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Abstract

A comparative study on the impact of different fluxes in
a discontinuous Galerkin scheme for the 2D shallow

water equations
F. Rasolofoson

Department of Mathematical Sciences,
Faculty of Sciences,

University of Stellenbosch,
Private Bag X1, Matieland 7602, South Africa.

Thesis: MSc
December 2013

Shallow water equations (SWEs) are a set of hyperbolic partial differential
equations that describe the flow below a pressure surface in a fluid. They are
widely applicable in the domain of fluid dynamics. To meet the needs of engi-
neers working on the area of fluid dynamics, a method known as spectral/hp
element method has been developed which is a scheme that can be used with
complicated geometry. The use of discontinuous Galerkin (DG) discretisation
permits discontinuity of the numerical solution to exist at inter-element sur-
faces. In the DG method, the solution within each element is not reconstructed
by looking to neighbouring elements, thus the transfer information between el-
ements will be ensured through the numerical fluxes. As a consequence, the
accuracy of the method depends largely on the definition of the numerical
fluxes. There are many different type of numerical fluxes computed from Rie-
mann solvers. Four of them will be applied here respectively for comparison
through a 2D Rossby wave test case.
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Uittreksel

Vergelykende studies oor die impak van die verskillende
strome in diskontinue Galerkin metodes vir 2D vlak

water vergelykings
(“A comparative study on the impact of different fluxes in a discontinuous Galerkin

scheme for the 2D shallow water equations”)

F. Rasolofoson
Departement van Wiskunde,
Fakulteit van Wetenskap,

Universiteit van Stellenbosch,
Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MSc
Desember 2013

Vlakwatervergelykings (SWEs) is ’n stel hiperboliese parsiële differensiaal-
vergelykings wat die vloei onder ’n oppervlak wat druk op ’n vloeistof uitoefen
beskryf. Hulle het wye toepassing op die gebied van vloeidinamika. Om aan die
behoeftes van ingenieurs wat werk op die gebied van vloeidinamika te voldoen
is ’n metode bekend as die spektraal /hp element metode ontwikkel. Hierdie
metode kan gebruik word selfs wanneer die probleem ingewikkelde grenskon-
disies het. Die Diskontinue Galerkin (DG) diskretisering wat gebruik word
laat diskontinuïteit van die numeriese oplossing toe om te bestaan by tussen-
element oppervlakke. In die DG metode word die oplossing binne elke element
nie gerekonstrueer deur te kyk na die naburige elemente nie. Dus word die oor-
drag van informasie tussen elemente verseker deur die numeriese stroomterme.
Die akkuraatheid van hierdie metode hang dus grootliks af van die definisie
van die numeriese stroomterme. Daar is baie verskillende tipe numeriese stro-
meterme wat bereken kan word uit Riemann oplossers. Vier van hulle sal hier
gebruik en vergelyk word op ’n 2D Rossby golf toets geval.
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Chapter 1

Introduction

1.1 General introduction
The humans are always faced with natural challenges. The impacts in their
life are good or bad, and they need to understand the science behind them
for the seek of issues and/or profits. Scientists and engineers have provided us
with ways of understand the workings of these physical facts.

For instance, mathematical modelling involves in creating a model that
described the problem. The problem becomes represented by a differential
equation, and thus becomes a mathematical problem.

Solving differential equations is another challenge. Most of them are dif-
ficult to solve analytically, and some do not have solution at all. Thus one
uses numerical methods for the resolution. The numerical methods are used
to provide approximate solutions to those differential equations, and they have
to assure the rate of convergence, the accuracy, and the completeness of the
solution. The adapted method therefore can be different from one to another
problem depending on the features and conditions required. Considering a
problem consisting on solving differential equations, numerically, one uses a
finite number of values of a given function. So the algorithm is designed to
compute the solution of the given differential equation from these finite num-
ber of values. Since this is just an approximation, no matter how accurate
the method is, it will never provide the exact solution. An error is always
generated from the computation, this is called the truncation error. In any
given method, the maximum truncation error is proportional to the constant
time step ∆t to the power p, where p is known as the order of the method. A
high-order method, that is a method with great value of p, is usually regarded
more efficient and accurate than a low-order method for the same computation
resources. But sometimes, the best method is of lower order, depending on the
error tolerance of the problem. It may run faster and give the same accuracy
as the higher order one.

In this work, the shallow water equations (SWEs) are going to be solved

1
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CHAPTER 1. INTRODUCTION 2

numerically using the spectral/hp element discontinuous Galerkin (DG) meth-
ods, and the results for different types of fluxes are going to be compared. The
SWEs are a set of nonlinear hyperbolic partial differential equations (PDEs)
describing the flow below a pressure surface in a fluid. The SWEs can be
derived from the Euler equations for the motion of fluid. The general char-
acteristic of the SWEs is that the vertical dimension is much smaller than
the horizontal scale; thus, from the conservation of mass, we can average over
the depth to delete the vertical dimension. In the domain of fluid dynamics,
we frequently come across this typical property; thus the SWEs are widely
applicable. The shallow fluid flows are commonly observed in the real world
such as the atmosphere on the earth and the lava drifting from the peak of a
mountain, flood waves in rivers and surges, tide and are also used in different
contexts in meteorology.

1.2 Previous works and results concerning the
shallow water equations

This section summarises some of previous works related to the SWEs. Many
different methods, different domains of computation, and different test cases
of study are presented.

Paper 1 (Schwanenberg et al. (2000)). This paper presents a numerical so-
lution for the SWEs based on Runge-Kutta discontinuous Galerkin method
(RKDGM). Mathematical expressions of the SWEs and adaptation of the
RKDGM to the SWEs are presented for one-dimensional transient flow. The
HLL numerical flux is chosen to approximate the fluxes along the element
boundaries. A comparison between analytical and computational results ap-
pears is made and it was satisfactory so that the SWEs can be applied on
dam-break type problem. Applications to one and two-dimensional hydraulic
test cases are given, which are computations of one-dimensional dam-break,
a computational of a circular dam-break, and an experimental and a compu-
tational investigation on a two-dimensional break-type flow. The analytical
solutions of each test case are used to prove the accuracy of the method. The
paper shows that the performance of the scheme is efficient and stable.

Paper 2 (Williamson et al. (1992)). In this paper, seven test cases are pre-
sented to estimate any proposed numerical methods to solve the SWEs in
spherical geometry. The choice of the SWEs is due to its challenging charac-
teristic related to the horizontal dynamical aspects of the atmospheric mod-
elling on the spherical earth. The paper aims to evaluate a chosen numerical
method for the climate modelling and to identify the potential drawbacks.
The test cases are used to measure the performance of a proposed scheme be-
fore it is applied to a full baroclinic atmospheric problem. The complexity of
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CHAPTER 1. INTRODUCTION 3

each test cases is different depending on the considered parameters and the
characteristics that are taken into account, and also from some additional fea-
tures and properties influenced by the geographical constraints or any exterior
physical forces. Each case is presented with a numerical value of each parame-
ter, analytical expressions of some functions presented in the model, list of all
the must verified conditions. But most importantly, most cases are equipped
with the definitions of the errors measures, instructions about the final time
measurements and the types of plots to verify the compatibility and the effi-
ciency. In the beginning, detailed mathematical expressions of the SWEs are
produced in the spherical coordinates. The first case regards to the advection
of Cosine Bell over the pole; the second case concerns the global steady state
nonlinear zonal geostrophic flow; the third case accounts for the global steady
state nonlinear zonal geostrophic flow with compact support; the fourth case
regards about the forced nonlinear system with translating flow; the fifth case
accounts for the zonal flow over an isolated mountain; the sixth case concerns
about the Rossby-Haurwitz wave, and the last case regards to the analysed
500mb height and wind field initial conditions. When using these test cases,
one should always mention and report the computational tools used such as
the type of machine, compiler and precision. It is also mentioned that any
measurement should not be made before a five-day simulation. All these test
cases and instructions are made to offer the users a wide overview and to test
the performance of their proposed schemes.

Paper 3 (Nair et al. (2005a)). This paper develops the full shallow water
model defined on a sphere, and presented in curvilinear coordinates, using DG
method. The latitude-longitude grid and the geodesic grid, which are com-
monly used in spherical geometry are totally forgotten in this work. Instead,
a new method called the cubed sphere is adopted. It consists of projecting
an inscribed cube onto a sphere. The mapping divides the spherical surface
area into six identical sub-domains and the resulting grid does not contain any
singularity. This is the main advantage of this spatial discretisation method.
In addition, the modal basis set composed with Legendre polynomials is em-
ployed. The mapping of each face of the inscribed cube to the sphere is then
assured by a central equiangular projection. The discontinuity along element
edges and the interaction of adjacent elements is ensured by Lax-Friedrichs
numerical flux. Applications of the scheme to test case two, five and six of
the standard test cases of Williamson, presented in Paper 2, and to the polar
rotating low-high are made to provide numerical results. It has been shown
that numerical solutions are very accurate, and fake oscillations are not found
in the test case five and in the flow over a mountain test case. The second test
case exhibits an exponential convergence. The conservation of global invariant
is proved to be better than in the finite volume (FV) method. DG solutions for
the shallow water test cases are much better than the solutions of a spectral
model for a given spatial resolution.
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CHAPTER 1. INTRODUCTION 4

Paper 4 (Eskilsson et al. (2009)). This article presents a parallel program for
shallow water solver following the cactus framework. The spatial discretisa-
tion adopts the spectral/hp element library of Nektar++ and an unstructured
high-order DG method. The fundamental objective of this work is a scalable,
parallel, non-hydrostatic wave solver, based on multi-layered Boussinesq-type
equations including time-dependent bathymetry and sediment transport. The
spectral/hp DG method and its combination to the cactus framework are re-
viewed. In order to develop an open source software, the implementation is
made separately. The Coastal DG wave model is established supported by
the spectral/hp element library Nektar++, which permits the coastal engi-
neers to focus on developing a coastal code using Nektar++. Meanwhile, to
achieve parallelism, an unstructured mesh driver was developed for the com-
putational cactus framework. This allows the computational scientists to focus
on parallelism, scalability and performance of the unstructured mesh driver.
Applications to a linear standing wave and to a wave interacting with cylin-
ders are exhibited. It has been shown that the method displays an exponential
convergence. The weak and the strong scaling are largely independent of the
spatial order of the scheme.

Paper 5 (Aizinger and Dawson (2002)). In this paper, the DG FEM for
approximating the SWEs in hydrodynamics and contaminants transport is
presented, followed by the formulation of the weak form of the shallow water
problem. This approach generalises and extends the Gudonov method. It per-
mits the variation of the polynomial order approximation by its local property.
It allows the incorporation of diffusive terms and the use of a non-conforming
grid. The method is locally conservative and integrates upwinded numerical
fluxes for modelling problem with high flow gradient. The scheme is also based
on the local discontinuous Galerkin (LDG) method. Several test cases are used
to obtain numerical results, such as supercritical flow through a constricted
channel, tidal flow near the Bahamas islands, contaminant transport in Gavel-
ston Bay, and river inflow into the Gulf of Mexico. It has been proved that the
scheme supports both lower and higher-order approximations and it locally
conserves both mass and momentum for all cases. An approximation of sharp
fronts created by high speed flows along with flows produced by tidal bound-
aries conditions can be accomplished. A piecewise constant approximations
can capture the qualitative dynamics of the flow in most of the cases, and a
piecewise linear approximations do a better job of resolving a sharp variation
in the solution.

Paper 6 (Eskilsson and Sherwin (2000)). This paper presents a spectral/hp
element DG method for simulating the two-dimensional (2D) SWEs on un-
structured triangular meshes. The spatial discretisation is assured by the use
of modal expansion basis of arbitrary order, and a third Runge-Kutta scheme
is applied for time integration. The application of the DG method allows so-
lutions to be discontinuous at elemental boundaries, and the same techniques

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 5

as in FV are employed to couple elements together using the HLLC Riemann
solver. The scheme is tested on four example cases, such as the simple case of
a linear standing wave in a rectangular frictionless basin, the equatorial Kelvin
and Rossby waves, the dam-break problem, and the Harbour problem. It has
been shown that the exponential convergence is reached. The model is also
computationally efficient due to this exponential convergence and the use of
orthogonal expansion basis which produced the diagonal mass matrix, and this
efficiency increases with the order of the model and the time integration. A
formation of Gibbs oscillations is exhibited in the dam-break test case, which
is an inevitable fact caused by the use of an high-order model without lim-
itation. But the utilisation of the slope limiter removes the oscillations and
deterioration of accuracy is avoided by combining it with h-refinement. The
Harbour problem is used to show the geometrical flexibility of the model.

Paper 7 (Eskilsson (2011)). This paper presents an hp-adaptive DG method
for the 2D smooth SWEs, that is without shock-capturing. The discretisation
in space is assured by the use of orthogonal modal basis of arbitrary polynomial
order p defined on unstructured triangular non-conforming meshes. A third
Runge-Kutta method is applied for time-stepping. The use of the spectral/hp
element method allows variation on the mesh and polynomial order during the
simulation. This variation yields geometric and functional incompatibilities
which are resolved by applying adaptivity. h-, p- and hp-adaptivity are imple-
mented. The approaches are validated by using five computational examples,
in real life geometry, which are two linear cases with analytical solutions: the
Stommel gyre and the equatorial Kelvin waves; and three nonlinear cases:
the nonlinear Stommel gyre and equatorial Rossby modon, and the harbour
disturbance. The adaptivity is driven by an error indicator based on the dif-
ference between the solutions of approximation order p and p − 1. The p − 1
solution is readily available and the computational cost for the indicator is low
because of the use of the PKD basis. The indicator worked satisfactorily for a
higher order polynomial but was generally found to diminish the error for the
linear expansions. All the test cases show their benefit on the choice of higher
order schemes for smooth problem, and the p-adaptivity procedure generated
the fastest computations and the least Ndof . It is simpler to implement the p-
adaptivity than the h-adaptivity, and also conservation is guaranteed. For the
Stommel gyre problems, the Ndof for the higher-order adaptive schemes was
of order magnitude less than for h-adaptivity scheme using linear expansions.
For the Kelvin waves and Rossby modon, the low-order h-adaptivity method
is the least efficient adaptive approach for the test cases investigated.

1.3 Definitions used in this paper
1. A fluid is a substance that can flow and has no precise shape but follows

the form of its container, such as liquids or gas.
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CHAPTER 1. INTRODUCTION 6

2. Flux is the amount of information passing through a given surface.

3. Numerical flux is the flux at the boundary following the normal direction.

4. Navier-Stokes equations are mathematical equations that describe the
motion of fluid. The analytical expression is given in Chapter 2 (Eq.
2.1.2).

1.4 Organisation of the thesis
The remainder of this thesis is organised as follows: Chapter 2 gives a general
overview of the SWEs, shows how they were derived and introduces the math-
ematical expressions of the governing equations that are going to be studied
in the whole thesis. The method that is going to be used in the study will be
discussed in more details in Chapter 3, followed by its theoretical application
to the SWEs. Different types of numerical fluxes are compared in this study,
their definitions and derivations, are discussed in Chapter 4. An illustration
and application of the method using a two dimensional test case are presented
in Chapter 5 followed by all the numerical results. The conclusion and the
summary are stated in Chapter 6.
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Chapter 2

Shallow Water Equations

This chapter aims to give a general overview of the shallow water equations
(SWEs). Section 2.1 exhibits how the SWEs are derived from the mother equa-
tion of the fluid, known as the Navier-Stokes equations. Detailed expression
of the SWEs is presented in Section 2.2.

2.1 Derivation of the Shallow Water Equations
The SWEs can be derived from the Navier-Stokes equations, which describe the
motion of fluid. The Navier-Stokes equations can be derived from combination
of Cauchy’s equation of motion for a deformable body and the equations for an
incompressible Newtonian fluid. This section will show how the SWEs are de-
rived from the conservation laws step by step, following the ideas presented in
Dawson and Mirabito (2009); Randall (2006). First, the Navier-Stokes equa-
tions will be derived, then the SWEs will be derived by applying all necessary
boundary conditions and assumptions.

The law of conservation of mass states that, for any system closed to all
transfers of matter and energy, the mass of the system must remain constant
over time. Considering a fluid flow in a non-deformable control volume Ω
bounded by the control surface S = ∂Ω (Karniadakis and Sherwin (2005)), we
have the following mass integral form for mass conservation equation:

d

dt

∫
Ω

ρ dΩ = −
∫
∂Ω

(ρv) · n dS ,

where ρ is the density of the fluid, v = (u, v, w)T is the fluid velocity and n is
the outward normal vector on ∂Ω.

Applying Gauss’s theorem (see Appendix B) to the mass conservation equa-
tion gives:

d

dt

∫
Ω

ρ dΩ = −
∫

Ω

∇ · (ρv) dΩ .

7
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CHAPTER 2. SHALLOW WATER EQUATIONS 8

Assuming that ρ is smooth, the Leibniz integral rule (see Appendix B), pro-
duces: ∫

Ω

[
∂ρ

∂t
+∇ · (ρv)

]
dΩ = 0 .

Since Ω is arbitrary, this leads to the following continuity equation:

∂ρ

∂t
+∇ · (ρv) = 0 . (2.1.1)

Newton’s second law states that the rate change of the momentum of a
particle is equal to the force acting on it. Considering the linear momentum
balance over the non-deformable control volume Ω, we have:

d

dt

∫
Ω

ρv dΩ = −
∫
∂Ω

(ρv) v · n dS +

∫
Ω

ρb dΩ +

∫
∂Ω

Tn dS ,

where b is the body force density per unit mass acting on the fluid and T the
Cauchy stress tensor. Applying Gauss’s theorem to this equation gives:

d

dt

∫
Ω

ρv dΩ +

∫
Ω

∇ · (ρvv) dΩ−
∫

Ω

ρb dΩ−
∫

Ω

∇ ·T dΩ = 0 .

Assuming that ρv is smooth, the Leibniz integral rule gives:∫
Ω

[
∂ρv

∂t
+∇ · (ρvv)− ρb−∇ ·T

]
dΩ = 0 .

Since Ω is arbitrary,

∂ρv

∂t
+∇ · (ρvv)− ρb−∇ ·T = 0 . (2.1.2)

The following assumptions will be made to obtain the final expression of the
Navier-Stokes equations, (Dawson and Mirabito (2009)):

• The fluid is supposed to be incompressible, that is, it is unable to sustain
volume change. This means that the density ρ of the fluid does not
change during its motion, so it is a constant independent on time t.
Thus, from equation (2.1.1), we have

∇ · v = 0 .

• Suppose that gravity g and Coriolis force f are the only body forces
acting on the fluid. All other forces that could act on the fluid body are
neglected. The Coriolis force per unit mass is f = −2Ω× v = −f ẑ× v
where Ω is the angular velocity vector directed along the axis of rotation
of the rotating reference frame and f is called the Coriolis parameter.
Thus we can write:

b = g + f = gẑ− f ẑ× v ,

where g is the acceleration due to gravity.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. SHALLOW WATER EQUATIONS 9

• Suppose that the fluid is Newtonian, that is, the state of stress at any
point is proportional to the time rate of strain at that point; the propor-
tionality factor is the viscosity coefficient. And for Newtonian fluid we
have

T = −P I + T̄,

where P is the pressure, I the identity matrix, and T̄ is the matrix of
stress terms, which defines the state of stress at a point inside a material
in the deformed placement, and is given by:

T̄ =

τxx τxy τxz
τxy τyy τyz
τxz τyz τzz

 .

Applying all these assumptions to equation (2.1.2), we obtain:

∂ρv

∂t
+∇ · (ρvv) = ρ (gẑ− f ẑ× v) +∇ ·

(
−P I + T̄

)
,

= ρgẑ− ρf ẑ× v −∇P +∇ · T̄ .

Thus, the final form of the Navier-Stokes equations in 3D is:∇ · v = 0,
∂ρv

∂t
+∇ · (ρvv) = ρgẑ− ρf ẑ× v −∇P +∇ · T̄ .

(2.1.3)

The first equation is derived from the conservation of mass and the second
equation is derived from the conservation of momentum. It can be written in
a three-dimensional Cartesian coordinates system as follows:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0,

∂(ρu)

∂t
+
∂(ρu2)

∂x
+
∂(ρuv)

∂y
+
∂(ρuw)

∂z
=
∂(τxx − P )

∂x
+
∂τxy
∂y

+
∂τxz
∂z

+ ρfv,

∂(ρv)

∂t
+
∂(ρuv)

∂x
+
∂(ρv2)

∂y
+
∂(ρvw)

∂z
=
∂τxy
∂x

+
∂(τyy − P )

∂y
+
∂τyz
∂z
− ρfu,

∂(ρw)

∂t
+
∂(ρuw)

∂x
+
∂(ρvw)

∂y
+
∂(ρw2)

∂z
=
∂τxz
∂x

+
∂τyz
∂y

+
∂(τzz − P )

∂z
− ρg.

(2.1.4)
Since the general form for the Navier-Stokes equations is built, the SWEs now
can be derived. The equation for all fluid is based on the same equation source,
only the changes made in the initial and boundary conditions define the nature
of the equation. In the case of the SWEs, the following assumptions are made
(Dawson and Mirabito (2009); Randall (2006)):

• Figure (2.1) depicts the description of the domain for shallow water.
Some of the primitive variables are defined as follows: suppose that
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Figure 2.1: Description of the domain for shallow water, Dawson and Mirabito
(2009).

η = η(x, y, t) is the free surface elevation from the surface of the fluid,
and d = d(x, y) the still water depth which is constant and independent
of time. Let H = H(x, y, t) = η + d be the total depth of the fluid.

• The pressure P and density ρ are defined in a such a way that satisfies
the hydrostatic equation:

dP

dz
= −gρ .

The hydrostatic equation states that whenever there is no vertical mo-
tion, the difference in pressure (dP ) between two levels (dz) is caused by
the weight of the layer of the air. This implies that, integrating down-
ward from the surface:

P =

∫ z

H

gρ dz = ρg(H − z),

and
∇P = ρg

(
∂H

∂x
x̂ +

∂H

∂y
ŷ − ẑ

)
.

• Suppose the following boundary conditions, (Dawson and Mirabito (2009)):

– At the bottom, we have z = −d, u = v = 0 and

u
∂d

∂x
+ v

∂d

∂y
+ w = 0 .

– At the free surface, we have z = η, P = 0 and

∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
− w = 0 .

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. SHALLOW WATER EQUATIONS 11

• And last we assume that there is no shear stress contact on the fluid
body, that is T̄ = 0.

Integrating the Navier-stokes (2.1.3) over the depth on [−d, η] leads to the
SWEs. From the continuity equation in (2.1.4), we have:

0 =

∫ η

−d
∇ · v dz

=

∫ η

−d

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
dz,

=

∫ η

−d

(
∂u

∂x
+
∂v

∂y

)
dz + (w|z=η − w|z=−d) ,

=
∂

∂x

∫ η

−d
u dz −

(
u|z=η

∂η

∂x
+ u|z=−d

∂d

∂x

)
+

∂

∂y

∫ η

−d
v dz −

(
v|z=η

∂η

∂y
+ v|z=−d

∂d

∂y

)
+ (w|z=η − w|z=−d) (from Leibniz integral rule),

=
∂

∂x

∫ η

−d
u dz +

∂

∂y

∫ η

−d
v dz −

(
u
∂d

∂x
+ v

∂d

∂y
+ w

)
|z=−d︸ ︷︷ ︸

=0

−
(
u
∂η

∂x
+ v

∂η

∂y
− w

)
|z=η︸ ︷︷ ︸

=− ∂η
∂t

.

Adopting the following notation for the depth-averaged velocities:

ū =
1

H

∫ η

−d
u dz, v̄ =

1

H

∫ η

−d
v dz,

ū2 =
1

H

∫ η

−d
u2 dz, ūv̄ =

1

H

∫ η

−d
uv dz,

and applying the boundary conditions, we obtain the depth-averaged continu-
ity equation:

∂H

∂t
+
∂(Hū)

∂x
+
∂(Hv̄)

∂y
= 0. (2.1.5)

Integrating other the depth the x-momentum equation in (2.1.4), we get:∫ η

−d

[
∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
+
∂uw

∂z

]
dz =

∫ η

−d

[
−g ∂η

∂x
+ fv

]
dz ,

⇒ ∂

∂t

∫ η

−d
u dz +

∂

∂x

∫ η

−d
u2 dz +

∂

∂y

∫ η

−d
uv dz = (η − (−d))

[
−g ∂η

∂x
+ fv

]
,

⇒∂Hū

∂t
+
∂(Hū2)

∂x
+
∂(Hūv̄)

∂y
= −gH ∂η

∂x
+ fHv. (2.1.6)
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In the same way, from the y-momentum equation, we get:

∂Hv̄

∂t
+
∂(Hūv̄)

∂x
+
∂(Hv̄2)

∂y
= −gH ∂η

∂y
− fHu. (2.1.7)

At last, the SWEs are successfully derived and the mathematical expressions
are given by equations (2.1.5), (2.1.6) and (2.1.7).

2.2 The governing equations
The conservative form of the two-dimensional SWEs, defined in a certain do-
main Ω, can be written as:

∂U

∂t
+∇ · F(U) = S(U), (2.2.1)

where U is the vector of conserved variable, S the source vector, and F the flux
vector such that F(U) = [E(U) G(U)]T . Each term is expressed as follows,
(Eskilsson (2011); Eskilsson and Sherwin (2000)):

U =

 HuH
vH

 , E =

 uH
u2H + gH2/2

uvH

 , G =

 vH
uvH

v2H + gH2/2

 , S =

 0
Hfv
−Hfu

 .
(2.2.2)

Here H(x, y, t) = η(x, y, t)+d(x, y) is the total water depth where η is the free
surface elevation and d the still water depth; u(x, y, t) and v(x, y, t) are the
velocities in x- and y-direction respectively, g the acceleration due to gravity
and f the Coriolis term.

The linearised version of the equation is valid for a constant depth. In that
case, the equations are solved only in z ∈ [0,−d], even though we do actually
solve for the free surface elevation variable. Thus the expression of each terms
in the linearised SWEs, in two dimensional plane, is given as follow:

U =

ηu
v

 , F(U) =

du dv
gη 0
0 gη

 , and S(U) =

 0
fv
−fu

 . (2.2.3)

2.2.1 Vectorial notation of each expressions of the
SWEs in two dimensional

With a parametric two dimensional space x = (x, y) ∈ R2, the main equation
is stated as:

∂U(x)

∂t
+∇ · F(U(x)) = S(U(x)), x,U ∈ R2. (2.2.1)
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For the linear case, we have:

∂η(x)

∂t
+

∂

∂x
(du(x)) +

∂

∂y
(dv(x)) = 0,

∂u(x)

∂t
+

∂

∂x
(gη(x)) = fv(x),

∂v(x)

∂t
+

∂

∂y
(gη(x)) = −fu(x).

(2.2.4)

(2.2.5)

(2.2.6)

If the vector of primitive variable is denoted as follows:

U(x) =

[
η(x)
h(x)

]
, where h(x) =

(
u(x)
v(x)

)
,

then the linear expressions of the SWEs can be rewritten again in a vectorial
form. Thus, for d constant, from (2.2.4), we have:

∂η(x)

∂t
+∇ · dh(x) = 0.

And (2.2.5) and (2.2.6) become:
∂u(x)

∂t
x̂ +

∂

∂x
(gη(x))x̂ = fv(x)x̂,

∂v(x)

∂t
ŷ +

∂

∂y
(gη(x))ŷ = −fu(x)ŷ,

(2.2.7)

where x̂ and ŷ are the tangent vector of the Cartesian axis x and y, respectively.
Combining system (2.2.7), we get:

∂h(x)

∂t
+∇(gη(x)) = f(v(x)x̂− u(x)ŷ),

if we note h(x)× z = v(x)x̂− u(x)ŷ, then we obtain:

∂h(x)

∂t
+∇(gη(x)) = f(h(x)× z).

Thus the vectorial notation of the linear SWEs (2.2.1), in two dimensional
plane, is: 

∂η(x)

∂t
+∇ · (dh(x)) = 0,

∂h(x)

∂t
+∇(gη(x)) = f(h(x)× z).

(2.2.8)

(2.2.9)
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Similarly for the nonlinear case, we have:

∂H(x)

∂t
+

∂

∂x
(Hu)(x) +

∂

∂y
(Hv)(x) = 0,

∂(Hu)(x)

∂t
x̂ +

∂

∂x

(
u2(x)H(x) + gH2(x)/2

)
x̂

+
∂

∂y
(Huv)(x)x̂ = H(x)fv(x)x̂,

∂(Hv)(x)

∂t
ŷ +

∂

∂x
(Huv)(x)ŷ

+
∂

∂y

(
v2(x)H(x) + gH2(x)/2

)
ŷ = −H(x)fu(x)ŷ .

(2.2.10)

(2.2.11)

(2.2.12)

Equation (2.2.10) becomes:

∂H(x)

∂t
+∇ · (Hh)(x) = 0.

And equations (2.2.11) and (2.2.12) become:
∂(Hu)(x)

∂t
x̂ +

∂

∂x
(u2H)(x)x̂ + gH(x)

∂H(x)

∂x
x̂ +

∂

∂y
(Huv)(x)x̂ = H(x)fv(x)x̂,

∂(Hv)(x)

∂t
ŷ +

∂

∂y
(v2H)(x)ŷ + gH(x)

∂H(x)

∂y
ŷ +

∂

∂x
(Huv)(x)ŷ = −H(x)fu(x)ŷ.

Which in vectorial notation can be written as follow:

∂(Hh)(x)

∂t
+∇ · (hHh)(x) + gH(x)∇H(x) = f ẑ× (Hh)(x),

where

∇ · (hHh)(x) =

(
∇ · (Huh)(x)
∇ · (Hvh)(x)

)
,

=

( ∂
∂x

(u2H)(x) + ∂
∂y

(Huv)(x)
∂
∂x

(Huv)(x) + ∂
∂y

(v2H)(x)

)
.

Thus the vectorial form of the nonlinear SWEs (2.2.1), in two dimensional
plane, is:

∂H(x)

∂t
+∇ · (Hh)(x) = 0,

∂(Hh)(x)

∂t
+∇ · (hHh)(x) + gH(x)∇H(x) = f ẑ× (Hh)(x).

(2.2.13)

(2.2.14)

And we found the same expressions as those in the previous section, by
deriving the Navier-Stokes equations.
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Chapter 3

Spectral/hp element method and
Discontinuous Galerkin method

3.1 Spectral/hp element method
This section outlines the spectral/hp element method for one-dimensional lin-
ear problems presented by Karniadakis and Sherwin (2005) with additional
ideas from Schwab (1998).

The FEM is a discretisation technique to solve PDEs in its equivalent
variational form. The classical approach of the FEM is to partition the com-
putational domain into a mesh of many small subdomains and to approximate
the unknown solution by piecewise linear interpolation functions, each with
local support. The solution within each element is then reconstructed related
to the neighbouring elements. The order of the method is equivalent to the
order of the expansion basis. There are several number of references which
elaborate the FEM, one can refer to Suli (2011) for more detail. The h-version
of FEM consists of fixing the degree p of the piecewise polynomial basis func-
tions. Any change of discretisation to increase the accuracy is achieved by
means of a mesh refinement i.e. reduction in h, the element size mesh. The
p-version of FEM is to fix the partitioning of the domain while the discretisa-
tion is changed through a modification in polynomial degree p. The hp-version
of FEM is then straightforward; both the idea of mesh refinement and degree
enhancement are combined. The spectral method approximate the solution
by a truncated series of global basis function. The spectral element method
encompasses the high accuracy of the spectral methods with the geometric
flexibility of the FEM. Terminologically and methodologically, the spectral/hp
element method involves all the methods mentioned above.

15
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3.1.1 Discontinuous Galerkin methods

To illustrate the framework of the weighted residual method, we consider a
domain Ω which is a subset of R defined as follow:

Ω = {x|0 < x < l},

and assume that f is a given function. Then consider the following differential
equation, with suitable initial and boundary conditions:

L(u) = f, (3.1.1)

where L is a continuous partial differential operator.
We assume that the exact solution u(x, t) of the equation (3.1.1) can be

approximated by uδ(x, t) as:

u(x, t) ≈ uδ(x, t) = u0(x, t) +

Ndof∑
i=1

ûi(t)Φi(x), (3.1.2)

where u0(x, t) satisfies the initial and boundary conditions, ûi(t) are Ndof (de-
gree of freedom) unknown coefficients and Φi(x), the trial functions, satisfies
the homogeneous boundary conditions.
The non-zero residual is defined as L(uδ)−f = R(uδ). The aim of the weighted
residuals method is to minimise R(uδ). Thus we force the residual to be zero
by multiplying it with a weight function, vj(x), and integrate over the domain
Ω, that is: ∫

Ω

vj(x)R dx = (vj(x), R) = 0, j = 0, . . . , Ndof . (3.1.3)

This is true for some choice of the weight function vj. For our concern, we
choose vj = Φj. This produces the Galerkin method.

3.2 Formulation of the Galerkin problem
We assume that a(., .) is a bilinear form defined as follow:

a(v, u) =

∫ l

0

∂v

∂x

∂u

∂x
dx,

and we define the following spaces:

- energy space: E(Ω) = {u|a(u, u) < ∞} = H1 associated to the energy
norm ||u||E =

√
a(u, u),

- trial space: χ = {u|u ∈ H1, u(0) = gD} where gD is a given constant,
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- space of all test functions: ν = {u|u ∈ H1, u(0) = 0} = H1
0 .

• Multiplying equation (3.1.1) by an arbitrary test function v(x) ∈ ν and
integrating by parts over the domain Ω leads to the weak formulation of
the Galerkin method Suli (2011) which can be expressed as:

find u ∈ χ such that
∫

Ω

L(u)v(x)dx =

∫
Ω

fv(x)dx, ∀v ∈ ν.

Setting a(u, v) =
∫

Ω
L(u)v(x)dx and f(v) =

∫
Ω
fv(x)dx, we can write in

a more formal form:

find u ∈ χ such that a(v, u) = f(v), ∀v ∈ ν. (3.2.1)

In approximating the exact solution numerically, we replace an infinite
expansion by a finite representation. Because the trial space χ and the
test space ν are infinite spaces, we select subspaces χδ ⊂ χ and νδ ⊂ ν
containing a finite number of functions, and the weak problem can then
be stated as:

find uδ ∈ χδ such that a(vδ, uδ) = f(vδ), ∀vδ ∈ νδ. (3.2.2)

• To impose the Dirichlet boundary condition, we lift the solution by de-
composing the function uδ ∈ χδ into uδ = uH+ uD where uH ∈ νδ which
is known and uD ∈ χδ. The Galerkin form of the problem can now be
stated as:

find uδ = uH + uD where uH ∈ νδ, uδ ∈ χδ such that,

a(vδ, uH) = f(vδ)− a(vδ, uD), ∀vδ ∈ νδ. (3.2.3)

We do not need to impose any condition for Neumann boundary condi-
tions because they will be introduced naturally to the problem.

3.2.1 Expansion bases

In the h-type method, a fixed order polynomial is used in every element and
convergence is achieved by reducing the size of the elements. In the p-type
method, a fixed mesh is used and convergence is achieved by increasing the
order of the polynomial in every element. The spectral/hp element method
combines attributes from both the h-type and p-type extensions permitting a
combination of both approaches.
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3.2.2 The h-type extension

This method decomposes the expansion into elemental contribution.
We start by partitioning the solution domain Ω as:

Ω = {x|0 < x < l} =

Nel⋃
e=1

Ωe where
Nel⋂
e=1

Ωe = ∅,

and Ωe = {x|xe−1 < x < xe} with 0 = x0 < x1 < · · · < xNel−1 < xNel = l, Nel

indicates the number of elements.
Let us introduce the one dimensional standard region Ωst = {ξ| − 1 <

ξ < 1}. For every elemental region Ωe, there exists a one-to-one mapping χe
relating the global coordinate x ∈ Ωe to the local coordinate ξ ∈ Ωst, that is
Ωe = χe(Ωst), x = χe(ξ).

Evidently, a linear mapping χe will suffice:

x = χe(ξ) =
(1− ξ)

2
xe−1 +

(1 + ξ)

2
xe, ξ ∈ Ωst. (3.2.4)

Its analytic inverse is of the form:

ξ = (χe)−1(ξ) =
2x− xe − xe−1

xe − xe−1

, x ∈ Ωe. (3.2.5)

Consequently, the global modes Φi(x) can now be expressed in terms of the
local expansion modes φp(ξ). Therefore, we get:

uδ =

Ndof−1∑
i=0

ûiΦi(x) =

Nel∑
e=1

P∑
p=0

ûepφ
e
p(ξ)

where P is the order of the polynomial expansion and φep(ξ) = φp([χ
e]−1(x)).

3.2.3 The p-type extension

The partitioning of the domain is kept fixed and any change of discretisation
is introduced through a modification in the polynomial of degree P .

We define PP (Ωst), the space of all polynomials of degree P defined on
the standard element Ωst and χδ = {uδ|uδ ∈ H1, uδ(χe(ξ)) ∈ PP e(Ωst), e =
1, . . . , Nel}, the discrete hp extension space.

• Let us first introduce the concepts of modal and nodal expansions.

The modal expansion depends on the frequency basis, and there is a
notion of hierarchy in the sense that higher order expansion sets are
built from lower order expansions sets. Legendre polynomial, Lp(x), is
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an example of modal expansion. Recall that Legendre polynomials are
the solutions of the Legendre’s differential equation, defined as

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0, n ∈ N.

An important property of the Legendre polynomial is its orthogonality
in the Legendre inner product, that is:

(Lp(x), Lq(x)) =

∫ 1

−1

Lp(x)Lq(x)dx =

(
2

2n+ 1

)
δpq.

The nodal expansion is based on a series of node points. The expan-
sion coefficients (ûp) represent the approximate solution at a given set
of nodes. An approximate solution using a nodal expansion does not
necessarily satisfy the equation exactly at the nodal points. Lagrange
polynomial Hp(x), are an example of nodal expansion, defined as:

Hp(x) =
P∏
k=0
k 6=p

x− xk
xp − xk

, 0 ≤ p ≤ P,

where xk for 0 ≤ k ≤ P , are (P + 1) node points. Lagrange polynomial
verifies Hp(xq) = δpq.

• The choice of an expansion set is influenced by its numerical efficiency,
conditioning and linear independence of the basis as well as its approx-
imation properties. To illustrate some of these factors we consider the
two expansions ΦA

p (x) = Lp(x) and ΦB
p (x) = Hp(x), defined above, in a

Galerkin projection. The Galerkin or L2 projection of a smooth func-
tion f(x) in the domain Ωst, onto the polynomial expansion uδ(x) is
the solution to the problem (3.2.2). In the absence of explicit boundary
conditions, which need not be prescribed to obtain the solution for this
problem, the trial and the test space are both in the space of square in-
tegrable functions, that is χδ = νδ ⊂ L2. Letting uδ(x) =

∑P
p=0 ûpΦp(x)

and vδ(x) =
∑P

p=0 v̂pΦp(x), problem (3.2.2) becomes:

v̂T [Mû = f ] ⇒ Mû = f ⇒ û = M−1f ,

where M , known as the mass matrix, is invertible and

Mpq = (Φp,Φq), û = [û0, · · · , ûP ]T , f = (f0, · · · , fP ) where fp = (Φp, f).

The conditioning of the matrix M is related to the linear independence
of the expansion. The conditioning number k2 = ||M ||2||M−1||2, where
||M ||2 denotes the matrix L2 norm of M , is important in the inversion
matrix system. The Legendre basis is well conditioned with the exact
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conditioning number k2 = 2P + 1. However, a Lagrange expansion has
poor conditioning which reflects the fact that the bases are becoming
numerically linearly dependent.
Another requirement is the boundary and interior decomposition. That
is, the boundary modes have a magnitude of one at the elemental bound-
aries and are zero at all other boundaries; and interior modes only have
magnitude in the interior of the element and are zero along all bound-
aries. The equispaced Lagrange expansion satisfies these conditions,
where the end-points are included as nodal points. But it is not the
case for the Legendre polynomials.
So far, Legendre polynomials seem to be the best choice for an expansion
set since they are orthogonal and have well conditioned matrices.

• We have seen that polynomial nodal expansions are based upon the La-
grange polynomials which are associated with a set of nodal points which
include the ends of the domain. The choice of these points, however,
plays an important role in the stability of the approximation and the
conditioning of the system. Note also that if we denote g(x) the polyno-
mial of order (P + 1) with zeros at the (P + 1) nodal points xq, then we
can write Hp(x) in the more compact form as:

Hp(x) =
g(x)

g′(x)(x− xp)
. (3.2.6)

The spectral elements use Lagrange polynomials through the zeros of the
Gauss-Lobatto polynomials (Section 3.3.1). Recall that the Jacobi poly-
nomials Pα,β

n represent the family of polynomial solutions to a singular
Sturm-Liouville problem . An important property of these polynomials
is their orthogonal relationship:∫ 1

−1

(1− x)α(1 + x)βPα,β
p (x)Pα,β

q (x)dx = Cδpq, (3.2.7)

where

C =
2α+β+1

2p+ α + β + 1

Γ(p+ α + 1)Γ(p+ β + 1)

p!Γ(p+ α + β + 1
,

where Γ is the gamma function. Thus the Legendre polynomial is a
special case of Jacobi polynomials for α = β = 0, that is P 0,0

p (x) = Lp(x).
Considering the nodal points at the roots of the polynomial g(ξ) = (1−
ξ)(1+ξ)P 1,1

P−1(ξ), we obtain the p-type expansion in the standard element
Ωst

φp(ξ) 7→ Hp(ξ) =


1 for ξ = ξp,

(ξ − 1)(1 + ξ)P 1,1
P−1(ξ)

P (P + 1)LP (ξ)(ξp − ξ)
otherwise,

0 ≤ p ≤ P.

(3.2.8)
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All modes are polynomials of order P . If we use the Gauss-Legendre-
Lobatto quadrature rule corresponding to the same choice of nodal points
on which the expansion was defined, the mass matrix is diagonal due to
the Kronecker delta property:

M e[p][q] = (Hp, Hq) =
P∑
i=0

wiHp(ξi)Hq(ξi) =
P∑
i=0

wiδpiδqi = wpδpq,

(3.2.9)
where wi are the weights for the Gauss-Legendre-Lobatto rule using (P+
1) points.

The diagonal components of the elemental mass matrix using the reduced
quadrature rule are equal to the row sum of the elemental mass matrix
using the exact integration . Considering the row sum

P∑
q=0

M e
pq =

P∑
q=0

(Hp(ξ), Hq(ξ)) = (Hp(ξ),
P∑
q=0

Hq(ξ)) = (Hp(ξ), 1) = wp,

where wp is the weight corresponding to the pth point in the Gauss-
Lobatto-Legendre quadrature rule using (P + 1) points. Since wp is also
the diagonal entry of the mass matrix using reduced integration, we see
that mass lumping of the spectral element expansion is equivalent to
constructing the mass matrix with reduced integration rule .

3.3 Elemental operations
To complete our Galerkin formulation, we need to know how to integrate and
differentiate the polynomial bases in the standard region.

3.3.1 Numerical Integration

Galerkin formulation requires a technique to evaluate, within each elemental
domain, integrals of the form ∫ 1

−1

u(ξ)dξ. (3.3.1)

The fundamental concept is the approximation of the integral by a finite sum-
mation of the form ∫ 1

−1

u(ξ)dξ ≈
Q−1∑
i=0

wiu(ξi), (3.3.2)

where wi are weights and ξi represents Q distinct points in the interval −1 ≤
ξi ≤ 1.
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Gaussian quadrature is a particularly accurate method for treating integrals
where the integrand, u(ξ), is smooth. It defines a series of nodal points upon
which we know all values of the integrand.

The integrand u(ξ) is represented by a Lagrange polynomial using the Q
points ξi, which are to be specified, that is

u(ξ) ≈
Q−1∑
i=0

u(ξi)Hi(ξ) + ε(u), (3.3.3)

where the ε(u) is the approximation error. Thus, substituting equation (3.3.3)
into (3.3.2), we obtain a representation of the integral as a summation:∫ 1

−1

u(ξ)dξ =

Q−1∑
i=0

wiu(ξi) + r(u), (Legendre integration), (3.3.4)

where wi =
∫ 1

−1
Hi(ξ)dξ and r(u) =

∫ 1

−1
ε(u)dξ.

To perform wi, the integral of the Lagrange polynomial, we need to know
the location of the zeros ξi. Introducing ξα,βi,P to denote the P zeros of the P th

order Jacobi polynomial Pα,β
P , such that

Pα,β
P (ξα,βi,P ) = 0, i = 0, . . . , P − 1 where ξα,β0,P < ξα,β1,P < · · · < ξα,βP−1,P ,

Gauss-Lobatto-Legendre defines zeros and weights which approximate the Leg-
endre integral (3.3.4) as:

ξi =


−1, i = 0,

ξ1,1
i−1,Q−2, i = 1, . . . , Q− 2,

1, i = Q− 1.

w0,0
i =

2

Q(Q− 1)[LQ−1(ξi)]2
, i = 0, . . . , Q− 1.

r(u) = 0, if u(ξ) ∈ P2Q−3([−1, 1]).

(3.3.5)

3.3.2 Differentiation

If we assume that u(ξ) ∈ PP ([−1, 1]), then it can be exactly expressed in
the terms of Lagrange polynomials Hi(ξ) through a set of Q nodal points
ξi (0 ≤ i ≤ Q− 1), as

u(ξ) =

Q−1∑
i=0

u(ξi)Hi(ξ),

where Q ≥ P + 1. Therefore the derivative of u(ξ) can be represented as

du(ξ)

dξ
=

Q−1∑
i=0

u(ξi)
d

dξ
Hi(ξ).
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Typically, we only require the derivative at the nodal points ξi which is given
by

du(ξ)

dξ

∣∣∣∣∣
ξ=ξi

=

Q−1∑
j=0

diju(ξj) where dij =
dHj(ξ)

dξ

∣∣∣∣∣
ξ=ξi

.

From (3.2.6), taking g(ξ) = gQ(ξ) =
∏Q−1

j=0 (ξ − ξj), we obtain

dHi(ξ)

dξ
=
g′Q(ξ)(ξ − ξi)− gQ(ξ)

g′Q(ξi)(ξ − ξi)2
.

Noting that the numerator and the denominator of this expression are zero as
ξ → ξi and gQ(ξi) = 0 by definition, we get

lim
ξ 7→ξi

dHi(ξ)

dξ
= lim

ξ 7→ξi

g′′Q(ξ)

2g′Q(ξ)
=

g′′Q(ξ)

2g′Q(ξ)
.

Therefore

dij =


g′Q(ξ)

g′Q(ξ)

1

(ξi − ξj)
i 6= j,

g′′Q(ξ)

2g′Q(ξ)
i = j.

(3.3.6)

Equation (3.3.6) is the general representation of the derivative of the Lagrange
polynomials evaluated at the nodal points ξi (0 ≤ i ≤ Q− 1).

Denoting by ξα,βi,P (0 ≤ i ≤ P − 1) the P zeros of the Jacobi polynomial
Pα,β
P , the derivative matrix dij for Gauss-Lobatto-Legendre is defined as:

dij =



−Q(Q− 1)

4
, i = j = 0,

LQ−1(ξi)

LQ−1(ξj)

1

(ξi − ξj)
, i 6= j, 0 ≤ i, j ≤ Q− 1,

0, 1 ≤ i = j ≤ Q− 2,
Q(Q− 1)

4
, i = j = Q− 1,

(3.3.7)

where ξi are the same as defined in (3.3.5).

3.4 The spectral/hp element discontinuous
Galerkin methods for shallow water
equations

To solve numerically the SWEs, the spectral/hp element discontinuous Galerkin
method presented in will be used in this study. The main idea is to bring the
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PDEs problem into a linear algebra problem, which is easy to compute numeri-
cally, by the weak formulation. As a finite element method, the computational
domain Ω must be partitioned into Nel conforming triangular elements Ωe with
boundaries ∂Ωe. The advantage of using DG method is that it works over a
trial function space that is piecewise discontinuous. That is what we need
here since the domain have been partitioned and the solution is allowed to be
discontinuous over the element boundaries. Let Vδ be a discrete space which
contains a finite number of functions such that:

Vδ = {vδ ∈ L2(Ω) : vδ|Ωe ∈ Pp(Ωe) ∀Ωe},

where Pp(Ωe) is the space of all polynomial of degree at most p defined on the
elemental domain Ωe. Now we can formulate our Galerkin problem. First we
approximate the exact solution U of the equation (2.2.1) with Uδ ∈ Vδ. After,
we multiply with an arbitrary smooth test function φδ ∈ Vδ and integrate over
the local element Ωe i.e.∫

Ωe

φδ
∂Uδ

∂t
dΩe +

∫
Ωe

φδ∇ · F(Uδ) dΩe

=

∫
Ωe

φδS(Uδ) dΩe . (3.4.1)

Applying the integration by part for the flux term, the weak formulation of
the DG problem can be stated as follow. Find Uδ ∈ Vδ such that ∀φδ ∈ Vδ∫

Ωe

φδ
∂Uδ

∂t
dΩe−

∫
Ωe

∇φδ·F(Uδ) dΩe+

∫
∂Ωe

φδ

(
F̂(Uδ) · n

)
dS =

∫
Ωe

φδS(Uδ) dΩe,

(3.4.2)
where n is the outward unit normals to the element Ωe and F̂ is the numerical
flux to be defined later.

We seek an approximation Uδ whose restriction to each element Ωe is, for
each value of the time variable, an element of the local space Pp(Ωe). The in-
tegrals over the local elements Ωe could either be computed exactly or approx-
imately by using a numerical quadrature method as discussed in the previous
section. Note that the function Uδ is discontinuous along the boundaries ∂Ωe

of a local element and the boundary integral is not uniquely defined. Conse-
quently the analytic flux F(Uδ) have to be replaced by a numerical flux F̂(Uδ)
which will resolve the discontinuity along the element edges and couple all the
elements together. The accuracy of the method will depend in a large part on
this normal flux definition (Bernard et al. (2009)). The numerical flux can be
computed by using Riemann solver. We thus apply, in this work, four different
types of numerical flux defined in the next chapter (Chapter 4).

Boundary condition
To complete the computation, it remains to choose the boundary condi-

tions. The slip wall boundary conditions is used in this work since it is a
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common condition to bound fluid regions. Here normal velocity component is
set to be zero, Eskilsson and Sherwin (2000), and

ηL = ηR, uL = −uR and vL = vR.

Stellenbosch University  http://scholar.sun.ac.za



Chapter 4

Numerical Flux

As defined previously in Section (1.3), a numerical flux is the amount of infor-
mation that passes at the boundary, from one surface to another surface, fol-
lowing the normal direction. The choice of the discontinuous Galerkin scheme
permits the solutions to be discontinued at the boundaries, thus one needs
to apply the numerical flux to find the appropriate solution at the boundary.
Computation of the numerical flux is assured by Riemann solvers which are
solutions of the Riemann problem. This chapter presents four kinds of numer-
ical flux which will be used for comparison in this work. To achieve this, the
chapter starts by a short introduction of the Riemann problem.

4.1 Godunov scheme
A system of equations is said to be in conservative form if it can be written in
the following form:

Ut + F(U)x = 0 , (4.1.1)

with initial and boundary condition given by

(IC) : U(x, 0) = U(0)(x) (4.1.2)
(BC) : U(0, t) = UL(t) and U(l, t) = UR(t), (4.1.3)

where U is the vector of conserved variables, while F(U) is the fluxes vector,
U(x, 0) is the initial data at time t = 0, [0, l], for l ∈ R, is the spatial domain
and boundary conditions are assumed to be represented by the boundary func-
tions UL(t) and UR(t).

The Riemann problem is a composition of conservation law and a piecewise
constant data having a single discontinuity. For the one-dimensional time-
dependent equations, the Riemann problem is the initial value problem (IVP)
for the conservation laws

26
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Figure 4.1: Initial condition for the Riemann problem, from Toro (2009).

Figure 4.2: Control volume V, from Zanotti and Manca (2010).


Ut + F(U)x = 0,

IC: U(x, 0) = U(0)(x) =

{
UL if x > 0,

UR if x < 0,

(4.1.4)

where UL and UR are given constant values. The initial condition (IC) says
that at the initial state, the function has a constant value UL for all negative
x, and a constant value UR for all positive x, but differs between left (L)
and right (R), as shown in Figure (4.1). Owing to the fact that the grids are
disconnected, Riemann problems arise implicitly in finite volume methods for
the solution of conservation law equations.

Discretising the spatial domain [0, l] into N(∈ N) computing cells Ii =
[xi−1/2, xi+1/2], 1 ≤ i ≤ N , of size ∆x = xi+1/2 − xi−1/2, and the tempo-
ral domain [0, T ], where T is a chosen final time, into M(∈ N) computing
cells Kn = [tn, tn+1], 1 ≤ n ≤ M of size ∆t = tn+1 − tn; a control volume
V = Ii × [tn, tn+1] can be defined as depicted in Figure (4.2). Integrating
the conservative equations (4.1.1) over the control volume V gives the integral
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form of the conservation laws. First by integrating in space over Ii:

d

dt

∫ xi+i/2

xi−1/2

U(x, t) dx = F(U(xi−1/2, t))− F(U(xi+1/2, t)),

and then in time between tn and tn+1, with tn < tn+1 to obtain∫ xi+1/2

xi−1/2

U(x, tn+1) dx =

∫ xi+1/2

xi−1/2

U(x, tn) dx+∫ tn+1

tn

[
F(U(xi−1/2, t))− F(U(xi+1/2, t))

]
dt. (4.1.5)

Adopting the following notations:

Un
i =

1

∆x

∫ xi+1/2

xi−1/2

U(x, tn) dx, (4.1.6)

and

Fi±1/2 =
1

∆t

∫ tn+1

tn
F(U(xi±1/2, t)) dt, (4.1.7)

we can re-write the integration form of the conservation laws (4.1.5) as

Un+1
i = Un

i +
∆t

∆x

(
Fi−1/2 − Fi+1/2

)
. (4.1.8)

No approximations are made so far, thus (4.1.8) is not a numerical scheme
yet. It becomes a numerical scheme, and indeed it is called “Godunov scheme”
when approximations are introduced for the computations of the numerical
fluxes Fi−1/2 and an interpretation is given to the average Ui. Depending
on the method to compute the fluxes at each interface, Fi−1/2 and Fi+1/2,
diverse numerical algorithms can be conceived from (4.1.8). At the adjacent
numerical cells the quantity Ui manifests a jump, thus generating a sequence
of local Riemann problems. Hence, (4.1.8) is said to be a Godunov’s first-order
upwind method if the fluxes are calculated by solving such sequence of local
Riemann problems. The left and right states are the same piecewise constant
distribution of data giving by (4.1.6). Solving the Riemann problem provides
either the term U(xi±1/2, t) to be used in (4.1.7), or the F[U(xi±1/2,t)].

4.2 Approximate Riemann solvers
This is the conservative form of the Godunov scheme. And the intercell nu-
merical flux is given by, Toro (2009)

Fi+1/2 = F(Ui+1/2(0)), (4.2.1)
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where Ui+1/2(0) is the exact similarity solution Ui+1/2(x/t) of the Riemann
problem 

Ut + F(U)x = 0,

U(x, 0) =

{
UL if x > 0,

UR if x < 0,

(4.2.2)

evaluated at x/t = 0.
Similarity solutions to PDEs are solutions which depend on certain group-

ings of the independent variables, rather than on each variable separately.
A similarity solution is defined mathematically as solution where a change

of variables allows for a reduction in the number of independent variables. In
fluids, a similarity solution can be interpreted physically as a case that, when
appropriately non-dimensionalised, causes the data taken at different locations
or times to collapse.

The similarity method is one of the standard methods for obtaining exact
solutions of PDEs. The number of independent variables in a PDE is reduced
by one by making use of appropriate combinations of the original independent
variables as new independent variables, called “similarity variables.” The simi-
larity variables can themselves be identified by using the invariance properties
of PDEs when subjected to finite or infinitesimal transformations.

The numerical flux can be computed in two ways, either by giving an ap-
proximation to the state Ui+1/2(0) which is then used in (4.2.1), this is known
as approximate Riemann solver, or by giving an approximation to the flux di-
rectly, this is known as the direct Riemann solver. A variety of numerical fluxes
are available to approximate the solution of the resulting Riemann problem.
The way in which we approach the numerical flux in function of the discrete
unknowns determines the numerical scheme.

The time integral form of (4.2.2) on the control volume defined in figure
4.3 (left) gives:∫ xR

xL

U(x, T ) dx =

∫ xR

xL

U(x, 0) dx+

∫ T

0

F(U(xL, t)) dt−
∫ T

0

F(U(xR, t)) dt,

thus ∫ xR

xL

U(x, T ) dx = xRUR − xLUL + T (FL − FR), (4.2.3)

where FL = F(UL) and FR = F(UR).
But we can also have:∫ xR

xL

U(x, T ) dx =

∫ TSL

xL

U(x, T ) dx+

∫ TSR

TSL

U(x, T ) dx+

∫ xR

TSR

U(x, T ) dx,

thus∫ xR

xL

U(x, T ) dx =

∫ TSR

TSL

U(x, T ) dx+(TSL−xL)UL+(TSR−xR)UR (4.2.4)
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Figure 4.3: Control volume [xL, xR]× [0, T ] (left), three wave structure of the HLL
approximate Riemann solver (right), from Toro (2009).

Comparing the two equations (4.2.3) and (4.2.4), and dividing by the length
T (SR−SL), we obtain the integral average of the exact solution of the Riemann
problem between the slowest and the fastest signals at time T , Toro (2009):

Uhll =
1

T (SR − SL)

∫ TSR

TSL

U(x, T ) dx =
SRUR − SLUL + FL − FR

SR − SL
. (4.2.5)

For the linear equation, the HLL (Harten, Lax and van Leer) Riemann solver
is used. This method assumes two waves model as illustrated in figure 4.3
(right) and computes directly an approximation for the intercell numerical
flux. This gives us a left state UL, a right state UR and a middle state Uhll.
An approximate Riemann solver is defined in Harten et al. (1983):

U(x/t; UL,UR) =


UL x/t ≤ SL

Uhll SL ≤ x/t ≤ SR

UR x/t ≥ SR

(4.2.6)

where Uhll is the constant state vector defined in (4.2.5), and SL and SR are
the wave speeds. We will define them later.

We now recall the Rankine-Hugoniot condition, Toro (2009). Let us con-
sider the integral form of equation (4.1.1) on the interval [xL, xR] at time t:

d

dt

∫ xR

xL

U(x, t) dx = F(U(xL, t))− F(U(xL, t)), (4.2.7)
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where xL and xR are chosen such that xL ≤ s(t) ≤ xR where s(t) is a line of
discontinuity of the solution. Thus we can write (4.2.7) as follow:

d

dt

∫ s(t)

xL

U(x, t) dx+
d

dt

∫ xR

s(t)

U(x, t) dx = F(U(xL, t))− F(U(xL, t)).

Recalling that:

d

dt

∫ x2(t)

x1(t)

f(x, t) dx =

∫ x2(t)

x1(t)

∂f(x, t)

∂t
dx+f(x2(t), t)

dx2(t)

dt
−f(x2(t), t)

dx2(t)

dt
,

we obtain :

F(U(xL, t))− F(U(xL, t)) = [U(sL, t)−U(sR, t)]S

+

∫ s(t)

xL

∂U(x, t)

∂t
dx+

∫ xR

s(t)

∂U(x, t)

∂t
dx,

(4.2.8)

where S =
ds(t)

dt
and U(sL, t) and U(sR, t) are the left and right limit of

U(x, t) for x→ s(t). And when xL → s(t) and xR → s(t) the two integrals on
the right hand side of equation (4.2.8) tend to 0 and we obtain the Rankine-
Hugoniot condition:

F(U(xL, t))− F(U(xL, t)) = [U(sL, t)−U(sR, t)]S, (4.2.9)

usually expressed as ∆F = S∆U.
Applying this Rankine-Hugoniot condition across the left and right waves

of our model gives:

Fhll = FL + SL(Uhll −UL),

Fhll = FR + SR(Uhll −UR).

Combining these two equations leads to:

Fhll =
1

2

[
FL + FR + SL(Uhll −UL) + SR(Uhll −UR)

]
,

and applying the value of Uhll given in (4.2.5) gives the value of the numerical
flux:

Fhll =
SRFL − SLFR + SLSR(UR −U)L

SR − SL
. (4.2.10)

The corresponding HLL intercell flux for the approximate Godunov method is
then given by (Toro (2009)):

Fhll
i+1/2 =


FL, if 0 ≤ SL,
SRFL − SLFR + SLSR(UR −UL)

SR − SL
, if SL ≤ 0 ≤ SR,

FR, if 0 ≥ SR.

(4.2.11)
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What remains is the computation of the wave speeds. There are several pos-
sible choice for the wave speeds but in this work, we choose the one proposed
by Davis (1988) presented in Toro (2009):

SL = uL −
√
gd and SR = uR +

√
gd ,

where
√
gd is the long wave speed. Thus, we have:

• If SL ≥ 0 :

F̂ = F(UL) =

duLgηL
0


• If SR ≤ 0 :

F̂ = F(UR) =

duRgηR
0


• Otherwise:

F̂ =
1

SR − SL

SRduL − SLduR + SLSR(ηR − ηL)
SRηLg − SLηRg + SRSL(uR − uL)

SRSL(vR − vL)


At this end, we should take note that the assumption of a two waves configu-
ration is correct only for hyperbolic systems of two equations, such as the 1D
SWEs, Toro (2009). Thus it works only if there is no contact and shear waves
in the flow. Otherwise, another approximate solver is used like the HLLC,
where the letter “C" stands for contact, presented in Toro (2009). This solver
is chosen for the nonlinear SWEs. Figure 4.4 illustrates the assumed wave

Figure 4.4: HLLC Riemann solver for x-split 2D shallow water equations from
Toro.

structure in the HLLC Riemann solver, we added a middle speed S∗. There
are now two distinct fluxes for the star region, and we need to estimates S∗
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for the speed of the middle wave. The HLLC approximate Riemann solver is
given as follow, from Toro (2009):

U(x, t) =


UL if x/t ≤ SL,

U∗L if SL ≤ x/t ≤ S∗,

U∗R if S∗ ≤ x/t ≤ SR,

UR if x/t ≥ SR.

The HLLC numerical flux is then, from Toro (2009):

Fhllc
i+ 1

2
=


FL if 0 ≤ SL,

F∗L if SL ≤ 0 ≤ S∗,

F∗R if S∗ ≤ 0 ≤ SR,

FL if 0 ≥ SR,

where

F∗L = FL + SL(U∗L −UL)

F∗R = FR + SR(U∗R −UR)

S∗ =
SLhR(uR − SR)− SRhL(uL − SL)

hR(uR − SR)− hL(uL − SL)

U∗K = H

(
SK − uK
SK − S∗

) 1
S∗
vK


SL = uL − aLqL
SR = uR − aRqR
aK =

√
gHK

qK =


√

1
2

(
(H∗ +HK)H∗

H2
K

)
if H∗ > HK ,

1 if H∗ ≤ HK

H∗ =
1

2

(
1

2
(aL + aR) +

1

4
(uL − uR)

)
• Define the average flux at xi−1/2 based on the data Un

i−1 and Un
i+1 to the

left and right of this point.

Fc
i+ 1

2
=

1

2

(
F(Un

i−1) + F(Un
i+1)
)

=
1

2
(FL + FR) .
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• The Rusanov flux is generated from the HLL flux. Suppose a positive
wave speed estimate S is available. By substituting the speeds SL and
SR in HLL into −S and S respectively.

Frus
i+ 1

2
=

1

2
(FL + FR) +

1

2
S (UL −UR) ,

where S = max{|uL|+ aL, |uR|+ aR} and aK =
√
gHK .

• Choosing the largest possible speed namely S = |λ|max results the Lax-
Friedrichs flux

Flax
i+ 1

2
=

1

2
(FL + FR) +

1

2
|λ|max (UL −UR) ,

where λmax is the maximum eigenvalue i.e. λmax = max{u− a, u, u+ a},
a =
√
gH.

At this end, we can see that the Lax-Friedrichs flux and the Rusanov flux as
closely related as we will see from the experimental results in the next chapter
(Chapter 5).
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Numerical Results

This chapter will show and compare all the numerical and convergence re-
sults of the method as shown in (3.4.2) whith to the four presented numerical
fluxes. The DG scheme was implemented in the open-source spectral/hp li-
brary Nektar++, [Karniadakis and Sherwin (2005); nek]. Nektar++ a C++
object-oriented toolkit which allows developers to implement spectral solvers
for a variety of different engineering problems. Nektar++ provides the fun-
damental tools associated with high-order FEM, such as the calculation of
expansion functions, inner products and differentiation. My main work has
been focused on implementing the new three numerical fluxes, presented in
Chapter 5, which are the average flux, the Rusanov flux and the Lax-Friedrich
flux. The HLL and HLLC numerical fluxes are already implemented in the
spectral/hp library Nektar++ and have been modified appropriately in accor-
dance with the scheme. The corresponding codes can be found in Appendix
A.

5.1 Error norm
In order to evaluate the numerical solution quantitatively, two norms, known
as L2-norm and L∞-norm, are introduced and defined as follows:

L2 = ||ηδ − η||2 =

[∫
(ηδ − η)2dx

]1/2

,

L∞ = max(|ηδ − η|),

where η is the analytical solution and ηδ is the numerical solution.
But one should notice that not every equations have an analytical solution,

most of the time, they are difficult to solve mathematically. In that case,
the use of a reference solution is required. A reference solution is obtained
numerically by using a very refined grid with high local order approximation.
Remember that the hallmark of spectral/hp method is its accuracy when the
element size mesh is decreased as small as possible and when the degree of the

35
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polynomial expansion is increased as large as possible (Chapter 3). The error
estimate then made by comparing the numerical solution with this generated
reference solution. The accuracy of the method is assured if the problem is
well-posed. Indeed,

L2 = ||ηδ − η||2,
= ||ηδ − ηref + ηref − η||2,
≤ ||ηδ − ηref ||2 + ||ηref − η||2︸ ︷︷ ︸,<O 1

NK
el


< ||ηδ − ηref ||2 +O

(
1

NK
el

)
,

where Nel is the number of elements of the discretised domain where the nu-
merical solution ηδ is computed, ηref is the reference solution, and K > 1.

5.2 Description of the test problem
The performance of the numerical schemes for the SWEs is evaluated by ap-
plying a test case problem. Here the Rossby waves on a 2D space are used to
illustrate the work and to test the accuracy of each numerical flux.

Rossby waves are undulating movements of atmospheric or oceanic circu-
lation wavelength whose initiation is due to the variation of the Coriolis force
depending on latitude. This is described by the nonlinear SWEs. The compu-
tational domain is x ∈ [−24, 24]× [−8, 8]. All boundaries are treated as walls.
The zeroth-order initial conditions are given by Boyd (1980):

η(x, 0) = η0(x) = Γ(x)

(
3 + 6y2

4

)
e−

1
2
y2 ,

u(x, 0) = u0(x) = Γ(x)

(
−9 + 6y2

4

)
e−

1
2
y2 ,

v(x, 0) = v0(x) =
∂Γ(x)

∂x
2ye−

1
2
y2 ,

where Γ(x) = 0.771a2 sech2(ax) and where a = 0.395 is the parameter deter-
mining the amplitude of the solitary wave. The corresponding initial conditions
U(x, 0) are depicted in Figure 5.1. The Coriolis parameter is f = y and the
water depth is d = 1. The analytical solution is not known, thus in order to
see the convergence, we define a reference numerical solution, and compare the
computed solutions against this reference numerical solution.

5.3 Computational results
The reference numerical solution is obtained by using a very refined grid with
high local order approximation. Here we use (Ne, P ) = (2020, 12), where Ne
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Figure 5.1: Initial conditions for the Rossby wave test of the SWEs; the top, the
middle and the bottom panels show the three fields η, u and v, respectively.
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is the number of elements and P is the order of approximation.
In order to demonstrate the exponential convergence of the scheme, we

solved the equation on grids with different resolutions (hereNel ∈ {18, 72, 288, 1152}),
and different order of the polynomial expansions (here P ∈ {2, 3, 4, 5, 7, 9}).
Measurements of the L2 and L∞ errors for the η field are made at time t = 1
second of each experiment. The time step is chosen to be sufficiently small,
0.001, so the temporal error is negligible compared to spatial error from Runge-
Kutta 4-th order explicit time scheme.

Tables (5.1) - (5.6) show the error results while fixing the order of the ex-
pansion to 2, 3, 4, 5, 7 and 9 respectively for each different element size. Tables
(5.8) and (5.7) show the error results while fixing the size of the element mesh
and varying the degree of the polynomial expansion.

The illustration of the h-refinement is depicted in Figure 5.3 and 5.4, and
the illustration of the p-refinement in Figure 5.5 and 5.6.

Numerical solutions of the problem at time t = 1s for the field η for each
different numerical fluxes are depicted in Figure 5.2.

Table 5.1: h-convergence error, by fixing the order of approximation to P = 2.

Norm Ne h HLLC Rusanov Lax Average
L2 18 1 − − − −

72 0.75 − − − −
288 0.5 0.00187706 0.00142523 0.00142732 0.00232406
1152 0.25 0.00017043 0.000177741 0.00017762 0.000214919

L∞ 18 1 − − − −
72 0.75 − − − −
288 0.5 0.252534 0.160658 0.161778 0.352784
1152 0.25 0.0496415 0.0516206 0.0516284 0.0581733

Table 5.2: h-convergence error, by fixing the order of approximation to P = 3.

Norm Ne h HLLC Rusanov Lax Average
L2 18 1 − − − −

72 0.75 − − − −
288 0.5 0.000557674 0.000638331 0.000639032 0.000927097
1152 0.25 4.75E − 005 4.88E − 005 4.88E − 005 5.97E − 005

L∞ 18 1 − − − −
72 0.75 − − − −
288 0.5 0.183135 0.191328 0.191013 0.274734
1152 0.25 0.0267934 0.0255858 0.0256101 0.0321325
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Figure 5.2: The field η at time t = 1.0s for different fluxes (from the top to the
bottom): HLLC, Rusanov, Lax and Average fluxes.
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Figure 5.3: The logarithm of L2 error as a function of the mesh size h. The top
panel is for a fix degree of expansion p = 2, the middle panel for p = 4 and the
bottom panel for p = 7.
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Figure 5.4: The logarithm of L∞ error as a function of the mesh size h. The top
panel is for a fix degree of expansion p = 2, the middle panel for p = 4 and the
bottom panel for p = 7.
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Figure 5.5: The logarithm of L2 error as a function of the degree of the polynomial
expansion p. The top panel is for the grid with Ne = 288 elements and the bottom
panel is for the grid with Ne = 1152 elements.
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Figure 5.6: The logarithm of L∞ error as a function of the degree of the polynomial
expansion p. The top panel is for the grid with Ne = 288 elements and the bottom
panel is for the grid with Ne = 1152 elements.
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Table 5.3: h-convergence error, by fixing the order of approximation to P = 4.

Norm Ne h HLLC Rusanov Lax Average
L2 18 1 − − − −

72 0.75 − − − −
288 0.5 0.00028082 0.000287734 0.000287622 0.000338441
1152 0.25 2.20E − 005 2.63E − 005 2.63E − 005 2.69E − 005

L∞ 18 1 − − − −
72 0.75 − − − −
288 0.5 0.119201 0.129232 0.129047 0.146647
1152 0.25 0.0189017 0.0238128 0.0237768 0.0262126

Table 5.4: h-convergence error, by fixing the order of approximation to P = 5.

Norm Ne h HLLC Rusanov Lax Average
L2 18 1 − − − −

72 0.75 − − − −
288 0.5 0.000177699 0.000144341 0.000144636 0.000258629
1152 0.25 1.30E − 005 1.19E − 005 1.19E − 005 1.27E − 005

L∞ 18 1 − − − −
72 0.75 − − − −
288 0.5 0.177217 0.141855 0.142247 0.239123
1152 0.25 0.0205232 0.0180333 0.0180489 0.0150706

Table 5.5: h-convergence error, by fixing the order of approximation to P = 7.

Norm Ne h HLLC Rusanov Lax Average
L2 18 1 − − − −

72 0.75 − − − −
288 0.5 3.45E − 005 3.24E − 005 3.25E − 005 4.60E − 005
1152 0.25 2.89E − 006 2.65E − 006 2.65E − 006 6.32E − 006

L∞ 18 1 − − − −
72 0.75 − − − −
288 0.5 0.0597598 0.0423726 0.0424574 0.0568439
1152 0.25 0.0047821 0.00530619 0.00531596 0.0187188

Table 5.6: h-convergence error, by fixing the order of approximation to P = 9.

Norm Ne h HLLC Rusanov Lax Average
L2 18 1 − − − −

72 0.75 − − − −
288 0.5 8.43E − 006 9.39E − 006 9.39E − 006 1.98E − 005
1152 0.25 1.39E − 006 1.41E − 006 1.41E − 006 1.75E − 006

L∞ 18 1 − − − −
72 0.75 − − − −
288 0.5 0.0154523 0.0217205 0.0217386 0.0534387
1152 0.25 0.00320415 0.00306958 0.00306958 0.00526209

Convergence rate:

The speed at which a convergent sequence approaches its limit is called the
rate of convergence. It is defined as follow:

rate =
log[errorhi+1

/errorhi ]

log(hi/hi+1)
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Table 5.7: p-convergence error, by fixing the number of elements to Ne = 288.

Norm P HLLC Rusanov Lax Average
L2 2 0.00187706 0.00142523 0.00142732 0.00232406

3 0.000557674 0.000638331 0.000639032 0.000927097
4 0.00028082 0.000287734 0.000287622 0.000338441
5 0.000177699 0.000144341 0.000144636 0.000258629
7 0.0000344838 0.0000324409 0.0000324759 0.0000460498
9 0.00000843244 0.00000938695 0.00000939476 0.0000198481

L∞ 2 0.252534 0.160658 0.161778 0.352784
3 0.183135 0.191328 0.191013 0.274734
4 0.119201 0.129232 0.129047 0.146647
5 0.177217 0.141855 0.142247 0.239123
7 0.0597598 0.0423726 0.0424574 0.0568439
9 0.0154523 0.0217205 0.0217386 0.0534387

Table 5.8: p-convergence error, by fixing the number of elements to Ne = 1152.

Norm P HLLC Rusanov Lax Average
L2 2 0.00017043 0.000177741 0.00017762 0.000214919

3 0.0000475131 0.0000488052 0.0000488093 0.000059725
4 0.0000220014 0.0000263491 0.0000263301 0.0000269058
5 0.0000129814 0.0000118904 0.0000118948 0.0000126872
7 0.00000288951 0.00000265119 0.00000265301 0.00000631529
9 0.00000138515 0.00000141025 0.0000014108 0.00000174784

L∞ 2 0.0496415 0.0516206 0.0516284 0.0581733
3 0.0267934 0.0255858 0.0256101 0.0321325
4 0.0189017 0.0238128 0.0237768 0.0262126
5 0.0205232 0.0180333 0.0180489 0.0150706
7 0.0047821 0.00530619 0.00531596 0.0187188
9 0.00320415 0.00306958 0.00306958 0.00526209

For the h-convergence, the corresponding convergence rate is given in the fol-
lowing table:

Table 5.9: Convergence rate for the L2-norm.

p HLLC Rusanov Lax Average
2 3.4612 3.0033 3.0064 3.4347
3 4.5530 3.7091 3.7106 3.9563
4 4.6739 4.4489 4.4493 4.6529
5 5.7749 5.6016 5.6040 5.3494
7 7.5776 7.6131 7.6136 6.8662
9 10.605 10.734 10.735 9.5053

5.4 Analysis
For fix values of the degree of the polynomial expansions, h-convergence ex-
hibits exponential convergences for all four numerical fluxes both for L2 and
L∞ norms as shown in Figure 5.3 and 5.4. Six different polynomial orders,
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p = 2, 3, 4, 5, 7, 9, are used for the p-refinement, and exponential convergences
are demonstrated for all the numerical fluxes in the L2-norm, as illustrated in
Figure 5.5. With less grid points of 18 and 72, the solutions blow-up (Tables
5.1-5.6). For the L∞-norm, we can notice that convergence is better with fine
grid (Figure 5.6). The use of averaging is known to produce sub-optimal con-
vergence for odd p, as shown in Figure 5.6. The convergence rate table, Table
5.9, shows that the convergence is optimal, that is O(hp+1). The average flux
is generally unstable for hyperbolic problems and cannot be used, even if the
time step is small enough that the CFL condition is satisfied, Leveque (2004).
The results of the Rusanov flux and the Lax-Friedrich flux seem identical as
illustrated in the convergence plots. Physically, eigenvalues represent speeds
of propagation of information. In addition, the use of the Lax-Friedrich flux
is recommended by Bernard et al. (2009). The HLLC flux is also considered
as an appropriate flux for the SWEs, and it is suggested in (Eskilsson and
Sherwin, 2000).
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Conclusion

Any fluids that have horizontal length scale much greater than the vertical
length scale can be considered as shallow water. Thus, the SWEs can be met
more often since this characteristics is common in the area of fluid dynam-
ics. Some examples of shallow water are the atmosphere of the Earth, dam
break, river flood, tide, wave, tsunami and many others. The 2D SWEs are
derived from the Navier-Stokes equations which describe the motion of fluids.
The derivation and the mathematical expressions of the SWEs are reviewed
in Chapter 2. The spectral/hp DG scheme is outlined in Chapter 3 for solv-
ing SWEs. The hallmark of the (DG) method is that solutions are allowed
to be discontinuous over elemental boundaries, the elements are coupled by
numerical fluxes, as in FVM and it is geometrically flexible, that is can handle
complex spatial domain. The spectral/hp element method is the combination
of the hp-version the finite element method and spectral element method. It
uses the Lagrange polynomials as a basis of the expansion through the zeros
of the Gauss-Lobatto-Legendre polynomials. The convergence of the method
is then observed when fixing the size of the element mesh h and increasing
the degree of the polynomial expansion, this is known as p-refinement as de-
picted in Table 5.7-5.8 and in Figure 5.3-5.4. Or by fixing the degree of the
polynomial expansion p and decreasing the size of the element mesh h, this is
known as h-refinement and illustrated in Table 5.1-5.6 and in Figure 5.5-5.6.
Due to the discontinuity at the boundary, the use of numerical flux is needed.
Numerical flux is the amount of information that passes at the boundary from
one state to another state following the normal direction. There are different
types of numerical fluxes, and they are computed using Riemann solvers. Four
types of of numerical fluxes are presented in Chapter 4, which are HLLC, Lax-
Friedrich, Rusanov and Average fluxes. They are all derived from approximate
Riemann solvers and the HLL flux. But it turns out that the Lax-Friedrich
and Rusanov fluxes are related, as we can see from the definition in Section
4.2 and from the computational results in Section 5.3.

To investigate the performance of the scheme and all the numerical fluxes,
the nonlinear Rossby wave problem, is used as test cases. Applications to the
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nonlinear Rossby wave problem exhibit the expected exponential convergences
for the four numerical fluxes; and as stated previously, the errors (L2 and
L∞) decrease as the size of the element mesh h decreases or as the degree of
the polynomial expansion increases. The expected accuracy is achieved for all
value of p, that is, error ∝ O(hp+1). The Lax-Friedrich flux and the HLLC flux
seems to be the best numerical flux, although HLLC is difficult to implement.
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Appendix A

Code

//=================================================================
// Case where the numerical f l ux includes the normal in the output

void NonlinearSWE : : NumericalFlux2D (Array<OneD, Array<OneD, NekDouble> > &phys f i e l d ,
Array<OneD, Array<OneD, NekDouble> > &numflux )

{

int i , k ;
int nTraceNumPoints = GetTraceTotPoints ( ) ;
int nva r i ab l e s = 3 ; // only the dependent var iab les

// get temporary arrays
Array<OneD, Array<OneD, NekDouble> > Fwd( nva r i ab l e s ) ;
Array<OneD, Array<OneD, NekDouble> > Bwd( nva r i ab l e s ) ;
Array<OneD, NekDouble> DepthFwd( nTraceNumPoints ) ;
Array<OneD, NekDouble> DepthBwd( nTraceNumPoints ) ;

for ( i = 0 ; i < nva r i ab l e s ; ++i )
{

Fwd[ i ] = Array<OneD, NekDouble>(nTraceNumPoints ) ;
Bwd[ i ] = Array<OneD, NekDouble>(nTraceNumPoints ) ;

}

// get the physica l values at the trace
for ( i = 0 ; i < nva r i ab l e s ; ++i )

{
m_fields [ i ]−>GetFwdBwdTracePhys ( phy s f i e l d [ i ] ,Fwd [ i ] ,Bwd[ i ] ) ;

}
m_fields [0]−>GetFwdBwdTracePhys (m_depth , DepthFwd ,DepthBwd ) ;

Array<OneD, NekDouble> fluxX ( nva r i ab l e s ) ;
Array<OneD, NekDouble> fluxY ( nva r i ab l e s ) ;
Array<OneD, NekDouble> fluxAdd ( nva r i ab l e s ) ;

for ( k = 0 ; k < nTraceNumPoints ; ++k)
{

switch (m_upwindType)
{
case eAverage :

{
AverageFlux (Fwd [ 0 ] [ k]+DepthFwd [ k ] ,Fwd [ 1 ] [ k ] ,Fwd [ 2 ] [ k ] ,

Bwd [ 0 ] [ k]+DepthFwd [ k ] ,Bwd [ 1 ] [ k ] ,Bwd [ 2 ] [ k ] ,
fluxX , fluxY , fluxAdd ) ;

}
break ;

case eLax :
{

LaxFriedr ichFlux (Fwd [ 0 ] [ k]+DepthFwd [ k ] ,Fwd [ 1 ] [ k ] ,Fwd [ 2 ] [ k ] ,
Bwd [ 0 ] [ k]+DepthFwd [ k ] ,Bwd [ 1 ] [ k ] ,Bwd [ 2 ] [ k ] ,
fluxX , fluxY , fluxAdd ) ;

}
break ;

case eRusanov :
{

RusanovFlux (Fwd [ 0 ] [ k]+DepthFwd [ k ] ,Fwd [ 1 ] [ k ] ,Fwd [ 2 ] [ k ] ,
Bwd [ 0 ] [ k]+DepthFwd [ k ] ,Bwd [ 1 ] [ k ] ,Bwd [ 2 ] [ k ] ,
fluxX , fluxY , fluxAdd ) ;

}
break ;

default :
{

ASSERTL0( false , " populate ␣ switch ␣ statement ␣ f o r ␣upwind␣ f l ux " ) ;
}
break ;

50

Stellenbosch University  http://scholar.sun.ac.za



APPENDIX A. CODE 51

}
//Rotate back some terms to Cartesian
numflux [ 0 ] [ k ] = fluxX [ 0 ] ∗ m_traceNormals [ 0 ] [ k ] + fluxY [ 0 ] ∗ m_traceNormals [ 1 ] [ k ] + fluxAdd [ 0 ] ;
numflux [ 1 ] [ k ] = fluxX [ 1 ] ∗ m_traceNormals [ 0 ] [ k ] + fluxY [ 1 ] ∗ m_traceNormals [ 1 ] [ k ] + fluxAdd [ 1 ] ;
numflux [ 2 ] [ k ] = fluxX [ 2 ] ∗ m_traceNormals [ 0 ] [ k ] + fluxY [ 2 ] ∗ m_traceNormals [ 1 ] [ k ] + fluxAdd [ 2 ] ;

}
}

//=================================================================

//=================================================================
void NonlinearSWE : : AverageFlux (NekDouble hL , NekDouble uL , NekDouble vL , NekDouble hR, NekDouble uR,

NekDouble vR, Array<OneD, NekDouble> &fluxX ,
Array<OneD, NekDouble> &fluxY ,
Array<OneD, NekDouble> &fluxAdd )

{
NekDouble g = m_g;

fluxX [ 0 ] = 0 .5∗ (hL∗uL + hR∗uR) ;
f luxY [ 0 ] = 0 .5∗ (hL∗vL + hR∗vR ) ;
fluxAdd [ 0 ] = 0 . 0 ;

f luxX [ 1 ] = 0 .5∗ (hL∗uL∗uL + hR∗uR∗uR + 0.5∗ g ∗(hL∗hL + hR∗hR) ) ;
f luxY [ 1 ] = 0 .5∗ (hL∗uL∗vL + hR∗uR∗vR ) ;
fluxAdd [ 1 ] = 0 . 0 ;

f luxX [ 2 ] = 0 .5∗ (hL∗uL∗vL + hR∗uR∗vR ) ;
f luxY [ 2 ] = 0 .5∗ (hL∗vL∗vL + hR∗vR∗vR + 0.5∗ g ∗(hL∗hL + hR∗hR) ) ;
fluxAdd [ 2 ] = 0 . 0 ;

}

//=================================================================

//=================================================================
void NonlinearSWE : : RusanovFlux (NekDouble hL , NekDouble uL , NekDouble vL , NekDouble hR, NekDouble uR,

NekDouble vR, Array<OneD, NekDouble> &numfluxX ,
Array<OneD, NekDouble> &numfluxY ,
Array<OneD, NekDouble> &numfluxAdd )

{
NekDouble g = m_g;

NekDouble SL , SR;
SL = fabs (uL) + sq r t ( g∗hL ) ;
SR = fabs (uR) + sqr t ( g∗hR) ;

NekDouble S ;
i f (SL > SR)

S = SL ;
else

S = SR;

numfluxX [ 0 ] = 0 .5∗ (hL∗uL + hR∗uR) ;
numfluxY [ 0 ] = 0 .5∗ (hL∗vL + hR∗vR ) ;
numfluxAdd [ 0 ] = 0.5∗S∗(hL − hR) ;

numfluxX [ 1 ] = 0 .5∗ (hL∗uL∗uL + hR∗uR∗uR + 0.5∗ g ∗(hL∗hL + hR∗hR) ) ;
numfluxY [ 1 ] = 0 .5∗ (hL∗uL∗vL + hR∗uR∗vR ) ;
numfluxAdd [ 1 ] = 0.5∗S∗(uL∗hL − uR∗hR) ;

numfluxX [ 2 ] = 0 .5∗ (hL∗uL∗vL + hR∗uR∗vR ) ;
numfluxY [ 2 ] = 0 .5∗ (hL∗vL∗vL + hR∗vR∗vR + 0.5∗ g ∗(hL∗hL + hR∗hR) ) ;
numfluxAdd [ 2 ] = 0.5∗S∗(vL∗hL − vR∗hR) ;

}

//=================================================================

//=================================================================
void NonlinearSWE : : LaxFriedr ichFlux (NekDouble hL , NekDouble uL , NekDouble vL , NekDouble hR, NekDouble uR,

NekDouble vR, Array<OneD, NekDouble> &numfluxX ,
Array<OneD, NekDouble> &numfluxY ,
Array<OneD, NekDouble> &numfluxAdd )

{
int j ;
NekDouble g = m_g;
NekDouble lambda ;

Array<OneD, NekDouble>Eigenvalue ( 6 ) ;

//Define the element of the eigenvalue
Eigenvalue [ 0 ] = uL − sq r t ( g∗hL ) ;
Eigenvalue [ 1 ] = uL ;
Eigenvalue [ 2 ] = uL + sqr t ( g∗hL ) ;
Eigenvalue [ 3 ] = uR − sq r t ( g∗hR) ;
Eigenvalue [ 4 ] = uR;
Eigenvalue [ 5 ] = uR + sqr t ( g∗hR) ;

//Find the maximum eigenvalue
lambda = Eigenvalue [ 0 ] ;
for ( j = 1 ; j < 6 ; ++j )

{
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i f ( Eigenvalue [ j ] > lambda )
lambda = Eigenvalue [ j ] ;

}
lambda = fabs ( lambda ) ;

numfluxX [ 0 ] = 0 .5∗ (hL∗uL + hR∗uR) ;
numfluxY [ 0 ] = 0 .5∗ (hL∗vL + hR∗vR ) ;
numfluxAdd [ 0 ] = 0.5∗ lambda ∗(hL − hR) ;

numfluxX [ 1 ] = 0 .5∗ (hL∗uL∗uL + hR∗uR∗uR + 0.5∗ g ∗(hL∗hL + hR∗hR) ) ;
numfluxY [ 1 ] = 0 .5∗ (hL∗uL∗vL + hR∗uR∗vR ) ;
numfluxAdd [ 1 ] = 0.5∗ lambda ∗(uL∗hL − uR∗hR) ;

numfluxX [ 2 ] = 0 .5∗ (hL∗uL∗vL + hR∗uR∗vR ) ;
numfluxY [ 2 ] = 0 .5∗ (hL∗vL∗vL + hR∗vR∗vR + 0.5∗ g ∗(hL∗hL + hR∗hR) ) ;
numfluxAdd [ 2 ] = 0.5∗ lambda ∗(vL∗hL − vR∗hR) ;

}

//=================================================================

/∗HLLC f lux ∗/
void NonlinearSWE : : RiemannSolverHLLC(NekDouble hL , NekDouble uL , NekDouble vL , NekDouble hR, NekDouble uR,

NekDouble vR, NekDouble &hflux , NekDouble &huflux , NekDouble &hvf lux )
{

NekDouble g = m_g;
NekDouble hC, huC , hvC , SL ,SR, hstar , Ss tar ;
NekDouble cL = sqr t ( g ∗ hL ) ;
NekDouble cR = sqr t ( g ∗ hR) ;

// the two−rarefact ion wave assumption
hstar = 0 .5∗ ( cL + cR) + 0 .25∗(uL − uR) ;
hs tar ∗= hstar ;
hs tar ∗= (1 . 0/ g ) ;

// Compute SL
i f ( hs tar > hL)

SL = uL − cL ∗ sq r t ( 0 . 5 ∗ ( ( hs tar ∗ hstar + hstar ∗hL)/(hL∗hL ) ) ) ;
else

SL = uL − cL ;

// Compute SR
i f ( hs tar > hR)
SR = uR + cR ∗ sq r t ( 0 . 5 ∗ ( ( hs tar ∗ hstar + hstar ∗hR)/(hR∗hR ) ) ) ;

else
SR = uR + cR ;

// i f ( fabs (hR∗(uR−SR)−hL∗(uL−SL)) <= 1.0e−15)
// Sstar = 0.0;
// e l se
// Sstar = (SL∗hR∗(uR−SR)−SR∗hL∗(uL−SL))/(hR∗(uR−SR)−hL∗(uL−SL)) ;

Sstar = 0 .5∗ (uL+uR)+cL−cR ;

i f (SL >= 0)
{

h f lux = hL ∗ uL ;
huf lux = uL ∗ uL ∗ hL + 0.5 ∗ g ∗ hL ∗ hL ;
hvf lux = hL ∗ uL ∗ vL ;

}
else i f (SR <= 0)

{
h f lux = hR ∗ uR;
huf lux = uR ∗ uR ∗ hR + 0.5 ∗ g ∗ hR ∗ hR;
hvf lux = hR ∗ uR ∗vR ;

}
// e l se
// {

else i f ( ( SL < 0) && ( Sstar >= 0))
{

hC = hL ∗ ( (SL − uL) / (SL − Sstar ) ) ;
huC = hC ∗ Sstar ;
hvC = hC ∗ vL ;

h f lux = hL∗uL + SL ∗ (hC − hL ) ;
huf lux = (uL∗uL∗hL+0.5∗g∗hL∗hL) + SL ∗ (huC − hL∗uL ) ;
hvf lux = (uL∗vL∗hL) + SL ∗ (hvC − hL∗vL ) ;

}
else i f ( ( Ss tar <=0) && (SR > 0))

{
hC = hR ∗ ( (SR − uR) / (SR − Sstar ) ) ;
huC = hC ∗ Sstar ;
hvC = hC ∗ vR ;

h f lux = hR∗uR + SR ∗ (hC − hR) ;
huf lux = (uR∗uR∗hR+0.5∗g∗hR∗hR) + SR ∗ (huC − hR∗uR) ;
hvf lux = (uR∗vR∗hR) + SR ∗ (hvC − hR∗vR ) ;

}
else

ASSERTL0( false , "Error ␣ in ␣HLLC␣ s o l v e r " ) ;
}
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Appendix B

Theorems, Definitions and
Mathematical rules

Theorem 1 (Gauss’s theorem). Suppose V a subset of R2 which is compact
and has a piecewise smooth boundary S. If F is a continuously differentiable
vector field defined on a neighbourhood of V , then we have:∫

V

(∇ · F) dV =

∮
S

(F · n) dS .

Theorem 2 (Leibniz integral rule). Let f(x, t) be a function such that both f
and its partial derivative ∂f

∂t
are continuous in t and x in some region of the

(x, t)-plane, including a(t) ≤ x ≤ b(t), t0 ≤ t ≤ t1. Also suppose that the func-
tions a(t) and b(t) are both continuous and both have continuous derivatives
for t0 ≤ t ≤ t1. Then for t0 ≤ t ≤ t1:

d

dt

(∫ b(t)

a(t)

f(x, t) dx

)
= f(a(t), t)b′(t)− f(b(t), t)a′(t) +

∫ b(t)

a(t)

∂f

∂t
dx .

Definition 1 (Cauchy stress tensor). Tensors are geometric objects that de-
scribe linear relations between vectors, scalars, and other tensors, used to rep-
resent correspondences between sets of geometric vectors. The Cauchy stress
tensor is a second order tensor of type (1, 1) (that is, a linear map), with nine
components σij that completely define the state of stress at a point inside a
material in the deformed placement or configuration.
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