

Development of an Electronic

Medical Record System

 Utveckling av ett elektroniskt journalsystem

Jemal Ramadan
Niclas Södermark

Examensarbete inom information- och
programvarusystem,

grundnivå

Högskoleingenjör

Degree Project in Information and Software Systems

First Level

Stockholm, Sweden 2014

Kurs II121X, 15hp

TRITA-ICT-EX-2014:20

ii

Sammanfattning
Sofiaängen (http://sofiaangen.com/) är en psykoterapeutisk dagverksamhet och

skola som ligger på Södermalm i Stockholm. Sofiaängen riktar sig till

ungdomar i åldern 14 till 20 med psykiska och sociala problem.

Det nuvarande systemet som används av Sofiaängen för att hantera

patientjournaler är i form av textfiler placerade i en delad mapp på en Mac-

server, vilket varken är strukturerat, effektivt eller flexibelt. Syftet med detta

examensarbete har därför varit att hitta det bästa sättet att implementera ett

journalsystem för patientjournaler på, samt att utforma, utveckla och driftsätta

den valda lösningen.

Arbetet delades in i fyra olika faser. Under den första fasen genomfördes en

förstudie där möjliga implementeringar (fristående eller webbaserad) studerades

och resultatet överlämnades till beställaren som fick välja den mest lämpliga

lösningen. De tre övriga faserna var att utforma, genomföra (och testa) och

distribuera den valda lösningen, samt att skriva en användarmanual.

Den valda lösningen, att skapa systemet som ett fristående program,

implementerades med JavaFX:s plattform och MySQL:s databas-server. Vi

använde en iterativ arbetsprocess för att stegvis utveckla de funktionella kraven.

Detta för att kunna utvärdera vårt arbete tidigt, utifrån feedback på utvecklingen

från beställaren, innan nästa uppsättning krav genomfördes. Examensarbetet har

resulterat i ett journalsystem som uppfyller alla krav på funktionalitet och

design av användargränssnittet som krävdes av Sofiaängen.

Nyckelord: EMRs, JavaFX, journalsystem

iii

Abstract
Sofiaängen (http://sofiaangen.com/) is a psychotherapeutic day activities center

and school located in Södermalm in Stockholm. Sofiaängen targets young peo-

ple between the age of 14 and 20 and who have psychological or social prob-

lems.

The current system used by Sofiaängen for handling patient medical records is a

Microsoft word file-system on a Mac server, which is neither efficient nor flex-

ible. The objective of this bachelor thesis has therefore been to find the best

way of implementing an EMRS as well as designing, developing and deploying

the selected solution.

The work was divided into four different phases. The first phase was conduct-

ing feasibility study where possible implementations (standalone and web

based) were studied. The result was submitted to Sofiaängen so they could

make a selection. The second, third and fourth phases were respectively de-

signing, implementing (and testing) and deploying the selected solution.

The selected solution was to implement the system as a standalone application.

The system was implemented using the JavaFX platform and a MySQL data-

base server.

We used an iterative software development model in order to implement the

functional requirements incrementally and in doing so we were able to evaluate

our work early, before the next set of requirements were implemented after get-

ting feedback on the development from Sofiaängen.

The Degree project has resulted in an EMRS which fulfills all of the functional

and look-and-feel requirements required by Sofiaängen.

Keywords: EMRS, JavaFX, journalsystem

http://sofiaangen.com/

iv

Acknowledgement
We would like to thank all the personnel at Sofiaängen for their hospitability

and cooperation specially psychotherapist Ingegerd Rindström who was our

contact at Sofiaängen and who provided us with everything we asked for with

great patience.

Finally we would like to thank our examiner Anders Sjögren for being there

always for us when we needed him.

v

Table of Contents
Electronic Medical Record System (EMRS) ... I

Sammanfattning ... ii

Abstract .. iii

Acknowledgement .. iv

Terminology .. viii

Abbreviations ... viii

1 Introduction ... 1

1.1 Background and problem motivation ... 1

1.2 Goals .. 1

1.3 Limitations .. 1

1.4 Objectives (Concrete Goals) ... 1

1.5 Chapters ... 2

. 2 Background .. 3

2.1 Definition of terms ... 4

3 Method ... 6

3.1 Preliminary study .. 6

3.2 Development method ... 6

3.2 Project report ... 8

3.3 Testing .. 8

3.3.1 Unit Testing ... 8

3.3.2 Integration Testing ... 9

3.3.3 System Testing... 9

3.4 Documentation .. 10

4 Solution options .. 11

4.1 Solution Options ... 11

4.1.1 Stand-Alone vs. Web-based EMRS ... 11

4.1.2 JavaFX vs. Swing .. 11

4.1.3 Database vs. File system ... 12

5 Implementation ... 13

5.1 Functional requirements .. 13

5.2 Functionality .. 13

5.3 Architecture and Design .. 13

5.3.1 Software Architecture .. 14

5.3.1 Design of the Graphic User Interfaces (Views) 17

5.3.2 Database Design ... 18

file:///C:/Users/Niclas/Desktop/Thesis-report%202014-01-19.docx%23_Toc377901052

vi

5.4 Implementation.. 19

5.5 Deployment .. 20

5.6 Testing .. 21

6 Results ... 22

6.1 Functionality .. 22

6.1.1 Logging in ... 22

6.1.2 Administrator .. 23

6.1.3 User ... 27

6.2 Logical division .. 32

6.3 Database .. 34

6.4 Documentation .. 34

7 Conclusions .. 35

7.1 Validity .. 35

7.2 Reliability .. 35

8 Future Development .. 36

8.1 Hash or encrypt Passwords .. 36

8.2 Logging for debugging ... 36

8.3 Support for the handicapped (Low vision) .. 36

REFERENCES .. 37

Appendix A: System Requirement Specification (SRS) 39

Appendix B: Architecture Document .. 39

B1. Introduction .. 42

B1.1 Purpose ... 42

B1.2 Scope ... 42

B1.3 Definitions, Acronyms and Abbreviations 42

B1.4 References .. 42

B2. Architectural Representation .. 43

B3. Architectural Goals and Constraints .. 43

B3.1 Technical Platform .. 43

B3.2 Transaction .. 43

B3.3 Security .. 43

B3.4 Persistence ... 43

B4. Use-Case View ... 44

B4.1 List of use cases .. 44

B4.2 Use case diagram .. 45

B4.3 Use case description ... 46

vii

B5. Logical view ... 47

B5.1 Architecture Overview – Package Layering 47

B5.2 Architecturally Significant Design Packages (Layers) 47

B5.2.1 View (View-Layer) ... 47

B5.2.2 Controller (Controller-Layer) ... 48

B5.2.3 Model (Model-Layer) .. 50

B5.3 Deployment View ... 52

Appendix C: Sample Source Code ... 53

Appendix D: Sample generated MR PDF .. 57

viii

Terminology
Abbreviations
EMR(S) Electronic Medical Record (System): A patient's medical record

 being stored in digital format rather than in traditional paper files.

MVC Model-View-Controller design pattern that separates view from logic

GUI Graphic user Interface

CRUD Create, Read, Update and Delete (CRUD) are the four basic functions

of persistent storage [1]

SRS System Requirements Specification

1

1 Introduction

1.1 Background and problem motivation
An Electronic Medical Record (EMR) system is a rapid and efficient method to

preserve and manipulate critical medical information. It enables users to keep

track of the medical records over time and saves them a lot of time in their work

hence improving the service they provide. Today most health care facilities in

Sweden use an EMRS.

Sofiaängen is one of those health care facilities that do not use an EMRS. So-

fiaängen is a psychotherapeutic day time activities center and school on

Södermalm in Stockholm. This psychotherapeutic center and school is for

young people between the age of 14 and 20 years and the school is an inde-

pendent school with secondary and high-school levels.

Sofiaängen's school caters to young people who have psychological and/or so-

cial problems and who are in need of special support.

Prior to this project assignment Sofiaängen did not have an electronic medical

record system. Their medical records and patients' information were stored in

Microsoft Word files located in a shared folder on a Mac server. This is not a

rapid and efficient method to preserve critical health information. The personnel

had to enter and add health information in a free and non-organized style which

made the medical journals lack uniformity and the collection and transmission

of information unsystematic. Therefore we were given an assignment to create

a stand-alone EMRS that solves the above mentioned problems.

1.2 Goals

The purpose of this project was to research how to best implement an EMRS

that is rapid, efficient, secure and easy-to-use and then develop an EMRS that

has a backup storage and user friendly interface which enhances the uniformity

of the entry and presentation of patient information. The software should allow

access only to authorized personnel and help the personnel to efficiently store

and share patient information in a secure way.

1.3 Limitations
 We decided from the beginning that we were going to use NetBeans IDE

[2] to develop the system since we are very familiar with NetBeans and

have been using it for a long time.

 We decided to create the system in the Java programming language because

it is the programming language we are most familiar with besides the lan-

guage being cross-platform.

1.4 Objectives (Concrete Goals)
This project's goal was to achieve the following two-fold objective:

1. Operational objective – An EMRS would be designed and developed

that fulfills all the customer's requirements.

2

2. Documentation objective - The EMRS should include documentation in

the form of a user manual, architecture document, installation manual

and a software requirements specification document.

1.5 Chapters
Here is a short description of the chapters in this report:

Chapter 1: Introduction - presents the project assignment with goals, limita-

tions and methods.

Chapter 2: Background Material - explains the basic theory (concepts, tech-

nologies and techniques) needed to understand the report.

Chapter 3: Method - describes the software development model we used and

the research we made prior to the development process.

Chapter 4: Solution options - describes the different implementation methods

and technologies evaluated and used by the application.

Chapter 5: Implementation - explains how the selected implementation meth-

od and technologies in chapter 4 were implemented in the application.

Chapter 6: Result - describes the results achieved at the end of this project.

Chapter 7: Conclusion - conclusions of this assignment.

Chapter 8: Future Development - authors thoughts about possible future im-

provements to the application.

3

. 2 Background
There are many commercial EMR systems available today. According to the

Healthcare Information and Management Systems Society (HIMSS)

(http://www.himss.org/), there are more than 400 vendors for Electronic

Medical Records systems in the USA alone [3]. Even though we couldn’t find

exactly how many EMRS vendors there are here in Sweden, we looked into

some of the EMRS that are available today or are currently being used.

Today in hospitals, it is six medical record systems that dominate the Swedish

market: TakeCare , Cosmic, Melior, Infomedix, VAS (Vårdadministrativt

System) and SYSteam Cross. To understand how widely these systems are used

in Sweden look at figure E1 in Appendix E as reported by the newspaper

Sjukhusläkaren [4]. TakeCare is owned by a software company called

CompuGroup Medical (CGM)[5], Cosmic by Cambio Healthcare Systems[6],

Melior by Siemens and Infomedix by INFOMEDIX [7].

VAS is owned, developed and maintained by Norrbotten county council in

cooperation with Jämtlands and Halland county councils [8] while SYSteam

Cross’s development projects are controlled by Sörmland county council. These

systems are structured similarly. All are built in modules, but the modules are

different in name and in content. Most of the features (functionalities) are

similar in all the systems. All systems have functions for care documentation

(medical recording), drug prescription, drug list and referral and response. They

also have various planning functions such as calendar, booking and similar. In

all of these systems, except VAS and SYSteam Cross, it is possible to install

these modules independently which makes them adaptable to different health

facilities that do not need all the functionalities of the system [9]. These systems

can be used or adapted to all three parts of the patient care facilities; hospital,

psychiatry and primary care [10].

PsykBase [11] is another EMRS which is specifically developed for

psychologists, psychotherapists and psychiatrists and is suited for small

practices. It is available as a web based and as a standalone application. Some

of the features offered by this system, besides keeping records especially suited

for psychiatrists/psychologists, are accounting, calendar, report generation etc.

One downside of this system is that the standalone version doesn’t work on

Mac computers. Another downside is, it is designed for single user not for a

group of users.

There are even many EMRS that are licensed under an open source license or in

the public domain for use in the healthcare industry. OpenEMR [12] is one

example. It is a Free and Open Source Practice management and Electronic

Medical Records software application and it features fully integrated electronic

medical records, practice management, scheduling, electronic billing,

internationalization, and free support. It can run on Microsoft systems, Unix-

like systems (Linux, UNIX, and BSD systems), Mac OS X and other platforms

[12]

http://www.himss.org/
http://www.ne.compugroupmedical.com/produkter--tjaenster/takecare1/takecare.aspx
http://www.cambio.se/vara-losningar/
http://www.nwe.siemens.com/sweden/internet/se/healthcare/it-losningar/melior/pages/melior.aspx
http://www.infomedix.com.au/what-we-do/infomedix-total-solution/system-overview/

4

Here are some of the free EMRS without going into details. For detailed

information one can follow their respective references. VistA [13], GNU Health

[14], Open Source Clinical Applications & Resources (OSCAR)[15].

These electronic medical records systems, which are commercially available,

are big and have a lot of functions which are not necessary for a small private

facility like Sofiaängen besides being expensive.

2.1 Definition of terms
In this section, we give a general description of the background to the

technologies, platforms and libraries that have been relevant in the development

of this medical record system.

EMR (Electronic Medical Record) - a patient's medical and health related

history in digital format. It stores electronically all medical information of a

patient’s past and present health status and health care.[16]

Standalone application - a standalone application refers to an application

running on a desktop environment such as Windows or Mac platforms that is

the code runs on the client as well as the processing of data. The software may

reside on the same machine or on a remote server (can be accessed without the

Internet). [17]

Web-based application - a web-based application refers to any program that is

accessed over a network connection using the HTTP protocol. Web-based

applications often run inside a web browser. However, web-based applications

may also be client-based, where a small part of the program is downloaded to a

user’s desktop, but processing is done over the Internet on an external server.

[17]

JavaFX - a set of graphics and media packages that enable application

developers to easily design create and deploy Rich Internet Applications (RIA)

and Desktop applications that behave consistently across multiple platforms.

Built on Java technology, the JavaFX platform provides a rich set of graphics

and media API with high performance hardware-accelerated graphics and media

engines that simplify the development of data-driven enterprise client

applications. [18]

JavaFX Scene Builder - a key development tool for the JavaFX platform. It

provides a visual layout environment that lets you quickly design user interfac-

es (UI) for JavaFX applications without needing to write any code. As you build

the layout of your UI, the FXML code for the layout is automatically generated.

JavaFX Scene Builder provides a simple yet intuitive interface that can help

even nonprogrammers to quickly prototype interactive applications that connect

UI components to the application logic. [18]

FXML - an XML-based language that provides the structure for building a user

interface separate from the application logic code. [18]

5

Swing - a set of packages included in the Java Standard Edition and is used for

creating graphical user interfaces (GUI: s). [19]

iText - a free and open source library for creating and manipulating PDF files in

Java. [20]

Backup - the procedure for making extra copies of data that can be called on in

the event that the original is either lost or damaged.

PreparedStatement - a Java object that represents a precompiled SQL

statement.

6

3 Method

3.1 Preliminary Study
Before starting our project, a preliminary study was made to look into currently

existing EMRS and see if we can find one that could fulfill Sofiaängen re-

quirements. We also made a study to determine whether to implement the sys-

tem as a stand-alone or web-based application in the case that we had to devel-

op the system ourselves. We also researched what the law says regarding cloud

services. We found out that there are a lot of rules and regulations to be fol-

lowed as well as agreements to be made between the cloud service provider and

the data controller demanding the cloud provider meets the requirements of the

Swedish Personal Data Act [21]in order to use a cloud service for storing pa-

tient data. The results of the inqueries were then presented to Sofiaängen in

order for them to make an informed decision. Based on that decision we were

able to compare and choose different technologies (techniques) for the different

parts of the system. The techniques which we compared and examined to create

the system were JavaFX vs. Swing and different file systems vs. databases. See

chapter 4 for the different techniques considered.

3.2 Development Method
There are several software development models that play a big role in guiding

the software development process. Each one has its pros and cons, and we had

to choose one that we thought was appropriate for our project.

At the beginning of this project, Sofiaängen didn't exactly know what they

wanted and they had to discuss among themselves to figure that out. It was also

difficult for us to understand all their needs exactly as they required and as a

result we started with an incomplete requirement specification.

3.2.1 Candidate Development Methods
Here are the process models we considered and the reason we rejected them.

Waterfall model - This takes the fundamental process activities of

specification, development, validation and evolution and represents them as

separate process phases such as requirements specification, software design,

implementation, testing and so on. The downside we found with this model is

that it should only be used when the requirements are well understood and

unlikely to change radically during system development, which was not the

case here as we have explained earlier.[22]

Spiral model - In this approach the software process is represented as a spiral,

rather than a sequence of activities with some backtracking from one activity to

another. Each loop in the spiral represents a phase of the software process.

Thus, the innermost loop might be concerned with system feasibility, the next

loop with requirements definition, the next loop with system design, and so

on.[22]

7

This model focuses on identifying and eliminating high-risk problems (for

example, if the intention is to use a new programming language, a risk is that

the available compilers are unreliable or do not produce sufficiently efficient

object code [23]) by careful process design.[24]. But we didn’t expect high-risk

problems in our software development as it is a small application.

Prototyping model [24] - This model requires developing a prototype to

illustrate to the customer the functionalities of the system and gain a better

understanding of the customer’s needs. But our system is small and we didn’t

need to create a prototype.

3.1.2 The Chosen Development Method
We decided to use an iterative and incremental development process [22]. The

reason we chose this model is to enable us to show the customer, iteratively, a

system that can demonstrate some new functionality in action early in the

development process without having to develop the whole system. As a result

we get feedback from the customer early and the customer gets the opportunity

to evaluate if their requirements are being met early.

The general iteration process in the iterative and incremental development

process looks as follows (figure 3.1).

Figure 3.1 The Iterative process used in this project

8

1. Discussion with the customer to gather new or additional requirement

specifications.

2. Study the specification for realism, consistency and completeness. Re-

quirements that do not meet these criteria are further discussed with the

customer.

3. Design how to best implement the specifications. Here data structures,

interface representations and algorithmic details are designed.

4. Implement the design. This includes writing (or improving) source code,

creating the database (data and data structures) and testing.

5. Function testing is performed to ensure that the system(new added func-

tionalities) is working correctly and efficiently.

6. The final step is to demonstrate the result to the customer for feedback.

The work was divided into smaller iteration cycles and reported as various de-

mos during the last step of every iteration phase.

The project was intended to have the following iteration cycles:

1. An initial graphical user interface (GUI) was designed using the JavaFX

Scene Builder and presented to the customer.

2. A more refined GUI and login functionality that goes all the way to a

database were developed.

3. The rest of the functionality (except converting medical records to pdf)

were implemented e.g. creating and deleting (inactivating) a patient or

user, adding records to a patient, giving different rights to a user etc.

4. At last the functionality of converting patient records in the database to

PDF format was implemented.

3.2 Project report
We decided to follow the template for technical-report-writing given to us by

our supervisor.

We started by writing the introduction, background theory, method, solution

options and implementation chapters first since they didn't need the completion

of the system. The rest of the report: result, discussion and future development

were written after we completed the system and had deployed it.

3.3 Testing
To make sure or demonstrate that our system’s functions were working

according to the requirement specifications of Sofiaängen we had to perform

different tests and debugging as often as necessary. To accomplish testing we

utilized the three levels of testing unit testing, integration testing and system

testing [22] but before any kind of testing could be done we had to install the

MySQL server [25] as well as create a database instance in the MySQL server,

since that is the system’s storage (see section 4.1.3).

3.3.1 Unit Testing
In our software the different units consist of:

 Java entity (object) classes that represents the business logic, and their

respective methods.

9

 The Java controller classes

 The database handler Java class. This class handles all the interaction

and queries to the database.

Unit testing starts with the methods in the database handler class because it is

the basis for subsequent tests depending on the database handler. Hence a test-

class, for the object classes and the database handler class, connects to the

database using a method in the database handler class and creates the database-

tables (if they are not already created) and tests all the features (attributes and

operations) of the object classes. Here the results are shown as data entered into

or retrieved from the database.

The views, defined in FXML files created by the JavaFX Scene Builder, were

easy to develop and could easily be connected to their corresponding scene

controller classes (see section 5.3.1 for further information). In order to test the

methods in the controller classes independently, it was not necessary to create

specific test-classes because we could use the GUIs to test these methods by

calling them with appropriate input parameters. Here unit testing ends in class

testing, that is, when the interaction between the attributes and the methods are

tested. The results are then shown in the standard output.

The GUI components (TextFields, Buttons etc.) were tested by entering

different kinds of input. For example, entering too short or too long password

and verifying that the system responded with the appropriate error message.

3.3.2 Integration Testing
The GUIs and their corresponding controller classes are already integrated in

conducting unit tests on the methods of the controller classes. There are six

scene controller classes each handling one of the six views/scenes and one main

controller class that handles communication between the scene controllers and

the backend classes (database and PDF-writer). Hence the integration test

includes parameter passing and method invocation between the main controller

and the other six controllers, between the main controller and the object classes

and between the main controller and the database handler class. Here Thread

integration testing [26] is used, that is, integrating the set of classes required to

respond to one input or event for the system. Each thread is integrated and

tested individually and then integrated with the already tested and integrated

threads. The integrated threads must be tested in case the new added thread

causes side effects. For example, the authentication and authorization

functionality in our software requires the interaction of the following files

LoginScene.fxml (the view), LoginController.java (the scene controller) and

DatabaseHandler.java (the backend database class). See section 5.3.1 for further

information on these files.

3.3.3 System Testing
Since we developed every part of the system ourselves, we don’t see much

difference between integration and system testing when we are testing it

10

ourselves, because here, similar to the integration tests, we would make sure

that all the components interact correctly and transfer the right data at the right

time across their interfaces. However, in the system testing, in addition to

detecting defects, we tested that all requirements were being satisfied. That is,

demonstrating, using simulated test data, that the system has properly

implemented the requirements. System testing has also to be done on the

customer site. Hence, we also performed deployment testing and then

acceptance testing [26].

3.3.3.1 Deployment Testing
Sofiaängen have both Mac and windows computer, therefore, we had to install

MySQL server first and then install the application and make sure it works on

both operating systems.

3.3.3.2 Acceptance Testing
Here Sofiaängen would be the ones to test the system for its functionality, that

is, to make sure the system worked and that it met their requirements.

3.4 Documentation
As part of the documentation of the system the following documents were

created:

 Requirements specification document: specifying the user requirements.

 Architecture document.

 Installation document: describes how the system can be installed and

configured.

 User manual: helps the user to understand how to use the system.

11

4 Solution options

This section aims at presenting and explaining the different implementation

methods and technologies we considered for the EMRS.

 4.1 Solution Options
This section aims at presenting the two implementation options we considered

for the EMR system. The first option is stand-alone application and the second

option is web-based application.

4.1.1 Stand-Alone vs. Web-based EMRS

4.1.1.1 Stand-Alone EMRS
This is a medical records program in which the software may reside on the

same machine or on a remote server.

Advantages:

 Better performance (speed).

 No Internet connection needed.

 Full control over the application and data. Hence, better security.

Disadvantages:

 Manual updating may be required.

 Most of the time they are only usable within a certain location.

4.1.1.2 Web-based EMRS
 A web-based EMRS runs on the web server. For this type, all one needs is an

Internet connection.

Advantage:

 Convenient for users to access the application from any location using

the Internet.

Disadvantages:

 No full control over own data and application (controlled by third

party). Hence vulnerable to different threats or risks

 No access to own data and application when there is no Internet

connection.

4.1.1.3 Selected implementation
Having considered the pros and cons of both implementations Sofiaängen

selected to implement the EMRS as a stand-alone application based on security,

connectivity (availability) and cost factor. See REQ 10, 11 and 12 in the SRS

document in appendix B. In other words, a standalone application fulfills the

aforementioned nonfunctional requirements.

4.1.2 JavaFX vs. Swing
Even though Swing is the only GUI toolkit we have used when developing

different applications in the past we chose JavaFX to build our GUI not based

12

on comparison with Swing but for the simple reason that Oracle recommends

using JavaFX when building new applications.

Some of the benefits of using JavaFX are:

Familiar Java development tools: Developers can use their favorite Java

development tools, such as the NetBeans and Eclipse IDEs, for development of

JavaFX applications. All the standard IDE features, including syntax

highlighting, auto-completion, interactive step-through debugging, and

profiling are available for JavaFX developers. In addition, JavaFX Scene

Builder offers an intuitive visual layout environment. [27]

Deploy on the desktop or in the browser: JavaFX applications can be deployed

either as desktop applications or in browser applets with the help of the Java

browser plugin. The improved Java browser plugin provides JavaFX

applications a secure way to run inside a browser. When deployed on the

desktop, JavaFX applications get the benefits of better performance and native

operative system integration. [27]

4.1.3 Database vs. File system
Both databases and file systems are used for storing data with integrity and they

both provide concurrency but databases have some important features that make

them better data managers. These features that database have and most file-

systems lack are:

Transaction is the property that an operation, that changes the contents of the

data, has to succeed or fail in its entirety. That means if that operation fails after

partially changing the data then the data would return to the state it was before

the operation started and if it succeeds then the changes are stored.

Fast Indexing is being able to query the database based on different attributes.

Attributes can be, for example, patient record types like psychological records,

treatment records etc. Hence we can retrieve all patient records or only psycho-

logical records for example.

Snapshot is a copy of the database taken at a particular point in time without

interrupting the services provided by the database. This copy can be used as a

backup in case of an error.

Relational View of Data Databases allow us to define relationships between

different data and then store these relationships themselves with the data in the

database. Hence this property enables us to retrieve related data easily.

So as a result of the above mentioned features that databases have, we decided

to use MySQL server as data storage for our system and convert the medical

records to PDF as backup.

13

5 Implementation
The method we used consisted of four phases. The first phase consisted of the

preliminary study presented in Chapter 3 section 3.1. The second phase was the

design of the program. During the third phase implementation and tests were

performed. This phase was repeated several times as new bugs or requirements

came up. The fourth phase consisted of writing the user manual for the system

and deploying the finished EMR system in the live environment.

5.1 Functional requirements
We met with Sofiaängen several times to collect the different functional

requirements they had for the system. We categorized these functional

requirements into two key functional areas that are critical to the definition of

an EMR: (i) basic demographic and clinical health information, and; (ii)

security and confidentiality. See the System Requirements Specification (SRS)

in appendix A.

5.2 Functionality
To determine which functionalities were actually possible to implement

discussion was held with the customer. We explained to Sofiaängen's

representatives that all requirements were feasible to implement except

requirement number 7, REQ 7: Report generation, i.e. converting stored data

into Microsoft Word format (see the System Requirements Specification (SRS)

in appendix A). The reason for this is because we could not find any Java tool

that converts Java objects to Microsoft Word files. Therefore, it was decided to

convert the medical records to PDF format instead.

5.3 Architecture and Design
The following figure depicts a simplified concept model of the system by show-

ing the main entities (Java objects) and their relationships with each other and

other controller and help objects.

14

Figure 5.1 Conceptual model of the EMRS

5.3.1 Software Architecture
Even though we have developed an architecture document for the system (see

appendix B: Architecture document) and explained the architectural overview

of the system in it, we think it is necessary to mention some things about the

architecture pattern we chose and the reasoning behind it.

We decided to use the MVC (Model View Controller) architecture-pattern [22].

The reason is we knew more and more requirements would come from the cus-

tomer and using the MVC pattern would enable us to separate the three layers,

view, controller, and model, from each other resulting in fewer dependencies.

Hence adding new code for new requirements would be relatively easy. For

example, adding a new view or changing an existing view could be done with-

15

out any changes to the underlying data in the model. And that is the reason we

chose MVC pattern so the system can be maintained and improved while being

developed and in the future. It also made it easier to write unit tests while main-

taining and extending our application and it also enabled us to divide the work

between us.

In a typical MVC architecture, a controller would trigger state changes to the

model based on user events in the view as picture 2 shows. The model then

notifies the view of the change. [22]

Figure 5.2 Traditional MVC.

We decided to use another variant of MVC pattern that completely decouples

the view and the model as figure 5.3 shows. The controller takes care of the

bindings between view-model and model-view. We chose this pattern because

of the growing concern that the observer pattern is prone to error [28]and the

systems doesn’t allow deleting anything important related to medical records

from the database except storing new records hence the absence of an observer

will not cause problems.

 Figure 5.3 Alternative MVC-variant.

16

View Layer - Consists of several JavaFX GUI:s a.k.a. scenes. It accepts input

and/or commands from the user and passes it to the model layer through the

controller layer and it also presents the data coming from the model layer

through the controller layer.

This layer contains in total six FXML files (one for each separate scene). These

files define the user interfaces of the system. The view layer also contains one

Java class (Journalsystem.java) with the main method and it is responsible for

starting the application. These six files are: Journalsystem.java,

LoginScene.fxml, AdminScene.fxml, SearchScene.fxml, PatientScene.fxml,

ShowRecordScene.fxml, and DialogScene.fxml.

For the UML class diagram see figure 11 in section 6.2 Logical division or in

Appendix A: Architecture Document, section BB5.2.1 View (View Layer).

Controller layer - This layer sends commands to the model to update the

model's state. It also sends commands to the active view to change the view to

reflect the current state of the model.

This layer contains seven controllers and one interface. They are:

LoginController.java, AdminController.java, SearchController.java,

PatientController.java, ShowRecordController.java, and DialogController.java

and Controller.java.

For the UML class diagram see figure 11 in section 6.2 Logical Division or in

Appendix B: Architecture Document, section B5.2.2 Controller (Controller

Layer).

Model layer - This layer implements the business logic. It is the layer that

interacts with the database. It retrieves data from the database and stores data

entered by the user in the database. For example saving user or patient data,

saving patient and records associations, storing and retrieving patient records,

converting records to PDF files.

See figure D1 in Appendix D for a sample of a patient's medical journal

converted into a PDF file.

The classes in this layer are: Patient.java, User.java, JournalRecord.java,

DatabaseHandler.java, JournalDocWriter.java, PersonNumber.java and

DateHandler.java.

For the UML class diagram see Figure 11 in section 6.2 Logical Division or in

Appendix A: Architecture Document, section 5.2.3 Model (Model Layer).

17

5.3.1 Design of the Graphic User Interfaces (Views)
To organize the user interface elements in the manner that we had imagined and

thought would be user-friendly we needed to use a flexible layout manager that

would allow us to position elements in an intuitive way.

Instead of coding the interfaces ourselves using FXML we used JavaFX

SceneBuilder, see the figure 5.4 below, to design our interfaces. All we had to

do was drag and drop the UI components where we wanted them and give the

required properties to the components, like assigning unique names to the

components. As a result the desired FXML file for each designed view was

generated automatically. JavaFX SceneBuilder also allowed us to register a

controller class (for each generated FXML file) that handles the user

interaction. The look and feel of our interfaces were achieved using cascading

style sheets (CSS).

Figure 5.4 Design of the login view using JavaFX Scene Builder

Figure 5.4 above shows, as an example, the login view/scene for the Sofiaängen

EMRS being designed using JavaFX Scene Builder. The file patient.css is the

style sheet used for the login view and the controller class for this view is

18

journalsystem.controller.LoginController.java as shown in circled with red

circles. When the "Logga in"-button is pressed, the registered controller,

LoginController.java, gets the user name and password, authenticates the user

(via the model) and decides the next course of action (show login error message

or allow the user to log in to the system).

5.3.2 Database Design
The EMRS uses a MySQL server for data storage.

MySQL is one of the world's most widely used open source database and is

available in a community version that runs under the GPL (GNU General Public

License) and is free to use. It is also available in several versions that contain

additional functionality and support services that can be obtained for certain

expenses. MySQL can be used for most platforms and is used by many large

companies and websites like Google, YouTube, Adobe and Facebook. [29]

We chose not to use the O/R (Object Relational) – mapping [30] in our

application because the database was relatively small and not particularly

complex. We used JDBC and PreparedStatements and mapped tables against

our own entity classes which are just ordinary POJO:s (Plain Old Java Objects)

[31]. These entity classes are:

1. User.java: Contains information about a user including name, password,

and privileges.

2. Patient.java: Contains information about a patient including social

security number, name, address and care giver.

3. JournalRecord.java: Contains information about a journal entry

including journal type, category, care giver and patient.

We thought that these POJO:s were enough to represent all the information and

relationships that exist between the care givers (medical doctor, psychiatrists,

nurses and personal assistants) and the patients.

On the MySQL server, we created a normalized database called journal_db that

contains five tables as can be viewed in the database structure (design) as

generated by MySQL Admin tool in the figure on the following page.

19

Figure 5.5 shows the relationship that exists between patient, journal and user entities.

According figure 5.5 a user (care giver) can take responsibility for many

patients and can create many journals for all the patients. A patient can have

only one responsible care giver and many journals while a journal belongs to

only one patient. A journal must belong to one category and one type.

5.4 Implementation
To develop, test and debug the Sofiaängen EMRS, we used local environments,

i.e. our own computers, and consist of the following;

• A client computer running Windows 7 Enterprise.

• NetBeans IDE 7.3, for developing and debugging of the system and it also

supports JavaFX 2

• MySQL Community Server for data storage.

For the system to show or enter the requested information, events caused by the

user must be handled. Events are notifications that a user has pressed a key,

clicked a button or moved a mouse. Registered event handlers in the controllers

then receive the event and provide a response.

As we have mentioned earlier FXML source files are XML files (generated by

the JavaFX Scene Builder) in which we defined our user interfaces.

With each FXML file, it is possible to associate a controller class defined for

that FXML file. That controller class will make the link between the UI (the

objects defined in the FXML) and the application logic. To each object defined

in FXML we can associate an fx:id and/or onAction attribute. The value of the

id must be unique within the scope of the FXML, and is the name of an instance

variable inside the controller class, in which the object will be injected and the

20

value of the onAction is an event handler method in the controller. [32]

As an example, figure C2 and C3 in Appendix C show parts of the

SearchScene.fxml file and its controller (SearchController.java) respectively. In

this example suppose we want to have access to the TextFields and to handle

the event caused by pressing the button (see figure C1 in Appendix C) then we

will need to add fx:ids attributes to the TextFields and onAction attribute to the

button in SearchScene.fxml file, and declare variables and define an event

handling method in the controller class with the same names as the values of

these attributes. The variables and the method must be annotated with @FXML.

See the red-underlined lines in figures C2 and C3 in Appendix C.

Since now the interfaces and the controllers are connected, the controllers now

can get or store the required information by accessing the database with the

DatabaseHandler.java file in the model. Figure C4 (Appendix C) shows part of

the DatabaseHandler.java where a controller can use to get a patient by social

security number. The database handler uses PreparedStatements to query the

database. See Appendix C for sample source codes.

5.5 Deployment
We started our deployment processes by installing MySQL server on

Sofiaängen Mac server and since Sofiaängen is a small clinic with few

computers, we decided to package the application in the form of an executable

JAR file. The application package is available on a local drive and one can start

the application by double-clicking the application JAR file. This JAR file

contains a .properties file that contains the following properties:

 URL to the Sofiaängen Mac server and MySQL port number.

 Name of the database instance.

 Username and password to the database.

 URL to the base directory where the patients' printed PDF records

would be stored.

See the “Deployment View” in the Architecture Document in Appendix B.

21

5.6 Testing
Unit, integration and system testing on our development environment went

smoothly, just as they were described in section 3.3.1 Unit Testing, 3.3.2

Integration Testing and 3.3.3 System Testing. However on site, at the

customer’s work place, during deployment testing we found some bugs that

took a long time to figure out.

One of the bugs we found during deployment testing on site was related to file

naming in Mac (for the application folder) and as we found out (by accident)

after we had spent a lot of time to solve this bug is that the Mac operating

system doesn’t accept spaces in folder names, when executing JAR files.

Hence it is better to avoid spaces if you can.

The second bug is related to formulating the URL for the base directory, where

the patients' PDF files are to be stored, in the properties file to accommodate

special characters (ä, å and ö). We thought that the character encoding of the file

system of Sofiaängens server doesn’t match the character encoding of the client

computers, where the application is located. This leads to the PDF files not

being stored in the location specified in the .properties file. This problem was

solved when Sofiaängen helped us by removing the alphabets: ä, å and ö from

the name of the folder that contains their patients’ records.

 Right now the system can successfully convert records to PDF (see Figure D1,

Appendix D) and store them in the specified location.

22

6 Results
The result of this project is a fully functional EMRS that fulfills all the require-

ments of the customer. It has a user-friendly GUI and shows relevant error and

informative messages to make it easy for the user to understand what is happen-

ing.

6.1 Functionality
There are only two actors in the system. One is the administrator and the other

is the user which can be anyone who has the credentials to log in to the system.

Users have titles assigned to them when they are created, like "behandlare"

(care giver), "sjuksköterska" (nurse), "psykoterapeut" (psychotherapist) and

"konsultläkare" (consulting doctor).

The use cases description and UML diagram for all the actors and system op-

erations can be found in the Architecture Document, B4 Use Case View in Ap-

pendix B.

6.1.1 Logging in
Every user must login in to the system before he/she can have access to the sys-

tem.

The following UML sequence diagram describes how the main components of

the system interact to accomplish the log in use case and describes how the in-

ternal parts of the component interact to achieve the result required.

Figure 6.1 UML sequence diagram explaining a user logging in.

23

Figure 6.2 below shows the login view (GUI) where users can select a role from

the dropdown list and enters their password to login.

If the log in was successful, the user will have access to either the

“Aminstratör” UI or the “Användar” UI based the role of the user.

 Figure 6.2 The login UI showing the two possible roles, Användare and Administatör.

6.1.2 Administrator

The UML Sequence Diagram, figure 6.3, on the next page describes how the

main components of the system interact to perform all Administrator system

operations and describes how the internal parts of the component interact to

achieve the result required.

24

Figure 6.3 UML sequence diagram for all the actions an administrator can perform in the

AdminScene.

25

Figure 6 below shows the administrator UI before any event (pressing a button

or choosing from a dropdown menu) is caused by the administrator.

The administrator UI allows the administrator to create and/or edit patients and

users (see figure 6.5).

 Figure 6.4 The administrator UI

The administrator can also give the users different rights of administration and

change their password if need be (see figure 6.5).

26

Figure 6.5 Administrator UI showing user rights check boxes and input text fields for new

or an already existing user.

The blue rectangle shows the parts of the UI that appear when the Ny anvä-

ndare/New User button (red circle) is pressed and also when a user is chosen

from the black-circled drop down menu (Välj användare/Choose user) but this

time the fields are filled with a hypothetical new user being created. The green

circled drop-down menu indicates the title of the new user while the orange

circled part is when a user forgets his/her password, it enables the admin to re-

set the password. The aktiv användare/active user checkbox must be checked in

order for a user to be able to log in to the system. This action can be used to

inactivate a user that for example has stopped working at the company and

hence should not have access to the system any more.

27

Figure 6.6 Shows a new patient being created and a user, which we have created earlier (in

Figure 6.5), which is can now be selected in the list of users, is assigned to be the responsi-

ble person for this new patient. Setting this patient to active (using the "aktiv patient"-

checkbox) enables the patient to be seen by users of the system.

6.1.3 User
The following UML Sequence Diagram describes how the main components of

the system interact to perform all User system operations and describes how the

internal parts of the component interact to achieve the result required.

Due to lack of space on the next page, we excluded the log out part for the User

actions in the sequence diagram (figure 6.7) on the next page, but it works the

same as the Administrator’s log out (see figure 6.3 above).

28

Figure 6.7 UML sequence diagram of all the actions that can be performed as a user.

29

As a user, one can search for a patient by first name, last name or social security

number. Figure 6.8 below shows the view for searching and listing patients and

figure 6.9 shows a patient being searched by first name. Choosing a patient in

the “Resultat” section in figure 6.9 leads to the view shown in figure 6.10,

where the patient’s records are shown and where a new record can be created

for the patient. A created (saved) patient record can be signed which means it is

stored permanently and cannot be deleted or edited. If it is not signed then it can

still be edited and deleted.

 Figure 6.8 The search patient view before any event.

30

Figure 6.9 The same patient created earlier being searched by a user, also created earlier,

using the patient’s first name.

31

Figure 6.10 The view showing a chosen patient’s medical records.

The blue-circled part is used to choose the type of patient record to be shown in

the list (this enables a user to sort by type of record) and the black-circled part

(RadioButtons) are used to choose the type of patient record to create for this

particular patient. These RadioButtons show also what privileges, i.e. the types

of records the user can create. Here, for example, the user can create only

Behandlingsjournal/Treatment records and Omvårdnadsjournal/Care records.

The green-colored patient records in the table are signed and the gray ones are

unsigned. Selecting a green-colored record leads to a new view showing the

details of the record while selecting a gray one enables the user to edit, delete or

sign the record. The red circled button causes all the records for this particular

32

patient in the database to be written as PDF in the server’s directory structure,

see figure D1 in Appendix D for sample patient medical record in PDF format.

The text area is where a new patient record is written.

6.2 Logical division
As we have described earlier in chapter 5, the application is based on the MVC

pattern and as a result we created the following JavaFX package/file structure

(see figure 6.11 on the next page).

The view-package holds all the FXML files representing the different views of

the system. Each of these FXML files has a corresponding controller file in the

controller-package. These controller files use the Java classes in the model-

package to perform system operations. The model-package contains the Java

objects that represent patient, record and user. It also contains the Data-

baseHandler.java class (connects to database and performs CRUD operations)

and some helper classes, DateHandler.java (checks for correct date format) and

PersonNumber.java (checks social security number format). The Jour-

nalDocWriter.java in the model-package is a class used by the PatientControl-

ler.java class in the controller-package to convert the medical records in the

database to a file system in the server as PDF files.

33

Figure 6.11: The systems logical division

34

6.3 Database
Since we decided to use MySQL database and Sofiaängen had no previous da-

tabase set up, we installed and configured an instance of the MySQL communi-

ty server, which is an open source database. The database was located on their

Mac server.

6.4 Documentation
After we developed the system completely to the customer’s satisfaction, we

prepared System Requirement Specification (SRS) document (see Appendix A),

architecture document (see Appendix B), user manual and installation guide

document for the developed EMRS. The installation guide is very small and

easy so we decided to include it in the user manual.

35

7 Conclusions

The goal of this degree project was to build an EMRS for a medical clinic (So-

fiaängen behandling och skola). The system was developed in accordance with the

requirement specifications and it fulfills all the requirements (including the look-

and-feel requirement of the GUI) given to us in the form of use cases and descrip-

tions. Of course, as always, some things could have been done better both code-

and design-wise if we had more time. However, we are completely satisfied with

the system we developed and so are our customers.
We used NetBeans IDE and JavaFX to develop the system. This turned out to be

very good choice for us, because eventhough it took us quite some time to learn

and to get started with Javafx (JavaFX is relatively new and there aren’t many use-

ful tutorials available that could help us in this project), we found JavaFX to be

easy to develop applications with.
The iterative work model led to our early development of a product we could

test and run. With small incremental changes, we could easily identify bugs in

the new versions. We think this model has worked well for this type of project

that requires flexibility and adaptation in which many additional requirements

came during the implementation phase. The result was successful and we were

able to deploy and test the system in the customer’s workplace even though we

still have to fix the URL issue (mentioned in chapter 5.6) so the system stores

the converted PDF files in the specified location rather than in a default loca-

tion, which we think is a minor problem that can be fixed.

7.1 Validity
We made sure that the system we developed satisfies the specified requirements

in the SRS by conducting system tests using test data. System testing was also

successfully demonstrated to our customer and our customers were more than

happy with the result. Hence we are believe that the system meets the custom-

er’s requirements.

7.2 Reliability
We can safely say that this system is reliable for a number of reasons. One rea-

son is we have tested all the features of the system on site, in customer’s work

place, and found the system to work perfectly without any system failure (ex-

cept for the issue described in chapter 5.6). Even though we have not conducted

acceptance testing yet, the customers have been testing and playing with the

system for a long time now and have not reported any system failure yet. Se-

cond reason is that the system users are very few (less than 10) and MySQL can

handle more than that number of concurrent users (threads) very easily [33]. We

don’t expect any workload related system failures. In case of system failure, the

data will not be compromised because it will be securely stored in the MySQL

database and will be backed up as PDF separated from the database.

36

8 Future Development
In this section we will describe some of the areas that have been identified as in

need of further work but have been left for future development due to the time

limit and priority requirements.

8.1 Hash or encrypt Passwords
For now passwords in the MySQL database are stored as plain texts since the

database itself is protected by the security of the server. However, in the future

it would be better to use some encryption algorithm to store the passwords.

8.2 Logging for debugging
We have handled all the pre-defined error scenarios (that we could think of) that

can occur by sending informative messages to the user. Still the application can

be debugged more easily with some logging tool which can provide more de-

tailed information about the errors.

8.3 Support for the handicapped (Vision-impaired)
Right now the system has a fixed font size but in the future it would be more

convenient for the user to be able to change the font size.

37

REFERENCES
[1] Martin Heller, ”REST and CRUD”,

http://www.infoworld.com/d/developer-world/ , Retrieved 2013-08-01

[2] NetBeans, “NetBeans IDE” https://netbeans.org/, Retrieved 2013-11-13

[3] HIMSS, ” Selecting the Right EMR Vendor”, http://www.himss.org

[4] Christer Bark and Martin Hardenberger, ” Landstingen behåller

kritiserade journalsystem”, Sjukhusläkaren 1 maj, 2012,

http://www.sjukhuslakaren.se

[5] CompuGroup Medical CGM, www.compugroupmedical.com, Retrieved

2013-11-17

[6] Cambio Healthcare Systems, www.cambio.se Retrived 2013-11-17

[7] INFOMEDIX, http://www.infomedix.com.au/, Retrieved 2013-11-17

[8] Norrbottens Läns Landsting, NLL, ”VAS-Portalen”,

https://www.nllplus.se

[9] Cecilia Lundberg, “Jämförelse av elektroniska patientjournalsystem”,

Uppsala University, Disciplinary Domain of Science and Technology,

Master thesis no: ISSN: 1650-8319, UPTEC STS 11 015, 2011, 111 pages

[10] Addison Wesley SLIT, ”IT-stöd inom landstingen i Sverige”, 2009, page 9

[11] PSYKBASE, http://www.psykbase.se/ Retrieved 2013-11-17

[12] OpenEMR, http://www.open-emr.org/ , Retrieved 2013-11-18

[13] VistA, http://www.ehealth.va.gov/VistA.asp , Retrieved 2013-11-18

[14] GNU Health, http://www.gnuhealth.org/ , Retrieved 2013-11-18

[15] Open Source Clinical Applications & Resources (OSCAR),

http://oscarcanada.org/

[16] Kirch, Wilhelm, Encyclopedia of Public Health. Volume 2, 2008

[17] Martin Löfberg, Patrik Molin, ”Web vs. Standalone Application”, Ble-

kinge Institute of Technology, School of Engineering, Master thesis no:

MSE-2005:07, 36 pages.

[18] Oracle, ”JavaFX 2 Documentation”, http://docs.oracle.com/javafx/ , Re-

trieved 2013-08-12

[19] Oracle, "javax.swing Package Summary",

http://docs.oracle.com/javase/7/docs,Retrieved 2013-10-25

[20] iText, http://itextpdf.com/ , Retrieved 2014-01-19

[21] Datainspektionen, ”Molntjänster” http://www.datainspektionen.se/

[22] Sornmeville Ian, Software Engineering, 9th Edition, New York, Pearson

Education, 2011

[23] Sornmeville Ian, Software Engineering, 8th Edition, London, Pearson

Education, 2007

[24] B. B. Agarwal, S. P. Tayal, Mahesh Gupta, Software Engineering and

Testing, Sudbury (Massachusetts), Jones & Bartlett Learning, 2010

[25] MySQL, http://www.mysql.com/ , Retrieved 2013-11-25

[26] Roger S. Pressman, Software Engineering A Practitioner’s Approach,

New York, McGraw-Hill, 7th Edition,2010

[27] Oracle, ”JavaFX Frequently Asked Questions”, http://www.oracle.com/,

Retrieved 2013-08-12

[28] Infoscience, “Deprecating the Observer Pattern”,

http://infoscience.epfl.ch/record/176887

http://www.infoworld.com/d/developer-world/rest-and-crud-impedance-mismatch-927
https://netbeans.org/
http://www.himss.org/files/HIMSSorg/content/files/selectingemr_flyer2.pdf
http://www.sjukhuslakaren.se/2012/05/01/landstingen-behaller-kritiserade-journalsystem/
http://www.ne.compugroupmedical.com/sverige.aspx
http://www.cambio.se/vara-losningar/
http://www.infomedix.com.au/
https://www.nllplus.se/webb/Lansteknik/Lansteknik/Verksamhetssystem/VAS-portalen-/
http://www.psykbase.se/
http://www.open-emr.org/
http://www.ehealth.va.gov/VistA.asp
http://www.gnuhealth.org/
http://oscarcanada.org/
http://docs.oracle.com/javafx/
http://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html
http://itextpdf.com/
http://www.datainspektionen.se/lagar-och-regler/personuppgiftslagen/molntjanster/
http://www.mysql.com/
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#2
http://infoscience.epfl.ch/record/176887

38

[29] MySQL, Why MySQL? http://www.mysql.com/why-mysql/ , Retrieved

2013-09-02

[30] Kevin Roebuck, Object-Relational Mapping, Newstead: Emereo Pty Lim-

ited.,2011

[31] MartinFowler.com, "MF Bliki: POJO" , Retrieved 2013-12-12

[32] Oracle, “Connecting SceneBuilder edited FXML to Java code”,

https://blogs.oracle.com/connecting_scenebuilder_edited_fxml_to, Re-

trieved 2013-08-30

[33] MySQL, Documentation, http://dev.mysql.com/doc/, Retrieved 2013-01-

17

http://www.mysql.com/why-mysql/
http://www.martinfowler.com/bliki/POJO.html
https://blogs.oracle.com/jmxetc/entry/connecting_scenebuilder_edited_fxml_to
http://dev.mysql.com/doc/innodb-plugin/1.0/en/innodb-performance-thread_concurrency.html

39

Appendix A: System Requirement
Specification (SRS)

A1. Introduction

A1.1 Purpose

The purpose of this document is to specify the requirements for an Electronic

Medical Record System (EMRS). The intended audience are Sofiaängen’s staff

(http://sofiaangen.com/)

A1.2 Scope
The EMRS shall assist Sofiaängen staff to store and manipulate patient medical

records quickly and efficiently. The system shall give access only to authorized

personnel. The EMRS shall convert medical record to PDF.

A1.3 Definitions, Acronyms, and Abbreviations
EMRS: Electronic Medical Record System

GUI: Graphical User Interface.

REQ: Requirement

A1.4 References
No formal documents have been referenced in this document

A1.5 Overview
This document provides a high-level description of the EMRS. It identifies the

involved users and explains their roles. It describes the general constrains and

any assumptions and dependencies there are on the system. The document then

describes the specific requirements.

2. General Description

A2.1 Product Perspective
The EMRS is self-contained software that stores and manages patient medical

records and is intended for use on any platform that supports java.

2.2 Product Functions
The following lists the main system functions:

 Patient and User registration: The system shall allow the registration

of new users and patients by an administrator.

 Medical Record creation: The system shall allow the creation and

management of psychotherapy, health (physical), treatment and nursing

(care) record and also shall enable the user to assign category to these

records.

http://sofiaangen.com/

40

 Report generation: The system shall convert medical records to

Microsoft word.

 Authentication and authorization: The system gives access only to

authorized personnel.

2.3 User Characteristics
The EMRS will be used by Sofiaängen treatment personnel

(behandlingspersonal) and since the system is small and has a user-friendly

GUI, no formal training is required but some practice is required by the user to

be able to use it properly.

2.4 General Constraints
The system must be user-friendly and intuitive.

2.5 Assumptions and Dependencies
It is assumed that the users have adequate skill with using computers and com-

puter software

3. Specific Requirements

3.1 Functional Requirements
REQ 1: Adding new patients – The system shall collect and display essential

demographic patient information such as: first name, last name and social

security number.

REQ 2: Adding new users – The system shall enable a new user to choose a

username and a password.

REQ 3: Privileges – The system shall allow the allocation of different patient

record creation privileges to users.

REQ 4: New patient records – The system shall allow a user (based on his/her

privileges) to create psychotherapy, treatment, medical and nursing records

REQ 5: Category choice – The system shall enable the user to choose a

category from a list for each new record being created.

REQ 6: Storing patient records – The system shall allow the user to save and

sign patient records. A saved only record can be edited but a signed record can

never be edited again.

REQ 7: Report generation – The system shall convert all patient records to

Microsoft Word.

41

3.2 Non-Functional Requirements

3.2.1 Security

REQ 8: Authentication and authorization – The system shall provide a means

to authenticate a user identity using a username and password before enabling

the user to perform any functions based on the user’s privileges.

REQ 9: Backup – The system shall ensure data protection by setting up a

backup system. Backup of EMR data should be automated within the system

wherever possible to ensure consistency

REQ 10: Control of data – The system shall provide full control over own data.

3.2.2 Reliability

REQ 11: Availability – The system shall be available at all times. (And there is

no need for accessing the system remotely through the Internet)

3.2.3 Economic Constraint
REQ 12: Expense – The system shall not incur recurring expenses

42

Appendix B: Architecture Document
Architecture Document

Electronic Medical Record System
Version 1.0

B1. Introduction

B1.1 Purpose
This is the Software Architecture Document (SAD) of the Electronic Medical

Record System (EMRS) developed for Sofiaängen. It describes the software’s

architecture, i.e. it gives a comprehensive architectural overview of the EMRS.

It is intended to capture and convey the significant architectural decisions

which have been made on the system.

B1.2 Scope
The scope of this SAD is to outline to the overall design of the system

considered to be architecturally significant. It contains information relating to

the architectural design of the software, the Structure of the Database, and of

the physical server hosting the database.

B1.3 Definitions, Acronyms and Abbreviations
EMRS: Electronic Medical Record System

SAD: Software Architecture Document

UML: Unified Modeling Language

MVC: Model View Controller

MySQL: Relational database management system (RDBMS)

ACID: Atomicity, Consistency, Isolation, Durability

SSN: Social Security Number

FXML: XML-based language for describing user interfaces in JavaFX

platform [2]

B1.4 References
[1] Sornmeville Ian, Software Engineering, 9

th
 Edition, New York, Pearson

Education, 2011

[2] Oracle, ”JavaFX 2 Documentation”, http://docs.oracle.com/javafx/

http://docs.oracle.com/javafx/2

43

B2. Architectural Representation
This document details the EMRS architecture using the use case view, logical

view and deployment view, using UML diagrams where appropriate.

B3. Architectural Goals and
Constraints

B3.1 Technical Platform
The EMRS will be deployed as a platform-independent java jar-file on each

Sofiaängen computer and will be connected to a MySQL database installed on

Sofiaängen server.

B3.2 Transaction
Transaction will be handled by MySQL’s storage engine, InnoDB. MySQL 5.5

and later versions use it by default. It provides the standard ACID-compliant

transaction features.

B3.3 Security
Sofiaängen currently have a secure network which allows access to authorized

personnel only and this EMR system will reside within the security blanket of

this network but even so, the application will also implement some basic securi-

ty features, such as

 Authentication: Login using at least a user name and a password

 Authorization: according to their privileges, users must be allowed to

perform some specific actions.

B3.4 Persistence
 Persistence of data will be handled by creating a relational database in MySQL.

44

B4. Use Case View
This view describes the use case view of the software architecture, that is, it

describes the set of scenarios and/or use cases that represent some significant

functionality of the system.

B4.1 List of Use Cases
The use cases in this system are listed below:

1. Login (as admin or as a user)

2. Create/edit patients

3. Enter full name and ssn

4. Assign care-giver

5. Create/edit users

6. Choose username and password

7. Assign, read and/or write Patient record, privileges

8. Enable/disable patients and users

9. Search patients by name and/or ssn

10. View/read patient records

11. Write/edit patient records

12. Assign category

13. Save/sign, create new or edit existing records

45

B4.2 Use Case Diagram
The following diagram depicts the use cases in the system.

46

B4.3 Use Case Description
The architecturally significant Use Cases are described below.

1. Login

This Use Case occurs when the administrator or a user wants access to

the system. The system requires a username and a password to

authenticate the user and give access to the system based on his/her

privileges.

2. Create/edit patients

This Use Case occurs when an administrator wants to create a new

patient or wants to edit a patient’s profile. A patient’s full name and

social security number is required for a new patient. A care-giver or

responsible personnel is assigned to the newly created patient.

3. Create/edit users

This Use Case occurs when an administrator wants to create a new user

or wants to edit a user’s profile. This requires choosing a username and

password by the user being created.

4. Assign read and/or write Patient record privileges

This Use Case occurs when an administrator is creating/ editing a user

and wants to give the user different writing and/or reading privileges

regarding patient records (medical, psychotherapy, treatment and

nursing/care)

5. Search patient by name and/or ssn

This Use Case occurs when a user wants to find or search for a patient

using either name/ssn only or using both name and ssn.

6. View/read patient records

This Use Case occurs when a user has already searched for and found a

certain patient and wants to see or view this patient’s records.

7. Write/edit patient records

This Use Case occurs when a user has already searched and found a

certain patient and wants to write new patient records for this patient or

when the user wants to edit a saved patient record. For each new patient

record created, a category must be assigned from a list of categories.

8. Save/sign, new/edited, records

This Use Case occurs when a user has already searched and found a

certain patient and has written a new record or edited a saved record for

this patient and wants to save or sign the new/edited patient record. A

saved patient record can be edited while a signed record can never be

edited.

47

B5. Logical View
This view shows and describes the composition of the most important classes in

packages and subsystems, and the organization of these subsystems into layers.

The logical view of the EMRS is made up of the 3 main Layers: View layer,

Controller layer, and Model layer based on MVC architecture pattern [1]. The

MVC pattern separates elements of the system, allowing them to change

independently. For example, adding a new view or changing an existing view

can be done without any changes to the underlying data in the model. The

layers are implemented as packages.

Class diagrams are also included to illustrate the relationships between

architecturally significant classes and packages (layers).

B5.1 Architecture Overview – Package Layering
The diagram below shows the system (functionality) organized into separate

layers, and each layer only relies on the facilities and services offered by the

layer immediately beneath it.

B5.2 Architecturally Significant Design Packages (Layers)

B5.2.1 View (View Layer)
This layer is responsible for receiving mouse and keyboard input data and/or

commands from end users to the system and presenting output results from the

system to the end user.

48

This layer contains 6 fxml files. These files define the user interfaces of the

system. It also contains one java class with the main method hence it is

responsible for starting the application.

B5.2.2 Controller (Controller Layer)
The controller manages access to the model and the view and coordinates the

flow of data between them. The view is updated by the controller with data

from the model based on user input.

The following diagram shows the class diagram of the classes in this layer and

their associations. The classes show only the important methods and fields.

49

50

B5.2.3 Model (Model Layer)
The model manages the behavior and data of the application, responds to

requests for information about its state from the view, and responds to

instructions to change state from the controller. It also accesses the database

and the server’s file system directly to store and retrieve information. The

diagram below shows the important classes in the model layer with their

associations

51

52

B5.3 Deployment View
The EMR system is deployed as a jar file on every workstation while the

MySQL database is installed on a Mac server.

The UML deployment diagram below shows the deployment of the EMRS on

the workstations and on the Mac server.

53

Appendix C: Sample Source Code

 Figure 12 shows the user interface for searching a patient

Figure C1 The search scene/view. Here the different search fields are circled.

54

Figure C2 The FXML file, SearchScene.fxml, which defines the user interface in figure C1

(the red-circled part)

55

 Figure C3 shows the controller file (SearchController.java) of the FXML file,

SearchScene.fxml, shown in Figure 11

56

Figure C4 The database handler file of the system showing only the method that gets a

patient by social security number.

57

Appendix D: Sample generated MR
PDF

Figure D1 A sample patient's medical records in PDF format. The red circled part is the

header that appears on every new page.

58

Appendix E: Survey

Figure E1 Regions that have chosen the same system for all healthcare documentation in the

county.

	Dubbelsidig Final Thesis Report (Niclas Södermark and Jemal Ramadan).pdf
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

