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ABSTRACT

With the rise of powerful mobile devices and the broad availability of computing

power, Automatic Speech Recognition is becoming ubiquitous. Despite the rapid

advance and active research in the field, a flawless ASR system is still far from

existence. Because of this, interactive applications that make use of ASR technology

not always recognize speech perfectly and when not, the user must be engaged to

repair the mistakes in the transcriptions.

When the user is engaged, he can repair these errors with different strategies.

These strategies work better under different contexts. In this thesis, we explore a

rational user interface that makes use of machine learning models to make its best

effort in presenting the best repair strategy available to reduce the time in spent

the interaction between the user and the system as much as possible. A study is

conducted to determine how different candidate policies perform and conclusions

are drawn from the analysis of the collected results.

Once the analysis is performed, the methodology that was used is generalized

in terms of a decision theoretical framework that can be used to evaluate the

performance of other rational user interfaces that try to optimize an expected cost

or utility.

After the generalization, the framework is placed in the context of the relevant

literature and some potential future work is outlined.
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CHAPTER 1

INTRODUCTION

1.1 Overview

A computer-automated process may require the user’s input in order to make

certain decisions that will determine its information flow. Sometimes it’s hard for

software systems to make those decisions because, depending on the nature the

problem, it may be infeasible to compute a correct solution. Consider spelling

correction software: When the software detects a potential problem, the sentence’s

portion where the potential problem is located is highlighted and a list of candidate

fixes is presented to the user to select from. A possibility is that the word is

misspelled or a word that is not present on the dictionary. In either case, it is best

for the user to select the proper way to proceed.

Poor design of users interfaces may lead to a large number of user decisions

that, in general, may be unnecessary and just bother him and waste his valuable

time, worsening the perception of the design, decreasing the efficiency and perhaps

making him stop using the system at all. For instance, modern web browsers have

autocompletion functionality for personal information web forms. Some users may

think that a better job could be done without this feature, because it is common

that the corresponding data gets filled into the wrong field, like filling the street

address into the city field. This decreases the value of the feature because the user

must correct the mistakes and he may spend similar or more time engaged before

finishing the corrections than manually entering his information into an empty web

form.

This relative high amount of interactions may be the result of giving the user an
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excessive degree of control granted by the designers of the interface and/or making

him responsible for the testing of certain properties that could be done by the

computer for the sake of avoiding wrong decisions or incorrect outcomes. In some

cases, user time can be saved by automatically making some decisions. Apple’s

iPhoto image handling software package has a face recognition feature which does

a fairly good job at labeling photographs, but requires the user’s approval before

persisting the labeling. Sometimes, the picture library consists of thousands of

images and it becomes tedious to approve individually each of the labeled pictures.

For some users, this explicit approval considerably hinders the face recognition

feature.

Sometimes, the computer can learn the decisions taken by a user with a high

probability of success based on examples. For the sake of user-friendliness, user

interactions can be automated using machine learning models that make the

decision taken be very close to what the user would have chosen.

Going back to the spelling correction case, some implementations of the software

automatically make the correction when the uncertainty about which potential fix

is adequate is low. The latest version of Microsoft Word does this for accents in

spanish words when omitted. Apple’s iOS automatically introduces apostrophes on

word contractions when they’re detected.

The goal of this work is to describe a methodology and devise a framework

to characterize and analyze quantitatively a decision process aided with machine

learning methods to determine if it minimizes the user engagement with an interface

and maximizes the probability of success by trying to make the best decisions and,

as a result, saves time or some other valued resource.
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1.2 Organization

The reminder of this thesis is organized as follows:

Chapter Two will describe an experiment from which this thesis was inspired

and report its results. It serves as the intuition behind the formal methodology

defined on the next chapter. Chapter Three gives a formal statement of the

problem and provides a definition of the framework: The foundational concepts

from which it is built on top of, the formal characterization of the integration of the

decision process with the machine learning models and the definition of the criteria

to measure the cost or utility of the user engagement. Chapter Four will provide

a survey of related work present in the literature, highlighting the relationships

with the work presented here. Chapter Five presents the conclusions and outlines

potential future research and open questions that can be further studied.
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CHAPTER 2

EXPERIMENT

2.1 The ASR Error Repair Problem

ASR stands for Automatic Speech Recognition, which is the action of transcribing

speech in the form of an utterance, which is the acoustic representation of a

message, into a character string that represents the sentence uttered by a person.

ASR works by building statistical acoustic and language models that map audio

segments to words. In the end, the output of an ASR system is the best hypothesis

(hyp) it can provide given its statistical models.

The possible hypotheses are encoded in a data structure called a confusion

network (Figure 2.1), which contains the possible detected words along with their

probabilities associated with the edges in a graph-like organization. Each simple

path from the head node towards the tail node represents a hypothesis and the

product of the probability of each edge is the posterior probability of the hyp given

the utterance.

Figure 2.1: Confusion Network example. Each edge is labeled with a possible word
plus its probability.

There are several kind of errors in the ASR process that cause the software not

to yield a correct answer. Sometimes it may be close enough to be understood and



13

sometimes it may be completely wrong.

Some of this error kinds are:

• Out-of-Vocabulary words (OOV): The language model is built from a finite

dictionary. It can’t contain all the existing words in a language. Whenever a

missing word appears in the utterance, the ASR system will try to match it to

one of the existing words on its dictionary. This is very common with proper

nouns.

• Ambiguity : There may be homophone words that appear on different contexts.

This introduces noise in n-gram based language models and make the ASR in-

troduce words that don’t belong to the utterance. Some words or combination

of words may be very similar on their sound but completely different on their

meaning. For example: Recognize speech and Wreck a nice beach have similar

sound but are totally unrelated. Depending on the training of the model one

may be recognized instead of the other.

• Noise in the environment : Poor audio quality and speaker accents may intro-

duce noise on the acoustic model and propagate the error in the ASR pipeline.

There are different strategies to try to obtain the true sentence intended by the

user who spoke to the ASR system. Some of those strategies are:

• Highlight a potentially problematic error segment in the hyp and provide an

alternative word or combination of words coming from the confusion network.

The user can select an alternative segment if he wants to.

• Present the user a list of the top ranked hypotheses from the confusion network

and let him pick whichever he deems appropriate, if any.

• Let the user type the uttered sentence himself.

• Utter a rephrased version of the message with less ambiguity and/or noise.
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Each of these strategies requires some expense to the user on their own way and

involve different expense to the user depending of the problem.

The following experiment analyzes a family of candidate configurations of machine

learning models, which we should call policies, to detect when there may be a

problem with the hyp and select the best repair strategy. In this context, the best

strategy is the one that minimizes the effort of the user. To approximate the effort,

we measure the time spent on the interface as a proxy and in our context, the policy

that minimizes time also minimizes the effort. With the results of the study, it can

be determined if it is worth to use one of the policies or not and how much value it

is gained by using it.

2.2 Interface Description

We propose a user interface that tries to present the most appropriate repair strategy.

To decide which strategy is this, the computer will perform a series of tests on the

hypothesis and use these results to decide how to interact with the user. This

estimations are be based on empirical data that was gathered during a study.

The study was performed during October 2013 to measure the time spent by

people using an interface to repair ASR transcriptions using some of the strategies

outlined above. The study took place in the context of a DARPA-funded research

project for the development of a real time machine translation device in which the

output of the ASR system is translated to a foreign language and then speech is

synthesized based on the translation. To avoid noise and loss of information, the

system tries to provide the most accurate transcribed sentence, which may be the

result of fixing the ASR’s hyp.

The dynamics of the user interface are the following: The user is presented

with the top hypothesis generated by the ASR. After analyzing the hyp, he will

determine whether it’s correct or wrong (See Fig. 2.2).



15

Figure 2.2: UI’s main screen

The user has the option to determine whether the transcription is a perfect

match with the utterance, a close enough match or none. In the former two cases,

the transcription continues through the translation pipeline; the latter case allows

him to determine a fix strategy to improve the fidelity of the hyp.

We consider two ways to fix the hyp. First, the user can be presented with a list

of the N -top ranked hypotheses generated from the confusion network, where N is

a parameter adjusted by the developer of the system. Hypotheses are ranked by

the joint probability of their words in the confusion network. The joint probability

of a hyp that results from a confusion network is calculated by taking the product

of their individual likelihood. Even though hypotheses that come from from the

same confusion network may have a different number of words, they will have the

same number of tokens in the confusion network. The missing word is represented

by a DELETE token, with its respective probability associated. Because of this,
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the probabilities of the two hypotheses are comparable.

The second way is to type the sentence completely from scratch. (See Figs. 2.3,

2.4). Note that some candidate hypotheses in Figure 2.3 may appear twice. This is

because words like huh and ah are omitted on the interface.

Our intuition tells us that if the best hyp preserves enough meaning to carry

the same message as the uttered sentence, it is very likely that the correct sentence

will appear among the top ranked hyps. If the presented hyp doesn’t preserve

the meaning, it will be easier to type it rather than trying to inspect the possible

outputs from the ASR and very likely not finding it.

One possible way of designing the interface is to give the user the choice to pick

either way to fix the sentence. If he finds the correct sentence among the N best

ranked hyps, he will select it and send it down through the translation pipeline. If

a perfect hype is not present, but there is a hyp that preserves enough meaning

to be considered close enough, he can pick it and send it through. If none of the

alternative hyps are acceptable for the user, he can still fix it by going to a new

screen to type the message. Refer to Figure 2.3.

Observe that if the user knows that he was not going to find a correct or satis-

factory answer, he would have chosen the retype screen from the beginning instead

of wasting time scanning the N alternative hypotheses.

2.3 Methodology

Forty five human users participated by evaluating the ASR-repair interface. Each of

them used the system for thirty minutes. The system was set up to randomly select

hypotheses from the TRANSTAC corpus [Bach et al., 2007]. The TRANSTAC

corpus was built for the development and testing of two-way speech-to-speech

translation systems from the recordings of speech from deployed military personnel,
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Figure 2.3: N best hyps screen

Figure 2.4: Retype screen
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and was manually transcribed to provide ground truth transcriptions for training

and testing. For each shown hypothesis, the sentence was presented through the

user interface and it was up to the evaluator to fix it using one of the available

strategies or decline to fix it. Each instance of the information flow was collected

for postprocessing.

At the end of the study, a total of 2,404 interface use instances were collected.

Each instance consists of the original sound clip, the ground truth reference tran-

scription of the uttered sentence (ref), the top hyp, the sequence of screens the user

followed along with the time he spent on each, the particular outcome of the process

and the repaired sentence, if a repair was made.

2.4 Analysis

In this section, the study will be modeled more methodically to serve as an initial

intuition of the generalization of the methodology presented in chapter 3.

Every time a user is presented with a hyp, he can decide which strategy to

follow to repair or not to repair at all. Depending on which strategy was used, a

sequence of screens will be presented and the original hyp will be transformed into

something that (hopefully) captures the meaning of the message better.

The first decision the user will take is whether the output of the ASR is correct

or not. After this decision is made, if it is determined that the hyp is not correct, a

second screen will be shown where a list of the top 4 ranked hypotheses is displayed.

The rank of a hyp is determined by the joint probability of its words given the

confusion network (Figure 2.1).

If it is determined that none of the alternative hypotheses preserves the meaning

of the message, the user will proceed to a retype screen in which he will manually
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enter the sentence (Figure 2.4).

Given the randomly selected hyp from the dataset, the user follows one of three

possible use patterns: No Correction, Better choice and Retype. This is visualized

in Figure 2.5, where the squares represent the screen shown and the ovals the state

of the message after finishing.

Figure 2.5: Possible outcomes of a sampled hyp from the dataset.

Pattern: No Correction Better Choice Retype
Frecuencies: 1850 197 357

Table 2.1: Count of pattern instances

Table 2.1 summarizes the frequency of the patterns. From the 2, 404 instances,

1, 850 were not fixed, corresponding to the No correction pattern from Figure

2.5, 197 were fixed by selecting an alternative hyp from the list, corresponding to
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the Better choice pattern and 357 were retyped, which corresponds to the Retype

pattern.

With the recorded times, some statistics of the time spent on each screen

can be computed. Figure 2.6 shows the median and mean times for each

screen where top is the main screen with the top hyp (Figure 2.2), choice is

the screen that displays the list of the four best ranked hyps (Figure 2.3) and

retype is the screen where the user types the message (Figure 2.4). On Figure

2.6 the time on each screen is analyzed for each of the user patterns described above.

The whiskers on Figure 2.6a represent a bootstrap estimate of 95% confidence

interval around the median. Similarly, the whiskers in Figure 2.6b represent the

95% confidence interval around the mean, defined by: µ̂± 1.96 s√
n
.

For example, In Figure 2.6b the green bars labeled as NO CORRECTION - top

represents the average time spent on main screen when no correction was done by

the users and the red bar labeled as RETYPE - retype is the average time spent on

the retype screen when user chose to type again the message.

This measurements support the intuition that retyping the message is the most

time consuming task overall, regardless of the statistic chosen to represent it.
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(a) Median times in seconds per screen.

(b) Mean times in seconds per screen.

Figure 2.6: Statistics of empirical times per screen decomposed by usage pattern
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2.4.1 Candidate Policies

We try to approximate the decisions that the users make by defining a policy. A

policy can be characterized as a decision process that will determine which repair

strategy to use after a series of tests performed on the hyp. These tests can be

performed by machine learning models that will try to pick the most appropriate

choices depending on the properties of the input hyp. A decision process is depicted

in Figure 2.7. The two diamond shaped nodes represent the machine learning

models, and depending on their output, the designated repair strategy will be used.

Figure 2.7: Template of candidate policies family.

The upper diamond represents a classifier that predicts whether the hyp is right

or wrong. Depending on the outcome, the second model may be used, represented
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by the lower diamond, which is a linear regression classifier to predict the word

error rate with a threshold to discretize its outcome. Parameter t is the threshold

that can be adjusted to define different policies, thus, a concrete policy is defined

by assigning a value for t and a family of policies is composed of the concrete

policies with different values for t.

The linear models that make the decision on the diamond shaped nodes from

Figure 2.7 are the following:

1. The first classifier is a Logistic regression classifier, which classifies the hyp as

correct or incorrect. This is a binary classifier.

The features used by the logistic regression are:

• The maximum entropy of the slots of the confusion network.

• The minimum entropy of the slots of the confusion network.

• The ratio between the number of tokens in the hyp with the number of

tokens on the hyp after being aligned with the confusion network.

• The number of delete tokens included into the aligned hyp.

• The probability of the hyp given the confusion network.

• The hyp’s score generated by the alignment algorithm.

• The hyp’s acoustic model score from the ASR.

• The hyp’s language model score from the ASR.

2. The second classifier is a Linear regression model, which predicts the word

error rate, defined as the number of incorrect tokens over the total number

of tokens in the hyp. This is a regression model, which outputs a continuous

value, because of this we need the threshold t discretize the output and make

it a binary classifier.

The features used by the logistic regression are:

• The hyp’s language model score from the ASR.
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• The hyp’s score generated by the alignment algorithm.

• The number of delete tokens included into the aligned hyp.

• The number of tokens in the hyp.

• The inverse of the number of tokens in the hyp.

Observe that the square node will require engagement from the user by forcing

him to scan the N-top ranked hyps. In the context of this study, the value of N is 4.

Policy names will be referred to in bold for clearness inside the equations and

to distinguish them of usage patterns, which are written in italics. Each member

of the family of candidate policies described above is referred to as Choice ≤ t <

Retype, where the value of t varies depending on the threshold for the particular

classifier. Conversely, a similarly defined set of candidate policies referred to as

Retype ≤ t < Choice Where the outcomes of the linear regression classifier are

reversed.

The policies Always Retype and Always Choice only make use of the first

classifier to predict whether the output of the ASR has at least one error or more,

and if it has, the Better choice screen is presented in the former policy and the

retype screen on the latter policy.

2.4.2 Expected Costs of Policies

We need a way to quantify in general the expense of the users when using a

candidate policy. For this experiment we can use the expected time on the interface

given a policy. In order to calculate the expected time, we need some date to base

our estimation in.

First, we the user take their own decisions and measure the times spent on each

screen. Then, we use this data to estimate how long an enforced policy will take on
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average by post-processing each of the usage patterns to calculate the expected time

spent on each screen. The times will be aggregated only when the collected data

that is consistent with the prediction of the policy. This means that only the usage

patterns that follow the same path as the prediction of the policy will be aggregated

and accounted for analysis. The expected cost of a particular policy is estimated

using the times observed in the study. For example: to calculate the expected time

of the Better choice pattern (Fig. 2.5), only the subset of measurements in which a

user decided to use one of the alternative hyps in the list will be used to calculate

the expectation.

The top screen will be ignored because it will always appear regardless of which

policy is followed. Only in the other screens the expected times may vary. As

shown on Figure 2.6, the Always Retype policy we only consider the times spent

in the retype screen, which appears in 357 instances (Table 2.1). Because this

policy always uses the same strategy to fix the hyp, hence the same screen, the

expected cost is simply the average time of all the usage patterns.

The expected time of the Always Choice policy is calculated similarly, aggre-

gating the times by calculating the average of corresponding to 197 of the instances,

but in some instances there may not be an alternative hyp present on the list that

satisfies the user and in those cases he proceeds to the retype screen. To deal with

this it is necessary to combine the expected value of two proportions: The ones in

which a satisfying hyp appears on the N top ranked list and the ones in which not.

This expected time is characterized in the following equation:

E(Always Choice) = p(hyp in list)× Tµ(Better choice made)

+ p(hyp not in list)× Tµ(Retype necessary)
(2.1)

Lets analyze the components of (2.1): Tµ stands for the mean time over a
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sample of usage patterns. When a better choice was made, only the time spent in

the better choice screen is considered, but if a retype was necessary, the user spent

time scanning the list and then typing the message; in this case it is necessary to

consider the time spend on both screens by adding their values.

p(hyp in list) is the probability of the event of the hyp being in the top 4 ranked

list. To calculate the times the hyp appears must be counted over all the data set

and normalized by dividing the count over the size of the data set. It has been

decided to include the counts over the complete data set because presumably, when

no repair is needed, the top hyp, which is the first element of the list and appears

on it, matches the uttered message. These probabilities have the following values:

p(hyp on list) = |No Correction|+|Better Choice|
|No Correction|+|Better Choice|+|Retype| = 764+197

764+197+357
= 0.729 (2.2)

p(hyp not on list) = |Retype|
|No Correction|+|Better Choice|+|Retype| = 357

764+197+357
= 0.271 (2.3)

Where the vertical bars represent the cardinality of the specified subset of the

dataset. p(hyp not in list) is the complement.

The family of policies Choice ≤ t < Retype are slightly more sophisticated.

There is now an extra model in the decision process, the linear regression, that

decides which strategy is going to be used to fix the hyp. We can understand

these policies as a combination of Always Retype and Always Choice in which

the complete data set will be divided in two pieces by threshold t and each piece

will behave as one of the previous policies. The expected time for each policy is

characterized as:



27

E(Choice ≤ t < Retype) = p(≤ t)×
[
p(hyp on list)× Tµ(Better choice made |≤ t)

+ p(hyp not on list)× Tµ(Retype necessary |≤ t)
]

+ p(> t)×
[
Tµ(Always Retype |> t)

] (2.4)

The terms p(> t) and p(≤ t) represent the probability of the top hyp being above

or below threshold t. Observe how (2.4) has an equivalent formulation in terms of

expectations:

E(Choice ≤ t < Retype) = p(≤ t)× E(Always Choice |≤ t)

+ p(> t)× E(Always Retype |> t)
(2.5)

Each of the expectations on the right side of (2.5) works like the previously

described policies but only count the instances in which the linear regression model

predicted that the word error rate will be above or below the specified threshold on

conditioning inequality. The probabilities of being above or below the threshold are

also calculated by counting and normalizing over the size of the complete dataset.

Table 2.2 summarizes the frequencies of usage instances by the users for the

different thresholds and membership on the alternative hypotheses list to compute

the probabilities.

Similarly, the expected time for the members of the family of policies Retype

≤ t < Choice is defined as:

E(Retype ≤ t < Choice) = p(≤ t)× E(Always Retype |≤ t)

+ p(> t)× E(Always Choice |> t)
(2.6)
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t 2 3 4 5 6 6

≤ t 4-best list has solution 214 447 625 729 793 852
4-best list doesn’t have solution 31 98 150 206 249 286

Total 245 575 775 935 1042 1138
> t 4-best list has solution 747 484 336 232 168 109

4-best list doesn’t have solution 326 259 207 151 108 71
Total 1073 743 543 383 276 180

Table 2.2: Counting summary for the different values of threshold t and membership
to the 4-best list

With the definition of the expected times as estimated based on the screen

times observed in the study, we can compare how well the policies might perform

if actually run. Figure 2.8a shows the median times for all the policies. Because

the Always Retype policy doesn’t vary with the threshold, its median time is

drawn as a solid red line; the dashed red lines represent the boundaries of the 95%

quantile. The Always Choice policy appears as a solid cyan line. Given the high

probability that the solution is present in the 4-best list, the wide gap between both

policies follows the intuition that, in general, retyping is considerably more expen-

sive than the simple act of picking one of the choices, if present on the top ranked list.

The bars represent the varying policies, where the blue ones are Choice ≤ t <

Retype policies and the green ones are Retype ≤ t < Choice. Each pair of bars

correspond to the threshold value of the regression model predicting the word error

rate in the hyp. The threshold increases left to right along the horizontal axis.

Figure 2.8b presents the expected times where the chosen statistic is the mean;

the dashed lines represent the 95% confidence interval.
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(a) Median times (b) Mean times

Figure 2.8: Time statistics for all the policies

2.5 Study Conclusions

The initial hypothesis is that we could improve the overall expected time of the

error correction on the ASR system by introducing a policy that determines tries

to predict when the user is more likely to retype the hypothesis, this way he avoids

wasting time with other repair strategies or, on the other hand, predict when the

real message is present in the top ranked list and let the user pick it himself quickly.

Following the intuition that the predicted word error rate may be a good criteria to

select the best strategy given the input data, we found that the error-predicting re-

gression classifier offered no advantage over simply always giving the user the choice.

This result doesn’t mean that there is no way to successfully predict which

repair strategy to use. It only states that using the classifiers for the study there is

no information that let the polices perform better than looking at the 4 top ranked

hypotheses to make a choice.

Nonetheless, the lessons learned from the study will work as a good ground to

generalize the methodology and apply it to similar problems that involve rational

user interfaces.
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CHAPTER 3

ANALYSIS FRAMEWORK

3.1 Characterization of a decision process

In the previous chapter, a rational user interface was analyzed to determine if it

brings value to its users. While it was just a single example, the analysis strategy

can be generalized in order to be used on any rational UI that makes use of machine

learning methods to optimize its efficiency in the same fashion as the ASR repair

interface.

To generalize the analysis, its components and steps will be characterized in

decision theoretic terms. Recall the structure of the candidate policies from Figure

2.7. A policy received a hypothesis and its confusion network as an input and

based on the classifiers, it determined which repair repair strategy to use based on

two sequential tests.

A more general description of this problem can be formulated by representing

a policy as a Decision tree (Figure 3.1). Under the context of decision theory,

decision tree is the representation of a compound lottery.

A lottery combines distribution over possible outcomes with associated utilities.

Each of these outcomes has an associated value and a probability of happening. For

example, a contestant in a T.V. show has already in his pocket a $100 reward. He

has the choice of spinning a wheel, in which he could duplicate his reward with a

chance of 10% or lose it with a chance of 90% or going home with what he already

has.
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Figure 3.1: Example of a decision tree

The expected value of the gamble is:

10

100
× $200 +

90

100
× $0 = $20

The expected value of the gamble is considerably lower than his original

hundred dollars. If the contestant is rational, which means that he will follow the

rationality axioms of decision theory in which the decision maker tries to maximize

his earnings, he will decide not to take his chances and go home because he is

expected to earn more by not playing than if he played the lottery.

The policies analyzed in the experiment follow a well structured decision process,

hence have a decision tree structure; the outcomes of the process are the repair

strategies. We can define the set of outcomes as:

O = {No Correction, Better Choice, Retype } (3.1)

Of course, in order to pick one of the outputs, there must exist the information

to make the best decision, or at least try to make it. This information may take

any arbitrary shape and size. In the concrete case of the experiment, the input

information takes the following form:

I = (Hypothesis, Confusion Network) (3.2)
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We can abstractly define the set of all possible inputs I as I. Even when in

some concrete problems I won’t be feasible to compute, or even possible at all, it

is an important symbol for the definition of the framework.

If the policy is treated as a black box, it will define a mapping from the input to

one of the outcomes; one hyp and confusion network pair to a repair strategy. This

can be viewed as a mapping, where π is the policy:

π : I 7→ O (3.3)

Given an input, reaching an outcome will have some utility, the utility for each

outcome may be different. The utility follows the intuition of how much value does

the user gets if he reaches an outcome when presented with a specific input. In

general, we define the utility of an outcome given an input as a real valued function:

u(o | I) ∈ R (3.4)

Alternatively the same idea can be expressed on terms of costs, where the cost

of reaching an outcome intuitively represents the expense of a resource by the user

when reaching the outcome if he is presented with a certain input. The cost is also

a real valued function:

c(o | I) ∈ R (3.5)

The experiment is more naturally expressed in terms of costs, where the cost of

using a repair strategy is the time spent by the user engaged on the screens that

implement it. Since the interpretation of the results privileges lower time spent on

the system, the best policy is the one that minimize it.

3.2 The problem with complex decision processes

A decision process π may include several tests in a sequence that will steer the

flow of information and action to lead to a particular outcome. In the experiment,
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whenever a hyp was classified as incorrect, another test was performed to predict

it’s word error rate using the linear regression model. This nested structure of the

models is what give the process the tree shape and what makes it a compound

lottery.

In a compound lottery, one or more of the outcomes is another lottery itself,

which has its own outcomes with their own distributions and costs.

To deal with a nested lottery (subtree on the tree representation), the value

considered as the cost or utility of that lottery is the expectation over the induced

distribution. We can see in equations (2.4) and (2.5) how the structure of expecta-

tions arises from the recursive nature of the policy.

Having a probability distribution over the outcomes of each decision, introduces

uncertainty, which means that the selected outcome may not be the best. So, in

order to do the best effort in selecting it, we need to calculate the expected costs

taking into account the possible outcomes and their probabilities.

Because of this, it is necessary to establish a baseline, gold standard, as a refer-

ence frame to contrast the candidate policies. The gold standard and the metrics

of the policies must be obtained using the same methodology to be comparable and

be able to answer the following questions: Is the policy bringing value to the users?,

How well does a candidate policy performs with respect to other candidate policies?

and Is it worth to use a policy at all?.

3.3 Computing the expected costs of the decision process

The decision process representing a candidate policy π can be defined as a decision

tree T , where each of the tests is represented as a node n.
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Each of the children of n is either another test dependent of the result of n, a

random node which will follow one of its descending paths according to a probability

distribution or an outcome in O (3.1). If n has no parent, it is the root of the tree

and it is the first test of the process.

If a node in the tree is a decision node or a random node, it must have at least

two children. If it is a leaf node, it must be an outcome.

Let ch(n) be the direct descendants of node n. For any given n that is not a leaf

in T , that is, ch(n) 6= ∅, the probability of happening for each of its descendants

n′ ∈ ch(n) is denoted by p(n′). The sum of their probabilities is a probability

distribution: ∑
n′∈ch(n)

p(n′) = 1

We define the expected cost or expected utility of a node n of T equivalently as

follows; we will stick to costs for consistency with the experiment:

1. If n is an outcome o, the expected utility is given by:

E [c(o)] =
∑
I∈ I

c(o | I)p(I | o) (3.6)

This is, the average of the possible costs for o weighted over the conditional

probability distribution of the inputs given o.

2. If n is a decision node or a random node, its expected utility is given by:

E [c(n)] =
∑

n′∈ ch(n)

E[c(n′)]p(n′ | π(I)) (3.7)

That is, the weighted average of the posible results of the test or estimation

performed by n.

We can observe that this definition is recursive, where the base case of the

recursion happens when n ∈ O.
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Overall, the expected cost for T is given by the expected cost of its root node r:

E [π∗(T )] = Ep [c(r)] =
∑

n′∈ ch(r)

Ep[c(n′)]p(n′ | π(I)) (3.8)

Observe that there is now a criteria to optimize any candidate policy π: The

expected cost of π. The goal of the framework is evaluating the quality of π using

this criteria.

In order to qualitatively evaluate the performance of the automated decision

process, we need to have a baseline to compare it with. There are different criteria

that will answer different kind of questions depending on what do we want to

quantify.

Recall that some of the questions to answer are:

• Is it better to use π or to always pick a fixed action?

• How well does the candidate policy π performs against an “empirical” policy

defined by the users in average?

• Do the users have a decrease on the cost on average by using the candidate

policy π at all?

First of all, it is useful to know whether the candidate policy is useful at all.

It may be the case that choosing a fixed outcome instead of giving a choice is less

costly on average than using π. To answer this question we need to build a baseline

by proposing a trivial model for the decision process’ outcomes. The trivial model

is the set of expected costs for all the outcomes in O. Since regardless of any

property of the inputs, all of them will result on the same outcome, we say that

the elements of the trivial model are trivial outcomes. This model represents an

approximation to the cost of each of the outcomes in π.

The expected cost of the trivial outcomes are defined as follows:
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{ ∑
I∈I

p(o | I)c(o) | ∀o, I ∈ O × I

}
(3.9)

This means that for any outcome, its expected cost is the average cost over

all the possible inputs of the problem. The expected cost for any trivial outcome

policy would reduce to this expression because all the inputs of the data set finished

on it.

Policies Always Choice and Always Retype are the trivial policies for the

experiment. In Figure 2.8, the solid red and cyan lines represent the expected cost

of the trivial models for the ASR error correction interface user different choices of

statistic.

3.4 Computing the expected costs of the candidate policy

Our candidate policy π (3.3) will have a set of models for the different attributes

we want to test before making a decision, like the word error rate or the correctness

of the hyp. If we iterate over all the elements in I, which are the possible input

values, evaluating each with π, each instance will eventually reach an outcome

by traversing the tree. The differences on the paths that I1 and I2 may take,

will depend on their properties, which determine the result of each of the tests

performed by the models.

The probability of each local outcome in the decision process is the associated

probability on the compound lottery. This probability is determined by counting

the frequencies of the outcome, as in the case of the experiment or by modeling it

using a Bayesian approach if we bring a prior over the outcomes to the analysis.

With this definition, we can calculate the expected cost of the policy by using

(3.8), the expected cost equation. This will recursively calculate the expected costs
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of the outcomes at each level of the tree until reaching the leaves.

Now, if the expected cost of the policy is less desirable than any of the trivial

models, then the performance of policy π is worse than trivially picking at least one

of those outcomes in O.

This what we observed in the study, in which policy Always Choice consistently

beats the policies in families Choice ≤ t < Retype and Retype ≤ t < Choice.

By calculating the expected cost of all candidate policies, they can be directly

compared against each other. The best candidate policy is the one with the minimum

cost or maximum utility. Using this criteria, interpreting Figure 2.8 concludes that

threshold 7 yields the most successful policy from family Choice ≤ t < Retype

when considering mean and median times and t = 5 when considering the third

quartile.

3.5 Empirical Policy

An empirical policy is the result of letting the users perform the tests that the

classifiers of policy π would have predicted and computing the expected cost using

the distributions that the users followed. Lets address the question “How well

does the candidate policy π performs against an “empirical” policy defined by the

behavior of the users?”. This question is of a different nature, because now we are

not questioning the usefulness of π but contrasting it to the observed behavior of

the users without any aid.

Let T ∗ be another decision tree that shares the structure of T but instead of

using learning models, the users will select how to proceed themselves, effectively

making all the decisions.

A study can be conducted with representative population of users that tests the

interface. If we use the same formulation of the problem and apply (3.8), we can
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compute the expected cost of the empirical policy.

Evidently, the distribution of inputs over the outcomes may change, and by

consequence the expected costs. Also, the cost function may yield different results,

presumably because the users will take more time time to perform the tests than

the models. These are fundamental differences that may add value to the use of

machine learning models instead of relying on the users to select the outcomes

manually, but are still important because they allow us to measure the benefit of

using a machine learning enhaced decision process.

By considering the difference of the expected cost of the empirical policy and

that of a candidate policy of our choice, it can be determined how much benefit is

obtained, thus answering also the question.

3.6 Summary

The analysis of a policy depends in general on the choice of cost metric and the

distributions of the outcomes induced by the classifiers in the policy.

The distributions of the lottery and the cost or utility function will dictate how

well π performs either globally or locally for each outcome with respect to another

policy or to the empirical policy.

This gives the designers of the UI the required tools to refine the models to skew

the distributions based on the metric of their choice to perform better in general or

in particular to an specific subset of outcomes. It also provides them with a guideline

to make an informed comparison of the machine learning models they could use or

which specific ones tune in order to achieve the desired effect. If the designers want

to calibrate the cost in general, they can train the models to jointly minimize the

costs for all of the outcomes using a training algorithm like SEARN [Iii et al., 2009]
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or DAGGER [Ross et al., 2010].
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CHAPTER 4

RELATED WORK

There is plenty of work in the literature related to user interfaces and the criteria

to qualify their usability and effectiveness.

Some authors, like Nielsen [Nielsen, 1994] and Jeffries [Jeffries et al., 1991],

classify and make a taxonomy of usability metrics and evaluation methodologies.

They provide an overview of different inspection methods to evaluating user

interfaces, like Heuristic evaluation, cognitive walkthroughs, usability inspections,

among others. The methods involve subjective judgements and are rather informal

because thay make use of a domain expert (i.e. the opinion of a human) and

concludes that the best results are whenever the domain expert that conducts the

evaluation is an specialist in the field.

Some of the papers propose and discuss an evaluation methodology designed

with a particular domain in mind, similarly to this thesis, but using a different

approach, for example, Biswas [Biswas et al., 2008] designed a methodology for

the evaluation of user interfaces in health-related user interfaces, particularly

Tele-Physiotherapy that makes use of an extensive checklist of requirements to

achieve an acceptable user interface . It still relies on the opinion of an expert,

although the criteria set is well defined and unambiguous as on the previously cited

papers.

Neto [Neto and da Gracca Pimentel, 2013] extends Nielsen’s work by defining a

set of heuristics specific for mobile device interfaces, which is presumably where the

largest share of ASR technology is going to be applied. His approach is the same,

conduct audits by a human expert whose criteria will provide an assessment of the
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mobile user interface. He presents a case in which he applies Nielsen’s work and his

to contrast the difference and show that his work is more effective when assessing

mobile interfaces.

Hilbert [Hilbert and Redmiles, 2000] focuses on explaining how to automate

the extraction of information about usability by providing an extensive overview

of the commonly used computer-aided methods to gather usability metrics,

like in our case, the time of interaction on the screens. He also provides a

framework to compare the nature of these different information-gathering methods

by defining a taxonomy of the different kind of Human-Computer interaction events.

Moving forward in the literature, some authors apply a more formal methodol-

ogy to asses the usability of the UI. Savioja [Savioja et al., 2008] talks about GUI

usability in terms of qualification of the information content and presentation.

They define their own formal framework and criteria to quantify usability the

interface and analyze the user activity.

It is worth mentioning one of the foundational theories that this thesis makes use

of: The Von Neumann Morgenstern utility theorem [Neumann and Morgenstern,

1947] which lays the axioms of rationality with which the expected utility decision

theory is built. This work is extensively used on the thesis to define the notion of

policies.

There is evidence that there is work done that uses decision theoretic and

probabilistic methods to improve user interface design:

Gajos [Gajos and Weld, 2004] created a framework that leverages the same

mathematical tools as this work. The perspective and the scope are completely

different. They concerns about the generation of GUIs as an optimization problem

to organize the display of widgets optimally, not as an outcome optimization or
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interface selection.

Stumpf [Stumpf et al., 2005] implemented a system that tries to achieve a goal

similar to the case studied in this thesis by using probabilistic methods to reduce

the engagement of users with the UI of a system. They discuss the implementation

developed for Microsoft Windows environments and speak on high level about the

approach they used, but do not present a formal evaluation of their work neither a

strong argument about its validity.

Smyth [Smyth and Cotter, 2002] provide an example of a system with a UI

which could be modeled under the framework derived here. It uses probabilistic

methods to minimize a cost function (“click distance”) in order to enhance utility

(“money saved”).

Finally, Paek [Paek and Pieraccini, 2008] presents a survey of dialog driven

interface design research. Dialog driven interfaces naturally fit into the analysis

framework presented in this thesis because under their context, the designers must

figure out correctly the best questions to ask given at any moment during the

interaction .

The work of this thesis is complementary to other work in the literature. It

doesn’t try to replace any of above’s usability assessments nor to define a new

framework that automatically generates better user interfaces. It is a generalization

of a methodology to evaluate the application of machine learning models to rational

user interfaces. To the knowledge of the author, there is no previous work that

tackles this problem explicitly and directly as a decision problem for optimizing a

expected utility or cost in a general form.
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CHAPTER 5

CONCLUSIONS AND FURTHER DEVELOPMENT

The intention of the thesis is to provide an objective methodology to evaluate the

usefulness of adaptive user interfaces. It was developed in such a way that it is

abstract enough to be applied to user interfaces in general, not necessarily graphical

user interfaces, but simple enough to be easily understood and grounded in real

implementations.

With the proposed analysis structure, we can determine if an improvement is

achieved by a candidate policy with respect of an empirical policy defined by the

usual users’ behavior and the degree of this improvement, if any, under a decision

theoretic criterion.

The measurements can be used as guidelines by the interaction designers and

data analysts to determine the best way to train their models in such a way that

suits their needs.

An example of the application was shown in which the framework was born and

matched to define a set of candidate policies in a real life ASR application and the

results where presented to draw conclusions.

Hopefully, this work can be used on other analysis and prove to be useful. A

possible niche in which it could be applied are dialog driven interfaces which could

even serve to further refine and extend it, given their dynamic nature.

Given its abstract derivation, the framework could also be applied to analyze the

application of machine learning models to any arbitrary decision process, although
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no claims about its usefulness are given in this document, it may be an area worth

exploring.



45

REFERENCES

Bach, N., M. Eck, P. Charoenpornsawat, T. Khler, S. Stker, T. Nguyen, R. Hsiao,
A. Waibel, S. Vogel, and T. Schultz (2007). The CMU TransTac 2007 eyes-free
and hands-free two-way speech-to-speech translation system. In Proceedings of
the IWSLT, volume 7.

Biswas, J., V. Foo, M. A. Feki, L. S. Yee, and P. Yap (2008). Usability Evalua-
tion of an Innovative Platform for Tele-physiotherapy. In Proceedings of the 2Nd
International Convention on Rehabilitation Engineering & Assistive Technology,
iCREATe ’08, pp. 197–200. Singapore Therapeutic, Assistive & Rehabilitative
Technologies (START) Centre, Kaki Bukit TechPark II,, Singapore.

Gajos, K. and D. S. Weld (2004). SUPPLE: Automatically Generating User In-
terfaces. In Proceedings of the 9th International Conference on Intelligent User
Interfaces, IUI ’04, pp. 93–100. ACM, New York, NY, USA. ISBN 1-58113-815-6.

Hilbert, D. M. and D. F. Redmiles (2000). Extracting Usability Information from
User Interface Events. ACM Comput.Surv., 32(4), pp. 384–421.

Iii, H. D., J. Langford, and D. Marcu (2009). Search-based structured prediction.
Machine Learning, 75(3), pp. 297–325.

Jeffries, R., J. R. Miller, C. Wharton, and K. Uyeda (1991). User Interface Eval-
uation in the Real World: A Comparison of Four Techniques. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’91, pp.
119–124. ACM, New York, NY, USA. ISBN 0-89791-383-3.

Neto, O. M. and M. da Gracca Pimentel (2013). Heuristics for the Assessment of
Interfaces of Mobile Devices. In Proceedings of the 19th Brazilian Symposium on
Multimedia and the Web, WebMedia ’13, pp. 93–96. ACM, New York, NY, USA.
ISBN 978-1-4503-2559-2.

Neumann, L. J. and O. Morgenstern (1947). Theory of games and economic behavior,
volume 60. Princeton university press Princeton, NJ.

Nielsen, J. (1994). Usability Inspection Methods. In Conference Companion on
Human Factors in Computing Systems, CHI ’94, pp. 413–414. ACM, New York,
NY, USA. ISBN 0-89791-651-4.

Paek, T. and R. Pieraccini (2008). Automating spoken dialogue management design
using machine learning: An industry perspective. Speech Communication, 50(89),
pp. 716–729.



46

Ross, S., G. J. Gordon, and J. A. Bagnell (2010). A reduction of imitation
learning and structured prediction to no-regret online learning. arXiv preprint
arXiv:1011.0686.

Savioja, P., L. Norros, and L. Salo (2008). Evaluation of Systems Usability. In
Proceedings of the 15th European Conference on Cognitive Ergonomics: The Er-
gonomics of Cool Interaction, ECCE ’08, pp. 26:1–26:8. ACM, New York, NY,
USA. ISBN 978-1-60558-399-0.

Smyth, B. and P. Cotter (2002). Personalized adaptive navigation for mobile portals.
In ECAI, pp. 608–612.

Stumpf, S., X. Bao, A. Dragunov, T. G. Dietterich, J. Herlocker, K. Johnsrude,
L. Li, and J. Shen (2005). Predicting user tasks: I know what you’re doing.
In 20th National Conference on Artificial Intelligence (AAAI-05), Workshop on
Human Comprehensible Machine Learning.


	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	CHAPTER INTRODUCTION
	Overview
	Organization

	CHAPTER EXPERIMENT
	The ASR Error Repair Problem
	Interface Description
	Methodology
	Analysis 
	Candidate Policies
	Expected Costs of Policies

	Study Conclusions

	CHAPTER ANALYSIS FRAMEWORK
	Characterization of a decision process
	The problem with complex decision processes
	Computing the expected costs of the decision process
	Computing the expected costs of the candidate policy
	Empirical Policy
	Summary

	CHAPTER RELATED WORK
	CHAPTER CONCLUSIONS AND FURTHER DEVELOPMENT
	REFERENCES

