-pass filtering in order to improve the controller
performance. We took into account that due to the fact that both controllers have
integral terms it is important to bound the control signals to the real values that
the steering wheel and the motors can reach. This avoids wind-up effects in the
controller.

The estimation itself worked very well after dealing with previously detected
sensor issues. The gyroscope was calibrated in order to decrease the inherent phys-
ical drifting. This drifting was not eliminated in the first test it required also the
help of a simulated magnetometer to eliminate this error during certain headings.
After fixing the gyroscope measurements and ensuring that the velocity given by
the encoder was properly filtered we moved to the control signals to verify that the
physical values corresponded to the commands. We realised that it was not the
case. Therefore, when estimating during GPS outages there was an initial error
in yaw angular position that was propagated as a biased value during the whole
estimation. This was in part given by the difference between the real steering angle
command and the command sent by the real-time system. A previously studied
bearing pre-calibration method is tested and proved functional. This worked as the
initial idea to a new method that was introduced. This method used as a basis the
rotation matrix and a comparison between the ground truth data and the estimated
data after running one loop with no GPS signal. The method was also proven func-
tional. Both methods improved the estimation accuracy by reducing the error of
drifting associated to the bearing error when a GPS outage is reported for different
driving situations. A weakness of both methods is the lack of robustness when the
truck is turning with small angles. In the future, an auto-calibration method to find
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the parameters to eliminate this bearing error would improve the results. Another
idea might be to suggest polynomial functions of higher order in order to reach
better approximations for middle values when creating the function that relates the
parameters and the steering command.

Finally, it is important to mention that the test framework created in this thesis
can be extended in the future for more complex situations, including distributed
autonomous vehicles under real-life situations. The embedded device used in this
project was proven to be very reliable in terms of processing power and meeting
the desired time period; however, in some situations the wireless communication
failed for unknown reason, which forced the program to abort. Nevertheless, when
communications did not fail the real-time tasks were completed periodically in a very
deterministic way, which helped us control the system with no problem. A special
tip for the future users of myRIO is the importance of initializing correctly the
network-published shared variables and to fully understand how they work before
using it.

7.1. Applications and research outlook

This project forms a basis to provide a test platform for future research in the
Smart Mobility Lab at KTH for autonomous truck driving with the focus on long-
term navigation during GPS outages. However, this is just the beginning for soon-
to-be very complex driving situations using several embedded systems. The usage
of vision as discussed in the theory might improve vastly the control performance
of the system provided that the real-time system has enough processing power to
handle vision.

There are plenty advantages of vision in vehicles that belong from level one
to four of autonomy as described in 1.1.1. The advantages are the number of
applications that can be added to commercial vehicles in order to improve safety.
Some examples are listed as follows:

= Lane detection

s Traffic sign recognition

= Light source recognition
= Vehicle detection

= Pedestrian detection

= Free space information

= Road surface information

Each one of these functions have as a main source of information vision. In this
project we introduce the usage of lane detection in modelled trucks in the SML by
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using simulated camera. A test platform was created in order to simulate camera
data in front of the vehicle and to perform lane detection. This simulated block had
as result datasets of points that worked as a trajectory to follow, in the shape of
waypoints. Future research can be addressed to adapt this block to directly handle
real application by using cameras.

In the future lane detection can be tested initially in a fixed environment, i.e.,
just an image of the road that will be processed in order to extract the curbs of the
street. After this extraction such points will be used in order to make an estimation
of the trajectory to follow. After successful completion of this algorithm we can try
it directly on-board of the truck using a camera, while driving. This information
will be analysed in the on-board computer and we will see if it is a feasible option
in terms of CPU processing power. If it is not computationally possible we might
try doing the processing in the main computer by sending the image through the
network in a fixed time and then returning the detected trajectory to the vehicle
as a simple array. The problem that has to be studied in this second option is how
much the time delays affect the system performance.

The final goal is to have vision that: takes images as fast as possible without
affecting the control performance; these images of the road will be then processed
online, either in the on-board unit or in the central computer, and then we could
detect edges with some vision algorithm, for instance a canny edge detector. These
data points will be processed in order to deliver a dataset of waypoints as the one
we are simulating in our fixed-maps, that will be our trajectory to follow.
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Appendix A

Kalman Filter algorithm

In the following section the most important steps of the mathematical derivation
for the implemented KF are briefly shown.

Prediction
A = Appg—1 + Brug (A.1)
T x4+ Tsv1,, cos by — 1.0Tsv1,0) sin Oy
=¥ = yi + Tsv1,, sin 6y + Tsv1,0), cos Oy (A.2)
0 K Hk + (Tsvlk tan ¢0)/L =+ (Ts¢kvlo (tan2 ¢0 + 1.0))/L
- T Y2 X3 Y11 X2 X3
Y= Y1 Yo Yoz =Ap|Xa Y Yo Al +Q; (A.3)
Y31 X3z M3z, Y31 Y32 X33

311 =211 + Q1 — X31Tsv1, sin Oy — Tsvy, sin 0g(S13 — T33Tsv1, sin Op)
Y19 = Y19 — X32Tsv1, sin Oy + Tsvy, cos Op(X13 — B33Tsv1, sin Gp)

Y3 = Y3 — Y331 501, sin b

o1 = Yoy — Tsvy, sin Op(Ba3 + B33Tsv1, cos by) + X31Tsv1, cos by

Yo = Yoy 4 Q2 + Tsv1, cos o(Xa3 + X33Tsv1, cos bp) + L32Tsv1, cos o
Y93 = Yoz + Xa3Tsv1, cos by

Y31 = Xg1 — Za3Tsv1, sin by

Y39 = Y39 + Xa3Tsv1, cos by

Y33 = X33+ Qs
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APPENDIX A. KALMAN FILTER ALGORITHM

Update

(K11 Kip Kig _ _
Ky = |Ka1 Kz Ko| =3,Cl (CiXpCrl 4+ Ry)™? (A.4)

(K31 K3 Ks3|,

[kden + T22%33R1 — T332 Ry —X19333 Ry — X135 Ry) Y19X03Rs — X13X00 R3

= —Y01833 R — To3Xa1 Ry Kden + S11333R2 — $13531 R2) —R3(Z11323 — T13%21))/ Kden
So1850R1 — X9oXg1 Ry —Y11850Re — £19351 Ry (Kden + $11522R3 — $12501 R3) / Ken

where,

Kaen = 211592333 — 211593032 — 212291233 + 212223031 + 213521 032 — 213522231
K11 = (kden + X22X33R1 — Y23X32R1) / Ken, (A.5)
Ko = (—X12333R2 — X13X32R2) / K den,

K3 = (X12323R3 — Y13%22R3) / Kaen
K2 (=91 833 R — Y3231 R1)/ Kien
= (kgen + 211233 R2 — 13531 R2)/ Ken,
K23 = (—R3(Z11223 — $13%21))/ Ken
K31 = (Z91332R1 — Y2231 R1) / Kgen
Ksy = (=X11332 R — Y1931 R2) / Kgen
K33 = (kden + 11220 R3 — 12501 R3) / Ken,
tk = iy, + Ky (21 — Cfiy,) (A.6)
Ty — K13(0 — 20,) — K11(Tk — 2a,) — K12(Tg — 2y,
= | — K23(0k — 29,) — Ko1(Th — 22,,) — Ko2(Tp, — 24,
O — Ks3(0k — 20,) — K31(Tk — 22,) — K2(Up — 2y,)
- 1-Kin  —Ki2 —Ki3 S Y2 X3
Yr=I-KiCp)Xp=| —Ka 1—-Ko —Ko3 Yo1 Yoo Y3 (A7)

—K31 K3s 1 — Kz, Y31 Y32 Mg .

—gll(Ku —-1) - K12§21 — K13§31 —212(1(11 —-1) - K12§22 — K13§32 —§13(K11 —-1) - K12§23 - K13§33
—2o1 (Koo — 1) — Kon ¥t — Ko3¥g1 —Xoo(Koo — 1) — K219 — KogXao  —Xo3(Koo — 1) — Ko1X13 — KogXiss
—Y31(K33 — 1) — K31511 — K3X01 —Y32(K33 — 1) — K31810 — K39X90  —X33(K33 — 1) — K31513 — K32X03
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Appendix B

Extended Kalman Filter algorithm

The main difference between the Kalman filter and the Extended Kalman filter
algorithm is that the prediction uses the nonlinear version of the non-holonomic
vehicle shown in Eq. (3.2) instead of the linearised version as in Eq. (A.1).

Therefore, in order to use the EKF we have to replace Eq. (A.1) in the prediction
step by Eq. (B.1).

Prediction

Ay = g(pk—1, uk) (B.1)
T vicos(fx—_1) T
= 1y| = | wsin(0p—1) |Ts+ |y
0|, G (tan(¢pr—1)) 0|, .

and proceed in the same way as in Appendix A because the observation matrix
C=1L
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