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ABSTRACT

In (HLR86), Harder et al. presented a proof of the Tate conjecture, an important

conjecture in the field of arithmetic geometry, for the non-CM part of the cohomology

of Hilbert modular surfaces. In this thesis, we present a general strategy for a study

of the Tate conjecture for some unitary Shimura varieties. As in the work cited

above, we do this by studying the notion of distinction. Distinction on a unitary

group is related to distinction on a general linear group through a comparison of

relative trace formulas. In the latter setting, work of Jacquet and his collaborators

has led to simple criteria in terms of base change and L-functions for the existence

of distinguished representations of GLN . The main result of this thesis is then a

proof of a special case of a relative fundamental lemma, the first ingredient of the

comparison, when the unitary group is of rank 4.
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ABRÉGÉ

Dans leur article (HLR86), Harder et al. présente une preuve de la conjecture

de Tate, une importante conjecture en géométrie arithmétique, pour la partie sans

CM de la cohomologie des surface modulaires de Hilbert. Cette thèse propose une

stratégie générale pour l’étude de la conjecture de Tate pour certaines variétés de

Shimura unitaires. Comme dans le travail cité ci-haut, la méthode proposée passe

par l’étude de la notion de distinction. La distinction sur un groupe unitaire est

reliée à la distinction sur un groupe général linéaire par le biais d’une comparaison

de formules des traces relatives. Dans ce dernier contexte, le travail de Jacquet et

ses collaborateurs donne des critères simples, en termes de changement de base et

de fonctions L, pour l’existence de représentations distinguées sur GLN . Le résultat

principal de cette thèse est donc une preuve d’un cas spécial d’un lemme fondamental

relatif, premier ingrédient d’une comparaison, lorsque le groupe unitaire est de rang

4.
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Introduction

Arithmetic geometry can be defined as the study of geometric objects defined

over interesting (from a number-theoretic point of view) rings. For instance, étale

cohomology allows us to package some geometric information about a variety into a

more manageable, linear-algebraic object. Moreover, and this was the main reason

for introducing `-adic cohomology theories in the 1950’s, some arithmetic information

as well is retained in these cohomology groups, in the form of a Galois representation.

One example of the interplay between geometry and arithmetic is the celebrated Tate

conjecture, that was first introduced in (Tat65) and that we now briefly present. Let

V be a geometrically irreducible smooth projective variety of dimension d over a

field k. We assume that k is finitely generated over its prime subfield, and we write

Γ = Gal(k/k) for its absolute Galois group. We fix a prime ` and write

Hn(V ) := Hn
ét(Vk,Q`).

As mentioned above, these cohomology groups are equipped with an action of Γ, and

we let Hn(V )(j) be the j-th Tate twist. If X is an irreducible subvariety of codimen-

sion i, Poincaré duality allows us to assign a cohomology class c(X) ∈ H2i(V )(i),

which can be extended by additivity to what is called the (i-th) cycle map (recall

that an i-th cycle is a Z-linear combination of irreducible subvarieties of codimension

1



i). We will let Zi(V ) denote the subgroup generated by those irreducible subvarieties

which are defined over the base field k.

Conjecture 0.0.1 (Tate). The image of Zi(V ) under the cycle map generates the

subgroup of Galois-invariant cohomology classes in H2i(V )(i), that is

c(Zi(V ))⊗Q` = H2i(V )(i)Γ.

Moreover, the dimension of Zi(V ) is equal to the order of the pole at s = i of the

Hasse-Weil zeta-function of V .

This conjecture is currently very much open, although important special cases

have been proven. For example, it has been proven for the non-CM part of the

cohomology of Hilbert modular surfaces (HLR86) (when i = 1). The technique used

for this special case is the main motivation for this thesis, and we will explain the

ingredients that come into it.

Let F be a real quadratic number field, and set G = ResF/Q(GL2). Let V be the

Shimura variety associated to G and a congruence subgroup K ⊂ G(Af ), where Af

is the finite part of the adele ring A of Q; these varieties are Hilbert modular surfaces.

In this setting, the group c (Z1(V )) is reasonably well-understood: it is generated by

the Hirzebruch-Zagier cycles, studied in (HZ76). On the cohomology side, the action

of the Hecke algebra commutes with the action of the Galois group, and we get the

following decomposition:

H2i(V ) =
⊕

πKf ⊗X i(π),
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where π = πf ⊗ π∞ runs through automorphic representations of G(A), and where

X i(π) is a finite-dimensional Galois representation. The representations appearing

in the decomposition have been studied by Brylinski and Labesse in (BL84), building

on earlier work of Langlands. Since the Hecke algebra also acts on Z1(V ), we obtain

a similar decomposition. Therefore, the study of the Tate conjecture can be done by

studying individual automorphic representations.

Definition 0.0.2. Let G be a connected reductive group over a number field F , and

let H ⊂ G be a closed, connected reductive subgroup. A cuspidal representation π

of G(AF ) is said to be H-distinguished if

P(φ) :=

∫
H(F )\H(AF )∩1G(AF )

φ(g)dg

is nonzero for some cusp form in the π-isotypic subspace of L2(G(F )\1G(AF )) (here,

1G(AF ) denotes the Harish-Chandra subgroup of G(AF ), defined in §2.2 below).

The authors then proved that the representations appearing in the decompo-

sition of Z1(V ) are precisely the representations distinguished by GL2/Q, and they

also relate the period integrals P(φ) to the poles of the Hasse-Weil zeta function of

V .

This result was quickly generalized to inner forms of GL2 (Lai85) using a rela-

tive trace formula. However, when n > 2, the locally symmetric space associated to

GLn is not hermitian. In particular, they do not give rise to Shimura varieties, and

therefore the same techniques do not directly yield other cases of the Tate conjecture.

3



In this thesis, we wish to present a strategy that can ultimately lead to a gen-

eralization of the work of Harder et al. for some unitary Shimura varieties. Con-

sider the following setting: let M/F be a CM extension of number fields, and set

G = ResM/F (GL2n). Let H be a unitary group in 2n variables over M/F , realized

as the subgroup of fixed points of an involution τ on G. We can choose a sec-

ond involution σ on G such that Gσ = ResM/F (GLn) × ResM/F (GLn) and Hσ is a

product of two copies of a unitary group in n variables. As noted above, the proof

in (HLR86) consists of a good understanding of both the image of the cycle map and

of the automorphic representations appearing in the decomposition of H2i(V )(i)Γ.

It is expected (although not thoroughly understood yet) that Hσ-distinguished rep-

resentations of H(AF ) should give rise to cohomologically non-trivial cycles on the

unitary Shimura variety associated to H (or a suitable generalization). On the other

hand, the Galois theory of the cohomology of Shimura varieties is reasonably well-

understood (for an overview of this topic, see (BR94)), and in particular, the work

of Jacquet and Friedberg provides a link to distinction, in terms of Asai L-functions.

The strategy we propose is the following: to understand Tate’s conjecture for uni-

tary Shimura varieties, we wish to study distinction on H. We propose to do this by

relating it to the study of distinction on G, via a comparison of trace formulas : we

want to compare a relative trace formula on H with a twisted relative trace formula

on G. This comparison can ultimately lead us to a sufficient condition for a cuspidal

automorphic representation of H to be distinguished by Hσ. By relating the study

of distinction on a unitary group to that on a general linear group, we can now
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make use of the work of Jacquet and his collaborators, which has led to the following

characterization:

Theorem 0.0.3 ((FJ93), (Jac10)). A cuspidal representation Π of G(AF ) is distin-

guished by Gσ if and only if the (partial) exterior square L-function attached to Π

has a pole at s = 1 and LS(1
2
,Π) 6= 0 (for a carefully chosen finite set of primes

S). Moreover, Π is distinguished by a quasi-split unitary group if and only if Π is

τ -invariant.

The spectral side of the twisted relative trace formula on G isolates represen-

tations which are both Gσ- and Gθ-distinguished, where θ = σ ◦ τ . One can easily

show that Gθ is a quasi-split unitary group. By Theorem 0.0.3, a cuspidal repre-

sentation of GLn is distinguished by Gθ if and only if it comes from base change.

Therefore, using Theorem 2.2.2 of Harris and Labesse (HL04), we can start with a

cuspidal representation π of H and consider its weak base change Π to G; it will thus

automatically be Gθ-distinguished. The comparison of trace formulas we present in

this thesis should eventually lead us to a proof of the following conjecture.

Conjecture 0.0.4. Let F be a number field and let G and H be as above. Let π be

a cuspidal automorphic representation of H(AF ), and suppose there exists a cuspidal

automorphic representation Π of G(AF ) that is a weak base change of π. Let S be a

finite set of primes containing the infinite places and all places where Π is ramified.

If LS(s,∧2Π) has a pole at s = 1 and LS(1
2
,Π) 6= 0, then there is a Hσ-distinguished

cuspidal automorphic representation π′ nearly equivalent to π.
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This has been conjectured by Getz and Wambach (GW). Note that it may be

necessary to make additional assumptions on the central characters or incorporate

character twists.

In this thesis, we do not carry out the full trace comparison. However, we

present the different tools essential to this setting, and we prove a special case of the

relevant relative fundamental lemma. The author is hopeful that a full proof of the

fundamental lemma can be achieved through more geometric means, and he hopes

to carry out the computations in the near future, as well as pursue the program

presented above.

* * *

This thesis is organized as follows: in the first chapter, we introduce the basic

vocabulary pertaining to algebraic groups. We explain some constructions that will

be useful in later chapters and we give a classification theorem for unitary groups.

In the second chapter, we give a brief overview of Langlands’ functoriality and ex-

plain how the Arthur-Selberg trace formula can be used to provide a correspondence

between automorphic representations of “related” reductive groups. We also explain

the parallels between this trace formula and Jacquet’s relative trace formula, which

is the computational tool that allows us to relate distinguished representations on

two groups. The last two chapters give an introduction to the first steps in the com-

parison of relative trace formulas: we provide a matching between certain classes

on a general linear group and those on a unitary group, and then use this to prove

a special case of a relative fundamental lemma. We also explain in what way a

comparison of relative trace formulas is relevant to our situation.
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All global and local fields appearing in this thesis are assumed to be of char-

acteristic zero. Therefore, global fields are number fields, and local fields are finite

extensions of an archimedean or non-archimedean completion of Q.
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CHAPTER 1
Algebraic Groups

In this chapter, we set up the vocabulary that will be used throughout this thesis.

We give the definition of group schemes over a general ring (unless otherwise stated,

all rings are assumed commutative and with identity), although we will mostly be

interested in group schemes over fields and local rings. We also cover some general

constructions that will be used later. We then present the construction of unitary

groups and state their basic properties.

1.1 Group schemes - Main definitions

Let k be a ring. An (affine) group scheme over k is a representable functor G

from the category of k-algebras to the category of groups. If need be, the representing

algebra will be denoted by AG. If this algebra is finitely-generated, we say G is an

algebraic group scheme; if k is a field and AG⊗k k is reduced, we say G is an algebraic

group. We also note that, equivalently, a group scheme over k is an affine scheme over

Spec(k) such that its functor of points factors through the forgetful functor from the

category of groups to that of sets (see (EH00, Theorem IV-14) for a characterization

of functors coming from schemes). This justifies the name, and also, all constructions

available to schemes are available to group schemes (e.g. fiber products).

Definition 1.1.1. Let H → G be a morphism of group schemes over k. We say H

is a closed subgroup of G if H(R) ⊂ G(R) is a subgroup (in the usual sense) for all

k-algebra R.
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By Yoneda’s lemma, this implies that H is representable by a quotient of AG,

hence the adjective closed.

Example. Let R denote a k-algebra.

• Define

Gm(R) = R×.

This functor can be represented by the k-algebra AGm = k[X, Y ]/(XY − 1).

We will call this algebraic group scheme the multiplicative group.

• More generally, define

GLn(R) = {g ∈ Matn(R) : det(g) 6= 0}.

This functor can be represented by the k-algebra

AGLn = k[X11, . . . , Xnn, Y ]/(det(X11, . . . , Xnn)Y − 1).

We will call this algebraic group scheme the general linear group. Note that

GL1 = Gm.

• Let Γ be a finite group. Define

Γ(R) = Maps(R,Γ),

that is, Γ(R) is the set of all functions from R to Γ and the group structure

is given by pointwise multiplication. This functor is representable by the k-

algebra AΓ = Maps(k,Γ) and is called the constant group scheme.

For another important class of examples, see § 1.2.
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A construction that will play an important role in what follows is the restriction

of scalars (à la Weil). This is to be construed as an inverse operation to the more

familiar operation of base change.

Definition 1.1.2. (CGP10, §A.5) Let k → k′ be a finite flat map of Noetherian rings,

and let X ′ be an affine scheme over k′. The Weil restriction of X ′ along k → k′,

denoted Resk′/k(X
′), is the unique (affine) scheme of finite type over k satisfying the

universal property

Resk′/k(X
′)(R) = X ′(R⊗k k′)

for all k-algebras R.

The existence of this scheme is proven in (BLR90, §7.6). We note that if X ′

is a group scheme, so is Resk′/k(X
′) (CGP10, Propositions A.5.1). Since restriction

of scalars commutes with base change (CGP10, Proposition A.5.2), we have the

following result.

Proposition 1.1.3. Suppose k is a perfect field, and let k′/k be a finite separable

extension. Fix an extension K/k containing all translates of k′, and let G be a group

scheme over k′. Then

(Resk′/k(G))K ∼=
∏

σ:k′→K

Gσ.

1.1.1 Integral models

For this section, we fix a non-archimedean local field F , with ring of integers O.

Let m = (π) be its maximal ideal, and let κ = O/m.

Definition 1.1.4. Let X be a scheme of finite type over F . An integral model of

X is a scheme X = Spec(A) over O such that A ⊂ AX is a sub-O-algebra of finite
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type (over O) and such that A[1/π] = AX . We will say the model is smooth if

the morphism X → Spec(O) is smooth; we say it is connected if both fibers are

connected.

A consequence of this definition is that a model X of X is flat and has generic

fiber X. We also note that the restriction of scalars of a model is a model for

the restriction of scalars, and that this operation preserves both smoothness and

connectedness (Yu, §2.5).

Let G be a finite group acting on a model X of X by automorphisms over O.

Then XG is affine with generic fiber XG, and it represents the functor R → X (R)G

on the category of O-algebras. In this context, we have the following result:

Proposition 1.1.5. (Edi92, §3.4) If X is smooth and #G is invertible in O, then

XG is a smooth model of XG.

We will need the following very useful cohomological result.

Lemma 1.1.6. Suppose G is a smooth connected group scheme over a Henselian (lo-

cal) ring k with finite residue field. Then every flat G-torsor is trivial. In particular,

G(k) is non-empty.

Proof. Since G is smooth, (Str83, Theorem 1) implies that G-torsors are in bijection

with torsors over the special fibre. Since G is connected, these are all trivial by

Lang’s theorem (Lan56, Theorem 2). The last assertion is then a trivial consequence

of the definitions (see (Mil80, §III.4)).

When we discuss the fundamental lemma in later chapters, we will be interested

in a specific model that we now introduce. Let G be a reductive group over F . The

group of F -points is naturally endowed with a topology coming from that of F . Let
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K ⊂ G(F ) be a maximal compact subgroup. We say it is a hyperspecial subgroup

if there exists a smooth and connected integral model G of G such that G(O) = K.

We have the following important existence result.

Proposition 1.1.7. (Mil92, §1, citing (Tit79), 1.10.2) There exists a hyperspecial

subgroup K ⊂ G(F ) if and only if G is unramified, that is, G is quasi-split and it

splits over an unramified extension of F .

Example. Consider G = GLn. If we look at the obvious model G = GLn, we see that

both fibers are connected, and so this is a smooth and connected integral model for

G. We want to show that K = G(O) = GLn(O) is a maximal compact subgroup

of G(F ). First of all, we note that since K is the intersection of a compact subset

(Matn(O)) and a closed subset (det−1(O×)) of Matn(F ), it is compact. These two

sets are also open, and therefore so is K. Also, K is the stabilizer of the standard

lattice On in F n. It is thus enough to prove that any compact subgroup stabilizes

a lattice, since any such subgroup can then be conjugated to lie inside K. Let

C ⊂ G(F ) be a compact subgroup. Since K is open, K ∩ C is open in C and so

C/(C ∩K) is finite. If we set

L =
∑

g∈C/(C∩K)

gOn,

then L is a lattice, being a finite sum of lattices. But clearly C stabilizes L, and the

result follows.

1.2 Unitary groups

Let F be any field of characteristic different from 2, and let M be a two-

dimensional étale algebra over F . Denote the non-trivial F -automorphism of M

12



by c (we will also use the notation x := c(x)). Let V be a free M -module of rank n,

and let

q : V × V →M

be a hermitian form, i.e. q is c-linear in the first variable, linear in the second

variable, and for all x, y ∈ V we have q(y, x) = c(q(x, y)). We also assume that

q is non-degenerate, that is, for all nonzero x ∈ V , there exists y ∈ V such that

q(x, y) 6= 0. We can attach to this data an algebraic group in the following way.

Definition 1.2.1. The unitary group H attached to the data (F,M, V, q) introduced

above is the algebraic group over F whose functor of points is given by

H(R) = {g ∈ GL(V ⊗F R) : q(gx, gy) = q(x, y), for all x, y ∈ V ⊗F R},

where R is an F -algebra.

Proposition 1.2.2. The functor H is an algebraic group.

Proof. In view of Proposition 1.2.4 below, the only non-trivial case is when M/F is

a quadratic extension of fields. In that case, let e ∈ M \ F . This element satisfies a

quadratic polynomial over F , and by completing the square (recall that char(F ) 6= 2),

we can assume that e2 ∈ F and e = −e. Then any matrix with coefficients in M⊗FR

can be written as A + eB, where A and B are matrices with coefficients in R. The

condition that A+ eB ∈ H(R) is then

(A+ eB)(At − eBt) = I,
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which is equivalent to

AAt − e2BBt = I

ABt −BAt = 0.

Therefore, H is representable by a quotient of F [X11, . . . , Xnn]⊗FF [Y11, . . . , Ynn].

To understand when two quadruples (F,M, V, q) and (F,M, V ′, q′) give rise to

isomorphic unitary groups, we have the following result.

Lemma/Definition 1.2.3. We say that two hermitian spaces (V, q) and (V ′, q′)

are equivalent if there exists an M -linear isomorphism φ : V → V ′ such that

q′(φ(x), φ(y)) = q(x, y) for all x, y ∈ V . We say that (V, q) and (V ′, q′) are quasi-

equivalent if (V, q) is equivalent to (V ′, αq′) for some α ∈ M×. If (V, q) and (V ′, q′)

are quasi-equivalent, then they give rise to F -isomorphic unitary groups.

Proof. First, we simply note that if Hα denotes the unitary group associated to

(V, αq), then H(R) = Hα(R) for all F -algebras R. In particular, they are isomorphic.

Now, suppose (V, q) and (V ′, q′) are equivalent, and let φ : V → V ′ be an

isomorphism which proves this. We will denote the algebraic group corresponding to

(V, q) by H, and the algebraic group corresponding to (V ′, q′) by H ′. We will also

denote the trivial extension of φ to V ⊗F R by φ. Consider the following map:

H(R)→ H ′(R)

g 7→ φgφ−1.
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This is well-defined: let g ∈ H(R). Then we have

q′(φgφ−1(x), φgφ−1(y)) = q(gφ−1(x), gφ−1(y)) = q(φ−1(x), φ−1(y)) = q(x, y),

where the last equality follows from the fact that the inverse of an isometry is an

isometry. This map is also clearly an invertible group homomorphism. Therefore,

the result follows.

Given a basis e1, . . . , en of V , the determinant of the matrix (q(ei, ej))i,j is in-

dependent of the chosen basis when viewed as an element of F×/NmM/F (M×); this

element is called the discriminant of the hermitian space V .

Example. We will classify the low dimensional hermitian spaces over local fields.

Let M/F be a quadratic extension of non-archimedean local fields. We say v ∈ V

is isotropic if v 6= 0 and q(v, v) = 0. A subspace U ⊂ V is called anisotropic if

q(u, u) 6= 0 for all u ∈ U ; it is called totally isotropic if every vector is isotropic.

1. Suppose n = 1, and let α ∈ F×. We define the hermitian space V = M(α) by

setting

q(e, e′) = eαe′.

Clearly, every one-dimensional hermitian space has this form (we can recover

α = q(1, 1)), and they are all quasi-equivalent. We note that q(e, e) ∈ F×/NmM/F (M×)

is independent of e ∈M (in fact, it is exactly the coset of α).

2. Suppose n = 2, and suppose there exists an isotropic vector v ∈ V . Since q

is non-degenerate, there exists a nonzero w ∈ V such that q(v, w) 6= 0. Let
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α ∈ F , and consider

q(w + αv, w + αv) = q(w,w) + TrM/F (α(q(v, w)).

Since the trace is surjective, we can force this to be zero by choosing α appro-

priately. Finally, by rescaling the resulting vector, we see that we can choose

w such that q(w,w) = 0 and q(v, w) = 1. We will call such a totally isotropic

hermitian space a hyperbolic plane and denote it H. The discriminant is easily

seen to be −1.

3. We can also construct an anisotropic two-dimensional hermitian space as fol-

lows. Let α, β ∈ F× and consider V = M(α) ⊕M(β). The hermitian form is

given by

q((e1, e2), (e′1, e
′
2)) = e1αe

′
1 + e2βe

′
2.

Therefore, V is anisotropic if and only if −α/β /∈ NmM/F (M×).

In the definition of unitary groups, we have allowed M to be any two-dimensional

étale algebra. Therefore, either M/F is a quadratic extension of fields, or M ∼= F×F .

In the latter case, unitary groups are a very familiar object.

Proposition 1.2.4. Suppose M ∼= F × F . Then the unitary group associated to

(F,M, V, q) is F -isomorphic to GLn.

Proof. Choose an F -morphism p : M → F , and let V0 = V ⊗M,p F . Then, we

can define an isomorphism H(R) ∼= GL(V0 ⊗F R) by sending g ∈ H(R) to the

M -automorphism it induces on (V ⊗M R)⊗M,p F = V0 ⊗F R.
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Fix the data (F,M, V, q) and its unitary group H, and let F ′ be a field extension

of F . Then M ′ := M ⊗F F ′ is still an étale algebra. Moreover, we can consider

V ′ := V ⊗M M ′ (which is still free of rank n over M ′) and q′, the natural extension

of q to V ′. We thus get a quadruple (F ′,M ′, V ′, q′), to which we can associate an

F ′-algebraic group. Clearly, this algebraic group is the base change HF ′ . We are led

to the following observations:

1. If M is a field and we take F ′ = M , then M ′ = M×M , and so the base change

HM is isomorphic to GLn. Therefore, unitary groups are always forms of GLn.

2. If M/F is an extension of number fields and v is a place of F which splits in

M , then HFv is again isomorphic to GLn.

1.2.1 A Classification Theorem

We now want to give a classification of unitary groups over local non-archimedean

fields.

Theorem 1.2.5. Let M/F be a quadratic extension of local non-archimedean fields.

If n is odd, there is a unique isomorphism class of unitary groups; these groups are

quasi-split. If n = 2m is even, then there are two isomorphism classes of unitary

groups, only one of which is quasi-split.

The proof of the above theorem will occupy the remainder of this section. First,

we present the classification of hermitian spaces up to quasi-equivalence.

Lemma 1.2.6. Let V be an n-dimensional hermitian space.

1. If n = 2m + 1 is odd, then V is isometric to the sum of m copies of H and

M(α), for some α ∈ F×.
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2. If n = 2m is even, then V is isometric to the sum of m copies of H or to the

sum of m− 1 copies of H and M(α)⊕M(β), where −α/β /∈ NmM/F (M×).

Therefore, if n is odd, there exists only one hermitian space, up to quasi-equivalence.

If n is even, there are two hermitian spaces, up to quasi-equivalence.

Proof. First, we note that since q(v, v) ∈ F for all v ∈ V , we can define a quadratic

form Q(v) := q(v, v) on the 2n-dimensional F -vector space V . By (Ser73, Chapter

IV.2, Theorem 6), the quadratic space V has an isotropic vector whenever 2n ≥ 5.

Therefore, the hermitian space V has an isotropic vector whenever n ≥ 3. Working

recursively, we see that any hermitian space can be decomposed into a sum of hy-

perbolic planes and a non-trivial subspace of dimension at most two. The result now

follows from our classification above.

From this, we know that there is one isomorphism class when n is odd and

at most two when n is even. The number of hyperbolic planes appearing in the

decomposition of V is called the Witt index.

Proposition 1.2.7. The dimension of a maximal split torus in H is equal to the

Witt index of the corresponding hermitian space.

Proof. We will denote the maximal anisotropic subspace of V by V0. Let m be the

Witt index of V . We fix a basis of V , respecting the decomposition coming from

Lemma 1.2.6, as follows: for the i-th hyperbolic plane, we choose isotropic vectors

{ei, e′i} such that q(ei, e
′
i) = 1, and we complete this to a basis of V by choosing a

basis for V0. We define the subgroup

A(R) = {(λ1, λ
−1
1 , . . . , λm, λ

−1
m , 1, . . . , 1) : λi ∈ R×}.
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This representation is taken with respect to our fixed basis. Clearly, we have A ∼=

(Gm)m over F : it is a split torus. We claim it is maximal. Indeed, if S is a torus

containing A, it fixes the maximal anisotropic subspace V0 of V (since V0 is the

eigenspace corresponding to the eigenvalue 1 for the elements of A). Therefore, if S

is split, its restriction to V0 is again a split torus of the unitary group attached to V0.

But the unitary group of an anisotropic hermitian space is itself anisotropic, and so

the restriction of S to V0 is trivial. Therefore S = A.

As a consequence, we deduce that unitary groups are non-split, and so they are

outer forms of GLn.

To finish the proof of Theorem 1.2.5, we let A be the maximal split torus defined

above, and we let T be the centralizer of A. First, suppose V = H. We have

T (R) = {(λ, λ−1
: λ ∈ R×}

(to centralize, the matrix has to be diagonal; the fact that it lies in the unitary group

forces the form above). Thus T ∼= ResM/FGm. For the general case, we first suppose

V is isometric to the sum of m copies of the hyperbolic plane. We then have

T ∼= (ResM/FGm)m

A ∼= (Gm)m.
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Similarly, suppose V is of odd-dimension. We then have

T ∼= (ResM/FGm)m × U(1)

A ∼= (Gm)m,

where U(1) is the unitary group associated to the anisotropic line. Finally, suppose

V has a two-dimensional anisotropic subspace. We then have

T ∼= (ResM/FGm)m × U(V0)

A ∼= (Gm)m,

where U(V0) is the unitary group associated to the anisotropic two-dimensional her-

mitian space. Therefore, we note that when n is odd or V has no anisotropic sub-

space, T is a maximal torus (since it is commutative). By (Spr98, Proposition 16.2.2),

this implies that the corresponding unitary group is quasi-split. Conversely, when

n is even and V has a two-dimensional anisotropic subspace, T is not a maximal

torus (since it is not commutative), and so the same Proposition implies that the

corresponding unitary group is not quasi-split.

Example. Let V be a hermitian space of even dimension n. In this case, determin-

ing if the corresponding unitary group is quasi-split can be seen from the discrimi-

nant: it is quasi-split if and only if the discriminant is congruent to (−1)n/2 modulo

NmM/F (M×). We will investigate two particular hermitian spaces: let V = Mn, and
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define

q(v, v) = vt



1

−1

. . .

1

−1


v

q′(v, v) = vt

I2n

−I2n





1

−1

. . .

1

−1


v.

By choosing the standard basis of Mn, we deduce that in both cases, the discriminant

is equal to (−1)n = 1. Therefore, the corresponding unitary groups are quasi-split if

and only if n ≡ 0 (mod 4).
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CHAPTER 2
Functoriality and Trace Formulas

Langlands’ Principle of functoriality has been a major unifying force in number

theory for the past forty years. It is within this frame that most of the work on the

trace formula in the past thirty years has been done. Early on, it was apparent that

the comparison of trace formulas on two different reductive groups could allow us to

give a correspondence between their respective automorphic representations. Hence,

our introduction to trace formulas will follow the same motivation. We first give a

very brief introduction to functoriality, mainly focusing on examples relevant to our

discussion. We then explain how the trace formula can be used to prove instances of

functoriality, and we give an introduction to the relative trace formula, which is the

main tool we will use.

2.1 Langlands’ Philosophy and Functoriality

The classification of connected reductive groups over a non-algebraically closed

field F consists of two pieces of data:

• The (absolute) root datum coming from the base change to an algebraic closure;

• Descent data in terms of an action of the absolute Galois group.

Using this, Langlands defined a dual group, called the L-group, as follows. Let

G be a connected redutive group over a local or global field F . Taking the dual root

datum gives rise to another reductive group G∨ over C, and the identity component

of the L-group is the group of complex points of this reductive group; it is a complex

22



Lie group. Then, the action of the absolute Galois group of F on the root datum

induces an action on the dual root datum, and we can thus set

LG := G∨(C)oGal(F/F );

the action on G∨(C) is defined via a choice of épinglage (for more detail, see (Cog04,

§1)). Note that the L-group determines the group G up to inner twists (and so

uniquely defines a quasi-split group). As a somewhat trivial, yet important, example,

we note that LG = G∨(C)×Gal(F/F ) if and only if G is a split group.

Remark. It is sometimes convenient to replace the L-group above by its Weil form,

i.e. we replace the absolute Galois group by the absolute Weil group (Tat79).

Langlands’ principle of functoriality states that homomorphisms from a conjec-

tural Langlands group into the L-group should somehow parametrize the automor-

phic (if F is global) or admissible (if F is local) representations of G, and as such,

L-homomorphisms LG→ LH should translate to a correspondence between automor-

phic or admissible representations of G and those of H. Here, an L-homomorphism

is a continuous map between the L-groups that restricts to the identity map on the

Galois group and whose restriction to the identity component is a complex-analytic

homomorphism.

We now present two important examples that will help illustrate these concepts.

2.1.1 Base change

Let G be a connected reductive group over a number field F , and let E/F be

a finite extension of degree m. Set H = ResE/F (GE). At the level of L-groups, the

connected component of LH is m copies of the connected component of LG, and so
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we have a natural L-homomorphism LG→ LH: it is the diagonal embedding on the

identity component and the identity on Galois groups. The conjectural instance of

functoriality corresponding to this map is known as base change.

Some cases have been proven when G = GLn. When n = 2 and E/F is cyclic of

prime degree, it was proven by Saito, Shintani and Langlands (Lan80). For n > 2,

this is a theorem of Arthur and Clozel. Since we will need this result later on, we

record it here. The extension E/F is still cyclic of prime degree; fix a generator ξ of

the Galois group.

Theorem 2.1.1. (AC89, Theorem 3.4.2) Let π be a cuspidal representation of

GLn(AF ). Assume π � π⊗η, where η is the character associated to E/F by (global)

class field theory. Then there exists a unique ξ-stable cuspidal representation Π of

GLn(AE) lifting π. Conversely, let Π be a cuspidal representation of GLn(AE). If

Π ∼= Πξ, then there exists a cuspidal representation π of GLn(AF ) lifting to Π.

Without giving too many details, we will simply note that “being a lift” is

defined in terms of L-functions (the interested reader is referred to (AC89, §3.1)).

Blasius and Rogawski have also investigated the base change for unitary groups in

two and three variables (BR92). However, almost nothing is known in general about

nonsolvable base change, which would allow one to prove the Artin conjecture in the

so-called icosahedral case (Get12, Corollary 1.9).

2.1.2 Unitary groups

Let E/F be a quadratic extension of number fields. Let H be a quasi-split

unitary group in n variables with respect to this extension and set G = ResE/F (GLn).
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Since H is a form of GLn, we have

LH = GLn(C)oGal(F/F ).

We note that this action is not trivial (because H is non-split), and so LH is not

isomorphic to LGLn. We can again define an L-homomorphism

LH → LG = GLn(C)×GLn(C)×Gal(F/F )

by taking the diagonal embedding on the identity component and the identity map

on Galois groups.

In this situation, we have the following theorem of Harris and Labesse. Here τ

is the automorphism of G fixing H.

Theorem 2.1.2. (HL04, Theorem 2.2.2) Assume all archimedean places are com-

plex. Let Π be a cuspidal representation of H(AF ) which is locally supercuspidal at

two split places. Then there exists a cuspidal representation π of G(AF ) which is

τ -stable and which is the weak base change of Π.

The local restriction appearing in the hypothesis is due to the lack of a stable

trace formula at the time (HL04) was published. However, this problem has now

been resolved due to the work of many people (most notably Laumon and Ngo in

the final stages), and recent work of Mok (Mok) should allow us to remove this local

restriction.

* * *

One important aspect these two examples of functoriality share is that they were

proven using a comparison of trace formulas, which leads us to our next topic.
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2.2 Arthur-Selberg Trace Formula

We fix a connected reductive group G over a number field F .

2.2.1 Harish-Chandra subgroup

Let AG be the largest central subgroup of ResF/QG over Q that is a Q-split torus;

let k be the rank of AG. The identity component AG(R)◦ of AG(R) (with respect to

the real topology) is isomorphic to k copies of (R×)◦, and so it is also isomorphic to

the additive group Rk. Let X(G)Q be the group of Q-rational characters of G; this

is a free abelian group of rank k. We define a morphism

HCG : G(AF )→ Hom(X(G)Q,R)

by

〈HCG(x), χ〉 = |log (χ(x))| , x ∈ G(AF ), χ ∈ X(G)Q.

This map is surjective, and we define the Harish-Chandra subgroup of G(AF ) by

1G(AF ) := ker(HCG).

Note that G(AF ) = 1G(AF )× AG(R)◦ and that G(F ) ⊂ 1G(AF ).

Example. Let G = GLn. Then AG ∼= GL1, and so X(G)Q is isomorphic to Z; a

canonical generator is given by the determinant. Therefore, we have

1GLn(AF ) = {x ∈ GLn(AF ) : det(x) = 1}.

We also note that the quotient G(F )\1G(AF ) has finite volume (Art05, §3).
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2.2.2 Spectral and Geometric decomposition

To streamline the discussion and minimize the number of inaccuracies, we will

henceforth assume that the derived subgroup of G is simply connected. This hy-

pothesis can be removed at the cost of more complicated definitions. We note that

all groups appearing in Chapter 3 and 4 satisfy this hypothesis.

Consider the right regular representation of G(AF ) on L2(G(F )\1G(AF )). This

action gives rise to an action of C∞c (G(AF )) by integration:

(R(f)φ)(x) :=

∫
1G(AF )

f(y)φ(xy)dy, φ ∈ L2(G(F )\1G(AF )),

where f ∈ C∞c (G(AF )) and dy is a choice of Haar measure on 1G(AF ). If we make a

change of variables and use the definition of quotient measure on G(F )\1G(AF ), we

get

(R(f)φ)(x) =

∫
G(F )\1G(AF )

 ∑
γ∈G(F )

f(x−1γy)

φ(y)dy;

since f is compactly supported and G(F ) is discrete, the sum is finite. Therefore,

R(f) is an integral operator, with kernel

Kf (x, y) :=
∑

γ∈G(F )

f(x−1γy).

The first goal of the trace formula is to give a spectral and a geometric decomposition

of this kernel. The theory of Eisenstein series gives an explicit decomposition

L2(G(F )\1G(AF )) =
⊕
χ

L2
χ,
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where χ = (M,σ) is a cuspidal datum: M is the Levi component of a parabolic

subgroup ofG and σ is a cuspidal representation ofM(AF ) (Art05, §12). Accordingly,

we get a decomposition

Kf (x, y) =
∑
χ

Kf,χ(x, y).

However, the component Kf,χ is not necessarily integrable over the diagonal. For

this reason, Arthur introduced his truncation operator (of which we will say nothing;

see (Art05, §13)) to modify the kernel and deal with divergence issues. In any case,

Kf,χ will be integrable if M = G. Let

L2
0(G(F )\1G(AF )) =

⊕
χ=(G,π)

L2
χ;

this is the cuspidal part of L2(G(F )\1G(AF )). We have the following theorem:

Theorem 2.2.1. (GGPS69, Chapter 3.7) The space L2
0(G(F )\1G(AF )) decomposes

into a discrete sum of irreducible representations with finite multiplicities.

From this, we deduce the spectral decomposition (for the cuspidal part): let

R0(f) be the restriction of R(f) to the cuspidal part of the spectrum, and similarly

for Kf (x, y) and R(g). The above theorem tells us that

R0(g) ∼=
∑
π

mππ(g),

and we thus have

TrR0(f) =

∫
G(F )\1G(AF )

Kf,0(x, x)dx

=
∑

χ=(G,π)

∫
G(F )\1G(AF )

Kf,χ(x, x)dx.
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Moreover, we have

Kf,χ(x, y) =
∑
φ

(R(f)φ)(x)φ(y),

where {φ} is an orthonormal basis for the π-isotopic subspace of L2
0(G(F )\1G(AF )).

On the geometric side, we can decompose our kernel as a sum over conjugacy

classes O:

Kf (x, y) =
∑
O

Kf,O(x, y),

where Kf,O(x, y) =
∑

γ∈O f(x−1γy). Again, the component Kf,O(x, y) is not nec-

essarily integrable over the diagonal, and we still need to use truncation operators.

Nonetheless, it will be integrable if the conjugacy class O is elliptic, and we have the

following result. For a group G and an element γ ∈ G(F ), let Gγ be the centralizer

of γ in G.

Proposition 2.2.2. (Gel96, Proposition 2.6) If O is elliptic, we have∫
G(F )\1G(AF )

Kf,O(x, x)dx = vol(Gγ(F )\Gγ(AF ))

∫
Gγ(AF )\G(AF )

f(x−1γx)dx,

where γ ∈ O. The integral appearing on the right is the orbital integral of γ at f .

The (unrefined) Arthur-Selberg trace formula is then an equality of sums of

distributions: ∑
O

JTO(f) =
∑
χ

JTχ (f), f ∈ C∞c (G(AF )).
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Here T is a truncation parameter, which is trivial when O is elliptic and χ = (G, π),

respectively. Also, from our discussion above, we have

JTO(f) = vol(Gγ(F )\Gγ(AF ))

∫
Gγ(AF )\G(AF )

f(x−1γx)dx, when O is elliptic,

JTχ (f) =

∫
G(F )\G(AF )

(∑
φ

(R(f)φ)(x)φ(x)

)
dx, when χ = (G, π).

Remark. Although the coefficients appearing in the trace formula (the volumes and

multiplicities) are global, the orbital integrals are local objects. Indeed, the measure

on the group of adelic points factors as a product of measures on the groups of local

points, and therefore, if f = ⊗vfv is factorizable, then the global orbital integral

factorizes as a product of local orbital integrals:

∫
Gγ(AF )\G(AF )

f(x−1γx)dx =
∏
v

∫
Gγv (Fv)\G(Fv)

fv(x
−1γvx)dx.

2.2.3 Twisted Trace Formula

The above formalism can also be applied to twisted groups : let θ be an automor-

phism of G and consider the (disconnected) group Go〈θ〉; the connected component

indexed by θ is called a twisted group. The trace formula we obtain (called the

twisted trace formula) is different from the original formula in two aspects: on the

spectral sides, the representations appearing are exactly the θ-invariant automor-

phic representations of G; on the geometric side, conjugacy classes are replaced by

θ-conjugacy classes. As is apparent in Theorems 2.1.1 and 2.1.2, the image of the

transfer map is characterized by being invariant under an automorphism of the group
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(the Galois automorphism in the former, an outer automorphism of GLn in the lat-

ter). Approaching these instances of functoriality via a comparison of a twisted trace

formula and a trace formula is therefore natural.

2.2.4 Comparison of trace formulas

Now that we have a formula relating the cuspidal representations of a reductive

group G to geometric data, we could try to match the conjugacy classes in G(F )

with those of H(F ), for a second reductive group H. If this is possible, then we

get a relation between the geometric sides of the trace formula, which gives us a

relation between the spectral sides. We could then try to make it explicit by choosing

appropriate test functions. However, this is not possible in general: we can only

hope for a correspondence between geometric classes (i.e. conjugacy classes over the

algebraic closure). The discrepancy between conjugacy and geometric conjugacy is

encapsulated in the notion of stability (for an informal introduction, see (Art97)).

Kottwitz, using ideas of Langlands, first gave a general construction that should

lead to a stabilization of the trace formula (a decomposition of both sides in terms

of distributions invariant under stable conjugacy). More precisely, assuming some

technical lemmas, he was able to stabilize the cuspidal part of the spectral side and

the elliptic part of the geometric side of the formula. At the moment, the stablization

of the cuspidal part is still open, but recent work of Ngo on the fundamental lemma

has led to an unconditional stablization of the elliptic part. (For a very readable

introduction to the stable trace formula, see (Har11).)

Once the conjugacy classes have been matched, there is also the issue of match-

ing the test functions on each group. This can be done locally, and at almost all
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places, we can restrict ourselves to bi-K-invariant functions, where K is a carefully

chosen compact subgroup of G(Fv). By doing so, this space of functions is now an

algebra (called the Hecke algbera) and we can ask that our matching of functions be

an algebra homomorphism. This is the point of view we will adopt in Chapter 3 and 4.

In turns out that this method of endoscopic comparison has serious limitations

with respect to proving functoriality (for example, it is powerless with respect to

symmetric powers lifting); it should be enough only for functoriality arising from

“small” L-homomorphisms (to paraphrase Ngo), i.e. when LH is the subgroup of

fixed point of an involution on LG and the L-map is the inclusion. Still, this formalism

is enough to obtain a full classification of cuspidal representations of classical quasi-

split groups in terms of representations of GLn (see (Art13) for orthogonal and

symplectic groups and (Mok) for unitary groups).

2.3 Jacquet’s Relative Trace Formula

The relative trace formula was introduced in (JL85) by Jacquet and Lai to study

the notion of distinction and ultimately cycles on algebraic varieties. At its essence,

it is a tool that allows one to study harmonic analysis on symmetric spaces. We will

therefore try to present it as an extension of the absolute trace formula; we follow

the exposition in (Jac97).

Let F andG be as above, and fix an involution ε onG. Let S be the F -subscheme

of G whose points in an F -algebra R are given by

S(R) = {s ∈ G(R) : sε = s};
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it is a subvariety of G, and we assume it is connected. We have a right action of

G(F ) on S(F ) defined by g · s := gsg−ε; we assume that this action is transitive. Fix

a point ω ∈ S(F ), and let H be its stabilizer. Suppose that φ ∈ C∞c (S(AF )), and

define

Kφ(g) :=
∑
s∈S(F )

φ(gsg−ε), g ∈ G(AF ).

This function is well-defined (the sum is finite), and it is invariant under left transla-

tion by G(F ). Let K be the space spanned by the functions Kφ. Note that this space

is invariant under right translations by G(AF ), and so we can try to decompose this

representation as in the absolute case.

First of all, we can choose f ∈ C∞c (G(AF )) such that f is K∞-finite, where K∞

is a maximal compact subgroup of G(F∞), and

φ(s) =

∫
H(F )\H(AF )∩1G(AF )

f(gh)dh, s = gωg−ε,

We can consider the (absolute) kernel Kf as above and take its spectral decomposi-

tion. This translates to a spectral expansion for Kφ:

Kφ =
∑
χ

Kφ,χ, (2.3.0.1)

where

Kφ,χ(g) =

∫
H(F )\H(AF )∩1G(AF )

Kf,χ(h, g)dh.

As above, χ is a cuspidal data. When χ = {G, π}, we have

Kφ,χ(g) =
∑
i

P(ρ(f)ψi)ψi(g),
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where {ψi} is an orthonormal basis of the π-isotypic subspace of K and

P(φ) :=

∫
H(F )\H(AF )∩1G(AF )

φ(h)dh.

Therefore, Kφ,χ is nonzero if and only π is distinguished by H.

Just as in the absolute case, we can also decompose Kφ geometrically :

Kφ =
∑

s∈S(F )/H(F )

Kφ,s. (2.3.0.2)

When s is elliptic regular semisimple, Kφ,s is integrable over the diagonal, and we

have∫
H(F )\H(AF )∩1G(AF )

Kφ,s(x, x)dx = vol(Hs(F )\Hs(AF ))

∫
Hs(AF )\H(AF )∩1G(AF )

φ(hsh−ε)dh.

As above, the relative trace formula is the equality of expansions 2.3.0.1 and 2.3.0.2.

As in the absolute case, there exists a twisted variant, introduced in (Hah09)

and (GW). This formula is analogous to the Deligne-Kazhdan simple trace formula:

we need to impose strong local conditions in order to kill the divergent integrals on

both sides. And as in the absolute case, there are also problems arising from the

“instability” of the original trace formula. A prestabilization has been obtained by

Getz and Wambach (GW, Proposition 7.2); a full stabilization is at the moment out

of reach and will probably require the introduction of new ideas. In particular, there

is currently no conjectural framework for a theory of relative endoscopy. Investigating

examples on which to base a theory of relative endoscopy is one of the primary aims

of this thesis.
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CHAPTER 3
Relative classes

We now enter the main part of this thesis. As explained in the introduction,

a comparison of relative trace formulas should allow us to study distinction on a

unitary group in terms of distinction on a general linear group. In this chapter, we

carry the first step of this comparison: we provide a matching between the relative

classes appearing in the geometric side of each formula. In what follows, R denotes

an F -algebra.

3.1 Twisted and untwisted relative classes

Let F be a local or global field (recall our convention about the characteristic

of such fields), and let M/F be a quadratic extension. We will denote by x 7→ x the

non-trivial automorphism of M/F . We fix an algebraic closure F of F containing M

and denote by Γ the absolute Galois group of F . Set G := ResM/FGL4n (cf. Chapter

1), for n ≥ 1. If ε is an involution on G, let Gε be the subgroup of fixed points of ε,

that is, the subgroup of G whose points in an F -algebra R are given by

Gε(R) = {g ∈ G(R) : gε = g}.

An element δ ∈ G(R) is said to be ε-split if δε = δ−1. More generally, a torus is

ε-split if all its elements are ε-split. We will consider three different involutions on
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G: first set

J =



1

−1

. . .

1

−1


, I2n,2n =

I2n

−I2n

 ∈ G(F ).

Now define gτ := Jg−tJ , and let σ be the involution given by conjugation by I2n,2n.

Finally, set θ := σ ◦τ ; we note that σ and τ commute. Since the group Gτ will play a

special role in the sequel, we set H := Gτ . The groups H and Gθ are unitary groups,

and by the computations at the end of Chapter 1, they are both quasi-split.

Consider the following (left) actions:

(Hσ ×Hσ)×H(R)→ H(R)

(h1, h2, h) 7→ h1hh
−1
2

and

(Gσ ×Gθ)×G(R)→ G(R)

(g1, g2, g) 7→ g1gg
−1
2 .

The double cosets under these actions can be related to conjugacy classes in

the following way. We follow (Ric82, Lemma 2.4) and introduce the subschemes

Q ⊂ H and S ⊂ G; they are respectively defined as the scheme-theoretic image of
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the following moment maps:

Bσ : H(R)→ H(R)

h 7→ hh−σ

Bθ : G(R)→ G(R)

g 7→ gg−θ.

As closed subschemes of affine schemes, both Q and S are themselves affine. Pertain-

ing to the above actions, we note the following relation: Bσ(h1hh
−1
2 ) = h1Bσ(h)h−1

1

and Bθ(g1gg
−1
2 ) = g1Bθ(g)g−τ1 . By definition, the moment maps induce isomor-

phisms:

Hσ\H/Hσ → Hσ\Q

Gσ\G/Gσ → Gσ\S;

here Hσ acts by conjugation on Q and Gσ, by τ -conjugation on S.

Definition 3.1.1. We will say two elements δ, δ0 ∈ G(F ) lie in the same twisted

relative class if they have the same image in Gσ(F )\S(F ). Similarly, two ele-

ments γ, γ0 ∈ H(F ) lie in the same relative class if they have the same image in

Hσ(F )\Q(F ).

The comparison of relative trace formulas we want to perform relies on a match-

ing between the relative classes and the twisted relative classes.
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Now, consider the following subgroup schemes:

Hγ(R) = {(h1, h2) ∈ Hσ ×Hσ(R) : h1γh
−1
2 = γ}

Gδ(R) = {(g1, g2) ∈ Gσ ×Gθ(R) : g1δg
−1
2 = δ},

where γ ∈ H(F ) and δ ∈ G(F ). Denote by Cγ,Hσ (resp. Cτ
δ,Gσ) the centralizer of γ

in Hσ (resp. the τ -centralizer of δ in Gσ). We have the following lemma.

Lemma 3.1.2. Projection onto the first factor induces isomorphisms

Hγ
∼= Cγγ−σ ,Hσ and Gδ

∼= Cτ
δδ−θ,Gσ .

Proof. Let R be an F -algebra. We first check injectivity. Suppose (g1, g2), (g1, g̃2) ∈

Gδ(R). Then, we have

g1δg
−1
2 = δ = g1δg̃2

−1,

and so g2 = g̃2. A similiar argument works, mutatis mutandis, for Hγ.

Now, suppose g ∈ Gσ(R) is such that gδδ−θg−τ = δδ−θ (or equivalently, δ−θgτδθ =

δ−1gδ). Then

(δ−1gδ)θ = δ−θgτδθ = δ−1gδ,

and gδ(δ−1gδ)−1 = δ. Therefore, (g, δ−1gδ) ∈ Gδ(R) is a preimage of g. The same

argument shows that if h ∈ Hσ(R) is such that hγγ−σh−1 = γγ−σ, then (h, γhγ−1) ∈

Hγ(R) is a preimage of h.

As in the absolute case, we have a notion of stability.

Definition 3.1.3. We say that two relatively semisimple elements γ, γ0 ∈ H(F ) are

in the same stable relative class if xγγ−σx−1 = γ0γ
−σ
0 for some x ∈ Hσ(F ). Similarly,
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two relatively semisimple elements δ, δ0 ∈ G(F ) are in the same stable relative τ -class

if xδδ−θx−τ = δ0δ
−θ
0 for some x ∈ Gσ(F ).

From the above definition, we see that if γ and γ0 are in the same stable relative

class, then we have an inner twist

Hγ
∼= Cγγ−σ ,Hσ

∼= Cγ0γ−σ0 ,Hσ
∼= Hγ0

h 7→ xhx−1,

where x is such that xγγ−σx−1 = γ0γ
−σ
0 . Similarly, we have an inner twist Gδ

∼= Gδ0

whenever δ and δ0 are in the same stable relative τ -class.

As in the absolute case, we may have a disparity between relative classes (resp.

relative τ -classes) and stable relative classes (resp. stable relative τ -classes). To

study this discrepancy, we make the following definition. For a pair of connected

reductive F -groups I, H, define

D(I,H;F ) := ker[H1(F, I)→ H1(F,H)].

For the remaining of the section, we make the following assumption:

• Our choice of δ ∈ G(F ) (resp. of γ ∈ H(F )) is such that Cτ
δδ−θ,Gσ (resp.

Cγγ−σ ,Gσ) is connected.

In the following section, we will prove that this is always the case provided δ

(resp. γ) is relatively τ -regular semisimple (resp. relatively regular semisimple).

We have the following result:

Lemma 3.1.4. Let δ ∈ G(F ). The (pointed) set D(Cτ
δδ−θ,Gσ , G

σ;F ) parametrises

the τ -relative classes inside the stable τ -relative class of δ.
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Proof. Let g ∈ Gσ(F ) be such that gδδ−θg−τ ∈ G(F ). Then, for all ε ∈ Γ, we have

(g−1ε(g))δδ−θ(g−1ε(g))−τ = g−1ε(g)δδ−θε(g−τ )gτ

= g−1ε(gδδ−θg−τ )gτ

= g−1(gδδ−θg−τ )gτ

= δδ−θ,

and therefore, we see that g−1ε(g) ∈ Cτ
δδ−θ,Gσ(F ). Hence, we can define a cocyle

{ε 7→ g−1ε(g)}, which clearly lies in D(Cτ
δδ−θ,Gσ , G

σ;F ). Conversely, given g ∈ Gσ(F )

such that g−1ε(g) ∈ Cτ
δδ−θ,Gσ(F ) for all ε ∈ Γ (we can assume the cocyle has this

form, since it is trivial in H1(F,Gσ)), then

(g−1ε(g))δδ−θ(g−1ε(g))−τ = δδ−θ =⇒ ε(gδδ−θg−τ ) = gδδ−θg−τ ,

for all ε ∈ Γ, and so g−1γgσ ∈ Gσ(F ). Hence, we have a surjection

{Stable τ -relative class of δ}� D(Cτ
δδ−θ,Gσ , G

σ;F ).

Now, given g, g̃ ∈ Gσ(F ) such that gδδ−θg−τ , g̃δδ−θg̃−τ ∈ G(F ), suppose there

exists h ∈ Gσ(F ) such that

gδδ−θg−τ = h(g̃δδ−θg̃−τ )h−τ .

From this, we immediately get that g−1hg̃ ∈ Cτ
δδ−θ,Gσ(F ). Then, for all ε ∈ Γ, we

have
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(g−1hg̃)−1(g−1ε(g))ε(g−1hg̃) = g̃−1ε(g̃),

and so {ε 7→ g−1ε(g)}, {ε 7→ g̃−1ε(g̃)} are cohomologous. Conversely, if there exists

c ∈ Cτ
δδ−θ,Gσ(F ) such that c−1(g−1ε(g))ε(c) = g̃−1ε(g̃) for all ε ∈ Γ, then gcg̃−1 ∈

Gσ(F ) and we see that

(gcg̃−1)(g̃δδ−θg̃−τ )(gcg̃−1)−τ = gcg̃−1(g̃δδ−θg̃−τ )g̃τc−τg−τ

= g(cδδ−θc−τ )g−τ

= gδδ−θg−τ ,

and so gδδ−θg−τ and g̃δδ−θg̃−τ are in the same τ -relative class.

If we let τ be trivial in the above computations, we also deduce thatD(Cγγ−σ ,Hσ , Hσ;F )

parametrizes the relative classes inside the stable relative class of γ. By a well known

Galois cohomological result, the sets D(Cγγ−σ ,Hσ , Hσ;F ) and D(Cτ
δδ−θ,Gσ , G

σ;F ) are

finite whenever F is a local field (Ser97, §III.4, Théorème 4).

3.2 Definition of a norm map

We are now ready to match the relative classes and τ -classes.

Definition 3.2.1. We say that γ is a norm of δ if there exists an element g ∈ Gσ(F )

such that

gδδ−θ(δδ−θ)τg−1 = γγ−σ.

We note that

δδ−θ(δδ−θ)τ = δδ−θ(δδ−θ)−σ.
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Also, if γ is a norm of δ, we have an inner twist Cτ
δδ−θ,Gσ

∼= Cγγ−θ,Hσ .

We first recall the following lemma, which is a variation on the proof of (GW,

Lemma 3.6) to the situation under consideration.

Lemma 3.2.2. (Get, Lemma 3.12) Let α ∈ Q(F ) be regular semisimple. The torus

T = Cα,H is maximal σ-stable, and we let Tσ be its maximal σ-split subtorus (Ric82,

§1). The map

T (F )→ Tσ(F )

t 7→ tt−σ

is surjective and α is in the image.

Proof. Since α ∈ H(F ) is σ-split, we can easily check that Cα,H is σ-stable, and the

fact that it is a maximal torus follows from α being a regular semisimple element.

Also, we note that Tσ is the scheme-theoretic image of the moment map

Bσ : T (R)→ T (R)

t 7→ tt−σ;

indeed, the restriction Bσ|Tσ is surjective, since it coincides with t 7→ t2, and the

image of Bσ is contained in Tσ.

Let U = ResM/FT and let A = {t ∈ U(F ) : t−τ = t}. Since τ and σ commute,

we see that A is σ-stable. Moreover, we have a short exact sequence:

1→ U(F )→ T (F )→ 1

t 7→ ttτ ,
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where the surjectivity of the last map is given by (Rog90, Proposition 3.11.1). We

can thus form an exact hexagon:

H0(〈σ〉, A) a // H0(〈σ〉, U(F ))

((

H1(〈σ〉, T (F ))

b
66

H0(〈σ〉, T (F ))

vv

H1(〈σ〉, U(F ))

c
hh

H1(〈σ〉, A)oo

(Ser68, §VIII.4). Since the map a is injective, the map b is the trivial map. Using

the notation of (Ser68, §VIII.1 and §VIII.4), we have isomorphisms

N〈σ〉U(F )/I〈σ〉U(F ) ∼= Ĥ−1(〈σ〉, U(F )) ∼= H1(〈σ〉, U(F )).

Let Uσ ≤ U be the maximal σ-split subtorus. We note that

N〈σ〉U(F )/I〈σ〉U(F ) = 1

if and only if the map

U(F )→ U(F )

t 7→ tt−σ (3.2.0.1)

is surjective. If we let Uσ ≤ U be the subtorus fixed by σ, the surjectivity follows

from (Ser68, §X.1, Exercise 2), since the fibers of the map 3.2.0.1 are torsors over

Uσ. Therefore, we have

H1(〈σ〉, U(F )) ∼= N〈σ〉U(F )/I〈σ〉U(F ) = 1.
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In turn, this implies that the map c in the hexagon is also the trivial map. It now

follows that

1 = H1(〈σ〉, T (F )) ∼= Ĥ−1(〈σ〉, T (F )) ∼= N〈σ〉T (F )/I〈σ〉T (F ),

and we can therefore conclude that the moment map Bσ : T → T is surjective on

F -points.

Finally, we want to show that α is in the image of this map. We know that

α is contained in a maximal σ-split torus T ′σ of HF (Ric82, Theorem 7.5), which is

itself contained in a maximal σ-stable torus T ′ (Hel91, Proposition 1.4). Moreover,

by (Ric82, Theorem 7.5), T ′σ is the unique maximal σ-split torus of T ′. Since α is

a regular semisimple element, it is contained in a unique maximal torus, and we

therefore deduce that T ′ = TF and T ′σ = TσF . It now follows that α ∈ Tσ(F ).

We now prove the following proposition.

Proposition 3.2.3. Let γ ∈ H(F ) be relatively regular semisimple. Then there

exists δ ∈ G(F ) such that δδ−θ(δδ−θ)τ = γγ−σ.

Proof. By 3.2.2, there exists β ∈ Cγγ−σ ,H(F ) such that γγ−σ = ββ−σ. Let T =

ResM/F (Cγγ−σ ,H) ≤ G. By (Rog90, Proposition 3.11.1), there exists δ ∈ T (F ) such

that β = δδτ . Since T is commutative, we have

δδ−θ(δδ−θ)τ = δδτ (δδτ )−σ = ββ−σ = γγ−σ,

and the result follows.
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It thus remains to prove that every δ ∈ G(F ) admits a norm (we will actually

prove a weaker result). This will occupy the remaining sections. Write

N(δ) := δδ−θ(δδ−θ)τ .

Since the group CN(δ),Gσ is exactly the unit group of an algebra over F (namely, the

centralizer in the algebra Mat2n(F )×Mat2n(F )), the set D(CN(δ),Gσ , G
σ;F ) is always

trivial (Ser68, §X.1, Exercise 2). We will therefore follow the following strategy: first,

we will prove that a Gσ(F )-conjugate of N(δ) lies in Q(F ), and then we will show

that this conjugate has the desired form.

3.3 Preliminary Computations

We now assume the extensionM/F is unramified. Local class field theory (Ser68,

Chapitre V, Proposition 3) thus tells us that the norm map restricted to the units

is surjective, that is,

NmM/F (O×M) = O×F .

We therefore have the following useful lemma.

Lemma 3.3.1. An element x ∈ F× is a norm if and only if val(x) is even. In

particular, there exists u ∈M× such that

x = πεFNmM/F (u),

where πF is a uniformiser for F and ε ∈ {0, 1} is the residue of val(x) modulo 2.
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Proof. Consider the following diagram:

0 // O×M //

Nm
��

M× val //

Nm
��

Z

×2

��

// 0

0 // O×F // F×
val // Z // 0,

where the first two vertical maps are given by the norm map. Since M/F is un-

ramified, we know that the first vertical map is surjective, and so the Snake Lemma

implies that

F×/NmM/F (M×) ∼= Z/2Z.

Now, recall that F× ∼= O×F × Z, where x 7→ (xπ
−val(x)
F , val(x)). But since O×F ⊂

NmM/F (M×), we see that NmM/F (M×) ∼= O×F × 2Z, and the result follows.

We define the following map

B̃σ : G→ G,

which on points sends an element g to the product gg−σ; we also let Q̃ be the scheme-

theoretic image of this map. The group Gσ acts on Q̃ by conjugation. We thus wish

to answer the following question:

Question 3.3.2. Which semisimple orbits in Q̃/Gσ have a representative in H?

Following (JR96, Proposition 4.1), we have the following characterisation of

semisimple orbits:

Proposition 3.3.3. Semisimple orbits are parametrised by triples (ν, {A}, β), where

0 ≤ ν ≤ 2n is an integer, {A} is a semisimple conjugacy class in Matν(M) without
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the eigenvalues ±1, and β is an integer with 0 ≤ β ≤ 2n−ν. Moreover, such a triple

corresponds to the following canonical representative:



A 0 Iν 0

0 η 0 0

A2 − Iν 0 A 0

0 0 0 η


;

the matrix η is of the form Iα
−Iβ

 ,

where α + β = 2n− ν.

We can draw a few consequences from this result. Let t(ν, {A}, β) denote the

canonical form associated to the triple (ν, {A}, β). Since t(ν, {A}, β) is σ-split, if λ

is an eigenvalue, so is λ−1, and we have a two-to-one surjective map (JR96, Lemma

4.3)


Eigenvalues of

t(ν, {A}, β)

(with multiplicity)

→


Eigenvalues ofA 0

0 η


(with multiplicity)


λ 7→

(
λ+ λ−1

2

)
.

If we assume t(ν, {A}, β) is regular semisimple, we claim that ±1 is not an eigenvalue.

Indeed, as noted in (JR96, Lemma 4.3), if T is an eigenvector with eigenvalue ±1,
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then so is I2n,2nT , which implies that I2n,2nT = αT for some scalar α. We can write

T = v + w, where v (resp. w) is in and eigenvector of I2n,2n with eigenvalue 1 (resp.

−1). We thus get

I2n,2nT = αT ⇒ v − w = αv + αw ⇒ (α− 1)v + (α + 1)w = 0.

But since v and w are linearly independent, we get that α = 1 and α = −1, which

is absurd; the claim follows. Therefore, we conclude that t(ν, {A}, β) is regular

semisimple if and only if ν = 2n, β = 0 and {A} is itself regular semisimple.

A simple computation then shows that

Ct(2n,{A},0),GL2n×GL2n
∼= CA,GL2n .

Since GL2n has simply-connected derived subgroup, both groups are connected (Kot82,

§3). By passing to the algebraic closure, we can see that this has the following con-

sequence (cf. the discussion preceding Lemma 3.1.4):

Proposition 3.3.4. Suppose δ ∈ G(F ) (resp. γ ∈ H(F )) is relatively τ -regular

semisimple (resp. relatively regular semisimple). Then Cτ
δδ−θ,Gσ (resp. Cγγ−σ ,Gσ) is

connected.

We now wish to answer the question we raised above. We shall henceforth

assume that n = 1 (and therefore G(F ) = GL4(M)). Hence, we have six basic cases

to consider, depending on the values of ν and β:

1. ν = 0 and β = 0;

2. ν = 0 and β = 1;

3. ν = 0 and β = 2;
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4. ν = 1 and β = 0;

5. ν = 1 and β = 1;

6. ν = 2 and β = 0.

Note that the last case corresponds to the regular semisimple case. The first three

cases are trivial: the canonical forms are diagonal matrices with ±1 on the diagonal,

and these are easily seen to be already in H.

Before treating the remaining cases, we make the following observation. We

want to know under what conditions a GL2(M)×GL2(M)-conjugate of the matrix

g :=

A B

C D

 ∈ Q̃(F )

lies in H(F ) = GL4(M)τ . First, we note that since g (and all its conjugates) is σ-

split, then it lies in H(F ) if and only if it θ-split. This condition readily implies that

in order for a conjugate of g to lie in H(F ), we need the characteristic polynomial

of A to have coefficients in F (and not merely in M); we therefore assume that this

is always the case. Now, write

g1 =

α β

γ δ

 , g2 =

a b

c d

 ∈ GL2(M).

We want g1, g2 to be such thatg1

g2


A B

C D


g−1

1

g−1
2

 =

g1Ag
−1
1 g1Bg

−1
2

g2Cg
−1
1 g2Dg

−1
2

 ∈ H(F ).

Hence, this translates to
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A−τg−τ1 g1 = g−τ1 g1A, (3.3.0.2)

D−τg−τ2 g2 = g−τ2 g2D,

g−τ2 g2C = −B−τg−τ1 g1.

These equations will underlie all the remaining computations.

3.3.1 The cases where ν = 1

The next two cases are similar, and can be treated simultaneously. We note

that the canonical form given by Jacquet-Rallis is

g =



x 1

±1

x2 − 1 x

±1


,

where x ∈M is different from ±1. Note that since the determinant of the upper-left

block matrix lies in F , this implies that x ∈ F . If we rewrite Equation 3.3.0.2 in

terms of the canonical form g, we get (after simplification)
αβ = γδ

ab = cd

(x2 − 1)(NmM/F (a)− NmM/F (c)) = NmM/F (γ)− NmM/F (α).

We now have the following result:

Proposition 3.3.5. The above matrix has a Gσ-conjugate in H.
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Proof. Suppose x2 − 1 = NmM/F (z), for some z ∈M . Then, conjugating g by

x

1

1

1


∈ Gσ(F )

gives a unitary matrix. On the other hand, if x2 − 1 is not a norm, we can write

x2 − 1 = πFNmM/F (u) (by Lemma 3.3.1). In this case, we can take

g1 =

1 β

β 1

 , g2 =

u−1 0

0 1

 ,

where NmM/F (β) = 1 + πF ; such β exists since 1 + πF ∈ O×F = NmM/F (O×M).

3.3.2 The cases where ν = 2

We now want to know under what conditions a GL2(M) × GL2(M)-conjugate

of the matrix

g :=

 A I

A2 − I A


lies in H(F ) = GL4(M)τ , where A ∈ GL2(M) is a semisimple matrix without eigen-

values ±1. Recall that we have assumed the characteristic polynomial of A has

coefficients in F . Hence, we have three different possibilities for the eigenvalues:

either they are in F , or they generate a quadratic extension of F which is equal to

M , or distinct from M . We only treat the first two cases.

1. The eigenvalues lie in F
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Let x, y ∈ F be the eigenvalues of A, and so we can assume that

A =

x 0

0 y


In this case, Equation 3.3.0.2 now takes the form (after simplification)

x(αβ − γδ) = y(αβ − γδ)

x(ab− cd) = y(ab− cd)

(x2 − 1)(NmM/F (a)− NmM/F (c)) = NmM/F (γ)− NmM/F (α)

(x2 − 1)(cd− ab) = αβ − γδ

(y2 − 1)(NmM/F (d)− NmM/F (b)) = NmM/F (β)− NmM/F (δ)

(y2 − 1)(ab− cd) = γδ − αβ.

Suppose there exists z, w ∈M such that NmM/F (z) = x2−1 and NmM/F (w) =

y2 − 1. If we set

g1 =

z 0

0 w

 , g2 =

0 1

1 0

 ,

a computation similar to the one above shows that g1, g2 satisfy the equations

above, and so in that case g has a conjugate in H(F ). More generally, we have

the following

Theorem 3.3.6. Assume that det(A2 − I) is a norm. Then the matrix g has

a conjugate in H(F ).
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Proof. The discussion preceding this theorem gives a proof in the case where

both x2 − 1 and y2 − 1 are norms. If neither is a norm, write

x2 − 1 = πFNmM/F (u), y2 − 1 = πFNmM/F (v),

where u, v ∈M×. Then, we can take

g1 =

1 β

β 1

 , g2 =

u−1 0

0 v−1

 ,

where again β is such that NmM/F (β) = 1 + πF . Finally, the condition on the

determinant ensures that these are all the cases we have to consider.

2. The eigenvalues (properly) lie in M

Let x ∈ M be one of these eigenvalues (the other one is x). Hence, we can

assume that

A =

x 0

0 x

 .

In this case, the above matrix equations 3.3.0.2 translate to

NmM/F (α) = NmM/F (γ),

NmM/F (δ) = NmM/F (β),

NmM/F (a) = NmM/F (c),

NmM/F (d) = NmM/F (b),

(x2 − 1)
(
γδ − αβ

)
=
(
ab− cd

)
.

Again, we have a positive result.

53



Theorem 3.3.7. The matrix g has a conjugate in H(F ).

Proof. If we take

g1 =

1 −1

1 1

 , g2 =

1− x2 −1

x2 − 1 −1

 ∈ GL2(M),

then a simple computation shows that g1, g2 indeed satisfy Equation 3.3.0.2.

3.4 Norm computation

We are now ready to go back to the case where g = N(δ), with δ ∈ G(F )

relatively τ -regular semisimple. First, we note that for all δ ∈ G(F ), we have

δδ−θ =

 A B

−B−τ D

 ,

where A,D are fixed by −τ .

Depending on the rank of B, we have three different cases. However, since the

upper-right corner of δδ−θ(δδ−θ)τ has to be full-rank (cf. Proposition 3.3.3), this

implies that the only case possible is

δδ−θ =

 A I

−I D

 .

In this case, we can easily compute δδ−θ(δδ−θ)τ . First, write

(δδ−θ)−1 =

X Y

Z W

 .
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Therefore, we have I 0

0 I

 =

 A I

−I D


X Y

Z W


=

AX + Z AY +W

DZ −X DW − Y

 .

Hence, we see that X = DZ, and so

AX + Z = I ⇒ A(DZ) + Z = I ⇒ (AD + I)Z = I.

Similarly, we have W = −AY , and so we get

DW − Y = I ⇒ D(−AY )− Y = I ⇒ −(DA+ I)Y = I.

The conclusion is that

(δδ−θ)−1 =

D(AD + I)−1 −(DA+ I)−1

(AD + I)−1 A(DA+ I)−1

 ,

and so

δδ−θ(δδ−θ)τ =

(AD − I)(AD + I)−1 2A(DA+ I)−1

−2D(AD + I)−1 (DA− I)(DA+ I)−1

 .

Remark. It is straightforward to show that det(δδ−θ) = det(AD+ I) = det(DA+ I),

and so the matrices being inverted above are indeed invertible.
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3.4.1 Cayley transform

The matrix appearing in the upper-left corner of gg−σ is the Cayley transform

of AD. In this subsection, we will study the properties of the Cayley transform.

Definition 3.4.1. Let P be an n × n-matrix with coefficients in M . Assume that

−1 is not an eigenvalue of P . Then P − I is invertible, and we define the Cayley

transform of P as

c(P ) = (P − I)(P + I)−1.

Note that we also have c(P ) = (P + I)−1(P − I).

If P is semisimple, so is c(P ), and their eigenvalues are related in a simple way.

Lemma 3.4.2. If {λ1, . . . , λn} are the eigenvalues of P , then {µ1, . . . , µn} are the

eigenvalues of c(P ), where

µi =
λi − 1

λi + 1
.

Proof. If v ∈Mn is such that Pv = λv, then

c(P )v = (P − I)(P + I)−1v = (P − I)((λ+ 1)−1v) = (λ− 1)(λ+ 1)−1v.

Conversely, if v is such that c(P )v = µv, we have

(P − I)(P + I)−1v = µv ⇒ (P + I)−1(P − I)v = µv

⇒ (P − I)v = µ(P + I)v

⇒ Pv − v = µPv + µv

⇒ Pv = (1 + µ)(1− µ)−1v.
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Corollary 3.4.3. The eigenvalues of P generate the same field extension as the

eigenvalues of c(P ).

3.4.2 Existence of norms

We are now ready to prove the main theorem of this section:

Theorem 3.4.4. Let δ ∈ G(OF ) be such that

δδ−θ =

 A I

−I D

 ,

and assume the eigenvalues of AD lie in M . Then δ admits a norm.

Proof. In view of the results of the preceding section, we first need to show that

δδ−θ(δδ−θ)τ satisfies the various hypotheses.

(1) The characteristic polynomial of c(AD) has coefficients in F

Let {λ, µ} be the eigenvalues of AD. Then the previous proposition shows that the

eigenvalues of c(AD) are
{
λ−1
λ+1

, µ−1
µ+1

}
. Hence, we have that

Tr(c(AD)) =
λ− 1

λ+ 1
+
µ− 1

µ+ 1
=

2Tr(AD)− 2

det(AD) + Tr(AD) + 1

and

det(c(AD)) =

(
λ− 1

λ+ 1

)
·
(
µ− 1

µ+ 1

)
=

det(AD)− Tr(AD) + 1

det(AD) + Tr(AD) + 1
.

On the other hand, we have

Tr(AD) = Tr(A−τD−τ ) = Tr
(

(DA)
t
)

= Tr(AD)
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and similarly

det(AD) = det(A−τ ) det(D−τ ) = det(A) · det(D) = det(AD);

the claim thus follows.

(2) The determinant of (c(AD)2 − I) is a norm

We have

det(c(AD)2 − I) =

((
λ− 1

λ+ 1

)2

− 1

)((
µ− 1

µ+ 1

)2

− 1

)

=

((
λ− 1

λ+ 1

)
− 1

)((
λ− 1

λ+ 1

)
+ 1

)((
µ− 1

µ+ 1

)
− 1

)((
µ− 1

µ+ 1

)
+ 1

)
=

(
−2

λ+ 1

)(
2λ

λ+ 1

)(
−2

µ+ 1

)(
2µ

µ+ 1

)
.

Therefore, we have

val(det(c(AD)2 − I)) = (val(λ) + val(µ))− 2 (val(λ+ 1) + val(µ+ 1)) ,

which is even, hence det(c(AD)2 − I) is a norm (Lemma 3.3.1).

Finally, by 3.2.2, there exists γ ∈ H(F ) such thath
h

N(δ)

h−1

h−1

 = γγ−σ.

This concludes the proof.
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CHAPTER 4
A Relative Fundamental Lemma

In the previous chapter, we presented the various objects that are at the heart

of this thesis. We then proved a matching statement between the twisted relative

classes in our general linear group and the relative classes in our unitary group.

The next step would be to match the orbital integrals that appear on the geometric

side of our trace formulas. We define this notion of matching (which is the so-

called relative fundamental lemma) and we prove it in the “depth zero” case. We

keep the same notation as in the previous chapter, except for the first section. In

particular, M/F is a quadratic extension of non-archimedean local fields (we make

the further assumption that the residual characteristic is different from two), G =

ResM/F (GL4n), and H is a unitary group over F in 4n variables.

4.1 Integration over locally compact groups

As we alluded to earlier, if F is a locally compact field and G is an algebraic

group over F , the group G(F ) inherits a natural topology coming from that of F .

As such, G(F ) is a locally compact topological group, and so it admits a (left) Haar

measure which is unique up to multiplication by a positive real number. If it is also

a right Haar measure, we say G(F ) (or simply G) is unimodular.

Lemma 4.1.1. If the group G is a connected reductive group, then G(F ) is unimod-

ular.
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Proof. Recall that the modular character ∆ : G(F ) → R+ is a continuous group

homomorphism and that G(F ) is unimodular if and only if ∆ is trivial. By definition,

∆ is trivial on the center Z of G(F ) and on its derived subgroup G(F )′ (since R+ is

abelian). By Lemma 19.5 and Theorem 27.5(d) of (Hum75), ZG(F )′ has finite index

in G(F ). But R+ has no non-trivial finite subgroup, and thus the result follows.

In the later sections of this chapter, we will need to integrate over homogeneous

spaces (i.e. the quotient of a topological group by a closed subgroup). We do have

Haar measures on our groups, but it is not a priori clear that we can get an invariant

measure on our homogeneous space. The precise case when this happens is described

in the following lemma:

Lemma 4.1.2. (PR94, Theorem 3.17) Let G be a unimodular locally compact Haus-

dorff topological group, and let H be a closed subgroup. Then there exists a right

G-invariant Radon measure on H\G if and only if H is unimodular.

For the rest of this section, we will assume the hypotheses of the previous lemma

are satisfied, and that H is unimodular. Moreover, we will also assume that G (and

hence H) is totally disconnected; we thus have a neighbourhood basis of the identity

consisting of open compact subgroups.

Choose Haar measures dg and dh on G and H, respectively. Then we can choose

an invariant measure dg
dh

on H\G such that

∫
G

f(g)dg =

∫
H\G

∫
H

f(hg)dh
dg

dh
(4.1.0.1)
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for all f ∈ C∞c (G). This formula characterizes the invariant measure, since the map

C∞c (G)→ C∞c (H\G)

f 7→ f#,

where f#(gH) =
∫
H
f(hg)dh, is surjective. Using this characterization, we can

compute the volume of all compact open subsets of H\G: such a set is a disjoint

union of subsets of the form H\HgK, where K is a compact open subgroup of G.

By taking f to be the characteristic function of gK in Equation 4.1.0.1, we see that

vol(H\HgK) =
vol(K)

vol(H ∩ gKg−1)
. (4.1.0.2)

This fact will be used in Lemma 4.3.2 below to simplify our relative orbital integrals.

4.2 Definitions of local orbital integrals

Recall from Chapter 2 that the geometric side of the trace formula involves

orbital integrals, which are local objects. Hence, in this section, we define local

orbital integrals, which are the objects appearing in the relative fundamental lemma.

We first recall the following result.

Lemma 4.2.1. (Hah09, Theorem 2.5) Let δ ∈ G(F ), γ ∈ H(F ). If δ is relatively

τ -semisimple (resp. if γ is relatively semisimple), then Cτ
δδ−θ,Gσ (resp. Cγγ−σ ,Hσ) is

reductive.

Let φ ∈ C∞c (H(F )) and let γ ∈ H(F ) be relatively semisimple, and assume that

Cγγ−σ ,Hσ is connected. The local relative orbital integral for γ is given by

Oγ(φ) :=

∫
Hγ(F )\Hσ(F )2

φ(h−1
1 γh2)

dh1dh2

dtγ
,
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where dhi and dtγ are Haar measures on Hσ(F ) and Hγ(F ), respectively. Similarly,

if f ∈ C∞c (G(F )) and δ ∈ G(F ) is relatively τ -semisimple (again, we assume Cτ
δδ−θ,Gσ

is connected), we define the local relative twisted orbital integral for δ by

TOδ(f) :=

∫
Gδ(F )\Gσ×Gθ(F )

f(g−1
1 δg2)

dg1dg2

dtδ
,

where dg1, dg2 and dtδ are Haar measures on Gσ(F ), Gθ(F ) and Gδ(F ), respectively.

We can also define stable versions:

SOγ0(φ) =
∑
γ0∼γ

e(Hγ)Oγ(φ)

STOδ0(f) =
∑
δ0∼δ

e(Gδ)TOδ(f),

where both sums are taken over a set of representatives for the relative classes (resp.

twisted relative classes) inside the stable relative class (resp. stable twisted relative

class). Here, the constants e(Hγ) and e(Gδ) are the Kottwitz signs, as defined in

(Lab99, §1.7). We note that if δ is relatively τ -regular semisimple (resp. γ is relatively

regular semisimple), then Gδ (resp. Hγ) is a torus, and so its Kottwitz sign is 1.

4.3 Relative Fundamental Lemma

Recall that G and H are unramified groups. Therefore, they both admit smooth

connected models overOF (cf. § 1.1.1). We will still denote these models byG andH,

respectively. That is, both G and H will henceforth be construed as group schemes

over OF . As a first step towards a future trace comparison, we want to prove a

relative fundamental lemma:
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Conjecture 4.3.1. Let δ ∈ G(F ) be relatively τ -regular semisimple and γ ∈ H(F )

be relatively regular semisimple. Suppose γ is a norm for δ. Then

STOδ(1G(OF )) = SOγ(1H(OF )),

where the implicit measures give volume 1 to both G(OF ) and H(OF ) and are com-

patible with the inner twist Gδ
∼= Hγ in the sense of Kottwitz (Kot88, p.631). Also,

both STOδ(1G(OF )) and SOγ(1H(OF )) vanish whenever δ does not admit a norm and

γ is not a norm, respectively.

We will not prove the fundamental lemma in full generality, but by restricting

δ and γ, we will prove a weaker version (cf. Theorem 4.3.7).

Recall that the matching of the geometric sides of the trace formula can be done

locally. At unramified places, we want to choose test functions on our groups in a

functorial manner: we want this correspondence to be a morphism of Hecke algebras.

In these Hecke algebras, the unit element is given by the characteristic function of our

hyperspecial subgroup, and therefore we want 1G(OF ) to correspond 1H(OF ). In the

absolute case, Waldspurger proved that the fundamental lemma (i.e. the “matching”

of unit elements) implies a similar matching statement for all test functions in the

Hecke algebra; moreover, this special case had already been proven by Kottwitz in

the case of base change (Kot86). Unfortunately, such a result is currently unavailable

in the relative setting.

Since we are working with characteristic functions, the relative orbital integrals

simplify considerably. Let K = G(OF ) and KH = H(OF ). These hyperspecial

subgroups have the following useful properties:
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1. The map

KH → Q(F ) ∩KH

k 7→ kk−σ

is surjective.

2. The maps

K → Q(M) ∩K

k 7→ kk−σ

and

K → S(F ) ∩K

k 7→ kk−θ

are surjective.

This follows from the fact that the fibers are (flat) torsors over the hyperspecial

model. Hence, by Lemma 1.1.6, the fibers are non-empty. We will use these proper-

ties in the proof of the following lemma.

Lemma 4.3.2. Set Kσ = K ∩Gσ(F ) and Kσ
H = KH ∩Hσ(F ). Then

Oγ(1KH ) =
∑

y=hKσ
H

vol(Cγγ−σ ,Hσ(F )y)
−1,

where the sum is over the Cγγ−σ ,Hσ(F )-orbits in Xσ
H := Hσ(F )/Kσ

H satisfying h−1γγ−σh ∈

KH and Cγγ−σ ,Hσ(F )y is the stabilizer of y in Cγγ−σ ,Hσ(F ).
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Similarly, we have

TOδ(1K) =
∑

x=gKσ

vol(Cτ
δδ−θ,Gσ(F )x)

−1,

where the sum is over the Cτ
δδ−θ,Gσ(F )-orbits in Xσ := Gσ(F )/Kσ satisfying g−1δδ−θgτ ∈

K and Cτ
δδ−θ,Gσ(F )x is the stabilizer of x in Cτ

δδ−θ,Gσ(F ). In both cases, the Haar mea-

sures on Gσ(F ) and Hσ(F ) are normalized to give Kσ and Kσ
H unit volume, and the

volumes are taken with respect to fixed Haar measures on Gδ(F ) and Hγ(F ).

Proof. We will only prove the second equation: the first one will follow by choosing

τ to be trivial.

Assume δ ∈ G(F ) is relatively τ -semisimple. Note that we can partitionGδ(F )\Gσ×

Gθ(F ) in terms of orbits for the (right) action of Kσ ×Kθ, where Kθ = K ∩Gθ(F ).

Therefore, we have

TOδ(1K) =
∑
u,h

vol
(
Gδ(F )\Gδ(F )(uKσ, hKθ)

)
,

where the sum is over u ∈ Gσ(F ), h ∈ Gθ(F ) such that u−1δh ∈ K. Using Equa-

tion 4.1.0.2, we deduce that this sum is also equal to

∑
x

vol (Gδ(F )x)
−1 ,

where the sum is over a set of representatives for the Gδ-orbits of x = (uKσ, hKθ)

such that u−1δh ∈ K. Also, Gδ(F )x denotes the stabilizer of x.

Now consider the following map
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{
Gδ(F )(uKσ, hKθ) ∈ Gδ(F )\Gσ ×Gθ(F )/Kσ ×Kθ : u−1δh ∈ K

}
↓{

Cτ
δδ−θ,Gσ(F )uKσ ∈ Cτ

δδ−θ,Gσ(F )\Gσ(F )/Kσ : u−1δδ−θuτ ∈ K
}
, (4.3.0.3)

defined by (uKσ, hKθ) 7→ uKσ. By Lemma 3.1.2, this is well-defined. We claim

it is also bijective. First, note that if u−1δh ∈ K then hK = δ−1uK, and since

δ is fixed, we see that the coset of h determines the coset of u, and vice-versa.

Moreover, if hK = h′K, then h−1h′ ∈ Kθ (since h, h′ ∈ Gθ(F )). Therefore, hKθ is

also determined by uK and hence by uKσ. Therefore, the map 4.3.0.3 is injective.

To prove surjectivity, we first note that whenever gg−θ ∈ K, properties (1) and (2)

above imply that we can find k ∈ K such that gg−θ = kk−θ. In particular, we see

that g ∈ KGθ(F ). With this in mind, let u ∈ Gσ(F ) be such that u−1δδ−θuτ ∈ K.

Since δ−θuτ = (u−1δ)−θ, it follows that u−1δ ∈ KGθ(F ), and therefore there exists

h ∈ Gθ(F ) such that u−1δh ∈ K, which proves surjectivity.

By Lemma 3.1.2, we have an isomorphism Gδ
∼= Cτ

δδ−θ,Gσ , which we can use to

transport our measure on Gδ(F ) to a measure on Cτ
δδ−θ,Gσ(F ). Using this measure

and the equality

TOδ(1K) =
∑

x=(uKσ ,hKθ)

vol (Gδ(F )x)
−1 ,

the bijection 4.3.0.3 gives us the desired result.
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Remark. As we noted in §1.1 of Chapter 3, if γ is a norm of δ, their centralizers are

inner forms of one another. In the statement of the fundamental lemma, one requires

that the choice of measures on these centralizers correspond under the relevant inner

twist (as mentioned above). However, if we restrict ourselves to relatively regular

semisimple elements, the centralizers are actually tori, and this inner twist is therefore

trivial, i.e. the centralizers are isomorphic.

We will need the following notation: set

V τ
δ (G) =

{
u ∈ Gσ(F ) : u−1δδ−θuτ ∈ K

}
and

Vγ(H) =
{
h ∈ Hσ(F ) : h−1γγ−σh ∈ KH

}
.

Consider now the following cohomological result.

Lemma 4.3.3. We have H1(τ,K) = 1. In particular, (G(F )/K)τ = H(F )/KH .

Proof. By (Kot80, Lemma 8.6), we have H1(Gal(M/F ), K) = 1. Now, consider two

different structures of 〈τ〉-group on K: the one coming from the definition of τ , and

another one where τ acts as the non-trivial element of Gal(M/F ). We then have an

isomorphism of 〈τ〉-groups

K → K, k 7→ τ(k).

The result now follows from Kottwitz’s lemma; the final assertion is proven by con-

sidering the long exact sequence associated to following short exact sequence:

1→ K → G(F )→ G(F )/K → 1.
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Therefore, the fixed points of γ ∈ H(F ) on H(F )/KH are exactly its fixed points

on G(F )/K which are also fixed by τ .

From the properties of hyperspecial groups preceding Lemma 4.3.2, we deduce

that the image of the natural (injective) maps

Gσ(F )/Kσ → G(F )/K, Hσ(F )/Kσ
H → H(F )/KH

are exactly the fixed points of σ. This gives us the following picture:

Hσ(F )/Kσ
H

//

��

Gσ(F )/Kσ

��

H(F )/KH
// G(F )/K

,

where all maps are injective, the image of the horizontal maps is the fixed points of τ

and the image of the vertical maps, the fixed points of σ. Therefore, the fixed points

of γ ∈ H(F ) on Hσ(F )/Kσ
H are exactly its fixed points on H(F )/KH which are also

fixed by σ, and similarly for δ ∈ G(F ). This picture suggests that the computations

involved in the proof of the fundamental lemma should be combinatorial in nature:

all these fixed points live in the (nonreduced) building of GLn. This allows for more

structure on the set of fixed points (since buildings are simplicial complexes). Lang-

lands also made the same observation in the absolute case. However, the complexity

of the computations grows rapidly with the rank of G, and a proof of the relative

fundamental lemma for all n will therefore necessitate a different approach.
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To better understand the computations required to prove the fundamental lemma,

we make the following observation.

Lemma 4.3.4. The relative orbital integrals only depend on the relative class, and

similarly for the twisted case.

Proof. We have a bijection between the fixed points, and the centralizers (and stabi-

lizers) are conjugate. Our groups being unimodular, conjugation leaves the volumes

invariant. Alternatively, replacing γ or δ by an element of their relative class amounts

to a change of variable for the relative orbital integral.

If TOδ(1G(OF )) 6= 0, the twisted relative class of δ and K intersect non-trivially,

and similarly for γ. Therefore, we can and do assume that δ ∈ K and γ ∈ KH . In

the absolute case the complexity of the fixed point sets V τ
δ (G) and Vγ(H) should be

related to the congruence relations between the eigenvalues (see for example (Kot05,

§5)). This observations leads us to the following definition.

Definition 4.3.5. Let δ ∈ K be relatively τ -regular semisimple. The depth of δ is the

least integer k such that the image of δδ−θ(δδ−θ)τ in G(OF/mk+1) is regular, where

m is the maximal ideal of OF . Similary, if γ ∈ KH is relatively regular semisimple,

its depth is the least integer k such that the image of γγ−σ in H(OF/mk+1) is regular.

In other words, the “depth zero” case alluded to in the introduction to this

chapter is the case where δ (resp. γ) is still relatively τ -regular semisimple (resp.

relatively regular semisimple) after reduction modulo m. Furthermore, we note that

the depth is an invariant of the stable relative class.
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Proposition 4.3.6. Let δ ∈ K be relatively τ -regular semisimple, and let γ ∈ KH

be relatively regular semisimple. Assume they both have depth zero. Then, we have

TOδ(1G(OF )) = 1 = Oγ(1H(OF )).

From this proposition follows our main theorem:

Theorem 4.3.7. The relative fundamental lemma holds in the depth zero case.

Proof. Let δ and γ be relatively τ -regular semisimple (resp. relatively regular semisim-

ple). If we suppose that γ is a norm of δ, then it follows that δ and γ have the same

depth. Therefore, the theorem follows directly from the previous proposition.

The proof of Proposition 4.3.6 will take the remainder of this section. The

strategy is the following: first we compute the fixed point set of g ∈ GL4(M) on

G(F )/K (as we would in the absolute case), and then we relate this computation to

the relative setting.

Lemma 4.3.8. Assume g ∈ GL4(M) is regular semisimple of depth zero. Suppose

also that g is σ-split. Then its fixed point set on Gσ(F )/Kσ is Cg,Gσ(F )/(Cg,Gσ(F )∩

Kσ).

Proof. First, assume g ∈ GL4(M) is diagonal. We will show that its fixed point

set on G(F )/K is A/(A ∩ K), where A is the subgroup of diagonal matrices. By

the Iwasawa decomposition, we have G(F ) = ANK, where N is the subgroup of

unipotent matrices. Therefore, it suffices to show that if n ∈ N and g(nK) = nK,

then n ∈ K. We also observe that the hypothesis on the depth has the following

consequence: if λ, µ ∈M are eigenvalues of g, then val(λ− µ) = 0.
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We write

n =

a b

0 d

 , g =



λ1

λ2

λ3

λ4


,

where a, b, d ∈ GL2(M), and a, d are unipotent. Suppose g(nK) = nK. The group

of unipotent matrices in GL2(M) can be canonically identified with M ; let ρ be this

canonical group isomorphism. By computing n−1gn, we deduce that in order for

g(nK) = nK we need

ρ(a) (λ1 − λ2) , ρ(d) (λ3 − λ4) ∈ OM .

It follows that ρ(a), ρ(d) ∈ OM , and we can therefore assume for the remaining

computations that a = d = I2. Write

b =

x y

z w

 .

Again, by computing n−1gn, we deduce that in order for g(nK) = nK we needx(λ1 − λ3) y(λ1 − λ4)

z(λ2 − λ3) w(λ2 − λ4)

 ∈ Mat2(OM).

As above, we can conclude that b ∈ Mat2(OM), which is what we wanted to show.

Now, if g is hyperbolic (i.e. its eigenvalues lie in M) but not diagonal, we can

still conclude that its fixed point set on G(F )/K is Cg,G(F )/ (Cg,G(F ) ∩K): some

conjugate of g is diagonal, and conjugation induces a bijection between fixed-point
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sets. Since g is σ-split, its centralizer Cg,G is stable under σ, and so the fixed point

set of g on Gσ(F )/Kσ is itself preserved by Cg,G(F ). The result thus follows for this

case.

Finally, suppose g is not hyperbolic, and let L/M be an extension over which

g becomes hyperbolic. Note that this extension has degree 2 or 4, and therefore it

has at most tame ramification (recall the hypothesis on the residual characteristic).

By (Tit79, Proposition 2.6.1), the fixed point set of g on G(F )/K is exactly the set

of its fixed points on GL4(L)/GL4(OL) which are also Gal(L/M)-invariant. By the

reasoning above, we know that

(GL4(L)/GL4(OL))g = Cg,GL4(L)/ (Cg,GL4(L) ∩GL4(OL)) ,

and by (Kot80, Lemma 8.6), we can now deduce that

(G(F )/K)g = Cg,G(F )/(Cg,G(F ) ∩K),

and the result now follows.

We note that the action of Cg,Gσ(F ) on Cg,Gσ(F )/(Cg,Gσ(F )∩Kσ) is transitive.

Moreover, the stabilizer of Cg,Gσ(F ) ∩ Kσ is of course Cg,Gσ(F ) ∩ Kσ, and we also

have vol(Cg,Gσ(F ) ∩Kσ) = 1.

Proof of Proposition 4.3.6. To finish the proof, we simply have to consider the follow-

ing incarnations for g: g = γγ−σ and g = δδ−θ(δδ−θ)τ . In the first case, Lemma 4.3.8
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and (Kot80, Lemma 8.6) readily imply that

Vγ(H) = Cγγ−σ ,Hσ(F )/(Cγγ−σ ,Hσ(F ) ∩Kσ
H),

and we thus have

Oγ(1KH ) = vol(Cγγ−σ ,Hσ(F ) ∩Kσ
H) = 1.

Finally, if we apply the twisted action of δδ−θ twice, we see that

V τ
δ (G) ⊂ (Gσ(F )/Kσ)δδ

−θ(δδ−θ)τ .

As above, we thus have

TOδ(1K) = vol(Cτ
δδ−θ,Gσ(F ) ∩Kσ) = 1.

Unfortunately, even though the proof above suggests that proving the relative

fundamental lemma should simply follow from a computation in the absolute setting,

the combinatorial nature and the complexity of the computations seem prohibitive

at the moment.
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