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Foreword

Beauty is the first test; there is no permanent place in

the world for ugly mathematics

(G.H. Hardy)

0.1. The objective and organization of the thesis

The object of this thesis is to establish effective and robust identification methods,

using boundary measurements, able to reconstruct stationary and non-stationary

sources describing certain physical and biomedical phenomena. In particular, these

sources are taken as pointwise form sources (up to multipolar sources) and sources

having compact support within a finite number of subdomains modeling epileptic foci

in Electroencephalography (EEG) problems and early reporter gene activity distribu-

tion in Bioluminescence Tomography (BLT) problems.

Indeed, these two applications, along with Helmholtz equation and other motiva-

tions, can be represented by an inverse source problem over the elliptic equation

∇ · (σ∇u) + µu = F in Ω ⊂ R
n, n = 2, 3 (0.1)

where µ is taken as a fixed constant in R that changes sign based on the underlying

physical problem, σ is the diffusion/conductivity coefficient and F is the source term

that we are looking for.

Moreover, in this thesis, we also consider the parabolic case which, in addition to

the previous stated applications, is motivated by the problem of the identification of

pollution sources in a contaminant. The goal is to recover, from a single Cauchy data

pair, a non-stationary pointwise source F := F (x, t) in the diffusion equation

1

c

∂u

∂t
−∇ · (σ∇u) + µu = F in Ω× [0, T ], T > 0. (0.2)

1



Foreword

This manuscript is organized in the following way.

Chapter 1 presents the different biomedical and physical motivations behind the in-

verse source problems we are interested in. Moreover, a wide concentration is given

for the Bioluminescence Tomography study due to its recent developments and ad-

vantages. Later, the mathematical modeling represented by the Boltzamnn equation

is introduced and the needed approximations are briefly stated arriving to the desired

diffusion equation. Finally, the different system of equations considered in this thesis

are presented.

Chapter 2 treats the three-dimensional case of the stationary equation (0.1) consider-

ing multipolar sources and sources with small support. In this chapter, after proving

the uniqueness in the case of a combination of monopolar and dipolar sources and

presenting the corresponding stability estimates, a direct and non-iterative algebraic

method is proposed to recover this type of sources. Then, this method is generalized

to the case of multipoles. Later, we study the case of sources having compact support

within a finite number of subdomains. Finally, we present and interpret numerical

simulations related to our proposed reconstruction method to prove its robustness

and to show the effect of the different parameters that have an impact on the identi-

fication process.

Chapter 3 deals with the two-dimensional stationary equation (0.1). Using a single

wave number, although a very simple extension is available to multipolar sources, we

develop our study over monopolar sources and sources having small compact support.

The method proposed to solve this 2D inverse source problem is based on a proper

passage to a 3-dimensional one importing, therefore, specific changes on the source

term. Then, to recover this transformed source, we apply an algebraic method similar

to that proposed in the previous chapter. Later, we consider the possibility of having

multiple frequencies. In such a case, a simpler algebraic method is shown applied

on equation (0.1) itself with the same type of sources. Finally, numerical results are

presented and interpreted using multiple frequencies to prove the effectiveness of

this reconstruction method.

Chapter 4 aims to resolve an inverse source problem over the parabolic equation

(0.2) in a three-dimensional space. After simplifying the equation under study, the

goal of this chapter is to recover monopolar sources having a fixed location but with

time-variable intensities. A direct algebraic method is proposed to reconstruct the

number and the positions of these monopoles and quantities related to the intensities

are recovered. Then, a Kohn-Vogelius optimization method is presented in order to

2



0.1. The objective and organization of the thesis

identify these intensities. An adjoint state method along with a BFGS- gradient con-

jugate algorithm with Morozov’s stop criterion are proposed to accomplish this latter

identification. Finally, some numerical results are shown to prove the robustness of

this quasi-algebraic method.

3





CHAPTER 1

General Introduction

It is the perennial youthfulness of mathematics itself

which marks it off with a disconcerting immortality from

the other sciences.

(Eric Temple Bell)

The object of this chapter is to present the biological, biomedical and the mathe-

matical context of the resolution of an inverse source problem whose one of other

applications appears in Bioluminescence Tomography (BLT).

Section 1.1 is intended to introduce the applications of the considered inverse prob-

lem. This section is divided into two subsections. In the first subsection Sec-

tion 1.1.1, we state the physiological and medical context of the problem. We

start by explaining the BLT problem and the motivation behind it especially

gene therapy. Later, we explain the experiment done and the Optical Tomog-

raphy technique crucial for BLT. Then, the second subsection, Section 1.1.2,

presents the mathematical modeling of the problem represented by Boltzmann

transfer equation which is approximated, due to the domination of the scatter-

ing phenomena over the absorption ones, by a diffusion equation.

Section 1.2 presents the different problem models to be considered in our work.
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1. General Introduction

Inverse problems are in the core of many engineering and biomedical applications.

Among these, inverse source problems (ISP) have attracted great attention of many

researchers over recent years because of their applications to many practical do-

mains. The inverse source problem, mentioned in our work, is based, in addition

to the Helmholtz equation, on a particular framework that has several practical mo-

tivations particularly in certain non-invasive biomedical imaging techniques. More

precisely, one of the important applications is the inverse electroencephalography/-

magnetoencephalography (EEG/MEG) problem [Das09; Jer+02; Jer+04; MLL92].

The aim of this problem, used in the epilepsy disease treatment, is to obtain a fairly

accurate localization of the epileptogenic sources using electrical and magnetic mea-

sures over the scalp. On the other hand, another recent related developing problem

is the inverse source problem of the Bioluminescence Tomography (BLT). In fact, BLT,

[WLJ04], consists in determining an internal bioluminescent source distribution gen-

erated by luciferase inducted by reporter genes from external optical measurements.

It is an increasingly important tool for biomedical researchers that can help diagnose

diseases and evaluate and monitor therapies by allowing real time tomographic local-

ization of the disease foci. In both latter mentioned applications, these foci and their

distribution are described mathematically as sources that one aims to reconstruct. In

addition to that, other related applications are utilized also throughout the literature

such as pollution in the environment [EBHD02; Isa98], photo- and thermo-acoustic

tomography [Ana+07; SU09], optical tomography [Arr99] and discrete dislocations

in materials [EBEH13].

In this chapter and for the convenience of the reader, we concentrate our study over

the inverse source problem related to Bioluminescence Tomography (BLT) and we

give the medical, physiological and mathematical context of this study arriving to the

associated inverse problem.

1.1. Medical Context and Modelization of the BLT Study

1.1.1. Mechanism of Bioluminescent Tomography and Its Application

In molecular/cellular imaging, small animal organs and tissues are often labeled with

reporter probes that generate detectable signals. Bioluminescence Tomography (BLT)

is a newly and recently developed technique, first conducted by researchers at the

University of Southern California, Los Angeles, USA in 2005, for molecular imaging

allowing in vivo studies on small animals, especially living mice. It is based on the
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1.1. Medical Context and Modelization of the BLT Study

use of luciferase, an enzyme responsible for light emission. Indeed, bioluminescent

probes usually use luciferase extracted from three main organisms: the North Amer-

ican firefly "Photinus Pyralis" (FLuc) of wavelength ≃ 490 − 620nm, the sea pansy

"Renilla Reniformis" (RLuc) of wavelength ≃ 480nm, and bacterias like Photorhab-

dus Luminescens and Vibrio Fisheri (Figure 1.1). Then, this extracted luciferase is

confined to a cell (or a gene) and afterwards introduced in the body of the animal

model for later detection.

Figure 1.1.: firefly Photinus pyralis, Sea pansy, Photorhabdus-luminescens bacte-
ria (from left to right)

The aim of BLT is to reconstruct, localize and quantify the 3D bioluminescent source

distribution (the reporter cell activity) inside the living mouse based on external bio-

luminescent optical measures. In fact, the bioluminescent photons cover a red region

of the spectrum (or can be red-shifted) with a good penetration depth. Hence, with

an adequate exposure time, a significant number of photons can escape to reach the

mouse body surface and be detected using a highly sensitive charged-coupled device

(CCD) camera. Then this 2D image is superposed with the photograph of a mouse

to get localization of the reporter cell activity. However, the bioluminescent imaging

view is only a planar image [WLJ04] since it detects only surface light signals and can-

not generate a depth location because it is incapable of tomographic reconstruction

of the internal optical features inside a mouse which represent the 3D distribution of

a BLT source. Thus, in BLT we need a complete knowledge on the internal optical

properties of anatomical structures of the mouse established from an independent

pre-scanned tomographic study, an Optical Tomography study.

BLT can be applied to study almost all diseases in every small animal model and

promises to have major impacts on small animal studies towards the development of

molecular medicine. Hence, it becomes an increasingly important tool for biomedical

researchers due to its aid in the localization and the monitoring of the diseases. In

addition to its application in gene therapy, BLT is already widely used is the investiga-

tion of cancer tumors and cancer progression [MV+12; Con+05], cardiac diseases,
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1. General Introduction

studying protein-protein interactions, cystic fibrosis [Tay+98], studies of infection,

reconstitution kinetics [Cao+06; Wu+03] and so on.

BLT for gene therapy

The key for the development of the gene therapy is to monitor the gene transfer

and evaluate its distribution in a living model. Monitoring gene expression is crucial

for studying the responses of gene therapy and clarifying gene function in various

environments. BLT is used to fulfill this goal. It is used to express a reporter gene

with luciefrase driven by a promoter of the gene of interest into target tissue(s) to

test the expression of that particular gene. The expression level of the target gene

is assessed by monitoring luciferase expression which can be interpreted from the

photon output.

In fact, once a gene therapy vector has been administrated, the researcher needs to

know:

1. the location of the gene within the body

2. the degree of activity and the magnitude of the gene expression over time

3. the time of the activity of the transferred gene.

These information are found and analyzed using a BLT study. Thus, BLT felicitates the

visualization of critical gene expression patterns in different stages of any disease and

advances the understanding of a disease progression invivo. This method has been

used to the study of DNA vaccines [Jeo+06], to monitor insulin gene expression for

diabetes [Che+10], for studying human prostate cancer [Ada+02], for breast cancer

[LM10], for measuring ATP released from CF and non CF-human epithelial monolay-

ers [Tay+98], for cell trafficking [HYC11] and so many other genetic diseases.

Let us, now, explain the mechanism of this method. In fact, following its imaging

experiment, one needs both the anatomy of the used model and an indispensable

Optical Tomography study to complete the 3D BLT technique.

The Bioluminescence Imaging (BLI) Experiment: bioluminescent data

acquisition

BLI systems, Figure 1.2, have been built and used by many research groups in USA

and China.

1. • Several days before the experiment, luciferase probes, which are biological
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1.1. Medical Context and Modelization of the BLT Study

entities (cells,genes,...) tagged with luciferase enzyme, are implanted into

the mouse.

2. • At the beginning of the BLT experiment, luciferase substrate, luciferin, is

injected into the mouse.

• A biochemical reaction of luciferase with oxygen and adenosine triphos-

phate (ATP) generates bioluminescent photons in the biological tissues.

These photons of light contain significant red components and are with a

wavelength of about 600nm.

• A significant number of bioluminescent photons escape from their attenu-

ating environment to reach the mouse body surface.

3. • A highly sensitive (high quantum efficiency )charge-coupled device CCD

camera is used to collect the emitted light knowing that it detects even

very low levels of visible light. Note that the camera is usually super cooled

to less than −80◦C to reduce thermal noise.

• The mouse is placed at the suitable distance (well adjusted and measured)

from the lens and marks are placed on the mouse’s skin for registration.

• A holder maintains the mouse in a vertical position while a stage rotates

vertically using computer control.

• Note that, this experiment is performed in a total dark environment. To

do so, all the objects specified in the steps above are placed in a light-tight

enclosure chamber that just has a small entry to accommodate the wires.

The chamber has a removable part to help manipulate the mouse.

• Two images are obtained in each orientation one of the mouse body sur-

face and another of the corresponding bioluminescent view.

• The 2D bioluminescent image is superposed over the photograph of the

mouse.

4. • Finally, the bioluminescent photon rate can be detected on the body sur-

face of the mouse. The external (observable) optical data are calculated

from pixel values in the bioluminescent images taken by the CCD camera.

Remark 1. This system can be enhanced to a multiview system with multispectral data

[Wan+06b]. Such a system employs several mirrors and a special mouse holder to pro-

vide much more information. Its advantage is that it gives the same results but costs less

in time and gives the capability of using more than one bioluminescent probe.

9



1. General Introduction

Figure 1.2.: BLT experiment [Wan+06a]

Anatomical structure of the mouse

The anatomic structure information of the small animal can be imaged by X-ray

Computed Tomography and Magnetic Resonance Imaging techniques. The geometric

shapes of the major organ regions are established by 3D computer graphic techniques.

The anatomical structure of the small animal is then segmented into its major compo-

nents (heart, liver, lungs, stomach, bones, ...) and then a convenient mesh is used to

mesh the whole mouse domain or a certain organ of interest. As seen in Figure 1.3, in

[Wan+06a], the authors established mouse geometric model with 80670 tetrahedral

and 14757 nodes using Amira 4.0 program.

Optical Tomography

The larger the variation of the optical properties, the poorer the BLT reconstruction

quality one obtains. This reflects the critical importance to estimate in vivo optical

properties as accurately as possible. Indeed, every organ region is associated with

its tissue optical parameters, its scattering and absorption coefficients, as seen, for

instance, in Table 1.1 for the mouse organs. These parameters can be determined

using optical tomographic approaches. Optical Tomography uses incoming visible or

near infrared light to probe a scattering object and reconstructs the distribution of in-

ternal optical properties such as one or both of scattering and absorption coefficients.

Note that the BLT problem is fundamentally different from the so-called diffuse opti-
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Figure 1.3.: mouse meshing [Wan+06b]

Organ Muscle Lung Heart Liver Kidney Stomach

µa [mm−1] 0.23 0.35 0.11 0.45 0.12 0.21

µ
′

s [mm−1] 1.00 2.30 1.10 2.00 1.20 1.70

Table 1.1.: Optical parameters for the mouse organ regions

cal tomography. Using the diffusion approximation, the optical tomography problem

is to find optical properties of an object from diffuse signals generated by a control-

lable optical simulation and measured on the external surface of the object. In other

words, in the BLT problem, the source is unknown while in the optical tomography

problem, the optical properties are to be determined.

Several units and data

Several data:

• Bioluminescence data acquisition takes from 5 to 10 minutes for one exposure

if the source is deep inside the mouse.

• Bioluminescence signal decays over about 1 hour.

• In most cases, we prefer 4 image-views of the mouse (front, back, two sides).

Several units:

• the photon fluency rate/density : Watts/mm2

• the bioluminescence source distribution density : Watts/mm3

• absorption and scattering coefficients: mm−1
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1. General Introduction

1.1.2. Mathematical modeling of the problem

a. Boltzmann Equation

The basic equation governing the light migration in a random medium Ω is the radia-

tive transfer equation (RTE), also known as Boltzmann equation, and is given by,

(
1
c
∂
∂t − ŝ · ∇x + µ(x)

)
u(x, ŝ, t) = µs(x)

∫

S2

Θ(ŝ · ŝ′) u(x, ŝ′, t) dŝ′ + q(x, ŝ, t)

for t > 0, x ∈ Ω
(1.1)

where u(x, ŝ, t) is the light flux in the direction ŝ ∈ S2, S2 being the unit sphere.

Moreover, c denotes the particle speed, µ = µa + µs with µa and µs being the ab-

sorption and scattering coefficients respectively, the scattering kernel Θ(ŝ, ŝ′) is the

normalized phase function (
∫

S2

Θ(ŝ · ŝ′)dŝ′ = 1) and q(x, ŝ, t) is the internal source.

The boundary and the initial conditions are defined by:

{
u(x, ŝ, t) = g−(x, ŝ, t) for t > 0, x ∈ Γ, ŝ ∈ S2, (ν(x) · ŝ ≤ 0)

u(x, ŝ, 0) = 0 for x ∈ Ω, ŝ ∈ S2
(1.2)

where g− represents the incoming flux and ν denotes the exterior normal at x on

Γ, the medium’s boundary. In a typical BLT, g− is identically null since the BLT

experiment is performed in a totally dark environment and no external photon travels

into Ω through its boundary Γ.

Given the internal source q and the incoming flux g−, the forward problem consists

in solving (1.1-1.2) in order to calculate the outgoing radiation denoted by g and

defined as, [Arr99; NW01],

g(x, ŝ, t) =

∫

S2

ν(x) · ŝu(x, ŝ, t) dŝ for t > 0, x ∈ Γ. (1.3)

Based upon the model’s geometry and its optical properties, the BLT study comes back

to an inverse source problem whose goal is to reconstruct the internal light source q

from the given data g− and the measurement of the outgoing radiation g.
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1.1. Medical Context and Modelization of the BLT Study

b. Diffusion Approximation

Solving BLT problem using RTE equation (1.1,1.2,1.3) is quite complex. Therefore, it

is commonly accepted to replace it by a diffusion approximation in a medium where

the light propagation is highly scattering and low absorptive. Indeed, since the mean-

free path of the particle of our subject study is between 0.005 and 0.01 mm in bio-

logical tissues, scattering phenomena dominates absorption ones. This enables us to

utilize a diffusion approximation. For more details concerning the diffusion approxi-

mation, we refer the reader to the work of [Arr99] and the references within.

In fact, let u and F be the average photon flux and the source in all directions defined

respectively as

u(x, t) =
1

4π

∫

S2

u(x, ŝ, t) dŝ

and

F (x, t) =
1

4π

∫

S2

q(x, ŝ, t) dŝ.

Then, the diffusion equation is given by





(
1
c
∂
∂t −∇ · σ(x)∇+ µa(x)

)
u(x, t) = F (x, t) for t > 0, x ∈ Ω

u(x, t) + 2σ(x)∂u∂ν (x, t) = g−(x, t) for t > 0, x ∈ Γ

u(x, 0) = 0 for x ∈ Ω

(1.4)

where

σ =
1

3(µa + µ′

s)

with µ
′

s being the effective scattering coefficient.

Hence, the forward problem becomes the problem: having as given σ, µa, F and the

boundary condition g−, our aim is to determine the external optical measures (1.3),

which using this approximation becomes

g(x, t) = −σ(x)∂u
∂ν

(x, t) t > 0, x ∈ Γ. (1.5)

Inversely, the goal of the BLT problem is to reconstruct the internal bioluminescent

source F given σ, µa, the observation of the Robin boundary condition g− and the

measurement of the flux g on the boundary Γ.
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1. General Introduction

c. Stationary case

Since the internal bioluminescence distribution induced by the reporter genes is rel-

atively stable, one can start by considering the stationary version of (1.4) as a model

for the BLT problem. Therefore, the BLT elliptic equation is represented as





−∇ · (σ(x)∇u(x)) + µau(x) = F (x) for x ∈ Ω

u(x) + 2σ(x)∂u∂ν (x) = g−(x) for x ∈ Γ,

(1.6)

where the current of the photons, measured on the body surface, is defined as:

g(x) = σ(x)
∂u

∂ν
(x) x ∈ Γ. (1.7)

Due to the existence of the measurement g and assuming the existence of the source

F , the boundary condition and the measurement can be added to get

u(x) = g−(x)− 2g(x) := f x ∈ Γ.

Remark 2. Normally, as mentioned before, in a typical BLT problem, one considers the

boundary condition g− to be identically null. However, here, in the stationary system

(1.6), we will consider the general case having g− 6= 0 which can be used, for example,

in the case of studying 2 mice simultaneously. Moreover, in here, for simplicity, we don’t

take into account the mismatch between the refractive indices n for Ω and n
′

for the

surrounding (for air n
′
= 1). However, if one wants to do so, the boundary condition

considered would be

g−(x) = u(x) + 2A(x;n, n
′
)σ(x)

∂u

∂ν
(x)

with

A(x;n, n
′
) =

1 +R(x)

1−R(x)

where the approximated value of R, [Sch+95], is R = −1.4399n−2 + 0.7099n−1 +

0.6681 + 0.0636n.

Remark 3. To reconstruct the optical properties σ and µa, a traditional optical tomog-

raphy is used, for a pre-BLT study, which utilizes a visible or near infrared light to estab-

lish the reconstruction of the internal optical properties. This pre-scanned study supposes
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that no source is present in the medium under study. The solution of this tomographic

study is represented by determination of σ and µa in the over-determined problem





−∇.(σ∇u) + µau = 0 in Ω

u = f on Γ

σ ∂u∂ν = g on Γ.

(1.8)

1.2. Problems considered in this thesis

The inverse source problems considered in this thesis are:

1. The stationary inverse source problem whose aim is to determine a source F in

the elliptic equation

∆u+ µu = F in Ω (1.9)

from a single Cauchy data

(f, g) := (u|Γ,
∂u

∂ν |Γ
)

prescribed on the boundary Γ of an open bounded domain Ω in R3.

2. The inverse source problem in the Helmholtz equation whose aim is to deter-

mine a source F in

∆u+ κ2u = F in Ω (1.10)

where Ω is an open bounded domain in R2, first, from a single Cauchy data at

a fixed wave number κ and then in a multi-frequencial case.

3. The non-stationary inverse source problem whose aim is to determine a time-

dependant source F in the parabolic equation

1

c

∂u

∂t
− σ∆u+ µu = F in Ω× (0, T ) (1.11)

where T is a positive real constant, from a single Cauchy data

(f, g) := (u|ΣT
,
∂u

∂ν |ΣT

)

prescribed on the boundary ΣT .
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1. General Introduction

The main type of sources considered here, whose motivation is clarified later, are

pointwise multipolar sources and sources of compact support within a finite number

of subdomains.
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CHAPTER 2

3D Stationary Inverse Source

Problem

If I were again beginning my studies, I would follow the

advice of Plato and start with mathematics.

(Galileo Galilei)

The object of this chapter is to study the inverse source problem related to (1.9)

in a three-dimensional space mainly in the case of stationary multipolar sources and

sources with small supports where we discuss the uniqueness and the stability issues

and propose a suitable identification method.

Section 2.1 is intended to introduce the main three-dimensional problem then states

the inverse problem we are interested in. Later, we present the different princi-

pal source identification techniques existing in the literature. Finally, we specify

the main type of sources considered in our study.

Section 2.2 is divided into two subsections where the first presents, for the partic-

ular case of monopoles and dipoles, the uniqueness issue for sources and il-

lustrates the stability estimates already established in [EBEH12] then discusses

an algebraic identification algorithm employed to reconstruct a combination of

monopolar and dipolar sources. The second subsection generalizes the alge-

braic identification algorithm for multipolar sources.
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2. 3D Stationary Inverse Source Problem

Section 2.3 introduces the uniqueness issue and the use of the algebraic algorithm

on sources with small supports and states a remark on using this algorithm on

general poles of meromorphic functions.

Section 2.4 is consecrated to introduce the numerical framework used.

Section 2.5 shows the numerical results for the reconstruction of dipoles, a combi-

nation of monopoles and dipoles and sources having small compact support.

Other effects as the number of sensors, the number of sources, the separability

between the sources, the coefficient µ and the noise effect are also studied and

analyzed numerically.

Section 2.6 presents the same numerical experiments performed in the previous sub-

section in the case of BLT and compares between this case and the Helmholtz

numerical results.
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2.1. Introduction and statement of the problem

2.1. Introduction and statement of the problem

In this chapter, we consider an inverse source problem whose aim is to reconstruct a

source F in the elliptic equation

∆u+ µu = F in Ω, (2.1)

from a single Cauchy data (f, g) := (u|Γ ,
∂u
∂ν |Γ) prescribed on a sufficiently regular

boundary Γ of an open bounded volume Ω ⊂ R3. Here, µ is a fixed real number

assumed to be known and ν denotes the outward unit normal to Γ.

To be more precise, if one defines, for all F , the following application in H
1
2 (Γ) ×

H− 1
2 (Γ)

Λ : F → (u|Γ ,
∂u

∂ν |Γ
),

then our inverse problem is formulated as follows:

Given (f, g) ∈ H
1
2 (Γ)×H− 1

2 (Γ), determine F such that Λ(F ) = (f, g). (2.2)

Physically, a boundary condition in direct problem is imposed and sensors on Γ permit

to measure the other quantity related to u so that the Cauchy data f = u|Γ and

g = ∂u
∂ν |Γ are obtained.

Note that the choice of the space H
1
2 (Γ)×H− 1

2 (Γ) will be justified later by the nature

of the sources considered.

Three questions are important in the resolution of an inverse problem for recovering

the source F :

1. Identifiability: Does the Cauchy pair (f, g) uniquely determine F? (i.e. the

injectivity of Λ)

2. Stability: What is the behavior of source term F with respect to the perturbation

on the Cauchy data denoted by (ǫf, ǫg)?

3. Reconstruction method: What are the reconstruction algorithms that could be

employed for determining F?

It is rather interesting to note that several applications are related to this particular in-

verse source problem. While the Bioluminescence Tomography [WLJ04] corresponds

to the case with µ negative, that of Helmholtz equation in an interior domain cor-

responds to taking µ positive, [EBN11a], and EEG/MEG problems [Jer+02; Jer+04;
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2. 3D Stationary Inverse Source Problem

MLL92] are also possible applications for the inverse source problem that we consider

here for µ identically null (Poisson equation) but they are not the only applications.

These inverse source problems have interested many to work on due to their wide

applications. Since there is a vast literature treating this type of problems, we will

just mention the work of few in this domain. In the three-dimensional space, the

general case where sources F ∈ L2(Ω) was used in [HCW06; Con+05]. Pointwise

source were considered by many authors as in [Bar+99; AK04; EBHD00a; EB05;

EBF10; EBN11a; CC09; CKC12; Nar08; Nar12], with different values of µ, using dif-

ferent approaches to recover the sources. One can also mention the work of Ikehata

in [Ike99] where the author has considered Helmholtz problem in a two-dimensional

space with F is either of the form χ
B
ρ(x) where B is an open subset of Ω , χB is

the characteristic function of B, or of the form div[ρ(x)χB(x)a], where a is a nonzero

constant vector. Under additional conditions the convex hull of B was reconstructed

iteratively using the Cauchy data. Related to our problem, let us mention the inter-

esting and relevant paper [KR13] on the reconstruction of extended sources for the

2D Helmholtz equation. See also references therein, notably [HR11]. Moreover, in

the case of the exterior Helmholtz problem, the paper [AKS09] treats, proposing an

iterative scheme, the reconstruction of monopolar sources having a known source

number.

2.1.1. Different Identification Techniques

To solve inverse source problems from boundary measurements, many theoretical and

numerical identification techniques were and can be employed for the process of the

identification of sources. For special defined source structures, there are sometimes

identification methods that are specially used in their cases. As the assumed structure

becomes less and less defined, the identification method needs to be more and more

general.

Method of meromorphic approximations

This method is used in order to reconstruct pointwise and small sized distributed

sources. The concept was first developed by Baratchart et al, in [Bar+99], to express

conductivity inhomogeneities in Electrical Impedance Tomography (EIT) problems

and then used for the purpose of source reconstruction in [AK04; Han08]. It was,

then, applied for the reconstruction of monopole and dipole sources in [Bar+05] over
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2D Poisson equation (case with µ = 0) then extended over 3D domains in [BLM+06].

It is based on the existence of a meromorphic function f in a ball surrounding the

point sources and on the analyticity of the solution u of the considered differential

equation over the domain except on the point sources. The inverse source problem is

by then transformed into the problem of finding the singularities of the meromorphic

function f and thus finding the desired sources. A remark on this approach applied

on our case of study is shown throughout this chapter.

Optimization methods

In the general case where the source F ∈ L2(Ω), optimization methods could be em-

ployed to recover the desired source term. These methods seek basically to minimize

the error between the observable data and the solution of the forward problem for

obtaining the source parameters. The most known optimization approach is the Least

Square Method whose objective is to minimize the quadratic error between the opti-

mal measures and those calculated using the direct problem. This iterative approach

was used in [HCW06; Con+05] employing techniques based on the finite element

resolution of the forward problem and on a permissible source region. Moreover, the

recent concept used initially by R. Kohn and M. Vogelius [KV85] can be employed to

reconstruct the needed source term. This approach seeks basically on minimizing the

energetic gap between the forward problem with Neumannn boundary condition and

that with Dirichlet boundary condition. This iterative method was used, for example,

in [EBF10], in order to recover the parameters of dipoles in the Poisson equation

(µ = 0).

Algebraic methods

These methods, which have been developed over recent years, consist in transform-

ing the inverse source problem into an infinity of algebraic relationships between the

source parameters and the observable data, obtained from Green’s formula. Com-

pared to iterative algorithms for inverse problems, the algebraic method has an ad-

vantage that it requires neither the initial solution nor the iterative computation of

the forward problem. From the practical viewpoint, the solution obtained by an al-

gebraic method can be used as an initial solution to the iterative algorithm, which is

quite important to prevent it from converging to local minima.

The algebraic method was originally developed by El Badia and H.Doung, [EBHD00a],
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2. 3D Stationary Inverse Source Problem

on monopolar or dipolar sources in the case of 2D and 3D Poisson equation because

of their interest in the inverse EEG/MEG problem. Their method consists in decom-

posing a Hankel-type matrix H into ADAt, where A is a Vandermonde matrix and D

is a diagonal matrix. Then, the number of projected point sources onto a complex-

plane are given by the rank of the Hankel matrix H built up from the Dirichlet and

the Neumann data and the projected point sources are the eigenvalues of a compan-

ion matrix. The latter work was revisited in [Nar08] considering a combination of

dipoles and quadrupoles and [CC09] with a combination of monopoles and dipoles

and recently in [CKC12; Nar12] considering sources of general order poles always on

the Poisson equation. The proposed algorithms in the previous papers are based on

the invertibility of a Hankel-type matrix H, using the calculation of its determinant.

It is rather important to say that the calculation is very long and tedious. Finally,

the approach adopted in [EB05; EBHD00a] was then extended by El Badia end Nara,

[EBN11a], for Helmholtz equation (µ > 0) but only in the case of monopoles.

2.1.2. Form of the sources

One of difficulties of the inverse source problem from boundary measurements con-

cerns the non-uniqueness of the source, for example, because of the possible existence

of non-radiating sources, see e.g. [BC77; DW73]. Thus, in the general case, a source

F cannot be identified from boundary measurements.

Although identification in the L2 sense can be obtained if the boundary data with

multiple coefficients µ (all of the coefficients on some open set) are given, as it was

shown in [AMR09], with a single µ, one can expect a well-posed inverse source prob-

lem only if a priori information is available. Usually this information takes the form

of certain conditions on admissible sources depending on the underlying physical

problem. When no a priori information is available, which is generally the case for

distributed sources that belongs, for example, to L2(Ω), one seeks a special solution

FH of the minimal L2 norm among all the solutions F .

And then every solution would be, as shown in [EBD98] for the Laplace equation and

in [WLJ04] for our studied equation, of the form

F = FH + L[m] ∀m ∈ H2
0 (Ω)

where L is, in here, the operator: ∆+ µ.

In the present chapter, two types of sources F will be considered . The first type is a
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2.1. Introduction and statement of the problem

source of multipolar pointwise form

F =

L∑

ℓ=1

Nℓ∑

j=1

Kℓ∑

α=0

λ
{α1,α2,α3}
j,ℓ

∂α

∂α1
x ∂α2

y ∂α3
z
δSℓ

j
(2.3)

where δS stands for the Dirac distribution at the point S, the quantities L, N ℓ, Kℓ are

integers, the coefficients λ
{α1,α2,α3}
j,ℓ are scalar non-null quantities and α = α1+α2+α3

with (α1, α2, α3) ∈ N3. The points Sℓj = (xℓj, y
ℓ
j , z

ℓ
j) ∈ Ω and the orders of derivation

Kℓ are, respectively, assumed to be mutually distinct . The second type is a source

having compact support within a finite number of subdomains, namely

F =

N∑

j=1

hjχDj
with Dj = Sj + εBj (2.4)

where, as seen in Figure 2.1, Bj ⊂ R3 is a bounded domain containing the origin,

the densities hj are non-null functions belonging to the space L1(Ω), the points Sj =

(xj, yj , zj) ∈ Ω and ε is a positive real number less than or equal to 1.

Figure 2.1.: Inverse source problem concept

As we have mentioned, compared to optimization iterative methods, the algebraic

method has an advantage that it doesn’t require the initial solution and the iterative

computation of the froward problem. Moreover, the approach developed in [CC09;

CKC12; Nar08; Nar12] can not be extended to the inverse problem that we consider

in this paper when µ 6= 0. Therefore, we propose, following the approach adopted in

[EB05; EBHD00a; EBN11a], a simple and elegant proof of the invertibility of a Hankel

matrix H built up from the Cauchy data (f, g) by establishing its decomposition into

ATAt, where T is a symmetrical tridiagonal matrix (see (2.21) and (2.34)). In this
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2. 3D Stationary Inverse Source Problem

sense, our work generalizes and extends previous works on this subject. The main

objective of this chapter is to establish such relationships and provide an algebraic

algorithm allowing us to solve them and consequently identify the source F when

given by (2.3) or (2.4).

2.2. Multipolar Sources

This section focuses on the inverse problem (2.2) when the source F is of the form

(2.3). Before studying the reconstruction of these sources, two main issues are es-

sential : their uniqueness and their stability. The uniqueness, in the case of monopo-

lar and dipolar sources, which corresponds to the framework studied in Subsection

2.2.1, is valid. However, in the general case, where the order of derivation Kℓ ≥ 2,

the uniqueness is not valid as shown in Subsection 2.2.2.

Therefore, for an easy reading of our identification algorithm and also for the identi-

fiability reason, it is reasonable to study these two cases separately and so, we divide

this section into two subsections. First, in Subsection 2.2.1, we consider the particu-

lar case where the source F is a finite linear combination of monopolar and dipolar

sources (Kℓ = 0, 1), namely

F =

N1∑

j=1

pjδS1
j
+

N2∑

j=1

qjδS2
j
+

N2∑

j=1

rj.∇δS2
j
, S1

j , S2
j ∈ Ω, (2.5)

where pj , qj and rj are, respectively, non-null scalar and vector quantities and S1
j and

S2
j are mutually distinct. Then, in Subsection 2.2.2, we consider the general case of

multipolar sources (2.3).

2.2.1. Monopolar and dipolar sources

In this subsection, we assume that the source F is a finite linear combination of

monopolar and dipolar point sources given by (2.5). This represents a particular case

of sources F satisfying (2.3) corresponding to L = 2, K1 = 0 and K2 = 1. Thus,

our goal is to identify the numbers N1, N2, the locations S1
j , S2

j , the intensities pj, qj

and the moments rj algebraically from the Cauchy data (f, g). Here, N1 and N2 are,

respectively, the number of monopolar and dipolar sources.
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2.2. Multipolar Sources

1. Uniqueness

A source F satisfying (2.5), which is a combination of monopoles and dipoles, can be

uniquely determined using a single Cauchy data as shown in the following theorem.

Theorem 1. Let F ℓ, ℓ = 1, 2 be two sources of the form (2.5) and let uℓ be the corre-

sponding solutions of (2.1) such that (f1, g1) = (f2, g2). Then,

N1,1 = N1,2 = N1, N2,1 = N2,2 = N2

and there exists a permutation π1 of the integers 1, ..., N1 and a permutation π2 of the

integers 1, ...., N2 such that

S
1,1
j = S

1,2
π1(j)

, S
2,1
k = S

2,2
π2(k)

, j = 1, ..., N1, k = 1, ..., N2

p1j = p2π1(j), q1k = q2π2(k), r1k = r2π2(k), j = 1, ..., N1, k = 1, ..., N2.

∗ ∗ ∗

Proof: Consider w = u2 − u1. Then, w is the solution of the problem





∆w + µw = F 2 − F 1 in Ω

w = 0 on Γ

∂w
∂ν = 0 on Γ.

Thus, using Holmgrem’s theorem, one gets

w = 0 in Ω \
⋃

j,ℓ

{S1,ℓ
j , S2,ℓ

j }.

Therefore, from the structure theorem [Sch43], w is a finite linear combination of

the dirac mass and its derivative at points S1,ℓ
j and S2,ℓ

j . Furthermore, since F i ∈
H−s, s > 5

2 , we have w ∈ H−ǫ, ǫ > 1
2 . Then, w is identically null over Ω. Therefore,

we have F 1 = F 2.

Let us begin by proving the uniqueness of the monopole parameters and that with

dipoles is done analogously. Indeed, suppose that N1,1 6= N2,1, for example, N1,1 >
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2. 3D Stationary Inverse Source Problem

N2,1. Then, there exists r ∈ {1, · · · , N1,1} such that

S1,1
r 6= S

1,2
j for all j = 1, · · · , N1,2.

Moreover, one has

S1,1
r 6= S

1,1
j , j = 1, · · · , N1,1, j 6= r.

Therefore, there exists a neighborhood of S1,1
r , V (S1,1

r ), that doesn’t contain any point

of the set
⋃

j,ℓ,j 6=r
{S1,ℓ

j , S2,ℓ
j }. Now, consider a positive continuous test function ϕ hav-

ing a compact support in V (S1,1
r ). Then, as F1 = F2, one has

< F1, ϕ >=< F2, ϕ > .

This leads to

p1r = 0

which contradicts the fact that the intensities are not null and therefore N1,1 =

N1,2 = N1. Then, the same idea is used to obtain the uniqueness of the locations

and the intensities of the sources. �

2. Stability

Formerly, the stability issue has been considered with the general form. We mention

that in [BLT11], the authors have studied the stability using a general form source but

with a variable frequency µ in the Helmholtz case (not fixed as supposed in here) . For

our case, the stability has been thoroughly studied in [EBEH12]. They distinguished

in their study between the case of the monopoles and that of dipoles. In here, we will

just present the theorems on the sources locations stability, that will then be verified

numerically in Section 2.4, without their proves consulting the interested readers to

refer to the corresponding article [EBEH12] for more details.

Theorem 2. [EBEH12] (for monopoles (L = 1, K1 = 0) locations)

If uℓ, ℓ = 1, 2 is the solution of (2.1) corresponding to two sources characterized by the

configuration (N1, λj ,S
1,ℓ
j ), then there exist three constants c, c1, c2 and a permutation
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2.2. Multipolar Sources

π of the integers 1, ..., N1 such that

max
1≤j≤N1

||S1,2
j − S

1,1
π(j)|| ≤ 2c

β2

̺

[√
|Γ|
c1

̺

β

[
||g2 − g1||L2(Γ) + c2||f2 − f1||L2(Γ)

]
] 1

N1

(2.6)

where (f ℓ, gℓ) = (uℓ|Γ ,
∂uℓ

∂ν |Γ),
√

|Γ| =
∫
Γ ds, β is the distance of the sources from the

boundary and ̺ is the separability coefficient between the sources defined consecutively

by:

β = diam(Ω)− α, where α = min
1≤j≤N1

d(Γ,Sj)

and

̺ = min(̺1, ̺2), where ̺1 = min
1≤j,n≤N1,j 6=n

||Pj−Pn|| and ̺2 = min
1≤j,n≤N1,j 6=n

||Qj−Qn||

with Pj and Qj are respectively the xy and yz projections of S1
j . The constant c depends

on µ and c1 and c2 can be written explicitly as

c1 = min
1≤j≤N1

|λj |

and

c2 =

√

2
(2N1 − 1)2

β2
+ κ2.

∗ ∗ ∗

Theorem 3. [EBEH12] (for dipoles (L = 1, K1 = 1) locations)

If uℓ, ℓ = 1, 2, is the solution of (2.1) corresponding to two sources characterized by the

configuration (N2,qj ,S
2,ℓ
j ), then there exists three constants c̃, c3, c4 and a permutation

π of the integers 1, ..., N2 such that

max
1≤j≤N2

||S2,2
j − S

2,1
π(j)|| ≤ 2c̃

β2

̺

[√
|Γ|
c3

̺

β

[
||g2 − g1||L2(Γ) + c4||f2 − f1||L2(Γ)

]
] 1

2N2

(2.7)

having the same notations as (2.6) replacing S1
j by S2

j . The constant c̃ depends on µ and

c3 and c4 can be written explicitly as

c3 = min
1≤j≤N2

(
||qj,x + iqj,y||, ||qj,y + iqj,z||

)
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2. 3D Stationary Inverse Source Problem

and

c4 =

√

2
(4N2 − 1)2

β2
+ κ2.

∗ ∗ ∗
This proves that the error in the localization reconstruction depends not only on the

number of monopoles and dipoles but also on many other factors as the separability

between the sources, the distance from the boundary and also the coefficient µ. These

effects are studied and verified numerically in Section 2.4.

Remark 4. We note that in [EBEH12] the authors considered only the case with µ ≥ 0,

where (2.6,2.7) were obtained with c = c̃ = 1. However, in the case where µ < 0, one

obtains in the same manner the theoretical stability estimates mentioned above but with

positive constants c and c̃ proportional to eµ.

3. Identification Method

In what follows, we will issue a full algebraic algorithm allowing us to identify the

source term (2.5).

Indeed, first, we introduce the following space

Hµ = {v ∈ H1(Ω) : ∆v + µv = 0} (2.8)

and define the operator R as follows

R(v, f, g) =

∫

Γ

(
gv − f

∂v

∂ν

)
ds for all v ∈ Hµ. (2.9)

Multiplying equation (2.1)-(2.5) by v, an element of Hµ, integrating by parts and

using Green’s formula lead to

R(v, f, g) =

N1∑

j=1

pjv(S
1
j ) +

N2∑

j=1

qjv(S
2
j)−

N2∑

j=1

rj.∇v(S2
j ) for all v ∈ Hµ. (2.10)

Now, the question is how to choose the special functions v ∈ Hµ that would allow us
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2.2. Multipolar Sources

to determine

N1, N2, pj, qj, rj = (rj,1, rj,2, rj,3), S1
j = (x1j , y

1
j , z

1
j ), S2

j = (x2j , y
2
j , z

2
j ).

In fact, observe that, for all n ∈ N, the functions

van(x, y, z) = (x+ iy)nekz with k =

{
i
√
µ if µ ≥ 0

√−µ if µ < 0
(2.11)

belong to the space Hµ.

Therefore, replacing v by van in formula (2.10), we obtain, for all n ∈ N, the following

relationships, which are behind our identification algorithm:

R(van, f, g) =

N1∑

j=1

pje
kz1

j (P 1,a
j )n +

N2∑

j=1

(qj − krj,3)e
kz2

j (P 2,a
j )n − n

N2∑

j=1

(rj,1 + irj,2)e
kz2

j (P 2,a
j )n−1 (2.12)

where P 1,a
j = x1j + iy1j and P 2,a

j = x2j + iy2j are the projected points, respectively, of

S1
j and S2

j onto the xy−complex plane. For simplicity, we rewrite the relationships

(2.12) as

αan =

N1∑

j=1

λaj (P
1,a
j )n +

N2∑

j=1

νaj (P
2,a
j )n + n

N2∑

j=1

µaj (P
2,a
j )n−1 ∀n ∈ N (2.13)

with

αan = R(van, f, g), λaj = pje
kz1j , νaj = (qj−krj,3)ekz

2
j and µaj = −(rj,1+irj,2)e

kz2j .

Remark 5. We note that if µ 6= 0 even in the absence of monopolar sources, the dipolar

sources produce algebraic equations similar to those in the case of a linear combination

of monopolar and dipolar sources.

Before solving the equations (2.13), we need to know if the projections P 1,a
j , P 2,a

j

are mutually distinct and if µaj 6= 0, which is necessary in order to use the algebraic

method proposed below. Indeed, one can remark that there is only a finite number of

planes containing the origin such that at least two points among S1
j , S2

j are projected

onto the same point on this plane and at least one moment rj is projected onto 0
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on the same plane. So, if a basis is chosen randomly, one is almost sure that the

points S1
j , S2

j are projected onto distinct points and rj is not projected onto 0 on

every coordinate plane. Therefore, without loss of generality (see also Remark 8), we

assume that:

(H) The projections onto the xy, yz and xz-planes of the points S1
j , S2

j and the

moments rj are respectively mutually distinct and not null.

Before presenting our identification algorithm we introduce, for simplicity, some no-

tations and definitions that are used throughout this subsection.

First, denote by P 1,b
j , P 2,b

j and P 1,c
j , P 2,c

j , the projections of S1
j , S2

j onto the yz and

xz-complex planes respectively. Then, using, in (2.10), the following test functions

vbn = (y + iz)nekx and vcn = (x+ iz)neky, (2.14)

elements of Hµ, one has, as in (2.13), the following algebraic equations

αbn =

N1∑

j=1

λbj(P
1,b
j )n +

N2∑

j=1

νbj (P
2,b
j )n + n

N2∑

j=1

µbj(P
2,b
j )n−1 ∀n ∈ N (2.15)

and

αcn =

N1∑

j=1

λcj(P
1,c
j )n +

N2∑

j=1

νcj (P
2,c
j )n + n

N2∑

j=1

µcj(P
2,c
j )n−1 ∀n ∈ N (2.16)

where we note

αbn = R(vbn, f, g), λbj = pje
kx1j , νbj = (qj − krj,1)e

kx2j , µbj = −(rj,2 + irj,3)e
kx2j ,

and

αcn = R(vcn, f, g), λcj = pje
ky1j , νcj = (qj − krj,2)e

ky2j , µcj = −(rj,1 + irj,3)e
ky2j .

Finally, bringing together the three equations (2.13), (2.15) and (2.16), we can write
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αrn =
N1∑

j=1

λrj(P
1,r
j )n +

N2∑

j=1

νrj (P
2,r
j )n + n

N2∑

j=1

µrj(P
2,r
j )n−1 for r = a, b, c and n ∈ N. (2.17)

Remark 6. Let us note that in equations (2.17), the terms with a power (n − 1) are

assumed to be zero in the case n = 0.

Therefore, the non-linear algebraic system (2.17) can be solved in order to determine

• the number of monopoles N1

• the number of dipoles N2

• the projections P ℓ,rj , ℓ = 1, 2

• the coefficients λrj , ν
r
j and µrj .

To do so, first, assume that we know an upper bound J̄ for the number

J = N1 + 2N2.

Then, define, for all n ∈ N, the complex vectors

ξrn = (αrn, · · · , αrJ̄+n−1)
t, Λr = (λr1, · · · , λrN1 , ν

r
1 , · · · , νrN2 , µ

r
1, · · · , µrN2)

t.

Now, consider, for all n ∈ N, the complex matrices Arn of size J̄ × J

Arn = (V r
n,1 V r

n,2) (2.18)

where V r
n,1 are the following J̄ ×N1 Vandermonde matrices

V r
n,1 =




(P 1,r
1 )n · · · (P 1,r

N1 )
n

(P 1,r
1 )n+1 · · · (P 1,r

N1 )
n+1

...
. . .

...

(P 1,r
1 )J̄+n−1 · · · (P 1,r

N1 )
J̄+n−1




and V r
n,2 are the confluent J̄ × 2N2 Vandermonde matrices

31



2. 3D Stationary Inverse Source Problem

V r
n,2 =




(P 2,r
1 )n · · · (P 2,r

N2 )
n n(P 2,r

1 )n−1 · · · n(P 2,r

N2 )
n−1

(P 2,r
1 )n+1 · · · (P 2,r

N2 )n+1 (n+ 1)(P 2,r
1 )n · · · (n+ 1)(P 2,r

N2 )n

...
. . .

...
...

. . .
...

(P 2,r
1 )J̄+n−1 · · · (P 2,r

N2 )
J̄+n−1 (J̄ + n− 1)(P 2,r

1 )J̄+n−2 · · · (J̄ + n− 1)(P 2,r

N2 )
J̄+n−2




,

introduce the Hankel matrix

Hr
J̄ =




αr0 αr1 · · · αr
J̄−1

αr1 αr2 · · · αr
J̄

...
...

...
...

αr
J̄−1

αr
J̄

· · · αr
2J̄−2



, (2.19)

and the block tridiagonal matrix

Īr =




λr1 · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · λrN1 0 · · · 0 0 · · · 0

0 · · · 0 νr1 · · · 0 µr1 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · νrN2 0 · · · µrN2

0 · · · 0 µr1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · µrN2 0 · · · 0




. (2.20)

Therefore, the identification process is attained in two steps.

1. Determination of the number of sources:

The first step consists in determining the number of sources. This is object of the

following theorem.

Theorem 4. Let Hr
J̄

be the Hankel matrix defined in (2.19) where J̄ is a known upper
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bound of J . Under hypothesis (H), we have

rank
(
Hr
J̄

)
= N1 + 2N2.

∗ ∗ ∗
Before proving Theorem 4, we start by establishing the following interesting decom-

position lemma.

Lemma 1. Let Hr
J̄

be the Hankel matrix defined in (2.19), Īr the block tridiagonal

matrix defined in (2.20), Ar0 the Vandermonde matrix defined in (2.18) and (Ar0)
t its

matrix transpose. Then,

Hr
J̄ = Ar0Ī

r(Ar0)
t. (2.21)

Proof: First, using the Vandermonde matrices (2.18), one can rewrite the algebraic

formulae (2.17) in the matrix form as

ξrn = ArnΛ
r, ∀n ∈ N.

On the other hand, if we denote by T r the block upper triangular complex matrix

T r =




P 1,r
1 · · · 0 0 · · · 0 0 · · · 0

...
. . .

...
...

. . .
...

...
. . .

...

0 · · · P 1,r

N1 0 · · · 0 0 · · · 0

0 · · · 0 P 2,r
1 · · · 0 1 · · · 0

...
. . .

...
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · P 2,r

N2 0 · · · 1

0 · · · 0 0 · · · 0 P 2,r
1 · · · 0

...
. . .

...
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 0 0 · · · P 2,r

N2




(2.22)

one gets, for all n ∈ N,

Arn+1 = ArnT
r = Ar0(T

r)n+1

and therefore

33



2. 3D Stationary Inverse Source Problem

ξrn = Ar0(T
r)nΛr ∀n ∈ N. (2.23)

Then, by using (2.23), one can rewrite the Hankel matrix Hr
J̄

as,

Hr
J̄ = Ar0[Λ

r, T rΛr, ..., (T r)J̄−1Λr]. (2.24)

Now, it remains to prove that

[Λr, T rΛr, ..., (T r)J̄−1Λr] = Īr(Ar0)
t.

Indeed, first, Īr(Ar0)
t =




λr1 · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · λrN1 0 · · · 0 0 · · · 0

0 · · · 0 νr1 · · · 0 µr1 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · νrN2 0 · · · µrN2

0 · · · 0 µr1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · µrN2 0 · · · 0







1 P 1,r
1 · · · (P 1,r

1 )J̄−1

...
... · · · ...

1 P 1,r
N1 · · · (P 1,r

N1 )
J̄−1

1 P 2,r
1 · · · (P 2,r

1 )J̄−1

...
... · · · ...

1 P 2,r
N2 · · · (P 2,r

N2 )
J̄−1

0 1 · · · (J̄ − 1)(P 2,r
1 )J̄−2

...
... · · · ...

0 1 · · · (J̄ − 1)(P 2,r
N2 )

J̄−2



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2.2. Multipolar Sources

=




λr1 λr1P
1,r
1 · · · λr1(P

1,r
1 )J̄−1

...
... · · · ...

λrN1 λrN1P
1,r
N1 · · · λrN1(P

1,r
N1 )

J̄−1

νr1 νr1P
2,r
1 + µr1 · · · νr1(P

2,r
1 )J̄−1 + (J̄ − 1)µr1(P

2,r
1 )J̄−2

...
... · · · ...

νrN2 νrN2P
2,r
N2 + µrN2 · · · νrN2(P

2,r
N2 )

J̄−1 + (J̄ − 1)µrN2(P
2,r
N2 )

J̄−2

µr1 µr1P
2,r
1 · · · µr1(P

2,r
1 )J̄−1

...
... · · · ...

µrN2 µrN2P
2,r
N2 · · · µrN2(P

2,r
N2 )

J̄−1




.

On the other hand, we can see that

(T r)n =




(P 1,r
1 )n · · · 0 0 · · · 0 0 · · · 0

...
. . .

...
...

. . .
...

...
. . .

...

0 · · · (P 1,r

N1 )n 0 · · · 0 0 · · · 0

0 · · · 0 (P 2,r
1 )n · · · 0 n(P 2,r

1 )n−1 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · (P 2,r

N2 )
n 0 · · · n(P 2,r

N2 )
n−1

0 · · · 0 0 · · · 0 (P 2,r
1 )n · · · 0

...
. . .

...
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 0 0 · · · (P 2,r

N2 )n




,

and then for all n = 1, 2, · · · , J̄ − 1, one has
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2. 3D Stationary Inverse Source Problem

(T r)nΛr =




λr1(P
1,r
1 )n

...

λrN1(P
1,r
N1 )

n

νr1(P
2,r
1 )n + nµr1(P

2,r
1 )n−1

...

νrN2(P
2,r
N2 )

n + nµrN2(P
2,r
N2 )

n−1

µr1(P
1,r
N1 )

n

...

µrN2(P
2,r
N2 )

n




.

So, assembling the vectors (T r)nΛr, n = 1, · · · , J̄ − 1, we get

[Λr, T rΛr, · · · , (T r)J̄−1Λr] = Īr(Ar0)
t.

This ends the proof of Lemma 1. �

Remark 7. It is easy to see that

• Īr is invertible if and only if λrj 6= 0, j = 1, · · · , N1 and µrj 6= 0, j = 1, · · · , N2.

• rank(Ar0)
t = J if and only if the projections P 2,r

j , j = 1, · · · , N1 and P 2,r
j , j =

1, · · · , N2 are mutually distinct.

Proof of Theorem 4. From (H) and Remark 7, we can check that Īr is a nonsingular

matrix and rank(Ar0)
t = J . This implies that Ar0Ī

r is surjective and therefore we have

rank(Ar0Ī
r(Ar0)

t) = rank(Ar0)
t, which leads to the desired result.

2. Reconstruction of the projections P
1,r
j and P

2,r
j

The second step consists in determining the projections onto the xy-, yz- and xz-

complex planes of the monopolar and dipolar sources. Since, as we have shown, the

rank ofHr
J̄

is J , we replace in the quantities defined above J̄ by J . Then, from (2.23),
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2.2. Multipolar Sources

we can easily derive the following relations:

ξrn+1 = Ar0(T
r)n+1Λr (2.25)

= Ar0(T
r)(Ar0)

−1Ar0(T
r)nΛr. (2.26)

Then, we get

ξrn+1 = Brξrn, ∀n ∈ N

where we have set

Br = Ar0T
r(Ar0)

−1. (2.27)

Here, the matrixAr0 is invertible ((Ar0)
−1 exists) since the projected points {P 1,r

j , P 2,r
j }

are assumed distinct (respecting H). Moreover, since rank(Hr
J) = J , the family

(ξrn)n=0,...,J−1 forms a basis of CJ and consequently the J × J complex matrix Br

is given explicitly by

Br =




0 1 · · · 0 0

0 0 1 · · · 0
...

...
. . .

. . . 0
...

...
. . .

. . . 1

cr0 cr1 · · · · · · crJ−1




(2.28)

where the vector Cr = (cr0, ..., c
r
J−1)

t is obtained by solving the linear system

Hr
JC

r = ξrJ .

Thus, the projections {P 1,r
j , P 2,r

j } are given by the following theorem.

Theorem 5. Let Br be the companion matrix defined in (2.28). Assume that the hy-

pothesis (H) is satisfied, then

1. Br admits N1 simple eigenvalues and N2 double eigenvalues.

2. The N1 simple eigenvalues are the projections P 1,r
j of the monopolar sources and

the N2 double eigenvalues are the projections P 2,r
j of the dipolar sources.

∗ ∗ ∗

Proof: The proof of this theorem is a direct consequence from (2.22) and (2.27). �
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2. 3D Stationary Inverse Source Problem

3. Determination of the vectors Λ
r

To determine λrj , ν
r
j and µrj , it is sufficient to solve the linear systems

Ar0Λ
r = ξr0,

which allow us to obtain the coefficients pj , qj, rj, as suggested in the algorithm below.

Theorems 4 and 5 suggest that if one knows an upper bound J̄ for the number J =

N1+2N2, one can establish an algorithm to identify, in a unique way, the coefficients

N1, N2, pj, qj, rj , S1
j and S2

j .

4.Algebraic algorithm

Step 1. Using the given Cauchy data (f, g) on the boundary Γ, compute α0, α1, · · · , α2J̄−1.

Then, the number J = N1 + 2N2 can be determined by the rank of one of the three

Hankel matrices Hr
J̄
, estimated using the Singular Value Decomposition method with

an appropriate threshold, following [Han98], see Section 2.4 for more details con-

cerning the choice of the threshold.

Step 2. Solve the linear system Hr
JC

r = ξrJ . The projection points P 1,r
j of monopolar

sources are obtained as the N1 simple eigenvalues of the matrix Br and the projec-

tion points P 2,r
j of dipolar sources are obtained as the N2 double eigenvalues of the

same matrix.

Step 3. The three vectors Λr are obtained by solving the systems Ar0Λ
r = ξr0, which

gives λrj , ν
r
j and µrj .

Step 4. To determine the locations S1
j , S2

j , it remains to find zℓj , for ℓ = 1, 2. To do

this, three cases may occur:

a. Case µ = 0. In this case, zℓj can be determined directly using some adapted test

functions of the form v(x, y, z) = zφ(x+ iy), in the same way as it was done in

[EB05, Section 5.1.1].

b. Case µ < 0. We replace in (2.12) the test function van by v̄an(x, y, z) = (x +

iy)ne−kz. Then, solving these algebraic equations we can identify, using Step 3,
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2.2. Multipolar Sources

the following quantities

λ̄aj = pje
−kz1j and µ̄aj = −(rj,1 + irj,2)e

−kz2j .

This allows us to determine z1j and z2j using λaj , λ̄
a
j , µ

a
j , µ̄

a
j , namely,

z1j =
1

2k
ln

(
λaj

λ̄aj

)
, z2j =

1

2k
ln

(
µaj
µ̄aj

)
.

c. Case µ > 0. First, we set

P 1,a
j = x1,aj + iy1,aj , P 1,b

j = y1,bj + iz1,bj , P 1,c
j = x1,cj + iz1,cj ,

P 2,a
j = x2,aj + iy2,aj , P 2,b

j = y2,bj + iz2,bj , P 2,c
j = x2,cj + iz2,cj .

Then, we proceed as in the previous case, by replacing in (2.12) and (2.16)

the test functions van and vcn by v̄an(x, y, z) = (x + iy)ne−kz and v̄cn(x, y, z) =

(x+ iz)ne−ky respectively. We identify zℓ,aj and yℓ,cj (modulo 2π), namely,

z1,aj =
1

2k
log

(
λaj

λ̄aj

)
+
imπ

k
, z2,aj =

1

2k
log

(
µaj
µ̄aj

)
+
imπ

k
∀m ∈ N

y1,cj =
1

2k
log

(
λcj

λ̄cj

)
+
imπ

k
, y2,cj =

1

2k
log

(
µcj
µ̄cj

)
+
imπ

k
∀m ∈ N.

Now, for ℓ = 1, · · · , N2, we denote

Jℓ =

{
j = 1, · · · , N2 such that y2,bj = y2,aℓ and z2,bj =

1

2k
log

(
µaℓ
µ̄aℓ

)
+
imπ

k

}
.

Assuming that the hypothesis (H) is satisfied, we are almost sure that there will

exist only one index, noted σℓ, satisfying the following condition

z2,cσℓ = z2,bj , x2,cσℓ = x2,aℓ and
1

2k
log

(
µcσℓ
µ̄cσℓ

)
+
imπ

k
= y2,aℓ ∀j ∈ Jℓ,
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2. 3D Stationary Inverse Source Problem

and therefore we take

S2
ℓ = (x2,aℓ , y2,aℓ , z2,cσℓ ), ℓ = 1, · · · , N2.

We repeat the same argument to determine S1
ℓ , for ℓ = 1, · · · , N1.

Step 5. Once the locations of the point sources are identified, the intensities pj can

be determined directly from λaj , the moments rj can be determined from µaj , µ
b
j and

consequently qj are determined from νaj .

Remark 8.

1. In the case where k is non-zero and qℓ = 0, the moments rℓ can be determined

directly from µaℓ and νaℓ .

2. In the latter algebraic algorithm, we have assumed that, the projected points onto

xy-, xz- and yz-complex planes of the point sources S1
j , S2

j are distinct and also

that the projected points of the moments rj are nonzero. Thus, this enables us

to identify the points S1
j and S2

j through their projection points. However, if by

bad luck one of the projected points onto xy-, xz- or yz-complex planes coincides

with another one, we can do the same thing by choosing two other planes, where

the projected points are distinct. This is possible, since, for all orthonormal basis

(~u,~v, ~u ∧ ~v), the following function

vn(S) = (~u.S + i~v.S)nek(~u∧~v).S with S = (x, y, z)

remains in the space Hµ, for all n ∈ N. Let us mention that, to reach a bet-

ter identification of point sources, it is desirable to project the point sources on

a plane (~u,~v) where the absolute gap between the singular values of the cor-

responding Hankel matrix is the largest possible. In practice, to attain such a

plane, we can assume, for example, that ~u = (cos(φ) cos(θ), cos(φ) sin(θ), sin(φ))

and ~v = (sin(φ) cos(θ), sin(φ) sin(θ),− cos(φ)) and then take the pair (φ, θ) ∈
[0, π2 ]× [0, 2π] that realizes the largest gap between the singular values of the Han-

kel matrix. This issue is discussed numerically in Section 2.4.

2.2.2. General multipolar sources

In this subsection, we consider the source F of the form (2.3) for which we discuss

its non-uniqueness giving a suitable counterexample then we present a compatible
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2.2. Multipolar Sources

algebraic algorithm that generalizes the one presented in the previous subsection.

1. Non-uniqueness

As mentioned before, in the general case whereKℓ ≥ 2, the uniqueness of the sources

of form (2.3) is not valid. In fact, it is easy to see that the source F = µδS +∆δS can

not be uniquely determined from a single Cauchy data.

2. Identification Method

The identification method used for multipolar sources reconstruction is a generaliza-

tion of the one used for monopolar and dipolar sources. Indeed, following the same

procedure as in Subsection 2.2.1, multiplying equation (2.1)-(2.3) by van defined in

(2.11), integrating by parts and using Green’s formula lead to,

αan =

L∑

ℓ=1

Nℓ∑

j=1

Kℓ∑

α=0

η
{α1,α2,α3}
j,ℓ (α1 + α2)!( n

α1+α2
)(P

ℓ,a
j )n−(α1+α2) ∀n ∈ N

where

αan = R(van, f, g), R is the operator defined in (2.9),

(
k

j

)
=

{
k!

j!(k−j)! if k ≥ j

0 if k < j
, P ℓ,aj = xℓj + iyℓj, α = α1 + α2 + α3

and

η
{α1,α2,α3}
j,ℓ = (−1)α(i)α2(k)α3λ

{α1,α2,α3}
j,ℓ ekz

ℓ
j .

Therefore,

αan =
L∑

ℓ=1

Nℓ∑

j=1

Kℓ∑

β=0




∑

α1+α2=β

Kℓ∑

α=β

η
{α1,α2,α−β}
j,ℓ


β!(nβ)(P

ℓ,a
j )n−β ∀n ∈ N

where β = α1 + α2. This gives the following relationships

αan =
L∑

ℓ=1

Nℓ∑

j=1

Kℓ∑

β=0

νβ,aj,ℓ (
n
β)(P

ℓ,a
j )n−β ∀n ∈ N (2.29)
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2. 3D Stationary Inverse Source Problem

where, for all ℓ = 1, · · · , L and β = 0, · · · ,Kℓ, we note

νβ,aj,ℓ = β!
∑

α1+α2=β

Kℓ∑

α=β

η
{α1,α2,α−β}
j,ℓ .

Moreover, multiplying equation (2.1)-(2.3) by the following test functions

vbn = (y + iz)nekx and vcn = (x+ iz)neky,

we get, as in (2.29), the following relationships

αrn =

L∑

ℓ=1

Nℓ∑

j=1

Kℓ∑

β=0

νβ,rj,ℓ (
n
β)(P

ℓ,r
j )n−β for r = a, b, c (2.30)

where P ℓ,bj and P ℓ,cj are the projections of points Sℓj onto the yz- and xz-complex

planes respectively

νβ,bj,ℓ = β!
∑

α2+α3=β

Kℓ∑

α=β

ζ
{α−β,α2,α3}
j,ℓ

with

ζ
{α1,α2,α3}
j,ℓ = (−1)α(i)α3(k)α1λ

{α1,α2,α3}
j,ℓ ekx

ℓ
j ,

νβ,cj,ℓ = β!
∑

α1+α3=β

Kℓ∑

α=β

τ
{α1,α−β,α3}
j,ℓ

with

τ
{α1,α2,α3}
j,ℓ = (−1)α(i)α3(k)α2λ

{α1,α2,α3}
j,ℓ eky

ℓ
j .

The main objective of the following consists in establishing a general algebraic method

for solving equations (2.30), allowing us to generalize Theorem 4 and Theorem 5.

Indeed, assume that we know an upper bound J̄ for the number

J =

L∑

ℓ=1

(Kℓ + 1)N ℓ.

Define the complex vectors

ξrn = (αrn, · · · , αrJ̄+n−1)
t, Λr = (ν̄r1 , ..., ν̄

r
L)
t
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where, for all ℓ = 1, · · · , L, we have

ν̄rℓ = (ν̄0,rℓ , ..., ν̄K
ℓ,r

ℓ ) with ν̄β,rℓ = (νβ,r1,ℓ , · · · , ν
β,r
Nℓ,ℓ

) for all β = 0, · · · ,Kℓ,

and consider, for all n ∈ N, the complex matrices Arn, of size J̄ × J

Arn = (V r
n,1, · · · , V r

n,L) (2.31)

with

V r
n,ℓ = (U0,r

n,ℓ , · · · , U
Kℓ,r
n,ℓ )

where, for β = 0, · · · ,Kℓ, Uβ,rn,ℓ are the confluent J̄ ×N ℓ Vandermonde matrices

Uβn,ℓ =




(nβ)(P
ℓ,r
1 )n−β · · · (nβ)(P

ℓ,r
Nℓ )

n−β

(n+1
β )(P

ℓ,r
1 )n−j+1 · · · (n+1

β )(P
ℓ,r
Nℓ )

n−j+1

...
. . .

...

(J̄+n−1
β )(P

ℓ,r
1 )n−β+J̄−1 · · · (J̄+n−1

β )(P
ℓ,r
Nℓ )

n−β+J̄−1




.

Let us, now, introduce, the Hankel matrix

Hr
J̄ =




αr0 αr1 · · · αr
J̄−1

αr1 αr2 · · · αr
J̄

...
...

...
...

αr
J̄−1

αr
J̄

· · · αr
2J̄−2




(2.32)

and the following multi-diagonal matrices

Īrℓ =




ν0,rℓ ν1,rℓ · · · νK
ℓ,r

ℓ
...

... . .
. ...

νK
ℓ−1,r

ℓ νK
ℓ,r

ℓ · · · 0

νK
ℓ,r

ℓ 0 · · · 0




for ℓ = 1, · · · , L (2.33)

where

νβ,rℓ = diag(νβ,r1,ℓ , · · · , ν
β,r
Nℓ,ℓ

).
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2. 3D Stationary Inverse Source Problem

As in the previous subsection, we propose an identification processes in three steps.

1. Determination of the number of sources

The first step consists in determining the number of sources by means of the following

theorem.

Theorem 6. Let Hr
J̄

be the Hankel matrix defined in (2.32) where J̄ is a known upper

bound of J . Assume that, for r = a, b, c, the projected points P ℓ,rj of Sℓj are distinct, then,

we have

rank
(
Hr
J̄

)
=

L∑

ℓ=1

(Kℓ + 1)N ℓ if and only if νK
ℓ,r

j,ℓ 6= 0 for j = 1, ..., N ℓ and ℓ = 1, ..., L.

∗ ∗ ∗
As before, we need the following decomposition lemma to prove this theorem.

Lemma 2. LetHr
J̄

be the Hankel matrix defined in (2.32), Īrℓ the multi-diagonal matrix

defined in (2.33), Ar0 the Vandermonde matrix defined in (2.31) and (Ar0)
t its matrix

transpose. Then,

Hr
J̄ = Ar0Ī

r(Ar0)
t. (2.34)

Proof: The proof is similar to that of Lemma 1. Indeed, first, from (2.31), we begin

by rewriting the algebraic formulae (2.30) in a matrix form as

ξrn = ArnΛ
r, ∀n ∈ N. (2.35)

Furthermore, if we denote, for ℓ = 1, · · · , L, by T rℓ the block upper triangular complex

matrix

T rℓ =




Dr
Pℓ

I · · · 0

0
. . .

. . .
...

...
. . . Dr

Pℓ
I

0 · · · 0 Dr
Pℓ




(2.36)

with

Dr
Pℓ

= diag(P ℓ,r1 , · · · , P ℓ,r
Nℓ ) and I = diag(1, · · · , 1),
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2.2. Multipolar Sources

one gets, using the Pascal formula ( n
j−1) + (nj) = (n+1

j ),

V r
n+1,ℓ = V r

n,ℓT
r
ℓ , ∀n ∈ N.

From the definition of Arn, we can check that for

T r = diag(T r1 , · · · , T rL) (2.37)

we have

Arn+1 = ArnT
r = Ar0(T

r)n+1, ∀n ∈ N

and therefore, from (2.35), one gets

ξrn = Ar0(T
r)nΛr, ∀n ∈ N. (2.38)

Now, thanks to (2.38), one can verify by a simple calculation the following relation-

ship

Hr
J̄ = Ar0[Λ

r, T rΛr, ..., (T r)J̄−1Λr] = Ar0Ī
r(Ar0)

t

which ends the proof of Lemma 2. �

Remark 9. It is easy to see that

• Īrℓ is invertible if and only if νK
ℓ,r

j,ℓ 6= 0 for j = 1, ..., N ℓ and ℓ = 1, ..., L.

• rank(Arn)
t = J if and only if the projections P ℓ,rj , j = 1, · · · , N ℓ are mutually

distinct.

Proof of Theorem 6. It is similar to the proof of Theorem 4.

2. Reconstruction of the projections P
ℓ,r
j

The second step consists in determining the projections onto the xy-, xz- and yz-

complex planes of the points sources.

Henceforth, we replace J̄ by J in the quantities defined above. Thus, from (2.38),
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2. 3D Stationary Inverse Source Problem

we can easily derive that

ξrn+1 = Brξrn, ∀n ∈ N

where we have set

Br = Ar0T
r(Ar0)

−1. (2.39)

Here, the matrix Ar0 is invertible since the projected points P ℓ,rj are assumed distinct.

Moreover, since rank(Hr
J) = J , the family (ξrn)n=0,...,J−1 forms a basis of CJ , so the

J × J complex matrix Br is given explicitly by

Br =




0 1 · · · 0 0

0 0 1 · · · 0
...

...
. . .

. . . 0
...

...
. . .

. . . 1

cr0 cr1 · · · · · · crJ−1




(2.40)

where the vector Cr = (cr0, ..., c
r
J−1)

t is obtained by solving the linear system

Hr
JC

r = ξrJ .

Thus, the projection points P ℓ,rj are given by the following theorem, which general-

izes theorem 5.

Theorem 7. Let Br, for r = a, b, c, be the companion matrices defined in (2.40). As-

sume that the projected points P ℓ,rj of Sℓj are distinct and that νK
ℓ,r

j,ℓ 6= 0 for j = 1, ..., N ℓ

and ℓ = 1, ..., L . Then,

1. Br admits N ℓ eigenvalues of multiplicity Kℓ + 1 for ℓ = 1, ..., L.

2. The N ℓ eigenvalues of multiplicity Kℓ + 1 are the projections P ℓ,rj of the point

sources Sℓj .

∗ ∗ ∗

Proof: The proof of this theorem follows from (2.36), (2.37) and (2.39). �
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2.3. Some distributed sources

3. Determination of the vectors Λ
r

In order to determine νβ,rj,ℓ , it is sufficient, to solve the linear systems

Ar0Λ
r = ξr0.

Thanks to theorems 6, 7 and using Step 4 detailed in the previous subsection, one

can identify the locations Sℓj .

Remark 10.

1. Under conditions νK
ℓ,r

j,ℓ 6= 0, the projections of source locations are uniquely deter-

mined as well as νβ,rj,ℓ but not necessarily the intensities λ
{α1,α2,α3}
j,ℓ .

2. The hypothesis νK
ℓ,r

j,ℓ 6= 0, in Theorem 6 and Theorem 7 is not satisfied for the

source example F = µδS +∆δS. In fact, it is easy to verify that ν2,r1,1 = 0.

3. Note that, if µ = 0, it is possible to identify the quantities λ
{0,0,0}
j,ℓ , λ

{1,0,0}
j,ℓ , λ

{0,1,0}
j,ℓ

and λ
{0,0,1}
j,ℓ . In fact, from the definitions of νβ,rj,ℓ , it is easy to see that

λ
{0,0,0}
j,ℓ = −ν0,aj,ℓ

and




λ
{1,0,0}
j,ℓ

λ
{0,1,0}
j,ℓ

λ
{0,0,1}
j,ℓ




=




1 i 0

0 1 i

1 0 i




−1




−ν1,aj,ℓ

−ν1,bj,ℓ

−ν1,cj,ℓ



.

2.3. Some distributed sources

In this section, we consider two classes of distributed sources, sources supported on

the hollow/solid balls and sources having compact support within a finite number of

subdomains. Then, in Subsection 2.3.3, an application to the problem of identifying

general poles of meromorphic function is shown.
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2. 3D Stationary Inverse Source Problem

2.3.1. Sources supported on the hollow/solid balls and spheres

Let F be the following source term

F =

N∑

j=1

hjχDj
with Dj = Sj +Bj (2.41)

where we have assumed, here, that hj are non-null scalar quantities and Bj are

hollow or solid balls of center (0, 0, 0) and radii rj0, r
j
1, namely,

Bj = {S = (x, y, z) ∈ R
3 : 0 ≤ rj0 < |S| ≤ rj1}.

We say that Bj is a hollow ball if rj0 > 0 and a solid ball if rj0 = 0. In this framework,

it is well known that, with a single coefficient µ, both hj and Dj cannot be uniquely

determined from the Cauchy data. However, we show below that the number N , the

centers Sj and some related quantities to hj can be uniquely determined. For both

results, we need the following lemma given in [CH89, Page 288].

Lemma 3. For every solution of the equation ∆u+µu = 0 in Ω, the mean value relation

u(S)
sin(r

√
µ)

r
√
µ

=
1

4πr2

∫

Σ
udΣ (2.42)

is valid for any sphere Σ of center S and radius r entirely contained in Ω.

1.Non-uniqueness of source F = hχD: (Counter example found in [EBN11a])

Suppose there are two different sources Fi = hiχDi
where Di are two hollow or solid

balls with the same center S and different radii ri0, r
i
1, i = 1, 2, such that

h1

∫ r11

r10

r
sin (

√
µr)

√
µ

dr = h2

∫ r21

r20

r
sin (

√
µr)

√
µ

dr. (2.43)

Let ui, i = 1, 2, be 2 functions such that

∆ui + µui = Fi in Ω, u1 = u2,
∂u1
∂ν

=
∂u2
∂ν

on Γ.
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2.3. Some distributed sources

Define the function w as the solution of





∆w + µw = F2 − F1 in Ω

w = 0 on Γ

(2.44)

Multiplying equation (2.44) by v, an arbitrary function in Hµ as defined in (2.8), and

integrating by parts, we get

∫

Γ

∂w

∂ν
v ds = h2

∫

D2

v(x) dx − h1

∫

D1

v(x) dx

using Lemma 3 and integrating (25) over [ri0, r
i
1], one has

h2

∫

D2

v(x) dx−h1
∫

D1

v(x) dx = 4πh2v(S)

∫ r21

r20

r
sin (

√
µr)

√
µ

dr−4πh1v(S)

∫ r11

r10

r
sin (

√
µr)

√
µ

dr.

Then, from the imposed condition (2.43) on the sources, one obtains

∫

Γ

∂w

∂ν
v ds = 0.

But, since H
1
2 (Γ) is dense L2(Γ), one has

∂w

∂ν
= 0 on Γ.

Hence, both u1 and u2 = u1 +w are solutions of the problem for the same source F1.

Thus, one confirms the non-uniqueness of the reconstruction of both hj and Dj by

the Cauchy data with a single µ.

2. Identification method

Under the condition ∫ rj1

rj0

sin (
√
µr) dr 6= 0,

one can, using the identification method proposed in Subsection 2.2.2, uniquely de-

termine the numberN , the projections P rj , r = a, b, c of the centers Sj and the quanti-

ties hj
∫ rj1
rj0
r
sin(r

√
µ)√

µ dr, where we define the square root of µ in the complex meaning
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2. 3D Stationary Inverse Source Problem

if µ is negative.

Indeed, using the functional R defined in (2.9) and having the sources of the form

(2.41), we get, for all v in Hµ,

R(v, f, g) =

N∑

j=1

hj

∫

Dj

v(x) dx

Thus, from Lemma 3, one has

R(v, f, g) =

N∑

j=1

4πhjv(Sj)

∫ rj1

rj0

r
sin (

√
µr)

√
µ

dr.

Now, denoting

pj = 4πhj

∫ rj1

rj0

r
sin (

√
µr)

√
µ

dr,

and using the test functions defined in (2.11,2.14), we apply the same algebraic algo-

rithm proposed in Subsection 2.2.2 to recover the number of balls N , the projections

onto the xy, yz and xz- planes of the centers Sj and the coefficients pj related to hj

and the radii rj0 and rj1.

Remark 11. A similar result to that announced in the previous theorem can be also

obtained in the case of source supported on a sphere.

2.3.2. Identification method for sources of small supports

Now, assume that F represents sources having compact support within a finite num-

ber of small subdomains, namely

F =
N∑

j=1

hjχDj
with Dj = Sj + εBj (2.45)

where Sj = (xj , yj , zj) and Bj ⊂ R3 is a bounded domain containing the origin. The

points Sj ∈ Ω are assumed to be mutually distinct, ε is a positive real number strictly

less than 1 and the densities hj are non-null functions belonging to the space L1(Ω).

The inverse source problem we are concerned with, here, consists in determining the

number N , the centers Sj and the mass of the domains Dj .
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2.3. Some distributed sources

Indeed, as in (2.10), multiplying equation (2.1) by a test function v belonging to

Hµ and integrating by parts, we get for the source (2.45), the following relationship

between the Cauchy data (f, g) and the source F ,

R(v, f, g) =
N∑

j=1

∫

Dj

hj(S)v(S)dS, for all v ∈ Hµ.

Here, R is the operator defined in (2.9) and S = (x, y, z).

Then, using the change of variables S = Sj + εt with t = (t1, t2, t3), one obtains

R(v, f, g) =
N∑

j=1

ε3
∫

Bj

h̃j(t)v(Sj + εt)dt, for all v ∈ Hµ, (2.46)

where h̃j(t) = hj(Sj + εt).

Now, using in equations (2.46) the test functions van, defined in (2.11), we get

R(van, f, g) =

N∑

j=1

ε3ekzj
∫

Bj

h̃j(t)[(xj + iyj) + ε(t1 + it2)]
nekεt3dt, n ∈ N (2.47)

and consequently since

[(xj + iyj) + ε(t1 + it2)]
n =

n∑

β=0

(
n

β

)
εβ(t1 + it2)

β(xj + iyj)
n−β,

we get

R(van, f, g) =

N∑

j=1

n∑

β=0

νβ,aj (nβ)(P
a
j )
n−β, for all n ∈ N (2.48)

where

νβ,aj = ε3+βekzj
∫

Bj

h̃j(t)[t1 + it2]
βekεt3dt,
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2. 3D Stationary Inverse Source Problem

P aj = xj + iyj

and (
n

β

)
=

{
n!

β!(n−β)! if n ≥ β

0 if n < β.

Remark 12. When k = 0, ν0,aj corresponds to the mass of the domain Dj and ν1,aj
correspond to the projection of its moments onto the xy-plane.

Now, observe that the equations (2.48) do not allow us to identify the source F di-

rectly because they contain more unknowns than equations. To overcome this diffi-

culty, we will truncate these equations from a small error. First, for a given positive

ε < 1, we choose a fixed integer K such that εK+4 is small enough and we set

αan =
N∑

j=1

K∑

β=0

νβ,aj (nβ)(P
a
j )
n−β, for all n ∈ N. (2.49)

Then, according to (2.48), we can see that, for n ≤ K

R(van, f, g) =
N∑

j=1

n∑

β=0

νβ,aj (nβ)(P
a
j )

n−β =
N∑

j=1

K∑

β=0

νβ,aj (nβ)(P
a
j )

n−β = αa
n

and for n > K

R(van, f, g) =

N∑

j=1

n∑

β=0

νβ,aj (nβ)(P
a
j )

n−β = αa
n +O(εK+4)

where

O(εK+4) =

N∑

j=1

n∑

β=K+1

νβ,aj (nβ)(P
a
j )

n−β .

Finally, we approximate the coefficients αan by R(van, f, g) and then we determine

the quantities N , P aj , νβ,aj by solving the algebraic equations (2.49) by means of the

the algebraic algorithm developed in Subsection 2.2.2. More precisely, we begin by
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2.3. Some distributed sources

defining the complex Hankel matrix

Ha
J̄,K =




αa0 αa1 · · · αa
J̄−1

αa1 αa2 · · · αa
J̄

...
...

...
...

αa
J̄−1

αa
J̄

· · · αa
2J̄−2




for J̄ ∈ N
∗, (2.50)

and we introduce the companion matrix

Ba
K =




0 1 · · · 0 0

0 0 1 · · · 0
...

...
. . .

. . . 0
...

...
. . .

. . . 1

ca0 ca1 · · · · · · caJ−1




for J = (K + 1)N, (2.51)

where the vector Ca = (ca0, ..., c
a
J−1)

t is solution of the linear system

Ha
J,KC

a = ξaJ

with ξaJ = (αaJ , · · · , αa2J−1)
t and then, we obtain from Theorem 6 and Theorem 7 the

following corollary.

Corollary 1. Let K be a non-negative integer, J = (K + 1)N and Ha
J̄,K

be the Hankel

matrix defined in (2.50). Assume that we know an upper bound J̄ for the number J,

then

rank(Ha
J̄,K) = (K + 1)N if and only if νK,aj 6= 0 for j = 1, ..., N.

Corollary 2. LetK be a non-negative integer, J = (K+1)N and assume that νK,aj 6= 0

for all j = 1, ..., N. Then, the companion matrix Ba
K , defined in (2.51), admits N

eigenvalues of multiplicity K + 1. These eigenvalues are the projections P aj of points Sj

onto the xy complex plane.

Corollaries 1 and 2 allow us to identify the number N , the projection points P aj and

the coefficients νβ,aj as done in Section 2.2.2.

Remark 13. In practice, for a given positive constant ε < 1, we choose the integer

K such that εK+4 is small enough. Then, we estimate the coefficients αan defined in
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2. 3D Stationary Inverse Source Problem

(2.49) by R(van, f, g). This introduces an accuracy error O(εK+4) in our identification

algorithm, precisely, in determining of the rank of Hankel matrix Ha
J,K and the eigenval-

ues of companion matrix Ba
K (see [Ste73a, p. 321-322] for estimating result on SVD).

Therefore, through corollaries 1 and 2 respectively, we can find, modulo a small error,

the number of sources and the projections (onto the xy complex plane) of their positions.

To determine the position of the point sources, we proceed as in Subsection 2.2.1 and we

repeat the same algorithm by making projections onto the xz− and yz−complex planes,

considering the test functions vbn and vcn defined in (2.14).

2.3.3. Remark on the problem of identifying general poles of

meromorphic functions

In here, our aim is to show that our algorithm can be applied to the interesting

problem of computing the poles of a meromorphic function f with a finite number of

poles in a disc {|z| < R}

f(z) =
L∑

ℓ=1

Nℓ∑

j=1

Kℓ∑

β=0

νβj,ℓ

(z − P ℓj )
β+1

+ g(z), |z| < R,

where g is an analytic function with no zero in the disc {|z| < R}. The inverse

problem consists in identifying the locations P ℓj , the coefficients νβj,ℓ and the number

N ℓ, by means of the value f(z) on a circle |z| = R enclosing all the general poles P ℓj of

the function f . Problems with less general functions have been considered by many

other authors. We cite only the recent papers [CKC12; HR11; Nar12] where one can

find all references dealing with this question. In fact, this question amounts to solve

the algebraic relationships (2.30). Indeed, multiplying f(z) by zn and integrating

on the circle |z| = R, we obtain the Laurent coefficients αn of f(z) around zero and

using the residue theorem, we obtain

αn =
L∑

ℓ=1

Nℓ∑

j=1

Kℓ∑

β=0

νβj,ℓ(
n
β)(P

ℓ
j )
n−β (2.52)

where

αn =
1

2πi

∫

|z|=R
znf(z)dz.

Then, it is sufficient to solve the algebraic equations (2.52) using the method pre-

sented in Subsection 2.2.2.
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Note that the presented algorithm employed to solve (2.52) can be seen as a interest-

ing application of the much older Pade machinery used over inverse source problems.

2.4. Numerical simulations

In this section, we study numerically the robustness of the algebraic algorithm with

respect to the different parameters interfering in the reconstruction process bringing

out, in the case of monopoles and dipoles, the theoretical stability estimates obtained

in [EBEH13] and recalled in (2.6) and (2.7).

From (2.6) and (2.7), one can see that several factors such as the number of sensors,

the separability coefficient, the noise and the coefficient µ have an important effect

on the stability of the identification process. In the following subsections, the impact

of all these parameters is studied numerically.

Here, we focus on the identification of the number and the positions of the sources

from the Cauchy data (f, g). The moments and the intensities can be calculated

easily solving the linear system Ar0Λ
r = ξr0. It is rather interesting to note that the

most essential part in the whole identification process is the reconstruction of the

number of sources as to be seen later.

Indeed, the algebraic algorithm proposed in Subsection 2.2.1 is verified numerically

in this subsection on dipole sources (the case of (2.5) with pj = qj = 0) with fixed

moments at rj = (1, 1, 1), on combinations of monopolar and dipolar sources (the

case of (2.5) with qj = 0) at fixed intensities pj = 1 and fixed moments rj = (1, 1, 1)

and later on sources with small compact support (2.41). The numerical tests will be

held over both Helmholtz equation firstly and then over the BLT problem. The case

of monopole sources has been already considered in paper [EBN11a] for Helmholtz

equation and later revisited in [AEBEH14c] for BLT problem. In this numerical study,

the boundary Γ is assumed to be a unit sphere whose center is the origin O. The

Cauchy data (f, g) on the boundary Γ are obtained by means of the fundamental

solution of equation (2.1) in R3. In fact, f and g are respectively the trace and the

normal trace of w on Γ, where w is the fundamental solution corresponding to F ,

defined in the free space as:

w(S) =

N1∑

j=1

pjw0(S − S1
j ) +

N2∑

j=1

rj · ∇w0(S − S2
j)
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2. 3D Stationary Inverse Source Problem

where

w0(S) =
−1

4π

ekρ

ρ

with

µ+ k2 = 0 and ρ =
√
x2 + y2 + z2.

Moreover, the coefficients αrn are numerically computed using spherical coordinates

over a uniform meshing of distributed points on the unit sphere.

Particular attention will be devoted to determining the number of sources. As men-

tioned before, theoretically their number is the rank of the Hankel matricesHr
J̄

which

is numerically determined using the SVD method with an appropriate threshold.

However, this is not always an easy matter since Hr
J̄

is an ill-conditioned matrix. As a

matter of fact, the (J +1)th singular value, σJ+1, of Hr
J̄

is theoretically zero, whereas

when the perturbed Hr
J̄
+ δHr

J̄
is given, one obtains a non zero σJ+1. Therefore, in

our study, due to the classical estimate,[Han98],

|σJ+1| ≤ ‖δHJ̄‖F , (2.53)

we truncate beyond a threshold inferior to ‖δHJ̄‖F . Here, ‖ · ‖F is the corresponding

Frobenius norm and δHJ̄ is the perturbation of HJ̄ that originates from the noise in

data as well as from the numerical quadrature error using a finite number of sensors

on Γ. This leads us then to study also the impact of the upper bound of sources, J̄

since this latter increases the size de matrix δHr
J̄

and consequently its norm ‖δHr
J̄
‖F .

Remark 14. We draw the attention of the reader to the fact that in the case of M2

sensors, the numerical error can be seen as noise equivalent to (2π2/M2) perturbation.

That is why, apart from the Subsection 2.5.1 dedicated to study the noise effect, we use

the Cauchy data as non-noisy ones to see the identification process in an approximately

ideal framework.

Remark 15. The calculation of ‖δHJ̄‖F is related to the numerical quadrature error.

In here, this computation is not exact since we take into consideration just the numerical

error (2π2/M2) which is an approximate value. Nevertheless, in reality, δHJ̄ depends

also on the points Sℓj and on κ and consequently,

‖δHJ̄‖F ≃ J̄

√
2π

M
β(κ, sources)

where β is the error related to the wave number and to the source positions. Therefore,
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2.5. Numerical results for Helmholtz equation

in the following, we aren’t reasonably capable of using the truncation threshold ‖δHJ̄‖F
in the analysis of the impacts of the wave number and the closeness of the sources over

the identification process, unless we have a precise knowledge of β. Consequently, it is

used uniquely in the analysis of the impact of the number of sensors and the number

upper bound J̄ .

2.5. Numerical results for Helmholtz equation

In this section, our choice is focused on the Helmholtz case and the wavenumber

κ =
√
µ is fixed at κ = 1.85 m−1 (when assuming the sound source with the sound

velocity of 340ms−1, the temporal frequency 100 Hz gives this wave number with the

wavelength 3.4m), except in the case where we study its influence on the localization

accuracy in Subsubsection 2.5.1(f).

2.5.1. Determining number and position of dipole sources

In the following subsection, unless mentioned otherwise, we fix the number of dipoles

at 3 at fixed moments rj = (1, 1, 1), whose positions are taken as in Table 2.1 and we

consider the projection on the xy plane.

j (location ♯) 1 2 3

S2
j (0.6,-0.3,0.1) (-0.6,-0.4,0.0) (0.5,0.5,0.2)

Table 2.1.: The dipole positions.

a. The impact of the number of sensors

The choice of the number of sensors is an important issue in the recovery of the

number and the position of the sources. Refining more the mesh (here 252 to 1002

sensors), as seen in Figure 2.2, permits us to approach better the true number of

sources. Indeed, the gap between the 7th and the 6th singular value increases with

respect to the number of sensors and the localization error decreases with higher

mesh level. Respecting their corresponding ‖δHa
J̄
‖F (Table 2.2), we note that the

number of sources can’t be recovered with less than 502 sensors. Therefore, we con-

clude that this identification process necessitates the use of 502 sensors so that the

number of dipoles and consequently their positions are well-approximated. For a bet-
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2. 3D Stationary Inverse Source Problem

ter clarification, we present the numerical results explicitly in Table 2.3. As seen in

Table 2.3, we observe that when imposing the rank of Ha
J̄

as 6, with 252 sensors one

obtains 6 eigenvalues that aren’t even doubles while for a higher number of sensors,

one obtains 3 double eigenvalues.

Number of sensors 252 352 502 1002

‖δHa
8 ‖F ≃ 1.42 1.02 0.71 0.36

Table 2.2.: The Frobenius norm of δHa
8 with respect to the sensors.
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Figure 2.2.: Singular value of Ha
8 (left) and the localization error (right) projected

on the xy plane for N2 = 3 with respect to the number of sensors.
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2.5. Numerical results for Helmholtz equation

Number of sensors Estimated 2D Positions Localization Error level

252 -0.6824 - 0.5123i 0.6436
0.6688 - 0.3713i
-0.4997 - 0.1008i
0.5774 + 0.5467i
0.3924 + 0.2611i
0.0233 + 0.0676i

352 -0.6025 - 0.3972i 0.063
0.5022 + 0.4907i
0.5710 - 0.3005i

502 -0.6000 - 0.4000i 0.006
0.5000 + 0.5000i
0.5998 - 0.3001i

1002 -0.6000 - 0.4000i 0.002
0.5000 + 0.5000i
0.6000 - 0.2999i

Table 2.3.: The calculated xy− source positions and their error for N2 = 3
varying the number of sensors.

Remark 16. Note that 502 sensors represent a suitable framework for the recovery of 3

dipoles. For a higher number of dipoles, one must provide their specific suitable frame-

work also. For instance, one can even reconstruct precisely the position of 7 dipoles using

1002 sensors (see Figure 2.3). Thus, as we have tested, meshing more finely leads also

to identify much more dipoles. However, an even higher number of sensors becomes

"unrealistic" since we are limited by the number of observations. Besides, for the in-

stant the tests were done in a perfect non-noisy background. Whereas in the presence of

noise, one can’t improve the numerical results even with a higher discterization since the

noise would dominate, beyond a certain level, the mesh error. The noise impact on the

reconstruction method is taken into consideration and is analyzed in subsubsection g.

From now on, we fix our study to 502 sensors that enable us to recover precisely the

number and the location of up to 3 dipoles.

b. The impact of the upper bound J̄

Our aim, in this subsubsection, is to discuss the effect of the supposed upper bound

J̄ on the identification of the number of the dipoles, J . Indeed, as seen in Figure
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Figure 2.3.: Singular values of Ha
18 and the localization results projected on the

xy plane for N2 = 7 with 1002 sensors.

2.4, as J̄ increases, the gap between the J th and the (J + 1)th singular values of Ha
J̄

decreases. This is obvious since we know that the theoretical rank is fixed at J for

whatever value of J̄ and so increasing J̄ accumulates more and more error on the

corresponding Hankel matrix causing it to become more and more ill-conditioned.

Moreover, since the calculation of the numerical rank of Ha
J̄

is done by the means

of the truncation threshold (2.53) based on the Frobenius norm of the perturbation

δHa
J̄
, presented in Table 2.4, we observe that exceeding a certain J̄ (J̄ = 11 as seen

in Figure 2.4), we aren’t capable of estimating the theoretical rank J due to the high

ill-conditionement of Ha
J̄
. Therefore, it is crucial to have an upper bound which isn’t

so far than the exact needed number of sources to accomplish a better identification

process.

J̄ 7 9 11 13 15 17 19

‖δHa
J̄
‖F ≃ 0.6220 0.7997 0.9774 1.1551 1.3329 1.5106 1.6883

Table 2.4.: The Frobenius norm of δHa
J̄

with respect to J̄ .

c. What happens when the number is wrongly-estimated?

Suppose that due to a bad estimation of the rank of the Hankel matrix, we have

cut the singular values either over or under the desired value. Doing that, we have

noticed, as seen in Table 2.5 that truncating more than needed gives the real val-

ues of the locations and other additional disperse points (representing imaginary

monopoles). However, truncating for a number less than desired, one obtains a com-

bination of positions which aren’t even related to the desired sources, as shown in
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Figure 2.4.: The localization error (right) for N2 = 3 and 502 sensors with respect
to J̄ .

Table 2.5. This shows the importance of a good truncation threshold and conse-

quently the essentiality of obtaining the right number of sources from the rank of the

Hankel matrix.

truncation level Estimated 2D Positions

8 0.808 + 1.082i
-1.161 - 0.783i
-0.5995 - 0.400i
0.500 + 0.500i
0.6000 - 0.3000i

5 -0.689 - 0.418i
f-0.461 - 0.409i
0.685 - 0.410i
0.499 + 0.652i
0.727 + 0.312i

Table 2.5.: The calculated xy− source positions and their error for N2 = 3
when truncating wrongly.
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d. Effect of the separability between dipoles

The separability between the sources plays a great role in the dipoles reconstruction

and counts even more than the number of the sources themselves. To study its effect,

we take 2 dipoles placed at (±d, 0, 0) where d varies from 0.05 to 0.5 m and a fixed

dipole S3 (Table 2.1). One observes that if the distance between the 2 dipoles is

really small, the dipoles could not be well-approximated where neither their number

nor their position is well-reconstructed. On the other hand, as they become farther

(remaining far from the boundary), we note a better numerical estimation of the rank

of Ha
8 , due to the larger gap between the 6th and the 7th singular values, as well as

a better relative localization error as shown in Figure 2.5. This is explained by the

decomposition of the Hankel matrix Hr
J̄

given in Lemma 1. Indeed, due to (2.21),

one can see that the conditionment of the Hankel matrix Hr
J̄

depends on that of the

Vandermonde matrix Ar0. Moreover, since the condition number of Ar0 is analytically

calculated as the multiplication of the separability between the source projections

P 2,r
j , then the numerical rank estimation of the Hankel matrix becomes worse as the

sources become closer.
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Figure 2.5.: Singular values of Ha
8 (left) and the localization errors (right), pro-

jected on the xy plane with 502 sensors, with respect to the position
of the sources.

As seen just above, the reconstruction of the sources depends on the separability

coefficient between the projected locations. Therefore, an important factor in the

identification process is the choice of the projection plane that would yield to a

good separability between the sources and consequently a more precise localiza-

tion. To do so, in a practical point of view, a strategy that could be utilized is that

mentioned previously in Remark 8. More precisely, for a m1 × m2 discretization
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2.5. Numerical results for Helmholtz equation

points (φi, θj) over the box [0, π2 ] × [0, 2π], we consider the corresponding orthonor-

mal basis ( ~uij , ~vij , ~uij ∧ ~vij) where ~uij = (cos(φi) cos(θj), cos(φi) sin(θj), sin(φi)) and

~vij = (sin(φi) cos(θj), sin(φi) sin(θj),− cos(φi)). Then, for each basis, we calculate,

for all 1 ≤ i ≤ m1, 1 ≤ j ≤ m2, the numerical rank of the three Hankel matrices

(Hr
J̄
)ij, r = a, b, c (which represent the three plane projections in the considered ba-

sis), always respecting the truncation threshold (2.53). Consequently, the number

of sources is obtained as the maximum between these three ranks. Now, to recover

most precisely the projected sources locations, few steps should be done. First, one

should choose only the space frames having rank((Hr
J̄
)ij) = J for r = a, b, c. The ex-

istence of such a basis is possible due to the natural hypothesis that these sources are

well-separated. Next, we calculate the condition numbers aij , bij and cij of the corre-

sponding Hankel matrices (Hr
J)ij . Finally, to obtain the basis (uij, vij , uij ∧ vij) with

the best location estimation, we choose the frame with the best conditionement of

(Hr
J)ij which corresponds, as mentioned before, to the best conditionement of (Ar0)ij

and consequently the highest separability coefficient. Technically, the basis contain-

ing the matrices (Hr
J)ij with the best condition numbers is obtained in the sense of

having the smallest Euclidean distance between (aij , bij , cij) and the vector (1, 1, 1).

Remark 17. Note that the precision quality of the number and the location of the

sources depends also on the augmentation of the number of sources that affects the

separability coefficient between the projected points. Indeed, the reason behind the fact

that adding more sources leads to less precision in the identification process is due to the

diminishment of their separability coefficient, considering a size-fixed domain.

e. Obtaining the 3D coordinates and the effect of the separability coefficient

To obtain the 3D coordinates of the sources, we use consequently the projections on

the xy, yz and xz planes in the case of 3 dipoles as shown in Figure 2.6 and Figure

2.7. Note that, theoretically according to hypothesis (H) the number of sources must

be the same whatever the complex plane onto which the projections are performed.

However, numerically the situation may be different since the number depends also

on the separability of these projections. In fact, to recover their number, we consider

the numerical rank of the three Hankel matrices Hr
J̄
, r = a, b, c, obtained respect-

ing the truncation threshold upper bounded by ‖δHr
8‖F ≃ 0.71 and then take the

maximum between them as shown in Figure 2.6. Note that this is validated by the

example given in Figure 2.6 and Figure 2.7 which reflect the largest gap between the

6th and the 7th singular value ofHr
8 in the xy plane which has the highest separability
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coefficient between the projections.
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Figure 2.6.: Singular values of Hr
8 for N2 = 3 where r = a, b, c.
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Figure 2.7.: Estimation results projected on the xy,yz and xz− planes when N2 =
3.

f. Impact of the wavenumber

The left and the right panels of Figure 2.8 show the singular values of Ha
8 and the

localization error when changing κ. We note that the gap between the 6th and the

7th singular value of Ha
8 decreases and the position accuracy increases minorly with

respect to κ which means the deterioration of the results with the increase of the

wavenumber coefficient. This result could be explained since the number of points

per wavelength defined by

p ≈
√
π

κ
×
√
numberofsensors

decreases as κ augments. In fact, when taking κ = 2 , the number of points touched

by the wavelength are about 44 points. However, this number is limited to approxi-
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mately 12 points when κ = 7.
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Figure 2.8.: Singular values of Ha
8 (left) and the localization error (right)when

N2 = 3 with 502 sensors with respect to the wavenumber.

g. Impact of the noise

Reconstruction stability on the xy projections with respect to the noise level is exam-

ined in this subsubsection. In fact, Gaussian noise is added to f (and g) where the

noise standard deviation added varies from 10−2 to 100 % (see Figure 2.9). We have

noted studying the SVD of the Hankel matrix Ha
J̄

and using the truncation thresh-

old 2.53, with ‖δHa
8 ‖F , computed in Table 2.6, that the number of dipoles is well

estimated when the percentage of noise doesn’t exceed 100%. Beyond that, their

number is not well determined anymore. Moreover, we note that the localization

error increases as the percentage of the noise added increases.

Noise percentage 10−2% 10−1% 100% 101%

‖δHa
8 ‖F ≃ 0.71 0.71 0.72 0.81

Table 2.6.: The Frobenius norm of δHa
8 with respect to the noise.

Remark 18. Let us mention that we have, also, as to be seen in Section 2.6, studied the

case of a negative number µ, the case of diffusion instead of propagation.

66



2.5. Numerical results for Helmholtz equation

1 2 3 4 5 6 7 8

10
−4

10
−3

10
−2

10
−1

10
0

10
1

singular value index

si
ng

ul
ar

 v
al

ue

N2=3, noise effect

 

 

10−2 %

10−1 %

100 %

101 %

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

Gaussian noise %

lo
ca

liz
at

io
n 

er
ro

r

N2=3, noise effect

Figure 2.9.: Singular values of δHa
8 (left) and the localization errors (right) pro-

jected on the xy plane for N2 = 3 with 502 sensors with respect to
the noise.

2.5.2. Determining the number and the position of a combination of

monopoles and dipoles

Now, we aim to reconstruct a combination of monopoles and dipoles. Applying the

same methodology utilized over the dipoles, one can observe that the same phenom-

ena can be noted regarding the different parameters over the number of sources and

their localization. Indeed, for instance in Figure 2.10, we study the effect of the mesh

level on the identification process for 2 monopoles (defined in Table 2.7) with the for-

mer 3 dipoles in the xy projection plane. We note the same results as before, for both,

the variation of the singular values of Ha
10 and the localization precision. Moreover,

based on ‖δHa
10‖F computed in Table 2.8, 1002 sensors are needed for the number

identification. We have decided not to present the impact of J̄ , the separability coef-

ficient, the projection plane, the wave number and the noise since they are similar to

those presented just before.

For a better clarification, the numerical results are presented in Table 2.9.

j (location ♯) 1 2

S1
j (-0.7,0.3,-0.2) (0.0,0.7,0.1)

Table 2.7.: The source positions.
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Number of sensors 252 352 502 1002

‖δHa
10‖F ≃ 1.78 1.27 0.89 0.44

Table 2.8.: The Frobenius norm of δHa
10 with respect to the sensors.
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Figure 2.10.: Singular values of δHa
10 (left) and the localization errors (right)

projected on the xy plane for N1 = 2 with N2 = 3.

2.5.3. Comparison between monopole and dipole sources

In this subsection, we perform a comparison of the proposed reconstruction method

on the monopoles (sources of form (2.3) with L = 1 andK1 = 0) and the dipoles. We

consider the monopoles as defined in Table 2.10 and we focus on the impact of the

number of sensors and the noise of this type of sources to establish the differences.

a. The impact of the number of sensors

Consider Figure 2.2 and Figure 2.11 related to the dipoles and the monopoles respec-

tively with respect to the number of sensors. Comparing these figures, we observe

that a less number of sensors are required for the reconstruction of monopoles than

dipole sources. Indeed, based on ‖δHa
8 ‖F calculated in Table 2.2 and on Figure 2.11,

we note that, for 6 monopoles, 352 sensors are sufficient for the sources number de-

termination. Whereas, 502 sensors are needed for the dipoles number reconstruction.

Moreover, the localization accuracy is much better comparing the right panels of the

corresponding figures. Note that this result was expected.
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Number of sensors Estimated eigenvalues Localization Error level

252 -1.9705 - 1.2132i 0.5010
0.1176 + 0.9867i
0.6764 + 0.5779i
0.9129 - 0.1711i
0.6647 - 0.4600i
-0.6927 + 0.3868i
-0.7091 - 0.5103i
-0.2095 - 0.4154i

352 -0.7467 + 0.2863i 0.1233
-0.6568 - 0.4532i
-0.4552 - 0.3448i
-0.1603 + 0.5526i
0.2901+ 0.6508i
0.5924 + 0.5139i
0.6482 - 0.3059i
0.5145 - 0.3146i

502 -0.7002 + 0.2994i 0.0121
-0.6064 - 0.4094i
-0.5929 - 0.3898i
0.0002 +0.6975i
0.6105 - 0.3002i
0.5885 - 0.3008i
0.5201 + 0.5076i
0.4751 + 0.4914i

1002 -0.7000 + 0.2999i 6.2e-04
1.7545e-06 + 0.6999i
0.6005 - 0.2995i
0.5995 -0.3006i
-0.5996 - 0.4001i
-0.6004 - 0.3999i
0.5009 + 0.5009i
0.4991 + 0.4990i

Table 2.9.: The calculated xy− source positions and their error for N1 = 2
with N2 = 3 varying the number of sensors.

b. Impact of the noise

Figure 2.12 represents the noise effect on the 6 monopoles in the same framework

as in Figure 2.9. Comparing these 2 figures, we remark that the error caused by the
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j 1 2 3 4 5 6

S1
j (-0.7,0.3,-0.2) (0.6,-0.3,0.1) (0.5,0.5,0.2) (-0.6,-0.4,0.0) (-0.1,-0.6,0.4) (-0.2,0.7,0.5)

Table 2.10.: The monopoles positions.
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Figure 2.11.: Singular value of Ha
8 (left) and the localization error (right) pro-

jected on the xy plane for N1 = 6 with respect to the number of
sensors.

noise on monopoles is much less than that on dipoles. This means that monopoles

are more persistent with respect to the noise which is consistent with the stability

estimates (2.6) and (2.7).
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Figure 2.12.: Singular values of Ha
8 (left) and the localization errors (right), pro-

jected on the xy plane with 502 sensors, for N1 = 6 with respect to
the noise.
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2.5.4. Determining number, position and radius of sources supported on

solid balls

In here, we aim to recover sources with solid balls support. To do so, we consider

sources supported over balls of the form (2.41). As shown in Subsection 2.3.1,

R(v) =

N∑

j=1

pjv(Sj)

where

pj = 4πhj

∫ rj1

rj0

r
sin (

√
µr)

√
µ

dr

and Sj represent the centers of the N balls. Using the test functions van defined

in (2.11) and considering 5 small balls with equal intensities hj = 1, j = 1, .., 5,

one observes, as shown in Figure 2.13, that the number, the center and the radius

(taking equal radii R) of the balls are well-reconstructed. In fact, the radius R can be

computed using the calculated coefficients pj given by

pj = 4π

∫ R

0
r
sin (

√
µr)

√
µ

dr.

Indeed, integrating this integral over (0, R), we obtain the equation

−κR cos κR+ sinκR =
κ3p1
4π

,

which is needed to recover the radius R over the interval (0, 1) (since the circles

belongs to the domain).

0 1 2 3 4 5 6 7 8 9

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

singular value index

si
ng

ul
ar

 v
al

ue

5 small inclusions

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

small inclusion

 

 

error=2.83*10−5

Figure 2.13.: Singular values of H8, and the localization results projected on the
xy plane for 5 balls with 502 sensors.
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2.6. Numerical results in the BLT case

In this section, our choice focuses on the BLT case for which the absorption coefficient

will be fixed at µ = −0.35 mm−1 (supposing that the source is in the lungs, the

absorption coefficient of this organ is normally of value −0.35 mm−1, [Wan+06b]).

Our basic aim in this section is to preform the same tests as done in the previous

subsection in order to establish the difference between these cases belonging to the

different signs of µ.

2.6.1. Determining number and position of dipole sources

In the following subsection, we fix the same 3 dipoles considered in the Helmholtz

case whose moments are fixed at rj = (1, 1, 1) and positions are also taken as in

Table 2.1. Although that we have noticed that the results are similar, we show, for

later comparison, the numerical simulations showing the impact of the parameters

interfering in the reconstruction process. Here, the values of ‖δHJ̄‖F are taken as in

Table 2.2 for the impact of sensors and as in Table 2.4 for the impact of J̄ .

a. The impact of the number of sensors
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Figure 2.14.: Singular value of Ha
8 (left) and the localization error (right) pro-

jected on the xy plane for N2 = 3 with respect to the number of
sensors (µ < 0).

The numerical results are presented explicitly in Table 2.11.
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2.6. Numerical results in the BLT case

Number of sensors Estimated 2D Positions Localization Error level

252 -0.6891 - 0.5113i 0.1915
-0.6175 - 0.1422i
0.6840 - 0.3796i
0.5458 + 0.5149i
0.4707 + 0.3962i
0.1311 - 0.2157i

352 -0.6096 - 0.4418i 0.070
-0.5988 - 0.3532i
0.6646 - 0.3346i
0.4798 - 0.2766i
0.4971 + 0.5519i
0.5098 + 0.4207i

502 -0.6001 - 0.4000i 0.0072
0.5997 - 0.3002i
0.5001 + 0.4999i

1002 -0.6000 - 0.4000i 0.0011
0.6000 - 0.3000i
0.5000 + 0.500i

Table 2.11.: The calculated xy− source positions and their error for N2 = 3
varying the number of sensors (µ < 0).

b. Number of sources obtained using 100
2 sensors
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2. 3D Stationary Inverse Source Problem

2 4 6 8 10 12 14 16 18

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

singular value index

si
ng

ul
ar

 v
al

ue

N2=7

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

N2=7

 

 

error=7.54*10−3

Figure 2.15.: Singular values of Ha
18 and the localization results projected on the

xy plane for N2 = 7 with 1002 sensors (µ < 0).

c. The impact of the upper bound J̄
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Figure 2.16.: Singular value of Ha
J̄

for N2 = 3 and 502 sensors with respect
to J̄(µ < 0).
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2.6. Numerical results in the BLT case

d. Effect of the separability between dipoles
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Figure 2.17.: Singular values of Ha
8 (left) and the localization errors (right) pro-

jected on the xy plane with 502 sensors(µ < 0).
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2. 3D Stationary Inverse Source Problem

e. Obtaining the 3D coordinates and the effect of the separability coefficient
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Figure 2.18.: Singular values of Hr
8 for N2 = 3 where r = a, b, c (µ < 0).

Examining Figure 2.14 till Figure 2.19, one observes that the use of a positive µ is

better in the identification process. This is normal since the diffusion phenomenon

causes more errors than the propagation one represented by Helmholtz equation.

This confirms the fact that the constant c in (2.7) is equal to 1 in the Helmholtz case.

However, numerically, we notice, as shown in the figures above, that the difference

between these 2 cases is minor. Indeed, the difference in the position reconstruction

is of an order less than 10−1. The reason behind this difference is due to the change

in the coefficients of the Hankel matrix Hr
J̄

where the test functions and the Cauchy

data are introduced depending on the value of µ. To illustrate this difference, we

present below the singular values of a Hankel matrix for µ = ±3.42 consecutively. We

note, as seen in Table 2.12, that the gap is found at the same singular value with a

minor difference in their values.
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2.6. Numerical results in the BLT case
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Figure 2.19.: Estimation results projected on the xy−,yz− and xz− planes when
N2 = 3 (µ < 0).
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2. 3D Stationary Inverse Source Problem

value of µ singular values of Ha
8

3.42 13.9724
10.4820
8.0744
2.3002
2.0874
0.1612
1.9e-4
3.2e-5

-3.42 15.0532
6.6709
4.8376
2.5005
1.7188
0.1445
2.0e-4
3.2e-5

Table 2.12.: The singular values of Ha
8 using 3 dipoles with 502 sensors with

positive and negative µ.
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CHAPTER 3

2D Stationary Inverse Source

Problem

"Obvious" is the most dangerous word in mathematics.

(Eric Temple Bell)

The object of this chapter is to solve an inverse source problem over the same

elliptic equation (1.10) from boundary measurements in the two-dimensional space

domain. First, we use a fixed frequency and then with multi-frequencies.

Section 3.1 states the main inverse problem we are concerned with and the form of

the sources to be considered in this chapter.

Section 3.2 considers the case using a single fixed wavenumber. It is consecrated to

elaborate the algebraic relationships between the monopolar sources and the

Cauchy data using the passage to a three-dimensional space and then explains

the identification method to be followed using a wavenumber greater than 1.

Section 3.3 discusses the case of sources having small compact supports.

Section 3.4 studies the case with multiple frequencies and the relevant algebraic al-

gorithm used to reconstruct monopolar sources using several frequencies. Then,

extensions to multipolar sources and sources with small support are shown.

Section 3.5 shows some numerical experiments performed to illustrate our identifi-

cation method using multiple frequencies and studies the effect of several fac-

tors on the reconstruction process.
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3. 2D Stationary Inverse Source Problem

3.1. Inverse problem statement

The algebraic method proposed in the previous chapter is valid only in the 3D case.

Therefore, to solve the 2D case, we need to establish some transformations and de-

velopments that enable us in certain frameworks to attain a full resolution method.

Therefore, in this chapter, we consider the problem of recovering the source F in the

2D Helmholtz equation

∆u+ κ2u = F in Ω (3.1)

where Ω is an open bounded in R2 and κ is a given real number.

As mentioned before, one of difficulties of the inverse source problem from bound-

ary measurements concerns the source uniqueness issue. We can expect a well-posed

inverse source problem only if a priori information is available. Usually this infor-

mation takes the form of certain conditions on admissible sources depending on the

underlying physical problem. Here, we consider two type of sources:

1. Sources as a linear combination of monopolar point sources given by,

F =

m∑

j=1

λjδSj
Sj ∈ Ω, λj 6= 0, (3.2)

where δS stands for the Dirac distribution at point S, m is a nonnegative integer and

λj 6= 0 are scalar quantities.

2. Sources having compact support within a finite number of small subdomains,

namely,

F =
m∑

j=1

hjχDj
with Dj = Sj + εBj, (3.3)

where Sj = (aj , bj), Bj ⊂ R2 is a bounded domain containing the origin, the densities

hj are non-null functions belonging to the space L1(Ω) and ε is a positive real number

small enough compared to the domain. In the following, we focus our work only on

the case 0 < ε < 1, which amounts to consider a domain of a size smaller than 1.

However, this does not restrict the generality since we can always be brought back to

this framework by using a suitable rescaling argument.

Furthermore, in both cases, the points Sj ≡ (aj , bj) are assumed to be mutually

distinct.

Our aim is to reconstruct the source term F from the Cauchy data (f, g) := (u|Γ ,
∂u
∂ν |Γ)
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3.2. Pointwise sources identification using a single wavenumber κ > 1

prescribed on a sufficiently regular boundary Γ of Ω. Here, ν denotes the outward

unit normal to Γ.

For this Helmholtz problem, 2 approaches are considered firstly having a single fixed

wavenumber κ and then using multiple wavenumbers.

To be more precise, first we begin by defining, for all F satisfying (3.2) or (3.3), the

following application in H
1
2 (Γ)×H− 1

2 (Γ)

Λ : F → (u|Γ ,
∂u

∂ν
|Γ).

Then, our inverse problem is formulated as follows:

Given (f, g) ∈ H 1
2 (Γ)×H− 1

2 (Γ), determine F such that Λ(F ) = (f, g). (3.4)

Remark 19.

1. For monopolar sources (3.2) the uniqueness issue is trivial. It can be obtained

by means of Holmgren’s theorem and the regularity of the direct problem, that is,

u ∈ H1−s(Ω), with s > 0 as it was done in the 3D case [EBN11a].

2. In the case of sources having compact support (3.3), the uniqueness is not guar-

anteed as it is shown in the example given in [Subsection 5.1,[EBN11a]] with

F = hχD.

In here, we focus on the recovering process of the sources by seeking to establish an

effective algebraic reconstruction method for the source parameters. The basic idea,

standing behind our work, is the transformation of a 2D Helmholtz equation into a 3D

Helmholtz equation leading to changes in the source term. Using the developments

obtained in Chapter 2, we derive new relationships between the transformed source

and the Cauchy data pair (f, g). These relationships would lead to algebraic equations

that we solve later using the same techniques proposed in Chapter 2.

3.2. Pointwise sources identification using a single

wavenumber κ > 1

In this section, our aim is to solve the inverse problem (3.4) associated to equation

(3.1) having the source term of the form (3.2). More precisely, it consists in iden-

tifying the number m, the intensities λj and the locations Sj from the Cauchy data
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3. 2D Stationary Inverse Source Problem

(f, g). This section is divided into three subsections. First, in Subsection 3.2.1, we

extend, by mean of a change of variables, the 2D Helmholtz equation (3.1) to a new

three-dimensional Helmholtz equation defined in Ω × R. Then, Subsection 3.2.2 is

devoted to establish the new relationships between the Cauchy data (f, g) and the

sources parameters (m,λj,Sj). Finally, Subsection 3.2.3 presents the identification

method employed to reconstruct these sources using the obtained algebraic relations.

3.2.1. Transformation of the 2D Helmholtz equation

Due to the complexity of the 2D Helmholtz equation and the absence of a direct

method for the source reconstruction in such a case, our basic idea is to prolong

the 2D problem into an equivalent 3D Helmholtz problem via a suitable change of

variable, which we are capable of solving algebraically using the tools employed in

the previous chapter. Before doing so, we need to introduce the following notations:

For all ω ∈ R and η > 0, set

ρ =
√
ω2 + κ2 (3.5)

and, as seen in Figure 3.1, we denote

Γ = Γ× [−η, η], Γ+ = Ω× {η}, Γ− = Ω× {−η}. (3.6)

Then, using the change of variables,

v(x, y, z) = u(x, y)e−iωz , i2 = −1 and z ∈ [−η, η], (3.7)

the function v satisfies the system

∆v + ρ2v = e−iωz
m∑
j=1

λjδSj
in Ω×]− η, η[

(v, ∂v∂ν ) = (fe−iωz, ge−iωz) on Γ

(v, ∂v∂z ) = (ue−iωz ,−iωue−iωz) on Γ+ ∪ Γ−

(3.8)

where ν = (ν, 0) is the outward unit normal to Γ× R with ν being the outward unit

normal to Γ. Thus, the problem now is to establish relationships between the Cauchy

data pair (f, g) and the source parameters (m,λj , Sj) for equation (3.8).

82



3.2. Pointwise sources identification using a single wavenumber κ > 1

η

− η

Γ

Γ

Γ+

Γ−

Figure 3.1.: The new 3D domain.

3.2.2. Reciprocity gap formulae

Before establishing our reciprocity gap formulae, we start by defining, for all n ∈ N,

the following operator:

R(n, f, g) =

n∑

α=0

(
n

α

)
(−1)α

∫

Γ
yn−αg

(∫

R

e−ix
√
ω2+κ2δ(α)(ω)dω

)
ds

+i

n∑

α=0

(
n

α

)
(−1)α

∫

Γ
ν1y

n−αf

(∫

R

√
ω2 + κ2 e−ix

√
ω2+κ2δ(α)(ω)dω

)
ds

−n
n−1∑

α=0

(
n− 1

α

)
(−1)α

∫

Γ
ν2y

n−1−αf

(∫

R

e−ix
√
ω2+κ2δ(α)(ω)dω

)
ds

(3.9)

where δ(α) indicates the αth derivative of Dirac delta function,

ν = (ν1(x, y), ν2(x, y)) := (ν1, ν2) and

(
n

α

)
=

{
n!

α!(n−α)! if n ≥ α

0 if n < α
.

Thus, the reciprocity gap formulae, behind our algebraic identification method, are

stated as follows.
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3. 2D Stationary Inverse Source Problem

Theorem 8. Let (f, g) ∈ H
1
2 (Γ) × H− 1

2 (Γ) and u be the corresponding solution of

(3.1). Then,

R(n, f, g) =

m∑

j=1

n∑

α=0

(
n

α

)
(−1)αλjb

n−α
j

∫

R

e−iaj
√
ω2+κ2δ(α)(ω)dω, ∀n ∈ N.

∗ ∗ ∗
Note that, in this theorem and also in formula (3.9), the integrals with respect to ω

are to be understood in the duality sense.

Proof. The proof of Theorem 8 is to de done in two steps. In the first step, we

establish an algebraic relationship satisfied only on the interval [−η, η] and then we

prove the mentioned relationship by passing to the limit η → +∞.

Step 1. Considering, for all n ∈ N, the test functions

ϕnω(x, y, z) = (y + iz)ne−ixρ (3.10)

satisfying the homogenous equation

∆v + ρ2v = 0 in Ω× R (3.11)

and then multiplying (3.8) by ϕnω, integration by parts and using Green’s formula, we

can verify that

Rη(ϕnω , f, g) =
m∑

j=1

λj

∫ η

−η
ϕnω(aj , bj , z)e

−iωz dz (3.12)

where Rη is the operator defined by

Rη(ϕnω, f, g) =

∫

Γ

∫ η

−η

(
g ϕnω − f

∂ϕnω
∂ν

)
e−iωzdzds

−
∫

Ω

(
iωu ϕnω + u

∂ϕnω
∂z

)

|z=η
e−iωηdxdy

+

∫

Ω

(
iωu ϕnω + u

∂ϕnω
∂z

)

|z=−η
eiωηdxdy.

(3.13)

Let θ ∈ C∞(R) be a function with compact support (i.e. θ ∈ C∞
c (R)) such that

θ(ω) = 1 over
[
−η

2 ,
η
2

]
. Then, multiplying (3.12) by θ(ω) and integrating, with respect

84



3.2. Pointwise sources identification using a single wavenumber κ > 1

to ω, over R lead to

∫

R

θ(ω)Rη(ϕnω, f, g)dω =

m∑

j=1

λj

∫

R

∫ η

−η
θ(ω)ϕnω(aj , bj , z)e

−iωzdz dω. (3.14)

Now, we desire to get the reciprocity gap formulae, given in Theorem 8, by passing

to the limit η → +∞ in the previous equation. This will be the object of the following

step.

Step 2. To justify the passage to the limit in (3.14), it is sufficient to examine the

convergence, when η → +∞, of all the terms involved, denoted by

Iη1 =

∫

R

∫

Γ

∫ η

−η
θ(ω)

(
g ϕnω − f

∂ϕnω
∂ν

)
e−iωzdzdsdω,

Iη2 =

∫ η

−η

∫

R

θ(ω)ϕnω(aj , bj , z)e
−iωz dω dz,

Iη+ =

∫

R

∫

Ω
θ(ω)

(
iωu ϕnω + u

∂ϕnω
∂z

)

|z=η
e−iωηdxdydω,

Iη− =

∫

R

∫

Ω
θ(ω)

(
iωu ϕnω + u

∂ϕnω
∂z

)

|z=−η
eiωηdxdydω.

Indeed, using the definition of ϕnω in (3.10) and the binomial formula, we can show,

using a simple calculation, that

g ϕnω − f
∂ϕnω
∂ν

= ge−ixρ
(

n∑

α=0

(
n

α

)
yn−α(iz)α

)

+ if ρ e−ixδ
(

n∑

α=0

(
n

α

)
yn−α(iz)α

)
ν1

− nfe−ixρ
(
n−1∑

α=0

(
n− 1

α

)
yn−1−α(iz)α

)
ν2.

Moreover, since the Fourier transform

∫

R

1[−η,η](iz)
αe−iωzdz, where 1[−η,η] is charac-

teristic function of [−η, η], converges, in the distribution sense, to 2π(−1)αδ(α) when
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3. 2D Stationary Inverse Source Problem

η → +∞, then, according to the expression of Iη1 , we can prove that

lim
η→+∞

Iη1 = 2π
n∑

α=0

(
n

α

)
(−1)α

∫

Γ
yn−αg

(∫

R

e−ix
√
ω2+κ2δ(α)(ω)dω

)
ds

+2πi
n∑

α=0

(
n

α

)
(−1)α

∫

Γ
ν1y

n−αf

(∫

R

√
ω2 + κ2 e−ix

√
ω2+κ2δ(α)(ω)dω

)
ds

−2πn

n−1∑

α=0

(
n− 1

α

)
(−1)α

∫

Γ
ν2y

n−1−αf

(∫

R

e−ix
√
ω2+κ2δ(α)(ω)dω

)
ds

(3.15)

Using a similar calculation, we obtain

lim
η→+∞

Iη2 = 2π
n∑

α=0

(
n

α

)
(−1)αbn−αj

∫

R

e−iaj
√
ω2+κ2δ(α)(ω)dω. (3.16)

To achieve the proof of this theorem, it remains to prove that

lim
η→+∞

Iη± = 0. (3.17)

We only show the result for Iη+, the case of Iη− is proved analogously. First, we can

see that

(
iωu ϕnω + u

∂ϕnω
∂z

)

|z=η
= iue−ix

√
ω2+κ2

[
ω

n∑

α=0

(
n

α

)
yn−α(iη)α + n

n−1∑

α=0

(
n− 1

α

)
yn−1−α(iη)α

]
.

This implies that

Iη+ =
n∑

α=0

∫

Ω

∫

R

θ(ω)fα(x, y, ω)(iη)
αe−iωηdωdxdy

+

n−1∑

α=0

∫

Ω

∫

R

θ(ω)gα(x, y, ω)(iη)
αe−iωηdωdxdy

with
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3.2. Pointwise sources identification using a single wavenumber κ > 1

fα(x, y, η, ω) = iωue−ix
√
ω2+κ2

(
n

α

)
yn−α and gα(x, y, η, ω) = inue−ix

√
ω2+κ2

(
n− 1

α

)
yn−1−α.

Furthermore, since θfα, θgα ∈ C∞
c (R) with respect to ω, then using Fourier transform

properties, one has

∫

R

θ(ω)fα(x, y, ω)(iη)
αe−iωηdω = (̂θfα)(α)(η)

∫

R

θ(ω)gα(x, y, ω)(iη)
αe−iωηdω = (̂θgα)(α)(η).

By Riemann-Lebesgue lemma and Lebesgue dominated convergence theorem, we get

lim
η→+∞

Iη+ = 0. Finally, passing to the limit η → +∞ in (3.14) and using (3.15),

(3.16), (3.17), we obtain the desired result. 2

Remark 20. Note that, we can get a similar result to that of Theorem 8 in the case

when κ2 is replaced by −κ2. To obtain this result, it is necessary ,only, to replace in

(3.5) the parameter ρ by
√
κ2 − ω2 and in (3.10) the test function ϕnω by (y+ iz)ne−xρ.

Then, we repeat the same procedure as in Step 1, but here we multiply equation (3.12)

by γς(ω) instead of θ(ω), where γς is a function belonging in C∞
c (R) such that γς(ω) = 1

over [−κ + ς, κ − ς], with small enough constant ς. By doing this, we can then pass to

the limit η → +∞, in the same way as in Step 2 and show the corresponding results.

The relationships, which are behind the identification algorithm, given in Theorem 8

can then be written as

R(n, f, g) =
m∑

j=1

n∑

α=0

µαj

(
n

α

)
bn−αj (3.18)

where

µαj = λjIα,j with Iα,j = (−1)α
∫

R

e−iaj
√
ω2+κ2δ(α)(ω) dω.

Here, the quantities Iα,j are calculated explicitly as

I0,j = e−iajκ
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3. 2D Stationary Inverse Source Problem

and for α = 1, · · · , n

Iα,j =





(−1)ℓ
iajβℓ
κ2ℓ−1 θℓ−1(iajκ)e

−ajκ if α = 2ℓ

0 if α = 2ℓ+ 1

(3.19)

where θℓ(ξ) =
ℓ∑

j=0

(2ℓ− j)!

(ℓ− j)!j!

ξj

2ℓ−j
is the ℓth degree reverse Bessel polynomial and βℓ is

a constant defined recursively by

{
β1 = 1

βℓ = (2ℓ− 1)βℓ−1.

3.2.3. Identification Method

The main objective of the following is to establish an efficient identification method

for solving equations (3.18) in order to determine the parameters (m,λj , aj , bj).

Since the number of unknowns is greater than the number of equations, then the

algebraic equations (3.18) can’t be solved for whatever value of n. Thus, we need to

truncate the equations (3.18) from a non-negative integer constant K. Namely, we

set

cn :=

m∑

j=1

K∑

α=0

µαj (
n
α)b

n−α
j , ∀n ∈ N. (3.20)

Then, according to (3.18), we can see that, for n ≤ K

R(n, f, g) =
m∑

j=1

n∑

α=0

µαj (
n
α)b

n−α
j =

m∑

j=1

K∑

α=0

µαj (
n
α)b

n−α
j = cn.

Moreover, since we have Iα,j = O
(

1
κℓ

)
when α = 2ℓ and κ is large enough, we can

check that, for n > K,

R(n, f, g) =

m∑

j=1

n∑

α=0

µαj (
n

α)b
n−α
j = cn +O

(
1

κs

)
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3.2. Pointwise sources identification using a single wavenumber κ > 1

where

O

(
1

κs

)
=

m∑

j=1

n∑

α=K+1

µαj (
n
α)b

n−α
j , with s =





K+2
2 if K is even

K+1
2 if K is odd.

(3.21)

Therefore, for a κ greater than 1, we choose a fixed non-negative integer K such that
1
κs is small enough. Thanks to that, we approximate the coefficients cn by R(n, f, g)

and then we determine the quantities m, bj and µαj by solving the algebraic equations

(3.20) by means of the identification algorithm developed in the previous chapter.

More precisely, if HJ̄ ,K is the complex Hankel matrix, defined as

HJ̄,K =




c0 c1 · · · cJ̄−1

c1 c2 · · · cJ̄
...

...
...

...

cJ̄−1 cJ̄ · · · c2J̄−2




for J̄ ∈ N
∗, (3.22)

then, we have the following result.

Theorem 9. Let K be a given non-negative integer and HJ̄,K be the Hankel matrix

defined in (3.22), where J̄ is a known upper bound of

J =





(K + 1)m if K is even

Km if K is odd.

(3.23)

Assume that the ordinate points bj of Sj are distinct, then, we have

rank(HJ̄ ,K) = J.

∗ ∗ ∗
Proof. As seen in, [Theorem 4, Chapter 2], the Hankel matrix HJ̄,K can be decom-

posed as

HJ̄,K = A0Ī(A0)
t

with A0 is the complex matrix of size J̄ × J given by

A0 = (U0, · · · , UK),
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3. 2D Stationary Inverse Source Problem

where, for β = 0, · · · ,K, Uβ are the confluent J̄ ×m Vandermonde matrices

Uβ =




(0β)(b1)
−β · · · (0β)(bm)

−β

(1β)(b1)
−β+1 · · · (1β)(bm)

−β+1

...
. . .

...

(J̄−1
β )(b1)

−β+J̄−1 · · · (J̄−1
β )(bm)

−β+J̄−1




,

(A0)
t its transpose matrix and Ī is the multi-diagonal matrix

Ī =




µ0 µ1 · · · µK

...
... . .

. ...

µK−1 µK · · · 0

µK 0 · · · 0




where

µα = diag(µα1 , · · · , µαm) for α = 0, · · · ,K.

Therefore, the rank of the Hankel matrix HJ̄,K is the same as that of A0 since Ī is

nonsingular and (A0)
t is surjective.

Nevertheless, if K is even, from (3.19), we know that µKj = λjIK,j 6= 0, for all

j = 1, · · · ,m, and so rank(Ī) = (K + 1)m and consequently rank(HJ̄ ,K) = (K + 1)m

. However, if K is odd, we have µKj = λjIK,j = 0, for all j = 1, · · · ,m, implying that

rank(HJ̄ ,K) = Km. 2

Now, we introduce the companion matrix

BK =




0 1 · · · 0 0

0 0 1 · · · 0
...

...
. . .

. . . 0
...

...
. . .

. . . 1

d0 d1 · · · · · · dJ−1




(3.24)

where J is defined in (3.23) and D = (d0, ..., dJ−1)
t, is the vector solution to the

linear system HJ,KD = ξJ with ξJ = (cJ , · · · , c2J−1)
t. Then, one has the following

theorem.
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3.2. Pointwise sources identification using a single wavenumber κ > 1

Theorem 10. LetK be a given non-negative integer, L = J
m , andBK be the companion

matrices defined in (3.24). Assume that, the ordinate points bj of Sj are distinct. Then,

1. BK admits m eigenvalues of multiplicity L.

2. The m eigenvalues of multiplicity L are the ordinate points bj of Sj .

∗ ∗ ∗
The proof of this theorem is very similar to that of [Theorem 5, Chapter 2].

Remark 21. In practice, for given a positive constant κ > 1, we choose the integer K

such that 1
κs is small enough, where s is defined in (3.21). Then, we estimate the co-

efficients cn defined in (3.20) by R(n, f, g). This introduces an accuracy error O
(

1
κs

)

in our identification algorithm, precisely, in determining of the rank of Hankel matrix

HJ̄,K and the eigenvalues of companion matrix BK (see [Ste73b, p. 321-322] for esti-

mating result on SVD). Therefore, through Theorem 9 and Theorem 10 respectively, we

can find, modulo a small error, the number of sources and the ordinates of their posi-

tions. To determine the position of the point sources, in particular the coordinate aj , we

proceed in the same way, considering the test functions

ψnω(x, y, z) = (x+ iz)ne−iy
√
ω2+κ2 .

Remark 22. In the previous theorems we have assumed that, the projected points onto

the x- and the y-axis of the point sources Sj are distinct. Henceforth, we were able to

identify the points Sj through these projection points. However, if by bad luck one of

the projected points onto x- or y-axis coincide, we can do the same thing by choosing

another basis in the xy-plane, where the projected points are distinct. This is possible,

since, for all orthonormal basis (~u,~v) in the xy-plane, the following functions

ϕnω(S) = (~v.S + iz)ne−i~u.S
√
ω2+κ2

ψnω(S) = (~u.S + iz)ne−i~v.S
√
ω2+κ2

∣∣∣∣∣∣∣
with S = (x, y, z)

remain solutions of equation (3.11), for all n ∈ N. Let us mention that, to reach a better

identification of the point sources, it is desirable to project the point sources in a basis

(~u,~v) where the absolute gap between the singular values of the corresponding Hankel

matrix is the largest possible. In practice, to attain such a basis, we can assume, for

example, that ~u = (cos(θ), sin(θ), 0), ~v = (− sin(θ), cos(θ), 0) and then take the angle

θ ∈ [0, 2π] that realizes the largest gap between the singular values of the Hankel matrix

(3.22).
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3. 2D Stationary Inverse Source Problem

3.3. Sources of small supports using a single wavenumber

κ > 1

In this subsection, we consider the case where the source term F is assumed to rep-

resent sources having compact support within a finite number of small subdomains,

given by (3.3). The aim objective of this subsection consists in establishing relation-

ships between the source F and the Cauchy data (f, g) in order to identify, using a

single fixed wavenumber κ, the number m, the points Sj and some characteristics of

the domains Dj , for example, their masses and their centers of gravity. To do so, we

proceed in the same way as in the case of pointwise source. We begin by taking (as in

Subsection 3.2.1) the change of variables v defined in (3.7) and therefore we show

that v satisfies the following 3D equation

∆v + δ2v = e−iωz
m∑

j=1

hjχDj
in Ω×]− η, η[ (3.25)

as well as the boundary conditions

(v, ∂v∂ν ) = (fe−iωz, ge−iωz) on Γ

(v, ∂v∂z ) = (ue−iωη ,−iωue−iωη) on Γ+

(v,−∂v
∂z ) = (ueiωη , iωueiωη) on Γ−.

where Γ and Γ± are defined in (3.6). Then, we obtain as in Theorem 8, the following

reciprocity gap formulae.

Theorem 11. Let (f, g) ∈ H
1
2 (Γ) × H− 1

2 (Γ) and u be the corresponding solution of

(3.1) with F given by (3.3). Then,

R(n, f, g) = ε2
m∑

j=1

n∑

α=0

(
n

α

)
bn−αj

α∑

β=0

(−1)β
∫

Bj

∫

R

Φj(α, β, ω, t)δ
(β)(ω) dωdt,

where R is defined in (3.9) and Φj is the function

Φj(α, β, ω, t) =

(
α

β

)
εα−βhj(Sj + εt)tα−β2 e−i(aj+εt1)

√
ω2+κ2 with t = (t1, t2).

(3.26)
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3.3. Sources of small supports using a single wavenumber κ > 1

∗ ∗ ∗
Proof. To prove this theorem, we proceed as in Step 1 of the proof of Theorem 8.

Multiplying equation (3.25) by the test functions ϕnω, defined in (3.10), and integrat-

ing by parts, we get

Rη(ϕnω, f, g) =

m∑

j=1

∫ η

−η

∫

Dj

hj(x, y)ϕ
n
ω(x, y, z)e

−iωzdxdydz, for all n ∈ N and ω ∈ R

where Rη is defined in (3.13). Then, using the change of variables (x, y) = Sj + εt

with t = (t1, t2), one obtains

Rη(ϕnω, f, g) =

m∑

j=1

ε2
∫ η

−η

∫

Bj

h̃j(t)ϕ
n
ω(Sj + εt, z)e−iωzdtdz (3.27)

where h̃j(t) = hj(Sj + εt).

Now, substituting, in equations (3.27), the test functions ϕnω by their values leads to

Rη(ϕnω , f, g) = ε2
m∑

j=1

∫ η

−η

∫

Bj

h̃j(t)(bj + εt2 + iz)ne−i(aj+εt1)
√
ω2+κ2e−iωz dtdz

and consequently, since

[bj + (εt2 + iz)]n =
n∑

α=0

(
n

α

)
(bj)

n−α(εt2 + iz)α

=

n∑

α=0

(
n

α

)
(bj)

n−α




α∑

β=0

(
α

β

)
εα−βtα−β2 (iz)β


 ,

we deduce that

Rη(ϕnω, f, g) = ε2
m∑

j=1

n∑

α=0

(
n

α

)
bn−αj

α∑

β=0

∫

Bj

Φj(α, β, ω, t)

∫ η

−η
(iz)βe−iωz dzdt (3.28)

where Φj is the function defined in (3.26). To complete the proof, we proceed ex-
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3. 2D Stationary Inverse Source Problem

actly as in Step 2 of the proof of Theorem 8, we, first, multiply equation (3.28) by

a function θ(ω) belonging to C∞
c (R) such that θ(ω) = 1 over

[
−η

2 ,
η
2

]
, then integrate

with respect to ω and finally pass to the limit η → +∞ to conclude. 2

The relationships given in the Theorem 11 can, then, be written as

R(n, f, g) =

m∑

j=1

n∑

α=0

ναj

(
n

α

)
bn−αj ∀n ∈ N (3.29)

where

ναj = ε2
α∑

β=0

(
α

β

)
εα−β

∫

Bj

h̃j(t)t
α−β
2 Itβ,jdt (3.30)

with

Itβ,j = (−1)β
∫

R

e−i(aj+εt1)
√
ω2+κ2δ(β)(ω) dω.

To solve equations (3.29), as in Subsection 3.2.3, we truncate them beyond a non-

negative integer constant K. First, we set

cn :=

m∑

j=1

K∑

α=0

ναj (
n
α)b

n−α
j , ∀n ∈ N. (3.31)

According to (3.29), we can see that, for n ≤ K

R(n, f, g) =
m∑

j=1

n∑

α=0

ναj (
n
α)b

n−α
j =

m∑

j=1

K∑

α=0

ναj (
n
α)b

n−α
j = cn.

Moreover, by a simple calculation done as in (3.19) replacing aj by aj + εt1, we can

prove that, for κ large enough, Itβ,j = 0 when β = 2ℓ + 1 and Itβ,j = O
(

1
κℓ

)
when

β = 2ℓ. From this and the definition of ναj in (3.30), we can check that, if τ is the

parameter defined by

τ = max

(
ε,

1√
κ

)
,

then, for K > n,

R(n, f, g) =

m∑

j=1

n∑

α=0

ναj (
n

α)b
n−α
j = cn +O (τ r)
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where

O (τ r) =

m∑

j=1

n∑

α=K+1

ναj (
n
α)b

n−α
j , with r =





K + 4 if K is even

K + 3 if K is odd.

Finally, for κ > 1, ε < 1, choosing an integer K such that τ r is small enough, we

approximate the coefficients cn by R(n, f, g). Then, we determine the quantities

m, bj, ν
α
j by solving the algebraic equations (3.31), by means of the identification

algorithm developed in Chapter 2 and recalled in Subsection 3.2.3.

3.4. Multi-Frequencial case

In this section, we consider the case having the possibility of using multiple frequen-

cies in order to resolve the inverse problem, the sources reconstruction in (3.1). In

other words, our goal is to identify F in (3.1) by varying the wavenumber κ, from

a single corresponding Cauchy data (fκ, gκ) := (uκ|Γ ,
∂uκ
∂ν |Γ). In such a case, to re-

construct the source parameters using the algebraic method, the resolution is direct

where one needs neither to transform the equation under study (3.1) nor to pass to

the three-dimensional space.

This sections is divided into five subsections. After presenting the principle of the

method in Subsection 3.4.1, we treat, in Subsection 3.4.2, the case with monopolar

sources (3.2) and then propose an algebraic algorithm in Subsection 3.4.3. Later, in

Subsection 3.4.4, we present the identification method over the possible extension

to multipolar sources(3.46). Finally, Subsection 3.4.5 deals with the case of sources

with small supports (3.3).

3.4.1. Statement of the inverse problem

Let K be the set of M wavenumbers given by

K = {κ1, κ2, · · · , κM}, M ∈ N
∗.
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3. 2D Stationary Inverse Source Problem

For n = 1, · · · ,M , we consider the elliptic problem

∆uκn + κ2nuκn = F (3.32)

and we define the operators

Λκn(F ) = (uκn |Γ,
∂uκn
∂ν |Γ

).

Then, the inverse source problem considered is formulated as:

Given M Cauchy data (fκn , gκn) ∈ H
1
2 (Γ)×H− 1

2 (Γ), determine F such that

Λκn(F ) = (fκn , gκn) for all n = 1, · · · ,M.

In the following, based on the former work [EBN11b] and the methodology used in

Chapter 2, we propose an algebraic method allowing to solve this inverse problem in

the case of monopolar sources, multipolar sources and sources with small supports.

3.4.2. Pointwise sources

First, we begin by establishing an algebraic relationship between (m,λj ,Sj) and the

Cauchy data. For this, we need to introduce, for any real κ ≥ 0, the following space

Hκ = {v ∈ H1(Ω) : ∆v + κ2v = 0}

and define, for all (f, g) ∈ H
1
2 (Γ)×H− 1

2 (Γ) and v ∈ Hκ, the operator R as follows

R(v, f, g) =

∫

Γ

(
gv − f

∂v

∂ν

)
ds. (3.33)

Multiplying equation (3.32)-(3.2) by v, element of Hκ, integrating by parts and using

Green’s formula lead to

R(v, fκ, gκ) =

m∑

j=1

λjv(Sj) for all v ∈ Hκ. (3.34)

Here, (fκ, gκ) presents the corresponding Cauchy data of uκ the solution of (3.32).
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3.4. Multi-Frequencial case

Now, for each κ ∈ K, we consider, the function

vdκ(x, y) = eiκd·X (3.35)

where

X = (x, y), d = (d1, d2) with d21 + d22 = 1.

Replacing v by vdκ in (3.34), one obtains

R(vκ, fκ, gκ) =
m∑

j=1

λje
iκd.Sj ∀κ ∈ K. (3.36)

This equation can be solved in order to determine m, λj and Sj. To do so, we fix a

real number κ0 > 0, choose the variable wavenumbers in K as

κn = nκ0, n = 1, · · · ,M

and take the number M as

M = 2m̄, m̄ being a known upper bound of the number of sources.

Under these assumptions, equation (3.36) is written as

cn := R(vdκn , fκn , gκn) =

m∑

j=1

λj(e
iκ0d.Sj)n for n = 1, · · · , 2m̄. (3.37)

Therefore, the identification process is attained in two steps.

The first step consists in determining the number of source, through the rank of the

following Hankel matrix:

Hd
m̄ =




c1 c2 · · · cm̄

c2 c3 · · · cm̄+1

...
...

...
...

cm̄ cm̄+1 · · · c2m̄−1



. (3.38)

More precisely, if we assume that the points eiκ0d.Sj , for j = 1, · · · ,M , are mutually
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distinct, namely the direction d = (d1, d2) satisfies

(H2) d · (Sj − Sl) 6= 2qπ
κ0
, ∀ j 6= l, q ∈ Z

then, we have the following result.

Theorem 12. Let Hd
m̄ be the Hankel matrix defined in (3.38) where m̄ is a known

upper bound of m. Under hypothesis (H2), we have

rank
(
Hd
m̄

)
= m.

∗ ∗ ∗
Proof. The proof is similar to that done in [Theorem 4, Chapter 2]. First, we rewrite

the algebraic formulae (3.37) in the matrix form

ξn = AnΛ, for all n = 1, · · · , m̄,

where

ξn = (cn, · · · , cm̄+n−1)
t, Λ = (λ1, · · · , λm)t, (3.39)

and for all n ∈ N, An is the following m̄×m Vandermonde matrices

An =




(eiκ0d.S1)n · · · (eiκ0d.Sm)n

(eiκ0d.S1)n+1 · · · (eiκ0d.Sm)n+1

...
. . .

...

(eiκ0d.S1)m̄+n−1 · · · (eiκ0d.Sm)m̄+n−1




. (3.40)

On the other hand, if we denote by D the diagonal matrix

D = diag(eiκ0d.S1 , · · · , eiκ0d.Sm) (3.41)

one gets, for all n ∈ N,

An+1 = AnD = A1D
n

and therefore
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3.4. Multi-Frequencial case

ξn = A1D
n−1Λ for all n = 1, · · · , m̄. (3.42)

Then, using (3.42), one can rewrite the Hankel matrix Hd
m̄ as

Hd
m̄ = A1[Λ,DΛ, ...,Dm̄−1Λ] = A1T (A0)

t

where (A0)
t is the transpose matrix of A0 and T = diag(λ1, · · · , λm). From (H2) and

the fact that λj 6= 0, for j = 1, · · · ,m, we can check that rank(A0)
t = m and that

the matrix T is nonsingular. This implies that T (A0)
t is surjective and therefore we

have rank(A1T (A0)
t) = rank(A1). Finally, using the fact rank(A1) = m, we obtain

the desired result. 2

The second step consists in determining the position of the monopolar sources, by

means of the eigenvalues of the companion matrix:

Bd =




0 1 · · · 0 0

0 0 1 · · · 0
...

...
. . .

. . . 0
...

...
. . .

. . . 1

q1 q2 · · · · · · qm




, (3.43)

where the vector Q = (q1, ..., qm)
t is obtained by solving the linear system Hd

mQ =

ξm+1, with ξm+1 defined as in (3.39) replacing m̄ by m. More precisely, we have the

following theorem.

Theorem 13. Let Bd be the companion matrix defined in (3.43). Assume that the hy-

pothesis (H2) is satisfied, thenBd admitsm simple eigenvalues represented by eiκ0(d1aj+d2bj),

for j = 1, · · · ,m, where aj and bj are the coordinates of the positions Sj.

∗ ∗ ∗
Proof. Since as we have shown in Theorem 12 that the rank of Hd

m̄ is m, we replace

in ξn and An (defined in (3.39) and (3.40)) m̄ by m. Then, from (3.42), we can
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3. 2D Stationary Inverse Source Problem

easily derive the following relations:

ξn+1 = A1D
nΛ

= A1D(A1)
−1A1D

n−1Λ

= Bdξn

where we have set

Bd = A1D(A1)
−1.

Here, the matrix A1 is invertible since eiκ0d.Sj are assumed distinct (respecting (H2)).

Moreover, since rank(Hd
m) = m, the family (ξk)k=1,...,m forms a basis of Cm and conse-

quently the m×m complex matrix Bd is given explicitly by (3.43) and its eigenvalues

are those of the diagonal matrix D defined in (3.41). 2

Remark 23. Note that, in order to obtain the 2D location of the monopoles, we use

the previous theorem, taking consecutively in (3.35) the direction d as d = (1, 0) and

d = (0, 1) that give us the x− and the y−coordinates of Sj. In the case where these two

directions do not verify (H2), we can choose two other directions, denoted d = (d1, d2)

and e = (e1, e2), to determine the source positions, by solving the corresponding system

of 2m equations with 2m unknowns aj and bj .

Theorems 12 and 13 suggest that if an upper bound m̄ of m is known, one can

establish an algorithm to identify, the coefficients m and eiκ0d.Sj , for j = 1, · · · ,m.

Moreover, λj can be determined by solving the linear systems A1Λ = ξ1. This allows

us to obtain the coefficients m, aj , bj and λj , as suggested in the following algorithm.

3.4.3. Algebraic algorithm

Step 1. Let m̄ be an upper bound of the number of sources and consider a fixed

wavenumber κ. For each wavenumber κn = nκ0, n = 1, · · · , 2m̄, we use a single

given Cauchy data (fκn , gκn) on the boundary Γ and we compute c1, c2, · · · , c2m̄ tak-

ing the direction d consecutively as d1 = (1, 0) and d2 = (0, 1). Then, the number

m can be determined as the rank of one of the two Hankel matrices Hdi
m̄ related to

di, i = 1, 2. This rank is estimated using the Singular Value Decomposition method

with an appropriate threshold, following [Han98], see Section 3.5 for more details
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3.4. Multi-Frequencial case

concerning the choice of the threshold.

Step 2. Solve the linear system Hd
mQ = ξm. The coordinates aj and bj of the m

monopolar sources are obtained as

aj =
1

iκ0
ln (βj,1) +

2qπ

κ0
, q ∈ Z (3.44)

and

bj =
1

iκ0
ln (βj,2) +

2qπ

κ0
, q ∈ Z (3.45)

where βj,1 and βj,2, j = 1, · · · ,m represent the m simple eigenvalues of the matrix B

with d = (1, 0) and d = (0, 1) respectively.

Step 3. The vector Λ is, then, easily obtained by solving the system A1Λ = ξ1.

Remark 24. Note that, in Step 2, the eigenvalues of the matrix Bdr , r = a, b, allow us

to identify only the mesh points

(
1

iκ0
log (βj,a) +

2pπ

κ0
,
1

iκ0
log (βj,b) +

2qπ

κ0

)
, (p, q) ∈ Z

2.

To find the parameters qa, qb, satisfying the equalities (3.44) and (3.45), we, first, choose

the mesh points belonging in Ω and then select, among those, the ones verifying the 2m

underlying equations satisfied by aj and bj considering other directions of d.

3.4.4. Extension to multipolar sources

The proposed algorithm developed in the previous subsection can be extended even

over multipolar sources of the form

F =

L∑

ℓ=1

Nℓ∑

j=1

Kℓ∑

α=0

λ
{α1,α2}
j,ℓ

∂α

∂α1
x ∂α2

y
δSℓ

j
(3.46)

where δS stands for the Dirac distribution at the point S, the quantities L, N ℓ, Kℓ

are integers, the coefficients λ
{α1,α2}
j,ℓ are scalar quantities and α = α1 + α2 with

(α1, α2) ∈ N2. The points Sℓj = (aℓj, b
ℓ
j) ∈ Ω and the orders of derivation Kℓ are,

respectively, assumed to be mutually distinct.
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3. 2D Stationary Inverse Source Problem

In this case, these sources could be recovered using the techniques employed in Sub-

section 3.4.2. Indeed, multiplying (3.32)-(3.46) by the test functions vκ (defined in

(3.35)) and assuming that κn = nκ0, for n = 1, · · · , 2J̄ , where κ0 is a fixed positive

wavenumber and J̄ is a positive integer, we get the following algebraic relationships:

cn := R(vκn , fκn , gκn) =

L∑

ℓ=1

Nℓ∑

j=1

Kℓ∑

α=0

ναj,ℓn
α(Pℓj)

n (3.47)

where R is the operator defined in (3.33),

ναj,ℓ = (−1)α(iκ)α
∑

α=α1+α2

dα1
1 dα2

2 λ
{α1,α2}
j,ℓ and Pℓj = eiκ0d.S

ℓ
j .

The main objective of the following consists in establishing a general algebraic method

for solving equations (3.47), allowing us to generalize Theorem 12 and Theorem 13.

Indeed, assume that we know an upper bound J̄ for the number

J =

L∑

ℓ=1

(Kℓ + 1)N ℓ.

Define, for n = 1, · · · , J̄ , the complex vectors

ξn = (cn, · · · , cJ̄+n−1)
t, Λ = (ν̄1, ..., ν̄L)

t

where, for all ℓ = 1, · · · , L, we have

ν̄ℓ = (ν̄0ℓ , ..., ν̄
Kℓ

ℓ ) with ν̄αℓ = (να1,ℓ, · · · , ναNℓ,ℓ) for all α = 0, · · · ,Kℓ,

and consider, for all n ∈ N, the complex matrices An, of size J̄ × J

An = (Vn,1, · · · , Vn,L) (3.48)

with Vn,ℓ = (U0
n,ℓ, · · · , UK

ℓ

n,ℓ ), where, for α = 0, · · · ,Kℓ, Uαn,ℓ are the confluent J̄ ×N ℓ

Vandermonde matrices
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3.4. Multi-Frequencial case

Uαn,ℓ =




nα(Pℓ1)
n · · · nα(PℓNℓ)

n

(n+ 1)α(Pℓ1)
n+1 · · · (n+ 1)α(PℓNℓ)

n+1

...
. . .

...

(J̄ + n− 1)α(Pℓ1)
n+J̄−1 · · · (J̄ + n− 1)α(PℓNℓ)

n+J̄−1




.

Let cn be the coefficients defined in (3.47) and introduce the Hankel matrix

HJ̄ =




c1 c2 · · · cJ̄

c2 c3 · · · cJ̄+1
...

...
...

...

cJ̄ cJ̄+1 · · · c2J̄−1




(3.49)

and the following multi-diagonal matrices

Īℓ =




(00)ν
0
ℓ (10)ν

1
ℓ · · · (K

ℓ

0 )ν
Kℓ

ℓ

(11)ν
1
ℓ (21)ν

1
ℓ ... (K

ℓ

1 )ν
Kℓ

ℓ 0
...

... . .
. ...

(K
ℓ−1

Kℓ−1)ν
Kℓ−1
ℓ ( Kℓ

Kℓ−1)ν
Kℓ

ℓ · · · 0

(K
ℓ

Kℓ)ν
Kℓ

ℓ 0 · · · 0




for ℓ = 1, · · · , L

(3.50)

where, for α = 0, · · · ,Kℓ,

ναℓ = diag(να1,ℓ, · · · , ναNℓ,ℓ).

As in Subection 3.4.2, we propose an identification processes in two steps.

The first step consists in determining the number of sources by means of the following

theorem.

Theorem 14. Let HJ̄ be the Hankel matrix defined in (3.49) where J̄ is a known upper

bound of J . Assume (H2) is verified, then, we have

rank (HJ̄) =
L∑

ℓ=1

(Kℓ + 1)N ℓ if and only if νK
ℓ

j,ℓ 6= 0 for j = 1, ..., N ℓ, ℓ = 1, ..., L.
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3. 2D Stationary Inverse Source Problem

∗ ∗ ∗
Proof. The proof is similar to that of Theorem 12. Indeed, first, from (3.48), we

begin by rewriting the algebraic formulae (3.47) in a matrix form

ξn = AnΛ, for n = 1, · · · , J̄ . (3.51)

Furthermore, if we denote, for ℓ = 1, · · · , L, by Tℓ the block upper triangular complex

matrix

Tℓ =




(00)DPℓ (10)DPℓ (20)DPℓ
· · · (K

ℓ

0 )DPℓ

0 (11)DPℓ (21)DPℓ
· · · (K

ℓ

1 )DPℓ

0 0
. . .

. . .
...

...
. . .

. . . (K
ℓ−1

Kℓ−1)DPℓ ( Kℓ

Kℓ−1)DPℓ

0 0 · · · 0 (K
ℓ

Kℓ)DPℓ




(3.52)

with

DPℓ
= diag(Pℓ1, · · · ,PℓNℓ),

one gets, using the following binomial formula

α∑

j=0

(αj)n
j = (n+ 1)α, that

Vn+1,ℓ = Vn,ℓTℓ, ∀n ∈ N.

From the definition of An (see (3.48)), we can check that for

T = diag(T1, · · · , TL) (3.53)

we have

An+1 = AnT = A1T
n, ∀n ∈ N

and therefore, from (3.51), one gets

ξn = A1T
n−1Λ, for n = 1, · · · , J̄ . (3.54)
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3.4. Multi-Frequencial case

Now, thanks to (3.54), one can verify, by a simple calculation, that

HJ̄ = A1[Λ, TΛ, ..., T
J̄−1Λ] = A1Ī(A0)

t

with (A0)
t the matrix transpose of A0 and

Ī = diag(Ī1, · · · , ĪL)

where Īα, for α = 0, · · · ,Kℓ, are defined in (3.50). The rest of the proof is done as in

the end of the proof of Theorem 12. 2

The second step consists in determining the location of the point sources. Henceforth,

we replace J̄ by J in the quantities defined above. Thus, from (3.54), we can easily

derive the relations:

ξn+1 = Bξn for n = 1, · · · , J̄ ,

where we have set

B = A1T (A1)
−1. (3.55)

Here, the matrix A1 is invertible, thanks to the assumption (H2). Moreover, since

rank(HJ) = J , the family (ξn)n=1,...,J forms a basis of CJ , so the J × J complex

matrix B is given explicitly by

B =




0 1 · · · 0 0

0 0 1 · · · 0
...

...
. . .

. . . 0
...

...
. . .

. . . 1

q1 q2 · · · · · · qJ




(3.56)

where the vector Q = (q1, ..., qJ )
t is obtained by solving the linear system HJQ =

ξJ+1. Thus, the points Pℓj are given by the following theorem, which generalizes The-

orem 13.

Theorem 15. Let B, be the companion matrices defined in (3.56). Assume (H2) and

that νK
ℓ

j,ℓ 6= 0 for j = 1, ..., N ℓ and ℓ = 1, ..., L . Then
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3. 2D Stationary Inverse Source Problem

1. B admits N ℓ eigenvalues of multiplicity Kℓ + 1 for ℓ = 1, ..., L.

2. The N ℓ eigenvalues of multiplicity Kℓ + 1 are the points Pℓj .

∗ ∗ ∗
Proof. The proof of this theorem follows from (3.52), (3.53) and (3.55).

Thanks to Theorem 14, Theorem 15 and using the same algorithm detailed in the

Subsection 3.4.3, we can identify the locations Sℓj . Moreover, in order to determine

ναj,ℓ, it is sufficient, for example, to solve the linear systems A1Λ = ξ1.

3.4.5. Sources with small support

In this subsection, we focus on the reconstruction of sources having compact support

within a finite number of small subdomains of form (3.3), using multiple frequencies.

The method proposed allows to solve the inverse source problem stated in Subsection

3.4.1 and particularly finding the number m, the points Sj and some characteristics

of the domains Dj .

We proceed as in Subsection 3.4.2, we begin by multiplying equation (3.32)-(3.3)

by the test functions vκ (defined in (3.35)), integrating by parts and using Green’s

formula, we get

R(vκ, fκ, gκ) =
m∑

j=1

∫

Dj

hj(X)eiκd.X dX.

where X = (x, y) and R is the operator defined in (3.33). Then, using the change of

variable X = Sj + εt, with t = (t1, t2), leads to

R(vκ, fκ, gκ) =

m∑

j=1

µε,κj eiκd.Sj

where

µε,κj = ε2
∫

Bj

h̃j(t)e
iεκd.t dt with h̃j(t) = hj(Sj + εt).

As in Subsection 3.4.4, replacing κ by κn, where κn = nκ0, for n = 1, · · · , 2J̄ , with

κ0 is a fixed positive constante and J̄ is a positive integer, we obtain the algebraic
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3.4. Multi-Frequencial case

relationships related to these source parameters and the Cauchy data

R(vκn , fκn , gκn) =
m∑

j=1

µε,κnj

(
eiκ0d.Sj

)n
. (3.57)

Using the Taylor development of the exponential with respect to ε, we know that for

0 < ε < 1 and non-negative integer K, we have

µε,κnj =

K∑

α=0

ναj n
α +O(εK+3)

where

ναj = ε2+α
(iκ0)

α

α!

∫

Bj

(d.t)αh̃j(t) dt.

Replacing µε,κnj by its Taylor development in (3.57), we get

R(vκn , fκn , gκn) =

m∑

j=1

K∑

α=0

ναj n
α
(
eiκ0d.Sj

)n
+O(εK+3).

Now, for a given positive ε < 1, we choose a fixed integer K such that εK+3 is small

enough and we assume that we know an upper bound J̄ of (m + 1)K. Then, we

approximate the coefficients

cn =

m∑

j=1

K∑

α=0

ναj n
α
(
eiκ0d.Sj

)n
for n = 1, · · · , 2J̄ (3.58)

by R(vκn , fκn , gκn). Finally, we solve the algebraic relationships (3.58) using the

same algorithm developed in the previous subsection to recover m, Sj and ναj .

Note that, the coefficients ναj are capable of giving some information over the domain

Bj. Thus, one can obtain, up to a certain ε, for instance, certain quantities related to

the mass or the moment of Bj .

Remark 25. In the particular case where Dj = Sj + Bj , with the domains Bj are

hollow or solid balls of center (0, 0) and radii rj0, r
j
1, namely

Bj = {(x, y) ∈ R
2 : 0 ≤ rj0 <

√
x2 + y2 ≤ rj1}
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3. 2D Stationary Inverse Source Problem

and taking the terms hj as scalars, the points Sj, their number and quantities related

to hj are easily recovered. This is done as in [EBN11b, Theorem 2], using the following

mean value relation given in [CH89, Page 289], valid on all functions v solution of

∆v + µv = 0 in Ω

v(S0)J0(r
√
µ) =

1

2πr2

∫

C
vdC

where Jυ(x) is the υth Bessel function, and C is the circle of center S0 and radius r

entirely contained in Ω.

Using this theorem, these sources are reconstructed using algebraic relations of form

(3.34).

3.5. Numerical simulations

This section studies numerically the robustness of the algebraic algorithm in the

multi-frequential case with respect to the different parameters interfering in the re-

construction process. In this numerical study, the base wave coefficient κ0 is fixed

at 1.85 m−1 and Γ is assumed to be a unit circle whose center is the origin O. The

Cauchy data (fκn , gκn) on the boundary Γ are obtained by means of the fundamental

solution of Helmholtz equation in R2. In fact, fκn and gκn are respectively the trace

and the normal trace of wκn on Γ, where wκn is the fundamental solution correspond-

ing to F (given by (3.2)), defined in the free space as:

wκn(X) =

m∑

j=1

λjw
0
κn(X − Sj), n = 1, ..., m̄

where

w0
κ(X) =

1

4i
H

(1)
0 (κρ) and X = (x, y)

with H
(1)
0 is the Hankel function of first kind of order zero and ρ =

√
x2 + y2. More-

over, the coefficients cr, defined in (3.36), are numerically computed using polar

coordinates over a uniform meshing of distributed points on the unit circle.

The reconstruction of the number of sources is the major step in the identification

process. Theoretically, their number is the rank of the Hankel matrices Hd
m̄ which is

numerically determined using SVD method with an appropriate threshold. However,

since Hd
m̄ is an ill-conditioned matrix, a regularization approach is employed. In fact,

the (m + 1)th singular value, σm+1, of Hd
m̄ is theoretically zero, whereas when the
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3.5. Numerical simulations

perturbed Hd
m̄ + δHd

m̄ is given, one obtains a non zero σm+1. Therefore, based on the

classical estimate,[Han98],

|σm+1| ≤ ‖δHd
m̄‖F , (3.59)

we truncate beyond a threshold inferior to ‖δHd
m̄‖F . Here, ‖ · ‖F is the corresponding

Frobenius norm and δHd
m̄ is the related perturbation matrix of Hd

m̄ that originates

from the noise in data as well as from the numerical quadrature error using a finite

number of sensors on Γ.

Remark 26. We draw the attention of the reader to the fact that in the case of M

sensors, the numerical error can be seen as noise equivalent to (2π/M) perturbation.

That is why, apart from the Subsection 3.5.1 dedicated to study the noise effect, we use

the Cauchy data as non-noisy ones to see the identification process in an approximately

ideal framework.

Remark 27. The calculation of ‖δHJ̄‖F is related to the numerical quadrature error.

In here and as mentioned in the previous chapter this computation is not exact since we

take into consideration just the numerical error (2π/M). Nevertheless, in reality, δHJ̄ is

computed as

‖δHJ̄‖F ≃ J̄

√
2π

M
β(κ0, sources)

where β is the error related to the wavenumber and to the source positions. Therefore,

in the following, we aren’t reasonably capable of using the truncation threshold ‖δHJ̄‖F
in the analysis of the impact of the wavenumber and the closeness of the sources over the

identification process, unless we have a precise knowledge of β. Consequently, it will be

used uniquely in the analysis of the impact of the number of sensors.

3.5.1. Determining number and position of monopole sources

In the following subsection, unless mentioned otherwise, we fix the number of monopoles

at 5 having fixed intensities λj = 1 with positions taken as in Table 3.1.

j (location ♯) 1 2 3 4 5

Sj (-0.7,0.3) (0.6,-0.3) (0.3,0.5) (-0.5,-0.4) (-0.1,0.0)

Table 3.1.: The source positions
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3. 2D Stationary Inverse Source Problem

a. Impact of the number of sensors

The mesh level represented by the number of sensors on the boundary has a great

impact on the identification process. Increasing the sensors gives more accessibility to

the Cauchy data pair and thus more specificity in the reconstruction process. Indeed,

varying the number of sensors from 25 to 100 sensors, we note that, as seen in Figure

3.2 and Figure 3.3, their increase ameliorates the identification of both the number

and the position of the monopoles. Moreover, we remark, based on that ‖δHdi
8 ‖F (see

Table 3.2) used for SVD truncation, that 5 monopoles can’t be reconstructed with less

than 50 sensors.

In addition to that, when projecting to the x−axis and the y−axis, we see that nu-

merically, as noticed in the previous chapter and seen in the left and right panels of

Figure 3.2, the number of sources is not the same on whatever axes where the projec-

tion is performed. This is due to the fact that the separability coefficient plays a role

in the identification process as studied in the following subsubsection. Indeed, even

with 100 sensors, the number of sources is ill-estimated in the y-projection, Figure 3.2

(right), since the sources projections are close. Therefore, to recover their number,

we consider the numerical rank of the two Hankel matrices Hdi
m̄ , i = 1, 2, obtained

respecting the truncation threshold defined in (3.59) and then we take the maximum

of these ranks as the desired number of sources.

Number of sensors 25 35 50 100

‖δHdi
8 ‖F ≃ 4.01 3.39 2.84 2.01

Table 3.2.: The Frobenius norm of δHd1
8 with respect to the number of sen-

sors

For a better clarification, we present the numerical results explicitly in Table 3.3.
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Figure 3.2.: Singular value of Hdi

8 on the x− and y− axis respectively for m = 5
with respect to the number of sensors.
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Figure 3.3.: The localization error projected on the x− and y− axis respectively
for m = 5 with respect to the number of sensors.

From now on, we fix our study to 50 sensors that enable us to recover precisely the

number and the location of up to 5 monopoles.
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3. 2D Stationary Inverse Source Problem

Number of sensors Estimated x-projection Estimated y-projection Localization Error level

25 1.5603 - 0.4287i 1.3052 - 0.3423i 0.6145
-0.1684 - 0.2029i 1.4591 - 0.2254i
-0.6806 + 0.0837i 0.4472 + 0.0772i
0.8598 - 0.1819i -0.0631 + 0.0047i
0.5905 + 0.2216i -0.3615 + 0.0183i

35 -0.7044 - 0.0971i -1.2070 - 1.4298i 0.1485
-0.6225 +0.0383i 0.2916 - 0.2491i
-0.0183 - 0.0899i -0.3756 + 0.0178i
0.6141 - 0.0072i 0.0665 + 0.1417i
0.2739 + 0.1010i 0.4867 + 0.0251i

50 0.6000 + 9.1e-07i 0.4999 + 1.9e-05i 1.6e-4
0.3000 + 4.6e-06i 0.2999 - 0.0004i
-0.1000 + 1.8e-05i 0.0004 + 0.0004i
-0.7000 + 1.0e-05i -0.4001 - 0.0003i
-0.5000 - 3.2e-05i -0.3009 - 0.0003i

100 0.6000 - 7.1e-13i 0.5000 + 9.1e-12i 2.9e-11
0.3000 + 5.0e-12i 0.3000 - 2.0e-11i
-0.1000 - 3.2e-12i 7.1e-11 - 3.3e-11i
-0.7000 - 8.3e-12i -0.4000 - 1.8e-12i
-0.5000 - 1.1e-11i -0.3000 +7.8e-11i

Table 3.3.: The calculated xy− source positions and their error for m = 5
when varying the number of sensors

b. Impact of the base wavenumber

The left and right panels of Figure 3.4 show singular values of Hd1
8 and the local-

ization error when changing the base wavenumber κ0. We observe that when as we

enlarge the base wavenumber, the number is wrongly-estimated and the localization

error increases. This result could be explained since we use m̄×κ0 wavelengthes and

the number of points per wavelength defined by

p ≈ number of sensors

κ0

decreases as κ0 increases. We observe that when κ0 is higher than 3m−1, we don’t

obtain the desired results anymore. Above this value, the exact truncation becomes

impossible.
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Figure 3.4.: Singular values of Hd1

8 (left) and the localization errors (right) pro-
jected on the x−axis for m = 5 with 50 sensors.

c. Impact of the noise

Reconstruction stability on the x − axis projection with respect to the noise level is

examined in this subsubsection. In fact, Gaussian noise is added to f (and g) with a

standard deviation that varies from 10−2 to 100 % (see Figure 3.5). We have noted

studying the SVD of the Hankel matrix Hd1
m̄ that the number of monopoles are badly-

estimated when the percentage of noise exceeds 100%. Moreover, we note that the

localization error increases gradually as the percentage of the noise added increases.

Indeed, the error is of order 10−1 whereas in a noise free framework, we had an error

of order 10−4.
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Figure 3.5.: Singular values of Hd1

8 (left) and the localization errors (right) pro-
jected on the x−axis with 50 sensors.
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CHAPTER 4

Non-Stationary BLT Source Problem

One reason why mathematics enjoys special esteem,

above all other sciences, is that its laws are absolutely

certain and indisputable, while those of other sciences

are to some extent debatable and in constant danger of

being overthrown by newly discovered facts.

(Albert Einstein)

The object of this chapter is to study an inverse source problem over the parabolic

equation (1.11) where the source term is a non-stationary one. Particulary, we con-

sider monopoles having time-dependant intensities.

Section 4.1 states the inverse problem of the parabolic equation we are concerned

with. Then, we present briefly the different source identification techniques

used previously in the literature. Finally, we specify the type of sources to be

considered in this chapter.

Section 4.2 presents the forward problem regularity in such a case in order to specify

the space of the boundary measurement.

Section 4.3 is intended to prove the uniqueness of the inverse problem with the

specified source form.

Section 4.4 states the principle of the identification method to be used.

Section 4.5 deals with the algebraic method used to determine the number and the

position of the sources.
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4. Non-Stationary BLT Source Problem

Section 4.6 proposes an optimization method to reconstruct the sources variable in-

tensities based on a Kohn-Vogelius functional and calculates the needed gradi-

ent using the adjoint state method.

Section 4.7 presents the identification method based on both previous sections. We

also pass by the resolution of a forward one-dimensional parabolic system used

in the test functions of the algebraic algorithm.

Section 4.8 is consecrated to show the numerical results for the reconstruction of

non-stationary monopoles. Other effects are considered, especially a compari-

son is done with the stationary case considered in Chapter 2.
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4.1. Problem Statement

4.1. Problem Statement

In this chapter, we aim to solve an inverse source problem to recover a source F in the

parabolic equation (1.11). Since, in the BLT study, the intensity of the bioluminescent

source varies [MV+12], it is more natural to consider the case where the source term

has a time-variable moment "intensity" (variable orientation and amplitude) with a

time-fixed position. Moreover, another important application related to this diffusion

problem is that related to the identification of the pollution sources in a contaminant

[OL01]. In fact, this chapter forms a revisit of the work [EBHD02], motivated by the

latter application, where, in here, our objective is to provide a more complete study

in particular by developing a new algebraic algorithm and by resolving the needed

optimization problem.

Indeed, consider the region of study Ω ⊂ R3, an open bounded domain with a suf-

ficiently smooth boundary Γ and a fixed time T > 0. Let QT be the space-time

domain Ω× (0, T ) and ΣT the lateral boundary Γ× (0, T ). The inverse problem, we

are concerned with, is the problem of determining a source F̃ (X, t),X = (x, y, z), in

the equation (1.4) satisfied by ũ over QT given the boundary condition g− and the

measurement g.

Remark 28. Note that the general case having a non-null g− can be employed. How-

ever, due to the absence of an entering light source in the BLT study, the boundary

condition g− will be taken identically null, without loss of generality.

Simplified Form

For reasons to explain later in Section 4.5, we simplify equation (1.4) using a conve-

nient transformation. In fact, applying the following change of variable over ũ, the

solution of (1.4),

u(X, t) = ũ(X, t)ecµat, (4.1)

the equation (1.4) can be simplified into the parabolic equation





1
c
∂u
∂t (X, t)− σ∆u(X, t) = F (X, t) in QT

u(X, 0) = 0 in Ω

u(X, t) + 2σ ∂u∂ν (X, t) = 0 on ΣT

(4.2)
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4. Non-Stationary BLT Source Problem

where

F (X, t) = F̃ (X, t)ecµat.

Here, the coefficient σ is supposed to be a fixed known constant and ν is the outward

normal unit vector to Γ. The problem becomes thus the problem of determining the

source F in the parabolic problem (4.2) from the measurement f := u|ΣT
prescribed

on the boundary ΣT of QT .

More precisely, we begin by defining, for all F in (4.2) the application

Λ : F → u|ΣT
.

The inverse problem is formulated as:

given f ∈ L2(ΣT ) find F such that Λ(F ) = f.

The choice of the space L2(ΣT ) will be justified according to the nature of the con-

sidered sources.

As mentioned previously, one of the major difficulties of inverse source problems

from boundary measurements is the problem of uniqueness. To overcome this diffi-

culty, one must assume some a priori information on the sources, depending on the

underlying physical problem.

4.1.1. Different identification Techniques

Time independent sources F (X, t) = f(X) were treated by Cannon in [Can68] us-

ing the spectral theory and by H. Engl,O.Scherzer and M. Yamamoto [ESY94] us-

ing the approximated controllability of the heat equation and generalized by Ya-

mamoto [Yam93; Yam94] to the sources of the form F (X, t) = α(t)f(X), f ∈ L2,

where α ∈ C1[0, T ] is known with α(0) 6= 0. Only time dependant sources F = F (t)

were studied in [FL06]. A moving source whose spatial support is contained within

a ball with a given radius is treated by Kusiak and Weatherwax [KW08] where they

make use of an array of distributed observations in the space available at various

instants in time. Hettlich and Rundell [HR01] considered a 2D problem for the heat

equation with the sources F (X, t) = χD(X), where D is a subset of a disk. Moreover,

the fundamental solution method for reconstruction of certain source structures were

considered in[Lin+06; YFY08]. For pointwise sources, an optimization method was

applied in [EBHDH05; ABEB11] to get non-stationary monopoles and an algebraic
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4.2. Forward problem regularity

method was utilized in [EBHD02] to recover stationary monpolar sources with time-

varying intensities. In the latter papers, the authors used a method based on the

assumption that the sources become inactive after a given time T ∗ < T and the use

of the null contrability approach.

4.1.2. Source form

In here, as in [EBHD02], we assume that the source F is a finite linear combination

of monopolar sources having each a time-varying intensity. In fact, this source form

may represent the early stage of a tumor development and thus helps in the early

diagnosis of a cancer in the BLT method. Therefore, it is characterized by

F =

m∑

j=1

λj(t)δSj
(4.3)

where δS stands for the Dirac distribution at point S and m is an integer. The points

Sj = (Sj,a, Sj,b, Sj,c) ∈ Ω are assumed to be mutually distinct and the coefficients

λj(t) are supposed to be non-zero functions that belong to L2(Ω). Then, the inverse

problem becomes the problem of determining the number of sources m, their loca-

tions Sj and the coefficients λj(t) using boundary measurements.

A novelty, in here, with respect to former works, is the nonnecessity of neither the

inactivity of the intensities after a certain time T ∗ nor their positivity.

4.2. Forward problem regularity

In order to study the inverse problem, one must attain the boundary measurement in

its convenient space and hence the need to study the forward problem regularity.

Before stating the regularity of the direct problem, the following functional spaces

are needed:

The Lebesgue space of functions square integrable over Ω is denoted by L2(Ω). The

set of all functions u ∈ L2(Ω), such that for every multi-index α with |α| ≤ 2, the

weak derivative Dαu ∈ L2(Ω), is denoted by H2(Ω). We use also the vector valued

Sobolev space

H2,1(QT ) = {u ∈ L2
(
0, T ;H2(Ω)

)
∩H1

(
0, T ;L2(Ω)

)
}
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4. Non-Stationary BLT Source Problem

and for the positive reals r and s:

Hr,s(ΣT ) = L2
(
0, T ;Hr(ΣT )

)
∩Hs

(
0, T ;L2(ΣT )

)
.

For more details concerning these spaces, see [LMK72].

Forward Problem. Given the source term F (which means given m, λj(t) and Sj), the

forward problem consists in determining the trace u|ΣT
of the solution of the problem

(4.2).

In fact, let us consider, for m = 1, the Cauchy problem

1
c
∂ω
∂t − σ∆ω = λ(t)δS in R3 × (0, T )

ω(X, 0) = 0 in R3.

Its solution is given explicitly by

ω(X, t) =
Y (t)

(4πcσ)3/2

∫ t

0

cλ(τ)

(t− τ)3/2
e
− |X−S|2

4cσ(t−τ) dτ,

where Y is the Heaviside function. Let ϕ be the difference ω − u, solution to the

non-homogeneous initial-boundary value problem

1
c
∂ϕ
∂t − σ∆ϕ = 0 in QT

ϕ+ 2σ ∂ϕ∂n = q on ΣT

ϕ(X, 0) = 0 in Ω

where q = ω + 2σ ∂ω∂ν .

We see that ω is a C∞ function of (X, t) in R3\{S}× (0, T ). Consequently q is smooth

near the boundary ΣT , in particular, one has that q ∈ H
1
2
, 1
4 (ΣT ). Thus, according

to [[LMK72],Theorem 4.3,Theorem 2.1], one has ϕ ∈ H2,1(QT ) and consequently

ϕ|ΣT
∈ H

3
2
, 3
4 (ΣT ).

Because of the regularity of both ϕ and w on ΣT , one has that u|ΣT
∈ H

3
2
, 3
4 (ΣT ) and

therefore

u|ΣT
∈ L2(ΣT ).

We note that the same conclusion is drawn for m > 1. Then, one can define the

application

Λ(F ) = u
|ΣT

, (4.4)

which defines the forward problem.
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4.3. Identifiability issue

The inverse problem we are concerned with can then be stated as follows.

Inverse Problem. Given a function f ∈ L2(ΣT ), the goal is to determine m, Sj and

λj(t), such that

Λ(F ) = f. (4.5)

Definition 4.1. We say that f is a compatible data if the inverse problem (4.5) admits

a solution F .

∗ ∗ ∗

4.3. Identifiability issue

Uniqueness of the number m, the locations Sj and the intensities λj is shown in

[AEB12]. Therefore, in this work, we focus on, the identification issue which is the

objective of the following section and we simply give a brief reminder of the unique-

ness issue in this section.

Theorem 16. Let F ℓ, ℓ = 1, 2, be two sources of the form (4.3) and let uℓ be the

corresponding solutions of (4.2) such that f1 = f2. Then,

m1 = m2 = m

and there exists a permutation π of the integers 1, ...,m such that

S1
j = S2

π(j), j = 1, · · · ,m

λ1j (t) = λ2π(j)(t), ∀t ∈ (0, T ), j = 1, · · · ,m.
∗ ∗ ∗

Proof: The same logic as that done in order to prove the uniqueness in the stationary

case is employed here (see Proof in Subsection 2.2.1). Indeed, using the unique

continuation of Mizohata’s theorem [Miz58; SS87] and the regularity of the Dirichlet

problem, one gets

F 1 = F 2.
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4. Non-Stationary BLT Source Problem

Moreover, due to the linear independence of Dirac deltas, we obtain the uniqueness

of the number and the locations of the sources. Therefore, we have

m∑

j=1

(λ2j − λ1j)(t)δSj
= 0. (4.6)

We define, as done in [AEB12], for k = 1, ...,m,

wk(X, t) =





1 in V(Sk)× (0, T )

0 Otherwise

where V(Sk) is a neighborhood of the point Sk that doesn’t contain any Sj, j 6= k, j =

1, ...,m. Now, let (ϕi) be an orthonormal basis of L2(0, T ). Multiplying (4.6) by

wk(X, t)ϕi(t) and integrating over QT , we get

∫ T

0
(λ2k − λ1k)ϕi(t) dt = 0,

and thus we obtain

λ2k = λ1k ∀k = 1, · · · ,m

i.e. one proves that the source number, positions and intensities are uniquely deter-

mined using the boundary measurement f . �

4.4. The principle of the reconstruction method

As in the stationary case and since the two-dimensional space is harder to manipulate

with our approach than that of three-dimensional space, we will consider the domain

Ω in R3. Our identification method is a quasi-algebraic method composed of two

parts. The first one consists in determining the sources number and positions using

the algebraic method developed in Chapter 2 and the second part deals with the

identification of the source intensities by means of an optimization method over a

Kohn-Vogelius type functional.

First, since the source F is a finite linear combination of Dirac distributions, one has
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4.4. The principle of the reconstruction method

to consider the solution of (4.2) in a weak sense, that is

m∑

j=1

∫ T

0
λj(t)v(Sj , t)dt =

∫

ΣT

σ(
∂v

∂ν
+

v

2σ
)u dsdt+

1

c

∫

Ω
u(X, T )v(X, T ) dX, (4.7)

for every function v solution of the adjoint equation

1
c
∂v
∂t (X, t) + σ∆v = 0 in QT . (4.8)

To solve this inverse problem, we need the knowledge of the value of u(X, T ), unless

if we impose that the solution v of (4.8) satisfies

v(X, T ) = 0 inΩ. (4.9)

To overcome this difficulty, in [EBHD02; EBHDH05; AEB12], the authors opted for

the determination of the value of the unknown u(X, T ) using the fact that the in-

tensities λj(t) become inactive after a certain time T ∗ < T and applying the null

contrability approach.

In here, this approach isn’t employed where we opt for the choice of the condition

(4.9). Indeed, we introduce what one calls test functions, the solutions of (4.8) ver-

ifying the condition (4.9) and we denote by T the set of the test functions satisfying

(4.8-4.9). Defining the operator

R(v) =

∫

ΣT

σ(
∂v

∂ν
+

v

2σ
)u dsdt for all v ∈ T ,

and thanks to the identifiability issue, we know that there is a unique set of point

sources (m,Sj, λj) that satisfy the algebraic equations

R(v) =

m∑

j=1

∫ T

0
λj(t)v(Sj , t) dt for all v ∈ T . (4.10)

In the following, we will show how an appropriate choice of test functions unveils

the desired information.
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4. Non-Stationary BLT Source Problem

4.5. Recovering of point sources

The general idea behind our identification method is the projection of the problem

onto chosen test functions. This idea is not new, however our approach employs a

specific family of functions that allow a practical solution.

Assume that the domain Ω can be defined by:

Ω = {(x, y, z) ∈ R
3, a ≤ z ≤ b, (x, y) ∈ Dz},

where Dz is the intersection of the domain Ω and the plane of level z parallel to xOy.

Consider, now, the one-dimensional parabolic equation

1
c
∂ρ
∂t (z, t) + σρzz(z, t) = 0 in (a, b)× (0, T )

ρ(z, T ) = 0 in (a, b).
(4.11)

Remark 29. Note that without the use of the change of variables (4.1), the parabolic

equation (4.11) would have been

1

c

∂ρ

∂t
(z, t) + σρzz(z, t) + µρ(z, t) = 0 in (a, b) × (0, T ).

So, employing the test functions

van(x, y, z, t) = ρ(z, t)(x + iy)n, n ∈ N, (4.12)

the relation (4.10) becomes

αan =
m∑

j=1

µaj (P
a
j )
n for all n ∈ N, (4.13)

where

αan = R(van), µaj =

∫ T

0
λj(t)ρ(t, Sj,c)dt,

and P aj is the 2D projection of Sj on the xy− complex plane defined as

P aj = Sj,a + iSj,b.

Before solving the equations (4.13), we need to assure that the projections P aj are
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4.5. Recovering of point sources

mutually distinct, which is necessary in order to use the algebraic method proposed

below. Indeed, as mentioned before and without loss of generality, we can assume

that:

(H3) The projections onto the xy, yz and xz-planes, of points Sj are mutually

distinct.

Moreover, denote by P bj and P cj , the projections of Sj onto the yz and xz-complex

planes respectively. Then, using, in (4.10), the test functions

vbn = ρ(x, t)(y + iz)n and vcn = ρ(y, t)(x+ iz)n (4.14)

with vbn, v
c
n ∈ T , one has, as in (4.13), the following algebraic equations

αbn =
m∑

j=1

µbj(P
b
j )
n for all n ∈ N (4.15)

and

αcn =
m∑

j=1

µcj(P
c
j )
n for all n ∈ N (4.16)

where we note

αbn = R(vbn), µbj =

∫ T

0
λj(t)ρ(Sj,a, t)dt,

and

αcn = R(vcn), µcj =

∫ T

0
λj(t)ρ(Sj,b, t)dt.

Finally, bringing together the three equations (4.13), (4.15) and (4.16), we can write

αrn =

m∑

j=1

µrj(P
r
j )
n, r = a, b, c. (4.17)

Therefore, the problem is reduced to that of determining the parameters (m,Sj , µ
r
j)

from the knowledge of αrn for all n ∈ N. These parameters are reconstructed using

the algebraic method given in [EBHD00a] and revisited in Chapter 2 and presented

briefly below.

First, assume that we know an upper bound of the number of monopoles denoted by
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4. Non-Stationary BLT Source Problem

m̄ and define the m̄× m̄ Hankel matrix

Hr
m̄ =




αr0 αr1 · · · αrm̄−1

αr1 αr2 · · · αrm̄
...

...
...

...

αrm̄−1 αrm̄ · · · αr2m̄−2



. (4.18)

Then, the number of sources can be determined as stated in the theorem below.

Theorem 17. Let Hr
m̄ be the Hankel matrix defined in (4.18) where m̄ is a known

upper bound of m. Under hypothesis (H3), we have

rank (Hr
m̄) = m if and only if µrj 6= 0 for r = a, b, c.

∗ ∗ ∗

Proof: The proof is the similar to that proof of [Theorem 4, Chapter 2]. �

Remark 30. Observe that thanks to the maximum principle and an appropriate choice

of boundary conditions in (4.11), the corresponding functions ρ are positive. There-

fore, if the intensities λj are assumed to be positive, one assures the non-nullity of the

coefficients µaj .

To reconstruct the location of the sources, introduce the companion matrix

Br =




0 1 · · · 0 0

0 0 1 · · · 0
...

...
. . .

. . . 0
...

...
. . .

. . . 1

dr0 dr1 · · · · · · drm−1




(4.19)

where the vector Dr = (dr0, ..., d
r
m−1)

t is solution of the linear system

Hr
m̄D

r = ξrm

with ξrm = (αm, · · · , α2m−1)
t. Then, we obtain the source locations via the following

theorem:

Theorem 18. Letm be a non-negative integer. Then, the companion matrixBr, defined

in (4.19), admits m simple eigenvalues. These eigenvalues are the projections P rj of the

points Sj .
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∗ ∗ ∗

4.6. Recovering the intensity functions

This subsection deals with the identification of the intensities. At this step, the num-

ber m of the sources and the locations Sj are already obtained. Therefore, several

approaches for determining the intensities λj could be considered. Our choice, in

here, is to focus on the classical minimization problem using a Kohn-Vogelius objec-

tive functional.

4.6.1. Kohn-Vogelius’s fonctional

Let us denote by F (Sj, φ) the source of form (4.3) where φ = (λj(t))
m
j=1. Consider a

variant of the Kohn-Vogelius type objective function.

Indeed, introduce the objective functional

JKV (φ) =

∫

QT

σ|∇w|2dXdt+ 1

2c

∫

Ω
w2(X, T ) dX

with w = ur − ud where ur = ur(φ) satisfies the system





1
c
∂ur
∂t − σ∆ur = F (Sj , φ) in QT

f + 2σ ∂ur∂ν = 0 on ΣT

ur(X, 0) = 0 in Ω

(4.20)

and ud is the solution of





1
c
∂ud
∂t − σ∆ud = F (Sj , φ) in QT

ud = f on ΣT

ud(X, 0) = 0 in Ω

(4.21)
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Thus, w satisfies the homogenous parabolic equation

1

c

∂w

∂t
− σ∆w = 0 (4.22)

with the initial condition w(X, 0) = 0 and the boundary condition

w = ur − f on ΣT .

Multiplying (4.22) by w and then integrating over QT , we obtain that

JKV (φ) =

∫

ΣT

(f − ur)(σ
∂ud
∂ν

+
f

2
) dsdt. (4.23)

Our goal is to solve the optimization problem whose aim is to recover the optimal

intensities φ̃ in

JKV (φ̃) = min
φ∈[L2(0,T )]m

JKV (φ) (4.24)

Proposition 1. Let f ∈ L2(ΣT ) be a compatible data for the inverse problem (4.5).

Then, the minimization problem (4.24) is equivalent to the inverse problem (4.5).

Proof: Indeed, let φ̄ be the solution of the inverse problem (4.5) related to f . Then,

we have Λ(ur) = f i.e. ur |ΣT
= f = ud|ΣT

. Thus, we obtain w = 0 over ΣT and

consequently w is identically null over QT (since it verifies (4.22) with w(X, 0) = 0

over Ω). Therefore, one has

JKV (φ̄) = 0 = min
φ∈Φ

JKV (φ),

and consequently φ̄ is also the solution of the optimization problem (4.24).

On the other hand, let φ̃ be the global minimum of the optimization problem (4.24),

then

JKV (φ̃) ≤ JKV (φ) ∀ φ ∈ [L2(0, T )]m.

This leads us to have JKV (φ̃) = 0. Therefore, w(X, t) = c(t) in QT . Since w(X, 0) = 0,

one has w ≡ 0 over QT leading to

ur |ΣT
= f = ud|ΣT

.
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Then, we have

Λ(F (Sj, φ̃)) = Λ(F (Sj , φ̄)).

Therefore, due the injectivity of the application F → Λ(F ) (the uniqueness property),

one obtains φ̃ = φ̄. �

4.6.2. Calculation of the gradient ∇JKV

To solve the optimization problem (4.24) using the gradient or quasi-Newton meth-

ods, we need to calculate the gradient of the functional JKV with respect to φ. To do

so, we opt for the classical adjoint state method as follows.

Indeed, by means of the classical Lagrangian method, one can define λr and λd, the

adjoint states of ur and ud solutions of (4.20) and (4.21), as the respective solutions

of:





−1
c
∂λr
∂t − σ∆λr = 0 in QT

σ ∂λr∂ν = f
2 + σ ∂ud∂ν on ΣT

λr(X, T ) = 0 in Ω

(4.25)

and





−1
c
∂λd
∂t − σ∆λd = 0 in QT

λd = f − ur on ΣT

λd(X, T ) = 0 in Ω

(4.26)

Moreover, recall that the gradient ∇JKV of the functional JKV is such that

Jkv(φ+ φ1)− Jkv(φ) = (∇Jkv, φ1)L2 +O(|φ1|2L2)

with

φ1 =
(
hj
)m
j=1

.

Taking the linear part of Jkv(φ+ φ1)− Jkv(φ) leads to

(∇Jkv, φ1)L2 =

∫

Σ
σ(f − ur)

∂u1d
∂ν

dσ −
∫

Σ
σu1r(

∂ud + f)

∂ν
dσ (4.27)
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4. Non-Stationary BLT Source Problem

where the sensitivity functions u1r and u1d satisfy respectively the systems





1
c
∂u1r
∂t − σ∆u1r = F (Sj , φ1) in QT

σ ∂u
1
r

∂ν = 0 on ΣT

u1r(X, 0) = 0 in Ω

and





1
c
∂u1

d

∂t − σ∆u1d = F (Sj , φ1) in QT

u1d = 0 on ΣT

u1d(X, 0) = 0 in Ω.

According to the regularity of the compatible data f and the traces of ur and ud on

the boundary ΣT , the adjoint states λr, λd ∈ H2,1(QT ).

Finally, by integrating by parts the expression

∫

QT

[
λr(

∂u1r
∂t

− σ∆u1r) + λd(
∂u1d
∂t

− σ∆u1d)

]
dx dt,

equation (4.27) can be rewritten as

(∇Jkv, φ1)L2 =−
m∑

j=1

∫ T ∗

0

(
λn
(
Sj , t

)
+ λd

(
Sj, t

))
h1j dt

Therefore, the gradient of the Kohn-Vogeluis functional is given by:

∇JKV = − (λr(Sj, t) + λd(Sj, t))
m
j=1

4.7. The quasi-algebraic algorithm

Step 1: Calculation of the test functions

Since the test functions (4.12) used in the reconstruction method depends on ρ(z, t)

then one needs the resolution of the forward 1-D parabolic system (4.11). To assure
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4.7. The quasi-algebraic algorithm

the positivity of ρ, see Remark 30, numerically the boundary conditions are taken as:

ρ(a, t) = 0 on (0, T )

ρ(b, t) = h on (0, T ),
(4.28)

where h is a positive constant over (0, T ).

We note ψ(z, t) = p(z, t)− ρ(z, T − t), where p is defined as

p(z, t) =
z − a

b− a
h,

then, ψ satisfies

1
c
∂ψ
∂t (z, t)− σψzz(z, t) = 0 in (a, b) × (0, T )

ψ(z, 0) = p(z, 0) in (a, b)
(4.29)

with homogenous boundary conditions, with ψ(a, t) = ψ(b, t) = 0 over (0, T ).

Let V be the Hilbert space V = H1
0 ((a, b)), then, using integration by parts, we get,

for all v ∈ V ,
1

c

d

dt

∫ b

a
(ψ(t), v) dz + σ

∫ b

a

dψ(t)

dz

dv(t)

dz
dz = 0

The variational formulation is then defined as finding ψ that satisfies





1
c
d
dt(ψ(t), v) + a(ψ(t), v) = 0

ψ(0) = ψ0

(4.30)

in the distribution sense of for all v ∈ V . The bilinear form a : V × V → R is defined

as

a(ψ(t), v) = σ

∫ b

a

dψ(t)

dz

dv(t)

dz
dz.

Since the bilinear form a is continuous over V × V and coercive with respect to V

and the initial condition belongs to L2(0, T ), then, there exists a unique solution

ψ ∈ L2(0, T ;H1
0 ) ∩ C0(0, T, L2) satisfying (4.30).

To solve numerically this one-dimensional parabolic problem, we discretize the prob-

lem where we consider finite dimensional approximations that approach the solution

in the limit. This is done using the finite element Galerkin approximation in space V

and using finite difference method for time discretization.

We use the one-ordered lagrange triangular finite elements over (a, b), that is, ap-
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4. Non-Stationary BLT Source Problem

proximating the Hilbert space V by the subspaces Vh defined as

Vh = {v ∈ C((a, b)); v|Ki
∈ P1}

where Ki = [zi, zi+ 1] ∈ Th, 0 ≤ i ≤ n,

Pk = {P ∈ R[X];degree(P ) ≤ 1}
= polynomials of real coefficients of degree ≤ 1

and

Th = a uniform discretization of the interval [a,b] into n+ 1 sub-intervals

and V0h are subspaces of Vh with v(a) = v(b) = 0.

The objective is, thus, to replace the continuous problem by an other that searches to

find the approximated values ψh(t) of the exact solution ψ(t) over the mesh points.

First, we decompose ψh(t) in the basis of (ϕi)
n
i=1 of Vh where ψh(t) =

∑n
i=1 ψi(t)ϕi.

Thus, we obtain, for vh = ϕj ,

1

c

d

dt
ψi(t)

n∑

i=1

∫ b

a
ϕi(z)ϕj(z) dz + σψi(t)

n∑

i=1

∫ b

a
ϕ

′

i(z)ϕ
′

j(z) dz = 0 1 ≤ j ≤ n.

Hence, the approximated problem becomes of the form:





M ∂Ψ
∂t (t) +RΨ(t) = 0 0 ≤ t ≤ T

Ψ(0) = ψ0

(4.31)

with

Ψ(t) = (ψ1(t), ψ2(t), · · · , ψn(t))t M =
1

c

(∫ b

a
ϕiϕj dz

)

1≤i,j≤n

R = σ

(∫ b

a
ϕ

′

iϕ
′

j dz

)

1≤i,j≤n
,

where the rigid and mass matrices are constructed classically [RT83].

To complete the numerical solution of (4.29), we discretize the time variable. The

method used for the time discretization is the finite difference method where a simple
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4.7. The quasi-algebraic algorithm

finite difference approximation is given by

dΨi

dt
≈

1

△t(Ψ
i −Ψi−1) (4.32)

where Ψi is used to denote the value of Ψ at the ith time-step. The time interval (0, T )

is discretized into N sub-intervals with equally spaced points t = {t0, t1, · · · , tN} and

therefore △t = T
N . We use the interpolated state Ψi+θ given by

Ψi+θ = θΨi+1 + (1− θ)Ψi

where 0 ≤ θ ≤ 1. Thus, (4.31) becomes





(M + θ△tR)Ψi+1 = (M − (1− θ)△tR)Ψi

Ψ(0) = ψ0

(4.33)

which can be written as





PΨi+1 = QΨi

Ψ(0) = ψ0

(4.34)

where

P = M + θ△tR

Q = M − (1− θ)△tR
(4.35)

Varying 0 ≤ θ ≤ 1 allows us to construct different time discretization schemes. For

particular values of θ, we recover the finite difference schemes tabulated in Table

4.1. As shown in [RT83], the Crank-Nicolson method is proven to be the more stable

method than the other two schemes. Therefore, we use this method for the recon-

struction of ρ.

θ Scheme Description

0 Fully or Euler explicit Forward difference method.
1
2 Semi-implicit Crank-Nicolson method.
1 Fully or Euler implicit Backward difference method.

Table 4.1.: Different values of θ.
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4. Non-Stationary BLT Source Problem

Step 2: Determination of the number of sources

Using the measured data f on the boundary ΣT and the test functions (4.12) and

(4.14) with the function ρ calculated above in Step 1, our goal, first, is to compute

αr0, α
r
1, · · · , αr2m̄−1. Then, the number m can be determined by the rank of one of

the three Hankel matrices Hr
m̄, defined in (4.18), corresponding to the three projec-

tions, estimated using the Singular Value Decomposition method with an appropriate

threshold, following [Han98].

Step 3: Determination of the source locations

As done before, we start by solving the linear system

Hr
mD = ξrm,

in order to obtain the companion matrix defined in (4.19). Then, the projection

points P rj of the monopolar sources are obtained as the m simple eigenvalues of the

companion matrix Br and consequently obtaining the locations Sj of the sources.

Step 4. Determination of the moment

The three vectors µr = (µr1, · · · , µrm), r = a, b, c, are obtained by solving the systems

Ar0µ
r = ξr0

where A0 is the Vandremonde matrix defined by

Ar0 =




1 1 . . . 1

P r1 P r2 . . . P rm
...

...
...

...

(P r1 )
m−1 (P r2 )

m−1 . . . (P rm)
m−1



.

Step 5: Recovering the intensities λj:

To reconstruct the optimal intensities φ̃, we seek to minimize the Kohn-Vogelius func-

tional (4.23) by solving sequentially the direct problems (4.20, 4.21) and the cor-

responding adjoint problems (4.25, 4.26) using the finite element method. The al-

gorithm used to determine the optimal intensities for the functional is based on the

BFGS gradient conjugate method. In fact, we prescribe an initial guess for the inten-

sities φ0, then at the iteration k, the updated intensities φk is given by

φk = φk−1 − γk−1Hk−1
−1∇JKV (φk−1)
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4.8. Numerical Results

where the BFGS method is used to estimate and update Hk and the Wolfe’s stepsize

linear search is used to determine the optimal step γk−1.

Although the iteration process is regularizing, the problem remains unstable thus the

need to use a stopping criterion. To fulfill this purpose, we use a stopping criterion

based on the discrepancy principal of Morozov [Kir96]. In fact, we stop the iteration

when

|uk − f ε|L2(ΣT ) ≤ aε a > 1 (4.36)

where f ε is a perturbed measurement relative to the noise level ε and uk is the recov-

ered solution trace of the direct problem at the kth iteration.

4.8. Numerical Results

The proposed algebraic algorithm is verified numerically in this section over the heat

equation for pollution applications where c is taken equal to 1. Here, Γ is assumed

to be a unit sphere whose center is the origin O and the Cauchy data (f, g) on the

boundary ΣT are computed using the fundamental solution of the parabolic equation

(4.2) in R3 over a uniform meshing of distributed points on the unit sphere. In fact,

f and g are respectively the trace and the normal trace of w on ΣT , where w is the

fundamental solution corresponding to F , defined in the free space as:

w(X, t) = Y (t)

m∑

j=1

∫ t

0
λ(τ)w0(X − Sj, t− τ) dτ

where Y is the Heaviside function, X = (x, y, z) a point on Γ and w0 is defined as

w0(X, t) =
1

(4πσt)
3
2

e−
X2

4σt .

Although a related stability estimate isn’t yet performed to determine the factors that

have an impact on the reconstruction process, we are based on the stationary case

factors. Therefore, in the following subsections, we study the effect of the number of

sensors, the supposed number upper bound, the separability coefficient between the

sources and that of the noise.

As mentioned and proven in the stationary case, the identification of the number

of sources forms the most important step in the reconstruction method. As before,

theoretically their number is the rank of the Hankel matricesHr
m̄ which is numerically

determined using SVD method with an appropriate threshold. Therefore, in our study,
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4. Non-Stationary BLT Source Problem

due to the classical estimate,[Han98],

|σm+1| ≤ ‖δHm̄‖F , (4.37)

we truncate beyond a threshold inferior to ‖δHm̄‖F . Here, ‖ · ‖F is the corresponding

Frobenius norm and δHm̄ is the perturbation of Hm̄ that originates from the noise in

data as well as from the numerical quadrature error using a finite number of sensors

on Γ and a specific time discretization level over (0, T ).

Remark 31. The construction of the matrix Hr
m̄ necessitates the calculation of the func-

tion ρ which can be obtained using the basis family

ϕi(zj) = δi,j, 1 ≤ j ≤ n,

where δi,j is the Kronecker function defined as

δi,j =

{
1 if i = j

0 otherwise.

4.8.1. Determining the number and the position of monopole sources

In the following subsubsections, unless mentioned otherwise, we fix the number of

monopoles at 3 whose positions are taken as in Table 4.2 and we consider the pro-

jection onto the xy plane. The intensities are considered for j = 1, 2, 3 as, see Figure

4.1,

λj(t) = 0.1 − tanh(t− 0.9 ∗ 1.84)./(2.8 ∗ 0.45).

j (location ♯) 1 2 3

Sj (0.6,-0.3,0.1) (-0.7,0.3,-0.2) (0.5,0.5,0.2)

Table 4.2.: The source positions.

a. The impact of the number of sensors

The choice of the number of sensors is an important issue in the recovery of the

number and the position of the sources. Refining more the mesh (here 102 to 502

sensors), as seen in Figure 4.2 and using the truncation level ‖δHa
6 ‖F computed in

Table 4.3, permits us to approach better the true number of sources. Indeed, the gap
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Figure 4.1.: The source intensities.

between the 3rd and the 4th singular value increases with respect to the number of

sensors. However, one can see that starting from 252 sensors, where the number of

sources is well-approximated, the reconstruction process improves minorly even with

a higher number of sensors. This is validated also in the location approximation of

these sources in Figure 4.2 (left).

Number of sensors 102 252 352 502

‖δHa
6 ‖F ≃ 0.48 0.30 0.25 0.21

Table 4.3.: The Frobenius norm of δHa
6 with respect to the sensors.
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Figure 4.2.: Singular value of Ha
6 (left) and the localization error (right) projected

on the xy plane for m = 3 with respect to the number of sensors.

For a better clarification, we present the numerical results explicitly in Table 4.4.
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4. Non-Stationary BLT Source Problem

Number of sensors Estimated 2D Positions Localization Error level

102 0.6579 - 0.4283i 0.115
0.5446 + 0.4103i
-0.5990 + 0.3195i

252 0.5988 - 0.3023i 0.003
0.5003 + 0.5018i
-0.7027 + 0.2982i

352 0.5975 - 0.3025i 0.003
0.4994 + 0.5035i
-0.7006 + 0.2984i

502 0.5975 - 0.3026i 0.003
0.4995 + 0.5037i
-0.7007 + 0.2983i

Table 4.4.: The calculated xy− source positions and their error for m = 3
varying the number of sensors.

From now on, we fix our study to 252 sensors that enable us to recover precisely the

number and the location of up to 3 monopoles.

b. The impact of the time discretization level

In the previous subsubsection, the time discretization step was fixed at 25 points

over(0, 1). However, this level could have an impact on the reconstruction process.

To study its effect, we vary this discretization step from 10 to 50 points. As seen in

Figure 4.3, this level has a very minor effect on both the number and the localization

estimation whose error stays of the order 10−3. Therefore, for computation-time

minimization and better position approximation, we continue the tests with 25 time-

discretization points.

c. The impact of the supposed number upper bound

To study the effect of the supposed upper bound m̄ of the number of sources, we

vary its value gradually. As seen in Figure 4.4 and applying the truncation threshold

(4.37), with ‖δHa
m̄‖F computed in Table 4.5, we observe that the gap between the

3rd and the 4th singular value decreases as we go farther than the desired number.

Thus, the need of a good a priori information on the number of sources.
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Figure 4.3.: Singular value of Ha
6 (left) and the localization error (right) projected

on the xy plane for m = 3 with respect to the time discretization
level.

m̄ 4 5 6 7

‖δHa
m̄‖F ≃ 0.20 0.25 0.30 0.35

Table 4.5.: The Frobenius norm of δHr
m̄ with respect to m̄.
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Figure 4.4.: The localization error projected on the xy plane for m = 3 with
respect to the number upper bound.

d. Obtaining the 3D coordinates and the effect of the separability coefficient

To obtain the 3D coordinates of the sources, we use consequently the projections on

the xy, yz and xz planes in the case of 3 monopoles as shown in Figure 4.5 and

Figure 4.6. Note that, theoretically, according to hypothesis (H3), the number of

sources must be the same whatever the complex plane onto which the projections are

performed. However, numerically the situation may be different since the number
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depends also on the separability of these projections. In fact, to recover their number

we consider the numerical rank of the three Hankel matricesHr
m̄, r = a, b, c, obtained

respecting the truncation threshold (4.37) and then we take the maximum between

them as shown in Figure 4.5. Note that Figure 4.5 reflects the largest gap between the

3rd and the 4th singular value of Hr
6 in the xy plane which has the highest separability

coefficients. Therefore, an exact number estimation is obtained better on the xy plane

than the other planes since ‖δHr
6‖F ≃ 0.30. Hence, a better localization accuracy is

obtained as seen in Figure 4.6.
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Figure 4.5.: Singular values of Hr
6 for m = 3 where r = a, b, c.
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Figure 4.6.: Estimation results projected on the xy,yz and xz− planes when m =
3.

Note that the precision quality of the number and the location of the sources depend

on the separability coefficient between the projected points as we have just seen

numerically. Consequently, their reconstruction depends strongly on the plane of

projection. Therefore, a good strategy is to choose the best projection plane that leads

to the highest separability coefficient for a better number estimation as mentioned in

the stationary case.

e. Impact of the noise

Reconstruction stability on the xy projections with respect to the noise level is ex-

amined in this subsubsection. In fact, Gaussian noise is added to f (and g) where

the noise standard deviation added varies from 10−2 to 101 % (see Figure 4.7). We

have noted studying the singular values of the Hankel matrix Ha
6 and using Table 4.6
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that the number of monopoles is well estimated when the percentage of noise doesn’t

exceed 100%. Beyond that, their number is not well determined anymore. Moreover,

we note that the localization error increases linearly as the percentage of the noise

added increases.

Noise percentage 10−2% 10−1% 100% 101%

‖δHa
6 ‖F ≃ 0.30 0.30 0.31 0.41

Table 4.6.: The Frobenius norm of δHa
6 with respect to the sensors.
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Figure 4.7.: Singular values of Ha
6 (left) and the localization errors (right) pro-

jected on the xy plane with 252 sensors and J̄ = 6 with respect to
noise.
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f. Comparison with the stationary case

In here, we aim to compare both the stationary and the non-stationary cases repre-

senting the equations (2.1) and (4.2) respectively with monopole sources F of form

(4.3). We consider the case of 3 monopoles with constant intensities λj = 1, j = 1, 2, 3

whose positions are defined as in Table 4.2. When studying the singular values of the

corresponding Hankel matrices Ha
6 and the localization accuracy on the xy− projec-

tions of these monopoles with respect to the number of sensors, we observe in the

following example the following issues. Although, as seen in Figure 4.8 and Figure

4.9 and using Table 4.3 and Table 4.7, the needed gap between the 4th and the 3rd

singular is obtained with 252 sensors in both cases and although both show similar

localization error, adding more than 252 sensors in the parabolic case doesn’t improve

the identification process. Whereas, in the static problem, more sensors lead to better

results. Moreover, it is important to mention that the computation time is much less

in the stationary problem. However, one can’t give a conclusive idea with respect to

these 2 cases.

Number of sensors 102 252 352 502

‖δHa
6 ‖F ≃ 2.67 1.07 0.76 0.53

Table 4.7.: The Frobenius norm of δHa
6 with respect to the sensors in the

stationary case.
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Figure 4.8.: Singular value of Ha
6 (left) and the localization error (right) projected

on the xy plane for m = 3 with constant intensities with respect to
the number of sensors (non-stationary case).
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Figure 4.9.: Singular value of Ha
6 (left) and the localization error (right) projected

on the xy plane for m = 3 with constant intensities with respect to
the number of sensors (stationary case).
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Conclusions and perspectives

Everything is possible. The impossible just takes longer.

(Dan Brown)

Conclusions

This thesis deals with inverse source problems in 2 cases: stationary source in 2D and

3D elliptic equations and a non stationary source in a diffusion equation. The main

form of sources considered are pointwise sources (monopoles, dipoles and multipolar

sources) and sources having compact support within a finite number of small subdo-

mains modelling EEG/MEG and BLT problems. The purpose of this thesis is mainly to

propose robust identification methods that enable us to reconstruct the number, the

intensity and the location of the sources. Direct algebraic methods are used to iden-

tify the stationary sources and a quasi-algebraic method mixed with an optimization

method is employed to recover sources with time-variable intensities.

The algebraic method [EBHD00a] is a direct non-iterative resolution process. It con-

sists in finding the relation between the source parameters and the corresponding

Cauchy data pair by means of Green’s formula and the use of suitable test functions.

This approach is the main identification process used throughout this thesis to iden-

tify pointwise sources generalizing former related works [EBN11a].

Numerical results are shown using this approach on different frameworks over spheri-

cal and circular geometries and using the fundamental solution of the equation under

study.
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The optimization method proposed in Chapter 4, that aims to recover the time-

variable intensities, is based on the minimization of a functional of a Kohn-Vogelius

type. The method is proposed in here theoretically having as a perspective the needed

numerical development behind this process. The gradient is calculated using the

adjoint state method and the optimization process is based on the use of a BFGS-

gradient conjugate algorithm with Morozov’s stop criterion.

In the 3D stationary case, we have considered an inverse source problem, via bound-

ary measurements, for the elliptic equation ∆u + µu = F from a single coefficient

µ. This problem is applied, based on the sign of µ, along with Helmholtz equation

(µ > 0), on EEG/MEG problems (µ = 0) and the BLT problem (µ < 0). After proving

the uniqueness for a combination of monopoles and dipoles and presenting the re-

lated stability estimates proven in [EBEH13], we arrive to establish a direct algebraic

algorithm that enables us to recover the number, the moments and the positions

(based on their 2D projections) of multipolar pointwise sources. The algorithm is

then applied on sources having compact supports over discs and over general lin-

ear combination of subdomains that are well-recovered modulo (ǫ). This proposed

method generalizes former works, [CKC12; EBHD00a; EBN11a; Nar12], by extend-

ing existing algorithms to the case µ 6= 0 with more general source types. Moreover,

it is presented with a simple and elegant proof. However, this direct method is not

applied on the 2−dimensional spaces unless µ = 0 (see [EBHD00b]).

It is important to mention that the number determination is the most essential step in

the source reconstruction since its wrong estimation causes consequently a bad iden-

tification of the source positions. However, the Hankel matrix, constructed from the

boundary observations and responsible for the number recovery, is ill-conditioned.

Therefore, a Singular Value Decomposition method with a specific truncation thresh-

old, (2.53), is utilized. Numerically, several factors have an impact on the identifica-

tion process and they are studied and analyzed mainly in the case of dipoles and a

combination of monopoles and dipoles. In fact, the mesh level has a great impact on

the reconstruction of these sources. Indeed, refining the mesh allows more accessi-

bility to the boundary measurements with less noise. Therefore, as seen numerically,

adding more sensors increases the number and localization accuracy and allows to

determine more and more sources. Moreover, the number upper bound has an effect

on the identification process since the farther it is than the real number, the worse is

its reconstructions. However, the separability between these sources also plays a role

on their identification. Therefore, to well-estimate the source parameters, one should

choose the best projection planes having the highest separability coefficients in order
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to recuperate the right number and consequently the right 3D position of the sources.

However, this direct algorithm is sensible against noise, where the number is well-

determined when the noise doesn’t exceed a certain limit (about 1% Guassian noise).

Several comparisons are performed in this 3D case mainly related to the source

type and the coefficient µ. Indeed, comparing monopoles identification with that

of dipoles, we observe that the proposed algebraic method shows even better results

with much less errors and with more robustness with respect to noise. With respect

to the coefficient µ, the only remark is that although changing the sign of µ has a

minor effect on the reconstruction process, one sees that diffusion phenomenon for

BLT problem causes more errors than the propagation one (Helmholtz equation).

In the 2D stationary case, we have considered an inverse source problem, via bound-

ary measurements, for the Helmholtz equation ∆u+ κ2u = F where F are monopo-

lar sources. The number, the location and the intensities of these sources, along with

sources having compact supports are well-reconstructed (modulo ǫ) using a single

wave number with a suitable transformation to a 3-dimensional space and employ-

ing the algebraic method proposed previously. However, using multiple frequencies

can restore algebraically these sources directly on the 2−dimensional space with-

out any constraints. Numerical experiments is this framework were performed to

study the impact of the several factors on the proposed identification process. In

fact, as observed in the 3D problem, the increase in the mesh level and the separa-

bility coefficients enhance the reconstruction of the number and the position of the

sources. Moreover, the process is somewhat robust with respect to the noise. On the

other hand, in here, the choice of the wavenumbers and the supposed number upper

bound play an important role on the parameters recovery. Indeed, employing higher

wavenumbers cause a wrong number and consequently location determination. The

latter observation is physically due to the fact that higher wavenumbers causes less

points in the domain to be touched by the photon wavelength. Moreover, numerically,

it increases the ill-conditionality of the related Hankel matrix whose rank corresponds

to the number reconstruction.

In the non-stationary case, we have considered an inverse source problem, via bound-

ary measurements, for the parabolic equation 1
c
∂u
∂t − ∆u + µu = F where F are

monopolar sources. Along with non-stationary BLT study, a main motivation behind

this inverse problem is the problem of the identification of pollutants in a contami-
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nant. A direct algebraic method, using specific test functions, mixed with a proper

optimization method are employed for the reconstruction of stationary monopoles

with time-variant intensities. The numerical results performed reflect the same ob-

servations as in the stationary case. Comparing these two cases, one notes that less

error is caused in the stationary case than that in the non-stationary one. This is

normal since the noise caused by the numerical quadrature error is less in the static

case.

General conclusion

Direct algebraic algorithms are proposed in order to recover, from a single boundary

measurement and using a single coefficient µ, pointwise sources in certain 2− and

3−dimensional elliptic and parabolic equations. Knowing that the number determi-

nation of these sources are the most crucial step, it is very important to employ a

good truncation level that enables us to reconstruct the number, based on the rank of

a Hankel matrix. To improve the reconstruction process, one should have

1. A sufficient number of sensors, whose increase augments the identification ac-

curacy and thus one could obtain more and more number of sensors.

2. A good a priori knowledge on the upper bound of the number of sources where

going farther causes more errors.

3. A good separability coefficient between the projection of the sources. This con-

dition depends on both the number of sources and on the choice of the pro-

jection plane. Indeed, as we add more sources, the separability diminishes es-

pecially using a fixed-sized domains. Moreover, to choose the projection plane

that establishes the highest separability coefficient as mentioned in Remark 8.

Between these sources, monopoles behave better than dipoles.

Perspectives

Several perspectives can be considered and are to be done in future works mainly for

the non-stationary inverse problem.

• Concerning the reconstruction of the time-variable intensities, a numerical de-

velopment of the proposed Kohn-Vogelius optimization problem is to be per-

formed. Moreover, due to the calculation of the moments through the algebraic
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algorithm, a moment problem can be considered in order to reconstruct the

needed intensity functions.

• The generalization of the type of sources to multipolar sources is interesting to

study for their moments reconstruction since the number, positions and quan-

tities related to their moments are reconstructed by the method proposed in

Chapter 2.

• The stability of the diffusion equation including the time-variable intensities.

• Reconstruction of inhomogeneous conductivities using multipolar sources method-

ology.
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APPENDIX A

Explicit Calculation of Iα,j

Knowing that,

Iα,j =

∫

R

e
−iε1aj

√

ω2+( κ
ε1

)2
δ(α)(ω) dω,

these functions can be calculated explicitly recursively.

Indeed, in the distribution sense,

Iα,j = < e
−iε1aj

√

ω2+( κ
ε1

)2
, δ(α)(ω) >

= (−1)α < d(α)

dω e
−iε1aj

√

ω2+( κ
ε1

)2
, δ0(ω) >

= (−1)α
(
d(α)

dω e
−iε1aj

√

ω2+( κ
ε1

)2
)

|ω=0 .

We can directly see that

I0,j = e−iajκ.

Now, for α ≥ 1, using "MUPAD" toolbox in Matlab as seen just afterwards, we obtain

the needed result.
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Figure A.1.: The calculation of the derivatives using MUPAD.
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Figure A.2.: The verification of the Bessel coefficients using MUPAD.
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