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SUMMARY

Implementation of the ultrasonic second harmonic generation has typically been

restricted to simple setups such as through-transmission or Rayleigh surface waves. Recent

research has evaluated the second harmonic generation in P- and SV- waves reflected from

a stress-free surface to enable the single-sided interrogation of a specimen. This research

considers the second harmonic generation in an aluminum specimen, which is analytically

evaluated using an approach based on the perturbation method. Here, the model is chosen

to mimic an experimental setup where a longitudinal wave is generated at an oblique angle

and the reflected wave is detected using a set of wedge transducers. Due to mode conversion

at the interface of the wedge and the specimen, it is necessary to evaluate longitudinal and

shear waves, determining all second harmonic waves generated in the bulk and at the stress-

free boundary. The theoretically developed model is then implemented in a commercial

finite element code, COMSOL, using increasing fundamental wave amplitudes for different

values of third order elastic constants. The results of this computational model verify the

analytical approach and the proposed measurement setup, taking into account assumptions

and approximations of the solution procedure. Furthermore, the computational model is

used to draw important conclusions relevant to the experimental setup, including the need

to avoid evolving surface waves and interactions with diffracted waves. These numerical

results are used to develop a recommendation for the measurement position and incident

angle. Finally, the nonlinearity of two different aluminum specimens is measured with

the suggested measurement setup and the results confirm the feasibility of the single-sided

determination of the acoustic nonlinearity using reflected bulk waves.

xiii



CHAPTER I

INTRODUCTION

This chapter introduces the fundamentals and the applications of nonlinear ultrasonics in

nondestructive evaluation (NDE), and the research objective of this work is prescribed.

An overview of existing literature is given and related results are discussed. Finally, this

chapter is completed by an outline of the entire thesis.

1.1 Motivation

In the last decades, ultrasonic technology has proven to be a useful field NDE technique

to assess the state of materials. Determining the damage state of critical components can

reduce maintenance costs and secure a higher level of safety. However, conventional linear

ultrasonic technology is only capable of detecting macroscopic cracks or determining stiff-

ness parameters, but can not provide quantitative information about material state such

as residual stress or strength parameters, as well as before the formation of macrocracks.

Therefore, it is desirable to develop methodologies capable of assessing the state of a material

throughout its entire life cycle. In recent years nonlinear ultrasonics has shown great poten-

tial to monitor the fatigue life and the accumulation of damage in the material rather than

waiting for macroscopic cracks to form. This is possible because the nonlinear ultrasound is

sensitive to microstructural changes associated with dislocations. Several researchers have

linked these changes to mechanical, thermal, and radiation damage [8, 18, 22, 26].

Nonlinear ultrasonic techniques often measure the higher harmonics due to the nonlin-

ear material properties to draw conclusions about the state of a component. For weakly

nonlinear materials such as metals, generally only the second harmonic waves will be large

enough to provide repeatable results.

Existing measurement setups for the second harmonic generation usually determine the

material nonlinearity using bulk waves in the through transmission mode [22,26], Rayleigh

waves [18, 30] or Lamb waves [6, 28]. However, there are some drawbacks in each of these
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measurement approaches. Through transmission measurements using bulk waves requires

access to both sides, which is often not possible with in-service components. Rayleigh waves

only interrogate the surface of a component to the depth of one wavelength, which is usually

less than a few millimeters. Finally, Lamb waves are limited in their applications since very

few modes fulfill the requirements for cumulative propagation [28]. Furthermore, Rayleigh

as well as Lamb waves need a minimum propagation distance, and most importantly the

resulting measured material nonlinearity is an average over the propagation distance, and

can not be localized.

A measurement setup using bulk wave reflection at a stress-free boundary can poten-

tially provide information about the local state throughout the thickness of an in-service

component such as a reactor pressure vessel illustrated in Figure 1.1. This can be a great

advantage for monitoring in-service components throughout their lifetime for higher safety.

A mathematical solution for the second harmonic generation from a reflected wave was

studied in [5,34,35] amongst others, where Bender et al. [5] and Zhou et al. [35] focused on

the stress-free boundary.

Best et al. [7] provide simulations and experimental data that show the potential of

nonlinear measurements with reflection at a stress-free boundary to be an alternative to

the usual through-transmission setup. They use the pure normal incidence as illustrated

in Figure 1.2 a) where the wave propagates perpendicular to the stress-free surface. Ne-

glecting attenuation and diffraction, the second harmonic wave generated during forward

propagation will theoretically decrease to zero upon reflection from a stress-free surface

due to the 180◦ phase shift of the primary wave at the stress-free boundary [5, 7, 31, 32].

Therefore, only a small amplitude of the second harmonic wave compared to the amplitude

of the first harmonic wave can be measured with normal incidence. Best et al. [7] increase

the second harmonic amplitude by beam forming and frequency optimization. However, an

incident angle that is not normal to the stress-free surface leads to a higher second harmonic

amplitude. Therefore, a measurement setup with reflection at a stress-free boundary at an

oblique angle, as illustrated in Figure 1.2, is investigated in this thesis.

2



Figure 1.1: Reactor pressure vessel [10] as an example for an in-service NDE application

a) b)

Figure 1.2: Possible experimental setup using reflection at a stress-free boundary at a)
normal incidence and b) oblique angle
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1.2 Objective

The objective of this research is to formulate, evaluate and experimentally test potential

experimental setups that use second harmonic generation in the reflection mode. The first

step is to understand, model and simulate how second harmonic waves are generated in the

reflection mode. This step utilizes existing mathematical solutions to develop an analytical

model of the second harmonic generation at a stress-free surface. Then a numerical model

is developed to validate the analytical results. These results are used to formulate potential

measurement setups, where each case can be numerically and experimentally evaluated.

Finally the proposed experimental configurations are used to experimentally measure the

material nonlinearity of a specimen using the reflection from a stress-free boundary.

1.3 Outline

The structure of the thesis is as follows: An introduction into the fundamentals of wave

propagation, that are relevant to this research, will be given in Chapter 2. In Chapter

3, these concepts will be used to formulate a possible measurement setup and analyze

the generation of the second harmonic waves analytically. On the basis of the evaluated

measurement setup a numerical model is developed in Chapter 4 and important criteria for

an experimental setup are drawn. In Chapter 5 the numerical and the analytical results

are compared and the possible measurement setup is evaluated. Hereupon, an experimental

procedure is presented and the feasibility of the suggested measurement setup is validated

experimentally in Chapter 6. Finally a conclusion and an outlook for future works are given

in Chapter 7.
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CHAPTER II

FUNDAMENTALS OF WAVE PROPAGATION IN SOLIDS

In this chapter the fundamentals of linear wave propagation in solids are presented. It

starts with the basics of linear wave propagation including the linear equations of motion

with the final focus on the refraction and reflection of linear waves. This is followed by

the introduction of the nonlinear wave propagation theory. The nonlinear wave equation is

then solved at the presence of a stress-free boundary. The mathematical background that

is provided in the following chapter can be found in various books and other publications

[1, 4, 17, 23, 27].

2.1 Linear Wave Propagation

In the following linear constitutive and geometric relations are applied to derive the linear

elastic equation of motion. As result of the equation of motion the P- and S-waves are

discussed as well as transmission and reflection of P- and S-waves.

2.1.1 Linear equations of motion

In order to derive the equations of motion for an elastic solid, we start with the balance of

linear momentum, which states that the time rate of change of the total momentum of a

free body equals the vector sum of all external forces.

∫

V

ρüidV =

∫

S

tidS +

∫

V

fidV (1)

Here S is the surface area, V is the volume, ui is the displacement, ti is the traction and fi

represents the body force. The traction ti can be expressed by Cauchy’s formula

ti = σijnj (2)

where σij is the Cauchy-Stress-Tensor and nj represents the outward normal unit vector.

One can now plug Cauchy’s formula into Equation (1) and transform the surface integral to

5



a volume integral by using the divergence theorem. Rearranging terms to one side finally

yields to
∫

V

(∂jσij − ρüi + ρfi)dV = 0 (3)

Since this equation is valid for arbitrary V , one can conclude

∂jσij + ρfi = ρüi (4)

which is known as Cauchy’s equations of motion. Applying the principle of angular mo-

mentum, Cauchy’s stress tensor σij turns out to be symmetric.

For homogeneous, isotropic and linear elastic medium the relationship between stress σ

and strain ε is given by

σij = λεkkδij + 2µεij (5)

with the two second-order elastic constants λ and µ, also known as Lamé constants. The

strain tensor εij can be expressed in terms of the displacement ui

εij =
1

2
(∂jui + ∂iuj) (6)

which leads to the expression of Cauchy’s stress tensor

σij = λukkδij + µ(∂jui + ∂iuj) (7)

Substituting Cauchy’s stress tensor in Equation 5, we obtain

(λ+ µ)∂j∂iuj + µ∂j∂jui = ρüi (8)

or in vector representation

(λ+ µ)∇∇u+ µ∇2u = ρü (9)

Note that body forces are neglected. Applying the Helmholtz decomposition the vector field

u can be decomposed into

u = ∇φ+∇× ψ with ∇ · ψ = 0 (10)

by using a scalar potential φ and a vector potential ψ. For this decomposition to be valid,

the zero-divergence condition for the vector potential is necessary in order to decompose

6



the components of u uniquely. When we substitute Equation (10) in Equation (9) we get

two uncoupled wave equations in terms of the scalar potential φ and the vector potential

ψ.

∇2φ− 1

c2p
φ̈ = 0 and ∇2ψ − 1

c2s
ψ̈ = 0 (11)

Here cp =
√

(λ+ 2µ)/ρ and cs =
√

µ/ρ holds.

2.1.2 P-wave and S-wave

In this section the phenomena resulting of the derived wave equation are presented. Here

the P-wave and S-wave, also called the bulk waves, are covered as they are later analyzed at

the stress-free boundary. Note that in this section only plane waves are considered, where

the wavefronts with uniform displacements occur on parallel planes standing vertically on

the direction of propagation.

We regard two cases: the curl free displacement field where φ = 0 and the divergence

free displacement field where ψ = 0. The case of φ = 0 results in the wave traveling with the

speed c2p that is called dilatational, irrotational, primary, longitudinal, pressure or P-wave.

In the divergence free displacement field we obtain a wave that travels with speed c2s and is

called transversal, rotational, distortional, secondary, shear or S-wave.

The general three dimensional plane wave solution is given by

u = Adf(p · x− ct) (12)

with the amplitude A, the unit vector in the direction of displacement d, the unit vector in

the direction of propagation p, the wave speed c, time t and the position x. By substituting

Equation (12) into Equation (9) we obtain

(µ− ρc2)d+ (λ+ µ)(p · d)p = 0 (13)

Since p and d are two different unit vectors, we can conclude that there are two possible

solutions d = ±p or p · d = 0. In the first case d = ±p leads to p · d = ±1. This results in

c = cp, the wave speed of the P-wave. Since p and d are linearly dependent, the propagation

direction of a P-wave is also the direction of its displacement. This explains why the P-wave

is also called longitudinal wave.
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In the second case p·d = 0 shows that the direction of wave propagation is perpendicular

to the direction of the displacement amplitude. Evaluating Equation (13) in this case results

in c = cs, the wave speed of the S-wave. The perpendicular polarization of the displacement

explains why the S-wave is also called the transversal wave. Note that in a two-dimensional

plane of propagation the S-wave is sub-divided into two types, the vertically polarized S-

wave or SV-wave with in-plane displacement and the horizontally polarized S-wave or SH-

wave with out-of-plane displacement. Since in this thesis the model is only two dimensional,

only the SV-wave is considered. Thus, the term S-wave denotes SV-wave in general.

In the following chapters the representation of a plane harmonic displacement wave is

chosen to be

u = Ad cos(ωt− k · x) (14)

where k is the wave vector pointing in the direction of propagation, k = ‖k‖ is defined as

the wave number and ω = ck is the constant angular frequency. It can be seen that this

representation fulfills the definition of plane waves of Equation (12).

Another notation used is

u = Adej(ωt−k·x) (15)

where only the real part of the term represents the physical wave such that it correlates

with Equation (14). Using this representation one has to keep in mind that taking the real

part is a linear operator. Therefore, taking the real part has to be applied to the primary

waves as stated in [4].

2.1.3 Refraction, Reflection and Transmission

In order to later evaluate the second harmonic generation in the presence of the stress-free

boundary, the phenomena of refraction, reflection and transmission of the primary wave at

an oblique angle must be considered. In this thesis the solution to the most general case is

presented. This solution can then be simplified to arbitrary interfaces. For the derivation

of the following solution or for further reading the reader is referred to [2] or [17].

This most general case is represented by a solid-solid interface for an arbitrary incident

wave, as illustrated in Figure 2.1.
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x

y

APi

ASi ASr

APr

ΘPi
ΘSi ΘSr

ΘPr

ΘPt

ΘSt

ASt

APt

Figure 2.1: Reflection and transmission of a P- and S-wave at a solid-solid interface

From Snell’s law, we know

sin(ΘPi)

cP1
=

sin(ΘSi)

cS1
=

sin(ΘPr)

cP1
=

sin(ΘPt)

cP2
=

sin(ΘSr)

cS1
=

sin(ΘSt)

cS2
(16)

where second index of the wave velocities represent solid 1 or solid 2 respectively. Evaluating

the boundary conditions, which state that normal and transverse velocity as well as the

stress components are continuous at the interface, one obtains following formula for the
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reflected and transmitted amplitudes in case of an incident P or S-wave



















− cos θPr − cos θPt − sin θSr sin θSt

− sin θPr sin θPt cos θSr cos θSt

−ZP1 cos 2θSr −Zd2 cos 2θSr −Zs1 sin 2θSr −ZS2 sin 2θSt

−ZP1
cS1

cP1
sin 2θPr −ZS2

cS2

cP2
sin 2θPt ZS1 cos 2θSr −ZS2 cos 2θSt





































APr

APt

ASr

ASt



















=



















− cos θPiAPi

sin θPiAPi

ZP1 cos 2θPiAPi

−ZS1
cS1

cP1
sin 2θPiAPi



















or =



















sin θSiASi

cos θSiASi

−ZS1 sin 2θSiASi

−ZS1 cos 2θSiASi



















(17)

Note that this solution can easily be simplified to obtain the reflection of an incident P- or

S-wave at a stress-free boundary.

2.2 Nonlinear Wave Propagation

In the linear problem quadratic and higher order terms are neglected. But especially the

generation of higher harmonic waves due to material nonlinearities are useful for nonde-

structive evaluation of materials. Nonlinear techniques have the potential to monitor the

gradual accumulation of damage in a material before the initiation of a crack. Therefore,

important nonlinear concepts are discussed in this chapter starting with the nonlinear wave

equation based on finite deformation. This concepts is used to evaluate the interaction of

elastic waves. Finally the boundary conditions are introduced.

2.2.1 Nonlinear Wave Equation

In case of finite deformation the Piola-Kirchhoff stress tensor Pij is applied to express the

stresses relative to the reference configuration. The nonlinear equations of motion can then

be expressed by using this stress tensor in Cauchy’s first law of motion of Equation (4) with

body forces neglected:

ρüi = ∂jPji (18)
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The Piola-Kirchhoff stress tensor Pij is given by

Pij = λ∂kukδij + µ(∂jui + ∂iuj)

+ (
1

2
λ∂luk∂luk + C∂kuk∂lul)δij + B∂kuk∂jui +

1

4
A∂kui∂juk

+
1

2
B(∂luk∂luk + ∂luk∂kul)δij + (λ+ B)∂kuk∂iuj

+ (µ+
1

4
A)(∂kuj∂kui + ∂juk∂iuk + ∂kuj∂iui)

(19)

in terms of the displacement ui and the third order elastic constants (TOECs) A, B and C

introduced by Landau and Lifshitz [23]. Note that there are different ways to express these

TOECs. The use and conversion of the TOECs are presented and explained in [9], [11]

and [15] amongst others. The derivation to obtain the stated formula can be found in [23].

Note that this expression of Pij can be decomposed into a linear part that equals the

expression for the Cauchy stress tensor (7) and a nonlinear part of second order in ui:

Pij = PL
ij + PNL

ij (20)

with

PL
ij = λ∂kukδij + µ(∂jui + ∂iuj) (21)

PNL
ij = (

1

2
λ∂luk∂luk + C∂kuk∂lul)δij + B∂kuk∂jui +

1

4
A∂kui∂juk

+
1

2
B(∂luk∂luk + ∂luk∂kul)δij + (λ+ B)∂kuk∂iuj

+ (µ+
1

4
A)(∂kuj∂kui + ∂juk∂iuk + ∂kuj∂iui)

(22)

Using this decomposition in the equations of motion (18) we get

ρüi − ∂jP
L
ji = ∂jP

NL
ji (23)

with

∂jP
L
ji = λ∂i∂kukδij + µ(∂j∂jui + ∂j∂iuj) (24)

∂jP
NL
ji = (µ+

1

4
A)(∂k∂kul∂iul + ∂k∂kul∂lui + 2∂l∂kui∂kul)

+ (λ+ µ+
1

4
A+ B)(∂k∂iul∂kul + ∂k∂luk∂lui)

+ (λ+ B)(∂k∂kui∂lul) + (B + 2C)(∂k∂iuk∂lul)

+ (
1

4
A+ B)(∂k∂luk∂iul + ∂k∂iul∂luk)

(25)
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2.2.2 Perturbation Method

Finding a solution to the nonlinear equations of motion (23) and the applicable boundary

conditions represents a nonlinear boundary value problem (BVP). Since we are interested in

the second-order approximation of the solution the total displacement field can be written

as

u = u(1) + u(2) (26)

We call u(1) the primary solution and u(2) the secondary solution. Research and experiments

on the generation of second harmonic waves suggest that the amplitude of the generated

second harmonic wave is much smaller than the amplitude of the primary wave. Works

like [22] show that the second harmonic wave field is commonly in the range of a hundredth

of the amplitude of the primary wave field. Furthermore, this assumption is verified later

in the evaluation of the solution. This suggests that

|u(2)| � |u(1)| (27)

holds and u(2) is only a small correction term to the dominant solution u(1). Therefore, the

BVP meets the requirement for the perturbation method (compare [3]), which is also called

the perturbation condition.

Applying the perturbation method (26) to the equations of motion (23) we get

ρü
(1)
i + ρü

(2)
i − ∂jP

L
ji(u

(1)
i )− ∂jP

L
ji(u

(2)
i ) = ∂jP

NL
ji (u

(1)
i + u

(2)
i ) (28)

Due to the perturbation condition, the terms in u(2) · u(1) and u(2) · u(2) on the right hand

side can be neglected. By decomposition one obtains

ρü
(1)
i − ∂jP

L
ji(u

(1)
i ) = 0 (29)

ρü
(2)
i − ∂jP

L
ji(u

(2)
i ) = ∂jP

NL
ji (u

(1)
i ) (30)

Here, Equations (29) represent a linear homogenous BVP which can be solved for u(1).

Consequently, the forcing term on the right hand sight of Equation (30) can be computed

from the solution of Equation (29) and the second BVP can be solved for u(2).

12



Since the curl of a P-wave field and the divergence of a S-wave field are equal to zero,

Equations (29) and (30) can be written in terms of the displacement ui

ü
(1)
i − c20∂k∂ku

(1)
i = 0 (31)

ü
(2)
i − c20∂k∂ku

(2)
i =

1

ρ
∂jP

NL
ji (u

(1)
i ) (32)

with c0 = cp =
√

λ+2µ
ρ

for P-waves and c0 = cs =
√

µ
ρ
for S-waves.

We have to keep in mind that the perturbation method only yields an approximate

solution and the perturbation condition must always be verified. The accuracy of the

solution is dependent on the relative size of the second harmonic amplitude and therefore,

it is dependent on voltage and propagation distance.

The applied approach of solving the nonlinear equations of motion is summarized and

illustrated in Figure 2.2.

2.2.3 Bulk interaction of elastic waves

In order to determine the forcing term on the right hand side of Equation (30) the bulk

interaction of elastic waves has to be evaluated. In nonlinear material, second harmonics

are generated by two types of wave interactions: self-interaction, when a wave interacts

with itself, and cross-interaction, when different waves interact with each other [5, 21].

Consider two primary waves u
(1)
I and u

(1)
II denoted by

u
(1)
I = AIdIe

j(ωt−kI·x) (33)

u
(1)
II = AIIdIIe

j(ωt−kII·x) (34)

where AI and AII are the amplitudes, dI and dII are the unit displacement vectors and kI

and kII are the wave vectors. Since we are interested in the harmonics of the generated

wave, we neglect the time independent term. Therefore, the forcing term can generally be

written as

1

ρ
∂jP

NL
ji (u

(1)
i ) = βbulkAIAIIe

j(2ωt−k·x)di (35)

with the resulting wave vector k and the introduction of the nonlinearity parameter βbulk

according to [5].
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Nonlinear Equations of Motion (1)

ρüi = ∂jPji

Segmentation of Stress Tensor

Pij = PL
ij + PNL

ij

Nonlinear Equations of Motion (2)

ρüi − ∂jP
L
ji = ∂jP

NL
ji

Application of Perturbation Method

u = u(1) + u(2)

|u(2)| � |u(1)|
2 Linear Boundary Value Problems

ρü
(1)
i − ∂jP

L
ji(u

(1)
i ) = 0

ρü
(2)
i − ∂jP

L
ji(u

(2)
i ) = ∂jP

NL
ji (u

(1)
i )

P- and S-wave Restrictions

cp =
√

λ+2µ
ρ

cs =
√

µ
ρ

∇× uP = 0 ∇ · uS = 0
2 Linear BVPs in Displacement

ü
(1)
i − c20∂k∂ku

(1)
i = 0

ü
(2)
i − c20∂k∂ku

(2)
i = 1

ρ
∂jP

NL
ji (u

(1)
i )

Forcing term

1
ρ
∂jP

NL
ji (u

(1)
i )

= βbulkAIAIIe
j(2ωt−k·x)di

Primary and Secondary Solution

u(1), u(2)

Determining bulk parameters

Pβ
bulk
PP , Sβ

bulk
PP , Pβ

bulk
SS ,..

Solving differential equation

Ansatz

u
(2)
hom = B2e

j(2ωt−2k·x)d

ej(2ωt−kx sin θ−ky cos θ)d

u
(2)
part = (C1x+ C2y + C3)

Boundary conditions

P21(u)|y=0 = 0, P22(u)|y=0 = 0

Figure 2.2: Solution procedure for solving the nonlinear equations of motion (adapted
from [4])
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In the case of self-interaction only a single wave interacts with itself u(1) = u
(1)
I = u

(1)
II .

Using u(1) in Equation (19) we get

∂jP
NL
ji (u

(1)
i ) = j

((

λ+ 2µ+
A
2
+ B

)

(AI ·AI)(kI · kI)kI

+ (2λ+ 4µ+A+ 2B)(AI · kI)(kI · kI)AI

+

(A
2
+ 3B + 2C

)

(AI · kI)(AI · kI)kI

)

1

2
ej(2ωt−2kI·x)

(36)

with the resulting wave vector k = 2kI. Using this result in Equation (35) for P-waves and

for S-waves we get

Pβ
bulk
PP =

jk3p
2ρ

(3λ+ 6µ+ 2A+ 6B + 2C) (37)

Sβ
bulk
PP = 0 (38)

Pβ
bulk
SS =

jk3s
2ρ

(λ+ 2µ+
A
2
+ B) (39)

Sβ
bulk
SS = 0 (40)

Note that Pβ
bulk
PP =P βbulkPiPi

=P βbulkPrPr
and Pβ

bulk
SS =P βbulkSiSi

=P βbulkSrSr
.

Proceeding similarly for the interaction of two different types of waves one gets the

remaining nonlinearity parameters βbulk. There is only one special case where cross interac-

tion has a noticeable impact on the generation of the second harmonic. This case is further

explained in Section 3.2. In most cases only the self-interaction results in a resonant case

and is therefore significant for measurements. Consequently, this thesis concentrates on the

case of self interaction. For further reading for the case of cross interaction the reader is

referred to the works of [5, 21].

2.2.4 Solution of the Equation of Motion

Note that in the mathematical analysis we assume our medium to be infinitely extended

in x- and z-direction. Without loss of generality we let the wave normal lie in the x,y-

plane as illustrated in Figure 2.3. Therefore, the displacement field lies in the x,y-plane.

Restricting this case to in-plane motion reduces the problem to two dimensions. With the

results presented above a solution to the equations of motion is derived in this chapter.
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x

y

z

2 dimensional
x,y - plane

Figure 2.3: Coordinate system of the infinite half-space

Then the unspecified constants are determined in the next chapter for distinct problems.

Plugging in the forcing term of Equation (35) into the BVP we get

ü
(1)
i − c20∂k∂ku

(1)
i = 0 (41)

ü
(2)
i − c20∂k∂ku

(2)
i = βbulkAIAIIe

j(2ωt−k·x)di (42)

The solution to Equation (31) is

u(1) = B1e
j(ωt−k·x)d (43)

withB1 being an undetermined constant. Similarly, the homogeneous solution to Equation(32)

is

u
(2)
hom = B2e

j(2ωt−2k·x)d (44)

with the undetermined constant B2. For the particular solution to Equation (32) we use

the ansatz

u
(2)
part = (C1x+ C2y + C3)e

j(2ωt−kx sin θ−ky cos θ)d (45)

that gives us following equation when plugged into Equation (32)

(−4ω2 + c20k
2)(C1x+ C2y + C3) + 2jc20kC1 sin θ + 2jc20kC2 cos θ = βbulkAIAII (46)

Since the right hand side does not contain any terms of x or y, those terms with x- or

y-dependence must vanish on the left hand side as well. Therefore, we get two cases, the

resonant case where k = 2k0 and the non resonant case where C1 = C2 = 0. As stated
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before, we are especially interested in the resonant case. This is the measurable part in

a general application as the amplitude of the non resonant solution is not growing with

propagation distance.

For further information the reader is referred to [4]. As C1 and C2 are related and can

be expressed by the introduction of the constant αsurf , the resonant particular solution can

be written as

u
(2)
part =

(

AIAII

4jk0c20

(

αsurf sin θx+

(

βbulk − αsurf sin2 θ

cos θ

)

y

)

+ C3

)

ej(2ωt−2k0x sin θ−2k0y cos θ)d

(47)

Adding the homogeneous and the particular solution we finally get the complete solution

for Equation (32)

u(2) =

(

AIAII

4jk0c20

(

αsurf sin θx+

(

βbulk − αsurf sin2 θ

cos θ

)

y

)

+ γsurf
)

· ej(2ωt−2k0x sin θ−2k0y cos θ)d

(48)

where γsurf = B2 +C3. Note that this solution still has two unknown constants αsurf and

γsurf that must be determined by evaluating the boundary conditions.

2.2.5 Boundary Conditions

In case of a stress-free surface the boundary condition expressed by the Piola-Kirchhoff

stress tensor are given by

P21|y=0
!
= 0 and P22|y=0

!
= 0 (49)

Using the perturbation method and the perturbation condition we obtain

P21(u
(1) + u(2))|y=0 = PL

21(u
(1))|y=0 + PNL

21 (u(1))|y=0 + PL
21(u

(2))|y=0 (50)

P22(u
(1) + u(2))|y=0 = PL

22(u
(1))|y=0 + PNL

22 (u(1))|y=0 + PL
22(u

(2))|y=0 (51)

Since the linear stresses in u(1) satisfy the linear boundary condition PL
21(u

(1))|y=0 =

σ21(u
(1))|y=0 = 0 and PL

22(u
(1))|y=0 = σ22(u

(1))|y=0 = 0 we finally get the following bound-

ary conditions

PNL
21 (u(1))|y=0 = −PL

21(u
(2))|y=0 (52)

PNL
22 (u(1))|y=0 = −PL

22(u
(2))|y=0 (53)
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CHAPTER III

SECOND HARMONIC GENERATION AT A FREE BOUNDARY

With the theoretical background derived in Chapter 2 we can now evaluate the second

harmonic generation at a stress-free boundary. A distinct model to be analyzed is illustrated

in Figure 3.1. This model is derived from a possible measurement setup which is then used

in the simulations and in the experiment. The gray area illustrates the wedge on which the

transducer is be glued to. The wedge enables omitting waves at an oblique angle into the

specimen. The white area is the specimen which shall be investigated. In the following,

Figure 3.1 is further explained.

3.1 Primary wave field

As shown in Figure 3.1, the transducer generates a P-wave which is then transmitted and

reflected at the interface of the wedge and the specimen. At the solid-solid interface the

generated P-wave causes a transmitted S-wave and a transmitted P-wave propagating at

different angles into the specimen, as explained in Section 2.1.3. Note that the reflected

waves at the solid-solid interface of wedge and specimen are not drawn in Figure 3.1 as they

are not of interest in the following analysis.

The transmitted S-wave is reflected at bottom surface position 1, causing a reflected P-

wave and a reflected S-wave. The transmitted P-wave is reflected at bottom surface position

2 and causes another reflected P-wave and another reflected S-wave. In the following, the

position where the reflected S-wave arrives is referred to as position 3. The position where

the mode-converted reflected S-wave as well as the mode-converted reflected P-wave arrive

is referred to as position 4, and the position where the reflected P-wave arrives is referred

to as position 5, shown in Figure 3.1. Especially position 4 and position 5 turn out to be

possible receiver positions.

Thereby, the incident angle of the generated incident P-wave is a variable parameter.

Since we want to evaluate the reflected P- and S-wave, we only consider incident P-wave
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Figure 3.1: Investigated setup with reflection of an initial P- and S-wave at a stress-free
boundary

Table 3.1: Material properties of Acrylic Plastic

Description Symbol Value

Young’s modulus E 3.2 GPa
Poisson’s ratio ν 0.35
mass density ρ 1190 kg/m3

Lamé parametera λ 2.8 GPa
Lamé parametera µ 1.2 GPa
velocity P-wavea cP1 2077.5 m/s
velocity S-wavea cS1 998.0 m/s
aCalculated from listed properties

angles up to the critical angle Θcr = sin−1(cP1/cP2).

In order to evaluate this model we have to use material properties. According to several

experimental works (e.g. [18, 27]) the wedge is chosen to be out of Acrylic Plastic. The

corresponding relevant properties of the material are listed in Table 3.1. These values

are taken from the material library of COMSOL. The material of the specimen is chosen

to be aluminum. Aluminum has been of interest in various works (e.g. [29, 30]), it has

a wide application area and the material properties are well-investigated. Again, we use

the properties of generic aluminum available from the material library of COMSOL. The

relevant material properties are listed in Table 3.2.

Applying these material properties, the primary wave field can be evaluated. The nor-

malized amplitudes of the reflected and transmitted S-wave and P-wave for the angles
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Table 3.2: Material properties of Aluminum

Description Symbol Value

Young’s modulus E 70 GPa
Poisson’s ratio ν 0.33
mass density ρ 2700 kg/m3

Lamé parameter λ 51 GPa
Lamé parameter µ 26 GPa
TOEC A −350 GPa
TOEC B −155 GPa
TOEC C −95 GPa
velocity P-wavea cP2 6176.4 m/s
velocity S-wavea cS2 3103.2 m/s
aCalculated from listed properties

0 < Θi < Θcr ≈ 19.5◦ are shown in Figure 3.2. This correlates with 0 < ΘP < 90◦. Since

the incident angle of interest is in a small range and not very descriptive, the reference

angle is chosen to be ΘP in this thesis. ΘP is the angle of the transmitted P-wave in the

specimen, as illustrated in Figure 3.1. Note that by knowing ΘP , the incident angle Θi can

easily and uniquely be determined.

As shown in Figure 3.2, it is necessary to evaluate both P-wave as well as S-wave at the

stress-free boundary. The amplitudes of the reflected primary wave fields of the P-wave and

the S-wave with respect to the generated amplitude for different angles ΘP are shown in

Figure 3.3. There are four primary waves arriving at the surface, that have to be taken into

consideration: P- and S-wave reflected from the transmitted P-wave, and P- and S-wave

reflected from the transmitted S-wave.

3.2 Secondary wave field

In order to evaluate the secondary field the transmitted P- and S-wave are analyzed sepa-

rately on the basis of the mathematical approach explained in Section 2.2.

3.2.1 Transmitted P-wave

In this section the secondary wave field caused by the transmitted P-wave at the presence

of a stress-free boundary is evaluated. The transmitted S-wave is not considered in this

section.
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Figure 3.2: Normalized amplitude of transmitted and reflected waves
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Table 3.3: Summary of the secondary wave field considering only the transmitted P-wave
adapted from [4]

Wave Interaction Generated by Wave number Angle Resonance

Pu
(2)
PtP t Self u

(1)
Pt 2kP ΘP Yes

Pu
(2)
PtPr Cross u

(1)
Pt , u

(1)
Pr kPtPr = 2kP sinΘP 90◦ No

Pu
(2)
PtSr Cross u

(1)
Pt , u

(1)
Sr kPtSr = 2kP

sinΘP

sinΨ Ψ only for ΘP = Θ∗

P

Su
(2)
PtSr Cross u

(1)
Pt , u

(1)
Sr kPtSr = 2kP

sinΘP

sinΨ Ψ No

Pu
(2)
PrPr Self u

(1)
Pr 2kP ΘP Yes

Pu
(2)
PrSr Cross u

(1)
Pr , u

(1)
Sr kPrSr = 2kP

sinΘP

sinΦ Φ No

Su
(2)
PrSr Cross u

(1)
Pr , u

(1)
Sr kPrSr = 2kP

sinΘP

sinΦ Φ No

Pu
(2)
SrSr Self u

(1)
Sr 2kS ΘS No

Su
(2)
SrSr Self u

(1)
Sr 2kS ΘS Yes

with Ψ = arctan 2kP sinΘP

kS cosΘS−kP cosΘP
, Φ = arctan 2kP sinΘP

kS cosΘS+kP cosΘP

According to the perturbation method, the secondary wave field generated by the trans-

mitted P-wave under the presence of a stress-free boundary can be determined by consider-

ing all self- and cross-interactions of the primary waves. Therefore, the resulting complete

expression for the secondary field is following

u(2) = Pu
(2)
PtP t + Pu

(2)
PtPr + Pu

(2)
PtSr + Su

(2)
PtSr + Pu

(2)
PrPr

+ Pu
(2)
PrSr + Su

(2)
PrSr + Su

(2)
SrSr + Pu

(2)
SrSr

(54)

where the notation is adapted from [4] in order to uniquely address all waves. Thereby,

the prefixed index expresses the nature of the wave itself and the suffixed index expresses

the origin of the wave cause, the two primary waves that interact. The term Pu
(2)
PtPr for

example represents a second harmonic P-wave that results by the cross-interaction of the

transmitted P-wave APt and the reflected P-wave APr. For further explanation of the

second harmonic wave field generated by interaction the reader is referred to [5] and [21].

A summary of the results is presented in Table 3.3 adapted from [5]. Since we want to

evaluate the method generally at an oblique angle, we only consider the general case where

ΘP 6= Θ∗

P , with Θ∗

P being the only angle where Pu
(2)
PtSr shows resonance. This results in

only three not negligible terms, the resonant cases Pu
(2)
PtP t, Pu

(2)
PrPr and Su

(2)
SrSr. These
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Table 3.4: Summary of the secondary wave field considering only the transmitted S-wave
adapted from [4]

Wave Interaction Generated by Wave number Angle Resonance

Pu
(2)
StSt Self u

(1)
St 2kS ΘS No

Pu
(2)
StSr Cross u

(1)
St , u

(1)
Sr kStSr = 2kS sinΘS 90◦ No

Pu
(2)
PrPr Self u

(1)
Pr 2kP ΘP Yes

Pu
(2)
PrSr Cross u

(1)
Pr , u

(1)
Sr kPrSr Φ No

Su
(2)
PrSr Cross u

(1)
Pr , u

(1)
Sr kPrSr Φ No

Pu
(2)
SrSr Self u

(1)
Sr 2kS ΘS No

Su
(2)
SrSr Self u

(1)
Sr 2kS ΘS Yes

with kPrSr =
√

(2kP sinΘP )2 + (kS cosΘS + kP cosΘP )2 , Φ = arctan 2kS sinΘS

kS cosΘS+kP cosΘP

waves are of particular interest as their amplitudes depend on the propagation distance.

Those three waves are further investigated.

3.2.2 Transmitted S-wave

Similar to the consideration of the P-wave, the S-wave can be analyzed. The resulting

complete expression for the secondary wave field is following, where each term is further

explained in Table 3.4 adapted from [4].

u(2) = Pu
(2)
StSt + Pu

(2)
StSr + Pu

(2)
PrPr + Pu

(2)
PrSr

+ Su
(2)
PrSr + Pu

(2)
SrSr + Su

(2)
SrSr

(55)

3.3 Model analysis for different parameters

Putting these results together, the second harmonic wave field for the setup in Figure 3.1 can

be evaluated. The result is illustrated in Figure 3.4 for different angles of the transmitted

P-wave. The thickness of the specimen is chosen to be 0.025 m and the amplitude of the

transducer is 15 · 10−10 m. Those values are also analyzed in the simulations in Chapter

4. Note that the second harmonic wave field is plotted over the x-axis of the model. To

illustrate positions 1 and 2 at the bottom surface and position 3, 4 and 5 at the top surface

the reader is referred to Figure 3.1. In order to improve the readability of the figures the
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horizontal and vertical scales vary for different angles. In Figure 3.5 a second plot is added

for the angles ΘP = 20◦ and ΘP = 70◦ with fixed horizontal and vertical axis in order to

enable comparison of these results for relative values.

There are two bottom positions marked. The first one is where the S-wave is reflected.

It can be seen that there is no second harmonic wave generated by the transmitted S-wave.

Due to the transmitted S-wave there is a reflected P- and S-wave. The secondary wave

field generated by the reflected S-wave is negligible small. Therefore, there is no second

harmonic measurable at position 3. But the second harmonic generated by the reflected

P-wave is not negligible especially with increasing angle. Consequently, we have to consider

the reflected P-wave caused by the transmitted S-wave while evaluating position 4.

At bottom surface position 2 the transmitted P-wave is reflected. Note that at this

bottom surface position there is a measurable second harmonic wave. Both, the reflected

P-wave and the reflected S-wave contribute to the second harmonic wave field. Therefore,

position 4 and 5 are possible measurement points. Note that the reflected S-wave propagates

with constant amplitude since there is no bulk nonlinearity for this wave. It is solely a result

of the stress-free boundary.

In order to further investigate position 4 and 5, the second harmonic wave field is plotted

over increasing TOECs A,B, C, over different specimen thicknesses L and over a range of

incident amplitudes Ai for different angles. The default values are non-increased TOECs,

L = 0.025 m and Ai = 15 × 10−10 m. The results are shown in Figure 3.6 for position 5

in column a) and for position 4 in column b). Figure 3.6 illustrates the proportionality of

the amplitude of the generated second harmonic A2 to the increase factor of the TOECs

and with it to the nonlinearity factor β, the thickness of the specimen L and the incident

generated amplitude Ai squared

A2 ∝ βLA2
1 (56)

Also the plots show that generally an increase in the incident angle Θi and at the same

time ΘP and ΘS leads to an increase in the amplitude of the second harmonic wave field.

This is simply a result of the longer propagation distance due to larger angles. With longer

propagation distances the accumulating waves can achieve higher amplitudes.
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Figure 3.5: Comparison of the secondary wave field of the transmitted P- and S-wave for
ΘP = 20◦ and ΘP = 70◦

Especially the amplitude of the second harmonic wave being proportional to the TOECs

is an important feature in order to draw inferences from the second harmonic amplitude

about the nonlinearity of the material. A common method to get information about the

nonlinearity of a material is to measure the second harmonic amplitude A2 versus the

amplitude of the fundamental squared A2
1 for increasing generated incident amplitude Ai

[22, 26]. The slope of the linear fit of such data points represents the nonlinearity factor

βrel. Without having to calculate the absolute value of β, the value of the slope βrel

can be normalized and relatively compared. Therefore, the change in nonlinearity can be

determined and conclusions about the material can be drawn. In Figure 3.7 an aluminum

specimen of 0.025 m thickness is evaluated for different generated incident amplitudes 5×

10−10 < Ai < 25× 10−10 at an angle of ΘP = 50◦. It can be seen that the amplitudes of all

the arriving generated second harmonic waves are linear to the TOECs and consequently

can be used for nonlinearity measurements.

As a result position 4 and 5 are potential measurement positions that have to be further

investigated. Especially how the interaction of two arriving waves at position 4 influences the

measurable second harmonic has to be investigated. It is important to determine whether

both position 4 and 5 are possible measurement positions, and consequently, which position

should be preferred in a measurement setup.

Another variable parameter is the angle. In Figure 3.8 the amplitude of the second
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Figure 3.7: Generated second harmonic wave field plotted over arriving fundamental waves
for increased TOECs a) at position 5 and b) at position 4

harmonic over different angles is illustrated. Since only the displacement perpendicular to

the surface can be measured, the y-component is calculated and added to the graphic. It can

be seen that for PuPrPr arriving at position 5 the increasing angle has a smaller increase in

the generated second harmonic in the y-component than the increase of SuSrSr arriving at

position 4. The reason is that at position 5 the absolute amplitude increases due to longer

propagation distances on the one hand. On the other hand, the out of plane displacement

part decreases since the angle increases. At position 4 the absolute amplitude increases and

the angle changes in favor of the out of plane displacement. Generally speaking, at position

4 the y-component of the second harmonic amplitude increases significantly faster with

increasing angle, whereas the amplitude at position 5 only increases slightly in the range of

ΘP = 30◦ to 60◦. Other points to take into consideration for choosing the angle is that for

small angles the possibility of unintentional interference increases due to bream spreading.

Increasing angles on the other hand cause more attenuation and diffraction. Furthermore,

the angle should be chosen according to the intention whether one wants to measure rather

local defects or overall state of the material.

Note that in this Figure 3.8 the special angle Θ∗

P , which is the only angle where Pu
(2)
PtSr

shows resonance, is not especially evaluated. Therefore, the values at ΘP = Θ∗

P ≈ 52.5◦
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Figure 3.8: Generated second harmonic wave field over different angles ΘP for a) PuPrPr

arriving at position 5 and b) SuSrSr arriving at position 4

can vary considerably.

The analytical evaluation showed that acoustic nonlinearity of a material can be mea-

sured with access to only one side of the specimen using the reflection at the stress-free

boundary. The results suggest following measurement method: chose a fixed angle, increase

input amplitude and measure the slope of A2 over A2
1 at position 4 or position 5. The slope

is then proportional to the nonlinearity of the material.

In the next Chapter this measurement method is further investigated in a numerical

FE simulation. The analytical results are compared to the numerical results followed by

experimental measurements. Therefore, the reader has to keep in mind the limitations of

the mathematical approach:

• perturbation method results in an approximate solution; perturbation condition has

to be fulfilled

• for isotropic and homogenous materials

• assumption of infinite half-space

• assumption of plane waves; attenuation and diffraction not taken into account
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CHAPTER IV

SIMULATIONS - FINITE ELEMENT MODEL

In the present chapter the theoretically developed model of Chapter 3 is implemented in

a commercial FE code, COMSOL multiphysics 4.3b, in order to compare and validate the

mathematical approach. Furthermore, the feasibility for an experimental measurement is

evaluated.

In COMSOL the structural mechanics module and the nonlinear structural materials

module are added to the basic modules in order to incorporate hyperelasticity and to enable

the generation of higher harmonics.

The time and space dependent problem presented in this model requires careful setup

of the mesh, time step, tolerance controls and other model parameters in order to reach

convergence and get accurate results up to the second harmonic while not making the model

computationally too expensive. The influence of mesh size and time steps in the simulation

of ultrasonic wave propagation in solids is described for example in [16]. In the following

section the most important aspects of the FEM simulations are presented followed by the

confirmation of the model by variation of several parameters. The post processing of the

data is explained and the first conclusions for eliminating unwanted influences are drawn.

4.1 Modeling

The model is chosen to mimic an experimental setup where the wave is generated at an

oblique angle using a wedge transducer. The analysis is in the time domain. A sketch of

the model is illustrated in Figure 4.1, which is further described in the following sections.

4.1.1 Geometry

The model consists of two parts, the wedge and the specimen. The use of a wedge enables

P-waves in the specimen at arbitrary angles of incidence. This is a standard technique in

NDE experiments and can therefore be the basis for further experimental investigation and
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linear elastic acrylic plastic wedge

prescribed displacement
of transducer

hyperelastic aluminum specimen

fixation
stress-free surface

low reflecting boundary
condition of specimen

fix connection
stress-free surface

low reflecting boundary condition of wedge

Figure 4.1: FE simulation model with material, physics and boundary conditions

comparison. The angle of the wedge is dependent on the angle the P-wave and the S-wave

shall meet the stress-free boundary. Another important parameter is the length of the

wedge in order to avoid surface waves. This issue is further discussed in Section 4.3.2. The

specimen is 2.6 cm thick. This size is a compromise between computational expense and

the thickness that is required for a meaningful second harmonic amplitude. Furthermore,

the evaluation of a specimen with 2.6 cm thickness is a realistic application scenario. The

length of the specimen is then chosen according to the angle of incidence and where the

reflected P-wave is expected. In order to avoid interference with reflected waves additional

3 cm are added. The wedge and the specimen are modeled as one body. This idealization

of the contact condition of the interface reduces computational effort. In the experiment

the wedge gets attached to the specimen very firmly by the use of a couplant such as oil.

4.1.2 Material

The wedge is made of acrylic plastic and modeled to be linear elastic. The predefined

material parameter of acrylic plastic in COSMOL were introduced in Chapter 3.1 in Table

3.1. The specimen is hyperelastic and made of aluminum with the material parameter of

Table 3.2.
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The hyperelasticity formulation of elastic energy density used in COMSOL is in accor-

dance to Murnaghan description and accurate up to third order of approximation. This is

equivalent to the the analytical consideration in this thesis. Higher terms are very small

and have a negligible impact.

The nonlinear effects considered in this study are very small, but they are increasing with

propagation distance, which can be achieved by larger angles or thicker specimens. In order

to get significant amplitudes of the generated second harmonic wave field, which can be well

separated from other effects of the discrete Fourier transform (DFT), our specimen has to

be thick or long enough or the generated incident amplitude has to be significantly higher.

But long propagation distances, that result in a larger specimen and longer simulation time,

increase the computational expense heavily. Therefore, another possibility to increase the

amplitude of the generated second harmonic is to increase the nonlinear effect, which does

not impact the computational expense significantly. This is reasonable since the second

harmonic wave amplitudes are linearly proprtional to the TOECs as shown in Figure 3.6.

Increasing the material nonlinearity and thereby increasing the nonlinear effect can

be easily achieved by increasing the TOECs in the simulations. In order to compare the

numerical results to the analytical results, these TOECs are increased by the same value

in the analytical model. Therefore, the analytical approach can still be evaluated and

verified and important qualitative results for an experimental setup can still be drawn. This

approach has been already used by [27] simulating Rayleigh waves. Evaluation by means of

the analytical approach and verification by the simulation results leads to a useful value for

the increase factor of the TOECs of 100. This value is chosen for a model with the angle of

around 50◦, thickness of 0.026 m and a generated incident amplitude of 15 × 10−10 m. In

the experiments the amplitude of the second harmonic is high enough due to significantly

amplified Ai (compare Chapter 6). This is no possibility in the simulations since a generated

incident amplitude comparable to the experiments would be computationally too expensive.
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Figure 4.2: Normalized prescribed displacement for n = 20 cycles of sinus oscillations

4.1.3 Physics and boundary conditions

A prescribed displacement as a boundary condition (compare Figure 4.1) represents the

transducer. This incorporates the idealization of the contact between wedge and transducer.

In the experiment this ideal configuration is approximated by fixing the transducer with

screws very firmly to the wedge. The excitation are n = 12, 15, 20 sinus oscillations with the

frequency of 2.5 MHz and the peak amplitude of Ai = 15 × 10−10 as shown in Figure 4.2.

Since a Gaussian distribution approximation of the amplitude generated by a transducer

requires more than double the computational expense, the amplitude as a function of the

position is approximated by a step function illustrated in Figure 4.3.

Since it is important that the specimen does not move, the specimen is fixed at both

corners at the bottom. This mimics the typical experimental setup where the specimen

is fixed at several points. The surface and bottom boundary are stress-free boundaries.

The remaining boundaries are chosen to be low reflecting boundaries. The results of the

simulations show that there are still reflection that cannot be neglected. So the reflections

at every boundary has to be considered like in the experimental case.
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ary section that is representing the connection to the transducer

4.1.4 Mesh size, time steps and solver

The mesh size has to be chosen according to the smallest considered wave length. According

to COMSOL [12] there should be around 5 - 8 mesh points per wavelength. Therefore, the

mesh size for the presented model is chosen to be smaller than cs2/(5 × 2 × f0) ≈ 124.13

µm. Accordingly, the maximum mesh size within the specimen is adjusted downward to

120 µm. Similarly the mesh size for the wedge is chosen. Since the wedge is linear elastic,

only the first frequency has to be considered. Additionally, only a P-wave is generated by

the transducer. Therefore, the mesh size is chosen to be smaller than cp1/(5 × f0), which

results in a maximum mesh size of 160 µm. This implemented mesh size yields around 1.5

million degrees of freedom.

The time step should resolve the wave equally well in time as the mesh does in space.

Larger time steps do not make optimal use of the mesh and can cause inaccurate results

or endanger the convergence. Shorter time steps on the other hand lead to longer solution

times with no considerable improvements to the results. The relationship between mesh size

and time step is known as the Courant-Friedrichs-Lewy (CFL) ratio: CFL = c∆t
h
, where

∆t is the time step and h is the mesh size. In practice a CFL number of 0.2 proves to be
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near optimal [12, 13]. Therefore, a time step of 4 ns is chosen in this research.

For the solver the Paradiso direct solver is applied. This solver is recommended by

COMSOL [12]. Furthermore, it has its advantages in multi core calculations which are

used in this thesis. Morlock [27] used this solver simulating second harmonic generation in

Rayleigh waves. This indicates that this solver is also a good choice for second harmonic

generation in bulk waves. Note that these parameters as well as solver have to be confirmed

by variations as explained in Section 4.4.

4.2 Simulation

The model described in the former section is implemented in COMSOL. This section de-

scribes the computation and the signal processing that is used to obtain the results described

in the following chapter.

4.2.1 Computation

The simulations in this thesis are conducted on the PACE clusters at the Georgia Institute

of Technology. It is possible to run two or three simulations in parallel. The simulations are

conducted on 4 cores and 16 gigabyte memory. The simulation time varies from 20 hours

to 120 hours depending on the parameters, the size as well as how many results are saved

during the computation.

4.2.2 Signal Processing

The signal processing is summarized and illustrated in Figure 4.4. The illustrated steps are

explained in the following. First the x- and y-component of the displacement information

of position 4 and 5 are imported to the signal processing program. In this thesis the

signal processing was done with MATLAB. Since we want to accurately detect the second

harmonic amplitude, we want the displacement information for each time step. Storage

of that data for each meshing point of the specimen would result in huge files and long

simulation times. Therefore, the exact displacement information is only stored for specific

points, so called Domain Point Probes (DPPs), that are set at the stress-free surface. For

evaluation or verification purposes the displacement information for the whole model can
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Figure 4.4: Signal processing of the simulation results

be saved for only specific points in time. The DPPs save the time domain displacement

in material coordinates in x- as well as y-direction which is then imported into MATLAB.

In order to extract the wave burst of interest, the arrival time and the signal length of

the wave burst are calculated. The very beginning as well as the very end of the signal

should not be used, such that on both sides a buffer of 1 - 2 cycles is applied in order to

extract only the steady state wave. Since we want to transform the signal into the frequency

domain, a Hann window is applied. The Hann window minimizes the amplitudes of the side

lobes. Subsequently, we get the frequency domain plot shown in Figure 4.4 for the x- and

y-component. In order to get the frequency domain amplitudes corresponding with the time

domain amplitudes following formula has been used for the calculation

time domain amplitude =
4× frequency domain amplitude

number of data points used for Hann window
(57)

Similar to [27], this approach has been chosen instead of summing up all the values near

a maximum. This turned out to get more steady results since the range which has to be

taken into account changes the result significantly.

After the DFT the maxima of the amplitudes of the fundamental wave and the second
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harmonic wave can be calculated. This is done for the x- and y-component of the dis-

placement at position 4 and 5 respectively. The simulation is then repeated for different

parameters, for example increasing Ai. All the maxima are plotted with the corresponding

analytical results and compared. Furthermore, the second harmonic amplitude is plotted

over the squared fundamental amplitude. Like in many other experimental works, such

as [22,26], those points are then linear fitted and the slope is calculated in order to compare

the nonlinearity of different specimen.

4.3 First results and necessary improvements

In this section the results of the standard model are discussed and several problems are

identified. The first conclusions about the simulation model as well as the experimental

setup are drawn.

4.3.1 Results of the standard model

In order to evaluate the model and compare it to the analytical approach, the DPP are

chosen at position 4, position 5 as well as position 1 and position 2. The time domain

displacements in x- and y-directions are shown in Figure 4.5. It can be seen that the waves

arrive at the calculated time marked by the red points. There are some unexpected waves

that are further explained in Section 4.3.2 and 4.3.3. Furthermore, it can be seen that at

position 2 and position 5 the signal has approximately the same amplitude in x- and y-

direction, since the waves arrive at an angle of ΘP = 50◦. At position 1, the amplitude

in x-direction is significantly higher as the wave arrives at ΘS = 22.64◦ and its nature is

a S-wave. At position 4 there is a P-wave and a S-wave arriving. Therefore the difference

in amplitudes in x- and y- direction should be in between position 1 and position 2. In

Figure 4.6 the resulting displacements in the frequency domain are illustrated. Firstly, the

fundamental wave at 2.5 MHz at all positions is presented. Secondly the second harmonic

amplitude is illustrated. At bottom position 1 there is no second harmonic amplitude

whereas at position 2, position 4 and position 5 there is another peak at 5 MHz. This is in

accordance with the analytical results presented in the last two chapters. After the model

is confirmed in this chapter, only the position 4 and 5 are of interest for the final results.
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Figure 4.5: X- and y-component of the displacement field in the time domain at position
4, position 5, position 1 and position 2
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Figure 4.6: X- and y-component of the displacement field in the frequency domain at
position 4, position 5, position 1 and position 2 plotted over all relevant frequencies in A
and zoomed in for the second harmonic amplitude in B
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6.90 mm

3.21 mm

Figure 4.7: Y-component of the displacement field of the stress-free surface boundary at
two different times revealing two surface waves

4.3.2 Avoidance of surface waves

In the first set of simulations there appear to be other arriving waves at position 4, which

clearly influence the results. In order to investigate all the arriving waves, the displacement

of the stress-free top surface boundary is evaluated at different times. In Figure 4.7 the

displacement field of the stress-free top surface is plotted over the x-coordinate of the stress-

free surface at two times t = 1.4× 10−5 s and t = 1.512× 10−5 s. Note that this stress-free

top surface boundary starts at around x = 25 mm since that is where the wedge ends.

There seem to be two surface waves, one with a very small amplitude traveling fast and one

with a high amplitude traveling slowly. The wave velocities can now be easily evaluated

with

c1 =
∆x

∆t
=

0.0069 m

(1.512− 1.4)10−5 s
= 6160.7

m

s
≈ cp = 6176.4

m

s
(58)

c2 =
∆x

∆t
=

0.00321 m

(1.512− 1.4)10−5 s
= 2866.1

m

s
≈ cr = 2889.0

m

s
(59)

where cr ≈ 0.862+1.14ν
1+ν

cs. Accounting for the inaccuracy of determining the traveled distance

these velocities correspond very well to the P-wave velocity and the Rayleigh wave velocity

of the material. Consequently, there is a P-wave with a small amplitude traveling along the

surface. This amplitude is negligible compared to arriving reflected waves. However, there
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Figure 4.8: Y-component of displacement field of the specimen showing a Rayleigh surface
wave originating at time t = 1.5e− 5 s

is also a Rayleigh wave traveling along the surface with the amplitude that is approximately

twice as high as the amplitude of the reflected waves. Further investigating this Rayleigh

surface wave in COMSOL we can see this wave originating and traveling in Figure 4.8 and

4.9 respectively.

A Rayleigh wave can only be formed by a very specific angle. Therefore, there must be a

number of reflections within the wedge that finally cause a P-wave to arrive at the interface

at this specific angle. In order to prevent this from happening, the geometry of the wedge has

to be changed. Therefore a longer wedge is chosen and recommended for an experimental

setup. With a longer wedge the reflected waves within the wedge cannot reach another

angle than the starting angle within the simulation time. It is therefore recommended to

carefully consider the geometry of the wedge when setting up an experiment. Comparing

Figure 4.10 to Figure 4.8 it can be seen that the Rayleigh wave is eliminated with a longer

wedge. The significant influence of a Rayleigh surface wave can be seen in Figure 4.11,

where the received time signal with a short wedge and the received time signal with a long

wedge are compared. The difference between those time signals is caused by the Rayleigh

surface wave. The red dots represent the time of the arriving reflected wave burst of interest

which is evaluated. Since the surface wave is arriving within the time slot of the arriving
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Figure 4.9: Y-component of displacement field of the specimen showing a Rayleigh surface
wave propagating at time t = 2.5e− 5 s

Figure 4.10: Y-component of displacement field of the specimen at time t = 1.5e−5 s with
a long wedge preventing the Rayleigh wave from originating
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Figure 4.11: Displacement field at position 4 in the time domain and in the frequency
domain for a) setup with short wedge, where a Rayleigh surface wave is generated and b)
setup with long wedge

reflected wave, the frequency analysis cannot be used. Whereas with the long wedge the

frequency analysis shows the anticipated result.

4.3.3 Avoidance of interaction with diffracted P-wave at position 4

In the analytical approach the plane wave assumption is used. However, in the simulations

the diffraction of the bulk waves have to be considered. Therefore, there is also a faster

propagating P-wave as part of the diffracted wave arriving at position 4. In order to preclude

interaction which influences the results for position 4, the thickness of the specific specimen

L and the number of cycles n have to be chosen according to following inequality

tp,disp + tsignal < twave (60)
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Figure 4.12: Illustration of Lmin as the intersection of the signal length added to the arrival
time of the diffracted P-wave and the arrival time of the actual signal for a) n = 12 cycles
and b) n = 15 cycles

where tp,disp is the arrival time of the possible reflected P-wave, tsignal is the time length of

the signal and twave is the arrival of the actual P- and S-wave of interest. This inequality

expresses that the diffracted reflected P-wave has to be gone before the actual waves of

interest arrive. This inequality can be represented in terms of numbers of cycles n, the

frequency f , the thickness of the specimen L, the angle of the P- and S-wave ΘP ,ΘS and

the propagating velocities of the P- and S-wave cP , cS

√

(2L)2 + (L tan(ΘP ) + L tan(ΘS))2

cP
+
n

f
<

L

cP cos(ΘP )
+

L

cS cos(ΘS)
(61)

In Figure 4.12 tp,disp + tsignal and twave are plotted over the thickness of the specimen L

for two different number of cycles n. It can be easily seen that there is a thickness Lmin

at the intersection which should be smaller than the thickness of the specimen in order to

avoid interaction. For a fixed setup the number of cycles should be chosen according to

the thickness of the specimen. Figure 4.13 shows the maximum cycles nmax for a given

thickness L. Therefore the number of cycles for the specimen of thickness L = 0.026 m is

reduced to n = 12 cycles. In Figure 4.14 the time signal of n = 15 and n = 12 cycles is

plotted. It can be easily seen that with n = 15 cycles the earlier arriving diffracted P-wave

still has influence in the measured time frame marked by the two red points. With n = 12

cycles the diffracted P-wave has already passed and has no influence on the measurement
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Figure 4.14: Displacement field at position 4 in the time domain for a) n=15 and b) n=12
cycles of generated sinus oscillations

anymore. This verifies Equation (61) derived in this chapter.

4.4 Confirmation of the finite element model

The FE model implemented in COMSOL has to be confirmed. Especially mesh size, time

steps and the choice of the solver must not have an impact on the results. Therefore, mesh

size as well as the time steps are chosen smaller for the confirmation of the implemented

numerical model, and another solver is used. The difference between the results had a

negligible impact on the qualitative results.
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CHAPTER V

RESULTS OF THE SIMULATIONS

After the FE model was evaluated, improved and confirmed in Chapter 4 several simulations

with varying parameters are conducted. The results are then compared to the analytical

approach and the implementation in an experimental setup is evaluated. There are two

important simulations with varying parameters that have to be investigated: increasing

TOECs and increasing incident amplitude. The reason for this is that the recommended

experimental setup in this thesis for the reflecting case is to measure the first and second

harmonic amplitude over an increasing incident amplitude. Since the nonlinearity, and

thus the TOECs, are linear to the second harmonic amplitude, the slope of A2 over A2
1

is proportional to the nonlinearity. Therefore, comparing the slope can potentially give

absolute knowledge of the increase in the nonlinearity.

5.1 FEM results for suggested measurement model

In the first set of simulations the suggested measurement procedure is simulated. The

generated incident amplitude Ai ranges from 1 nm to 2 nm and the material nonlinearity is

increased by 50%. Note that if we consider the increase in all the simulations by the factor

100, this leads to an increase factor of 100 and 150.

In Figure 5.1 the absolute second harmonic amplitude is plotted over the generated

incident amplitude for position 5 and position 4. It can be easily seen that the simulation

results are considerably smaller than the analytical results but the tendency is in accordance

with the analytical results. This is explained by the diffraction that is not taken into account

in the analytical approach amongst others.

Note that for the comparison of the analytical and numerical results, the x-axis in

numerous plots is chosen to be the incident amplitude Ai in this chapter. These figures

have been constituted in that way because the incident amplitudes Ai for the numerical

simulation were set according to values used in the analytical evaluation. Therefore, both

46



results can be plotted and compared regarding the values of incident amplitude Ai, whereas

the resulting fundamental amplitude A1 does not offer a common axis. Those figures serve

for comparison purposes primarily; for the robustness and angle evaluating simulations and

experiments only A2

A2

1

will be illustrated.

In Figure 5.2 the arriving second harmonic amplitude divided by the arriving fundamen-

tal amplitude A2

A1
is plotted over the incident amplitude Ai. By comparing the ratio, the

simulation results in Figure 5.2 are closer to the analytical results than in Figure 5.1. This

is because dividing by the arriving fundamental wave causes the diffraction effects to get rel-

ativized. Another important point to notice is that while at position 5 the relation between

second harmonic and fundamental amplitude are almost the same in x- and y-direction, at

position 4 there is a big difference. The reason for this is that at position 4 there are two

waves arriving. The arriving second harmonic S-wave SuSrSr has analytically the higher

amplitude. This amplitude is only inclined by ΘS = 22.64◦ out of the surface and therefore,

the numerical results in the x-direction are similar to the analytical S-wave SuSrSr. The

arriving P-wave PuPrPr on the other hand has a significantly smaller amplitude but it is

inclined by ΘP = 50◦ out of the surface. Therefore, the simulation results in y-direction

are rather similar to the analytical P-wave PuPrPr.

In Figure 5.3 A2 is plotted over A2
1. The points are then linearly fitted. It can be seen

that the results are very linear and the R value for linear fitting is 0.9999. The R value

for the linear fitting is a parameter to measure the correlation between the two vectors A2

and A2
1. It is the normalized covariance value: R(A2, A

2
1) =

Cov(A2,A
2

1
)√

Cov(A2,A2)Cov(A2

1
,A2

1
)
. It is

now shown that position 5 as well as position 4 can be used for nonlinearity measurements.

Especially for position 4 this result, the linearity of the second harmonic amplitude to the

nonlinearity and the generated incident amplitude, is not trivial since there are two waves

arriving.

5.2 Robustness regarding Hann window variations

For a good and repeatable measurement setup a certain robustness to variable parameters

is important. Therefore, the used Hann window is changed in length and position in this
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Figure 5.1: Second harmonic amplitude A2 plotted over the generated incident amplitude
Ai for a) position 5 and b) position 4
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Figure 5.5: Second harmonic amplitude A2 plotted over the generated incident amplitude
Ai with varying Hann window regarding only y-components

section.

The results with errorbars are presented as absolute values of the second harmonic

amplitude A2 over an increasing incident amplitude Ai (Figure 5.5) and as arriving second

harmonic amplitude A2 over the squared arriving fundamental amplitude A2
1 (Figure 5.6).

In this simulation setup only the y-components are regarded since only the y-component

can be measured in the experiments.

It can be seen that the amplitude of the second harmonic wave at position 5 varies

significantly less than at position 4. But at both positions the correlation factors are

close to 1 with R = 0.9987 and R = 0.9971 respectively, which confirms a good linear

fit. Therefore, the variation of the Hann window does not have a significant impact on the

results. However, position 5 shows more robustness.

5.3 Robustness regarding receiver position variations

For the next set of simulations the receiver was moved 1 and 2 mm to the right and to the

left. The results with errorbars are also presented as absolute values of the second harmonic
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Figure 5.6: Linear fit of second harmonic amplitude A2 plotted over squared fundamental
amplitude A2

1 with varying Hann window regarding only y-components

amplitude A2 over an increasing incident amplitude Ai (Figure 5.7) and as arriving second

harmonic amplitude A2 over the squared arriving fundamental amplitude A2
1 (Figure 5.8).

The illustration is similar to the results with varying Hann window only regarding the

y-component.

Again, the variation of the second harmonic amplitude is significantly higher at position

4, as illustrated in Figure 5.7. Figure 5.8 shows that the variations with shifted receiver are

higher compared to the results with varying Hann window. The correlation factor is still

close to 1 with R = 0.99288 and R = 0.99282 what shows the robustness of the measurement

method. Similar to the results of the variation of the Hann window, position 5 turns out to

be more robust.

5.4 Recommendation for experimental setup

5.4.1 Receiver position

In order to decide whether position 4 or position 5 should be recommended for the receiver

position, one has to take into account the absolute amplitude of the second harmonic arriving

at that position as well as how accurate and repeatable the measurements can be at that

position.
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Figure 5.7: Second harmonic amplitude A2 plotted over the generated incident amplitude
Ai with shifted receiver (± 1-2 mm) regarding only y-components
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1 with shifted receiver (± 1-2 mm) regarding only y-components
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For reliable measurements, the second harmonic amplitude should be as large as possible

with respect to the noise level. Therefore, position 4 has an advantage considering the

absolute amplitude. As seen in Figures 5.5 and 5.7, for example, the second harmonic

amplitude for ΘP = 50◦ is 30%−50% larger at position 4 than at position 5. For larger angles

this percentage is supposed to increase. For smaller angles on the other hand the difference

will get more insignificant. For angles smaller than 40◦ the amplitudes are supposed to be

in the same range (compare Figure 3.8).

Considering the robustness of measuring, Figure 5.5 and 5.7 suggest that the variation

at position 5 is smaller regarding varying windows or shifting the receiver. Furthermore,

position 4 is more vulnerable for interference of any type since the propagation velocity of

the S-wave is smaller than the propagation velocity of the P-wave. Another point is that

position 5 is more robust concerning the calculation of the arrival time because one can take

the first waves arriving. Furthermore, even though the results of the simulations showed

that the interaction of two arriving waves at position 4 does not impact the linearity that

is necessary for the measurement procedure, inconsistencies of each wave can add up.

All in all the resulting suggestion in this thesis is to measure at position 5. Firstly the

amplitude difference is negligible for angles less than 40◦ and acceptable to angles less than

60◦. In return the robustness of measuring at position 5 is definitely higher.

5.4.2 Incident angle

Another parameter that has to be determined for the measurement setup is the incident

generated angle that is optimal for the receiver at position 5. Analytically, the second har-

monic amplitude is supposed to increase with the angle, since the propagation distance gets

longer but on the other hand the angle changes in favor of the x-component. This analyt-

ically results in a slightly increasing y-component of the second harmonic amplitude with

an increasing angle (compare Figure 3.8). In the simulation, diffraction is included. The

diffraction effect increases with larger angles and therefore longer propagation distances.

Therefore, the second harmonic amplitude now finds an optimum at around ΘP = 35◦ as
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Figure 5.9: Y-component of the second harmonic amplitude A2 and fundamental amplitude
A1 plotted over increasing angles ΘP of the P-wave

seen in Figure 5.9. Note that the diffraction effect will be much higher in an experimen-

tal setup since a 2D model was chosen in the simulations. Also note that attenuation is

not included, but the analytical evaluation showed a negligible impact of attenuation in

aluminum compared to other impacts.

The fundamental amplitude is decreasing drastically with larger angles as shown in Fig-

ure 5.9. This has several reasons. Firstly, the reflection coefficient of the P-wave decreases

with larger angles as shown in Figure 3.3 and secondly because there is more diffraction

due to larger angle and longer propagation distances. Furthermore, the out-of-plane part

of the displacement decreases with increasing angle.

Plotting A2/A
2
1 over the propagation distance in Figure 5.10, it can be clearly seen

that this ratio increases with propagation distance and therefore with larger angles. But

because of diffraction this increase is damped compared to the analytical solution. Also in

the analytical solution, the linearity of A2

A2

1

over propagation distance is slightly attenuated by

the decreasing reflection coefficient of the P-wave at the stress-free boundary for increasing

angles.

Since the absolute amplitude of the second harmonic has an optimum at around ΘP =
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Figure 5.10: A2/A
2
1 plotted over increasing propagating distance due to increasing angles

35◦, but the slope of A2

A2

1

increases with propagation distance, angles between ΘP = 35◦−45◦

are recommended and chosen for the experimental setup. This recommendation is also in

accordance with the NDE application of measuring local defects.

The results of the simulations verify the analytical approach taking into account assump-

tions and approximations of the analytical solution procedure. Furthermore, the simula-

tions show more robustness at position 5, which is the recommended measurement position.

When choosing position 4 the number of generated sinus cycles should be chosen according

to the derived Equation (61). For the recommended measurement position 5, an optimal

angle of approximately ΘP = 35◦ − 45◦ is determined. All in all, the feasibility of the sug-

gested measurement method is numerically confirmed. In the next Chapter the suggested

measurement method is applied in an experiment, evaluating the application and feasibility

in an experimental setup.
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CHAPTER VI

EXPERIMENTS

The measurement technique, that has been evaluated analytically and in simulations, is ap-

plied experimentally in this chapter. First, the experimental setup is introduced. Then the

experiment conduction and its results are presented. Since only relative information about

the nonlinearity are accessible by this measurement procedure, two different aluminum

specimen are used in order to compare their nonlinearity. Furthermore, the robustness of

position 4 and position 5 are evaluated on the basis of the experimental results.

6.1 Experimental Setup

The experiment was conducted as seen in Figure 6.1. A function generator, a 80 MHz

33250A arbitrary waveform generator from Agilent, generates sine waves at f0 = 2.5 MHz.

Since position 4 and position 5 are evaluated in the experiments, the number of cycles of

generated sinus oscillations is determined by Equation 4.3.3. As the specimens are 0.0254

m thick, 12 cycles of sinus oscillations are used. This signal then gets amplified by a high

power gated amplifier RITEC GA-2500A. This is very important because the amplitude of

the fundamental wave has to be large enough for the second harmonic wave to be generated.

The amplified signal is send to a transmitting transducer. A piezoeletric transducer of KB-

aerotech type gamma centered at 2.25 MHz has been selected. It converts the electrical

signal into longitudinal displacements. The transducer is screwed onto a variable-angle

wedge as shown in Figure 6.1. This enables to send the longitudinal wave into the wedge

at an oblique angle. The transducer is coupled to the wedge with oil. Similarly, the whole

wedge is attached to the specimen with screws and oil coupling. As material properties, the

longitudinal wave speed is given as cp,wedge = 2720m
s
. The experimental setup is shown in

Figure 6.2.

First, the longitudinal wave travels through the wedge. At the solid-solid interface, the
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Figure 6.1: Experimental approach

wave is reflected and transmitted according to Section 2.1.3. The transmitted S- and P-

wave are then traveling through the specimen and get reflected at the stress-free boundary.

During the propagation in the specimen and at the stress-free boundary higher harmonics

are generated. Usually only the fundamental and the second harmonic amplitude can be

measured. For the detection of these wave components a receiver is positioned at position 4

or position 5 respectively. The receiver has been selected to be a piezoeletric P-wave trans-

ducer of Panametrics centered at 5 MHz with emphasis on the second harmonic frequency.

This transducer is attached to the specimen with screws and oil coupling to detect the out

of plane displacement. The signal is then send to the oscilloscope, a DPO 5034B Digital

Phospor Oscilloscope of Tektronix, where the digitized signal is displayed and processed.

In order to reduce noise, an average of 265 signals is taken and saved. Similar to the sim-

ulations, the post processing was done in MATLAB. The experimental post processing is

illustrated in Figure 6.3.
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Figure 6.2: Experimental setup
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Figure 6.3: Signal processing of the experimental data
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6.1.1 Specimens

First, an aluminum 2024-T351 specimen with 25.4 mm thickness is used in the experimental

setup. The Al 2024-T351 plate is heat treated at 325◦ for three hours followed by air-cooling.

Since only the relative nonlinearity parameter βrel can be determined, another specimen is

measured as a reference. The second specimen is chosen to be an aluminum 7075 specimen

with the same thickness. Using two aluminum specimen improves the comparability between

the two βrel values since the linear ultrasonic properties are assumed to be equal. For both

materials there are nonlinearity values available in the literature [24, 33]. Both specimen

are hand-polished using 800 grad sandpaper in order to get the same surface and coupling

conditions.

6.2 Experimental Results

Initially, basic tests are performed to see whether position 4 and position 5 can be deter-

mined and the corresponding waves can be identified. For these initial tests the receiving

transducer is attached in a distance of 4 cm of the transmitting transducer. The incident

angle is set up according to the calculated angle shown in Table 6.1. But the angle is difficult

to adjust accurately and a change of 2◦ results in a position variation of the detecting de-

vice of approximately 8 mm (compare Table 6.1). Therefore, it is very important to adjust

receiver position and angle to find the peak amplitudes of the waves we are interested in.

Here, first the angle is changed slightly to get the peak amplitude followed by fine tuning

by moving the receiving device.

The sound rays near the boundary of the incident wave have slightly different incident

angles, which causes slightly different nonlinear interaction with the free boundary. This

results in a distorted second harmonic wave field, whose amplitude is location-dependent.

Therefore, the measurement should ideally be taken from the center of the beam. Conse-

quently, finding the peak of the amplitude is important for accurate results.

As shown in Figure 6.4 and Figure 6.5, both detecting positions and the according waves

can be identified. The time domain signals look similar to the time domain signals from

the simulations shown in Figure 4.5.
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Figure 6.4: Measured time domain signal at position 5
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Figure 6.5: Measured time domain signal at position 4
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Table 6.1: Possible measurement setup values

ΘP Θi position 4 position 5

35.0◦ 14.6◦ 2.5 cm 3.5 cm
38.7◦ 16.0◦ 2.8 cm 4.0 cm
42.0◦ 17.1◦ 3.1 cm 4.5 cm
45.0◦ 18.1◦ 3.5 cm 5.0 cm
47.7◦ 19.0◦ 3.7 cm 5.5 cm
50.0◦ 19.7◦ 4.0 cm 6.0 cm

When the setup with the peak amplitude of the waves of interest is found, the nonlin-

earity measurement can be conducted. The input voltage is gradually increased and the

time domain signal is saved and processed. For each input voltage amplitude, the arriving

fundamental and second harmonic amplitude is determined. Plotting the second harmonic

amplitude A2 over the squared fundamental amplitude A2
1 shows a good linear fit, as shown

in Figure 6.6. Ideally the slope is now proportional to β, the nonlinearity of the material.

But in reality, part of the measured nonlinearity is due to the inherent system nonlinearity

from the instrumentation and coupling. In order to account for the inherent system non-

linearity the measurement setup can be calibrated as described in Section 6.2.1. But using

the same measurement setup to determine changes in the nonlinearity of a material, the

calibration is not necessary.

This slope is determined numerous times for each specimen, where transducer and re-

ceiver are reattached at the same position each time. Initially, this slope is determined for

position 4 and position 5 of the Al 2024 specimen in order to compare the robustness of the

two measurement positions. The results are shown in Figure 6.7.

Comparing the errorbars at position 5 to position 4, the variance at position 4 is signifi-

cantly higher than at position 5. While the spatial variation at position 5 is within ± 20%,

the variation at position 4 is approximately ± 40%. This validates the result of the simula-

tions that position 5 is more robust than position 4. Note that this is only a comparison of

position 4 and position 5 regarding the variation and not regarding the slopes and the βrel

values respectively. The slopes at position 4 and position 5 are supposed to be different, as

shown in the previous chapters.

Secondly, the βrel for both aluminum samples at position 5 is determined and compared
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obtained by using the reflection at a stress-free boundary

Table 6.2: Relative nonlinearity parameter obtained by using the reflection at a stress-free
boundary

βrelAl7075 0.42 ± 20 %
βrelAl2024 0.24 ± 20 %

βrelAl7075/β
rel
Al2024 ≈ 1.75

at a distance d = 4.0 cm, which corresponds to ΘP = 38.7◦. The results are illustrated in

Figure 6.8, which shows a clear increase of nonlinearity from the Al 2024 specimen to the

Al 7075 specimen. The according βrel values are presented in Table 6.2.

In order to validate these results by comparison with literature values, the ratio of

the relative values βrelAl7075/β
rel
Al2024 is calculated and also added to Table 6.2. Nonlinearity

values for the two aluminum specimen are presented in [24,30,33]. Thiele et al. [30] uses an

air-coupled receiver for the measurement of the nonlinearity with Rayleigh surface waves.

Li et al. [24] and Yost and Cantrell [33] use a capacitive receiver measuring the second

harmonic generation in longitudinal waves. As noted by Thiele et al. [30], a one-to-one

comparison is difficult to make because slightly different chemical compositions and heat
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Table 6.3: Resulting nonlinearity ratio in comparison with literature values

reference this research [30] [33] [24]

βAl7075/βAl2024 ≈ 1.75 1.50 - 1.85 1.70 - 2.03 0.97 - 1.28
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Figure 6.9: βrel value measured using different incident angles plotted over propagation
distance

treatments can cause differences in the nonlinearity. However, an overall agreement of the

resulting nonlinearity using the reflection at a stress-free boundary in comparison to other

measurement methods shows the accuracy of the proposed measurement technique, as it

can be seen in Table 6.3. This result confirms that changes in the material nonlinearity

can be determined with the suggested measurement setup using single-sided access to a

specimen.

For the final measurement, the slope ∝ βrel is determined for increasing angles, which

results in increasing propagation distances. The distance between transmitting and detect-

ing transducers is increased from 3.5 cm, 4.0 cm, 4.5 cm to 5.0 cm. The corresponding

incident angle Θi and P-wave propagation angle ΘP are presented in Table 6.1. For each

distance six measurements are taken, where the transmitting and receiving transducers are

reattached each time. The results are plotted over the propagation distance in Figure 6.9.
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As expected, the βrel value increases almost linearly with propagation distance. Note

that this increase is not totally linear since the increasing angle causes a decreasing reflec-

tion coefficient for the reflected P-wave at the stress-free boundary. The changing reflection

coefficient causes a small attenuation of the linear incline. These results are in accordance

with the analytical and numerical results presented in Figure 5.10. Therefore, this last mea-

surement setup confirms once more the coherence of analytical, numerical and experimental

approach and affirms the feasibility and accuracy of the presented measurement setup using

a stress-free boundary.

6.2.1 Absolute nonlinearity value

There are several works that investigate effects that have to be accounted for when eval-

uating the absolute nonlinearity β value. Methods to extract the absolute β value can be

found in [14, 22] amongst others. Blackshire et al. [8] illustrates that beam-spreading due

to diffraction effects is evident. But it is shown that the diffraction effects result in an only

minor variation of less then 0.5% of the observed ratio A2/A
2
1. Hurley and Fortunko [20] ex-

plain how to add diffraction corrections to the relative slope in order to obtain β. Diffraction

and attenuation corrections are also used for calculating the absolute nonlinearity param-

eter in [19]. Croxford et al. [14] describe a numerical model of bulk harmonic generation

which includes diffraction, attenuation and nonlinearity in a sound beam. They provide

also a method to convert measured voltages to absolute amplitudes by receiver calibration

and present some insights to finding the absolute β value. Similarly, Liu et al. [25] propose

a scaling of the relative β value to account for damping, excitation window type and signal

processing window type. In order to obtain the absolute β value, the measurement sys-

tem can be calibrated by measuring β in borosilicate, which is known to have a negligible

nonlinearity, as done by [22].

In summary, to obtain the absolute β value, the measure voltage has to be converted to

the measured amplitude. Secondly, diffraction and attenuation corrections are necessary.

Furthermore, the measurement setup has to be calibrated with borosilicate for example.

This evaluation of the absolute β value is beyond the scope of this thesis. However, even
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without knowing the absolute β value, the change in the nonlinearity is measured. There-

fore, for monitoring the change of nonlinearity of specific in-service specimens over their

lifespans, the absolute β value is not necessary. Consequently, the proposed and conducted

measurement procedure can be used for monitoring the state of critical in-service compo-

nents through its entire life cycle to reduce maintenance costs and to secure a higher level

of safety.
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CHAPTER VII

CONCLUSION AND FUTURE WORK

7.1 Conclusion

This research presents a single-sided measurement setup and measurement procedure to

assess the nonlinearity of a material using the reflection at a stress-free boundary. While

existing measurement setups have some drawbacks concerning single-sided measurement of

in-service components, the presented measurement setup shows its potential for single-sided

in-service application.

Initially, the second harmonic generation at a stress-free boundary is investigated and

potential measurement setups are formulated. Two possible receiver positions are identified.

The relation of second harmonic amplitude to specimen thickness, incident angle, generated

incident amplitude and material nonlinearity are studied. The resulting suggested measure-

ment method is then to choose a fixed angle, increase input amplitude and measure the slope

of A2 over A2
1. The resulting slope is proportional to the nonlinearity of the material and

can provide information about the state of the material under neutron irradiation, thermal

aging or corrosion.

The theoretical results are qualitatively validated by the results of the FEM simulations

taking into account the approximation and assumptions used in the analytical solution pro-

cedure. Furthermore, the results of the FEM simulations verify the suggested measurement

setup and procedure and show its robustness for the size of the signal processing window and

small variations of the receiver position. Additionally, the position where only the reflected

P-wave arrives, referred to as position 5, is identified to be more robust and therefore the

recommended receiver position. The results of the FEM simulations determine an optimal

incident angle of ΘP = 35◦ − 45◦ for that recommended receiver position. Moreover, a for-

mula is derived for the number of generated sinus cycles for the receiver position 4, where

a reflected S- as well as a reflected P-wave arrive. This formula precludes an interaction of
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a diffracted P-wave with the arriving waves of interest.

Finally, experiments that comply with the simulation results confirm the feasibility

of the measurement setup and the measurement procedure. The experimentally resulting

acoustic nonlinearity of the measured specimen is in overall agreement with literature values.

These results demonstrate accuracy and robustness of the determination of the material

nonlinearity using the second harmonic generation with reflection at a stress-free boundary.

Therefore, the presented measurement setup overcomes drawbacks of existing single-sided

measurement setups and shows its advantages for single-sided in-service application.

7.2 Outlook

In order to further improve the repeatability of the measurement setup, an air-coupled

transducer or a laser can be used to measure the particle displacement. This can eliminate

some uncertainties due to coupling conditions and attachment of the receiver. Furthermore,

the peak determination can be simplified by a setup with non-contact receiver.

Moreover, some investigations about diffraction correction and measurement setup cal-

ibration can be made in order to determine the absolute β value. This would enable com-

paring measurements results between materials as well as between different measurement

methods.
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